Stressed Ge:Ga photoconductors for space-based astronomy. (Is there life beyond 120 micron)
NASA Technical Reports Server (NTRS)
Beeman, J. W.; Haller, E. E.; Hansen, W. L.; Luke, P. N.; Richards, P. L.
1989-01-01
Information is given in viewgraph form. Information is given on the characteristics of stressed Ge:Ga, a spring type stress cavity, mounting hardware, materials parameters affecting dark current, and the behavior of low dark current stressed Ge:Ga. It is concluded that detectors exist today for background-limited detection at 200 microns, that researchers are narrowing in on the significant parameters that effect dark current in stressed photoconductors, that these findings may be applied to other photoconductor materials, and that some creative problem solving for an ionizing effect reset mechanism is needed.
Development of a unit cell for a Ge:Ga detector array
NASA Technical Reports Server (NTRS)
1988-01-01
Two modules of gallium-doped germanium (Ge:Ga) infrared detectors with integrated multiplexing readouts and supporting drive electronics were designed and tested. This development investigated the feasibility of producing two-dimensional Ge:Ga arrays by stacking linear modules in a housing capable of providing uniaxial stress for enhanced long-wavelength response. Each module includes 8 detectors (1x1x2 mm) mounted to a sapphire board. The element spacing is 12 microns. The back faces of the detector elements are beveled with an 18 deg angle, which was proved to significantly enhance optical absorption. Each module includes a different silicon metal-oxide semiconductor field effect transistor (MOSFET) readout. The first circuit was built from discrete MOSFET components; the second incorporated devices taken from low-temperature integrated circuit multiplexers. The latter circuit exhibited much lower stray capacitance and improved stability. Using these switched-FET circuits, it was demonstrated that burst readout, with multiplexer active only during the readout period, could successfully be implemented at approximately 3.5 K.
Conceptual design of a hybrid Ge:Ga detector array
NASA Technical Reports Server (NTRS)
Parry, C. M.
1984-01-01
For potential applications in space infrared astronomy missions such as the Space Infrared Telescope Facility and the Large Deployable Reflector, integrated arrays of long-wavelength detectors are desired. The results of a feasibility study which developed a design for applying integrated array techniques to a long-wavelength (gallium-doped germanium) material to achieve spectral coverage between 30 and 200 microns are presented. An approach which builds up a two-dimensional array by stacking linear detector modules is presented. The spectral response of the Ge:Ga detectors is extended to 200 microns by application of uniaxial stress to the stack of modules. The detectors are assembled with 1 mm spacing between the elements. Multiplexed readout of each module is accomplished with integration sampling of a metal-oxide-semiconductor (MOS) switch chip. Aspects of the overall design, including the anticipated level of particle effects on the array in the space environment, a transparent electrode design for 200 microns response, estimates of optical crosstalk, and mechanical stress design calculations are included.
Stressed and unstressed Ge:Ga detector arrays for airborne astronomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stacey, G.J.; Beeman, J.W.; Haller, E.E.
1992-11-01
We have constructed and used two dimensional arrays of both unstressed and stressed Ge:GA photoconductive detectors for far-infrared astronomy from the Kuiper Airborne Observatory (KAO). The 25 element (5 x 5) arrays are designed for a new cryogenically cooled spectrometer, the MPE/UCB Far-Infrared Imaging Fabry-Perot Interferometer (FIFI). All of the pixels for the stressed array performed well on the first flights with FIFI; 25% of the detectors in the array are more sensitive than our best single element detector, with background limited noise equivalent powers (NEPs) [approx lt] 3.0 [times] 10[sup [minus]15] W Hz[sup [minus]1/2] at 158 [mu]m and 40more » km s[sup [minus]1] spectral resolution. The average array element performs within [plus minus] 15% of this value. With a bias field of 0.1 V/cm, the average detector response is 20 [plus minus] 6 Amp/Watt at 158 [mu]m. The cutoff wavelength and response also compare well with our single element detectors. The unstressed array delivers significantly better performance than our single element detector due to the lower thermal background in the new spectrometer. The average background limited NEP at 88 [mu]m and 35 km s[sup [minus]1] spectral resolution is approx. 7 [times] 10[sup [minus]15] W Hz[sup [minus]1/2]. 18 refs., 10 figs., 2 tabs.« less
Stressed photoconductive detector for far-infrared space applications
NASA Technical Reports Server (NTRS)
Wang, J.-Q.; Richards, P. L.; Beeman, J. W.; Haller, E. E.
1987-01-01
An optimized leaf-spring apparatus for applying uniaxial stress to a Ge:Ga far-IR photoconductor has been designed and tested. This design has significant advantages for space applications which require high quantum efficiency and stable operation over long periods of time. The important features include adequate spring deflection with relatively small overall size, torque-free stress, easy measurement of applied stress, and a detector configuration with high responsivity. One-dimensional arrays of stressed photoconductors can be constructed using this design. A peak responsivity of 38 A/W is achieved in a detector with a cutoff wavelength of 200 microns, which was operated at a temperature of 2.0 K and a bias voltage equal to one-half of the breakdown voltage.
NASA Astrophysics Data System (ADS)
Durandurdu, Murat
2007-07-01
The behavior of gold crystal under uniaxial, tensile, and three different triaxial stresses is studied using an ab initio constant pressure technique within a generalized gradient approximation. Gold undergoes a phase transformation from the face-centered-cubic structure (fcc) to a body-centered-tetragonal (bct) structure having the space group of I4/mmm with the application of uniaxial stress, while it transforms to a face-centered-tetragonal (fct) phase within I4/mmm symmetry under uniaxial tensile loading. Further uniaxial compression of the bct phase results in a symmetry change from I4/mmm to P1 at high stresses and ultimately structural failure around 200.0GPa . For the case of triaxial stresses, gold also converts into a bct state. The critical stress for the fcc-to-bct transformation increases as the ratio of the triaxial stress increases. Both fct and bct phases are elastically unstable.
Polarized-cathodoluminescence study of uniaxial and biaxial stress in GaAs/Si
NASA Technical Reports Server (NTRS)
Rich, D. H.; Ksendzov, A.; Terhune, R. W.; Grunthaner, F. J.; Wilson, B. A.; Shen, H.; Dutta, M.; Vernon, S. M.; Dixon, T. M.
1991-01-01
The strain-induced splitting of the heavy-hole (hh) and light-hole (lh) valence bands for 4-microns thick GaAs/Si is examined on a microscopic scale using linear polarized-cathodoluminescence imaging and spectroscopy. The energies and intensities of the hh- and lh-exciton luminescence are quantitatively analyzed to determine spatial variations in the stress tensor. The results indicate that regions near and far from the microcracks are primarily subject to uniaxial and biaxial tensile stresses, respectively. The transition region where biaxial stress gradually converts to uniaxial stress is analyzed, and reveals a mixing of lh and hh characters in the strain-split bands.
Uniaxial stress control of skyrmion phase
Nii, Y.; Nakajima, T.; Kikkawa, A.; Yamasaki, Y.; Ohishi, K.; Suzuki, J.; Taguchi, Y.; Arima, T.; Tokura, Y.; Iwasa, Y.
2015-01-01
Magnetic skyrmions, swirling nanometric spin textures, have been attracting increasing attention by virtue of their potential applications for future memory technology and their emergent electromagnetism. Despite a variety of theoretical proposals oriented towards skyrmion-based electronics (that is, skyrmionics), few experiments have succeeded in creating, deleting and transferring skyrmions, and the manipulation methodologies have thus far remained limited to electric, magnetic and thermal stimuli. Here, we demonstrate a new approach for skyrmion phase control based on a mechanical stress. By continuously scanning uniaxial stress at low temperatures, we can create and annihilate a skyrmion crystal in a prototypical chiral magnet MnSi. The critical stress is merely several tens of MPa, which is easily accessible using the tip of a conventional cantilever. The present results offer a new guideline even for single skyrmion control that requires neither electric nor magnetic biases and consumes extremely little energy. PMID:26460119
Uniaxial stress control of skyrmion phase.
Nii, Y; Nakajima, T; Kikkawa, A; Yamasaki, Y; Ohishi, K; Suzuki, J; Taguchi, Y; Arima, T; Tokura, Y; Iwasa, Y
2015-10-13
Magnetic skyrmions, swirling nanometric spin textures, have been attracting increasing attention by virtue of their potential applications for future memory technology and their emergent electromagnetism. Despite a variety of theoretical proposals oriented towards skyrmion-based electronics (that is, skyrmionics), few experiments have succeeded in creating, deleting and transferring skyrmions, and the manipulation methodologies have thus far remained limited to electric, magnetic and thermal stimuli. Here, we demonstrate a new approach for skyrmion phase control based on a mechanical stress. By continuously scanning uniaxial stress at low temperatures, we can create and annihilate a skyrmion crystal in a prototypical chiral magnet MnSi. The critical stress is merely several tens of MPa, which is easily accessible using the tip of a conventional cantilever. The present results offer a new guideline even for single skyrmion control that requires neither electric nor magnetic biases and consumes extremely little energy.
NASA Astrophysics Data System (ADS)
Kobayashi, Shigeki; Saitoh, Masumi; Nakabayashi, Yukio; Uchida, Ken
2007-11-01
Uniaxial stress effects on Coulomb-limited mobility (μCoulomb) in Si metal-oxide-semiconductor field-effect transistors (MOSFETs) are investigated experimentally. By using the four-point bending method, uniaxial stress corresponding to 0.1% strain is applied to MOSFETs along the channel direction. It is found that μCoulomb in p-type MOSFETs is enhanced greatly by uniaxial stress; μCoulomb is as sensitive as phonon-limited mobility. The high sensitivity of μCoulomb in p-type MOSFETs to stress arises from the stress-induced change of hole effective mass.
Zhao, Lei; Sang, Chen; Yang, Chun; Zhuang, Fengyuan
2011-09-02
It has been documented that mitosis orientation (MO) is guided by stress fibers (SFs), which are perpendicular to exogenous cyclic uniaxial stretch. However, the effect of mechanical forces on MO and the mechanism of stretch-induced SFs reorientation are not well elucidated to date. In the present study, we used murine 3T3 fibroblasts as a model, to investigate the effects of uniaxial stretch on SFO and MO utilizing custom-made stretch device. We found that cyclic uniaxial stretch induced both SFs and mitosis directions orienting perpendicularly to the stretch direction. The F-actin and myosin II blockages, which resulted in disoriented SFs and mitosis directions under uniaxial stretch, suggested a high correlation between SFO and MO. Y27632 (10 μM), ML7 (50 μM, or 75 μM), and blebbistatin (50 μM, or 75 μM) treatments resulted in SFO parallel to the principle stretch direction. Upon stimulating and inhibiting the phosphorylation of myosin light chain (p-MLC), we observed a monotonic proportion of SFO to the level of p-MLC. These results suggested that the level of cell contraction is crucial to the response of SFs, either perpendicular or parallel, to the external stretch. Showing the possible role of cell contractility in tuning SFO under external stretch, our experimental data are valuable to understand the predominant factor controlling SFO response to exogenous uniaxial stretch, and thus helpful for improving mechanical models. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Hongjuan; Han, Genquan; Jiang, Xiangwei; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue
2017-04-01
In this work, the boosting effect on the performance of GeSn n-channel fin tunneling FET (nFinTFET) enabled by uniaxial tensile stress is investigated theoretically. As the fin rotates within the (001) plane, the uniaxial tensile stress is always along its direction. The electrical characteristics of tensile-stressed GeSn nFinTFETs with point and line tunneling modes are computed utilizing the technology computer aided design (TCAD) simulator in which the dynamic nonlocal band-to-band tunneling (BTBT) algorithm is employed. In comparison with the relaxed devices, tensile-stressed GeSn nFinTFETs achieve a substantial enhancement in band-to-band tunneling generation rate (G BTBT) and on-state current I ON owing to the reduced bandgap E G induced by the tensile stress. Performance improvement of GeSn nFinTFETs induced by tensile stress demonstrates a strong dependence on channel direction and tunneling modes. Under the same magnitude of stress, line-nFinTFETs obtain a more pronounced I ON enhancement over the transistors with point tunneling mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukavin, R. Kh., E-mail: zhur@ipmras.ru; Kovalevsky, K. A.; Orlov, M. L.
2016-11-15
Experimental data on the spontaneous emission and absorption modulation in boron-doped silicon under CO{sub 2} laser excitation depending on the uniaxial stress applied along the [001] and [011] crystallographic directions are presented. Room-temperature radiation is used as the probe radiation. Low stress (less than 0.5 kbar) is shown to reduce losses in the terahertz region by 20%. The main contribution to absorption modulation at zero and low stress is made by A{sup +} centers. Intersubband free hole transitions additionally contribute to terahertz absorption at higher stress. These contributions can be minimized by compensation.
NASA Astrophysics Data System (ADS)
Oparin, Viktor; Tsoy, Pavel; Usoltseva, Olga; Semenov, Vladimir
2014-05-01
The aim of this study was to analyze distribution and development of stress-stress state in structured rock specimens subject to uniaxial loading to failure. Specific attention was paid to possible oscillating motion of structural elements of the rock specimens under constraints (pre-set stresses at the boundaries of the specimens) and the kinetic energy fractals. The detailed studies into the micro-level stress-strain state distribution and propagation over acting faces of rock specimens subject to uniaxial loading until failure, using automated digital speckle photography analyzer ALMEC-tv, have shown that: • under uniaxial stiff loading of prismatic sandstone, marble and sylvinite specimens on the Instron-8802 servohydraulic testing machine at the mobile grip displacement rate 0.02-0.2 mm/min, at a certain level of stressing, low-frequency micro-deformation processes originate in the specimens due to slow (quasi-static) force; • the amplitude of that deformation-wave processes greatly depends on the micro-loading stage: — at the elastic deformation stage, under the specimen stress lower than half ultimate strength of the specimen, there are no oscillations of microstrains; —at the nonlinearly elastic deformation stage, under stress varied from 0.5 to 1 ultimate strength of the specimens, the amplitudes of microstrains grow, including the descending stage 3; the oscillation frequency f=0.5-4 Hz; —at the residual strength stage, the amplitudes of the microstrains drop abruptly (3-5 times) as against stages 2 and 3; • in the elements of the scanned specimen surface in the region with the incipient crack, the microstrain rate amplitudes are a few times higher than in the undamged surface region of the same specimen. Sometimes, deformation rate greatly grows with increase in the load. The authors have used the energy scanning function of the deformation-wave processes in processing experimental speckle-photography data on the surface of the test specimen
Creep behavior of Grade 91 steel under uniaxial and multiaxial state of stress
NASA Astrophysics Data System (ADS)
Ren, Facai; Tang, Xiaoying
2017-09-01
Creep rupture behavior of Grade 91 heat-resistant steel used for steam cooler under uniaxial and multiaxial state of stress was investigated. Creep tests were conducted at the temperature of 923K under the stress 125MPa. The notch root radii (r) of doubled circumferentially U-notched specimens were 0.6 and 6 mm. The creep rupture life of Grade 91 steel was found to increase with the increasing of notch acuity ratio. The creep rupture mechanism was investigated based on the SEM fractography analysis.
Prototype Ge:Ga detectors for the NASA-Ames cooled grating spectrometer
NASA Technical Reports Server (NTRS)
Houck, J. R.
1981-01-01
The detectors were fabricated from a Ge:Ga wafer from Eagle-Pitcher with a room temperature resistivity of approx. 12ohms cm. The wafer is approximately 2 inches in diameter and 0.061 inches thick. The contact material was ion implanted with Boron using 10 to the 14th power ions/sq cm at 25 Kev and 2 x10 to the 14th power ions/sq cm at 50 Kev. The crystal was then sputter-cleaned and metallized first with sputtered Ti and then sputter Au. In addition to the usual infrared measurements of responsivity and noise, measurements were made of the detectors' response to ionizing radiation.
NASA Astrophysics Data System (ADS)
Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng
2015-07-01
In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life.
Huang, Samuel; Li, Julie Yi-Shuan; Chien, Shu; Zhang, Kang; Chen, Shaochen
2013-01-01
ADSCs are a great cell source for tissue engineering and regenerative medicine. However, the development of methods to appropriately manipulate these cells in vitro remains a challenge. Here the proliferation and differentiation of ADSCs on microfabricated surfaces with varying geometries were investigated. To create the patterned substrates, a maskless biofabrication method was developed based on dynamic optical projection stereolithography. Proliferation and early differentiation of ADSCs were compared across three distinct multicellular patterns, namely stripes (ST), symmetric fork (SF), and asymmetric fork (AF). The ST pattern was designed for uniaxial cell alignment while the SF and AF pattern were designed with altered cell directionality to different extents. The SF and AF patterns generated similar levels of regional peak stress, which were both significantly higher than those within the ST pattern. No significant difference in ADSC proliferation was observed among the three patterns. In comparison to the ST pattern, higher peak stress levels of the SF and AF patterns were associated with up-regulation of the chondrogenic and osteogenic markers SOX9 and RUNX2. Interestingly, uniaxial cell alignment in the ST pattern seemed to increase the expression of SM22α and smooth muscle α-actin, suggesting an early smooth muscle lineage progression. These results indicate that geometric cues that promote uniaxial alignment might be more potent for myogenesis than those with increased peak stress. Overall, the use of these patterned geometric cues for modulating cell alignment and form-induced stress can serve as a powerful and versatile technique towards controlling differentiation in ADSCs. PMID:24060419
Gong, Ming; Zhang, Weiwei; Guo, Guang-Can; He, Lixin
2011-06-03
We derive a general relation between the fine-structure splitting (FSS) and the exciton polarization angle of self-assembled quantum dots under uniaxial stress. We show that the FSS lower bound under external stress can be predicted by the exciton polarization angle and FSS under zero stress. The critical stress can also be determined by monitoring the change in exciton polarization angle. We confirm the theory by performing atomistic pseudopotential calculations for the InAs/GaAs quantum dots. The work provides deep insight into the dot asymmetry and their optical properties and a useful guide in selecting quantum dots with the smallest FSS, which are crucial in entangled photon source applications.
NASA Astrophysics Data System (ADS)
Kawarazaki, Shuzo; Uwatoko, Yoshiya; Yokoyama, Makoto; Okita, Yuji; Tabata, Yoshikazu; Taniguchi, Toshifumi; Amitsuka, Hiroshi
2002-10-01
A handy insertable device to manipulate hydrostatic pressure or uniaxial stress on a sample in a cryostat for neutron scattering experiments is described. The pressure that is generated in a miniature hydraulic oil-cylinder on the top of the inserting stick is transmitted to the sample via a long piston-cylinder unit made of a thick stainless-steel tube and a fiber-reinforced plastics (FRP) rod. One can thus in situ tune the pressure or the stress on the sample without handling the pressure-cell at room temperature outside the cryostat. The device is designed to fit into the ILL-type Orange cryostat so that it can be used in many neutron scattering facilities. A newly designed uniaxial-stress cell and hydrostatic pressure cell to be used with this system are also described. The result of measurement of the hysteresis effect of uniaxial stress on the antiferromagnetism of URu2Si2 at 1.4 K is presented.
Wu, John Z; Cutlip, Robert G; Welcome, Daniel; Dong, Ren G
2006-01-01
Knowledge of viscoelastic properties of soft tissues is essential for the finite element modelling of the stress/strain distributions in finger-pad during vibratory loading, which is important in exploring the mechanism of hand-arm vibration syndrome. In conventional procedures, skin and subcutaneous tissue have to be separated for testing the viscoelastic properties. In this study, a novel method has been proposed to simultaneously determine the viscoelastic properties of skin and subcutaneous tissue in uniaxial stress relaxation tests. A mathematical approach has been derived to obtain the creep and relaxation characteristics of skin and subcutaneous tissue using uniaxial stress relaxation data of skin/subcutaneous composite specimens. The micro-structures of collagen fiber networks in the soft tissue, which underline the tissue mechanical characteristics, will be intact in the proposed method. Therefore, the viscoelastic properties of soft tissues obtained using the proposed method would be more physiologically relevant than those obtained using the conventional method. The proposed approach has been utilized to measure the viscoelastic properties of soft tissues of pig. The relaxation curves of pig skin and subcutaneous tissue obtained in the current study agree well with those in literature. Using the proposed approach, reliable material properties of soft tissues can be obtained in a cost- and time-efficient manner, which simultaneously improves the physiological relevance.
Simulation of Texture Evolution during Uniaxial Deformation of Commercially Pure Titanium
NASA Astrophysics Data System (ADS)
Bishoyi, B.; Debta, M. K.; Yadav, S. K.; Sabat, R. K.; Sahoo, S. K.
2018-03-01
The evolution of texture in commercially pure (CP) titanium during uniaxial tension and compression through VPSC (Visco-plastic self-consistent) simulation is reported in the present study. CP-titanium was subjected to both uniaxial tension and compression upto 35% deformation. During uniaxial tension, tensile twin of \\{10\\bar{1}2\\}\\unicode{x003C;}\\bar{1}011\\unicode{x003E;} type and compressive twin of \\{11\\bar{2}2\\}\\unicode{x003C;}11\\bar{2}\\bar{3}\\unicode{x003E;} type were observed in the samples. However, only tensile twin of \\{10\\bar{1}2\\}\\unicode{x003C;}\\bar{1}011\\unicode{x003E;} type and compressive twin of type was observed in the samples during uniaxial compression. Volume fractions of the twins were increased linearly as a function of percentage deformation during uniaxial tension. Whereas, during uniaxial compression the twinning volume fraction was increased up to 20% deformation and then decreased rapidly on further increasing the percentage deformation. During uniaxial tension, the general t-type textures were observed in the samples irrespective of the percentage deformation. The initial non-basal texture was oriented to split basal texture during uniaxial compression of the sample. VPSC formulation was used for simulating the texture development in the material. Different hardening parameters were estimated through correlating the simulated stress-strain curve with the experimental stress-strain data. It was observed that, prismatic slip \\{10\\bar{1}0\\}\\unicode{x003C;}11\\bar{2}0\\unicode{x003E;} operated as the primary deformation mode during uniaxial tension whereas basal slip \\{0001\\}\\unicode{x003C;}11\\bar{2}0\\unicode{x003E;} acquired the leading role during deformation through uniaxial compression. It was also revealed that active deformation modes were fully depending on percentage deformation, loading direction, and orientation of grains.
NASA Astrophysics Data System (ADS)
Moshe, O.; Rich, D. H.; Damilano, B.; Massies, J.
2008-04-01
Cathodoluminescence (CL) measurements of the ground-state excitonic transition of vertically stacked GaN/AlN quantum dots (QDs) exhibited an in-plane linear polarization anisotropy in close proximity to microcracks. Microcracks form as a result of a mismatch of the thermal expansion coefficient between the GaN/AlN layers and the Si(111) substrate. In close proximity to the cracks, the layers are found to be under uniaxial tensile stress, whereas the film is under biaxial tensile stress for distances greater than ˜3μm from the cracks. The microcracks serve as an excellent stressor through which the strain tensor of the GaN/AlN QDs can be reproducibly modified for studies of strain-induced changes in the optical and electronic properties by using a spatially resolved probe, such as with CL. Changes in the optical properties of the QDs are attributed to stress-dependent variations of the band edges and the electric field along [0001], which is caused by charge polarization. Such changes in the field will subsequently affect the oscillator strength between electrons and holes. Three-dimensional 6×6 kṡp calculations of the QD electron and hole wave functions and eigenstates were performed to examine the influence of biaxial and uniaxial tensile stresses on the polarization-dependent momentum matrix element in varying proximity to the microcracks. The model reveals that a change from biaxial to uniaxial stress alters the admixture of px and py characters of the band edges and the ground-state hole wave function, changes the shape and direction of elongation of the hole isosurfaces, and accounts well for the subsequent anisotropy in the polarization dependent optical transitions.
Uniaxial stress induced symmetry breaking for muon sites in Fe
NASA Technical Reports Server (NTRS)
Kossler, W. J.; Namkung, M.; Hitti, B.; Li, Y.; Kempton, J.; Stronach, C. E.; Goode, L. R., Jr.; Lankford, W. F.; Patterson, B. D.; Kuendig, W.
1984-01-01
Uniaxial stress was used on Fe single crystals to induce muon precession frequency shifts. The frequency shift for a nominally pure Fe sample at 302K was -0.34 + or - .023 MHz per 100 microstrain along the 100 magnetization axis. This corresponds to a change of magnetic field at the muon of 25.1 + to 1.6G/100 magnetic moment. For an Fe (3wt%Si) single crystal the shifts were -0.348 + or - .008 MHz/100 magnetic moment. The agreement between the shifts for Fe and Fe(3wt%Si) shows the effect to be intrinsic to iron and not strongly impurity sensitive. These shifts and their temperature dependence (1/T) are dominated by the effect of strain inducted population shifts between crystallographically equivalent, but mgnetically inequivalent sites. Their magnitudes are in good agreement ith previous theoretical predictions and by previous extrapolation from calculations on Nb and V especially if both 4T(0) and 1T sites contribute comparably.
Pairing states of superfluid 3He in uniaxially anisotropic aerogel
NASA Astrophysics Data System (ADS)
Aoyama, Kazushi; Ikeda, Ryusuke
2006-02-01
Stable pairing states of superfluid 3He in aerogel are examined in the case with a global uniaxial anisotropy which may be created by applying a uniaxial stress to the aerogel. Due to such a global anisotropy, the stability region of an Anderson-Brinkman-Morel (ABM) pairing state becomes wider. In a uniaxially stretched aerogel, the pure polar pairing state with a horizontal line node is predicted to occur, as a three-dimensional superfluid phase, over a measurable width just below the superfluid transition at Tc (P) . A possible relevance of the present results to the case with no global anisotropy is also discussed.
NASA Astrophysics Data System (ADS)
Zhou, Shuwei; Xia, Caichu; Zhou, Yu
2018-06-01
Cracks have a significant effect on the uniaxial compression of rocks. Thus, a theoretically analytical approach was proposed to assess the effects of randomly distributed cracks on the effective Young’s modulus during the uniaxial compression of rocks. Each stage of the rock failure during uniaxial compression was analyzed and classified. The analytical approach for the effective Young’s modulus of a rock with only a single crack was derived while considering the three crack states under stress, namely, opening, closure-sliding, and closure-nonsliding. The rock was then assumed to have many cracks with randomly distributed direction, and the effect of crack shape and number during each stage of the uniaxial compression on the effective Young’s modulus was considered. Thus, the approach for the effective Young’s modulus was used to obtain the whole stress-strain process of uniaxial compression. Afterward, the proposed approach was employed to analyze the effects of related parameters on the whole stress-stain curve. The proposed approach was eventually compared with some existing rock tests to validate its applicability and feasibility. The proposed approach has clear physical meaning and shows favorable agreement with the rock test results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Dan; Dou, Xiuming; Wu, Xuefei
2016-04-15
Exciton and biexciton emission energies as well as excitonic fine-structure splitting (FSS) in single InAs/GaAs quantum dots (QDs) have been continuously tuned in situ in an optical cryostat using a developed uniaxial stress device. With increasing tensile stress, the red shift of excitonic emission is up to 5 nm; FSS decreases firstly and then increases monotonically, reaching a minimum value of approximately 10 μeV; biexciton binding energy decreases from 460 to 106 μeV. This technique provides a simple and convenient means to tune QD structural symmetry, exciton energy and biexciton binding energy and can be used for generating entangled andmore » indistinguishable photons.« less
NASA Astrophysics Data System (ADS)
Larsson, Per-Lennart
2018-05-01
It is established long since that the material hardness is independent of residual stresses at predominantly plastic deformation close to the contact region at indentation. Recently though, it has been shown that when elastic and plastic deformations are of equal magnitude this invariance is lost. For materials such as ceramics and polymers, this will complicate residual stress determination but can also, if properly understood, provide additional important information for performing such a task. Indeed, when the residual stresses are equi-biaxial, the situation is quite well understood, but additional efforts have to be made to understand the mechanical behavior in other loading states. Presently therefore, the variation of hardness, due to residual stresses, is examined at a uniaxial stress state. Correlation with global indentation quantities is analyzed, discussed and compared to corresponding equi-biaxial results. Cone indentation of elastic-perfectly plastic materials is considered.
Bedrov, Dmitry; Hooper, Justin B; Smith, Grant D; Sewell, Thomas D
2009-07-21
Molecular dynamics (MD) simulations of uniaxial shock compression along the [100] and [001] directions in the alpha polymorph of hexahydro-1,3,5-trinitro-1,3,5-triazine (alpha-RDX) have been conducted over a wide range of shock pressures using the uniaxial constant stress Hugoniostat method [Ravelo et al., Phys. Rev. B 70, 014103 (2004)]. We demonstrate that the Hugoniostat method is suitable for studying shock compression in atomic-scale models of energetic materials without the necessity to consider the extremely large simulation cells required for an explicit shock wave simulation. Specifically, direct comparison of results obtained using the Hugoniostat approach to those reported by Thompson and co-workers [Phys. Rev. B 78, 014107 (2008)] based on large-scale MD simulations of shocks using the shock front absorbing boundary condition (SFABC) approach indicates that Hugoniostat simulations of systems containing several thousand molecules reproduced the salient features observed in the SFABC simulations involving roughly a quarter-million molecules, namely, nucleation and growth of nanoscale shear bands for shocks propagating along the [100] direction and the polymorphic alpha-gamma phase transition for shocks directed along the [001] direction. The Hugoniostat simulations yielded predictions of the Hugoniot elastic limit for the [100] shock direction consistent with SFABC simulation results.
An open-source platform to study uniaxial stress effects on nanoscale devices
NASA Astrophysics Data System (ADS)
Signorello, G.; Schraff, M.; Zellekens, P.; Drechsler, U.; Bürge, M.; Steinauer, H. R.; Heller, R.; Tschudy, M.; Riel, H.
2017-05-01
We present an automatic measurement platform that enables the characterization of nanodevices by electrical transport and optical spectroscopy as a function of the uniaxial stress. We provide insights into and detailed descriptions of the mechanical device, the substrate design and fabrication, and the instrument control software, which is provided under open-source license. The capability of the platform is demonstrated by characterizing the piezo-resistance of an InAs nanowire device using a combination of electrical transport and Raman spectroscopy. The advantages of this measurement platform are highlighted by comparison with state-of-the-art piezo-resistance measurements in InAs nanowires. We envision that the systematic application of this methodology will provide new insights into the physics of nanoscale devices and novel materials for electronics, and thus contribute to the assessment of the potential of strain as a technology booster for nanoscale electronics.
NASA Astrophysics Data System (ADS)
Moshe, O.; Rich, D. H.; Birner, S.; Povolotskyi, M.; Damilano, B.; Massies, J.
2010-10-01
We have studied the excitation- and polarization-dependent optical properties of GaN/AlN self-assembled quantum dots (QDs) grown on Si(111) substrates. Ensembles of QDs were subject to various external stress configurations that resulted from the thermal expansion coefficient mismatch between the GaN/AlN layers and the Si(111) substrate and ranged from in-plane uniaxial stress, primarily along the ⟨112¯0⟩ directions, to in-plane biaxial stress, having magnitudes ranging from 20-30 kbar. Limited regions of uniaxial stress were obtained by exploiting naturally occurring microcracks that form during the postgrowth cooling. These microcracks act as stressors in order to create the highly localized regions of uniaxial stress. The local strain tensors for such QDs, which are subject to an interfacial stress perturbation, have been determined by modeling the dependence of the QD excitonic transition energy on the interfacial stress. Cathodoluminescence (CL) measurements of the excitonic transitions exhibit an in-plane linear polarization anisotropy in close proximity to microcracks. The polarization anisotropy is strongly dependent on the sample temperature and the electron beam excitation conditions used to excite the QD ensemble. Localized CL spectroscopy of the QDs exhibits emissions from both the ground and excited states, whose relative contributions depend on the level of excitation and temperature. Experimental results indicate that the polarization anisotropy vanishes at high temperatures (˜300 K) with an increasing excitation of the QDs, while the anisotropy decreases more slowly with excitation at low temperatures (˜60 K). A theoretical modeling of the effect of carrier filling on the polarization anisotropy and the excitonic transition energy was performed, as based on three-dimensional self-consistent solutions of the Schrödinger and Poisson equations using the 6×6 kṡp and effective mass methods for calculations of the e-h wave functions and
Reliability Analysis of Uniaxially Ground Brittle Materials
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Nemeth, Noel N.; Powers, Lynn M.; Choi, Sung R.
1995-01-01
The fast fracture strength distribution of uniaxially ground, alpha silicon carbide was investigated as a function of grinding angle relative to the principal stress direction in flexure. Both as-ground and ground/annealed surfaces were investigated. The resulting flexural strength distributions were used to verify reliability models and predict the strength distribution of larger plate specimens tested in biaxial flexure. Complete fractography was done on the specimens. Failures occurred from agglomerates, machining cracks, or hybrid flaws that consisted of a machining crack located at a processing agglomerate. Annealing eliminated failures due to machining damage. Reliability analyses were performed using two and three parameter Weibull and Batdorf methodologies. The Weibull size effect was demonstrated for machining flaws. Mixed mode reliability models reasonably predicted the strength distributions of uniaxial flexure and biaxial plate specimens.
A computer program for predicting nonlinear uniaxial material responses using viscoplastic models
NASA Technical Reports Server (NTRS)
Chang, T. Y.; Thompson, R. L.
1984-01-01
A computer program was developed for predicting nonlinear uniaxial material responses using viscoplastic constitutive models. Four specific models, i.e., those due to Miller, Walker, Krieg-Swearengen-Rhode, and Robinson, are included. Any other unified model is easily implemented into the program in the form of subroutines. Analysis features include stress-strain cycling, creep response, stress relaxation, thermomechanical fatigue loop, or any combination of these responses. An outline is given on the theoretical background of uniaxial constitutive models, analysis procedure, and numerical integration methods for solving the nonlinear constitutive equations. In addition, a discussion on the computer program implementation is also given. Finally, seven numerical examples are included to demonstrate the versatility of the computer program developed.
High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel
NASA Astrophysics Data System (ADS)
Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu
2018-07-01
India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent ( n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent ( n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity ( m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume ( V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.
High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel
NASA Astrophysics Data System (ADS)
Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu
2018-05-01
India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent (n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent (n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity (m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume (V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, R. L.; Wang, Y. D.; Nie, Z. H.
2008-01-01
This paper deals with the experimental study of stress-induced phase transformation in a polycrystalline Ni-Mn-Ga alloy under uniaxial compression and its powder under hydrostatic compression. In situ neutron diffraction experiments were employed to follow changes in the structure and lattice strains caused by the applied stresses. Large lattice strains that are dependent on the lattice planes or grain orientations were observed in the parent Heusler phase for both the bulk material and the powder sample. The development of such anisotropic strains and the influence of external load conditions are discussed in the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Guohong; Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201; School of Science, Nanchang University, Nanchang 330031
2013-11-07
We propose a convenient method to induce a uniaxial anisotropy in magnetostrictive Fe{sub 81}Ga{sub 19} films grown on flexible polyethylene terephthalate (PET) substrates by bending the substrate prior to deposition. A tensile/compressive stress is induced in the Fe{sub 81}Ga{sub 19} films when PET substrates are shaped from concave/convex to flat after deposition. The stressed Fe{sub 81}Ga{sub 19} films exhibit a significant uniaxial magnetic anisotropy due to the internal stress arising from changes in shape of PET substrates. The easy axis is along the tensile stress direction and the coercive field along easy axis is increased with increasing the internal tensilemore » stress. The remanence of hard axis is decreased with increasing the compressive stress, while the coercive field is almost unchanged. A modified Stoner-Wohlfarth model with considering the distribution of easy axes in polycrystalline films is used to account for the magnetic properties tuned by the strain-controlled magnetoelastic anisotropy in flexible Fe{sub 81}Ga{sub 19} films. Our investigations provide a convenient way to induce uniaxial magnetic anisotropy, which is particularly important for fabricating flexible magnetoelectronic devices.« less
Micro-macro correlations and anisotropy in granular assemblies under uniaxial loading and unloading.
Imole, Olukayode I; Wojtkowski, Mateusz; Magnanimo, Vanessa; Luding, Stefan
2014-04-01
The influence of contact friction on the behavior of dense, polydisperse granular assemblies under uniaxial (oedometric) loading and unloading deformation is studied using discrete element simulations. Even though the uniaxial deformation protocol is one of the "simplest" element tests possible, the evolution of the structural anisotropy necessitates its careful analysis and understanding, since it is the source of interesting and unexpected observations. On the macroscopic, homogenized, continuum scale, the deviatoric stress ratio and the deviatoric fabric, i.e., the microstructure behave in a different fashion during uniaxial loading and unloading. The maximal stress ratio and strain increase with increasing contact friction. In contrast, the deviatoric fabric reaches its maximum at a unique strain level independent of friction, with the maximal value decreasing with friction. For unloading, both stress and fabric respond to unloading strain with a friction-dependent delay but at different strains. On the micro-level, a friction-dependent non-symmetry of the proportion of weak (strong) and sliding (sticking) contacts with respect to the total contacts during loading and unloading is observed. Coupled to this, from the directional probability distribution, the "memory" and history-dependent behavior of granular systems is confirmed. Surprisingly, while a rank-2 tensor is sufficient to describe the evolution of the normal force directions, a sixth order harmonic approximation is necessary to describe the probability distribution of contacts, tangential force, and mobilized friction. We conclude that the simple uniaxial deformation activates microscopic phenomena not only in the active Cartesian directions, but also at intermediate orientations, with the tilt angle being dependent on friction, so that this microstructural features cause the interesting, nontrivial macroscopic behavior.
Brnic, Josip; Krscanski, Sanjin; Lanc, Domagoj; Brcic, Marino; Turkalj, Goran; Canadija, Marko; Niu, Jitai
2017-01-01
The article deals with the analysis of the mechanical behavior at different temperatures, uniaxial creep and uniaxial fatigue of martensitic steel X46Cr13 (1.4034, AISI 420). For the purpose of considering the aforementioned mechanical behavior, as well as determining the appropriate resistance to creep and fatigue strength levels, numerous uniaxial tests were carried out. Tests related to mechanical properties performed at different temperatures are presented in the form of engineering stress-strain diagrams. Short-time creep tests performed at different temperatures and different stress levels are presented in the form of creep curves. Fatigue tests carried out at stress ratios R=0.25 and R=−1 are shown in the form of S–N (fatigue) diagrams. The finite fatigue regime for each of the mentioned stress ratios is modeled by an inclined log line, while the infinite fatigue regime is modeled by a horizontal line, which represents the fatigue limit of the material and previously was calculated by the modified staircase method. Finally, the fracture toughness has been calculated based on the Charpy V-notch impact energy. PMID:28772749
An Improved Correlation between Impression and Uniaxial Creep
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsueh, Chun-Hway; Miranda, Pedro; Becher, Paul F
2006-01-01
A semiempirical correlation between impression and uniaxial creep has been established by Hyde et al. [Int. J. Mech. Sci. 35, 451 (1993) ] using finite element results for materials exhibiting general power-law creep with the stress exponent n in the range 2 {<=} n {<=} 15. Here, we derive the closed-form solution for a special case of viscoelastic materials, i.e., n = 1, subjected to impression creep and obtain the exact correlation between impression and uniaxial creep. This analytical solution serves as a checkpoint for the finite element results. We then perform finite element analyses for the general case tomore » derive a semiempirical correlation, which agrees well with both analytical viscoelastic results and the existing experimental data. Our improved correlation agrees with the correlation of Hyde et al. for n {>=} 4, and the difference increases with decreasing n for n<4.« less
Characteristics of Crushing Energy and Fractal of Magnetite Ore under Uniaxial Compression
NASA Astrophysics Data System (ADS)
Gao, F.; Gan, D. Q.; Zhang, Y. B.
2018-03-01
The crushing mechanism of magnetite ore is a critical theoretical problem on the controlling of energy dissipation and machine crushing quality in ore material processing. Uniaxial crushing tests were carried out to research the deformation mechanism and the laws of the energy evolution, based on which the crushing mechanism of magnetite ore was explored. The compaction stage and plasticity and damage stage are two main compression deformation stages, the main transitional forms from inner damage to fracture are plastic deformation and stick-slip. In the process of crushing, plasticity and damage stage is the key link on energy absorption for that the specimen tends to saturate energy state approaching to the peak stress. The characteristics of specimen deformation and energy dissipation can synthetically reply the state of existed defects inner raw magnetite ore and the damage process during loading period. The fast releasing of elastic energy and the work done by the press machine commonly make raw magnetite ore thoroughly broken after peak stress. Magnetite ore fragments have statistical self-similarity and size threshold of fractal characteristics under uniaxial squeezing crushing. The larger ratio of releasable elastic energy and dissipation energy and the faster energy change rate is the better fractal properties and crushing quality magnetite ore has under uniaxial crushing.
Stressed detector arrays for airborne astronomy
NASA Technical Reports Server (NTRS)
Stacey, G. J.; Beeman, J. W.; Haller, E. E.; Geis, N.; Poglitsch, A.; Rumitz, M.
1989-01-01
The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Küchler, R.; Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, Universitätsstrasse 2, 86135 Augsburg; Stingl, C.
2016-07-15
Thermal expansion and magnetostriction are directional dependent thermodynamic quantities. For the characterization of novel quantum phases of matter, it is required to study materials under multi-extreme conditions, in particular, down to very low temperatures, in very high magnetic fields or under high pressure. We developed a miniaturized capacitive dilatometer suitable for temperatures down to 20 mK and usage in high magnetic fields, which exerts a large spring force between 40 to 75 N on the sample. This corresponds to a uniaxial stress up to 3 kbar for a sample with cross section of (0.5 mm){sup 2}. We describe design andmore » performance test of the dilatometer which resolves length changes with high resolution of 0.02 Å at low temperatures. The miniaturized device can be utilized in any standard cryostat, including dilution refrigerators or the commercial physical property measurement system.« less
Cyclic Plasticity Constitutive Model for Uniaxial Ratcheting Behavior of AZ31B Magnesium Alloy
NASA Astrophysics Data System (ADS)
Lin, Y. C.; Liu, Zheng-Hua; Chen, Xiao-Min; Long, Zhi-Li
2015-05-01
Investigating the ratcheting behavior of magnesium alloys is significant for the structure's reliable design. The uniaxial ratcheting behavior of AZ31B magnesium alloy is studied by the asymmetric cyclic stress-controlled experiments at room temperature. A modified kinematic hardening model is established to describe the uniaxial ratcheting behavior of the studied alloy. In the modified model, the material parameter m i is improved as an exponential function of the maximum equivalent stress. The modified model can be used to predict the ratcheting strain evolution of the studied alloy under the single-step and multi-step asymmetric stress-controlled cyclic loadings. Additionally, due to the significant effect of twinning on the plastic deformation of magnesium alloy, the relationship between the material parameter m i and the linear density of twins is discussed. It is found that there is a linear relationship between the material parameter m i and the linear density of twins induced by the cyclic loadings.
Edge effects on band gap energy in bilayer 2H-MoS{sub 2} under uniaxial strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Liang; Wang, Jin; Dongare, Avinash M., E-mail: dongare@uconn.edu
2015-06-28
The potential of ultrathin MoS{sub 2} nanostructures for applications in electronic and optoelectronic devices requires a fundamental understanding in their electronic structure as a function of strain. Previous experimental and theoretical studies assume that an identical strain and/or stress state is always maintained in the top and bottom layers of a bilayer MoS{sub 2} film. In this study, a bilayer MoS{sub 2} supercell is constructed differently from the prototypical unit cell in order to investigate the layer-dependent electronic band gap energy in a bilayer MoS{sub 2} film under uniaxial mechanical deformations. The supercell contains an MoS{sub 2} bottom layer andmore » a relatively narrower top layer (nanoribbon with free edges) as a simplified model to simulate the as-grown bilayer MoS{sub 2} flakes with free edges observed experimentally. Our results show that the two layers have different band gap energies under a tensile uniaxial strain, although they remain mutually interacting by van der Waals interactions. The deviation in their band gap energies grows from 0 to 0.42 eV as the uniaxial strain increases from 0% to 6% under both uniaxial strain and stress conditions. The deviation, however, disappears if a compressive uniaxial strain is applied. These results demonstrate that tensile uniaxial strains applied to bilayer MoS{sub 2} films can result in distinct band gap energies in the bilayer structures. Such variations need to be accounted for when analyzing strain effects on electronic properties of bilayer or multilayered 2D materials using experimental methods or in continuum models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Fuping, E-mail: fpyuan@lnm.imech.ac.cn; Wu, Xiaolei, E-mail: xlwu@imech.ac.cn
2014-12-15
A series of large-scale molecular dynamics simulations were conducted to investigate the scaling laws and the related atomistic deformation mechanisms of Cu monocrystal samples containing randomly placed nanovoids under adiabatic uniaxial strain compression. At onset of yielding, plastic deformation is accommodated by dislocations emitted from void surfaces as shear loops. The collapse of voids are observed by continuous emissions of dislocations from void surfaces and their interactions with further plastic deformation. The simulation results also suggest that the effect modulus, the yield stress and the energy aborption density of samples under uniaxial strain are linearly proportional to the relative densitymore » ρ. Moreover, the yield stress, the average flow stress and the energy aborption density of samples with the same relative density show a strong dependence on the void diameter d, expressed by exponential relations with decay coefficients much higher than -1/2. The corresponding atomistic mechanisms for scaling laws of the relative density and the void diameter were also presented. The present results should provide insights for understanding deformation mechanisms of nanoporous metals under extreme conditions.« less
Mechanism for amorphization of boron carbide B{sub 4}C under uniaxial compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aryal, Sitaram; Rulis, Paul; Ching, W. Y.
2011-11-01
Boron carbide undergoes an amorphization transition under high-velocity impacts, causing it to suffer a catastrophic loss in strength. The failure mechanism is not clear and this limits the ways to improve its resistance to impact. To help uncover the failure mechanism, we used ab initio methods to carry out large-scale uniaxial compression simulations on two polytypes of stoichiometric boron carbide (B{sub 4}C), B{sub 11}C-CBC, and B{sub 12}-CCC, where B{sub 11}C or B{sub 12} is the 12-atom icosahedron and CBC or CCC is the three-atom chain. The simulations were performed on large supercells of 180 atoms. Our results indicate that themore » B{sub 11}C-CBC (B{sub 12}-CCC) polytype becomes amorphous at a uniaxial strain s = 0.23 (0.22) and with a maximum stress of 168 (151) GPa. In both cases, the amorphous state is the consequence of structural collapse associated with the bending of the three-atom chain. Careful analysis of the structures after amorphization shows that the B{sub 11}C and B{sub 12} icosahedra are highly distorted but still identifiable. Calculations of the elastic coefficients (C{sub ij}) at different uniaxial strains indicate that both polytypes may collapse under a much smaller shear strain (stress) than the uniaxial strain (stress). On the other hand, separate simulations of both models under hydrostatic compression up to a pressure of 180 GPa show no signs of amorphization, in agreement with experimental observation. The amorphized nature of both models is confirmed by detailed analysis of the evolution of the radial pair distribution function, total density of states, and distribution of effective charges on atoms. The electronic structure and bonding of the boron carbide structures before and after amorphization are calculated to further elucidate the mechanism of amorphization and to help form the proper rationalization of experimental observations.« less
Resonant light emission from uniaxially tensile-strained Ge microbridges
NASA Astrophysics Data System (ADS)
Zhou, Peiji; Xu, Xuejun; Matsushita, Sho; Sawano, Kentarou; Maruizumi, Takuya
2018-04-01
A highly strained germanium microbridge is a promising platform for realizing monolithically integrated lasers on a silicon substrate. However, it remains challenging to combine it with optical resonators. Here, we have observed resonant light emission peaks with Q-factors of about 180 in room-temperature photoluminescence spectra from uniaxially tensile-strained germanium microbridges. These peaks are found to correspond to the resonance in Fabry–Perot (FP) cavities formed transversely to the uniaxial stress axis. On the basis of this phenomenon, we design a Fabry–Perot cavity by adding distributed Bragg reflectors (DBRs) laterally to the microbridge. With this design, the optical performance can be optimized without disturbing to the mechanical structure. A Q-factor as high as 1400 is obtained from numerical simulation. Moreover, we prove by theoretical analysis deduction and calculation that the lateral structure will not decrease the strain, unlike the on-pad DBR structure. The structure thus provides a promising solution for the realization of highly strained germanium lasers in the future.
NASA Astrophysics Data System (ADS)
Lockhart, L. P.; Flemings, P. B.; Nikolinakou, M. A.; Heidari, M.
2016-12-01
We apply a new pressure prediction approach that couples sonic velocity data, geomechanical modeling, and a critical state soil model to estimate pore pressure from wellbore data adjacent to a salt body where the stress field is complex. Specifically, we study pressure and stress in front of the Mad Dog salt body, in the Gulf of Mexico. Because of the loading from the salt, stresses are not uniaxial; the horizontal stress is elevated, leading to higher mean and shear stresses. For the Mad Dog field, we develop a relationship between velocity and equivalent effective stress, in order to account for both the mean and shear stress effect on pore pressure. We obtain this equivalent effective stress using a geomechanical model of the Mad Dog field. We show that the new approach improves pressure prediction in areas near salt where mean and shear stress are different than the control well. Our methodology and results show that pore pressure is driven by a combination of mean stress and shear stress, and highlight the importance of shear-induced pore pressures. Furthermore, the impact of our study extends beyond salt bodies; the methodology and gained insights are applicable to geological environments around the world with a complex geologic history, where the stress state is not uniaxial (fault zones, anticlines, synclines, continental margins, etc.).
Effect of uniaxial stress on the electrochemical properties of graphene with point defects
NASA Astrophysics Data System (ADS)
Szroeder, Paweł; Sagalianov, Igor Yu.; Radchenko, Taras M.; Tatarenko, Valentyn A.; Prylutskyy, Yuriy I.; Strupiński, Włodzimierz
2018-06-01
We report a calculational study of electron states and the resulting electrochemical properties of uniaxially strained graphene with point defects. For this study the reduction of ferricyanide to ferrocyanide serves as a benchmark electrochemical reaction. We find that the heterogeneous electron transfer activity of the perfect graphene electrode rises under uniaxial strain. However, evolution of the cathodic reaction rate depends on the direction of strain. For moderate lattice deformations, the zigzag strain improves electrochemical performance better than the armchair strain. Standard rate constant increases by 50% at the zigzag strain of 10%. Vacancies, covalently bonded moieties, charged adatoms and substitutional impurities in the zigzag strained graphene induce changes in the shape of the curve of the cathodic reaction rate. However, this changes do not translate into the electrocatalytic activity. Vacancies and covalently bonded moieties at concentration of 0.1% do not affect the electrochemical performance. Charged adatoms and substitutional impurities give a slight increase in the standard rate constant by, respectively, 2.2% and 3.4%.
NASA Astrophysics Data System (ADS)
Petorak, Christopher
The understanding of failure mechanisms in plasma sprayed 7 wt% yttria stabilized zirconia (YSZ) is a key step toward optimizing thermal barrier coating (TBC) usage, design, and life prediction. The purpose of the present work is to characterize and understand the stress relaxation behavior occurring in plasma-sprayed YSZ coatings, so that the correlating magnitude of unfavorable tensile stress, which coatings experienced upon cooling, may be reduced through microstructural design. The microstructure and properties of as-sprayed coatings changes immensely during service at high temperature, and therefore the effects of long heat-treatment times, and the concomitant change within the microstructure, on the time-dependent mechanical behavior of stand-alone YSZ coatings was studied in parallel with the as-sprayed coating condition. Aside from influencing the mechanical properties, stress relaxation also affects the insulating efficiency of plasma-sprayed 7wt% YSZ coatings. Directionally dependent changes in microstructure due to stress relaxation of a uniaxially applied stress at 1200°C were observed in plasma-sprayed coatings. Small angle neutron scattering (SANS) investigation of coatings after stress relaxation displayed a 46% reduction in the specific surface area connected to the load-orientation dependent closure of void surface area perpendicular to the applied load when compared to coatings sintered in air, i.e. no applied load. These anisotropic microstructural changes were linked to the thermal properties of the coating. For example, a coating stress relaxed from 60 MPa for 5-min at 1200°C exhibited a thermal conductivity of 2.1 W/m-K. A coating that was only heat-treated for 5-min at 1200°C (i.e. no stress applied) exhibited a thermal conductivity of 1.7 W/m·K. In the current study, uniaxial stress relaxation in plasma-sprayed 7wt% YSZ coatings was determined the result of: (1) A more uniform distribution of the applied load with time, (2) A reduction
NASA Astrophysics Data System (ADS)
Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng
2015-08-01
Based on the experimental observations for the uniaxial low-cycle stress fatigue failure of super-elastic NiTi shape memory alloy microtubes (Song et al 2015 Smart Mater. Struct. 24 075004) and a new definition of damage variable corresponding to the variation of accumulated dissipation energy, a phenomenological damage model is proposed to describe the damage evolution of the NiTi microtubes during cyclic loading. Then, with a failure criterion of Dc = 1, the fatigue lives of the NiTi microtubes are predicted by the damage-based model, the predicted lives are in good agreement with the experimental ones, and all of the points are located within an error band of 1.5 times.
NASA Astrophysics Data System (ADS)
Bogdanov, E. V.; Minina, N. Ya.; Tomm, J. W.; Kissel, H.
2012-11-01
The effects of uniaxial compression in [110] direction on energy-band structures, heavy and light hole mixing, optical matrix elements, and gain in laser diodes with "light hole up" configuration of valence band levels in GaAsP quantum wells with different widths and phosphorus contents are numerically calculated. The development of light and heavy hole mixing caused by symmetry lowering and converging behavior of light and heavy hole levels in such quantum wells under uniaxial compression is displayed. The light or heavy hole nature of each level is established for all considered values of uniaxial stress. The results of optical gain calculations for TM and TE polarization modes show that uniaxial compression leads to a significant increase of the TE mode and a minor decrease of the TM mode. Electroluminescence experiments were performed under uniaxial compression up to 5 kbar at 77 K on a model laser diode structure (p-AlxGa1-xAs/GaAs1-yPy/n-AlxGa1-xAs) with y = 0.16 and a quantum well width of 14 nm. They reveal a maximum blue shift of 27 meV of the electroluminescence spectra that is well described by the calculated change of the optical gap and the increase of the intensity being referred to a TE mode enhancement. Numerical calculations and electroluminescence data indicate that uniaxial compression may be used for a moderate wavelength and TM/TE intensity ratio tuning.
Superconductivity under uniaxial compression in β-(BDA-TTP) salts
NASA Astrophysics Data System (ADS)
Suzuki, T.; Onari, S.; Ito, H.; Tanaka, Y.
2009-10-01
In order to clarify the mechanism of organic superconductor β-(BDA-TTP) salts. We study the superconductivity under uniaxial compression with non-dimerized two-band Hubbard model. We have calculated the uniaxial compression dependence of T c by solving the Eliashberg’s equation using the fluctuation exchange (FLEX) approximation. The transfer integral under the uniaxial compression was estimated by the extended Huckel method. We have found that non-monotonic behaviors of T c in experimental results under uniaxial compression are understood taking the spin frustration and spin fluctuation into account.
NASA Astrophysics Data System (ADS)
Gorkunov, E. S.; Yakushenko, E. I.; Zadvorkin, S. M.; Mushnikov, A. N.
2017-12-01
Dependences of magnetization and magnetic permeability of the 15KhN4D structural steel on the value of uniaxial stresses and magnetic field strength are obtained. A polynomial approximation fairly accurately describing the observed changes is proposed on the basis of experimental data.
Weibull crack density coefficient for polydimensional stress states
NASA Technical Reports Server (NTRS)
Gross, Bernard; Gyekenyesi, John P.
1989-01-01
A structural ceramic analysis and reliability evaluation code has recently been developed encompassing volume and surface flaw induced fracture, modeled by the two-parameter Weibull probability density function. A segment of the software involves computing the Weibull polydimensional stress state crack density coefficient from uniaxial stress experimental fracture data. The relationship of the polydimensional stress coefficient to the uniaxial stress coefficient is derived for a shear-insensitive material with a random surface flaw population.
Goos-Hanchen shifts in tilted uniaxial crystals
NASA Astrophysics Data System (ADS)
Wu, Xiaohu
2018-06-01
The Goos-Hanchen shifts at the surface of the tilted uniaxial crystals have been studied with the help of the stationary phase method. It is found that the permittivity and the optical axis of the uniaxial crystal have outstanding influence on the Goos-Hanchen shift. The numerical results show that the negative Goos-Hanchen shift can occur even when the refractive index of the material is not negative. Besides, the Goos-Hanchen shift can be negative or positive infinite under certain conditions. Our results may provide useful information in manipulating the Goos-Hanchen shift in uniaxial crystals. We believe this method could find practical applications in tunable sensors and switches, which are based on Goos-Hanchen shifts.
Fracture modes under uniaxial compression in hydroxyapatite scaffolds fabricated by robocasting.
Miranda, Pedro; Pajares, Antonia; Saiz, Eduardo; Tomsia, Antoni P; Guiberteau, Fernando
2007-12-01
The fracture modes of hydroxyapatite (HA) scaffolds fabricated by direct-write assembly (robocasting) are analyzed in this work. Concentrated HA inks with suitable viscoelastic properties were developed to enable the fabrication of prototype structures consisting of a 3-D square mesh of interpenetrating rods. The fracture behavior of these model scaffolds under compressive stresses is determined from in situ uniaxial tests performed in two different directions: perpendicular to the rods and along one of the rod directions. The results are analyzed in terms of the stress field calculated by finite element modeling (FEM). This analysis provides valuable insight into the mechanical behavior of scaffolds for bone tissue engineering applications fabricated by robocasting. Copyright 2007 Wiley Periodicals, Inc.
The Microstructural Response of Granular Soil Under Uniaxial Strain
1993-10-01
under uniaxial strains of up to 10 percent. The material tested was a poorly graded ottowa sand with specimens consisting of either 0.5- or 0.75-mm...microstructural effects in granular material under uniaxial strain of up to 10.0 percent. The relative influence of several microstructural effects (such as...uniaxial strain. The confinement vessel consisted of a base plate, four walls, and a loading cap. The sidewalls extended up beyond the specimen and served
Analysis of electromagnetic scattering by uniaxial anisotropic bispheres.
Li, Zheng-Jun; Wu, Zhen-Sen; Li, Hai-Ying
2011-02-01
Based on the generalized multiparticle Mie theory and the Fourier transformation approach, electromagnetic (EM) scattering of two interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes is investigated. By introducing the Fourier transformation, the EM fields in the uniaxial anisotropic spheres are expanded in terms of the spherical vector wave functions. The interactive scattering coefficients and the expansion coefficients of the internal fields are derived through the continuous boundary conditions on which the interaction of the bispheres is considered. Some selected calculations on the effects of the size parameter, the uniaxial anisotropic absorbing dielectric, and the sphere separation distance are described. The backward radar cross section of two uniaxial anisotropic spheres with a complex permittivity tensor changing with the sphere separation distance is numerically studied. The authors are hopeful that the work in this paper will help provide an effective calibration for further research on the scattering characteristic of an aggregate of anisotropic spheres or other shaped anisotropic particles.
NASA Technical Reports Server (NTRS)
Priest, Stacy Marie
1993-01-01
The damage tolerance behavior of internally pressurized, axially slit, graphite/epoxy tape cylinders was investigated. Specifically, the effects of axial stress, structural anisotropy, and subcritical damage were considered. In addition, the limitations of a methodology which uses coupon fracture data to predict cylinder failure were explored. This predictive methodology was previously shown to be valid for quasi-isotropic fabric and tape cylinders but invalid for structurally anisotropic (+/-45/90)(sub s) and (+/-45/0)(sub s) cylinders. The effects of axial stress and structural anisotropy were assessed by testing tape cylinders with (90/0/+/-45)(sub s), (+/-45/90)(sub s), and (+/-45/0)(sub s) layups in a uniaxial test apparatus, specially designed and built for this work, and comparing the results to previous tests conducted in biaxial loading. Structural anisotropy effects were also investigated by testing cylinders with the quasi-isotropic (0/+/-45/90)(sub s) layup which is a stacking sequence variation of the previously tested (90/0/+/-45)(sub s) layup with higher D(sub 16) and D(sub 26) terms but comparable D(sub 16) and D(sub 26) to D(sub 11) ratios. All cylinders tested and used for comparison are made from AS4/3501-6 graphite/epoxy tape and have a diameter of 305 mm. Cylinder slit lengths range from 12.7 to 50.8 mm. Failure pressures are lower for the uniaxially loaded cylinders in all cases. The smallest percent failure pressure decreases are observed for the (+/-45/90)(sub s) cylinders, while the greatest such decreases are observed for the (+/-45/0)(sub s) cylinders. The relative effects of the axial stress on the cylinder failure pressures do not correlate with the degree of structural coupling. The predictive methodology is not applicable for uniaxially loaded (+/-45/90)(sub s) and (+/-45/0)(sub s) cylinders, may be applicable for uniaxially loaded (90/0/+/-45)(sub s) cylinders, and is applicable for the biaxially loaded (90/0/+/-45)(sub s) and (0
Uniaxial, Pure Bending, and Column Buckling Experiments on Superelastic NiTi Rods and Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, Ryan T.; Reedlunn, Benjamin; Daly, Samantha
Many existing shape memory alloy (SMA) devices consist of slender beams and frames. To better understand SMA beam behavior, we experimentally examined the isothermal, room temperature response of superelastic NiTi rods and tubes, of similar outer diameters, subjected to four different modes of loading. Pure tension, pure compression, and pure bending experiments were first performed to establish and compare the baseline uniaxial and bending behaviors of rods and tubes. Column buckling experiments were then performed on rod and tube columns of several slenderness ratios to investigate their mechanical responses, phase transformation kinetics under combined uniaxial and bending deformation, and themore » interaction between material and structural instabilities. In all experiments, stereo digital image correlation measured local displacement fields in order to capture phenomena such as strain localization and propagating phase boundaries. Superelastic mechanical behavior and the nature of stress-induced phase transformation were found to be strongly affected by specimen geometry and the deformation mode. Under uniaxial tension, both the rod and tube had well-defined loading and unloading plateaus in their superelastic responses, during which stress-induced phase transformation propagated along the length of the specimen in the form of a high/low strain front. Due to the dependence of strain localization on kinematic compatibility, the high/low strain front morphologies differed between the rod and tube: for the rod, the high/low strain front consisted of a diffuse “neck”, while the high/low strain front in the tube consisted of distinct, criss-crossing “fingers.” During uniaxial compression, both cross-sectional forms exhibited higher transformation stresses and smaller transformation strains than uniaxial tension, highlighting the now well-known tension-compression asymmetry of SMAs. Additionally, phase transformation localization and propagation were
Uniaxial, Pure Bending, and Column Buckling Experiments on Superelastic NiTi Rods and Tubes
Watkins, Ryan T.; Reedlunn, Benjamin; Daly, Samantha; ...
2018-03-23
Many existing shape memory alloy (SMA) devices consist of slender beams and frames. To better understand SMA beam behavior, we experimentally examined the isothermal, room temperature response of superelastic NiTi rods and tubes, of similar outer diameters, subjected to four different modes of loading. Pure tension, pure compression, and pure bending experiments were first performed to establish and compare the baseline uniaxial and bending behaviors of rods and tubes. Column buckling experiments were then performed on rod and tube columns of several slenderness ratios to investigate their mechanical responses, phase transformation kinetics under combined uniaxial and bending deformation, and themore » interaction between material and structural instabilities. In all experiments, stereo digital image correlation measured local displacement fields in order to capture phenomena such as strain localization and propagating phase boundaries. Superelastic mechanical behavior and the nature of stress-induced phase transformation were found to be strongly affected by specimen geometry and the deformation mode. Under uniaxial tension, both the rod and tube had well-defined loading and unloading plateaus in their superelastic responses, during which stress-induced phase transformation propagated along the length of the specimen in the form of a high/low strain front. Due to the dependence of strain localization on kinematic compatibility, the high/low strain front morphologies differed between the rod and tube: for the rod, the high/low strain front consisted of a diffuse “neck”, while the high/low strain front in the tube consisted of distinct, criss-crossing “fingers.” During uniaxial compression, both cross-sectional forms exhibited higher transformation stresses and smaller transformation strains than uniaxial tension, highlighting the now well-known tension-compression asymmetry of SMAs. Additionally, phase transformation localization and propagation were
Hydrocode and Molecular Dynamics modelling of uniaxial shock wave experiments on Silicon
NASA Astrophysics Data System (ADS)
Stubley, Paul; McGonegle, David; Patel, Shamim; Suggit, Matthew; Wark, Justin; Higginbotham, Andrew; Comley, Andrew; Foster, John; Rothman, Steve; Eggert, Jon; Kalantar, Dan; Smith, Ray
2015-06-01
Recent experiments have provided further evidence that the response of silicon to shock compression has anomalous properties, not described by the usual two-wave elastic-plastic response. A recent experimental campaign on the Orion laser in particular has indicated a complex multi-wave response. While Molecular Dynamics (MD) simulations can offer a detailed insight into the response of crystals to uniaxial compression, they are extremely computationally expensive. For this reason, we are adapting a simple quasi-2D hydrodynamics code to capture phase change under uniaxial compression, and the intervening mixed phase region, keeping track of the stresses and strains in each of the phases. This strain information is of such importance because a large number of shock experiments use diffraction as a key diagnostic, and these diffraction patterns depend solely on the elastic strains in the sample. We present here a comparison of the new hydrodynamics code with MD simulations, and show that the simulated diffraction taken from the code agrees qualitatively with measured diffraction from our recent Orion campaign.
Strength of SiCf-SiCm composite tube under uniaxial and multiaxial loading
NASA Astrophysics Data System (ADS)
Shapovalov, Kirill; Jacobsen, George M.; Alva, Luis; Truesdale, Nathaniel; Deck, Christian P.; Huang, Xinyu
2018-03-01
The authors report mechanical strength of nuclear grade silicon carbide fiber reinforced silicon carbide matrix composite (SiCf-SiCm) tubing under several different stress states. The composite tubing was fabricated via a Chemical Vapor Infiltration (CVI) process, and is being evaluated for accident tolerant nuclear fuel cladding. Several experimental techniques were applied including uniaxial tension, elastomer insert burst test, open and closed end hydraulic bladder burst test, and torsion test. These tests provided critical stress and strain values at proportional limit and at ultimate failure points. Full field strain measurements using digital image correlation (DIC) were obtained in order to acquire quantitative information on localized deformation during application of stress. Based on the test results, a failure map was constructed for the SiCf-SiCm composites.
Constitutive equation on basis of electo-thermal uniaxial tension for titanium profile
NASA Astrophysics Data System (ADS)
Baosheng, Liu; Fenggong, Lv; Yuansong, Zeng; Wei, Wu; Yongjun, Wang; Fengchao, Cao
2017-10-01
Titanium alloy profiles are widely applied as airframe parts due to its excellent mechanical properties and high compatibility of electrical potential with resin composite material. The electrical assisted forming is recognized as the effective approach to improve plasticity of titanium alloy profile. In this work, the electo-thermal uniaxial tension was performed to investigate the mechanical properties. The experiment results show that, the stress-strain curves increases sharply to the peak and declines quickly, exhibiting no stable deformation occurring. On basis of the obtained curves, a constitutive equation was established with consideration of the characteristic of self resistance heating, and the microstructure evolution was predicted. A comparison of the calculated stress-strain curves with the experimental ones was conducted, showing a reasonable agreement.
Compressive Properties of PTFE/Al/Ni Composite Under Uniaxial Loading
NASA Astrophysics Data System (ADS)
Wang, Huai-xi; Li, Yu-chun; Feng, Bin; Huang, Jun-yi; Zhang, Sheng; Fang, Xiang
2017-05-01
To investigate the mechanical properties of pressed and sintered PTFE/Al/Ni (polytetrafluoroethylene/aluminum/nickel) composite, uniaxial quasi-static and dynamic compression experiments were conducted at strain rates from 10-2 to 3 × 103/s. The prepared samples were tested by an electrohydraulic press with 300 kN loading capacity and a split Hopkinson pressure bar (SHPB) device at room temperature. Experimental results show that PTFE/Al/Ni composite exhibits evident strain hardening and strain rate hardening. Additionally, a bilinear relationship between stress and {{log(}}\\dot{ɛ} ) is observed. The experimental data were fit to Johnson-Cook constitutive model, and the results are in well agreement with measured data.
NASA Astrophysics Data System (ADS)
Bhattacharjee, S.; Dhar, S.; Acharyya, S. K.
2017-07-01
The primary and secondary stages of the uniaxial ratcheting curve for the C-Mn steel SA333 have been investigated. Stress controlled uniaxial ratcheting experiments were conducted with different mean stresses and stress amplitudes to obtain curves showing the evolution of ratcheting strain with number of cycles. In stage-I of the ratcheting curve, a large accumulation of ratcheting strain occurs, but at a decreasing rate. In contrast, in stage-II a smaller accumulation of ratcheting strain is found and the ratcheting rate becomes almost constant. Transmission electron microscope observations reveal that no specific dislocation structures are developed during the early stages of ratcheting. Rather, compared with the case of low cycle fatigue, it is observed that sub-cell formation is delayed in the case of ratcheting. The increase in dislocation density as a result of the ratcheting strain is obtained using the Orowan equation. The ratcheting strain is obtained from the shift of the plastic strain memory surface. The dislocation rearrangement is incorporated in a functional form of dislocation density, which is used to calibrate the parameters of a kinematic hardening law. The observations are formulated in a material model, plugged into the ABAQUS finite element (FE) platform as a user material subroutine. Finally the FE-simulated ratcheting curves are compared with the experimental curves.
Microcrack closure in rocks under stress - Direct observation
NASA Technical Reports Server (NTRS)
Batzle, M. L.; Simmons, G.; Siegfried, R. W.
1980-01-01
Direct observations of the closure of microcracks in rocks under increasing stress are reported. Uniaxial stresses up to 300 bars were applied to untreated and previously heated samples of Westerly granite and Frederick diabase by a small hydraulic press which fit entirely within a scanning electron microscope. Crack closure characteristics are found to depend on crack orientation, with cracks perpendicular to the applied stress closing and those parallel tending to open, as well as crack aspect ratio, crack intersection properties, stress concentrations and surface roughness. Uniaxial and hydrostatic stress measurements are found to be strongly dependent on fracture content as observed by SEM, and the observed hysteresis in strain measurements in the first stress cycles is also related to microscopic processes
Physically-Based Reduced Order Modelling of a Uni-Axial Polysilicon MEMS Accelerometer
Ghisi, Aldo; Mariani, Stefano; Corigliano, Alberto; Zerbini, Sarah
2012-01-01
In this paper, the mechanical response of a commercial off-the-shelf, uni-axial polysilicon MEMS accelerometer subject to drops is numerically investigated. To speed up the calculations, a simplified physically-based (beams and plate), two degrees of freedom model of the movable parts of the sensor is adopted. The capability and the accuracy of the model are assessed against three-dimensional finite element simulations, and against outcomes of experiments on instrumented samples. It is shown that the reduced order model provides accurate outcomes as for the system dynamics. To also get rather accurate results in terms of stress fields within regions that are prone to fail upon high-g shocks, a correction factor is proposed by accounting for the local stress amplification induced by re-entrant corners. PMID:23202031
NASA Astrophysics Data System (ADS)
Gallardo, M. C.; Jiménez, J.; Koralewski, M.; del Cerro, J.
1997-03-01
The specific heat c and the heat power W exchanged by a Deuterated Potassium Dihydrogen Phosphate ferroelectric-ferroelastic crystal have been measured simultaneously for both decreasing and increasing temperature at a low constant rate (0.06 K/h) between 175 and 240 K. The measurements were carried out under controlled uniaxial stresses of 0.3 and 4.5±0.1 bar applied to face (110). At Tt=207.9 K, a first order transition is produced with anomalous specific heat behavior in the interval where the transition heat appears. This anomalous behavior is explained in terms of the temperature variation of the heat power during the transition. During cooling, the transition occurs with coexistence of phases, while during heating it seems that metastable states are reached. Excluding data affected by the transition heat, the specific heat behavior agrees with the predictions of a 2-4-6 Landau potential in the range of 4-15 K below Tt while logarithmic behavior is obtained in the range from Tt to 1 K below Tt. Data obtained under 0.3 and 4.5 bar uniaxial stresses exhibit the same behavior.
NASA Astrophysics Data System (ADS)
Deepak, H. S. Vinay; Yelamaggad, C. V.; Khetrapal, C. L.; Ramanathan, K. V.
2016-09-01
We report here the measurement of the Csbnd H and the Hsbnd H dipolar couplings of the methyl group of acetonitrile oriented in the biaxial liquid crystal potassium laurate/1-decanol/water system. These parameters show large variations when measured as a function of temperature. The variations follow the symmetry of the phase as the liquid crystal goes through the sequence of uniaxial - biaxial - uniaxial phases and show a close correspondence to the phase changes that occur in the liquid crystalline solvent coinciding with the onset of biaxiality. The Hsbnd Csbnd H bond angle calculated after incorporating vibrational corrections to the dipolar couplings is discussed in terms of contributions in the case of the biaxial liquid crystal arising from vibration-rotation interaction effects.
Elastic properties of uniaxial-fiber reinforced composites - General features
NASA Astrophysics Data System (ADS)
Datta, Subhendu; Ledbetter, Hassel; Lei, Ming
The salient features of the elastic properties of uniaxial-fiber-reinforced composites are examined by considering the complete set of elastic constants of composites comprising isotropic uniaxial fibers in an isotropic matrix. Such materials exhibit transverse-isotropic symmetry and five independent elastic constants in Voigt notation: C(11), C(33), C(44), C(66), and C(13). These C(ij) constants are calculated over the entire fiber-volume-fraction range 0.0-1.0, using a scattered-plane-wave ensemple-average model. Some practical elastic constants such as the principal Young moduli and the principal Poisson ratios are considered, and the behavior of these constants is discussed. Also presented are the results for the four principal sound velocities used to study uniaxial-fiber-reinforced composites: v(11), v(33), v(12), and v(13).
NASA Astrophysics Data System (ADS)
Yavorovich, L. V.; Bespal`ko, A. A.; Fedotov, P. I.
2018-01-01
Parameters of electromagnetic responses (EMRe) generated during uniaxial compression of rock samples under excitation by deterministic acoustic pulses are presented and discussed. Such physical modeling in the laboratory allows to reveal the main regularities of electromagnetic signals (EMS) generation in rock massive. The influence of the samples mechanical properties on the parameters of the EMRe excited by an acoustic signal in the process of uniaxial compression is considered. It has been established that sulfides and quartz in the rocks of the Tashtagol iron ore deposit (Western Siberia, Russia) contribute to the conversion of mechanical energy into the energy of the electromagnetic field, which is expressed in an increase in the EMS amplitude. The decrease in the EMS amplitude when the stress-strain state of the sample changes during the uniaxial compression is observed when the amount of conductive magnetite contained in the rock is increased. The obtained results are important for the physical substantiation of testing methods and monitoring of changes in the stress-strain state of the rock massive by the parameters of electromagnetic signals and the characteristics of electromagnetic emission.
NASA Astrophysics Data System (ADS)
Yin, Peng-Fei; Yang, Sheng-Qi
2018-05-01
As a typical inherently anisotropic rock, layered sandstones can differ from each other in several aspects, including grain size, type of material, type of cementation, and degree of compaction. An experimental study is essential to obtain and convictive evidence to characterize the mechanical behavior of such rock. In this paper, the mechanical behavior of a layered sandstone from Xuzhou, China, is investigated under uniaxial compression and Brazilian test conditions. The loading tests are conducted on 7 sets of bedding inclinations, which are defined as the angle between the bedding plane and horizontal direction. The uniaxial compression strength (UCS) and elastic modulus values show an undulatory variation when the bedding inclination increases. The overall trend of the UCS and elastic modulus values with bedding inclination is decreasing. The BTS value decreases with respect to the bedding inclination and the overall trend of it is approximating a linear variation. The 3D digital high-speed camera images reveal that the failure and fracture of a specimen are related to the surface deformation. Layered sandstone tested under uniaxial compression does not show a typical failure mode, although shear slip along the bedding plane occurs at high bedding inclinations. Strain gauge readings during the Brazilian tests indicate that the normal stress on the bedding plane transforms from compression to tension as the bedding inclination increases. The stress parallel to the bedding plane in a rock material transforms from tension to compression and agrees well with the fracture patterns; "central fractures" occur at bedding inclinations of 0°-75°, "layer activation" occurs at high bedding inclinations of 75°-90°, and a combination of the two occurs at 75°.
Structural modeling of carbonaceous mesophase amphotropic mixtures under uniaxial extensional flow.
Golmohammadi, Mojdeh; Rey, Alejandro D
2010-07-21
The extended Maier-Saupe model for binary mixtures of model carbonaceous mesophases (uniaxial discotic nematogens) under externally imposed flow, formulated in previous studies [M. Golmohammadi and A. D. Rey, Liquid Crystals 36, 75 (2009); M. Golmohammadi and A. D. Rey, Entropy 10, 183 (2008)], is used to characterize the effect of uniaxial extensional flow and concentration on phase behavior and structure of these mesogenic blends. The generic thermorheological phase diagram of the single-phase binary mixture, given in terms of temperature (T) and Deborah (De) number, shows the existence of four T-De transition lines that define regions that correspond to the following quadrupolar tensor order parameter structures: (i) oblate (perpendicular, parallel), (ii) prolate (perpendicular, parallel), (iii) scalene O(perpendicular, parallel), and (iv) scalene P(perpendicular, parallel), where the symbols (perpendicular, parallel) indicate alignment of the tensor order ellipsoid with respect to the extension axis. It is found that with increasing T the dominant component of the mixture exhibits weak deviations from the well-known pure species response to uniaxial extensional flow (uniaxial perpendicular nematic-->biaxial nematic-->uniaxial parallel paranematic). In contrast, the slaved component shows a strong deviation from the pure species response. This deviation is dictated by the asymmetric viscoelastic coupling effects emanating from the dominant component. Changes in conformation (oblate <==> prolate) and orientation (perpendicular <==> parallel) are effected through changes in pairs of eigenvalues of the quadrupolar tensor order parameter. The complexity of the structural sensitivity to temperature and extensional flow is a reflection of the dual lyotropic/thermotropic nature (amphotropic nature) of the mixture and their cooperation/competition. The analysis demonstrates that the simple structures (biaxial nematic and uniaxial paranematic) observed in pure discotic
NASA Astrophysics Data System (ADS)
Li, Xibing; Wang, Shaofeng; Wang, Shanyong
2018-01-01
High geostress is a prominent condition in deep excavations and affects the cuttability of deep hard rock. This study aims to determine the influence of confining stress on hard rock fragmentation as applied by a conical pick. Using a true triaxial test apparatus, static and coupled static and dynamic loadings from pick forces were applied to end faces of cubic rock specimens to break them under biaxial, uniaxial and stress-free confining stress conditions. The cuttability indices (peak pick force, insertion depth and disturbance duration), failure patterns and fragment sizes were measured and compared to estimate the effects of confining stress. The results show that the rock cuttabilities decreased in order from rock breakages under stress-free conditions to uniaxial confining stress and then to biaxial confining stress. Under biaxial confining stress, only flake-shaped fragments were stripped from the rock surfaces under the requirements of large pick forces or disturbance durations. As the level of uniaxial confining stress increased, the peak pick force and the insertion depth initially increased and then decreased, and the failure patterns varied from splitting to partial splitting and then to rock bursts with decreasing average fragment sizes. Rock bursts will occur under elastic compression via ultra-high uniaxial confining stresses. There are two critical uniaxial confining stress levels, namely stress values at which peak pick forces begin to decrease and improve rock cuttability, and those at which rock bursts initially occur and cutting safety decreases. In particular, hard rock is easiest to split safely and efficiently under stress-free conditions. Moreover, coupled static preloading and dynamic disturbance can increase the efficiency of rock fragmentation with increasing preloading levels and disturbance amplitudes. The concluding remarks confirm hard rock cuttability using conical pick, which can improve the applicability of mechanical excavation in
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohno, N.; Abdel-Karim, M.
2000-01-01
Uniaxial ratchetting experiments of 316FR steel at room temperature reported in Part 1 are simulated using a new kinematic hardening model which has two kinds of dynamic recovery terms. The model, which features the capability of simulating slight opening of stress-strain hysteresis loops robustly, is formulated by furnishing the Armstrong and Frederick model with the critical state of dynamic recovery introduced by Ohno and Wang (1993). The model is then combined with a viscoplastic equation, and the resulting constitutive model is applied successfully to simulating the experiments. It is shown that for ratchetting under stress cycling with negative stress ratio,more » viscoplasticity and slight opening of hysteresis loops are effective mainly in early and subsequent cycles, respectively, whereas for ratchetting under zero-to-tension only viscoplasticity is effective.« less
Van der Waals interaction mediated by an optically uniaxial layer
NASA Astrophysics Data System (ADS)
Šarlah, A.; Žumer, S.
2001-11-01
We study the van der Waals interaction between macroscopic bodies separated by a thin anisotropic film with a uniaxial permittivity tensor. We describe the effect of anisotropy of the media on the magnitude and sign of the interaction. The resulting differences in the van der Waals interaction are especially important for the stability of strongly confined liquid crystals, and nanostructures characterized by highly uniaxial macroscopic molecular arrangement, such as in self-assemblies of long organic molecules forming films, membranes, colloids, etc. We introduce an improved expression for the Hamaker constant which takes into account the uniaxial symmetry of a medium. In special cases neglecting the optical anisotropy even leads to an incorrect sign of the interaction.
NASA Astrophysics Data System (ADS)
Tan, Hock Siew
This thesis reports piezocapacitance measurements on high purity Si, Si:P and Si:Sb with a uniaxial tensile stress along either the {100} or the {110 } axis and an electric field along the {001} axis from T = 4.2 K to 1.1 K. Dielectric constant values were obtained from the capacitance data after applying various corrections. The donor concentration-dependence of the dielectric constant was investigated for Si:P from N(,D) = 6.8 x 10('16) cm('-3) to. N(,D) = 1.9 x 10('18) cm('-3). The high purity Si data was essential for extracting the donor contribution to the doped-Si data. A value of 11.40 (+OR-) 0.06 is obtained for the static dielectric constant (epsilon)(,h)(T (--->) 0) of pure Si. The variation of (epsilon)(,h,zz) is linear with the applied stress (sigma)(,s) along the {110} axis up to. 610 Kg cm('-2), with (1/(epsilon)(,h,zz))(DELTA)(epsilon)(,h,zz)/(DELTA)(sigma)(,s)(110) = -(3.37 (+OR-) 0.07) x 10('-7) Kg('-1) cm('2). For the temperature variation of (epsilon)(,h), a value of (1/(epsilon)(,h))d(epsilon)(,h)/dT = (1.12 (+OR-) 0.05) x 10('-4) K('-1) is obtained at T = 4.2 K, which decreases as T (--->) 0 K. A minimum in the stress-dependent dielectric constant (epsilon)(N(,D),x(,100)) data (x is the reduced valley strain along either the {100} or the {110 } axis) was always observed for every sample stressed along a {100} axis. Except possibly at T = 4.2 K, a minimum in (epsilon)(N(,D),x(,100)) was not observed for the samples stressed along the axes. The values of the stress-dependent donor polarizability (alpha)(,D)(x) were calculated from the (epsilon)(N(,D),x) data employing the. Clausius-Mossotti relationship. The stress-dependent behavior of (alpha)(,D)(x) and the corresponding (epsilon)(N(,D),x) are very similar. The magnitudes of the initial slopes (beta)(,100) and (beta)(,110) of (alpha)(,D) (x)/(alpha)(,D)(0) and the positions of the minimum x(,100)('min) are characteristic of the particular donor. For P donor, (beta)(,100) = -0.13 (+OR-) 0.01, x
Tian, Zhenghong; Bu, Jingwu
2014-01-01
The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed. PMID:25133257
Tian, Zhenghong; Bu, Jingwu
2014-01-01
The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed.
Analysis of silicon stress/strain relationships
NASA Technical Reports Server (NTRS)
Dillon, O.
1986-01-01
Results are presented for work on stress-strain relationships in silicon ribbon. Calculations of stress fields, dislocation desities, and buckling were made; uniaxial tensile tests were made on silicon at 1150 C; and dislocation motion studies were performed.
NASA Astrophysics Data System (ADS)
Liao, Po-Yung; Chang, Ting-Chang; Su, Wan-Ching; Chen, Bo-Wei; Chen, Li-Hui; Hsieh, Tien-Yu; Yang, Chung-Yi; Chang, Kuan-Chang; Zhang, Sheng-Dong; Huang, Yen-Yu; Chang, Hsi-Ming; Chiang, Shin-Chuan
2017-06-01
This letter investigates repeated uniaxial mechanical stress-induced degradation behavior in flexible amorphous In-Ga-Zn-O thin-film transistors (TFTs) of different geometric structures. Two types of via-contact structure TFTs are investigated: symmetrical and UI structure (TFTs with I- and U-shaped asymmetric electrodes). After repeated mechanical stress, I-V curves for the symmetrical structure show a significant negative threshold voltage (VT) shift, due to mechanical stress-induced oxygen vacancy generation. However, degradation in the UI structure TFTs after stress is a negative VT shift along with the parasitic transistor characteristic in the forward-operation mode, with this hump not evident in the reverse-operation mode. This asymmetrical degradation is clarified by the mechanical strain simulation of the UI TFTs.
A Geometric Interpretation of the Effective Uniaxial Anisotropy Field in Magnetic Films
NASA Astrophysics Data System (ADS)
Kozlov, V. I.
2018-01-01
It is shown that the effective uniaxial anisotropy field that is usually applied in thin magnetic films (TMFs), which is noncollinear to the magnetization vector, is insufficient for deeper understanding of these processes, although it explains many physical processes in films. The analysis of the magnetization discontinuity in films under certain conditions yields the component of the effective uniaxial anisotropy field collinear to the magnetization vector. This component explains the magnetization discontinuity and allows one to speak of the total effective uniaxial anisotropy field in TMFs.
NASA Astrophysics Data System (ADS)
Jia, Bing; Wei, Jian-Ping; Wen, Zhi-Hui; Wang, Yun-Gang; Jia, Lin-Xing
2017-11-01
In order to study the response characteristics of infrasound in coal samples under the uniaxial loading process, coal samples were collected from GengCun mine. Coal rock stress loading device, acoustic emission tested system and infrasound tested system were used to test the infrasonic signal and acoustic emission signal under uniaxial loading process. The tested results were analyzed by the methods of wavelet filter, threshold denoise, time-frequency analysis and so on. The results showed that in the loading process, the change of the infrasonic wave displayed the characteristics of stage, and it could be divided into three stages: initial stage with a certain amount infrasound events, middle stage with few infrasound events, and late stage gradual decrease. It had a good consistency with changing characteristics of acoustic emission. At the same time, the frequency of infrasound was very low. It can propagate over a very long distance with little attenuation, and the characteristics of the infrasound before the destruction of the coal samples were obvious. A method of using the infrasound characteristics to predict the destruction of coal samples was proposed. This is of great significance to guide the prediction of geological hazards in coal mines.
Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.
Gao, Li-Lan; Wei, Chao-Lei; Zhang, Chun-Qiu; Gao, Hong; Yang, Nan; Dong, Li-Min
2017-08-01
The quasi-static and ratcheting properties of trabecular bone were investigated by experiments and theoretical predictions. The creep tests with different stress levels were completed and it is found that both the creep strain and creep compliance increase rapidly at first and then increase slowly as the creep time goes by. With increase of compressive stress the creep strain increases and the creep compliance decreases. The uniaxial compressive tests show that the applied stress rate makes remarkable influence on the compressive behaviors of trabecular bone. The Young's modulus of trabecular bone increases with increase of stress rate. The stress-strain hysteresis loops of trabecular bone under cyclic load change from sparse to dense with increase of number of cycles, which agrees with the change trend of ratcheting strain. The ratcheting strain rate rapidly decreases at first, and then exhibits a relatively stable and small value after 50cycles. Both the ratcheting strain and ratcheting strain rate increase with increase of stress amplitude or with decrease of stress rate. The creep model and the nonlinear viscoelastic constitutive model of trabecular bone were proposed and used to predict its creep property and rate-dependent compressive property. The results show that there are good agreements between the experimental data and predictions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guptha, V. L. Jagannatha; Sharma, Ramesh S.
2017-11-01
The use of FRP composite materials in aerospace, aviation, marine, automotive and civil engineering industry has increased rapidly in recent years due to their high specific strength and stiffness properties. The structural members contrived from such composite materials are generally subjected to complex loading conditions and leads to multi-axial stress conditions at critical surface localities. Presence of notches, much required for joining process of composites, makes it further significant. The current practice of using uni-axial test data alone to validate proposed material models is inadequate leading to evaluation and consideration of bi-axial test data. In order to correlate the bi-axial strengths with the uni-axial strengths of GFRP composite laminates in the presence of a circular notch, bi-axial tests using four servo-hydraulic actuators with four load cells were carried out. To determine the in-plane strength parameters, bi-axial cruciform test specimen model was considered. Three different fibre orientations, namely, 0°, 45°, and 90° are considered with a central circular notch of 10 mm diameter in the present investigation. From the results obtained, it is observed that there is a reduction in strength of 5.36, 2.41 and 13.92% in 0°, 45°, and 90° fibre orientation, respectively, under bi-axial loading condition as compared to that of uni-axial loading in laminated composite.
Reaction rim growth in the system MgO-Al2O3-SiO2 under uniaxial stress
NASA Astrophysics Data System (ADS)
Götze, Lutz Christoph; Abart, Rainer; Rybacki, Erik; Keller, Lukas M.; Petrishcheva, Elena; Dresen, Georg
2010-07-01
We synthesize reaction rims between thermodynamically incompatible phases in the system MgO-Al2O3-SiO2 applying uniaxial load using a creep apparatus. Synthesis experiments are done in the MgO-SiO2 and in the MgO-Al2O3 subsystems at temperatures ranging from 1150 to 1350 °C imposing vertical stresses of 1.2 to 29 MPa at ambient pressure and under a constant flow of dry argon. Single crystals of synthetic and natural quartz and forsterite, synthetic periclase and synthetic corundum polycrystals are used as starting materials. We produce enstatite rims at forsterite-quartz contacts, enstatite-forsterite double rims at periclase-quartz contacts and spinel rims at periclase-corundum contacts. We find that rim growth under the “dry” conditions of our experiments is sluggish compared to what has been found previously in nominally “dry” piston cylinder experiments. We further observe that the nature of starting material, synthetic or natural, has a major influence on rim growth rates, where natural samples are more reactive than synthetic ones. At a given temperature the effect of stress variation is larger than what is anticipated from the modification of the thermodynamic driving force for reaction due to the storage of elastic strain energy in the reactant phases. We speculate that this may be due to modification of the physical properties of the polycrystals that constitute the reaction rims or by deformation under the imposed load. In our experiments rim growth is very sluggish at forsterite-quartz interfaces. Rim growth is more rapid at periclase-quartz contacts. The spinel rims that are produced at periclase-corundum interfaces show parabolic growth indicating that reaction rim growth is essentially diffusion controlled. From the analysis of time series done in the MgO-Al2O3 subsystem we derive effective diffusivities for the Al2O3 and the MgO components in a spinel polycrystal as D_{MgO} = 1.4 ± 0.2 \\cdot 10^{-15} m2/s and D_{Al_2O_3} = 3.7 ± 0
Cao, Rihong; Cao, Ping; Lin, Hang; Fan, Xiang
2017-01-01
Joints and fissures in natural rocks have a significant influence on the stability of the rock mass, and it is often necessary to evaluate strength failure and crack evolution behavior. In this paper, based on experimental tests and numerical simulation (PFC2D), the macro-mechanical behavior and energy mechanism of jointed rock-like specimens with cross non-persistent joints under uniaxial loading were investigated. The focus was to study the effect of joint dip angle α and intersection angle γ on the characteristic stress, the coalescence modes and the energy release of jointed rock-like specimens. For specimens with γ = 30° and 45°, the UCS (uniaxial compression strength), CIS (crack initiation stress) and CDiS (critical dilatancy stress) increase as α increases from 0° to 75°. When γ = 60° and 75°, the UCS, CIS and CDiS increase as α increases from 0° to 60° and decrease when α is over 60°. Both the inclination angle α and intersection angle γ have great influence on the failure pattern of pre-cracked specimens. With different α and γ, specimens exhibit 4 kinds of failure patterns. Both the experimental and numerical results show that the energy of a specimen has similar trends with characteristic stress as α increases.
NASA Astrophysics Data System (ADS)
Jiang, Fulin; Tang, Jie; Fu, Dinfa; Huang, Jianping; Zhang, Hui
2018-04-01
Multistage stress-strain curve correction based on an instantaneous friction factor was studied for axisymmetric uniaxial hot compression of 7150 aluminum alloy. Experimental friction factors were calculated based on continuous isothermal axisymmetric uniaxial compression tests at various deformation parameters. Then, an instantaneous friction factor equation was fitted by mathematic analysis. After verification by comparing single-pass flow stress correction with traditional average friction factor correction, the instantaneous friction factor equation was applied to correct multistage stress-strain curves. The corrected results were reasonable and validated by multistage relative softening calculations. This research provides a broad potential for implementing axisymmetric uniaxial compression in multistage physical simulations and friction optimization in finite element analysis.
Experiments on stress dependent borehole acoustic waves.
Hsu, Chaur-Jian; Kane, Michael R; Winkler, Kenneth; Wang, Canyun; Johnson, David Linton
2011-10-01
In the laboratory setup, a borehole traverses a dry sandstone formation, which is subjected to a controlled uniaxial stress in the direction perpendicular to the borehole axis. Measurements are made in a single loading-unloading stress cycle from zero to 10 MPa and then back down to zero stress. The applied stress and the presence of the borehole induce anisotropy in the bulk of the material and stress concentration around the borehole, both azimuthally and radially. Acoustic waves are generated and detected in the water-filled borehole, including compressional and shear headwaves, as well as modes of monopole, dipole, quadrupole, and higher order azimuthal symmetries. The linear and non-linear elastic parameters of the formation material are independently quantified, and utilized in conjunction with elastic theories to predict the characteristics of various borehole waves at zero and finite stress conditions. For example, an analytic theory is developed which is successfully used to estimate the changes of monopole tube mode at low frequency resulted from uniaxial stress, utilizing the measured material third order elasticity parameters. Comparisons between various measurements as well as that between experiments and theories are also presented. © 2011 Acoustical Society of America
Preparation of uniaxially aligned TiO2 ultrafine fibers by electrospinning.
Nien, Yu-Hsun; Tsai, Yan-Sheng; Wang, Jia-Yi; Syu, Shu-Ping
2012-11-01
TiO2 nanofibers are often produced by electrospinning using a collector consisting of two parallel electrodes. In this work, a high speed rotating drum was used as a collector to produce uniaxially aligned TiO2 ultrafine fibers. The apparatus to manufacture uniaxially aligned TiO2 ultrafine fiber consisted of a high-speed roller, a high-voltage power supply, a controllable syringe pump and a syringe. Titanium (IV) isopropoxide and polyvinylpyrrolidone were used as precursor and auxiliary, respectively. Titanium (IV) isopropoxide and polyvinylpyrrolidone were well mixed with other essential reagents to form the polymer solution. The polymer solution was poured into the syringe and pumped at various flow rates. The electrospun ultrafine fibers collected on the roller were heat treated up to 600 degrees C and the uniaxially aligned TiO2 ultrafine fibers were formed and characterized using scanning electron microscope and X-ray diffraction.
Theory of the β-Type Organic Superconductivity under Uniaxial Compression
NASA Astrophysics Data System (ADS)
Suzuki, Takeo; Onari, Seiichiro; Ito, Hiroshi; Tanaka, Yukio
2011-09-01
We study theoretically the shift of the superconducting transition temperature (Tc) under uniaxial compression in β-type organic superconductors, β-(BEDT-TTF)2I3 and β-(BDA-TTP)2X (X=SbF6, AsF6), in order to clarify the electron correlation, the spin frustration, and the effect of dimerization. The transfer integrals are calculated by the extended Hückel method assuming the uniaxial strain, and the superconducting state mediated by the spin fluctuation is solved using Eliashberg's equation with the fluctuation--exchange approximation. The calculation is carried out on both the dimerized (one-band) and nondimerized (two-band) Hubbard models. We have found that (i) the behavior of Tc in β-(BEDT-TTF)2I3 with a stronger dimerization is well reproduced by the dimer model, while that in weakly dimerized β-BDA-TTP salts is rather well reproduced by the two-band model, and (ii) the competition between the spin frustration and the effect induced by the fluctuation is important in these materials, which causes the nonmonotonic shift of Tc against uniaxial compression.
NASA Astrophysics Data System (ADS)
Yazdani, Mohsen
Transient electromagnetic scattering by a radially uniaxial dielectric sphere is explored using three well-known methods: Debye series, Mie series, and ray tracing theory. In the first approach, the general solutions for the impulse and step responses of a uniaxial sphere are evaluated using the inverse Laplace transformation of the generalized Mie series solution. Following high frequency scattering solution of a large uniaxial sphere, the Mie series summation is split into the high frequency (HF) and low frequency terms where the HF term is replaced by its asymptotic expression allowing a significant reduction in computation time of the numerical Bromwich integral. In the second approach, the generalized Debye series for a radially uniaxial dielectric sphere is introduced and the Mie series coefficients are replaced by their equivalent Debye series formulations. The results are then applied to examine the transient response of each individual Debye term allowing the identification of impulse returns in the transient response of the uniaxial sphere. In the third approach, the ray tracing theory in a uniaxial sphere is investigated to evaluate the propagation path as well as the arrival time of the ordinary and extraordinary returns in the transient response of the uniaxial sphere. This is achieved by extracting the reflection and transmission angles of a plane wave obliquely incident on the radially oriented air-uniaxial and uniaxial-air boundaries, and expressing the phase velocities as well as the refractive indices of the ordinary and extraordinary waves in terms of the incident angle, optic axis and propagation direction. The results indicate a satisfactory agreement between Debye series, Mie series and ray tracing methods.
NASA Astrophysics Data System (ADS)
Chella Gifta, C.; Prabavathy, S.
2018-05-01
This work presents the energy absorption capacity of hybrid fiber reinforced concrete made with hooked end steel fibers (0.5 and 0.75%) and straight polyester fibers (0.5, 0.8, 1.0 and 2.0%). Compressive toughness (energy absorption capacity) under uni-axial compression was evaluated on 100 × 200 mm size cylindrical specimens with varying steel and polyester fiber content. Efficiency of the hybrid fiber reinforcement is studied with respect to fiber type, size and volume fractions in this investigation. The vertical displacement under uni-axial compression was measured under the applied loads and the load-deformation curves were plotted. From these curves the toughness values were calculated and the results were compared with steel and polyester as individual fibers. The hybridization of 0.5% steel + 0.5% polyester performed well in post peak region due to the addition of polyester fibers with steel fibers and the energy absorption value was 23% greater than 0.5% steel FRC. Peak stress values were also higher in hybrid series than single fiber and based on the results it is concluded that hybrid fiber reinforcement improves the toughness characteristics of concrete without affecting workability.
Deformation behavior of micro-indentation defects under uniaxial and biaxial loads
NASA Astrophysics Data System (ADS)
Ma, Zhichao; Zhao, Hongwei; Lu, Shuai; Li, Hailian; Liu, Changyi; Liu, Xianhua
2015-09-01
The microdefects of structure frequently act as the source to generate initial cracks and lead to the fracture failure. Study on the deformation behaviors of embedded defects would be conducive to better understand the failure mechanisms of structural materials. Micro-indentation technique was applied to prepare the initial indentations as embedded surface defects at the gauge length section and central section of a cross-shaped AZ31B magnesium alloy specimen. A novel in situ biaxial tensile device was developed to apply the synchronous biaxial loads. Via the observation by an optical microscope with three-dimensional imaging and measurement functions, the changing laws of the indentation topographies under uniaxial and biaxial tensile loads were discussed. Compared with the gauge length section, the increasing trend of the indentation length of the central section was relatively flat, and the decreasing trend of the indentation depth was more significant. The changes of indentation topographies were explained by the Poisson effect, and the significant plastic tensile stress has led to the releasing of the residual stress around the indentation location and also promoted the planarization of the pileup.
Deformation behavior of micro-indentation defects under uniaxial and biaxial loads.
Ma, Zhichao; Zhao, Hongwei; Lu, Shuai; Li, Hailian; Liu, Changyi; Liu, Xianhua
2015-09-01
The microdefects of structure frequently act as the source to generate initial cracks and lead to the fracture failure. Study on the deformation behaviors of embedded defects would be conducive to better understand the failure mechanisms of structural materials. Micro-indentation technique was applied to prepare the initial indentations as embedded surface defects at the gauge length section and central section of a cross-shaped AZ31B magnesium alloy specimen. A novel in situ biaxial tensile device was developed to apply the synchronous biaxial loads. Via the observation by an optical microscope with three-dimensional imaging and measurement functions, the changing laws of the indentation topographies under uniaxial and biaxial tensile loads were discussed. Compared with the gauge length section, the increasing trend of the indentation length of the central section was relatively flat, and the decreasing trend of the indentation depth was more significant. The changes of indentation topographies were explained by the Poisson effect, and the significant plastic tensile stress has led to the releasing of the residual stress around the indentation location and also promoted the planarization of the pileup.
In situ grain fracture mechanics during uniaxial compaction of granular solids
NASA Astrophysics Data System (ADS)
Hurley, R. C.; Lind, J.; Pagan, D. C.; Akin, M. C.; Herbold, E. B.
2018-03-01
Grain fracture and crushing are known to influence the macroscopic mechanical behavior of granular materials and be influenced by factors such as grain composition, morphology, and microstructure. In this paper, we investigate grain fracture and crushing by combining synchrotron x-ray computed tomography and three-dimensional x-ray diffraction to study two granular samples undergoing uniaxial compaction. Our measurements provide details of grain kinematics, contacts, average intra-granular stresses, inter-particle forces, and intra-grain crystal and fracture plane orientations. Our analyses elucidate the complex nature of fracture and crushing, showing that: (1) the average stress states of grains prior to fracture vary widely in their relation to global and local trends; (2) fractured grains experience inter-particle forces and stored energies that are statistically higher than intact grains prior to fracture; (3) fracture plane orientations are primarily controlled by average intra-granular stress and contact fabric rather than the orientation of the crystal lattice; (4) the creation of new surfaces during fracture accounts for a very small portion of the energy dissipated during compaction; (5) mixing brittle and ductile grain materials alters the grain-scale fracture response. The results highlight an application of combined x-ray measurements for non-destructive in situ analysis of granular solids and provide details about grain fracture that have important implications for theory and modeling.
Hot Electron Injection into Uniaxially Strained Silicon
NASA Astrophysics Data System (ADS)
Kim, Hyun Soo
In semiconductor spintronics, silicon attracts great attention due to the long electron spin lifetime. Silicon is also one of the most commonly used semiconductor in microelectronics industry. The spin relaxation process of diamond crystal structure such as silicon is dominant by Elliot-Yafet mechanism. Yafet shows that intravalley scattering process is dominant. The conduction electron spin lifetime measured by electron spin resonance measurement and electronic measurement using ballistic hot electron method well agrees with Yafet's theory. However, the recent theory predicts a strong contribution of intervalley scattering process such as f-process in silicon. The conduction band minimum is close the Brillouin zone edge, X point which causes strong spin mixing at the conduction band. A recent experiment of electric field-induced hot electron spin relaxation also shows the strong effect of f-process in silicon. In uniaxially strained silicon along crystal axis [100], the suppression of f-process is predicted which leads to enhance electron spin lifetime. By inducing a change in crystal structure due to uniaxial strain, the six fold degeneracy becomes two fold degeneracy, which is valley splitting. As the valley splitting increases, intervalley scattering is reduced. A recent theory predicts 4 times longer electron spin lifetime in 0.5% uniaxially strained silicon. In this thesis, we demonstrate ballistic hot electron injection into silicon under various uniaxial strain. Spin polarized hot electron injection under strain is experimentally one of the most challenging part to measure conduction electron spin lifetime in silicon. Hot electron injection adopts tunnel junction which is a thin oxide layer between two conducting materials. Tunnel barrier, which is an oxide layer, is only 4 ˜ 5 nm thick. Also, two conducting materials are only tens of nanometer. Therefore, under high pressure to apply 0.5% strain on silicon, thin films on silicon substrate can be easily
Feng, Xiaowei; Zhang, Nong; Zheng, Xigui; Pan, Dongjiang
2015-01-01
Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE) testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three-dimensional damage source
Feng, Xiaowei; Zhang, Nong; Zheng, Xigui; Pan, Dongjiang
2015-01-01
Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE) testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three-dimensional damage source
Slotted Antenna with Uniaxial Dielectric Covering
2016-07-08
1 of 12 SLOTTED ANTENNA WITH UNIAXIAL DIELECTRIC COVERING STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be...invention is directed to a slotted antenna having enhanced broadband characteristics. (2) Description of the Prior Art [0004] Slotted cylinder antennas ...slotted cylinder antenna for use in a towed buoy. Though somewhat broadband in performance, it is not suitable for vertical mounting over a
Subramanian, Gayathri; Elsaadany, Mostafa; Bialorucki, Callan; Yildirim-Ayan, Eda
2017-08-01
Mechanical loading bioreactors capable of applying uniaxial tensile strains are emerging to be a valuable tool to investigate physiologically relevant cellular signaling pathways and biochemical expression. In this study, we have introduced a simple and cost-effective uniaxial tensile strain bioreactor for the application of precise and homogenous uniaxial strains to 3D cell-encapsulated collagen constructs at physiological loading strains (0-12%) and frequencies (0.01-1 Hz). The bioreactor employs silicone-based loading chambers specifically designed to stretch constructs without direct gripping to minimize stress concentration at the ends of the construct and preserve its integrity. The loading chambers are driven by a versatile stepper motor ball-screw actuation system to produce stretching of the constructs. Mechanical characterization of the bioreactor performed through Finite Element Analysis demonstrated that the constructs experienced predominantly uniaxial tensile strain in the longitudinal direction. The strains produced were found to be homogenous over a 15 × 4 × 2 mm region of the construct equivalent to around 60% of the effective region of characterization. The strain values were also shown to be consistent and reproducible during cyclic loading regimes. Biological characterization confirmed the ability of the bioreactor to promote cell viability, proliferation, and matrix organization of cell-encapsulated collagen constructs. This easy-to-use uniaxial tensile strain bioreactor can be employed for studying morphological, structural, and functional responses of cell-embedded matrix systems in response to physiological loading of musculoskeletal tissues. It also holds promise for tissue-engineered strategies that involve delivery of mechanically stimulated cells at the site of injury through a biological carrier to develop a clinically useful therapy for tissue healing. Biotechnol. Bioeng. 2017;114: 1878-1887. © 2017 Wiley Periodicals
Some methodological aspects of tectonic stress reconstruction based on geological indicators
NASA Astrophysics Data System (ADS)
Sim, Lidiya A.
2012-03-01
The impact of the initial heterogeneity in rocks on the distribution of slickensides (slip planes), which are used to reconstruct local stress-state, is discussed. The stress-state was reconstructed by a graphic variant of the cinematic method. A new type of stress-state - Variation of Stress-State Type (VSST) - is introduced. The VSST is characterized by dislocation vectors originated both by uniaxial compression and uniaxial tension in the same rock volume, i.e. coefficient μσ = 1-2R varies from +1 to -1. The reasons for differences between slip planes from those predicted by the model are discussed. The distribution of slip planes depends on the stress-state type (μσ coefficient) and on the initial heterogeneity of the rocks. A criterion for the identification of tectonic stress rank is suggested. It is based on the models of tectonic stress distribution in the fracture vicinities. Examples of results of tectonic stress studies are given. Studies of tectonic stresses based on geological indicators are of methodological and practical importance.
On the identifiability of the Hill-1948 model with one uniaxial tensile test
NASA Astrophysics Data System (ADS)
Bertin, Morgan; Hild, François; Roux, Stéphane
2017-06-01
A uniaxial experiment is performed on an ultra-thin specimen made of 17-7 precipitation hardened stainless steel. An anti-wrinkling setup allows for the characterization of the mechanical behavior with Integrated Digital Image Correlation (IDIC). The result shows that a single uniaxial experiment investigated via IDIC possesses enough data (and even more) to characterize a complete anisotropic elastoplastic model.
Failure Mechanisms of Brittle Rocks under Uniaxial Compression
NASA Astrophysics Data System (ADS)
Liu, Taoying; Cao, Ping
2017-09-01
The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.
A drop in uniaxial and biaxial nonlinear extensional flows
NASA Astrophysics Data System (ADS)
Favelukis, M.
2017-08-01
In this theoretical report, we explore small deformations of an initially spherical drop subjected to uniaxial or biaxial nonlinear extensional creeping flows. The problem is governed by the capillary number (Ca), the viscosity ratio (λ), and the nonlinear intensity of the flow (E). When the extensional flow is linear (E = 0), the familiar internal circulations are obtained and the same is true with E > 0, except that the external and internal flow rates increase with increasing E. If E < 0, the external flow consists of some unconnected regions leading to the same number of internal circulations (-3/7 < E < 0) or twice the number of internal circulations (E < -3/7), when compared to the linear case. The shape of the deformed drop is represented in terms of a modified Taylor deformation parameter, and the conditions for the breakup of the drop by a center pinching mechanism are also established. When the flow is linear (E = 0), the literature predicts prolate spheroidal drops for uniaxial flows (Ca > 0) and oblate spheroidal drops for biaxial flows (Ca < 0). For the same |Ca|, if E > 0, the drop is more elongated than the linear case, while E < 0 results in less elongated drops than the linear case. Compared to the linear case, for both uniaxial and biaxial extensional flows, E > 0 tends to facilitate drop breakup, while E < 0 makes drop breakup more difficult.
Dirac points and van Hove singularities of silicene under uniaxial strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Xianqing, E-mail: xqlin@zjut.edu.cn; College of Science, Zhejiang University of Technology, Hangzhou 310023; Ni, Jun
2015-04-28
First-principles calculations have been performed to investigate the low energy electronic properties and van Hove singularities (VHSs) of silicene under uniaxial strain. The Dirac points (DPs) persist when silicene is stretched uniaxially, while they are shifted away from the corners (K points) of the first Brillouin zone (FBZ). The relative positions of DPs with respect to the K points for silicene strained along the armchair (AC) or zigzag (ZZ) direction show opposite tendency compared with strained graphene, which is due to the larger deformation of the unit cell of strained silicene than that of strained graphene. Moreover, for silicene undermore » AC or ZZ strain, the Fermi velocities around DPs along the positive and negative directions of the FBZ show rather significant difference. The nature of the VHS just above the Fermi energy undergoes a transition from the π* band to the σ* band for silicene under increasing AC or ZZ strain. These observations suggest uniaxial strain as an effective route to tune the electronic properties of silicene for potential applications in future electronic devices.« less
Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening.
Ni, Zhen Hua; Yu, Ting; Lu, Yun Hao; Wang, Ying Ying; Feng, Yuan Ping; Shen, Ze Xiang
2008-11-25
Graphene was deposited on a transparent and flexible substrate, and tensile strain up to approximately 0.8% was loaded by stretching the substrate in one direction. Raman spectra of strained graphene show significant red shifts of 2D and G band (-27.8 and -14.2 cm(-1) per 1% strain, respectively) because of the elongation of the carbon-carbon bonds. This indicates that uniaxial strain has been successfully applied on graphene. We also proposed that, by applying uniaxial strain on graphene, tunable band gap at K point can be realized. First-principle calculations predicted a band-gap opening of approximately 300 meV for graphene under 1% uniaxial tensile strain. The strained graphene provides an alternative way to experimentally tune the band gap of graphene, which would be more efficient and more controllable than other methods that are used to open the band gap in graphene. Moreover, our results suggest that the flexible substrate is ready for such a strain process, and Raman spectroscopy can be used as an ultrasensitive method to determine the strain.
NASA Astrophysics Data System (ADS)
Huang, Yan-Hua; Yang, Sheng-Qi; Tian, Wen-Ling; Zeng, Wei; Yu, Li-Yuan
2016-06-01
Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalescence process, a series of uniaxial compression tests were carried out for rock-like material with two unparallel fissures. In the present study, cement, quartz sand, and water were used to fabricate a kind of brittle rock-like material cylindrical model specimen. The mechanical properties of rock-like material specimen used in this research were all in good agreement with the brittle rock materials. Two unparallel fissures (a horizontal fissure and an inclined fissure) were created by inserting steel during molding the model specimen. Then all the pre-fissured rock-like specimens were tested under uniaxial compression by a rock mechanics servo-controlled testing system. The peak strength and Young's modulus of pre-fissured specimen all first decreased and then increased when the fissure angle increased from 0° to 75°. In order to investigate the crack initiation, propagation and coalescence process, photographic monitoring was adopted to capture images during the entire deformation process. Moreover, acoustic emission (AE) monitoring technique was also used to obtain the AE evolution characteristic of pre-fissured specimen. The relationship between axial stress, AE events, and the crack coalescence process was set up: when a new crack was initiated or a crack coalescence occurred, the corresponding axial stress dropped in the axial stress-time curve and a big AE event could be observed simultaneously. Finally, the mechanism of crack propagation under microscopic observation was discussed. These experimental results are expected to increase the understanding of the strength failure behavior and the cracking mechanism of rock containing unparallel fissures.
Negative Refraction in a Uniaxial Absorbent Dielectric Material
ERIC Educational Resources Information Center
Jen, Yi-Jun; Lakhtakia, Akhlesh; Yu, Ching-Wei; Lin, Chin-Te
2009-01-01
Refraction of light from an isotropic dielectric medium to an anisotropic dielectric material is a complicated phenomenon that can have several different characteristics not usually discussed in electromagnetics textbooks for undergraduate students. With a simple problem wherein the refracting material is uniaxial with its optic axis normal to the…
Laboratory Determination of Horizontal Stress in Cohesionless Soil.
1983-01-01
in soft silty clay. The sheet piles were used for excavation support for the Oslo subway construction and the measurements of the lateral stresses 4...5.2. By sandwiching the stress cell between two butyl rubber diaphragms in the chamber, a uniform uniaxial stress could be applied to the 4 stress...October 1944, pp. 355-358. .4 162 Johannessen, I. J., "Test Section and Installation of Test Equipment, Oslo Subway ," Pro Brussels Confer- ence on
NASA Technical Reports Server (NTRS)
Crews, J. H., Jr.
1974-01-01
The stresses and strains in a uniaxially loaded sheet with an unloaded interference-fit bolt were calculated by an elastoplastic finite-element analysis. The material properties represented a 7075-T6 aluminum alloy sheet and a steel bolt. The analysis considered the two ideal cases of no slip and no friction at the bolt-sheet interface for a single combination of bolt diameter, interference level, and cyclic loading. When the bolt was inserted, the sheet deformed plastically near the hole; the first tensile load cycle produced additional yielding, but subsequent cycles to the same level caused only elastic cyclic stresses. These stresses together with fatigue data for unnotched specimens were used to estimate crack initiation periods and initiation sites. The cases analyzed with interference-fit bolts were predicted to have crack initiation periods which were about 50 times that for a clearance-fit bolt. Crack initiation was predicted to occur on the transverse axis at a distance of about one radius from the hole.
NASA Astrophysics Data System (ADS)
Yang, Sheng-Qi; Tian, Wen-Ling; Huang, Yan-Hua; Ranjith, P. G.; Ju, Yang
2016-04-01
To understand the fracture mechanism in all kinds of rock engineering, it is important to investigate the fracture evolution behavior of pre-fissured rock. In this research, we conducted uniaxial compression experiments to evaluate the influence of ligament angle on the strength, deformability, and fracture coalescence behavior of rectangular prismatic specimens (80 × 160 × 30 mm) of brittle sandstone containing two non-coplanar fissures. The experimental results show that the peak strength of sandstone containing two non-coplanar fissures depends on the ligament angle, but the elastic modulus is not closely related to the ligament angle. With the increase of ligament angle, the peak strength decreased at a ligament angle of 60°, before increasing up to our maximum ligament angle of 120°. Crack initiation, propagation, and coalescence were all observed and characterized from the inner and outer tips of pre-existing non-coplanar fissures using photographic monitoring. Based on the results, the sequence of crack evolution in sandstone containing two non-coplanar fissures was analyzed in detail. In order to fully understand the crack evolution mechanism of brittle sandstone, numerical simulations using PFC2D were performed for specimens containing two non-coplanar fissures under uniaxial compression. The results are in good agreement with the experimental results. By analyzing the stress field, the crack evolution mechanism in brittle sandstone containing two non-coplanar fissures under uniaxial compression is revealed. These experimental and numerical results are expected to improve the understanding of the unstable fracture mechanism of fissured rock engineering structures.
NASA Astrophysics Data System (ADS)
Luniov, S. V.; Zimych, A. I.; Nazarchuk, P. F.; Maslyuk, V. T.; Megela, I. G.
2016-12-01
Temperature dependencies for concentration of electrons and the Hall mobility for unirradiated and irradiated by the flow of electrons ? single crystals ?, with the energy of ?, for different values of uniaxial pressures along the crystallographic directions ?, ? and ? are obtained on the basis of piezo-Hall effect measurements. Non-typical growth of the Hall mobility of electrons for irradiated single crystals ? in comparison with unirradiated with the increasing of value of uniaxial pressures along the crystallographic directions ? (for the entire range of the investigated temperatures) and ? (to temperatures ?) has been revealed. Such an effect of the Hall mobility increase for uniaxially deformed single crystals ? is explained by the reduction of gradients of a resistance as a result of reduction in the amplitude of a large-scale potential with deformation and concentration of charged A-centers in the process of their recharge by the increasing of uniaxial pressure and consequently the probability of scattering on these centers. Theoretical calculations for temperature dependencies of the Hall mobility for uniaxially deformed single crystals ? in terms of the electrons scattering on the ions of shallow donors, acoustic, optical and intervalley phonons, regions of disordering and large-scale potential is good conformed to the corresponding experimental results at temperatures T<220 K for the case of uniaxial pressures along the crystallographic directions ? and ? and for temperatures ? when the uniaxial pressure is directed along the crystallographic directions ?. The mechanism of electron scattering on a charged radiation defects (which correspond to the deep energy levels of A-centers) 'is turned off' for the given temperatures due to the uniaxial pressure. Reduction of the Hall mobility in transition through a maximum of dependence ? with the increasing temperature for cases of the uniaxial deformation of the irradiated single crystals ? along the
Deformation micromechanisms of collagen fibrils under uniaxial tension
Tang, Yuye; Ballarini, Roberto; Buehler, Markus J.; Eppell, Steven J.
2010-01-01
Collagen, an essential building block of connective tissues, possesses useful mechanical properties due to its hierarchical structure. However, little is known about the mechanical properties of collagen fibril, an intermediate structure between the collagen molecule and connective tissue. Here, we report the results of systematic molecular dynamics simulations to probe the mechanical response of initially unflawed finite size collagen fibrils subjected to uniaxial tension. The observed deformation mechanisms, associated with rupture and sliding of tropocollagen molecules, are strongly influenced by fibril length, width and cross-linking density. Fibrils containing more than approximately 10 molecules along their length and across their width behave as representative volume elements and exhibit brittle fracture. Shorter fibrils experience a more graceful ductile-like failure. An analytical model is constructed and the results of the molecular modelling are used to find curve-fitted expressions for yield stress, yield strain and fracture strain as functions of fibril structural parameters. Our results for the first time elucidate the size dependence of mechanical failure properties of collagen fibrils. The associated molecular deformation mechanisms allow the full power of traditional material and structural engineering theory to be applied to our understanding of the normal and pathological mechanical behaviours of collagenous tissues under load. PMID:19897533
NASA Astrophysics Data System (ADS)
Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael H.; Nau, Siegfried; Hess, Sebastian
2017-04-01
There is increasing evidence that seismogenic fractures can propagate faster than the shear wave velocity of the surrounding rocks. Strain rates within the tip region of such super-shear earthquake ruptures can reach deformation conditions similar to impact processes, resulting in rock pulverization. The physical response of brittle rocks at high strain rates changes dramatically with respect to quasi-static conditions. Rocks become stiffer and their strength increases. A measure for the dynamic behavior of a rock and its strain dependency is the dynamic increase factor (DIF) which is the ratio of the dynamic compressive strength to the quasi-static uniaxial compressive strength. To investigate deformation in the high strain rate regime experimentally, we introduce the split Hopkinson pressure bar technology to the structural geology community, a method that is frequently used by rock and impact engineers. We measure the stress-strain response of homogeneous, fine-grained Seeberger sandstone and Carrara marble in uniaxial compression at strain rates ranging from 10+1 to 10+2 s-1 with respect to tangent modulus and dynamic uniaxial compressive strength. We present full stress-strain response curves of Seeberger sandstone and Carrara marble at high strain rates and an evaluation method to determine representative rates of deformation. Results indicate a rate-dependent elastic behavior of Carrara marble where an average increase of ∼18% could be observed at high strain rates of about 100 s-1. DIF reaches a factor of 2.2-2.4. Seeberger sandstone does not have a rate-dependent linear stress-strain response at high strain rates. Its DIF was found to be about 1.6-1.7 at rates of 100 s-1. The onset of dynamic behavior is accompanied with changes in the fracture pattern from single to multiple fractures to pervasive pulverization for increasing rates of deformation. Seismogenic shear zones and their associated fragment-size spectra should be carefully revisited in the
A 12 year EDF study of concrete creep under uniaxial and biaxial loading
Charpin, Laurent; Le Pape, Yann; Coustabeau, Eric; ...
2017-11-04
This paper presents a 12-year-long creep and shrinkage experimental campaign on cylindrical and prismatic concrete samples under uniaxial and biaxial stress, respectively. The motivation for the study is the need for predicting the delayed strains and the pre-stress loss of concrete containment buildings of nuclear power plants. Two subjects are central in this regard: the creep strain's long-term evolution and the creep Poisson's ratio. A greater understanding of these areas is necessary to ensure reliable predictions of the long-term behavior of the concrete containment buildings.Long-term basic creep appears to evolve as a logarithm function of time in the range ofmore » 3 to 10 years of testing. Similar trends are observed for drying creep, autogenous shrinkage, and drying shrinkage testing, which suggests that all delayed strains obtained using different loading and drying conditions originate from a common mechanism.The creep Poisson's ratio derived from the biaxial tests is approximately constant over time for both the basic and drying creep tests (creep strains corrected by the shrinkage strain).It is also shown that the biaxial non-drying samples undergo a significant increase in Young's modulus after 10 years.« less
A 12 year EDF study of concrete creep under uniaxial and biaxial loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charpin, Laurent; Le Pape, Yann; Coustabeau, Eric
This paper presents a 12-year-long creep and shrinkage experimental campaign on cylindrical and prismatic concrete samples under uniaxial and biaxial stress, respectively. The motivation for the study is the need for predicting the delayed strains and the pre-stress loss of concrete containment buildings of nuclear power plants. Two subjects are central in this regard: the creep strain's long-term evolution and the creep Poisson's ratio. A greater understanding of these areas is necessary to ensure reliable predictions of the long-term behavior of the concrete containment buildings.Long-term basic creep appears to evolve as a logarithm function of time in the range ofmore » 3 to 10 years of testing. Similar trends are observed for drying creep, autogenous shrinkage, and drying shrinkage testing, which suggests that all delayed strains obtained using different loading and drying conditions originate from a common mechanism.The creep Poisson's ratio derived from the biaxial tests is approximately constant over time for both the basic and drying creep tests (creep strains corrected by the shrinkage strain).It is also shown that the biaxial non-drying samples undergo a significant increase in Young's modulus after 10 years.« less
Effects of magnetic field and pressure in magnetoelastic stress reconfigurable thin film resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staruch, M.; Bussmann, K.; Finkel, P.
2015-07-20
Free-standing CoFe thin-film doubly clamped stress reconfigurable resonators were investigated as a function of magnetic field and pressure. A large uniaxial anisotropy resulting from residual uniaxial tensile stress, as revealed from magnetic hysteresis loops, leads to an easy magnetization axis aligned along the length of the beams. The quality factor of the driven resonator beams under vacuum is increased by 30 times, leading to an enhanced signal-to-noise ratio and a predicted reduction in the intrinsic magnetic noise by a factor of 6, potentially reaching as low as ∼25 pT/√Hz at 1 Torr. Stress reconfigurable sensors operating under vacuum could thus furthermore » improve the limit of detection and advance development of magnetic field sensing technology.« less
Fatihhi, S J; Harun, M N; Abdul Kadir, Mohammed Rafiq; Abdullah, Jaafar; Kamarul, T; Öchsner, Andreas; Syahrom, Ardiyansyah
2015-10-01
Fatigue assessment of the trabecular bone has been developed to give a better understanding of bone properties. While most fatigue studies are relying on uniaxial compressive load as the method of assessment, in various cases details are missing, or the uniaxial results are not very realistic. In this paper, the effect of three different load histories from physiological loading applied on the trabecular bone were studied in order to predict the first failure surface and the fatigue lifetime. The fatigue behaviour of the trabecular bone under uniaxial load was compared to that of multiaxial load using a finite element simulation. The plastic strain was found localized at the trabecular structure under multiaxial load. On average, applying multiaxial loads reduced more than five times the fatigue life of the trabecular bone. The results provide evidence that multiaxial loading is dominated in the low cycle fatigue in contrast to the uniaxial one. Both bone volume fraction and structural model index were best predictors of failure (p < 0.05) in fatigue for both types of loading, whilst uniaxial loading has indicated better values in most cases.
NASA Astrophysics Data System (ADS)
Tchitchekova, Deyana S.; Morthomas, Julien; Ribeiro, Fabienne; Ducher, Roland; Perez, Michel
2014-07-01
A novel method for accurate and efficient evaluation of the change in energy barriers for carbon diffusion in ferrite under heterogeneous stress is introduced. This method, called Linear Combination of Stress States, is based on the knowledge of the effects of simple stresses (uniaxial or shear) on these diffusion barriers. Then, it is assumed that the change in energy barriers under a complex stress can be expressed as a linear combination of these already known simple stress effects. The modifications of energy barriers by either uniaxial traction/compression and shear stress are determined by means of atomistic simulations with the Climbing Image-Nudge Elastic Band method and are stored as a set of functions. The results of this method are compared to the predictions of anisotropic elasticity theory. It is shown that, linear anisotropic elasticity fails to predict the correct energy barrier variation with stress (especially with shear stress) whereas the proposed method provides correct energy barrier variation for stresses up to ˜3 GPa. This study provides a basis for the development of multiscale models of diffusion under non-uniform stress.
Tchitchekova, Deyana S; Morthomas, Julien; Ribeiro, Fabienne; Ducher, Roland; Perez, Michel
2014-07-21
A novel method for accurate and efficient evaluation of the change in energy barriers for carbon diffusion in ferrite under heterogeneous stress is introduced. This method, called Linear Combination of Stress States, is based on the knowledge of the effects of simple stresses (uniaxial or shear) on these diffusion barriers. Then, it is assumed that the change in energy barriers under a complex stress can be expressed as a linear combination of these already known simple stress effects. The modifications of energy barriers by either uniaxial traction/compression and shear stress are determined by means of atomistic simulations with the Climbing Image-Nudge Elastic Band method and are stored as a set of functions. The results of this method are compared to the predictions of anisotropic elasticity theory. It is shown that, linear anisotropic elasticity fails to predict the correct energy barrier variation with stress (especially with shear stress) whereas the proposed method provides correct energy barrier variation for stresses up to ∼3 GPa. This study provides a basis for the development of multiscale models of diffusion under non-uniform stress.
Dynamic Uniaxial Compression of HSLA-65 Steel at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Dike, Shweta; Wang, Tianxue; Zuanetti, Bryan; Prakash, Vikas
2017-12-01
In the present study, the dynamic response of a high-strength, low alloy Grade 65 (HSLA-65) steel, used by the United States Navy for ship hull construction, is investigated under dynamic uniaxial compression at temperatures ranging from room temperature to 1000 °C using a novel elevated temperature split-Hopkinson pressure bar. These experiments are designed to probe the dynamic response of HSLA-65 steel in its single α-ferrite phase, mixed α + γ-austenite phase, and the single γ-austenite phase, as a function of temperature. The investigation is conducted at two different average strain rates—1450 and 2100/s. The experimental results indicate that at test temperatures in the range from room temperature to lower than 600 °C, i.e. prior to the development of the mixed α + γ phase, a net softening in flow strength is observed at all levels of plastic strain with increase in test temperatures. As the test temperatures are increased, the rate of this strain softening with temperature is observed to decrease, and at 600 °C the trend reverses itself resulting in an increase in flow stress at all strains tested. This increase in flow stress is understood be due to dynamic strain aging, where solute atoms play a distinctive role in hindering dislocation motion. At 800 °C, a (sharp) drop in the flow stress, equivalent to one-half of its value at room temperature, is observed. As the test temperature are increased to 900 and 1000 °C, further drop in flow stress are observed at all plastic strain levels. In addition, strain hardening in flow stress is observed at all test temperatures up to 600 °C; beyond 800 °C the rate of strain hardening is observed to decrease, with strain softening becoming dominant at temperatures of 900 °C and higher. Moreover, comparing the high strain rate stress versus strain data gathered on HSLA 65 in the current investigation with those available in the literature at quasi-static strain rates, strain-rate hardening can be
Qi, Ji; Zhang, Lei; Chen, Chao; Mondal, Shubhro; Ping, Kaike; Chen, Yili
2017-01-01
Objective. To investigate the effects of one of the Chinese massage therapies, cervical rotatory manipulation (CRM), on uniaxial tensile properties of rabbit atherosclerotic internal carotid artery (ICA). Methods. 40 male purebred New Zealand white rabbits were randomly divided into CRM-Model group, Non-CRM-Model group, CRM-Normal group, and Non-CRM-Normal group. After modeling (atherosclerotic model) and intervention (CRM or Non-CRM), uniaxial tensile tests were performed on the ICAs to assess the differences in tensile mechanical properties between the four groups. Results. Both CRM and modeling were the main effects affecting physiological elastic modulus (PEM) of ICA. PEM in CRM-Model group was 1.81 times as much as Non-CRM-Model group, while the value in CRM-Model group was 1.34 times as much as CRM-Normal group. Maximum elastic modulus in CRM-Model group was 1.80 times as much as CRM-Normal group. Max strains in CRM-Model group and Non-CRM-Model group were 30.98% and 28.71% lower than CRM-Normal group and Non-CRM-Normal group, respectively. However, whether treated with CRM or not, the uniaxial tensile properties of healthy ICAs were not statistically different. Conclusion. CRM may decrease the uniaxial tensile properties of rabbit arteriosclerotic ICA, but with no effect on normal group. The study will aid in the meaningful explanation of the controversy about the harmfulness of CRM and the suitable population of CRM. PMID:28303160
Pukšič, Nuša; Jenko, Monika; Godec, Matjaž; McGuiness, Paul J.
2017-01-01
While a lot is known about the deformation of metallic surfaces from experiments, elasticity theory and simulations, this investigation represents the first molecular-dynamics-based simulation of uniaxial deformation for the vicinal surfaces in a comparison of copper and nickel. These vicinal surfaces are composed of terraces divided by equidistant, mono-atomic steps. The periodicity of vicinals makes them good candidates for the study of the surface steps’ influences on surface dynamics. The simulations of tensile and compressive uniaxial deformations were performed for the (1 1 19) vicinal surfaces. Since the steps on the surfaces serve as stress concentrators, the first defects were expected to nucleate here. In the case of copper, this was found to be the case. In the case of nickel, however, dislocations nucleated beneath the near-surface layer affected by the displacement field generated by the steps. Slip was hindered at the surface step by the vortex in the displacement field. The differences in the deformation mechanisms for the Ni(1 1 19) and Cu(1 1 19) surfaces can be linked to the differences in their displacement fields. This could lead to novel bottom-up approaches to the nanostructuring of surfaces using strain. PMID:28169377
Peloquin, John M; Elliott, Dawn M
2016-04-01
Cracks in fibrous soft tissue, such as intervertebral disc annulus fibrosus and knee meniscus, cause pain and compromise joint mechanics. A crack concentrates stress at its tip, making further failure and crack extension (fracture) more likely. Ex vivo mechanical testing is an important tool for studying the loading conditions required for crack extension, but prior work has shown that it is difficult to reproduce crack extension. Most prior work used edge crack specimens in uniaxial tension, with the crack 90° to the edge of the specimen. This configuration does not necessarily represent the loading conditions that cause in vivo crack extension. To find a potentially better choice for experiments aiming to reproduce crack extension, we used finite element analysis to compare, in factorial combination, (1) center crack vs. edge crack location, (2) biaxial vs. uniaxial loading, and (3) crack-fiber angles ranging from 0° to 90°. The simulated material was annulus fibrosus fibrocartilage with a single fiber family. We hypothesized that one of the simulated test cases would produce a stronger stress concentration than the commonly used uniaxially loaded 90° crack-fiber angle edge crack case. Stress concentrations were compared between cases in terms of fiber-parallel stress (representing risk of fiber rupture), fiber-perpendicular stress (representing risk of matrix rupture), and fiber shear stress (representing risk of fiber sliding). Fiber-perpendicular stress and fiber shear stress concentrations were greatest in edge crack specimens (of any crack-fiber angle) and center crack specimens with a 90° crack-fiber angle. However, unless the crack is parallel to the fiber direction, these stress components alone are insufficient to cause crack opening and extension. Fiber-parallel stress concentrations were greatest in center crack specimens with a 45° crack-fiber angle, either biaxially or uniaxially loaded. We therefore recommend that the 45° center crack case be
Effect of Stress Triaxiality on the Flow and Fracture of Mg Alloy AZ31
NASA Astrophysics Data System (ADS)
Kondori, Babak; Benzerga, A. Amine
2014-07-01
The microscopic damage mechanisms operating in a hot-rolled magnesium alloy AZ31B are investigated under both uniaxial and controlled triaxial loadings. Their connection to macroscopic fracture strains and fracture mode (normal vs shear) is elucidated using postmortem fractography, interrupted tests, and microscopic analysis. The fracture locus (strain-to-failure vs stress triaxiality) exhibits a maximum at moderate triaxiality, and the strain-to-failure is found to be greater in notched specimens than in initially smooth ones. A transition from twinning-induced fracture under uniaxial loading to microvoid coalescence fracture under triaxial loading is evidenced. It is argued that this transition accounts in part for the observed greater ductility in notched bars. The evolution of plastic anisotropy with stress triaxiality is also investigated. It is inferred that anisotropic plasticity at a macroscopic scale suffices to account for the observed transition in the fracture mode from flat (triaxial loading) to shear-like (uniaxial loading). Damage is found to initiate at second-phase particles and deformation twins. Fracture surfaces of broken specimens exhibit granular morphology, coarse splits, twin-sized crack traces, as well as shallow and deep dimples, in proportions that depend on the overall stress triaxiality and fracture mode. An important finding is that AZ31B has a greater tolerance to ductile damage accumulation than has been believed thus far, based on the fracture behavior in uniaxial specimens. Another finding, common to both tension and compression, is the increase in volumetric strain, the microscopic origins of which remain to be elucidated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lei; Liang, Renrong, E-mail: liangrr@tsinghua.edu.cn; Wang, Jing
2016-01-15
Direct gap Ge{sub 1−x}Sn{sub x} alloys under [100] and [110] uniaxial strain are comprehensively investigated by theoretical calculations using the nonlocal empirical pseudopotential method (EPM). It is shown that [100] uniaxial tensile strain aids indirect-to-direct gap transition in Ge{sub 1−x}Sn{sub x} alloys. The Γ electron effective mass along the optimal direction under [110] uniaxial strain is smaller than those under [100] uniaxial strain and (001) biaxial strain. Additionally, the direct tunneling gap is smallest along the strain-perpendicular direction under [110] uniaxial tensile strain, resulting in a maximum direct band-to-band tunneling generation rate. An optimal [110] uniaxial tensile strain is favorablemore » for high-performance direct gap Ge{sub 1−x}Sn{sub x} electronic devices.« less
Shape Optimisation of Holes in Loaded Plates by Minimisation of Multiple Stress Peaks
2015-04-01
UNCLASSIFIED UNCLASSIFIED Shape Optimisation of Holes in Loaded Plates by Minimisation of Multiple Stress Peaks Witold Waldman and Manfred...minimising the peak tangential stresses on multiple segments around the boundary of a hole in a uniaxially-loaded or biaxially-loaded plate . It is based...RELEASE UNCLASSIFIED UNCLASSIFIED Shape Optimisation of Holes in Loaded Plates by Minimisation of Multiple Stress Peaks Executive Summary Aerospace
Switching of the electrical conductivity of plasticized PVC films under uniaxial pressure
NASA Astrophysics Data System (ADS)
Vlasov, D. V.; Apresyan, L. A.; Vlasova, T. V.; Kryshtob, V. I.
2011-11-01
The jumplike switching of the electrical conductivity in wide-band-gap polymer (antistatic plasticized polyvinylchloride) films under uniaxial pressure is studied. In various plasticized PVC materials, the uniaxial pressure inducing a conductivity jump by four orders of magnitude or higher changes from several to several hundreds of bars, and this effect is retained at a film thickness of several hundred microns, which is two orders of magnitude larger than the critical film thicknesses known for other wide-band-gap polymers. In addition to the earlier interpretation of the conductivity anomalies in plasticized PVC, we proposed a phenomenological electron-molecular dynamic nanotrap model, in which local charge transfer is provided by mobile molecule segments in a plasticized polymer.
Tensile and Microindentation Stress-Strain Curves of Al-6061
Weaver, Jordan S [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Integrated Nanotechnologies (CINT); Khosravani, Ali [Georgia Inst. of Technology, Atlanta, GA (United States); Castillo, Andrew [Georgia Inst. of Technology, Atlanta, GA (United States); Kalidind, Surya R [Georgia Inst. of Technology, Atlanta, GA (United States)
2016-07-13
Recent spherical microindentation stress-strain protocols were developed and validated on Al-6061 (DOI: 10.1186/s40192-016-0054-3). The scaling factor between the uniaxial yield strength and the indentation yield strength was determined to be about 1.9. The microindentation stress-strain protocols were then applied to a microstructurally graded sample in an effort to extract high throughput process-property relationships. The tensile and microindentation force-displacement and stress-strain data are presented in this data set.
NASA Technical Reports Server (NTRS)
Stahl, D. R.; Antolovich, S. D.; Mirdamadi, M.; Zamrik, S. Y.
1988-01-01
Specimens of Waspaloy of two different microstructures were tested in uniaxial and torsional low-cycle fatigue at 24 and 649 C. For all specimens, deformation and failure mechanisms are found to be independent of stress state at 24 C; in both microstructures, failure is associated with the formation of shear cracks. At 649 C, deformation and failure mechanisms for the fine-grain large gamma-prime specimens are independent of stress state, and the mechanisms are similar to those observed at 24 C. For the coarse-grain small gamma-prime specimens, however, failure occurs on principal planes in torsion and on shear plane in uniaxial tension. The results are interpreted in terms of deformation mode and microstructural instability.
The Effect of Pressure and Deviatoric Stress on Rock Magnetism
1988-10-31
34 I 0 z 0.6 I 0.5 0 50 100 150 200 PRESSURE, MPaI 1.0 UNIAXIAL STRESS H0.9 z U 0.8 Lw 0.7 I 0 .6 I Z 0.5 .. m 0.4 ’ ’ ’ 0 50 100 150 200 m STRESS...DIFFERENCE, MPaI Figure 2-1. Normalized TRM is shown as a function of pressure or stress difference for the first loading cycle on diabase specimens. The
Residual stress measurements in carbon steel
NASA Technical Reports Server (NTRS)
Heyman, J. S.; Min, N.
1986-01-01
External dc magnetic field-induced changes in natural velocity of Rayleigh surface waves were measured in steel specimens under various stress conditions. The low field slopes of curves representing the fractional changes of natural velocity were proved to provide correct stress information in steels with different metallurgical properties. The slopes of curves under uniaxial compression, exceeding about one third of the yield stress, fell below zero in all the specimens when magnetized along the stress axis. The slopes under tension varied among different steels but remained positive in any circumstances. The stress effect was observed for both applied and residual stress. A physical interpretation of these results is given based on the stress-induced domain structure changes and the delta epsilon effect. Most importantly, it is found that the influence of detailed metallurgical properties cause only secondary effects on the obtained stress information.
NASA Astrophysics Data System (ADS)
Miyazaki, Masumi; Sakanoue, Tomo; Takenobu, Taishi
2018-03-01
Uniaxially oriented poly(9,9-dioctylfluorene-co-bithiophene) (F8T2) films were prepared on rubbed polyimide substrates and applied to emitting layers of light-emitting electrochemical cells (LECs). The layered structure of the uniaxially oriented F8T2 film and ionic liquid electrolytes enabled us to demonstrate LEC operations with high anisotropic characteristics both in emission and charge transport. Polarized electroluminescence (EL) from electrochemically induced p-n junctions in the uniaxially oriented F8T2 was obtained. The dichroic ratios of EL were the same as those of photoluminescence, suggesting that the doping process into the oriented F8T2 did not interrupt the polymer ordering. This indicates the usefulness of the layered structure of the polymer/electrolyte for the fabrication of LECs based on highly oriented polymer films. In addition, uniaxially oriented F8T2 was found to show reduced threshold energy in optically pumped amplified spontaneous emission. These demonstrations suggest the advantage of uniaxially oriented polymer-based LECs for potential application in future electrically pumped lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y. D.; Key Laboratory for Anisotropy and Texture of Materials; Brown, D. W.
2007-05-01
The in situ time-of-flight neutron-diffraction measurements captured well the martensitic transformation behavior of the Ni-Mn-Ga ferromagnetic shape-memory alloys under uniaxial stress fields. We found that a small uniaxial stress applied during phase transformation dramatically disturbed the distribution of variants in the product phase. The observed changes in the distributions of variants may be explained by considering the role of the minimum distortion energy of the Bain transformation in the effective partition among the variants belonging to the same orientation of parent phase. It was also found that transformation kinetics under various stress fields follows the scale law. The present investigationsmore » provide the fundamental approach for scaling the evolution of microstructures in martensitic transitions, which is of general interest to the condensed matter community.« less
NASA Astrophysics Data System (ADS)
Meng, Qingbin; Zhang, Mingwei; Han, Lijun; Pu, Hai; Chen, Yanlong
2018-04-01
To explore the acoustic emission (AE) characteristics of rock materials during the deformation and failure process under periodic loads, a uniaxial cyclic loading and unloading compression experiment was conducted based on an MTS 815 rock mechanics test system and an AE21C acoustic emissions test system. The relationships among stress, strain, AE activity, accumulated AE activity and duration for 180 rock specimens under 36 loading and unloading rates were established. The cyclic AE evolutionary laws with rock stress-strain variation at loading and unloading stages were analyzed. The Kaiser and Felicity effects of rock AE activity were disclosed, and the impact of the significant increase in the scale of AE events on the Felicity effect was discussed. It was observed that the AE characteristics are closely related to the stress-strain properties of rock materials and that they are affected by the developmental state and degree of internal microcracks. AE events occur in either the loading or unloading stages if the strain is greater than zero. Evolutionary laws of AE activity agree with changes in rock strain. Strain deformation is accompanied by AE activity, and the density and intensity of AE events directly reflect the damage degree of the rock mass. The Kaiser effect exists in the linear elastic stage of rock material, and the Felicity effect is effective in the plastic yield and post-peak failure stages, which are divided by the elastic yield strength. This study suggests that the stress level needed to determine a significant increase in AE activity was 70% of the i + 1 peak stress. The Felicity ratio of rock specimens decreases with the growth of loading-unloading cycles. The cycle magnitude and variation of the Felicity effect, in which loading and unloading rates play a weak role, are almost consistent.
The Origin of Uni-axial Negative Thermal Expansion in a Layered Perovskite
NASA Astrophysics Data System (ADS)
Ablitt, Chris; Craddock, Sarah; Senn, Mark; Mostofi, Arash; Bristowe, Nicholas
Using first-principles calculations within the quasi-harmonic approximation (QHA), we explain the origin of experimentally observed uni-axial negative thermal expansion (NTE) in a layered perovskite: the Ruddlesden-Popper (RP) oxide Ca2MnO4, which has anti-ferromagnetic ordering at low temperatures and is closely related to Ca3Mn2O7, which exhibits hybrid improper ferroelectricity and uni-axial NTE in competing phases. Dynamic tilts of MnO6 octahedra, common in many complex oxides, drive the expansion of the a axis and contraction of the c axis of the tetragonal NTE phase. We find that ferroelastic RP phases with a frozen octahedral rotation are unusually compliant to particular combinations of strains along different axes. The atomic mechanism responsible is characteristic of the perovskite/rock-salt interfaces present in the RP structure. We show that the contribution from this anisotropic elasticity must be taken into account in order to accurately predict NTE over the temperature range observed in experiment. A similar compliance to cooperative strains is found in other systems with uni-axial NTE. The development of this mechanistic understanding of NTE in complex oxides may pave the way for designing tunable multifunctional materials. The authors would like to acknowledge support from the EPSRC and the Centre for Doctoral Training in Theory and Simulation of Materials.
General multimode polarization splitter design in uniaxial media
NASA Astrophysics Data System (ADS)
Teixeira, Poliane A.; Silva, Daniely G.; Gabrielli, Lucas H.; Spadoti, Danilo H.; Junqueira, Mateus A. F. C.
2018-03-01
Quasiconformal transformation optics is used to design two-dimensional polarization beam splitters. The resulting media present inhomogeneous uniaxial permittivity and nonmagnetic response. The compact devices are theoretically designed and investigated for symmetrical and asymmetrical geometries, with footprint of 64 and 110 μm2, respectively. The polarization splitter performance is evaluated for the fundamental mode and third mode, exhibiting an insertion loss closer to 0 dB and extinction ratio above 40 dB over a broad wavelength range.
NASA Astrophysics Data System (ADS)
Cheng, Jian-Long; Yang, Sheng-Qi; Chen, Kui; Ma, Dan; Li, Feng-Yuan; Wang, Li-Ming
2017-12-01
In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ = 0{°}-45{°} specimens had obvious plastic deformation during loading, and the brittleness of the θ = 60{°}-90{°} specimens gradually increased during the loading process. When the anisotropic angle θ increased from 0{°} to 90{°}, the peak strength, peak strain, and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories: tensile fracture across the discontinuities (θ = 0{°}-30{°}), sliding failure along the discontinuities (θ = 45{°}-75{°}), and tensile-split along the discontinuities (θ = 90{°}). The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ = 0{°}-45{°} specimens and was almost the same as that of the θ = 60{°}-90{°} specimens. As for the strain localization highlighted in the maximum principal strain field, the θ = 0{°}-30{°} specimens appeared in the rock
Guo, Songfeng; Qi, Shengwen; Zou, Yu; Zheng, Bowen
2017-01-01
In rocks or rock-like materials, the constituents, e.g. quartz, calcite and biotite, as well as the microdefects have considerably different mechanical properties that make such materials heterogeneous at different degrees. The failure of materials subjected to external loads is a cracking process accompanied with stress redistribution due to material heterogeneity. However, the latter cannot be observed from the experiments in laboratory directly. In this study, the cracking and stress features during uniaxial compression process are numerically studied based on a presented approach. A plastic strain dependent strength model is implemented into the continuous numerical tool—Fast Lagrangian Analysis of Continua in three Dimensions (FLAC3D), and the Gaussian statistical function is adopted to depict the heterogeneity of mechanical parameters including elastic modulus, friction angle, cohesion and tensile strength. The mean parameter μ and the coefficient of variance (hcv, the ratio of mean parameter to standard deviation) in the function are used to define the mean value and heterogeneity degree of the parameters, respectively. The results show that this numerical approach can perfectly capture the general features of brittle materials including fracturing process, AE events as well as stress-strain curves. Furthermore, the local stress disturbance is analyzed and the crack initiation stress threshold is identified based on the AE events process and stress-strain curves. It is shown that the stress concentration always appears in the undamaged elements near the boundary of damaged sites. The peak stress and crack initiation stress are both heterogeneity dependent, i.e., a linear relation exists between the two stress thresholds and hcv. The range of hcv is suggested as 0.12 to 0.21 for most rocks. The stress concentration degree is represented by a stress concentration factor and found also heterogeneity dominant. Finally, it is found that there exists a
Guo, Songfeng; Qi, Shengwen; Zou, Yu; Zheng, Bowen
2017-04-01
In rocks or rock-like materials, the constituents, e.g. quartz, calcite and biotite, as well as the microdefects have considerably different mechanical properties that make such materials heterogeneous at different degrees. The failure of materials subjected to external loads is a cracking process accompanied with stress redistribution due to material heterogeneity. However, the latter cannot be observed from the experiments in laboratory directly. In this study, the cracking and stress features during uniaxial compression process are numerically studied based on a presented approach. A plastic strain dependent strength model is implemented into the continuous numerical tool-Fast Lagrangian Analysis of Continua in three Dimensions (FLAC 3D ), and the Gaussian statistical function is adopted to depict the heterogeneity of mechanical parameters including elastic modulus, friction angle, cohesion and tensile strength. The mean parameter μ and the coefficient of variance ( h cv , the ratio of mean parameter to standard deviation) in the function are used to define the mean value and heterogeneity degree of the parameters, respectively. The results show that this numerical approach can perfectly capture the general features of brittle materials including fracturing process, AE events as well as stress-strain curves. Furthermore, the local stress disturbance is analyzed and the crack initiation stress threshold is identified based on the AE events process and stress-strain curves. It is shown that the stress concentration always appears in the undamaged elements near the boundary of damaged sites. The peak stress and crack initiation stress are both heterogeneity dependent, i.e., a linear relation exists between the two stress thresholds and h cv . The range of h cv is suggested as 0.12 to 0.21 for most rocks. The stress concentration degree is represented by a stress concentration factor and found also heterogeneity dominant. Finally, it is found that there exists a
Low-stress pressure solution experiments on halite single-crystals
NASA Astrophysics Data System (ADS)
Martin, Brigitte; Röller, Klaus; Stöckhert, Bernhard
1999-07-01
Pressure solution experiments on halite single-crystals in saturated solution were carried out at atmospheric pressure under uniaxial stress ranging from 0.1 to 2.0 MPa and at temperatures of 303 and 323 K. The experiments were performed in ceramic loading rigs with damp-proofed sample chambers. The low uniaxial stress is applied by loading the piston with steel weights ranging from 0.5 to 5.0 kg. The position of the piston is measured by an electronic displacement transducer, connected to a data acquisition system. Deviations caused by fluctuations of temperature and output voltage of the power supply are corrected after data acquisition. The halite cubes {100} with edge dimensions of 3-9 mm are prepared by cleaving and placed with a (100) cleavage face on the (001) face of a muscovite single-crystal (10×10×0.1 mm), a polished quartz (0001) plate, or another halite crystal oriented to form a 45° twist boundary. The four free (100) faces of the halite cube are in contact with the surrounding NaCl solution. The initial displacement rate of the piston after flooding of the system and loading is up to 50.0 μm/day, attributed to smoothing of the halite face and elimination of point contacts with high stress concentration. Within 2 to 3 days this stage grades into steady-state displacement with rates of 0.1-2.0 μm/day. In some experiments stages of higher displacement rates (2.0-5.0 μm/day) lasting for 3-5 days are observed episodically, with intervals of 10-15 days. These cycles appear not to be triggered by external events. Experiments with a dry mica-halite interface, carried out for comparison at the same temperature and at an uniaxial stress of 2 MPa, result in a displacement rate below the limits of detection. This rules out a significant contribution of crystal plastic deformation in the wet experiments. The experimental results show no simple correlation between displacement rate and magnitude of uniaxial stress, crystal size, type of the interface, and
Probabilistic analysis of structures involving random stress-strain behavior
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Thacker, B. H.; Harren, S. V.
1991-01-01
The present methodology for analysis of structures with random stress strain behavior characterizes the uniaxial stress-strain curve in terms of (1) elastic modulus, (2) engineering stress at initial yield, (3) initial plastic-hardening slope, (4) engineering stress at point of ultimate load, and (5) engineering strain at point of ultimate load. The methodology is incorporated into the Numerical Evaluation of Stochastic Structures Under Stress code for probabilistic structural analysis. The illustrative problem of a thick cylinder under internal pressure, where both the internal pressure and the stress-strain curve are random, is addressed by means of the code. The response value is the cumulative distribution function of the equivalent plastic strain at the inner radius.
NASA Astrophysics Data System (ADS)
Munoz, H.; Taheri, A.; Chanda, E. K.
2016-12-01
Brittleness is a fundamental mechanical rock property critical to many civil engineering works, mining development projects and mineral exploration operations. However, rock brittleness is a concept yet to be investigated as there is not any unique criterion available, widely accepted by rock engineering community able to describe rock brittleness quantitatively. In this study, new brittleness indices were developed based on fracture strain energy quantities obtained from the complete stress-strain characteristics of rocks. In doing so, different rocks having unconfined compressive strength values ranging from 7 to 215 MPa were examined in a series of quasi-static uniaxial compression tests after properly implementing lateral-strain control in a closed-loop system to apply axial load to rock specimen. This testing method was essential to capture post-peak regime of the rocks since a combination of class I-II or class II behaviour featured post-peak stress-strain behaviour. Further analysis on the post-peak strain localisation, stress-strain characteristics and the fracture pattern causing class I-II and class II behaviour were undertaken by analysing the development of field of strains in the rocks via three-dimensional digital image correlation. Analysis of the results demonstrated that pre-peak stress-strain brittleness indices proposed solely based on pre-peak stress-strain behaviour do not show any correlation with any of pre-peak rock mechanical parameters. On the other hand, the proposed brittleness indices based on pre-peak and post-peak stress-strain relations were found to competently describe an unambiguous brittleness scale against rock deformation and strength parameters such as the elastic modulus, the crack damage stress and the peak stress relevant to represent failure process.
Interlaminar stresses in composite laminates: A perturbation analysis
NASA Technical Reports Server (NTRS)
Hsu, P. W.; Herakovich, C. T.
1976-01-01
A general method of solution for an elastic balanced symmetric composite laminate subject to a uniaxial extension was developed based upon a perturbation analysis of a limiting free body containing an interfacial plane. The solution satisfies more physical requirements and boundary conditions than previous investigations, and predicts smooth continuous interlaminar stresses with no instabilities. It determines the finite maximum intensity for the interlaminar normal stress in all laminates, provides mathematical evidences for the singular stresses in angle-ply laminates, suggests the need for the experimental determination of an important problem parameter, and introduces a viable means for solving related problems of practical interest.
Development of the GaAs-based THz Photoconductor and Balloon-borne Experiment Module TG-ZERO
NASA Astrophysics Data System (ADS)
Watanabe, Kentaroh; Kataza, Hirokazu; Wada, Takehiko; Murakami, Hiroshi; Kamizuka, Takafumi; Makitsubo, Hironobu; Yamashita, Kyohei; Wakaki, Moriaki; Abe, Osamu
2009-08-01
The far-infrared (around 1 terahertz (THz)) extrinsic photoconductor is fabricated by a LPE-grown GaAs semiconductor. This GaAs detector can detect longer wavelength photons than the stressed Ge:Ga conventionally used for astronomical infrared observation. We applied the liquid phase epitaxy to obtain a suitable purity of GaAs crystals, and the test N-GaAs photoconductor device shows spectroscopic response over a wide wavelength range of 150-300 micron. The best sample shows 30 A/W of responsivity and 10-16 W/Hz0.5 of NEP is expected at 295 micron of wavelength and T = 1.6 K. In addition, we constructed the terahertz photometer module (TG-ZERO) using our N-GaAs photoconductors. TG-ZERO has four channel bands with N-GaAs and Ge:Ga photoconductors. The development process, the result of experiments, and the basic specifications of TG-ZERO are all reported in this paper.
Internal stress-induced melting below melting temperature at high-rate laser heating
NASA Astrophysics Data System (ADS)
Hwang, Yong Seok; Levitas, Valery I.
2014-06-01
In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamic equilibrium temperatures for the heating rate Q ≤1.51×1010K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 1011 K/s and 936.9 K for Q = 1.46 × 1012 K/s.
A geometric exploration of stress in deformed liquid foams
NASA Astrophysics Data System (ADS)
Evans, Myfanwy E.; Schröder-Turk, Gerd E.; Kraynik, Andrew M.
2017-03-01
We explore an alternate way of looking at the rheological response of a yield stress fluid: using discrete geometry to probe the heterogeneous distribution of stress in soap froth. We present quasi-static, uniaxial, isochoric compression and extension of three-dimensional random monodisperse soap froth in periodic boundary conditions and examine the stress and geometry that result. The stress and shape anisotropy of individual cells is quantified by Q, a scalar measure derived from the interface tensor that gauges each cell’s contribution to the global stress. Cumulatively, the spatial distribution of highly deformed cells allows us to examine how stress is internally distributed. The topology of highly deformed cells, how they arrange relative to one another in space, gives insight into the heterogeneous distribution of stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, D.J.
1993-10-08
Experimental tests of the Kaiser effect, the stress-history dependence of acoustic emission production, show that interactions between principal stresses cannot be ignored as is commonly done when trying to use the Kaiser effect to determine in situ stress. Experimental results obtained under multiaxial stress states are explained in terms of a qualitative model. The results show that the commonly-used technique of loading uniaxially along various directions to determine stress history must be reevaluated as it cannot be justified in terms of the laboratory experiments. One possible resolution of the conflict between laboratory and field results is that the Kaiser effectmore » phenomenon observed in cores retrieved from the earth is not the same phenomenon as is observed in rock loaded under laboratory conditions.« less
NASA Astrophysics Data System (ADS)
Duncan, W. J.; Welzel, O. P.; Harrison, C.; Wang, X. F.; Chen, X. H.; Grosche, F. M.; Niklowitz, P. G.
2010-02-01
We investigate the evolution of the electrical resistivity of BaFe2As2 single crystals with pressure. The samples used were from the same batch, grown using a self-flux method, and showed properties that were highly reproducible. Samples were pressurized using three different pressure media: pentane-isopentane (in a piston-cylinder cell), Daphne oil (in an alumina anvil cell) and steatite (in a Bridgman cell). Each pressure medium has its own intrinsic level of hydrostaticity, which dramatically affects the phase diagram. An increasing uniaxial pressure component in this system quickly reduces the spin density wave order and favours the appearance of superconductivity, which is similar to what is seen in SrFe2As2.
NASA Astrophysics Data System (ADS)
Wang, Tianxue; Zuanetti, Bryan; Prakash, Vikas
2017-12-01
In the present paper, results of plate impact experiments designed to investigate the onset of incipient plasticity in commercial purity polycrystalline magnesium (99.9%) under weak uniaxial strain compression and elevated temperatures up to melt are presented. The dynamic stress at yield and post yield of magnesium, as inferred from the measured normal component of the particle velocity histories at the free (rear) surface of the target plate, are observed to decrease progressively with increasing test temperatures in the range from 23 to 500 °C. At (higher) test temperatures in the range 500-610 °C, the rate of decrease of dynamic stress with temperature at yield and post-yield in the sample is observed to weaken. At still higher test temperatures (617 and 630 °C), a dramatic increase in dynamic yield as well as flow stress is observed indicating a change in dominant mechanism of plastic deformation as the sample approaches the melt point of magnesium at strain rates of 105/s. In addition to these measurements at the wavefront, the plateau region of the free surface particle velocity profiles indicates that the longitudinal (plastic) impedance of the magnesium samples decreases continuously as the sample temperatures are increased from room to 610 °C, and then reverses trend (indicating increasing material longitudinal impedance/strength) as the sample temperatures are increased to 617 and 630 °C. Electron back scattered diffraction analysis of the as-received and annealed pre-test magnesium samples reveal grain coarsening as well as grain re-orientation to a different texture during the heating process of the samples.
Cyclic steady state stress-strain behavior of UHMW polyethylene.
Krzypow, D J; Rimnac, C M
2000-10-01
To increase the long-term performance of total joint replacements, finite element analyses of ultra high molecular weight polyethylene (UHMWPE) components have been conducted to predict the effect of load on the stress and strain distributions occurring on and within these components. Early models incorporated the monotonic behavior of UHMWPE without considering the unloading and cyclic loading behavior. However, UHMWPE components undergo cyclic loading during use and at least two wear damage modes (pitting and delamination) are thought to be associated with the fatigue fracture properties of UHMWPE. The objective of this study was to examine the fully reversed uniaxial tension/compression cyclic steady state stress-strain behavior of UHMWPE as a first step towards developing a cyclic constitutive relationship for UHMWPE. The hypothesis that cycling results in a permanent change in the stress-strain relationship, that is, that the cyclic steady state represents a new cyclically stabilized state, was examined. It was found that, like other ductile polymers, UHMWPE substantially cyclically softens under fully reversed uniaxial straining. More cyclic softening occurred in tension than in compression. Furthermore, cyclic steady state was attained, but not cyclic stability. It is suggested that it may be more appropriate to base a material constitutive relationship for UHMWPE for finite element analyses of components upon a cyclically modified stress-strain relationship.
Precessional Switching of Thin Nanomagnets with Uniaxial Anisotropy
NASA Astrophysics Data System (ADS)
Devolder, Thibaut; Schumacher, Hans Werner; Chappert, Claude
This review describes the evolution of the magnetization of uniaxial thin magnets when subjected to fast-rising magnetic-field pulses. We report detailed "all-electrical" experimental investigations of precessional switching on soft uniaxial micrometer-sized thin magnets, and we discuss them using a comprehensive, mostly analytical framework. General criteria are derived for the analytical assessment of the switching ability of any arbitrary set of experimental parameters. For this, we start from the Landau-Lifshitz equation and first consider the precessional switching in a much idealized macrospin, easy-plane loss-free system. We then test the main outputs of this model with time-resolved experiments on advanced Magnetic Random Access Memories (MRAM) cells. Using applied fields above the anisotropy field H k , we prove the quasiperiodic nature of the magnetization trajectory and we demonstrate experimental conditions ensuring a sub-200 ps ballistic magnetization reversal. We then upgrade our model accuracy by taking into account the uniaxial anisotropy and the behavior in hard-axis fields of the order of H k . We derive a simple though reliable estimate of the switching speed; its limiting factors highlight the experimental poor switching reproducibility when close to the minimal hard-axis reversal field H k /2. The latter field does not correspond to the minimal energy cost of the reversal, whose prospective evolution in the future generations of MRAM is predicted. Small departures from the macrospin state are discussed. The effect of damping is modeled using perturbation theory. Finite damping alters the precessional motion periodicity and puts some constraints on the field rise time. A special focus is dedicated to the relaxation-dominated precessional switching: the minimal hard-axis field triggering the switching is shown to be above H k /2 by an extra field cost linked to the damping constant times the square root of M S H k . Finally, the selective
AN ORGANOTYPIC UNIAXIAL STRAIN MODEL USING MICROFLUIDICS
Dollé, Jean-Pierre; Morrison, Barclay; Schloss, Rene R.; Yarmush, Martin L.
2012-01-01
Traumatic brain injuries are the leading cause of disability each year in the US. The most common and devastating consequence is the stretching of axons caused by shear deformation that occurs during rotational acceleration of the brain during injury. The injury effects on axonal molecular and functional events are not fully characterized. We have developed a strain injury model that maintains the three dimensional cell architecture and neuronal networks found in vivo with the ability to visualize individual axons and their response to a mechanical injury. The advantage of this model is that it can apply uniaxial strains to axons that make functional connections between two organotypic slices and injury responses can be observed in real-time and over long term. This uniaxial strain model was designed to be capable of applying an array of mechanical strains at various rates of strain, thus replicating a range of modes of axonal injury. Long term culture, preservation of slice and cell orientation, and slice-slice connection on the device was demonstrated. The device has the ability to strain either individual axons or bundles of axons through the control of microchannel dimensions. The fidelity of the model was verified by observing characteristic responses to various strain injuries which included axonal beading, delayed elastic effects and breakdown in microtubules. Microtubule breakdown was shown to be dependent on the degree of the applied strain field, where maximal breakdown was observed at peak strain and minimal breakdown is observed at low strain. This strain injury model could be a powerful tool in assessing strain injury effects on functional axonal connections. PMID:23233120
Energy dependence of the spin excitation anisotropy in uniaxial-strained BaFe 1.9Ni 0.1As 2
Song, Yu; Lu, Xingye; Abernathy, Douglas L.; ...
2015-11-06
In this study, we use inelastic neutron scattering to study the temperature and energy dependence of the spin excitation anisotropy in uniaxial-strained electron-doped iron pnictide BaFe 1.9Ni 0.1As 2 near optimal superconductivity (T c = 20K). Our work has been motivated by the observation of in-plane resistivity anisotropy in the paramagnetic tetragonal phase of electron-underdoped iron pnictides under uniaxial pressure, which has been attributed to a spin-driven Ising-nematic state or orbital ordering. Here we show that the spin excitation anisotropy, a signature of the spin-driven Ising-nematic phase, exists for energies below 60 meV in uniaxial-strained BaFe 1.9Ni 0.1As 2. Sincemore » this energy scale is considerably larger than the energy splitting of the d xz and d yz bands of uniaxial-strained Ba(Fe 1–xCox) 2As 2 near optimal superconductivity, spin Ising-nematic correlations are likely the driving force for the resistivity anisotropy and associated electronic nematic correlations.« less
NASA Astrophysics Data System (ADS)
Kroonblawd, Matthew P.; Goldman, Nir
2018-05-01
We predict mechanochemical formation of heterogeneous diamond structures from rapid uniaxial compression in graphite using quantum molecular dynamics simulations. Ensembles of simulations reveal the formation of different diamondlike products starting from thermal graphite crystal configurations. We identify distinct classes of final products with characteristic probabilities of formation, stress states, and electrical properties and show through simulations of rapid quenching that these products are nominally stable and can be recovered at room temperature and pressure. Some of the diamond products exhibit significant disorder and partial closure of the energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (i.e., the HOMO-LUMO gap). Seeding atomic vacancies in graphite significantly biases toward forming products with small HOMO-LUMO gap. We show that a strong correlation between the HOMO-LUMO gap and disorder in tetrahedral bonding configurations informs which kinds of structural defects are associated with gap closure. The rapid diffusionless transformation of graphite is found to lock vacancy defects into the final diamond structure, resulting in configurations that prevent s p3 bonding and lead to localized HOMO and LUMO states with a small gap.
Graphene Foam: Uniaxial Tension Behavior and Fracture Mode Based on a Mesoscopic Model.
Pan, Douxing; Wang, Chao; Wang, Tzu-Chiang; Yao, Yugui
2017-09-26
Because of the combined advantages of both porous materials and two-dimensional (2D) graphene sheets, superior mechanical properties of three-dimensional (3D) graphene foams have received much attention from material scientists and energy engineers. Here, a 2D mesoscopic graphene model (Modell. Simul. Mater. Sci. Eng. 2011, 19, 054003), was expanded into a 3D bonded graphene foam system by utilizing physical cross-links and van der Waals forces acting among different mesoscopic graphene flakes by considering the debonding behavior, to evaluate the uniaxial tension behavior and fracture mode based on in situ SEM tensile testing (Carbon 2015, 85, 299). We reasonably reproduced a multipeak stress-strain relationship including its obvious yielding plateau and a ductile fracture mode near 45° plane from the tensile direction including the corresponding fracture morphology. Then, a power scaling law of tensile elastic modulus with mass density and an anisotropic strain-dependent Poisson's ratio were both deduced. The mesoscopic physical mechanism of tensile deformation was clearly revealed through the local stress state and evolution of mesostructure. The fracture feature of bonded graphene foam and its thermodynamic state were directly navigated to the tearing pattern of mesoscopic graphene flakes. This study provides an effective way to understand the mesoscopic physical nature of 3D graphene foams, and hence it may contribute to the multiscale computations of micro/meso/macromechanical performances and optimal design of advanced graphene-foam-based materials.
NASA Technical Reports Server (NTRS)
Namkung, Min (Inventor); Yost, William T. (Inventor); Kushnick, Peter W. (Inventor); Grainger, John L. (Inventor)
1992-01-01
The invention is a method and apparatus for characterizing residual uniaxial stress in a ferromagnetic test member by distinguishing between residual stresses resulting from positive (tension) forces and negative (compression) forces by using the distinct and known magnetoacoustic (MAC) and a magnetoacoustic emission (MAE) measurement circuit means. A switch permits the selective operation of the respective circuit means.
100-Fold Enhancement of Charge Transport in Uniaxially Oriented Mesoporous Anatase TiO 2 Films
Li, Ke; Liu, Jie; Sheng, Xia; ...
2017-12-04
Mesoporous semiconductor films are of considerable interest for applications in photoelectrochemical devices, however, despite intensive research till now, their charge transport properties remain significantly lower than their single-crystal counterparts. Herein, we report a novel low-temperature template-free technique for growing high surface area mesoporous anatase TiO2 films with a preferred [001] crystalline-orientation on FTO-coated glass substrate. Compared to mesoporous films that comprised of randomly oriented crystallites, the uniaxial orientation enables a 100-fold increase in the rate of electron transport. The uniaxially oriented mesoporous anatase TiO2 films exhibit should greatly facilitate the development and application of photoelectrochemical and electrochemical devices.
Correction of the post -- necking true stress -- strain data using instrumented nanoindentation
NASA Astrophysics Data System (ADS)
Romero Fonseca, Ivan Dario
The study of large plastic deformations has been the focus of numerous studies particularly in the metal forming processes and fracture mechanics fields. A good understanding of the plastic flow properties of metallic alloys and the true stresses and true strains induced during plastic deformation is crucial to optimize the aforementioned processes, and to predict ductile failure in fracture mechanics analyzes. Knowledge of stresses and strains is extracted from the true stress-strain curve of the material from the uniaxial tensile test. In addition, stress triaxiality is manifested by the neck developed during the last stage of a tensile test performed on a ductile material. This necking phenomenon is the factor responsible for deviating from uniaxial state into a triaxial one, then, providing an inaccurate description of the material's behavior after the onset of necking. The research of this dissertation is aimed at the development of a correction method for the nonuniform plastic deformation (post-necking) portion of the true stress-strain curve. The correction proposed is based on the well-known relationship between hardness and flow (yield) stress, except that instrumented nanoindentation hardness is utilized rather than conventional macro or micro hardness. Three metals with different combinations of strain hardening behavior and crystal structure were subjected to quasi-static tensile tests: power-law strain hardening low carbon G10180 steel (BCC) and electrolytic tough pitch copper C11000 (FCC), and linear strain hardening austenitic stainless steel S30400 (FCC). Nanoindentation hardness values, measured on the broken tensile specimen, were converted into flow stress values by means of the constraint factor C from Tabor's, the representative plastic strainepsilonr and the post-test true plastic strains measured. Micro Vickers hardness testing was carried out on the sample as well. The constraint factors were 5.5, 4.5 and 4.5 and the representative plastic
NASA Technical Reports Server (NTRS)
Lee, Jong-Won; Allen, David H.
1993-01-01
The uniaxial response of a continuous fiber elastic-perfectly plastic composite is modeled herein as a two-element composite cylinder. An axisymmetric analytical micromechanics solution is obtained for the rate-independent elastic-plastic response of the two-element composite cylinder subjected to tensile loading in the fiber direction for the case wherein the core fiber is assumed to be a transversely isotropic elastic-plastic material obeying the Tsai-Hill yield criterion, with yielding simulating fiber failure. The matrix is assumed to be an isotropic elastic-plastic material obeying the Tresca yield criterion. It is found that there are three different circumstances that depend on the fiber and matrix properties: fiber yield, followed by matrix yielding; complete matrix yield, followed by fiber yielding; and partial matrix yield, followed by fiber yielding, followed by complete matrix yield. The order in which these phenomena occur is shown to have a pronounced effect on the predicted uniaxial effective composite response.
NASA Astrophysics Data System (ADS)
Barborik, Tomas; Zatloukal, Martin
2017-05-01
In this study, viscoelastic modeling of the extrusion film casting process, based on the lD membrane model and modified Leonov constitutive equation, was conducted and the effect of the viscoelastic stress state at the die exit (captured here via second to first normal stress difference ratio) on the unwanted neck-in phenomenon has been analyzed for wide range of Deborah numbers and materials having different level of uniaxial and planar extensional strain hardening. Relevant experimental data for LDPE and theoretical predictions based on multimode eXtended Pom-Pom model acquired from the open literature were used for the validation purposes. It was found that firstly, the predicting capabilities of both constitutive equations for given material and processing conditions are comparable even if the single mode modified Leonov model was used and secondly, the agreement between theoretical and experimental data on neck-in is fairly good. Results of the theoretical study revealed that the viscoelastic stress state at the die exit (i.e. -N2/N1 ratio) increases the level of neck-in if uniaxial extensional strain hardening, planar to uniaxial extensional viscosity ratio and Deborah number increases. It has also been revealed that there exists threshold value for Deborah number and extensional strain hardening below which the neck-in becomes independent on the die exit stress state.
Transverse shifts of a light beam reflected from a uniaxially anisotropic chiral slab
NASA Astrophysics Data System (ADS)
Xu, Guoding; Li, Jun; Xiao, Yuting; Mao, Hongmin; Sun, Jian; Pan, Tao
2015-01-01
We study for the first time the transverse shifts of a Gaussian beam reflected from a uniaxially anisotropic chiral (UAC) slab, where the chirality appears only in one direction and the host medium is a uniaxial crystal or an electric plasma. The results indicate that the transverse shifts are closely related to the propagation behaviors of the eigenwaves in the slab. Specifically, when one or both of the eigenwaves are totally reflected at the second interface of the slab, the spatial transverse shift becomes resonances but is not enhanced; when one eigenwave is totally reflected at the first interface and the other is transmitted at the second interface, the larger and negative transverse shifts can be obtained. The propagation behaviors of the eigenwaves in the UAC slab provide more abundant information about the transverse shifts than in a single interface structure.
Fujiwara, Mikio; Hirao, Takanori; Kawada, Mitsunobu; Shibai, Hiroshi; Matsuura, Shuji; Kaneda, Hidehiro; Patrashin, Mikhail; Nakagawa, Takao
2003-04-20
To our knowledge, we are the first to successfully report a direct hybrid two-dimensional (2D) detector array in the far-infrared region. Gallium-doped germanium (Ge:Ga) has been used extensively to produce sensitive far-infrared detectors with a cutoff wavelength of approximately equal to 110 microm (2.7 THz). It is widely used in the fields of astronomy and molecular and solid spectroscopy. However, Ge:Ga photoconductors must be cooled below 4.2 K to reduce thermal noise, and this operating condition makes it difficult to develop a large format array because of the need for a warm amplifier. Development of Ge:Ga photoconductor arrays to take 2D terahertz images is now an important target in such research fields as space astronomy. We present the design of a 20 x 3 Ge:Ga far-infrared photoconductor array directly hybridized to a Si p-type metal-oxide-semiconductor readout integrated circuit using indium-bump technology. The main obstacles in creating this 2D array were (1) fabricating a monolithic Ge:Ga 2D array with a longitudinal configuration, (2) developing a cryogenic capacitive transimpedance amplifer, and (3) developing a technology for connecting the detector to the electronics. With this technology, a prototype Ge:Ga photoconductor with a direct hybrid structure has shown a responsivity as high as 14.6 A/W and a minimum detectable power of 5.6 x 10(-17) W for an integration time of 0.14 s when it was cooled to 2.1 K. Its noise is limited by the readout circuit with 20 microV/Hz(1/2) at 1 Hz. Vibration and cooling tests demonstrated that this direct hybrid structure is strong enough for spaceborne instruments. This detector array will be installed on the Japanese infrared satellite ASTRO-F.
Scaling of the Stress and Temperature Dependence of the Optical Anisotropy in Ba(Fe 1-x Co x ) 2As 2
Mirri, C.; Dusza, A.; Bastelberger, S.; ...
2016-09-15
We revisit our recent investigations of the optical properties in the underdoped regime of the title compounds with respect to their anisotropic behavior as a function of both temperature and uniaxial stress across the ferro-elastic tetragonal-to-orthorhombic transition. By exploiting a dedicated pressure device, we can tune and control uniaxial stress in situ thus changing the degree of detwinning of the samples in the orthorhombic SDW state as well as pressure-inducing an orthorhombicity in the paramagnetic tetragonal phase. Here we discover a hysteretic behavior of the optical anisotropy; its stress versus temperature dependence across the structural transition bears testimony to themore » analogy with the magnetic-field versus temperature dependence of the magnetization in a ferromagnet when crossing the Curie temperature. In this context, we find furthermore an intriguing scaling of the stress and temperature dependence of the optical anisotropy in Ba(Fe 1-xCo x) 2As 2.« less
Internal stress-induced melting below melting temperature at high-rate laser heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Yong Seok, E-mail: yshwang@iastate.edu; Levitas, Valery I., E-mail: vlevitas@iastate.edu
In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamicmore » equilibrium temperatures for the heating rate Q≤1.51×10{sup 10}K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 10{sup 11 }K/s and 936.9 K for Q = 1.46 × 10{sup 12 }K/s.« less
NASA Astrophysics Data System (ADS)
Liu, Junfeng; Yang, Haiqing; Xiao, Yang; Zhou, Xiaoping
2018-05-01
The fracture characters are important index to study the strength and deformation behavior of rock mass in rock engineering. In order to investigate the influencing mechanism of loading conditions on the strength and macro-mesoscopic fracture character of rock material, pre-cracked granite specimens are prepared to conduct a series of uniaxial compression experiments. For parts of the experiments, stress relaxation tests of different durations are also conducted during the uniaxial loading process. Furthermore, the stereomicroscope is adopted to observe the microstructure of the crack surfaces of the specimens. The experimental results indicate that the crack surfaces show several typical fracture characters in accordance with loading conditions. In detail, some cleavage fracture can be observed under conventional uniaxial compression and the fractured surface is relatively rough, whereas as stress relaxation tests are attached, relative slip trace appears between the crack faces and some shear fracture starts to come into being. Besides, the crack faces tend to become smoother and typical terrace structures can be observed in local areas. Combining the macroscopic failure pattern of the specimens, it can be deduced that the duration time for the stress relaxation test contributes to the improvement of the elastic-plastic strain range as well as the axial peak strength for the studied material. Moreover, the derived conclusion is also consistent with the experimental and analytical solution for the pre-peak stage of the rock material. The present work may provide some primary understanding about the strength character and fracture mechanism of hard rock under different engineering environments.
Self-assembly of heterogeneous supramolecular structures with uniaxial anisotropy.
Ruiz-Osés, M; Gonzalez-Lakunza, N; Silanes, I; Gourdon, A; Arnau, A; Ortega, J E
2006-12-28
Uniaxial anisotropy in two-dimensional self-assembled supramolecular structures is achieved by the coadsorption of two different linear molecules with complementary amine and imide functionalization. The two-dimensional monolayer is defined by a one-dimensional stack of binary chains, which can be forced to line up along steps in vicinal surfaces. The competing driving forces in the self-organization process are discussed in light of the structures observed during single molecule adsorption and coadsorption on flat and vicinal surfaces and the corresponding theoretical calculations.
NASA Astrophysics Data System (ADS)
Zhou, Xiao-Ping; Zhang, Jian-Zhi; Wong, Louis Ngai Yuen
2018-05-01
The crack initiation, growth, wrapping and coalescence of two 3D pre-existing cross-embedded flaws in PMMA specimens under uniaxial compression are investigated. The stress-strain curves of PMMA specimens with 3D cross-embedded flaws are obtained. The tested PMMA specimens exhibit dominant elastic deformation and eventual brittle failure. The experimental results show that four modes of crack initiation and five modes of crack coalescence are observed. The initiations of oblique secondary crack and anti-wing crack in 3D cracking behaviors are first reported as well as the coalescence of anti-wing cracks. Moreover, two types of crack wrapping are found. Substantial wrapping of petal cracks, which includes open and closed modes of wrapping, appears to be the major difference between 2D and 3D cracking behaviors of pre-existing flaws, which are also first reported. Petal crack wraps symmetrically from either the propagated wing cracks or the coalesced wing cracks. Besides, only limited growth of petal cracks is observed, and ultimate failure of specimens is induced by the further growth of the propagated wing crack. The fracture mechanism of the tested PMMA specimens is finally revealed. In addition, the initiation stress and the peak stress versus the geometry of two 3D pre-existing cross-embedded flaws are also investigated in detail.
Hole Transport in the Upper Hubbard Band in Ge:Cu under Uniaxial Pressure
NASA Astrophysics Data System (ADS)
Walukiewicz, W.; Dubon, O. D.; Silvestri, H. H.; Haller, E. E.
1998-03-01
We have reported recently on a uniaxial stress induced transformation of the ground state of Cu triple acceptors in Ge from highly localized 1s^3 to the much more extended 1s^22s^1 configuration (O.D. Dubon et. al., Phys Rev Lett. 78, 3519, (1997)). We find that the transformation leads to a gigantic enhancement of the low temperature conductivity. The conductivity is due to hole transport in the upper Hubbard band formed by overcharged 1s^22s^2 states. We have calculated hole mobilities in this band assuming that the states in the upper Hubbard band can be treated in the optical approximation as normal extended states with a well-defined effective mass. We find that for Cu concentrations below 10^15 cm-3 the experimentally observed mobilities approach 10^6 cm^2/Vs. These very high mobilities can be explained by hole scattering from ionized and neutral impurity centers. At higher Cu concentrations we observe an onset of Anderson localization that manifests itself in a thermally activated low temperature mobility. This work was supported by US DOE under Contract No. DE-AC03-76SF00098.
Lithology-dependent minimum horizontal stress and in-situ stress estimate
NASA Astrophysics Data System (ADS)
Zhang, Yushuai; Zhang, Jincai
2017-04-01
Based on the generalized Hooke's law with coupling stresses and pore pressure, the minimum horizontal stress is solved with assumption that the vertical, minimum and maximum horizontal stresses are in equilibrium in the subsurface formations. From this derivation, we find that the uniaxial strain method is the minimum value or lower bound of the minimum stress. Using Anderson's faulting theory and this lower bound of the minimum horizontal stress, the coefficient of friction of the fault is derived. It shows that the coefficient of friction may have a much smaller value than what it is commonly assumed (e.g., μf = 0.6-0.7) for in-situ stress estimate. Using the derived coefficient of friction, an improved stress polygon is drawn, which can reduce the uncertainty of in-situ stress calculation by narrowing the area of the conventional stress polygon. It also shows that the coefficient of friction of the fault is dependent on lithology. For example, if the formation in the fault is composed of weak shales, then the coefficient of friction of the fault may be small (as low as μf = 0.2). This implies that this fault is weaker and more likely to have shear failures than the fault composed of sandstones. To avoid the weak fault from shear sliding, it needs to have a higher minimum stress and a lower shear stress. That is, the critically stressed weak fault maintains a higher minimum stress, which explains why a low shear stress appears in the frictionally weak fault.
Structural and electronic properties of armchair graphene nanoribbons under uniaxial strain
NASA Astrophysics Data System (ADS)
Qu, Li-Hua; Zhang, Jian-Min; Xu, Ke-Wei; Ji, Vincent
2014-02-01
We theoretically investigate the structures, relative stabilities and electronic properties of the armchair graphene nanoribbons (AGNRs) under uniaxial strain via first-principles calculations. The results show that, although each bond length decreases (increases) with increasing compression (tension) strain especially for the axial bonds a1, a4 and a7, the ribbon geometrical width d increases (decreases) with increasing compression (tension) strain due to the rotation of the zigzag bonds a2, a3, a5 and a6. For each nanoribbon, as expected, the lowest average energy corresponds to the unstrained state and the larger contract (elongate) deformation corresponds to the higher average energy. At a certain strain, the average energy increases with decreasing the ribbon width n. The average energy increases quadratically with the absolute value of the uniaxial strain, showing an elastic behavior. The dependence of the band gap on the strain is sensitive to the ribbon width n which can be classified into three distinct families n=3I, 3I+1 and 3I+2, where I is an integer. The ribbon width leads to oscillatory band gaps due to quantum confinement effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Rui; Ni, Jun, E-mail: junni@mail.tsinghua.edu.cn; Collaborative Innovative Center of Quantum Matter, Beijing 100084
2015-12-28
We have investigated the magnetic properties of silicene doped with Cr and Fe atoms under isotropic and uniaxial tensile strain by the first-principles calculations. We find that Cr and Fe doped silicenes show strain-tunable magnetism. (1) The magnetism of Cr and Fe doped silicenes exhibits sharp transitions from low spin states to high spin states by a small isotropic tensile strain. Specially for Fe doped silicene, a nearly nonmagnetic state changes to a high magnetic state by a small isotropic tensile strain. (2) The magnetic moments of Fe doped silicene also show a sharp jump to ∼2 μ{sub B} at amore » small threshold of the uniaxial strain, and the magnetic moments of Cr doped silicene increase gradually to ∼4 μ{sub B} with the increase of uniaxial strain. (3) The electronic and magnetic properties of Cr and Fe doped silicenes are sensitive to the magnitude and direction of the external strain. The highly tunable magnetism may be applied in the spintronic devices.« less
NASA Astrophysics Data System (ADS)
Zaman, Shakil Bin; Barlat, Frédéric; Kim, Jin Hwan
2018-05-01
Large-scale advanced high strength steel (AHSS) sheet specimens were deformed in uniaxial tension, using a novel grip system mounted on a MTS universal tension machine. After pre-strain, they were used as a pre-strained material to examine the anisotropic response in the biaxial tension tests with various load ratios, and orthogonal tension tests at 45° and 90° from the pre-strain axis. The flow curve and the instantaneous r-value of the pre-strained steel in each of the aforementioned uniaxial testing conditions were also measured and compared with those of the undeformed steel. Furthermore, an exhaustive analysis of the yield surface was also conducted and the results, prior and post-prestrain were represented and compared. The homogeneous anisotropic hardening (HAH) model [1] was employed to predict the behavior of the pre-strained material. It was found that the HAH-predicted flow curves after non-linear strain path change and the yield loci after uniaxial pre-strain were in good agreement with the experiments, while the r-value evolution after strain path change was qualitatively well predicted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danchaivijit, S.; Shetty, D.K.; Eldridge, J.
Matrix cracking was studied in a model unidirectional composite of SiC filaments in an epoxy-bonded alumina matrix. The residual clamping stress on the filaments due to the shrinkage of the epoxy was moderated with the addition of the alumina filler, and the filament surface was coated with a releasing agent to produce unbonded frictional interfaces. Uniaxial tension specimens with controlled through-cracks with bridging filaments were fabricated by a two-step casting technique. Critical stresses for extension of the filament-bridged cracks of various lengths were measured in uniaxial tension using a high-sensitivity extensometer. The measured crack-length dependence of the critical stress wasmore » in good agreement with the prediction of a stress-intensity analysis that employed a new force-displacement law for the bridging filaments. The analysis required independent experimental evaluation of the matrix fracture toughness, the interfacial sliding friction stress, and the residual tension in the matrix. The matrix-cracking stress for the test specimens without the deliberately introduced cracks was significantly higher than the steady-state cracking stress measured for the long, filament-bridged cracks.« less
Stress-dislocation interaction mechanism in low-temperature thermo-compression sintering of Ag NPs
NASA Astrophysics Data System (ADS)
Wang, Fuliang; Tang, Zikai; He, Hu
2018-04-01
The sintering of metal nanoparticles (NPs) has been widely studied in the field of nanotechnology, and low-temperature sintering has become the industry standard. In this study, a molecular dynamics (MD) model was established to study the sintering behaviour of silver NPs during low-temperature thermo-compression. Primarily, we studied the sintering process, in which the ratio of neck radius to particle radius (x/r) changes. Under a uniaxial pressure, the maximum ratio in the temperature range 420-425 K was 1. According to the change of x/r, the process can be broken down into three stages: the neck-formation stage, neck-growth stage, and neck-stability stage. In addition, the relationship between potential energy, internal stress, and dislocation density during sintering is discussed. The results showed that cycling internal stress played an important role in sintering. Under the uniaxial pressure, the stress-dislocation interaction was found to be the major mechanism for thermo-compression sintering because the plastic deformation product dislocation intensified the diffusion of atoms. Also, the displacement vector, the mean square displacement, and the changing crystal structure during sintering were studied.
NASA Astrophysics Data System (ADS)
Liu, Ping; Pei, Qing-Xiang; Huang, Wei; Zhang, Yong-Wei
2017-12-01
The easy formation of vacancy defects and the asymmetry in the two sublayers of phosphorene nanotubes (PNTs) may result in brand new mechanical properties and failure behaviour. Herein, we investigate the mechanical properties and fracture behaviour of defective PNTs under uniaxial tension using molecular dynamics simulations. Our simulation results show that atomic vacancies cause local stress concentration and thus significantly reduce the fracture strength and fracture strain of PNTs. More specifically, a 1% defect concentration is able to reduce the fracture strength and fracture strain by as much as 50% and 66%, respectively. Interestingly, the reduction in the mechanical properties is found to depend on the defect location: a defect located in the outer sublayer has a stronger effect than one located in the inner layer, especially for PNTs with a small diameter. Temperature is also found to strongly influence the mechanical properties of both defect-free and defective PNTs. When the temperature is increased from 0 K to 400 K, the fracture strength and fracture strain of defective PNTs with a defect concentration of 1% are reduced further by 71% and 61%, respectively. These findings are of great importance for the structural design of PNTs as building blocks in nanodevices.
Polar nature of stress-induced twin walls in ferroelastic CaTiO3
NASA Astrophysics Data System (ADS)
Yokota, H.; Niki, S.; Haumont, R.; Hicher, P.; Uesu, Y.
2017-08-01
A compressive uniaxial mechanical stress is applied on ferroelastic CaTiO3 (CTO), and a change in the domain structure is observed under a polarization microscope and a second harmonic generation (SHG) microscope. New twin walls (TWs) appear perpendicular to the original TWs under stress. The SHG microscope observations and analyses confirm that this type of stress-induced TWs is polar, similar to the original TWs, and is crystallographically prominent with monoclinic symmetry m. A quantitative estimation of this stress-induced effect reveals that CTO is hard ferroelastic in the sense that the TW movement requires a large stress. A possible application of this phenomenon is discussed.
Probabilistic simulation of uncertainties in composite uniaxial strengths
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Stock, T. A.
1990-01-01
Probabilistic composite micromechanics methods are developed that simulate uncertainties in unidirectional fiber composite strengths. These methods are in the form of computational procedures using composite mechanics with Monte Carlo simulation. The variables for which uncertainties are accounted include constituent strengths and their respective scatter. A graphite/epoxy unidirectional composite (ply) is studied to illustrate the procedure and its effectiveness to formally estimate the probable scatter in the composite uniaxial strengths. The results show that ply longitudinal tensile and compressive, transverse compressive and intralaminar shear strengths are not sensitive to single fiber anomalies (breaks, intergacial disbonds, matrix microcracks); however, the ply transverse tensile strength is.
An elastic analysis of stresses in a uniaxially loaded sheet containing an interference-fit bolt
NASA Technical Reports Server (NTRS)
Crews, J. H., Jr.
1972-01-01
The stresses in a sheet with an interference-fit bolt have been calculated for two sheet-bolt interface conditions: a frictionless interface and a fixed (no-slip) interface. The stress distributions were calculated for various combinations of sheet and bolt moduli. The results show that for repeated loading the local stress range is significantly smaller if an interference bolt is used instead of a loosely fitting one. This reduction in local stress range is more pronounced when the ratio of bolt modulus to sheet modulus is large. The analysis also indicates that currently used standard values of interference cause yielding in the sheet.
King, C.-Y.; Luo, G.
1990-01-01
Electric resistance and emissions of hydrogen and radon isotopes of concrete (which is somewhat similar to fault-zone materials) under increasing uniaxial compression were continuously monitored to check whether they show any pre- and post-failure changes that may correspond to similar changes reported for earthquakes. The results show that all these parameters generally begin to increase when the applied stresses reach 20% to 90% of the corresponding failure stresses, probably due to the occurrence and growth of dilatant microcracks in the specimens. The prefailure changes have different patterns for different specimens, probably because of differences in spatial and temporal distributions of the microcracks. The resistance shows large co-failure increases, and the gas emissions show large post-failure increases. The post-failure increase of radon persists longer and stays at a higher level than that of hydrogen, suggesting a difference in the emission mechanisms for these two kinds of gases. The H2 increase may be mainly due to chemical reaction at the crack surfaces while they are fresh, whereas the Rn increases may be mainly the result of the increased emanation area of such surfaces. The results suggest that monitoring of resistivity and gas emissions may be useful for predicting earthquakes and failures of concrete structures. ?? 1990 Birkha??user Verlag.
NASA Astrophysics Data System (ADS)
Liu, Yi; Dai, Feng; Zhao, Tao; Xu, Nu-wen
2017-01-01
Intermittent jointed rocks, which exist in a myriad of engineering projects, are extraordinarily susceptible to cyclic loadings. Understanding the dynamic fatigue properties of jointed rocks is necessary for evaluating the stability of rock engineering structures. This study numerically investigated the influences of cyclic loading conditions (i.e., frequency, maximum stress and amplitude) and joint geometric configurations (i.e., dip angle, persistency and interspace) on the dynamic fatigue mechanisms of jointed rock models. A reduction model of stiffness and strength was first proposed, and then, sixteen cyclic uniaxial loading tests with distinct loading parameters and joint geometries were simulated. Our results indicate that the reduction model can effectively reproduce the hysteresis loops and the accumulative plastic deformation of jointed rocks in the cyclic process. Both the loading parameters and the joint geometries significantly affect the dynamic properties, including the irreversible strain, damage evolution, dynamic residual strength and fatigue life. Three failure modes of jointed rocks, which are principally controlled by joint geometries, occur in the simulations: splitting failure through the entire rock sample, sliding failure along joint planes and mixed failure, which are principally controlled by joint geometries. Furthermore, the progressive failure processes of the jointed rock samples are numerically observed, and the different loading stages can be distinguished by the relationship between the number of broken bonds and the axial stress.
Mechanical Stimulation of Stem Cells Using Cyclic Uniaxial Strain
Kurpinski, Kyle; Li, Song
2007-01-01
The role of mechanical forces in the development and maintenance of biological tissues is well documented, including several mechanically regulated phenomena such as bone remodeling, muscular hypertrophy, and smooth muscle cell plasticity. However, the forces involved are often extremely complex and difficult to monitor and control in vivo. To better investigate the effects of mechanical forces on cells, we have developed an in vitro method for applying uniaxial cyclic tensile strain to adherent cells cultured on elastic membranes. This method utilizes a custom-designed bioreactor with a motorized cam-rotor system to apply the desired force. Here we present a step-by-step video protocol demonstrating how to assemble the various components of each "stretch chamber", including, in this case, a silicone membrane with micropatterned topography to orient the cells with the direction of the strain. We also describe procedures for sterilizing the chambers, seeding cells onto the membrane, latching the chamber into the bioreactor, and adjusting the mechanical parameters (i.e. magnitude and rate of strain). The procedures outlined in this particular protocol are specific for seeding human mesenchymal stem cells onto silicone membranes with 10 µm wide channels oriented parallel to the direction of strain. However, the methods and materials presented in this system are flexible enough to accommodate a number of variations on this theme: strain rate, magnitude, duration, cell type, membrane topography, membrane coating, etc. can all be tailored to the desired application or outcome. This is a robust method for investigating the effects of uniaxial tensile strain applied to cells in vitro. PMID:18997890
On the limits of uniaxial magnetic anisotropy tuning by a ripple surface pattern
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arranz, Miguel A.; Colino, Jose M., E-mail: josemiguel.colino@uclm.es; Palomares, Francisco J.
Ion beam patterning of a nanoscale ripple surface has emerged as a versatile method of imprinting uniaxial magnetic anisotropy (UMA) on a desired in-plane direction in magnetic films. In the case of ripple patterned thick films, dipolar interactions around the top and/or bottom interfaces are generally assumed to drive this effect following Schlömann's calculations for demagnetizing fields of an ideally sinusoidal surface [E. Schlömann, J. Appl. Phys. 41, 1617 (1970)]. We have explored the validity of his predictions and the limits of ion beam sputtering to induce UMA in a ferromagnetic system where other relevant sources of magnetic anisotropy aremore » neglected: ripple films not displaying any evidence of volume uniaxial anisotropy and where magnetocrystalline contributions average out in a fine grain polycrystal structure. To this purpose, the surface of 100 nm cobalt films grown on flat substrates has been irradiated at fixed ion energy, fixed ion fluency but different ion densities to make the ripple pattern at the top surface with wavelength Λ and selected, large amplitudes (ω) up to 20 nm so that stray dipolar fields are enhanced, while the residual film thickness t = 35–50 nm is sufficiently large to preserve the continuous morphology in most cases. The film-substrate interface has been studied with X-ray photoemission spectroscopy depth profiles and is found that there is a graded silicon-rich cobalt silicide, presumably formed during the film growth. This graded interface is of uncertain small thickness but the range of compositions clearly makes it a magnetically dead layer. On the other hand, the ripple surface rules both the magnetic coercivity and the uniaxial anisotropy as these are found to correlate with the pattern dimensions. Remarkably, the saturation fields in the hard axis of uniaxial continuous films are measured up to values as high as 0.80 kG and obey a linear dependence on the parameter ω{sup 2}/Λ/t in quantitative
Microwave focusing with uniaxially symmetric gradient index metamaterials
NASA Astrophysics Data System (ADS)
Wheeland, Sara; Sternberg, Oren; Perez, Israel; Rockway, John D.
2016-09-01
Previous efforts to create a metamaterial lens in the microwave X band frequency range focused on the development of a device with biaxial symmetry. This allows for focusing solely along the central axis of propagation. For applications involving wave direction or energy diversion, focusing may be required off the central axis. This work explores a metamaterial device with uniaxial symmetry, namely in the direction of propagation. Ray-trace optimization and full-wave finite element simulations contribute to the design of the lens. By changing the placement of the focus, we achieve further control of the focus parameters. While the present work uses coils, the unit cell can consist of any structure or material.
Parandakh, Azim; Tafazzoli-Shadpour, Mohammad; Khani, Mohammad-Mehdi
2017-06-01
This study aimed to investigate stepwise remodeling of human mesenchymal stem cells (hMSCs) in response to cyclic stretch through rearrangement and alignment of cells and cytoskeleton regulation toward smooth muscle cell (SMC) fate in different time spans. Image analysis techniques were utilized to calculate morphological parameters. Cytoskeletal reorganization was observed by investigating F-actin filaments using immunofluorescence staining, and expression level of contractile SMC markers was followed by a quantitative polymerase chain reaction method. Applying cyclic uniaxial stretch on cultured hMSCs, utilizing a costume-made device, led to alteration in fractal dimension (FD) and cytoskeleton structure toward continuous alignment and elongation of cells by elevation of strain duration. Actin filaments became more aligned perpendicular to the axis of mechanical stretch by increasing uniaxial loading duration. At first, FD met a significant decrease in 4 h loading duration then increased significantly by further loading up to 16 h, followed by another decrease up to 1 d of uniaxial stretching. HMSCs subjected to 24 h cyclic uniaxial stretching significantly expressed early and intermediate contractile SM markers. It was hypothesized that the increase in FD after 4 h while cells continuously became more aligned and elongated was due to initiation of change in phenotype that influenced arrangement of cells. At this point, change in cell phenotype started leading to change in morphology while mechanical loading still caused cell alignment and rearrangement. Results can be helpful when optimized engineered cells are needed based on mechanical condition for functional engineered tissue and cell therapy.
Domain shape instabilities and dendrite domain growth in uniaxial ferroelectrics
NASA Astrophysics Data System (ADS)
Shur, Vladimir Ya.; Akhmatkhanov, Andrey R.
2018-01-01
The effects of domain wall shape instabilities and the formation of nanodomains in front of moving walls obtained in various uniaxial ferroelectrics are discussed. Special attention is paid to the formation of self-assembled nanoscale and dendrite domain structures under highly non-equilibrium switching conditions. All obtained results are considered in the framework of the unified kinetic approach to domain structure evolution based on the analogy with first-order phase transformation. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aman, Amjad; Chen, Yan; Lugovy, Mykola
2014-01-01
The dynamics of texture formation, changes in crystal structure and stress accommodation mechanisms are studied in R3c rhombohedral LaCoO3 perovskite during in-situ uniaxial compression experiment by neutron diffraction. The neutron diffraction revealed the complex crystallographic changes causing the texture formation and significant straining along certain crystallographic directions during in-situ compression, which are responsible for the appearance of hysteresis and non-linear ferroelastic deformation in LaCoO3 perovskite. The irreversible strain after the first loading was connected with the appearance of non-recoverable changes in the intensity ratio of certain crystallographic peaks, causing non-reversible texture formation. However in the second loading/unloading cycle the hysteresismore » loop was closed and no irreversible strain appears after deformation. The significant texture formation is responsible for increase in the Young s modulus of LaCoO3 at high compressive loads, where the reported values of Young s modulus increase from 76 GPa measured at the very beginning of the loading to 194 GPa at 900 MPa applied compressive stress measured at the beginning of the unloading curve.« less
Viewing zone duplication of multi-projection 3D display system using uniaxial crystal.
Lee, Chang-Kun; Park, Soon-Gi; Moon, Seokil; Lee, Byoungho
2016-04-18
We propose a novel multiplexing technique for increasing the viewing zone of a multi-view based multi-projection 3D display system by employing double refraction in uniaxial crystal. When linearly polarized images from projector pass through the uniaxial crystal, two possible optical paths exist according to the polarization states of image. Therefore, the optical paths of the image could be changed, and the viewing zone is shifted in a lateral direction. The polarization modulation of the image from a single projection unit enables us to generate two viewing zones at different positions. For realizing full-color images at each viewing zone, a polarization-based temporal multiplexing technique is adopted with a conventional polarization switching device of liquid crystal (LC) display. Through experiments, a prototype of a ten-view multi-projection 3D display system presenting full-colored view images is implemented by combining five laser scanning projectors, an optically clear calcite (CaCO3) crystal, and an LC polarization rotator. For each time sequence of temporal multiplexing, the luminance distribution of the proposed system is measured and analyzed.
NASA Astrophysics Data System (ADS)
Kaplan, Michael; Zimmerman, George
2002-03-01
In the colossal magnetoresistance manganites the transport and magnetostructural properties are tightly connected [1,2]. Many magnetic field induced structural phase transitions and anomalous magnetoacoustical properties continue to be discovered in various manganite derivatives. Nevertheless the mechanism of structural transitions and microscopic theory of corresponding anomalous properties are still to be completely understood. Here we present a microscopic model of magnetic field and uniaxial pressure induced structural phase transitions in lightly doped manganites. The model is based on the cooperative Jahn-Teller effect which takes into account the Mn3+-ground doublet and excited triplet electronic states. Numerous calculations for different orientation magnetic field suggest the explanations of the origin of the structural transitions and of the measured magnetostriction data. The calculations for the two-sublattice antiferrodistortive crystals under uniaxial pressure support the idea of metaelasticity - a property typical for Jahn-Teller antiferroelastics. 1.Y. Tokura, ed. Colossal Magnetoresistance Oxides. Gordon & Breach, London, 2000. 2.M. Kaplan, G. Zimmerman, eds. Vibronic Interactions: Jahn-Teller Effect in Crystal and Molecules. NATO Science Series, Dordrecht/Boston/London, 2001
USDA-ARS?s Scientific Manuscript database
Given the unique physical activity patterns of preschoolers, wearable electronic devices for quantitative assessment of physical activity require validation in this population. Study objective was to validate uniaxial and triaxial accelerometers in preschoolers. Room calorimetry was performed over 3...
Zhang, Haifeng; Kosinski, J A; Karim, Md Afzalul
2013-05-01
We describe an apparatus for the measurement of acoustic wave propagation under uniaxial loading featuring a special mechanism designed to assure a uniform mechanical load on a cube-shaped sample of piezoelectric material. We demonstrate the utility of the apparatus by determining the effects of stresses on acoustic wave speed, which forms a foundation for the final determination of the third-order elastic constants of langasite and langatate single crystals. The transit time method is used to determine changes in acoustic wave velocity as the loading is varied. In order to minimize error and improve the accuracy of the wave speed measurements, the cross correlation method is used to determine the small changes in the time of flight. Typical experimental results are presented and discussed.
NASA Astrophysics Data System (ADS)
Zhang, Yi; Huang, Chaojuan; Turghun, Mutellip; Duan, Zhihua; Wang, Feifei; Shi, Wangzhou
2018-04-01
The FeGa film with in-plane uniaxial magnetic anisotropy was fabricated onto different oriented single-crystal lead magnesium niobate-lead titanate using oblique pulsed laser deposition. An enhanced in-plane uniaxial magnetic anisotropy field of FeGa film can be adjusted from 18 Oe to 275 Oe by tuning the oblique angle and polarizing voltage. The competitive relationship of shape anisotropy and strain anisotropy has been discussed, which was induced by oblique angle and polarizing voltage, respectively. The (100)-oriented and (110)-oriented PMN-PT show completely different characters on voltage-dependent magnetic properties, which could be attributed to various anisotropy directions depended on different strain directions.
NASA Technical Reports Server (NTRS)
Hart-Smith, L. J.
1992-01-01
The irrelevance of most composite failure criteria to conventional fiber-polymer composites is claimed to have remained undetected primarily because the experiments that can either validate or disprove them are difficult to perform. Uniaxial tests are considered inherently incapable of validating or refuting any composite failure theory because so much of the total load is carried by the fibers aligned in the direction of the load. The Ten-Percent Rule, a simple rule-of-mixtures analysis method, is said to work well only because of this phenomenon. It is stated that failure criteria can be verified for fibrous composites only by biaxial tests, with orthogonal in-plane stresses of the same as well as different signs, because these particular states of combined stress reveal substantial differences between the predictions of laminate strength made by various theories. Three scientifically plausible failure models for fibrous composites are compared, and it is shown that only the in-plane shear test (orthogonal tension and compression) is capable of distinguishing between them. This is because most theories are 'calibrated' against the measured uniaxial tension and compression tests and any cross-plied laminate tests dominated by those same states of stress must inevitably 'confirm' the theory.
Effects of Cyclic Loading on the Uniaxial Behavior of Nitinol
NASA Astrophysics Data System (ADS)
Schlun, M.; Zipse, A.; Dreher, G.; Rebelo, N.
2011-07-01
The widespread development and use of implants made from NiTi is accompanied by the publication of many NiTi material characterization studies. These publications have increased significantly the knowledge about the mechanical properties of NiTi. However, this knowledge also increased the complexity of the numerical simulation of NiTi implants or devices. This study is focused on the uniaxial behavior of NiTi tubing due to cyclic loading and had the goal to deliver both precise and application-oriented results. Single aspects of this study have already been published (Wagner in Ein Beitrag zur strukturellen und funktionalen Ermüdung von Drähten und Federn aus NiTi-Formgedaechtnislegierungen, Ph.D. Thesis, 2005; Eucken and Duerig in Acta Metall 37:2245-2252, 1989; Yawny et al. in Z Metallkd 96:608-618, 2005); however, there is no publication known that shows all the single effects combined in a "duty cycle case." It was of particular importance to summarize the main effects of pre-strain and subsequent small or large strain amplitudes on the material properties. The phenomena observed were captured in an extended Abaqus® Nitinol material model, presented by Rebelo et al. (A Material Model for the Cyclic Behavior of Nitinol, SMST Extended Abstracts 2010). The cyclic tensile tests were performed using a video extensometer to obtain accurate strain measurement on small electro-polished dog-bone specimen that were incorporated into a stent framework so that standard manufacturing methods could be used for the fabrication. This study indicates that a prestrain beyond 6% strain alters the transformation plateaus and if the cyclic displacement amplitude is large enough, additional permanent deformations are observed, the lower plateau and most notably the upper plateau change. The changes to the upper plateau are very interesting in the sense that an additional stress plateau develops: its "start stress" is lowered thereby creating a new plateau up to the highest level
Computational Study of Uniaxial Deformations in Silica Aerogel Using a Coarse-Grained Model.
Ferreiro-Rangel, Carlos A; Gelb, Lev D
2015-07-09
Simulations of a flexible coarse-grained model are used to study silica aerogels. This model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792), consists of spherical particles which interact through weak nonbonded forces and strong interparticle bonds that may form and break during the simulations. Small-deformation simulations are used to determine the elastic moduli of a wide range of material models, and large-deformation simulations are used to probe structural evolution and plastic deformation. Uniaxial deformation at constant transverse pressure is simulated using two methods: a hybrid Monte Carlo approach combining molecular dynamics for the motion of individual particles and stochastic moves for transverse stress equilibration, and isothermal molecular dynamics simulations at fixed Poisson ratio. Reasonable agreement on elastic moduli is obtained except at very low densities. The model aerogels exhibit Poisson ratios between 0.17 and 0.24, with higher-density gels clustered around 0.20, and Young's moduli that vary with aerogel density according to a power-law dependence with an exponent near 3.0. These results are in agreement with reported experimental values. The models are shown to satisfy the expected homogeneous isotropic linear-elastic relationship between bulk and Young's moduli at higher densities, but there are systematic deviations at the lowest densities. Simulations of large compressive and tensile strains indicate that these materials display a ductile-to-brittle transition as the density is increased, and that the tensile strength varies with density according to a power law, with an exponent in reasonable agreement with experiment. Auxetic behavior is observed at large tensile strains in some models. Finally, at maximum tensile stress very few broken bonds are found in the materials, in accord with the theory that only a small fraction of the material structure is actually load-bearing.
Uniaxial and biaxial tensioning effects on thin membrane materials. [large space structures
NASA Technical Reports Server (NTRS)
Hinson, W. F.; Goslee, J. W.
1980-01-01
Thin laminated membranes are being considered for various surface applications on future large space structural systems. Some of the thin membranes would be stretched across or between structural members with the requirement that the membrane be maintained within specified limits of smoothness which would be dictated by the particular applications such as antenna reflector requirements. The multiaxial tensile force required to maintain the smoothness in the membrane needs to be determined for use in the structure design. Therefore, several types of thicknesses of thin membrane materials have been subjected to varied levels of uniaxial and biaxial tensile loads. During the biaxial tests, deviations of the material surface smoothness were measured by a noncontacting capacitance probe. Basic materials consisted of composites of vacuum deposited aluminum on Mylar and Kapton ranging in thickness from 0.00025 in (0.000635 cm) to 0.002 in (0.00508 cm). Some of the material was reinforced with Kevlar and Nomex scrim. The uniaxial tests determined the material elongation and tensile forces up to ultimate conditions. Biaxial tests indicated that a relatively smooth material surface could be achieved with tensile force of approximately 1 to 15 Newtons per centimeter, depending upon the material thickness and/or reinforcement.
Glazyrin, Konstantin; Miyajima, Nobuyoshi; Smith, Jesse S.; ...
2016-05-30
Using synchrotron-based X-ray diffraction, we explore characteristic signatures for nonhydrostaticstresses and their effect on the spin state crossover of ferrous iron in (Mg, Fe)O ferropericlase (Fp) uponcompression in a two-phase mixture which includes an Al- and Fe-bearing bridgmanite (Bm). Here, we observe aninfluence of nonhydrostatic stresses on the spin state crossover starting pressure and width. The undesirablestresses discussed here include uniaxial deviatoric stress evolving in the diamond anvil cell and effects ofintergrain interaction. And while the former leads to a pressure overestimation, the latter one lowers the pressure ofthe onset for the high-spin to low-spin electronic transition in Fe 2+more » in ferropericlase (Mg, Fe)O with respect tohydrostatic conditions.« less
Uniaxial Pressure and High-Field Effects on Superconducting Single-Crystal CeCoIn5
NASA Astrophysics Data System (ADS)
Johnson, Scooter David
We have measured the a.c. susceptibility response of single-crystal CeCoIn 5 under uniaxial pressure up to 4.07 kbar and in d.c. field parallel to the c axis up to 5 T. From these measurements we report on several pressure and field characteristics of the superconducting state. The results are divided into 3 chapters: (1) We find a non-linear dependence of the superconducting transition temperature Tc on pressure, with a maximum close to 2 kbar. The transition also broadens significantly as pressure increases. We model the broadening as a product of non-uniform pressure and discuss its implications for the pressure dependence of the transition temperature. We relate our measurements to previous theoretical work. (2) We provided evidence and pressure dependence for the FFLO phase with field and pressure along the c axis. The FFLO phase boundary is temperature independent and tracks with the suppression to lower fields of the upper critical field with pressure. We also report the strengthening of the Pauli-limited field in this orientation by calculating the increase of the orbitally-limited field with uniaxial pressure. (3) We extract the critical current using the Bean critical state model and compare it to the expected Ginzberg-Landau behavior. We find that the exponent of the critical current depends on uniaxial pressure and d.c. field. Within a d.c. field the pressure dependence of the exponent may be obscured by the field effect. We have also measured resistivity, susceptibility, and specific heat of high-quality single-crystal YIn3 below 1 K and present a refinement of Tc from previous measurements. We make suggestions for experimental comparisons to the heavy fermion family CeXIn5, (X = Rh, Ir, Co) and the parent compound CeIn3.
Magnetic microstructure and magnetic properties of uniaxial itinerant ferromagnet Fe 3GeTe 2
León-Brito, Neliza; Bauer, Eric Dietzgen; Ronning, Filip; ...
2016-08-28
Here, magnetic force microscopy was used to observe the magnetic microstructure of Fe 3GeTe 2 at 4 K on the (001) surface. The surface magnetic structure consists of a two-phase domain branching pattern that is characteristic for highly uniaxial magnets in the plane perpendicular to the magnetic easy axis. The average surface magnetic domain width D s = 1.3 μm determined from this pattern, in combination with intrinsic properties calculated from bulk magnetization data (the saturation magnetization M s = 376 emu/cm 3 and the uniaxial magnetocrystalline anisotropy constant K u = 1.46 × 10 7 erg/cm 3), was usedmore » to determine the following micromagnetic parameters for Fe 3GeTe 2 from phenomenological models: the domain wall energy γ w = 4.7 erg/cm 2, the domain wall thickness δ w = 2.5 nm, the exchange stiffness constant A ex = 0.95 × 10 –7 erg/cm, the exchange length l ex = 2.3 nm, and the critical single domain particle diameter d c = 470 nm.« less
NASA Astrophysics Data System (ADS)
Han, Genquan; Wang, Yibo; Liu, Yan; Wang, Hongjuan; Liu, Mingshan; Zhang, Chunfu; Zhang, Jincheng; Cheng, Buwen; Hao, Yue
2015-05-01
In this work, relaxed GeSn p-channel tunneling field-effect transistors (pTFETs) with various Sn compositions are fabricated on Si. Enhancement of on-state current ION with the increase of Sn composition is observed in transistors, due to the reduction of direct bandgap EG. Ge0.93Sn0.07 and Ge0.95Sn0.05 pTFETs achieve 110% and 75% enhancement in ION, respectively, compared to Ge0.97Sn0.03 devices, at VGS - VTH = VDS = - 1.0 V. For the first time, ION enhancement in GeSn pTFET utilizing uniaxial tensile strain is reported. By applying 0.14% uniaxial tensile strain along [110] channel direction, Ge0.95Sn0.05 pTFETs achieve 12% ION improvement, over unstrained control devices at VGS - VTH = VDS = - 1.0 V. Theoretical study demonstrates that uniaxial tensile strain leads to the reduction of direct EG and affects the reduced tunneling mass, which bring the GBTBT rising, benefiting the tunneling current enhancement in GeSn TFETs.
Periodic surface instabilities in stressed polymer solids
NASA Astrophysics Data System (ADS)
Tsukruk, Vladimir V.; Reneker, Darrell H.
1995-03-01
The surface morphology of isothermally grown polymer single crystals of polypropylene is observed by atomic force microscopy. The distinguishing features of the polymer single crystals studied are periodic undulations and transverse fractures (cracks) across the single crystal laths. Up to 20 wrinkles are observed near the edges of the cracks. The periodicity of these surface perturbations is 400+/-100 nm and the amplitude is 6+/-3 nm. The formation of the periodic modulations and transverse fractures is attributed to surface stress relief caused by the uniaxial thermal contraction of polymer solids.
Spherical Nanoindentation Stress-Strain Measurements of BOR-60 14YWT-NFA1 Irradiated Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Jordan; Carvajal Nunez, Ursula; Krumwiede, David
Spherical nanoindentation stress-strain protocols were applied to characterize unirradiated and fast neutron irradiated nanostructured ferritic alloy (NFA) 14YWT and compared against Berkovich nanohardness and available tensile data. The predicted uniaxial yield strength from spherical, 100 and 5 micron radii, indentation yield strength measurements was 1100-1400 MPa which compares well with the predictions from Berkovich nanohardness, 1200 MPa, and available tensile data, ~1100 MPa. However, spherical indentation measurements predict an increase in the uniaxial yield strength of ~1 GPa while Berkovich nanohardness measurements predict an increase of only ~250 MPa. No tensile data exists on the irradiated condition. It is believedmore » the difference in the predicted uniaxial yield strength between spherical and Berkovich nanoindentation are due to a low number of tests on the irradiated sample combined with the significant heterogeneity in the microstructure, the differences in sensitivity to sample preparation on the irradiated sample between the two indentation protocols , and/or in how strain localizes under the indenter with the possibility of dislocation channeling under Berkovich hardness indents leading to strain softening. Nanoindentation capabilities to test neutron irradiated samples in a radiological area were realized.« less
Resistivity in the Vicinity of a van Hove Singularity: Sr2RuO4 under Uniaxial Pressure
NASA Astrophysics Data System (ADS)
Barber, M. E.; Gibbs, A. S.; Maeno, Y.; Mackenzie, A. P.; Hicks, C. W.
2018-02-01
We report the results of a combined study of the normal-state resistivity and superconducting transition temperature Tc of the unconventional superconductor Sr2 RuO4 under uniaxial pressure. There is strong evidence that, as well as driving Tc through a maximum at ˜3.5 K , compressive strains ɛ of nearly 1% along the crystallographic [100] axis drive the γ Fermi surface sheet through a van Hove singularity, changing the temperature dependence of the resistivity from T2 above, and below the transition region to T1.5 within it. This occurs in extremely pure single-crystals in which the impurity contribution to the resistivity is <100 n Ω cm , so our study also highlights the potential of uniaxial pressure as a more general probe of this class of physics in clean systems.
Nanomechanical membrane-type surface stress sensor.
Yoshikawa, Genki; Akiyama, Terunobu; Gautsch, Sebastian; Vettiger, Peter; Rohrer, Heinrich
2011-03-09
Nanomechanical cantilever sensors have been emerging as a key device for real-time and label-free detection of various analytes ranging from gaseous to biological molecules. The major sensing principle is based on the analyte-induced surface stress, which makes a cantilever bend. In this letter, we present a membrane-type surface stress sensor (MSS), which is based on the piezoresistive read-out integrated in the sensor chip. The MSS is not a simple "cantilever," rather it consists of an "adsorbate membrane" suspended by four piezoresistive "sensing beams," composing a full Wheatstone bridge. The whole analyte-induced isotropic surface stress on the membrane is efficiently transduced to the piezoresistive beams as an amplified uniaxial stress. Evaluation of a prototype MSS used in the present experiments demonstrates a high sensitivity which is comparable with that of optical methods and a factor of more than 20 higher than that obtained with a standard piezoresistive cantilever. The finite element analyses indicate that changing dimensions of the membrane and beams can substantially increase the sensitivity further. Given the various conveniences and advantages of the integrated piezoresistive read-out, this platform is expected to open a new era of surface stress-based sensing.
On thermal stress failure of the SNAP-19A RTG heat shield
NASA Technical Reports Server (NTRS)
Pitts, W. C.; Anderson, L. A.
1974-01-01
Results of a study on thermal stress problems in an amorphous graphite heat shield that is part of the launch-abort protect system for the SNAP-19A radio-isotope thermoelectric generators (RTG) that will be used on the Viking Mars Lander are presended. The first result is from a thermal stress analysis of a full-scale RTG heat source that failed to survive a suborbital entry flight test, possibly due to thermal stress failure. It was calculated that the maximum stress in the heat shield was only 50 percent of the ultimate strength of the material. To provide information on the stress failure criterion used for this calculation, some heat shield specimens were fractured under abort entry conditions in a plasma arc facility. It was found that in regions free of stress concentrations the POCO graphite heat shield material did fracture when the local stress reached the ultimate uniaxial stress of the material.
The Effects of Stress State on the Strain Hardening Behaviors of TWIP Steel
NASA Astrophysics Data System (ADS)
Liu, F.; Dan, W. J.; Zhang, W. G.
2017-05-01
Twinning-Induced Plasticity (TWIP) steels have received great attention due to their excellent mechanical properties as a result of austenite twinning during straining. In this paper, the effects of stress state on the strain hardening behaviors of Fe-20Mn-1.2C TWIP steel were studied. A twinning model considering stress state was presented based on the shear-band framework, and a strain hardening model was proposed by taking dislocation mixture evolution into account. The models were verified by the experimental results of uniaxial tension, simple shear and rolling processes. The strain hardening behaviors of TWIP steel under different stress states were predicted. The results show that the stress state can improve the austenite twining and benefit the strain hardening of TWIP steel.
Ultrashort optical waveguide excitations in uniaxial silica fibers: elastic collision scenarios.
Kuetche, Victor K; Youssoufa, Saliou; Kofane, Timoleon C
2014-12-01
In this work, we investigate the dynamics of an uniaxial silica fiber under the viewpoint of propagation of ultimately ultrashort optical waveguide channels. As a result, we unveil the existence of three typical kinds of ultrabroadband excitations whose profiles strongly depend upon their angular momenta. Looking forward to surveying their scattering features, we unearth some underlying head-on scenarios of elastic collisions. Accordingly, we address some useful and straightforward applications in nonlinear optics through secured data transmission systems, as well as laser physics and soliton theory with optical soliton dynamics.
A Model for Predicting Thermomechanical Response of Large Space Structures.
1985-06-01
Field in a Thermomechanically Heated Viscoplastic ....... Space Truss Structure 6.5 Analysis of a Thermoviscoplastic Uniaxial " Bar Under Prescribed...Stress Part I - Theoretical Development . -- 6.6 Analysis of a Thermoviscoplastic Uniaxial codes Bar Under Prescribed Stress Part II - or Boundary Layer...and Asymptotic Analysis 6.7 Analysis of a Thermoviscoplastic Uniaxial Bar Under Prescribed Stress Part III - Numerical Results for a Bar with Radiative
Dynamics of uniaxially oriented elastomers using dielectric spectroscopy
NASA Astrophysics Data System (ADS)
Lee, Hyungki; Fragiadakis, Daniel; Martin, Darren; Runt, James
2009-03-01
We summarize our initial dielectric spectroscopy investigation of the dynamics of oriented segmented polyurethanes and crosslinked polyisoprene elastomers. A specially designed uniaxial stretching rig is used to control the draw ratio, and the electric field is applied normal to the draw direction. For the segmented PUs, we observe a dramatic reduction in relaxation strength of the soft phase segmental process with increasing extension ratio, accompanied by a modest decrease in relaxation frequency. Crosslinking of the polyisoprene was accomplished with dicumyl peroxide and the dynamics of uncrosslinked and crosslinked versions are investigated in the undrawn state and at different extension ratios. Complimentary analysis of the crosslinked PI is conducted with wide angle X- ray diffraction to examine possible strain-induced crystallization, DSC, and swelling experiments. Quantitative analysis of relaxation strengths and shapes as a function of draw ratio will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mower, T.E.; Higgins, J.D.; Yang, I.C.
1989-12-31
To support the study of hydrologic system in the unsaturated zone at Yucca Mountain, Nevada, two extraction methods were examined to obtain representative, uncontaminated pore-water samples from unsaturated tuff. Results indicate that triaxial compression, which uses a standard cell, can remove pore water from nonwelded tuff that has an initial moisture content greater than 11% by weight; uniaxial compression, which uses a specifically fabricated cell, can extract pore water from nonwelded tuff that has an initial moisture content greater than 8% and from welded tuff that has an initial moisture content greater than 6.5%. For the ambient moisture conditions ofmore » Yucca Mountain tuffs, uniaxial compression is the most efficient method of pore-water extraction. 12 refs., 7 figs., 2 tabs.« less
Alternative methods for ray tracing in uniaxial media. Application to negative refraction
NASA Astrophysics Data System (ADS)
Bellver-Cebreros, Consuelo; Rodriguez-Danta, Marcelo
2007-03-01
In previous papers [C. Bellver-Cebreros, M. Rodriguez-Danta, Eikonal equation, alternative expression of Fresnel's equation and Mohr's construction in optical anisotropic media, Opt. Commun. 189 (2001) 193; C. Bellver-Cebreros, M. Rodriguez-Danta, Internal conical refraction in biaxial media and graphical plane constructions deduced from Mohr's method, Opt. Commun. 212 (2002) 199; C. Bellver-Cebreros, M. Rodriguez-Danta, Refraccion conica externa en medios biaxicos a partir de la construccion de Mohr, Opt. Pura AppliE 36 (2003) 33], the authors have developed a method based on the local properties of dielectric permittivity tensor and on Mohr's plane graphical construction in order to study the behaviour of locally plane light waves in anisotropic media. In this paper, this alternative methodology is compared with the traditional one, by emphasizing the simplicity of the former when studying ray propagation through uniaxial media (comparison is possible since, in this case, traditional construction becomes also plane). An original and simple graphical method is proposed in order to determine the direction of propagation given by the wave vector from the knowledge of the extraordinary ray direction (given by Poynting vector). Some properties of light rays in these media not described in the literature are obtained. Finally, two applications are considered: a description of optical birefringence under normal incidence and the study of negative refraction in uniaxial media.
NASA Astrophysics Data System (ADS)
Chen, Zhongbi; Krishnaswamy, Sridhar
2014-03-01
In earlier work, we have demonstrated an assisted self-assembly fabrication method for unidirectional submicron patterns using pre-programmed shape memory polymers (SMP) as the substrate in an organic/inorganic bilayer structure. In this paper, we propose a complete bottom-up method for fabrication of uniaxial wrinkles whose wavelength is below 300 nm. The method starts with using the aforementioned self-assembled bi-layer wrinkled surface as the template to make a replica of surface wrinkles on a PDMS layer which is spin-coated on a pre-programmed SMP substrate. When the shape recovery of the substrate is triggered by heating it to its transition temperature, the substrate has been programmed in such a way that it shrinks uniaxially to return to its permanent shape. Consequently, the wrinkle wavelength on PDMS reduces accordingly. A subsequent contact molding process is carried out on the PDMS layer spin-coated on another pre-programmed SMP substrate, but using the wrinkled PDMS surface obtained in the previous step as the master. By activating the shape recovery of the substrate, the wrinkle wavelength is further reduced a second time in a similar fashion. Our experiments showed that the starting wavelength of 640 nm decreased to 290 nm after two cycles of recursive molding. We discuss the advantages and limitations of our recursive molding approach compared to the prevalent top-down fabrication methods represented by lithography. The present study is expected to o er a simple and cost-e ective fabrication method of nano-scale uniaxial wrinkle patterns with the potential for large-scale mass-production.
NASA Astrophysics Data System (ADS)
Thantirige, Rukshan M.; John, Jacob; Pradhan, Nihar R.; Carter, Kenneth R.; Tuominen, Mark T.
2016-06-01
Here, we report wafer scale fabrication of densely packed Fe nanostripe-based magnetic thin films on a flexible substrate and their magnetic anisotropy properties. We find that Fe nanostripes exhibit large in-plane uniaxial anisotropy and nearly square hysteresis loops with energy products (BHmax) exceeding 3 MGOe at room temperature. High density Fe nanostripes were fabricated on 70 nm flexible polyethylene terephthalate (PET) gratings, which were made by a roll-to-roll (R2R) UV nanoimprint lithography technique. We observed large in-plane uniaxial anisotropies along the long dimension of nanostripes that can be attributed to the shape. Temperature dependent hysteresis measurements confirm that the magnetization reversal is driven by non-coherent rotation reversal processes.
Liang, Fenglin; Sauceau, Martial; Dusserre, Gilles; Arlabosse, Patricia
2017-04-15
The mechanically dewatered sewage sludge with total solid content around 20% on a weight basis is very similar to yield stress fluid, its complex transition between solid and fluid states is not perfectly reversible and especially challenging in terms of pumping, land spreading and drying. To characterize the rheological and textural properties of highly concentrated sludge, a specific methodology based on uniaxial single and cyclic compression tests is developed. Three types of sludge samples (fresh original, fresh premixed and aged original ones) are extruded into cylinders and pressed between two parallel plates using a material testing machine. In single compression, the bioyield point beyond which the sludge fractures is around 7.3 kPa with true strain equal to 0.21. The cyclic compression tests reveal that the sludge behaves as a viscoelastic body when the true strain is smaller than 0.05 and as a visco-elasto-plastic once exceeding the yield stress. The elastic module is around 78 kPa; the viscosity is deduced, in the order of magnitude 10 4 -10 5 Pa·s and the yield stress is estimated about 4 kPa. In the unloading phase, the sludge behaves again as a viscoelastic body with clear hysteresis. With the increase of compression speed, the viscosity declines, which confirms that the sludge is a shear-thinning material. The yield stress and the bioyield increase with compression speed, but it does not induce extra internal damage in the samples since the resilience and the cohesiveness are unaltered. The reliability and sensitivity of the method is justified by highlighting the changes of sludge behavior due to aging and premixing effects: both decrease the strain energy density, but do aggravate the adhesiveness of the sludge; the aging makes the sludge less cohesive, while the premixing does not modify its cohesiveness. In spite of changes in test conditions, the elastic module of sludge samples remains unchanged. Copyright © 2017 Elsevier Ltd. All rights
Propagation of Ince-Gaussian beams in uniaxial crystals orthogonal to the optical axis
NASA Astrophysics Data System (ADS)
Xu, Y. Q.; Zhou, G. Q.
2012-03-01
An analytical propagation expression of an Ince-Gaussian beam in uniaxial crystals orthogonal to the optical axis is derived. The uniaxial crystal considered here has the property of the extraordinary refractive index being larger than the ordinary refractive index. The Ince-Gaussian beam in the transversal direction along the optical axis spreads more rapidly than that in the other transversal direction. With increasing the ratio of the extraordinary refractive index to the ordinary refractive index, the spreading of the Ince-Gaussian beam in the transversal direction along the optical axis increases and the spreading of the Ince-Gaussian beam in the other transversal direction decreases. The effective beam size in the transversal direction along the optical axis is always larger than that in the other transversal direction. When the even and odd modes of Ince-Gaussian beams exist simultaneously, the effective beam size in the direction along the optical axis of the odd Ince-Gaussian beam is smaller than that of the even Ince-Gaussian beam in the corresponding direction, and the effective beam size in the transversal direction orthogonal to the optical axis of the odd Ince-Gaussian beam is larger than that of the even Ince-Gaussian beam in the corresponding direction.
Effect of stress on energy flux deviation of ultrasonic waves in GR/EP composites
NASA Technical Reports Server (NTRS)
Prosser, William H.; Kriz, R. D.; Fitting, Dale W.
1990-01-01
Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis (fiber axis) and the x1 for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers a new nondestructive technique of evaluating stress in composites.
Thermal effects on the enhanced ductility in non-monotonic uniaxial tension of DP780 steel sheet
NASA Astrophysics Data System (ADS)
Majidi, Omid; Barlat, Frederic; Korkolis, Yannis P.; Fu, Jiawei; Lee, Myoung-Gyu
2016-11-01
To understand the material behavior during non-monotonic loading, uniaxial tension tests were conducted in three modes, namely, the monotonic loading, loading with periodic relaxation and periodic loading-unloadingreloading, at different strain rates (0.001/s to 0.01/s). In this study, the temperature gradient developing during each test and its contribution to increasing the apparent ductility of DP780 steel sheets were considered. In order to assess the influence of temperature, isothermal uniaxial tension tests were also performed at three temperatures (298 K, 313 K and 328 K (25 °C, 40 °C and 55 °C)). A digital image correlation system coupled with an infrared thermography was used in the experiments. The results show that the non-monotonic loading modes increased the apparent ductility of the specimens. It was observed that compared with the monotonic loading, the temperature gradient became more uniform when a non-monotonic loading was applied.
NASA Astrophysics Data System (ADS)
Karimi, Mohammad M.; Tabatabaee, Nader; Jahanbakhsh, H.; Jahangiri, Behnam
2017-08-01
Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery's nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.
Khani, Mohammad-Mehdi; Tafazzoli-Shadpour, Mohammad; Goli-Malekabadi, Zahra; Haghighipour, Nooshin
2015-03-01
Human mesenchymal stem cells (hMSCs) have shown promising potential in the field of regenerative medicine particularly in vascular tissue engineering. Optimal growing of MSCs into specific lineage requires a thorough understanding of the role of mechanobiology in MSC metabolism. Although effects of external physical cues (mechanical stimuli through external loading and scaffold properties) on regulation of MSC differentiation into Smooth muscle (SM) lineage have attracted widespread attention, fewer studies are available on mechanical characterization of single engineered MSCs which is vital in tissue development through proper mechanotransductive cell-environment interactions. In this study, we investigated effects of uniaxial tensile strain and transforming growth factor-β1 (TGF-β1) stimulations on mechanical properties of engineered MSCs and their F-actin cytoskeleton organization. Micropipette aspiration technique was used to measure mechanical properties of MSCs including mean Young׳s modulus (E) and the parameters of standard linear viscoelastic model. Compared to control samples, MSCs treated by uniaxial strain either with or without TGF-β1 indicated significant increases in E value and considerable drop in creep compliance curve, while samples treated by TGF-β1 alone met significant decreases in E value and considerable rise in creep compliance curve. Among treated samples, uniaxial tensile strain accompanied by TGF-β1 stimulation not only caused higher stimulation in MSC differentiation towards SM phenotype at transcriptional level, but also created more structural integrity in MSCs due to formation of thick bundled F-actin fibers. Results can be applied in engineering of MSCs towards functional target cells and consequently tissue development. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cells Respond to Mechanical Stress by Rapid Disassembly of Caveolae
Sinha, Bidisha; Köster, Darius; Ruez, Richard; Gonnord, Pauline; Bastiani, Michele; Abankwa, Daniel; Stan, Radu. V.; Butler-Browne, Gillian; Vedie, Benoit; Johannes, Ludger; Morone, Nobuhiro; Parton, Robert G.; Raposo, Graça; Sens, Pierre; Lamaze, Christophe; Nassoy, Pierre
2011-01-01
SUMMARY The precise role of caveolae, the characteristic plasma membrane invaginations present in many cells, still remains debated. The high density of caveolae in cells experiencing mechanical stress led us to investigate their role in membrane-mediated mechanical response. Acute mechanical stress induced by cell osmotic swelling or by uniaxial stretching results in the immediate disappearance of caveolae, which is associated with a reduced caveolin/Cavin1 interaction, and an increase of free caveolins at the plasma membrane. Tether pulling force measurements in live cells and in plasma membrane spheres demonstrate that caveola flattening and disassembly is the primary actin and ATP-independent cell response which buffers membrane tension surges during mechanical stress. Conversely, stress release leads to complete caveola reassembly in an actin and ATP-dependent process. The absence of a functional caveola reservoir in myotubes from muscular dystrophic patients enhanced membrane fragility under mechanical stress. Our findings support a new role for caveolae as a physiological membrane reservoir that allows cells to quickly accommodate sudden and acute mechanical stresses. PMID:21295700
Uniaxial cyclic strain enhances adipose-derived stem cell fusion with skeletal myocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Jens Isak; Juhl, Morten; Nielsen, Thøger
2014-07-25
Highlights: • Uniaxial cyclic tensile strain (CTS) applied to ASCs alone or in coculture with myogenic precursors. • CTS promoted the formation of a highly ordered array of parallel ASCs. • Without biochemical supplements, CTS did not support advanced myogenic differentiation of ASCs. • Mechanical stimulation of cocultures boosted fusion of ASCs with skeletal myoblasts. - Abstract: Although adult muscle tissue possesses an exceptional capacity for regeneration, in the case of large defects, the restoration to original state is not possible. A well-known source for the de novo regeneration is the adipose-derived stem cells (ASCs), which can be readily isolatedmore » and have been shown to have a broad differentiation and regenerative potential. In this work, we employed uniaxial cyclic tensile strain (CTS), to mechanically stimulate human ASCs to participate in the formation skeletal myotubes in an in vitro model of myogenesis. The application of CTS for 48 h resulted in the formation of a highly ordered array of parallel ASCs, but failed to support skeletal muscle terminal differentiation. When the same stimulation paradigm was applied to cocultures with mouse skeletal muscle myoblasts, the percentage of ASCs contributing to the formation of myotubes significantly exceeded the levels reported in the literature hitherto. In perspective, the mechanical strain may be used to increase the efficiency of incorporation of ASCs in the skeletal muscles, which could be found useful in diverse traumatic or pathologic scenarios.« less
NASA Astrophysics Data System (ADS)
Akbari, S.; Shea, H. R.
2012-04-01
Cells regulate their behavior in response to mechanical strains. Cell cultures to study mechanotransuction are typically cm2 in area, far too large to monitor single cell response. We have developed an array of dielectric elastomer microactuators as a tool to study mechanotransduction of individual cells. The array consists of 72 100 µm × 200 µm electroactive polymer actuators which expand uniaxially when a voltage is applied. Single cells will be attached on each actuator to study their response to periodic mechanical strains. The device is fabricated by patterning compliant microelectrodes on both sides of a 30 µm thick polydimethylsiloxane membrane, which is bonded to a Pyrex chip with 200 µm wide trenches. Low-energy metal ion implantation is used to make stretchable electrodes and we demonstrate here the successful miniaturization of such ion-implanted electrodes. The top electrode covers the full membrane area, while the bottom electrodes are 100 µm wide parallel lines, perpendicular to the trenches. Applying a voltage between the top and bottom electrodes leads to uniaxial expansion of the membrane at the intersection of the bottom electrodes and the trenches. To characterize the in-plane strain, an array of 4 µm diameter aluminum dots is deposited on each actuator. The position of each dot is tracked, allowing displacement and strain profiles to be measured as a function of voltage. The uniaxial strain reaches 4.7% at 2.9 kV with a 0.2 s response time, sufficient to stimulate most cells with relevant biological strains and frequencies.
NASA Astrophysics Data System (ADS)
Tam, David W.; Song, Yu; Man, Haoran; Cheung, Sky C.; Yin, Zhiping; Lu, Xingye; Wang, Weiyi; Frandsen, Benjamin A.; Liu, Lian; Gong, Zizhou; Ito, Takashi U.; Cai, Yipeng; Wilson, Murray N.; Guo, Shengli; Koshiishi, Keisuke; Tian, Wei; Hitti, Bassam; Ivanov, Alexandre; Zhao, Yang; Lynn, Jeffrey W.; Luke, Graeme M.; Berlijn, Tom; Maier, Thomas A.; Uemura, Yasutomo J.; Dai, Pengcheng
2017-02-01
We use neutron diffraction and muon spin relaxation to study the effect of in-plane uniaxial pressure on the antiferromagnetic (AF) orthorhombic phase in BaFe2As2 and its Co- and Ni-substituted members near optimal superconductivity. In the low-temperature AF ordered state, uniaxial pressure necessary to detwin the orthorhombic crystals also increases the magnetic ordered moment, reaching an 11% increase under 40 MPa for BaFe1.9Co0.1As2 , and a 15% increase for BaFe1.915Ni0.085As2 . We also observe an increase of the AF ordering temperature (TN) of about 0.25 K/MPa in all compounds, consistent with density functional theory calculations that reveal better Fermi surface nesting for itinerant electrons under uniaxial pressure. The doping dependence of the magnetic ordered moment is captured by combining dynamical mean field theory with density functional theory, suggesting that the pressure-induced moment increase near optimal superconductivity is closely related to quantum fluctuations and the nearby electronic nematic phase.
Investigation of the mechanical properties of organoplastic under shock wave loading conditions
NASA Astrophysics Data System (ADS)
Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu; Lomunov, A. K.
2018-04-01
The paper presents results of dynamic tests of a typical representative of new composite and damping materials: organoplastics. Compression testing was performed using the traditional Kolsky method and its original modification. The strength and deformation properties of organoplastics under conditions of uniaxial stress and uniaxial deformation were studied. When the organoplastic is compressed transversely to the Kevlar fabric layers under conditions of a uniaxial stress state, the material begins to break down (to lose the layer cohesion) at a stress of about 200 MPa, while under the conditions of uniaxial strain, it retains its apparent integrity at stresses up to 500 MPa. The small value of the lateral thrust factor indicates a large internal strength of the material in tension in the radial direction.
Piezoelectric and Electrostrictive Materials for Transducer Applications.
1988-01-01
No. 8, 9, 1986. 18. Y. Sun, L.E. Cross. "Investigations of Electrostriction Effects in Glass by Uniaxial Stress Compressometer." 19. Wuyi Pan, E...15. Y. Sun, L.E. Cross. "Investigations of Electrostrictive Effects in Glass by Uniaxial Stress Compressometer." A 16. M.J. Haun, T.R. Halemane, R.E...Points," Ind. Symp. Appl. Ferroelectrics (1986). 60. Y. Sun, L.E. Cross. "Investigations of Electrostrictive Effects in Glass by Uniaxial Stress
Van der Waals interaction in uniaxial anisotropic media.
Kornilovitch, Pavel E
2013-01-23
Van der Waals interactions between flat surfaces in uniaxial anisotropic media are investigated in the nonretarded limit. The main focus is the effect of nonzero tilt between the optical axis and the surface normal on the strength of the van der Waals attraction. General expressions for the van der Waals free energy are derived using the surface mode method and the transfer-matrix formalism. To facilitate numerical calculations a temperature-dependent three-band parameterization of the dielectric tensor of the liquid crystal 5CB is developed. A solid slab immersed in a liquid crystal experiences a van der Waals torque that aligns the surface normal relative to the optical axis of the medium. The preferred orientation is different for different materials. Two solid slabs in close proximity experience a van der Waals attraction that is strongest for homeotropic alignment of the intervening liquid crystal for all the materials studied. The results have implications for the stability of plate-like colloids in liquid crystal hosts.
Constitutive relations describing creep deformation for multi-axial time-dependent stress states
NASA Astrophysics Data System (ADS)
McCartney, L. N.
1981-02-01
A THEORY of primary and secondary creep deformation in metals is presented, which is based upon the concept of tensor internal state variables and the principles of continuum mechanics and thermodynamics. The theory is able to account for both multi-axial and time-dependent stress and strain states. The wellknown concepts of elastic, anelastic and plastic strains follow naturally from the theory. Homogeneous stress states are considered in detail and a simplified theory is derived by linearizing with respect to the internal state variables. It is demonstrated that the model can be developed in such a way that multi-axial constant-stress creep data can be presented as a single relationship between an equivalent stress and an equivalent strain. It is shown how the theory may be used to describe the multi-axial deformation of metals which are subjected to constant stress states. The multi-axial strain response to a general cyclic stress state is calculated. For uni-axial stress states, square-wave loading and a thermal fatigue stress cycle are analysed.
Erythrocyte Membrane Failure by Electromechanical Stress.
Du, E; Qiang, Yuhao; Liu, Jia
2018-01-01
We envision that electrodeformation of biological cells through dielectrophoresis as a new technique to elucidate the mechanistic details underlying membrane failure by electrical and mechanical stresses. Here we demonstrate the full control of cellular uniaxial deformation and tensile recovery in biological cells via amplitude-modified electric field at radio frequency by an interdigitated electrode array in microfluidics. Transient creep and cyclic experiments were performed on individually tracked human erythrocytes. Observations of the viscoelastic-to-viscoplastic deformation behavior and the localized plastic deformations in erythrocyte membranes suggest that electromechanical stress results in irreversible membrane failure. Examples of membrane failure can be separated into different groups according to the loading scenarios: mechanical stiffening, physical damage, morphological transformation from discocyte to echinocyte, and whole cell lysis. These results show that this technique can be potentially utilized to explore membrane failure in erythrocytes affected by other pathophysiological processes.
NASA Astrophysics Data System (ADS)
Kumar, Ajeet; Ahmad, Dilshad; Patra, Karali
2018-02-01
A dielectric elastomer is capable of large deformation under three basic modes of deformation: equi-biaxial, pure shear and uniaxial. Pre-stretching of dielectric elastomer improves the actuation strain appreciably. Experimental results shows that pre-stretching using equal biaxial mode can result to higher actuation strain compared to other two modes of stretching, i.e., uniaxial and pure shear. However, analysis of the experimental results shows that the actuation strain is independent of the modes of pre-stretching rather it is dependent upon the thickness stretch. For same thickness stretch at a particular voltage, the actuation strain is almost similar for all pre-stretching modes. Power trend lines are obtained to predict the actuation strain at any thickness stretch for a particular voltage. The present analysis opens the door to easily design the actuators, sensors and energy harvesting devices.
Plasmon modes in monolayer and double-layer black phosphorus under applied uniaxial strain
NASA Astrophysics Data System (ADS)
Saberi-Pouya, S.; Vazifehshenas, T.; Saleh, M.; Farmanbar, M.; Salavati-fard, T.
2018-05-01
We study the effects of an applied in-plane uniaxial strain on the plasmon dispersions of monolayer, bilayer, and double-layer black phosphorus structures in the long-wavelength limit within the linear elasticity theory. In the low-energy limit, these effects can be modeled through the change in the curvature of the anisotropic energy band along the armchair and zigzag directions. We derive analytical relations of the plasmon modes under uniaxial strain and show that the direction of the applied strain is important. Moreover, we observe that along the armchair direction, the changes of the plasmon dispersion with strain are different and larger than those along the zigzag direction. Using the analytical relations of two-layer phosphorene systems, we found that the strain-dependent orientation factor of layers could be considered as a means to control the variations of the plasmon energy. Furthermore, our study shows that the plasmonic collective modes are more affected when the strain is applied equally to the layers compared to the case in which the strain is applied asymmetrically to the layers. We also calculate the effect of strain on the drag resistivity in a double-layer black phosphorus structure and obtain that the changes in the plasmonic excitations, due to an applied strain, are mainly responsible for the predicted results. This study can be readily extended to other anisotropic two-dimensional materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeuch, David Henry; Montgomery, Stephen Tedford; Lee, Moo Yul
Sandia is currently developing a lead-zirconate-titanate ceramic 95/5-2Nb (or PNZT) from chemically prepared ('chem-prep') precursor powders. Previous PNZT ceramic was fabricated from the powders prepared using a 'mixed-oxide' process. The specimens of unpoled PNZT ceramic from batch HF803 were tested under hydrostatic, uniaxial, and constant stress difference loading conditions within the temperature range of -55 to 75 C and pressures to 500 MPa. The objective of this experimental study was to obtain mechanical properties and phase relationships so that the grain-scale modeling effort can develop and test its models and codes using realistic parameters. The stress-strain behavior of 'chem-prep' PNZTmore » under different loading paths was found to be similar to that of 'mixed-oxide' PNZT. The phase transformation from ferroelectric to antiferroelectric occurs in unpoled ceramic with abrupt increase in volumetric strain of about 0.7 % when the maximum compressive stress, regardless of loading paths, equals the hydrostatic pressure at which the transformation otherwise takes place. The stress-volumetric strain relationship of the ceramic undergoing a phase transformation was analyzed quantitatively using a linear regression analysis. The pressure (P{sub T1}{sup H}) required for the onset of phase transformation with respect to temperature is represented by the best-fit line, P{sub T1}{sup H} (MPa) = 227 + 0.76 T (C). We also confirmed that increasing shear stress lowers the mean stress and the volumetric strain required to trigger phase transformation. At the lower bound (-55 C) of the tested temperature range, the phase transformation is permanent and irreversible. However, at the upper bound (75 C), the phase transformation is completely reversible as the stress causing phase transformation is removed.« less
Anomalous elastic response of silicon to uniaxial shock compression on nanosecond time scales.
Loveridge-Smith, A; Allen, A; Belak, J; Boehly, T; Hauer, A; Holian, B; Kalantar, D; Kyrala, G; Lee, R W; Lomdahl, P; Meyers, M A; Paisley, D; Pollaine, S; Remington, B; Swift, D C; Weber, S; Wark, J S
2001-03-12
We have used x-ray diffraction with subnanosecond temporal resolution to measure the lattice parameters of orthogonal planes in shock compressed single crystals of silicon (Si) and copper (Cu). Despite uniaxial compression along the (400) direction of Si reducing the lattice spacing by nearly 11%, no observable changes occur in planes with normals orthogonal to the shock propagation direction. In contrast, shocked Cu shows prompt hydrostaticlike compression. These results are consistent with simple estimates of plastic strain rates based on dislocation velocity data.
NASA Astrophysics Data System (ADS)
Samlan, C. T.; Naik, Dinesh N.; Viswanathan, Nirmal K.
2016-09-01
Discovered in 1813, the conoscopic interference pattern observed due to light propagating through a crystal, kept between crossed polarizers, shows isochromates and isogyres, respectively containing information about the dynamic and geometric phase acquired by the beam. We propose and demonstrate a closed-fringe Fourier analysis method to disentangle the isogyres from the isochromates, leading us to the azimuthally varying geometric phase and its manifestation as isogyres. This azimuthally varying geometric phase is shown to be the underlying mechanism for the spin-to-orbital angular momentum conversion observed in a diverging optical field propagating through a z-cut uniaxial crystal. We extend the formalism to study the optical activity mediated uniaxial-to-biaxial transformation due to a weak transverse electric field applied across the crystal. Closely associated with the phase and polarization singularities of the optical field, the formalism enables us to understand crystal optics in a new way, paving the way to anticipate several emerging phenomena.
Samlan, C T; Naik, Dinesh N; Viswanathan, Nirmal K
2016-09-14
Discovered in 1813, the conoscopic interference pattern observed due to light propagating through a crystal, kept between crossed polarizers, shows isochromates and isogyres, respectively containing information about the dynamic and geometric phase acquired by the beam. We propose and demonstrate a closed-fringe Fourier analysis method to disentangle the isogyres from the isochromates, leading us to the azimuthally varying geometric phase and its manifestation as isogyres. This azimuthally varying geometric phase is shown to be the underlying mechanism for the spin-to-orbital angular momentum conversion observed in a diverging optical field propagating through a z-cut uniaxial crystal. We extend the formalism to study the optical activity mediated uniaxial-to-biaxial transformation due to a weak transverse electric field applied across the crystal. Closely associated with the phase and polarization singularities of the optical field, the formalism enables us to understand crystal optics in a new way, paving the way to anticipate several emerging phenomena.
Mechanical properties of graphene nanoribbons under uniaxial tensile strain
NASA Astrophysics Data System (ADS)
Yoneyama, Kazufumi; Yamanaka, Ayaka; Okada, Susumu
2018-03-01
Based on the density functional theory with the generalized gradient approximation, we investigated the mechanical properties of graphene nanoribbons in terms of their edge shape under a uniaxial tensile strain. The nanoribbons with armchair and zigzag edges retain their structure under a large tensile strain, while the nanoribbons with chiral edges are fragile against the tensile strain compared with those with armchair and zigzag edges. The fracture started at the cove region, which corresponds to the border between the zigzag and armchair edges for the nanoribbons with chiral edges. For the nanoribbons with armchair edges, the fracture started at one of the cove regions at the edges. In contrast, the fracture started at the inner region of the nanoribbons with zigzag edges. The bond elongation under the tensile strain depends on the mutual arrangement of covalent bonds with respect to the strain direction.
Uniaxial ferromagnetism of local uranium moments in hexagonal UBeGe
NASA Astrophysics Data System (ADS)
Gumeniuk, Roman; Yaresko, Alexander N.; Schnelle, Walter; Nicklas, Michael; Kvashnina, Kristina O.; Hennig, Christoph; Grin, Yuri; Leithe-Jasper, Andreas
2018-05-01
The new intermetallic uranium beryllium germanide UBeGe and its thorium analogon ThBeGe crystallize with the hexagonal ZrBeSi type of structure. Studies of magnetic, thermal, and transport properties were performed on polycrystalline samples between 1.8 and 750K. UBeGe is a uniaxial ferromagnet and there are indications for two magnetic transitions at TC(1 )≈160 K and TC(2 )≈150 K . The high paramagnetic effective moment μeff≈3.1 μB , x-ray absorption near-edge spectroscopy (XANES, 17-300 K), as well as theoretical DFT calculations indicate localized U 5 f2 states in UBeGe. ThBeGe is a diamagnetic metallic material with low density of states at the Fermi level.
NASA Astrophysics Data System (ADS)
Gómez-Urrea, H. A.; Duque, C. A.; Pérez-Quintana, I. V.; Mora-Ramos, M. E.
2017-03-01
The dispersion relations of two-dimensional photonic crystals made of uniaxial polaritonic cylinders arranged in triangular lattice are calculated. The particular case of the transverse magnetic polarization is taken into account. Three different uniaxial materials showing transverse phonon-polariton excitations are considered: aluminum nitride, gallium nitride, and indium nitride. The study is carried out by means of the finite-difference time-domain technique for the solution of Maxwell equations, together with the method of the auxiliary differential equation. It is shown that changing the filling fraction can result in the modification of both the photonic and polaritonic bandgaps in the optical dispersion relations. Wider gaps appear for smaller filling fraction values, whereas a larger number of photonic bandgaps will occur within the frequency range considered when a larger filling fraction is used. The effect of including the distinct wurtzite III-V nitride semiconductors as core materials in the cylinders embedded in the air on the photonic properties is discussed as well, highlighting the effect of the dielectric anisotropy on the properties of the polaritonic part of the photonic spectrum.
Tam, David W.; Song, Yu; Man, Haoran; ...
2017-02-17
In this paper, we use neutron diffraction and muon spin relaxation to study the effect of in-plane uniaxial pressure on the antiferromagnetic (AF) orthorhombic phase in BaFe 2As 2 and its Co- and Ni-substituted members near optimal superconductivity. In the low-temperature AF ordered state, uniaxial pressure necessary to detwin the orthorhombic crystals also increases the magnetic ordered moment, reaching an 11% increase under 40 MPa for BaFe 1.9Co 0.1As 2, and a 15% increase for BaFe 1.915Ni 0.085As 2. We also observe an increase of the AF ordering temperature (T N) of about 0.25 K/MPa in all compounds, consistent withmore » density functional theory calculations that reveal better Fermi surface nesting for itinerant electrons under uniaxial pressure. Finally, the doping dependence of the magnetic ordered moment is captured by combining dynamical mean field theory with density functional theory, suggesting that the pressure-induced moment increase near optimal superconductivity is closely related to quantum fluctuations and the nearby electronic nematic phase.« less
Magnetoelastic Effect-Based Transmissive Stress Detection for Steel Strips: Theory and Experiment
Zhang, Qingdong; Su, Yuanxiao; Zhang, Liyuan; Bi, Jia; Luo, Jiang
2016-01-01
For the deficiencies of traditional stress detection methods for steel strips in industrial production, this paper proposes a non-contact stress detection scheme based on the magnetoelastic effect. The theoretical model of the transmission-type stress detection is established, in which the output voltage and the tested stress obey a linear relation. Then, a stress detection device is built for the experiment, and Q235 steel under uniaxial tension is tested as an example. The result shows that the output voltage rises linearly with the increase of the tensile stress, consistent with the theoretical prediction. To ensure the accuracy of the stress detection method in actual application, the temperature compensation, magnetic shielding and some other key technologies are investigated to reduce the interference of the external factors, such as environment temperature and surrounding magnetic field. The present research develops the theoretical and experimental foundations for the magnetic stress detection system, which can be used for online non-contact monitoring of strip flatness-related stress (tension distribution or longitudinal residual stress) in the steel strip rolling process, the quality evaluation of strip flatness after rolling, the life and safety assessment of metal construction and other industrial production links. PMID:27589742
NASA Astrophysics Data System (ADS)
Chakraborty, Souvik; Mondal, Debabrata; Motalab, Mohammad
2016-07-01
In this present study, the stress-strain behavior of the Human Anterior Cruciate Ligament (ACL) is studied under uniaxial loads applied with various strain rates. Tensile testing of the human ACL samples requires state of the art test facilities. Furthermore, difficulty in finding human ligament for testing purpose results in very limited archival data. Nominal Stress vs. deformation gradient plots for different strain rates, as found in literature, is used to model the material behavior either as a hyperelastic or as a viscoelastic material. The well-known five parameter Mooney-Rivlin constitutivemodel for hyperelastic material and the Prony Series model for viscoelastic material are used and the objective of the analyses comprises of determining the model constants and their variation-trend with strain rates for the Human Anterior Cruciate Ligament (ACL) material using the non-linear curve fitting tool. The relationship between the model constants and strain rate, using the Hyperelastic Mooney-Rivlin model, has been obtained. The variation of the values of each coefficient with strain rates, obtained using Hyperelastic Mooney-Rivlin model are then plotted and variation of the values with strain rates are obtained for all the model constants. These plots are again fitted using the software package MATLAB and a power law relationship between the model constants and strain rates is obtained for each constant. The obtained material model for Human Anterior Cruciate Ligament (ACL) material can be implemented in any commercial finite element software package for stress analysis.
NASA Astrophysics Data System (ADS)
Cao, Pengfei; Fu, Wenyu
2017-10-01
Based on the extended Huygens-Fresnel integral formula and unified theory of coherence and polarization, we obtained the cross-spectral density matrix elements for a radially polarized partially coherent twist (RPPCT) beam in a uniaxial crystal. Moreover, compared with free space, we explore numerically the evolution properties of a RPPCT beam in a uniaxial crystal. The calculation results show that the evolution properties of a RPPCT beam in crystals are substantially different from its properties in free space. These properties in crystals are mainly determined by the twist factor and the ratio of extraordinary index to ordinary refractive index. In a uniaxial crystal, the distribution of the intensity of a RPPCT beam all exhibits non-circular symmetry, and these distributions change with twist factor and the ratio of extraordinary index to ordinary refractive index. The twist factor affects their rotation orientation angles, and the ratio of extraordinary index to ordinary refractive index impacts their twisted levels. This novel characteristics can be used for free-space optical communications, particle manipulation and nonlinear optics, where partially coherent beam with controlled profile and twist factor are required.
NASA Technical Reports Server (NTRS)
Prosser, William H.; Kriz, R. D.; Fitting, Dale W.
1990-01-01
Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis fiber axis) and the x1 axis for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers new nondestructive technique of evaluating stress in composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Biplab K.; Ghosh, C. K.; Chattopadhyay, K. K., E-mail: kalyan-chattopadhyay@yahoo.com
2014-10-21
The thermal variation of magnetic anisotropy (K) and saturation magnetization (M{sub S}) for uniaxial nickel ferrite (NiFe₂O₄) nanomagnets are investigated. Major magnetic hysteresis loops are measured for the sample at temperatures over the range 5–280 K using a vibrating sample magnetometer. The high-field regimes of the hysteresis loops are modeled using the law of approach to saturation, based on the assumption that at sufficiently high field only direct rotation of spin-moment take place, with an additional forced magnetization term that is linear with applied field. The uniaxial anisotropy constant K is calculated from the fitting of the data to the theoreticalmore » equation. As temperature increases from 5 K to 280 K, a 49% reduction of K, accompanied by an 85% diminution of M{sub S} is observed. Remarkably, K is linearly proportional to M{sub S}₂.₆ in the whole temperature range violating the existing theoretical model by Callen and Callen. The unusual power-law behavior for the NiFe₂O₄ uniaxial nanomagnets is ascribed to the non-negligible contributions from inter-sublattice pair interactions, Neel surface anisotropy, and higher order anisotropies. A complete realization of the unusual anisotropy-magnetization scaling behavior for nanoscale two-sublattice magnetic materials require a major modification of the existing theory by considering the exact mechanism of each contributions to the effective anisotropy.« less
Chen, Yun; Pasapera, Ana M.; Koretsky, Alan P.; Waterman, Clare M.
2013-01-01
Cells are mechanosensitive to extracellular matrix (ECM) deformation, which can be caused by muscle contraction or changes in hydrostatic pressure. Focal adhesions (FAs) mediate the linkage between the cell and the ECM and initiate mechanically stimulated signaling events. We developed a stretching apparatus in which cells grown on fibronectin-coated elastic substrates can be stretched and imaged live to study how FAs dynamically respond to ECM deformation. Human bone osteosarcoma epithelial cell line U2OS was transfected with GFP-paxillin as an FA marker and subjected to sustained uniaxial stretching. Two responses at different timescales were observed: rapid FA growth within seconds after stretching, and delayed FA disassembly and loss of cell polarity that occurred over tens of minutes. Rapid FA growth occurred in all cells; however, delayed responses to stretch occurred in an orientation-specific manner, specifically in cells with their long axes perpendicular to the stretching direction, but not in cells with their long axes parallel to stretch. Pharmacological treatments demonstrated that FA kinase (FAK) promotes but Src inhibits rapid FA growth, whereas FAK, Src, and calpain 2 all contribute to delayed FA disassembly and loss of polarity in cells perpendicular to stretching. Immunostaining for phospho-FAK after stretching revealed that FAK activation was maximal at 5 s after stretching, specifically in FAs oriented perpendicular to stretch. We hypothesize that orientation-specific activation of strain/stress-sensitive proteins in FAs upstream to FAK and Src promote orientation-specific responses in FA growth and disassembly that mediate polarity rearrangement in response to sustained stretch. PMID:23754369
Stress path dependent hydromechanical behaviour of heterogeneous carbonate rock
NASA Astrophysics Data System (ADS)
Gland, N.; Dautriat, J.; Dimanov, A.; Raphanel, J.
2010-06-01
The influence of stress paths, representative of reservoir conditions, on the hydromechanical behavior of a moderately heterogeneous carbonate has been investigated. Multiscale structural heterogeneities, common for instance in carbonate rocks, can strongly alter the mechanical response and significantly influence the evolution of flow properties with stress. Using a triaxial cell, the permeability evolutions during compression and the effects of brittle (fracture) and plastic (pore collapse) deformations at yield, were measured. A strong scattering was observed on the mechanical response both in term of compressibility and failure threshold. Using the porosity scaling predicted by an adapted effective medium theory (based on crack growth under Hertzian contact), we have rescaled the critical pressures by the normalized porosity deviation. This procedure reduces efficiently the scattering, revealing in the framework of proportional stress path loading, a linear relation between the critical pressures and the stress path parameter through all the deformation regimes. It leads to a new formulation for the critical state envelope in the 'mean stress, deviatoric stress' diagram. The attractive feature of this new yield envelope formulation relies on the fact that only the two most common different mechanical tests 'Uniaxial Compression' and 'Hydrostatic Compression', are needed to define entirely the yield envelope. Volumic strains and normalized permeabilities are finally mapped in the stresses diagram and correlated.
Thermal stress characterization using the electro-mechanical impedance method
NASA Astrophysics Data System (ADS)
Zhu, Xuan; Lanza di Scalea, Francesco; Fateh, Mahmood
2017-04-01
This study examines the potential of the Electro-Mechanical Impedance (EMI) method to provide an estimation of the developed thermal stress in constrained bar-like structures. This non-invasive method features the easiness of implementation and interpretation, while it is notoriously known for being vulnerable to environmental variability. A comprehensive analytical model is proposed to relate the measured electric admittance signatures of the PZT element to temperature and uniaxial stress applied to the underlying structure. The model results compare favorably to the experimental ones, where the sensitivities of features extracted from the admittance signatures to the varying stress levels and temperatures are determined. Two temperature compensation frameworks are proposed to characterize the thermal stress states: (a) a regression model is established based on temperature-only tests, and the residuals from the thermal stress tests are then used to isolate the stress measurand; (b) the temperature-only tests are decomposed by Principle Components Analysis (PCA) and the feature vectors of the thermal stress tests are reconstructed after removal of the temperaturesensitive components. For both methods, the features were selected based on their performance in Receiver Operating Characteristic (ROC) curves. Experimental results on the Continuous Welded Rails (CWR) are shown to demonstrate the effectiveness of these temperature compensation methods.
NASA Astrophysics Data System (ADS)
Abuzaid, A.; Hrairi, M.; Shaik Dawood, M. S. I.
2017-03-01
In this paper, the effect of piezoelectric actuators placed above a circular hole of a rectangular plate subjected to uniform uniaxial tension is studied. The core idea is to investigate the stress (compression/tension) produced by the piezoelectric actuators on the stress distribution around the hole and along the width of the host plate. For this purpose, Finite Element Analysis (FEA) was carried out through parametric study in ANSYS software. The results demonstrated that the positive electric field would decrease and change the state of the stress distribution along the width of the host plate in contrast to the negative applied electric filed which increases the stress distribution smoothly without affecting its behaviour. The results also indicated that the reduction of the stress concentration factor increases with the decrease of the ratio (D/W) for the same applied positive electric field.
NASA Astrophysics Data System (ADS)
Liu, Yi; Dai, Feng; Fan, Pengxian; Xu, Nuwen; Dong, Lu
2017-06-01
Intermittent joints in rock mass are quite sensitive to cyclic loading conditions. Understanding the fatigue mechanical properties of jointed rocks is beneficial for rational design and stability analysis of rock engineering projects. This study experimentally investigated the influences of joint geometry (i.e., dip angle, persistency, density and spacing) on the fatigue mechanism of synthetic jointed rock models. Our results revealed that the stress-strain curve of jointed rock under cyclic loadings is dominated by its curve under monotonic uniaxial loadings; the terminal strain in fatigue curve is equal to the post-peak strain corresponding to the maximum cyclic stress in the monotonic stress-strain curve. The four joint geometrical parameters studied significantly affect the fatigue properties of jointed rocks, including the irreversible strains, the fatigue deformation modulus, the energy evolution, the damage variable and the crack coalescence patterns. The higher the values of the geometrical parameters, the lower the elastic energy stores in this jointed rock, the higher the fatigue damage accumulates in the first few cycles, and the lower the fatigue life. The elastic energy has certain storage limitation, at which the fatigue failure occurs. Two basic micro-cracks, i.e., tensile wing crack and shear crack, are observed in cyclic loading and unloading tests, which are controlled principally by joint dip angle and persistency. In general, shear cracks only occur in the jointed rock with higher dip angle or higher persistency, and the jointed rock is characterized by lower fatigue strength, larger damage variable and lower fatigue life.
NASA Astrophysics Data System (ADS)
Cao, Wenzhe; Görrn, Patrick; Wagner, Sigurd
2011-05-01
The electrical resistance of gold film conductors on polydimethyl siloxane substrates at stages of uniaxial stretching is measured and modeled. The surface area of a gold conductor is assumed constant during stretching so that the exposed substrate takes up all strain. Sheet resistances are calculated from frames of scanning electron micrographs by numerically solving for the electrical potentials of all pixels in a frame. These sheet resistances agree sufficiently well with values measured on the same conductors to give credence to the model of a stretchable network of gold links defined by microcracks.
Phonon dispersion evolution in uniaxially strained aluminum crystal
NASA Astrophysics Data System (ADS)
Parthasarathy, Ranganathan; Misra, Anil; Aryal, Sitaram; Ouyang, Lizhi
2018-04-01
The influence of loading upon the phonon dispersion of crystalline materials could be highly nonlinear with certain particular trends that depend upon the loading path. In this paper, we have calculated the influence of [100] uniaxial strain on the phonon dispersion and group velocities in fcc aluminum using second moments of position obtained from molecular dynamics (MD) simulation at 300 K. In contrast to nonlinear monotonic variation of both longitudinal and transverse phonon frequencies along the Δ , Λ and Σ lines of the first Brillouin zone under tension, transverse phonon branches along the Λ line show inflection at specific wavevectors when the compressive strain exceeds 5%. Further, the longitudinal group velocities along the high-symmetry Δ line vary non-monotonically with strain, reaching a minimum at 5% compressive strain. Throughout the strain range studied, the equilibrium positions of atoms displace in an affine manner preserving certain static structural symmetry. We attribute the anomalies in the phonon dispersion to the non-affine evolution of second moments of atomic position, and the associated plateauing of force constants under the applied strain path.
Modulus and yield stress of drawn LDPE
NASA Astrophysics Data System (ADS)
Thavarungkul, Nandh
Modulus and yield stress were investigated in drawn low density polyethylene (LDPE) film. Uniaxially drawn polymeric films usually show high values of modulus and yield stress, however, studies have normally only been conducted to identify the structural features that determine modulus. In this study small-angle x-ray scattering (SAXS), thermal shrinkage, birefringence, differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA) were used to examine, directly and indirectly, the structural features that determine both modulus and yield stress, which are often closely related in undrawn materials. Shish-kebab structures are proposed to account for the mechanical properties in drawn LDPE. The validity of this molecular/morphological model was tested using relationships between static mechanical data and structural and physical parameters. In addition, dynamic mechanical results are also in line with static data in supporting the model. In the machine direction (MD), "shish" and taut tie molecules (TTM) anchored in the crystalline phase account for E; whereas crystal lamellae with contributions from "shish" and TTM determine yield stress. In the transverse direction (TD), the crystalline phase plays an important roll in both modulus and yield stress. Modulus is determined by crystal lamellae functioning as platelet reinforcing elements in the amorphous matrix with an additional contributions from TTM and yield stress is determined by the crystal lamellae's resistance to deformation.
Stress measurement in thick plates using nonlinear ultrasonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbasi, Zeynab, E-mail: zabbas5@uic.edu, E-mail: dozevin@uic.edu; Ozevin, Didem, E-mail: zabbas5@uic.edu, E-mail: dozevin@uic.edu
2015-03-31
In this paper the interaction between nonlinear ultrasonic characteristics and stress state of complex loaded thick steel plates using fundamental theory of nonlinear ultrasonics is investigated in order to measure the stress state at a given cross section. The measurement concept is based on phased array placement of ultrasonic transmitter-receiver to scan three angles of a given cross section using Rayleigh waves. The change in the ultrasonic data in thick steel plates is influenced by normal and shear stresses; therefore, three measurements are needed to solve the equations simultaneously. Different thickness plates are studied in order to understand the interactionmore » of Rayleigh wave penetration depth and shear stress. The purpose is that as the thickness becomes smaller, the shear stress becomes negligible at the angled measurement. For thicker cross section, shear stress becomes influential if the depth of penetration of Rayleigh wave is greater than the half of the thickness. The influences of plate thickness and ultrasonic frequency on the identification of stress tensor are numerically studied in 3D structural geometry and Murnaghan material model. The experimental component of this study includes uniaxial loading of the plate while measuring ultrasonic wave at three directions (perpendicular, parallel and angled to the loading direction). Instead of rotating transmitter-receiver pair for each test, a device capable of measuring the three angles is designed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, Bharat R.; Kang, Shin-Woong; Prasad, Veena
2009-08-27
X-ray diffraction is one of the most definitive methods to determine the structure of condensed matter phases, and it has been applied to unequivocally infer the structures of conventional calamitic and lyotropic liquid crystals. With the advent of bent-core and tetrapodic mesogens and the discovery of the biaxial nematic phase in them, the experimental results require more careful interpretation and analysis. Here, we present ab-initio calculations of X-ray diffraction patterns in the isotropic, uniaxial nematic, and biaxial nematic phases of bent-core mesogens. A simple Meier-Saupe-like molecular distribution function is employed to describe both aligned and unaligned mesophases. The distribution functionmore » is decomposed into two, polar and azimuthal, distribution functions to calculate the effect of the evolution of uniaxial and biaxial nematic orientational order. The calculations provide satisfactory semiquantitative interpretations of experimental results. The calculations presented here should provide a pathway to more refined and quantitative analysis of X-ray diffraction data from the biaxial nematic phase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, Bharat R.; Kang, Shin-Woong; Prasad, Veena
2009-04-29
X-ray diffraction is one of the most definitive methods to determine the structure of condensed matter phases, and it has been applied to unequivocally infer the structures of conventional calamitic and lyotropic liquid crystals. With the advent of bent-core and tetrapodic mesogens and the discovery of the biaxial nematic phase in them, the experimental results require more careful interpretation and analysis. Here, we present ab-initio calculations of X-ray diffraction patterns in the isotropic, uniaxial nematic, and biaxial nematic phases of bent-core mesogens. A simple Meier-Saupe-like molecular distribution function is employed to describe both aligned and unaligned mesophases. The distribution functionmore » is decomposed into two, polar and azimuthal, distribution functions to calculate the effect of the evolution of uniaxial and biaxial nematic orientational order. The calculations provide satisfactory semiquantitative interpretations of experimental results. The calculations presented here should provide a pathway to more refined and quantitative analysis of X-ray diffraction data from the biaxial nematic phase.« less
NASA Astrophysics Data System (ADS)
Hayashi, K.; Umeo, K.; Takeuchi, T.; Kawabata, J.; Muro, Y.; Takabatake, T.
2017-12-01
We have measured the strain, magnetization, and specific heat of the antiferromagnetic (AFM) Kondo semiconductors Ce T2A l10 (T =Ru and Os) under uniaxial pressures applied along the orthorhombic axes. We found a linear dependence of TN on the b -axis parameter for both compounds under uniaxial pressure P ∥b and hydrostatic pressure. This relation indicates that the distance between the Ce-T layers along the b axis is the key structural parameter determining TN. Furthermore, the pressure dependence of the spin-flop transition field indicates that Ce-Ce interchain interactions stabilize the AFM state with the ordered moments pointing to the c axis.
Propagation of Airy Gaussian vortex beams in uniaxial crystals
NASA Astrophysics Data System (ADS)
Weihao, Yu; Ruihuang, Zhao; Fu, Deng; Jiayao, Huang; Chidao, Chen; Xiangbo, Yang; Yanping, Zhao; Dongmei, Deng
2016-04-01
The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108, 11374107, 10904041, and 11547212), the Foundation of Cultivating Outstanding Young Scholars of Guangdong Province, China, the CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, the National Training Program of Innovation and Entrepreneurship for Undergraduates (Grant No. 2015093), and the Science and Technology Projects of Guangdong Province, China (Grant No. 2013B031800011).
NASA Astrophysics Data System (ADS)
Atkinson, James H.; Fournet, Adeline D.; Bhaskaran, Lakshmi; Myasoedov, Yuri; Zeldov, Eli; del Barco, Enrique; Hill, Stephen; Christou, George; Friedman, Jonathan R.
2017-05-01
The symmetry of single-molecule magnets dictates their spin quantum dynamics, influencing how such systems relax via quantum tunneling of magnetization (QTM). By reducing a system's symmetry, through the application of a magnetic field or uniaxial pressure, these dynamics can be modified. We report measurements of the magnetization dynamics of a crystalline sample of the high-symmetry [M n12O12(O2CMe) 16(Me OH ) 4].M e OH single-molecule magnet as a function of uniaxial pressure applied either parallel or perpendicular to the sample's "easy" magnetization axis. At temperatures between 1.8 and 3.3 K, magnetic hysteresis loops exhibit the characteristic steplike features that signal the occurrence of QTM. After applying uniaxial pressure to the sample in situ, both the magnitude and field position of the QTM steps changed. The step magnitudes were observed to grow as a function of pressure in both arrangements of pressure, while pressure applied along (perpendicular to) the sample's easy axis caused the resonant-tunneling fields to increase (decrease). These observations were compared with simulations in which the system's Hamiltonian parameters were changed. From these comparisons, we determined that parallel pressure induces changes to the second-order axial anisotropy parameter as well as either the fourth-order axial or fourth-order transverse parameter, or to both. In addition, we find that pressure applied perpendicular to the easy axis induces a rhombic anisotropy E ≈D /2000 per kbar that can be understood as deriving from a symmetry-breaking distortion of the molecule.
Integral imaging with multiple image planes using a uniaxial crystal plate.
Park, Jae-Hyeung; Jung, Sungyong; Choi, Heejin; Lee, Byoungho
2003-08-11
Integral imaging has been attracting much attention recently for its several advantages such as full parallax, continuous view-points, and real-time full-color operation. However, the thickness of the displayed three-dimensional image is limited to relatively small value due to the degradation of the image resolution. In this paper, we propose a method to provide observers with enhanced perception of the depth without severe resolution degradation by the use of the birefringence of a uniaxial crystal plate. The proposed integral imaging system can display images integrated around three central depth planes by dynamically altering the polarization and controlling both elemental images and dynamic slit array mask accordingly. We explain the principle of the proposed method and verify it experimentally.
Synthesis of full Poincaré beams by means of uniaxial crystals
NASA Astrophysics Data System (ADS)
Piquero, G.; Monroy, L.; Santarsiero, M.; Alonzo, M.; de Sande, J. C. G.
2018-06-01
A simple optical system is proposed to generate full-Poincaré beams (FPBs), i.e. beams presenting all possible states of (total) polarization across their transverse section. The method consists in focusing a uniformly polarized laser beam onto a uniaxial crystal having its optic axis parallel to the propagation axis of the impinging beam. A simple approximated model is used to obtain the analytical expression of the beam polarization at the output of the crystal. The output beam is then proved to be a FPB. By changing the polarization state of the input field, full-Poincaré beams are still obtained, but presenting different distributions of the polarization state across the beam section. Experimental results are reported, showing an excellent agreement with the theoretical predictions.
Stress distribution and mechanical properties of free and assembled Ni3Al nanoclusters
NASA Astrophysics Data System (ADS)
Zhurkin, E. E.; Hautier, G.; Hou, M.
2006-03-01
Classical molecular dynamics with a semiempirical N -body potential is used to study the distribution of local stress in bimetallic Ni3Al nanoparticles and in cluster-assembled materials. The materials considered are synthesized with these particles by low-energy deposition at 0.5eV per atom and by compaction with an external pressure of 2GPa , thus featuring different nanostructures. Both are nanoporous, the lowest density being obtained by deposition. Their mechanical response to a uniaxial external load is then studied and deformation mechanisms are identified and are found to be similar in both nanostructures. In the core of isolated clusters, the partial pressures on the nickel and aluminium subsystems are found to differ by several GPa and, as a balance to surface tension, the hydrostatic core pressure is positive and depends on the cluster size. The surface stress is tensile and, because of structural disorder, the partial pressures distributions on Ni and Al at the surface are scattered. When nanostructured systems are formed, strong and highly inhomogeneous shear stress appears, the cluster cores may become tensile, and the interfacial areas remain mainly tensile as well. The partial pressure difference between Ni and Al is somewhat reduced. It is shown that the effect of temperature is to reduce this difference still further and to homogenize the spatial stress distribution. When subjected to a uniaxial stress, both materials display an elastic and a plastic regime. The elastic limit is the lowest for the most porous material and decreases with increasing temperature. Plastic deformation is dominated by both grain boundary sliding and by the enlargement of the open volumes, without evidence for the nucleation of cracks. These open volumes are found to facilitate dislocation activity which is evidenced in grains with sizes as small as two nanometers. This dislocation activity is found to result in the production of stacking faults as well as to the
Experimental study on infrared radiation temperature field of concrete under uniaxial compression
NASA Astrophysics Data System (ADS)
Lou, Quan; He, Xueqiu
2018-05-01
Infrared thermography, as a nondestructive, non-contact and real-time monitoring method, has great significance in assessing the stability of concrete structure and monitoring its failure. It is necessary to conduct in depth study on the mechanism and application of infrared radiation (IR) of concrete failure under loading. In this paper, the concrete specimens with size of 100 × 100 × 100 mm were adopted to carry out the uniaxial compressions for the IR tests. The distribution of IR temperatures (IRTs), surface topography of IRT field and the reconstructed IR images were studied. The results show that the IRT distribution follows the Gaussian distribution, and the R2 of Gaussian fitting changes along with the loading time. The abnormities of R2 and AE counts display the opposite variation trends. The surface topography of IRT field is similar to the hyperbolic paraboloid, which is related to the stress distribution in the sample. The R2 of hyperbolic paraboloid fitting presents an upward trend prior to the fracture which enables to change the IRT field significantly. This R2 has a sharp drop in response to this large destruction. The normalization images of IRT field, including the row and column normalization images, were proposed as auxiliary means to analyze the IRT field. The row and column normalization images respectively show the transverse and longitudinal distribution of the IRT field, and they have clear responses to the destruction occurring on the sample surface. In this paper, the new methods and quantitative index were proposed for the analysis of IRT field, which have some theoretical and instructive significance for the analysis of the characteristics of IRT field, as well as the monitoring of instability and failure for concrete structure.
Dose dependence of true stress parameters in irradiated bcc, fcc, and hcp metals
NASA Astrophysics Data System (ADS)
Byun, T. S.
2007-04-01
The dose dependence of true stress parameters has been investigated for nuclear structural materials: A533B pressure vessel steels, modified 9Cr-1Mo and 9Cr-2WVTa ferritic martensitic steels, 316 and 316LN stainless steels, and Zircaloy-4. After irradiation to significant doses, these alloys show radiation-induced strengthening and often experience prompt necking at yield followed by large necking deformation. In the present work, the critical true stresses for deformation and fracture events, such as yield stress (YS), plastic instability stress (PIS), and true fracture stress (FS), were obtained from uniaxial tensile tests or calculated using a linear strain-hardening model for necking deformation. At low dose levels where no significant embrittlement was detected, the true fracture stress was nearly independent of dose. The plastic instability stress was also independent of dose before the critical dose-to-prompt-necking at yield was reached. A few bcc alloys such as ferritic martensitic steels experienced significant embrittlement at doses above ∼1 dpa; and the true fracture stress decreased with dose. The materials fractured before yield at or above 10 dpa.
Kikuchi, Koichi; Isono, Takayuki; Kojima, Masayuki; Yoshimoto, Haruo; Kodama, Takeshi; Fujita, Wataru; Yokogawa, Keiichi; Yoshino, Harukazu; Murata, Keizo; Kaihatsu, Takayuki; Akutsu, Hiroki; Yamada, Jun-ichi
2011-12-14
Dependence of the superconducting transition temperature (T(c)) and critial superconducting pressure (P(c)) of the pressure-induced superconductor β-(BDA-TTP)(2)I(3) [BDA-TTP = 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene] on the orientation of uniaxial strain has been investigated. On the basis of the overlap between the upper and lower bands in the energy dispersion curve, the pressure orientation is thought to change the half-filled band to the quarter-filled one. The observed variations in T(c) and P(c) are explained by considering the degree of application of the pressure and the degree of contribution of the effective electronic correlation at uniaxial strains with different orientations parallel to the conducting donor layer. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Zverev, V. V.; Izmozherov, I. M.; Filippov, B. N.
2018-02-01
Three-dimensional computer simulation of dynamic processes in a moving domain boundary separating domains in a soft magnetic uniaxial film with planar anisotropy is performed by numerical solution of Landau-Lifshitz-Gilbert equations. The developed visualization methods are used to establish the connection between the motion of surface vortices and antivortices, singular (Bloch) points, and core lines of intrafilm vortex structures. A relation between the character of magnetization dynamics and the film thickness is found. The analytical models of spatial vortex structures for imitation of topological properties of the structures observed in micromagnetic simulation are constructed.
Coupled thermal stress simulations of ductile tearing
Neilsen, Michael K.; Dion, Kristin
2016-03-01
Predictions for ductile tearing of a geometrically complex Ti-6Al-4V plate were generated using a Unified Creep Plasticity Damage model in fully coupled thermal stress simulations. Uniaxial tension and butterfly shear tests performed at displacement rates of 0.0254 and 25.4 mm/s were also simulated. Results from these simulations revealed that the material temperature increase due to plastic work can have a dramatic effect on material ductility predictions in materials that exhibit little strain hardening. Furthermore, this occurs because the temperature increase causes the apparent hardening of the material to decrease which leads to the initiation of deformation localization and subsequent ductilemore » tearing earlier in the loading process.« less
Tondon, Abhishek; Kaunas, Roland
2014-01-01
Cell structure depends on both matrix strain and stiffness, but their interactive effects are poorly understood. We investigated the interactive roles of matrix properties and stretching patterns on cell structure by uniaxially stretching U2OS cells expressing GFP-actin on silicone rubber sheets supporting either a surface-adsorbed coating or thick hydrogel of type-I collagen. Cells and their actin stress fibers oriented perpendicular to the direction of cyclic stretch on collagen-coated sheets, but oriented parallel to the stretch direction on collagen gels. There was significant alignment parallel to the direction of a steady increase in stretch for cells on collagen gels, while cells on collagen-coated sheets did not align in any direction. The extent of alignment was dependent on both strain rate and duration. Stretch-induced alignment on collagen gels was blocked by the myosin light-chain kinase inhibitor ML7, but not by the Rho-kinase inhibitor Y27632. We propose that active orientation of the actin cytoskeleton perpendicular and parallel to direction of stretch on stiff and soft substrates, respectively, are responses that tend to maintain intracellular tension at an optimal level. Further, our results indicate that cells can align along directions of matrix stress without collagen fibril alignment, indicating that matrix stress can directly regulate cell morphology.
Research of mechanics of the compact bone microvolume and porous ceramics under uniaxial compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolmakova, T. V., E-mail: kolmakova@ftf.tsu.ru; Buyakova, S. P., E-mail: sbuyakova@ispms.tsc.ru; Kul’kov, S. N., E-mail: kulkov@ms.tsc.ru
2015-11-17
The research results of the mechanics are presented and the effective mechanical characteristics under uniaxial compression of the simulative microvolume of the compact bone are defined subject to the direction of the collagen-mineral fibers, porosity and mineral content. The experimental studies of the mechanics are performed and the effective mechanical characteristics of the produced porous zirconium oxide ceramics are defined. The recommendations are developed on the selection of the ceramic samples designed to replace the fragment of the compact bone of a definite structure and mineral content.
Ojiambo, Robert; Konstabel, Kenn; Veidebaum, Toomas; Reilly, John; Verbestel, Vera; Huybrechts, Inge; Sioen, Isabelle; Casajús, José A; Moreno, Luis A; Vicente-Rodriguez, German; Bammann, Karin; Tubic, Bojan M; Marild, Staffan; Westerterp, Klaas; Pitsiladis, Yannis P
2012-11-01
One of the aims of Identification and Prevention of Dietary- and Lifestyle-Induced Health Effects in Children and Infants (IDEFICS) validation study is to validate field measures of physical activity (PA) and energy expenditure (EE) in young children. This study compared the validity of uniaxial accelerometry with heart-rate (HR) monitoring vs. triaxial accelerometry against doubly labeled water (DLW) criterion method for assessment of free-living EE in young children. Forty-nine European children (25 female, 24 male) aged 4-10 yr (mean age: 6.9 ± 1.5 yr) were assessed by uniaxial ActiTrainer with HR, uniaxial 3DNX, and triaxial 3DNX accelerometry. Total energy expenditure (TEE) was estimated using DLW over a 1-wk period. The longitudinal axis of both devices and triaxial 3DNX counts per minute (CPM) were significantly (P < 0.05) associated with physical activity level (PAL; r = 0.51 ActiTrainer, r = 0.49 uniaxial-3DNX, and r = 0.42 triaxial Σ3DNX). Eight-six percent of the variance in TEE could be predicted by a model combining body mass (partial r(2) = 71%; P < 0.05), CPM-ActiTrainer (partial r(2) = 11%; P < 0.05), and difference between HR at moderate and sedentary activities (ModHR - SedHR) (partial r(2) = 4%; P < 0.05). The SE of TEE estimate for ActiTrainer and 3DNX models ranged from 0.44 to 0.74 MJ/days or ∼7-11% of the average TEE. The SE of activity-induced energy expenditure (AEE) model estimates ranged from 0.38 to 0.57 MJ/day or 24-26% of the average AEE. It is concluded that the comparative validity of hip-mounted uniaxial and triaxial accelerometers for assessing PA and EE is similar.
Macroscopic tensile plasticity by scalarizating stress distribution in bulk metallic glass
Gao, Meng; Dong, Jie; Huan, Yong; Wang, Yong Tian; Wang, Wei-Hua
2016-01-01
The macroscopic tensile plasticity of bulk metallic glasses (BMGs) is highly desirable for various engineering applications. However, upon yielding, plastic deformation of BMGs is highly localized into narrow shear bands and then leads to the “work softening” behaviors and subsequently catastrophic fracture, which is the major obstacle for their structural applications. Here we report that macroscopic tensile plasticity in BMG can be obtained by designing surface pore distribution using laser surface texturing. The surface pore array by design creates a complex stress field compared to the uniaxial tensile stress field of conventional glassy specimens, and the stress field scalarization induces the unusual tensile plasticity. By systematically analyzing fracture behaviors and finite element simulation, we show that the stress field scalarization can resist the main shear band propagation and promote the formation of larger plastic zones near the pores, which undertake the homogeneous tensile plasticity. These results might give enlightenment for understanding the deformation mechanism and for further improvement of the mechanical performance of metallic glasses. PMID:26902264
Effect of uni-axial strain on THz/far-infrared response of graphene
NASA Astrophysics Data System (ADS)
Kim, JooYoun; Lee, Chul; Bae, Sukang; Jin Kim, Sang; Soo Kim, Keun; Hee Hong, Byung; Choi, E. J.
2012-01-01
We present polarized optical transmission study of uniaxially strained large scale graphene in THz/far-infrared (IR) frequency region. Graphene was supported on stretchable polyethylene substrate and they were elongated up to 20% (ΔL/Lo = 0.2) by applying tensile force. For the IR light polarized along the strain direction (EIR//strain), the optical conductivity σ1(ω) of graphene changes from Drude response into strongly non-Drude-like behavior with a peak formed at finite energy ˜10 meV. In contrast, the coherent Drude conductivity is preserved along the direction perpendicular to the strain (EIR⊥strain). Possible origin of the strain-induced non-Drude σ1(ω)-behavior is discussed.
NASA Astrophysics Data System (ADS)
Radchenko, V. P.; Saushkin, M. N.; Tsvetkov, V. V.
2016-05-01
This paper describes the effect of thermal exposure (high-temperature exposure) ( T = 675°C) on the residual creep stress relaxation in a surface hardened solid cylindrical sample made of ZhS6UVI alloy. The analysis is carried out with the use of experimental data for residual stresses after micro-shot peening and exposures to temperatures equal to T = 675°C during 50, 150, and 300 h. The paper presents the technique for solving the boundary-value creep problem for the hardened cylindrical sample with the initial stress-strain state under the condition of thermal exposure. The uniaxial experimental creep curves obtained under constant stresses of 500, 530, 570, and 600 MPa are used to construct the models describing the primary and secondary stages of creep. The calculated and experimental data for the longitudinal (axial) tensor components of residual stresses are compared, and their satisfactory agreement is determined.
NASA Astrophysics Data System (ADS)
Gupta, Shashank; Nam, Donguk; Vuckovic, Jelena; Saraswat, Krishna
2018-04-01
A complementary metal-oxide semiconductor compatible on-chip light source is the holy grail of silicon photonics and has the potential to alleviate the key scaling issues arising due to electrical interconnects. Despite several theoretical predictions, a sustainable, room temperature laser from a group-IV material is yet to be demonstrated. In this work, we show that a particular loss mechanism, inter-valence-band absorption (IVBA), has been inadequately modeled until now and capturing its effect accurately as a function of strain is crucial to understanding light emission processes from uniaxially strained germanium (Ge). We present a detailed model of light emission in Ge that accurately models IVBA in the presence of strain and other factors such as polarization, doping, and carrier injection, thereby revising the road map toward a room temperature Ge laser. Strikingly, a special resonance between gain and loss mechanisms at 4%-5% 〈100 〉 uniaxial strain is found resulting in a high net gain of more than 400 cm-1 at room temperature. It is shown that achieving this resonance should be the goal of experimental work rather than pursuing a direct band gap Ge.
Uniaxial Compressive Strengths of Rocks Drilled at Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Peters, G. H.; Carey, E. M.; Anderson, R. C.; Abbey, W. J.; Kinnett, R.; Watkins, J. A.; Schemel, M.; Lashore, M. O.; Chasek, M. D.; Green, W.; Beegle, L. W.; Vasavada, A. R.
2018-01-01
Measuring the physical properties of geological materials is important for understanding geologic history. Yet there has never been an instrument with the purpose of measuring mechanical properties of rocks sent to another planet. The Mars Science Laboratory (MSL) rover employs the Powder Acquisition Drill System (PADS), which provides direct mechanical interaction with Martian outcrops. While the objective of the drill system is not to make scientific measurements, the drill's performance is directly influenced by the mechanical properties of the rocks it drills into. We have developed a methodology that uses the drill to indicate the uniaxial compressive strengths of rocks through comparison with performance of an identically assembled drill system in terrestrial samples of comparable sedimentary class. During this investigation, we utilize engineering data collected on Mars to calculate the percussive energy needed to maintain a prescribed rate of penetration and correlate that to rock strength.
Tensile behavior and flow stress anisotropy of accumulative roll bonded Cu-Nb nanolaminates
Nizolek, Thomas; Beyerlein, Irene J.; Mara, Nathan A.; ...
2016-02-01
The flow stress, ductility, and in-plane anisotropy are evaluated for bulk accumulative roll bonded copper-niobium nanolaminates with layer thicknesses ranging from 1.8 μm to 15 nm. Uniaxial tensile tests conducted parallel to the rolling direction and transverse direction demonstrate that ductility generally decreases with decreasing layer thickness; however, at 30 nm, both high strengths (1200 MPa) and significant ductility (8%) are achieved. The yield strength increases monotonically with decreasing layer thickness, consistent with the Hall-Petch relationship, and significant in-plane flow stress anisotropy is observed. As a result, Taylor polycrystal modeling is used to demonstrate that crystallographic texture is responsible formore » the in-plane anisotropy and that the effects of texture dominate even at nanoscale layer thicknesses.« less
Stress analysis of ultra-thin silicon chip-on-foil electronic assembly under bending
NASA Astrophysics Data System (ADS)
Wacker, Nicoleta; Richter, Harald; Hoang, Tu; Gazdzicki, Pawel; Schulze, Mathias; Angelopoulos, Evangelos A.; Hassan, Mahadi-Ul; Burghartz, Joachim N.
2014-09-01
In this paper we investigate the bending-induced uniaxial stress at the top of ultra-thin (thickness \\leqslant 20 μm) single-crystal silicon (Si) chips adhesively attached with the aid of an epoxy glue to soft polymeric substrate through combined theoretical and experimental methods. Stress is first determined analytically and numerically using dedicated models. The theoretical results are validated experimentally through piezoresistive measurements performed on complementary metal-oxide-semiconductor (CMOS) transistors built on specially designed chips, and through micro-Raman spectroscopy investigation. Stress analysis of strained ultra-thin chips with CMOS circuitry is crucial, not only for the accurate evaluation of the piezoresistive behavior of the built-in devices and circuits, but also for reliability and deformability analysis. The results reveal an uneven bending-induced stress distribution at the top of the Si-chip that decreases from the central area towards the chip's edges along the bending direction, and increases towards the other edges. Near these edges, stress can reach very high values, facilitating the emergence of cracks causing ultimate chip failure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Guozheng, E-mail: guozhengkang@home.swjtu.edu.cn; Dong, Yawei; Liu, Yujie
The uniaxial ratchetting of Ti–6Al–4V alloy with two phases (i.e., primary hexagonal close packed (HCP) α and secondary body-centered cubic (BCC) β phases) was investigated by macroscopic and microscopic experiments at room temperature. Firstly, the effects of cyclic softening/hardening feature, applied mean stress and stress amplitude on the uniaxial ratchetting of the alloy were discussed. The macroscopic investigation of Ti–6Al–4V alloy presents obvious strain-amplitude-dependent cyclic softening, as well as a three-staged evolution curve with regard to the ratchetting strain rate. The ratchetting depends greatly on the applied mean stress and stress amplitude while the ratchetting strain increases with the increasingmore » applied mean stress and stress amplitude. Then, the evolution of dislocation patterns and deformation twinning during the uniaxial ratchetting of two-phase Ti–6Al–4V alloy were observed using transmission electron microscopy (TEM). The microscopic observation shows that deformation twinning occurs in the primary α phase and its amount increases gradually during the uniaxial ratchetting. Simultaneously, the planar dislocation evolves from discrete lines to some dislocation nets and parallel lines with the increasing number of cycles. The deformation twinning in the primary α phase is one of main contributions to the uniaxial ratchetting of Ti–6Al–4V alloy, and should be considered in the construction of corresponding constitutive model. - Highlights: • A three-staged ratchetting occurs in the stress-controlled cyclic tests of Ti–6Al–4V alloy. • Dislocation patterns change from discrete lines to nets and parallel lines. • Deformation twinning occurs during the uniaxial ratchetting. • Both dislocation slipping and twinning are the causes of ratchetting.« less
NASA Astrophysics Data System (ADS)
He, Zhitao; Chen, Wufan; Wang, Fenghua; Feng, Miaolin
2017-11-01
A kinematic hardening constitutive model is presented, in which a modified form of von Mises yield function is adopted, and the initial asymmetric tension and compression yield stresses of magnesium (Mg) alloys at room temperature (RT) are considered. The hardening behavior was classified into slip, twinning, and untwinning deformation modes, and these were described by two forms of back stress to capture the mechanical response of Mg sheet alloys under cyclic loading tests at RT. Experimental values were obtained for AZ31B-O and AZ31B sheet alloys under both tension-compression-tension (T-C-T) and compression-tension (C-T) loadings to calibrate the parameters of back stresses in the proposed model. The predicted parameters of back stresses in the twinning and untwinning modes were expressed as a cubic polynomial. The predicted curves based on these parameters showed good agreement with the tests.
Transverse stresses and modes of failure in tree branches and other beams
Ennos, A. R.; van Casteren, A.
2010-01-01
The longitudinal stresses in beams subjected to bending also set up transverse stresses within them; they compress the cross section when the beam's curvature is being increased and stretch it when its curvature is being reduced. Analysis shows that transverse stresses rise to a maximum at the neutral axis and increase with both the bending moment applied and the curvature of the beam. These stresses can qualitatively explain the fracture behaviour of tree branches. Curved ‘hazard beams’ that are being straightened split down the middle because of the low transverse tensile strength of wood. By contrast, straight branches of light wood buckle when they are bent because of its low transverse compressive strength. Branches of denser wood break, but the low transverse tensile strength diverts the crack longitudinally when the fracture has only run half-way across the beam, to produce their characteristic ‘greenstick fracture’. The bones of young mammals and uniaxially reinforced composite beams may also be prone to greenstick fracture because of their lower transverse tensile strength. PMID:20018786
Transverse stresses and modes of failure in tree branches and other beams.
Ennos, A R; van Casteren, A
2010-04-22
The longitudinal stresses in beams subjected to bending also set up transverse stresses within them; they compress the cross section when the beam's curvature is being increased and stretch it when its curvature is being reduced. Analysis shows that transverse stresses rise to a maximum at the neutral axis and increase with both the bending moment applied and the curvature of the beam. These stresses can qualitatively explain the fracture behaviour of tree branches. Curved 'hazard beams' that are being straightened split down the middle because of the low transverse tensile strength of wood. By contrast, straight branches of light wood buckle when they are bent because of its low transverse compressive strength. Branches of denser wood break, but the low transverse tensile strength diverts the crack longitudinally when the fracture has only run half-way across the beam, to produce their characteristic 'greenstick fracture'. The bones of young mammals and uniaxially reinforced composite beams may also be prone to greenstick fracture because of their lower transverse tensile strength.
NASA Astrophysics Data System (ADS)
Wen, Minru; Wang, Chong-Yu
2018-01-01
The addition of transition-metal (TM) elements into the γ' precipitate phase of a Ni-based single-crystal superalloy can significantly affect its mechanical properties, including the intrinsic mechanical property of compressive strength. Using first-principles density functional calculations, the effects of 3 d (Sc-Zn), 4 d (Y-Cd), and 5 d (Hf-Au) TM alloying elements on the ideal uniaxial compressive strength of γ'-Ni3Al were investigated. The stress-strain relationships of pure Ni3Al under [100], [110], and [111] compressive loads and the site occupancy behavior of TM elements in Ni3Al were previously studied using a total-energy method based on density functional theory. Our results showed that the capacity of TM elements for strengthening the ideal compressive strength was associated with the d -electron number. The alloying elements with half-filled d bands (i.e., Cr, Mo, W, Tc, and Re) manifested the greatest efficacy for improving the ideal strength of Ni3Al under a deformation along the weakest compressive direction. Furthermore, the charge redistribution of Ni3Al doped with 5 d elements were also analyzed to understand the strengthening mechanisms of TM elements in the γ'-Ni3Al phase.
NASA Astrophysics Data System (ADS)
Kobchenko, M.; Pluymakers, A.; Cordonnier, B.; Tairova, A.; Renard, F.
2017-12-01
Time-lapse imaging of fracture network development in organic-rich shales at elevated temperatures while kerogen is retorted allows characterizing the development of microfractures and the onset of primary migration. When the solid organic matter is transformed to hydrocarbons with lower molecular weight, the local pore-pressure increases and drives the propagation of hydro-fractures sub-parallel to the shale lamination. On the scale of samples of several mm size, these fractures can be described as mode I opening, where fracture walls dilate in the direction of minimal compression. However, so far experiments coupled to microtomography in situ imaging have been performed on samples where no load was imposed. Here, an external load was applied perpendicular to the sample laminations and we show that this stress state slows down, but does not stop, the propagation of fracture along bedding. Conversely, microfractures also propagate sub-perpendicular to the shale lamination, creating a percolating network in three dimensions. To monitor this process we have used a uniaxial compaction rig combined with in-situ heating from 50 to 500 deg C, while capturing three-dimensional X-ray microtomography scans at a voxel resolution of 2.2 μm; Data were acquired at beamline ID19 at the European Synchrotron Radiation Facility. In total ten time-resolved experiments were performed at different vertical loading conditions, with and without lateral passive confinement and different heating rates. At high external load the sample fails by symmetric bulging, while at lower external load the reaction-induced fracture network develops with the presence of microfractures both sub-parallel and sub-perpendicular to the bedding direction. In addition, the variation of experimental conditions allows the decoupling of the effects of the hydrocarbon decomposition reaction on the deformation process from the influence of thermal stress heating on the weakening and failure mode of immature
NASA Astrophysics Data System (ADS)
Guzmán, R. E.; Hernández Arroyo, E.
2016-02-01
The properties of a metallic matrix composites materials (MMC's) reinforced with particles can be affected by different events occurring within the material in a manufacturing process. The existence of residual stresses resulting from the manufacturing process of these materials (MMC's) can markedly differentiate the curves obtained in tensile tests obtained from compression tests. One of the themes developed in this work is the influence of residual stresses on the mechanical behaviour of these materials. The objective of this research work presented is numerically estimate the thermal residual stresses using a unit cell model for the Mg ZC71 alloy reinforced with SiC particles with volume fraction of 12% (hot-forging technology). The MMC's microstructure is represented as a three dimensional prismatic cube-shaped with a cylindrical reinforcing particle located in the centre of the prism. These cell models are widely used in predicting stress/strain behaviour of MMC's materials, in this analysis the uniaxial stress/strain response of the composite can be obtained through the calculation using the commercial finite-element code.
NASA Astrophysics Data System (ADS)
Yoo, Byungseok; Pines, Darryll J.
2018-05-01
This paper investigates the use of uniaxial comb-shaped Fe-Ga alloy (Galfenol) patches in the development of a Magnetostrictive Phased Array Sensor (MPAS) for the Guided Wave (GW) damage inspection technique. The MPAS consists of six highly-textured Galfenol patches with a <100> preferred orientation and a Hexagonal Magnetic Circuit Device (HMCD). The Galfenol patches individually aligned to distinct azimuthal directions were permanently attached to a thin aluminum plate specimen. The detachable HMCD encloses a biasing magnet and six sensing coils with unique directional sensing preferences, equivalent to the specific orientation of the discrete Galfenol patches. The preliminary experimental tests validated that the GW sensing performance and directional sensitivity of the Galfenol-based sensor were significantly improved by the magnetic shape anisotropy effect on the fabrication of uniaxial comb fingers to a Galfenol disc patch. We employed a series of uniaxial comb-shaped Galfenol patches to form an MPAS with a hexagonal sensor configuration, uniformly arranged within a diameter of 1". The Galfenol MPAS was utilized to identify structural damage simulated by loosening joint bolts used to fasten the plate specimen to a frame structure. We compared the damage detection results of the MPAS with those of a PZT Phased Array Sensor (PPAS) collocated to the back surface of the plate. The directional filtering characteristic of the Galfenol MPAS led to acquiring less complicated GW signals than the PPAS using omnidirectional PZT discs. However, due to the detection limit of the standard hexagonal patterned array, the two array sensors apparently identified only the loosened bolts located along one of the preferred orientations of the array configuration. The use of the fixed number of the Galfenol patches for the MPAS construction constrained the capability of sensing point multiplication of the HMCD by altering its rotational orientation, resulting in such damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishida, Jun; Fayer, Michael D., E-mail: fayer@stanford.edu
Functionalized organic monolayers deposited on planar two-dimensional surfaces are important systems for studying ultrafast orientational motions and structures of interfacial molecules. Several studies have successfully observed the orientational relaxation of functionalized monolayers by fluorescence depolarization experiments and recently by polarization-resolved heterodyne detected vibrational transient grating (HDTG) experiments. In this article we provide a model-independent theory to extract orientational correlation functions unique to interfacial molecules and other uniaxial systems based on polarization-resolved resonant third-order spectroscopies, such as pump-probe spectroscopy, HDTG spectroscopy, and fluorescence depolarization experiment. It will be shown (in the small beam-crossing angle limit) that five measurements are necessary tomore » completely characterize the monolayer's motions: I{sub ∥}(t) and I{sub ⊥}(t) with the incident beams normal to the surface, I{sub ∥}(t) and I{sub ⊥}(t) with a non-zero incident angle, and a time averaged linear dichroism measurement. Once these measurements are performed, two orientational correlation functions corresponding to in-plane and out-of-plane motions are obtained. The procedure is applicable not only for monolayers on flat surfaces, but any samples with uniaxial symmetry such as uniaxial liquid crystals and aligned planar bilayers. The theory is valid regardless of the nature of the actual molecular motions on interface. We then apply the general results to wobbling-in-a-cone model, in which molecular motions are restricted to a limited range of angles. Within the context of the model, the cone angle, the tilt of the cone relative to the surface normal, and the orientational diffusion constant can be determined. The results are extended to describe analysis of experiments where the beams are not crossing in the small angle limit.« less
Optical properties of uniaxially strained graphene on transition metal dichalcogenide substrate
NASA Astrophysics Data System (ADS)
Goswami, Partha
2018-05-01
The uniaxially strained graphene monolayer on transition metal dichalcogenide (GrTMD) substrate, constituting a van der Waals heterostructure (vdWH), is found to possess unusual intra-band plasmon dispersion (ω ˜ q2/3) with stronger incarceration compared to that of a standalone, doped graphene for finite doping in the long wavelength limit. The intra-band absorbance of GrTMD is found to be an increasing (decreasing) function of the strain field (frequency) at a given frequency (strain field). It is also observed that whereas the strain field is responsible for the valley polarization, a Rashba coupling-dependent pseudo Zeeman term arising due to the interplay of substrate-induced interactions is found to bring about the spin degeneracy lifting and the gate voltage tunable spin polarization. The latter turns out to be inversely proportional to the square root of the carrier concentration.
NASA Astrophysics Data System (ADS)
Yang, Zhong; Zhang, BoMing; Zhao, Lin; Sun, XinYang
2011-02-01
A shear-lag model is applied to study the stress transfer around a broken fiber within unidirectional fiber-reinforced composites (FRC) subjected to uniaxial tensile loading along the fiber direction. The matrix damage and interfacial debonding, which are the main failure modes, are considered in the model. The maximum stress criterion with the linear damage evolution theory is used for the matrix. The slipping friction stress is considered in the interfacial debonding region using Coulomb friction theory, in which interfacial clamping stress comes from radial residual stress and mismatch of Poisson's ratios of constituents (fiber and matrix). The stress distributions in the fiber and matrix are obtained by the shear-lag theory added with boundary conditions, which includes force continuity and displacement compatibility constraints in the broken and neighboring intact fibers. The result gives axial stress distribution in fibers and shear stress in the interface and compares the theory reasonably well with the measurement by a polarized light microscope. The relation curves between damage, debonding and ineffective region lengths with external strain loading are obtained.
Method to study cell migration under uniaxial compression
Srivastava, Nishit; Kay, Robert R.; Kabla, Alexandre J.
2017-01-01
The chemical, physical, and mechanical properties of the extracellular environment have a strong effect on cell migration. Aspects such as pore size or stiffness of the matrix influence the selection of the mechanism used by cells to propel themselves, including by pseudopods or blebbing. How a cell perceives its environment and how such a cue triggers a change in behavior are largely unknown, but mechanics is likely to be involved. Because mechanical conditions are often controlled by modifying the composition of the environment, separating chemical and physical contributions is difficult and requires multiple controls. Here we propose a simple method to impose a mechanical compression on individual cells without altering the composition of the matrix. Live imaging during compression provides accurate information about the cell's morphology and migratory phenotype. Using Dictyostelium as a model, we observe that a compression of the order of 500 Pa flattens the cells under gel by up to 50%. This uniaxial compression directly triggers a transition in the mode of migration from primarily pseudopodial to bleb driven in <30 s. This novel device is therefore capable of influencing cell migration in real time and offers a convenient approach with which to systematically study mechanotransduction in confined environments. PMID:28122819
An embedded stress sensor for concrete SHM based on amorphous ferromagnetic microwires.
Olivera, Jesús; González, Margarita; Fuente, José Vicente; Varga, Rastislav; Zhukov, Arkady; Anaya, José Javier
2014-10-24
A new smart concrete aggregate design as a candidate for applications in structural health monitoring (SHM) of critical elements in civil infrastructure is proposed. The cement-based stress/strain sensor was developed by utilizing the stress/strain sensing properties of a magnetic microwire embedded in cement-based composite (MMCC). This is a contact-less type sensor that measures variations of magnetic properties resulting from stress variations. Sensors made of these materials can be designed to satisfy the specific demand for an economic way to monitor concrete infrastructure health. For this purpose, we embedded a thin magnetic microwire in the core of a cement-based cylinder, which was inserted into the concrete specimen under study as an extra aggregate. The experimental results show that the embedded MMCC sensor is capable of measuring internal compressive stress around the range of 1-30 MPa. Two stress sensing properties of the embedded sensor under uniaxial compression were studied: the peak amplitude and peak position of magnetic switching field. The sensitivity values for the amplitude and position within the measured range were 5 mV/MPa and 2.5 µs/MPa, respectively.
An Embedded Stress Sensor for Concrete SHM Based on Amorphous Ferromagnetic Microwires
Olivera, Jesús; González, Margarita; Fuente, José Vicente; Varga, Rastislav; Zhukov, Arkady; Anaya, José Javier
2014-01-01
A new smart concrete aggregate design as a candidate for applications in structural health monitoring (SHM) of critical elements in civil infrastructure is proposed. The cement-based stress/strain sensor was developed by utilizing the stress/strain sensing properties of a magnetic microwire embedded in cement-based composite (MMCC). This is a contact-less type sensor that measures variations of magnetic properties resulting from stress variations. Sensors made of these materials can be designed to satisfy the specific demand for an economic way to monitor concrete infrastructure health. For this purpose, we embedded a thin magnetic microwire in the core of a cement-based cylinder, which was inserted into the concrete specimen under study as an extra aggregate. The experimental results show that the embedded MMCC sensor is capable of measuring internal compressive stress around the range of 1–30 MPa. Two stress sensing properties of the embedded sensor under uniaxial compression were studied: the peak amplitude and peak position of magnetic switching field. The sensitivity values for the amplitude and position within the measured range were 5 mV/MPa and 2.5 μs/MPa, respectively. PMID:25347582
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R.
1993-01-01
The feasibility of a viscoplastic model incorporating two back stresses and a drag strength is investigated for performing nonlinear finite element analyses of structural engineering problems. To demonstrate suitability for nonlinear structural analyses, the model is implemented into a finite element program and analyses for several uniaxial and multiaxial problems are performed. Good agreement is shown between the results obtained using the finite element implementation and those obtained experimentally. The advantages of using advanced viscoplastic models for performing nonlinear finite element analyses of structural components are indicated.
Iconomopoulou, S M; Voyiatzis, G A
2005-03-21
A new method of controlled release of low molecular weight biocides incorporated in polymer matrixes is described. The molecular orientation of uniaxially drawn biocide doped polymer films is suggested as a significant parameter for controlled release monitoring. Triclosan, a well-established widespread antibacterial agent, has been incorporated into high density polyethylene (HDPE) films that have been subsequently uniaxially drawn at different draw ratios. The molecular orientation developed was estimated utilizing polarized mu-Raman spectra. Biocide incorporated polymer films, drawn at different draw ratios, have been immersed in ethanol-water solutions (EtOH) and in physiological saline. The release of Triclosan out of the polymer matrix was probed with UV-Vis absorption spectroscopy for a period of time up to 15 months. In all cases, although the film surface of the drawn samples exposed to the liquid solution was higher than the undrawn one, the relevant release rate from the drawn specimens was lower than the non-stretched samples depending on the molecular orientation developed during the drawing process. A note is made of the fact that no significant molecular orientation relaxation of the polyethylene films has been observed even after such a long time of immersion of the drawn films in the liquid solutions.
NASA Astrophysics Data System (ADS)
Chernyshova, T. A.; Milyaev, M. A.; Naumova, L. I.; Proglyado, V. V.; Bannikova, N. S.; Maksimova, I. K.; Petrov, I. A.; Ustinov, V. V.
2017-05-01
Microobjects (strips) were formed by contact photolithography using Ta/Ni80Fe20/Co90Fe10/Cu/Co90Fe10/Ru/Co90Fe10/Fe50Mn50/Ta spin-valves prepared by magnetron sputtering. A mutually perpendicular arrangement of uniaxial and unidirectional anisotropy axes in microobjects has been formed using two different thermomagnetic treatment regimes. The magnetoresistive sensitivity of spin valve and spin-valve-based microobject has been found to depend on the mutual arrangement of the easy magnetization axis and direction of magnetic field applied upon thermomagnetic treatment. The obtained data have been interpreted taking into account changes in the induced anisotropy and anisotropy due to the shape of the microobject.
Development of FIR arrays with integrating amplifiers
NASA Technical Reports Server (NTRS)
Young, Erick T.
1988-01-01
The development of optimized photoconductor arrays suitable for far infrared space astronomical applications are described. Although the primary impetus is the production of a 16 by 16 element Ge:Ga demonstration array for SIRTF, the extension of this technology to Large Deployable Reflector (LDR) is considered. The optimization of Ge:Ga and Ge:Be photoconductor materials is discussed. In collaboration with Lawrence Berkeley Laboratory, measurements of FIR photoconductors with quantum efficiencies greater than 20 percent at 100 micrometers, and dark currents below 300 electrons/s are presented. Integrating J-FET amplifier technology is discussed. The current generation of integrating amplifiers has a demonstrated read noise of less than 20 electrons for an integration time of 100 s. The design is shown for a stackable 16 x n Ge:Ga array that utilizes a 16-channel monolithic version of the J-FET integrator. A part of the design is the use of a thin, thermally insulating substrate that allows the electronics to operate at the optimum temperature of 50 K while maintaining thermal and optical isolation from the detectors at 2 K. The power dissipation for the array is less than 16 mW. The array design may particularly be applicable to high resolution imaging spectrometers for LDR.
Development of FIR arrays with integrating amplifiers
NASA Astrophysics Data System (ADS)
Young, Erick T.
1988-08-01
The development of optimized photoconductor arrays suitable for far infrared space astronomical applications are described. Although the primary impetus is the production of a 16 by 16 element Ge:Ga demonstration array for SIRTF, the extension of this technology to Large Deployable Reflector (LDR) is considered. The optimization of Ge:Ga and Ge:Be photoconductor materials is discussed. In collaboration with Lawrence Berkeley Laboratory, measurements of FIR photoconductors with quantum efficiencies greater than 20 percent at 100 micrometers, and dark currents below 300 electrons/s are presented. Integrating J-FET amplifier technology is discussed. The current generation of integrating amplifiers has a demonstrated read noise of less than 20 electrons for an integration time of 100 s. The design is shown for a stackable 16 x n Ge:Ga array that utilizes a 16-channel monolithic version of the J-FET integrator. A part of the design is the use of a thin, thermally insulating substrate that allows the electronics to operate at the optimum temperature of 50 K while maintaining thermal and optical isolation from the detectors at 2 K. The power dissipation for the array is less than 16 mW. The array design may particularly be applicable to high resolution imaging spectrometers for LDR.
Uniaxial alignment of triisopropylsilylethynyl pentacene via zone-casting technique.
Su, Yajun; Gao, Xiang; Liu, Jiangang; Xing, Rubo; Han, Yanchun
2013-09-14
Uniaxially aligned triisopropylsilylethynyl pentacene (TIPS-pentacene) crystals over a large area were fabricated using zone-casting technique. The array of TIPS-pentacene displayed a high orientation degree with a dichroic ratio (DR) of 0.80. The crystals were arranged with c axis perpendicular to the substrate and the long axis of the ribbon corresponded to the a axis of TIPS-pentacene. The properties of the solutions and the processing parameters were shown to influence the formation of the oriented TIPS-pentacene crystalline array. Solvent with a low boiling point (such as chloroform) favoured the orientation of the ribbon-like crystals. The concentration of the solution should be appropriate, ensuring the crystallization velocity of TIPS-pentacene matching with the receding of the meniscus. Besides, we proved that the casting speed should be large enough to induce a sufficient concentration gradient. The orientation mechanism of TIPS-pentacene was attributed to a synergy of the ordered nuclei and a match between the crystallization velocity and the casting speed. Field effect transistors (FETs) based on the oriented TIPS-pentacene crystalline array showed a mobility of 0.67 cm(2) V(-1) s(-1).
Qi, Ji; Zhang, Shaoqun; Zhang, Lei; Ping, Ruiyue; Ping, Kaike; Ye, Da; Shen, Honggui; Chen, Yili; Li, Yikai
2018-02-01
This study aimed to preliminarily explore the effects of the soft tissue mobilization of pushing on Qiao-Gong (MPQ) on biomechanical properties of the carotid artery using an animal model of carotid atherosclerosis (CAS). Fifty rabbits were randomly divided into 4 groups: animals with CAS treated with MPQ (CAS-MPQ [n = 15]); animals with CAS treated without MPQ (CAS [n = 15]); normal animals treated with MPQ (normal-MPQ [n = 10]); and a blank control group (n = 10). The MPQ procedure consisted of soft tissue mobilization of the Qiao-Gong acupoint on the front edge of the sternocleidomastoid muscle applied from top to bottom, by flat pushing with the thumb repeatedly for 20 times. Disease in the CAS models was induced by carotid artery balloon injury combined with a high-fat diet for 12 weeks. At the end of modeling, carotid color Doppler ultrasonography examination was performed to confirm which animal models were successfully induced with CAS, excluding model rabbits without typical CAS at the same time. Then, MPQ was applied on rabbits in the CAS-MPQ and the normal-MPQ groups for 3 weeks. By contrast, rabbits in the other 2 groups were fed normally without MPQ. Uniaxial failure tests were later performed on carotid arteries in all 4 groups, and at the end of the study, a 2-way factorial analysis of variance of the results was conducted. (1) At the end of modeling, 10 rabbits in the CAS-MPQ group and 9 in the CAS group were included with typical carotid atherosclerotic characteristics. (2) Young's elastic modulus of the rabbit carotid artery increased more significantly in the CAS-MPQ group than the CAS group. (3) Compared with normal rabbit carotid arteries, atherosclerotic carotid arteries had lower levels of ultimate stress and ultimate strain but higher levels of ultimate load. The uniaxial tensile mechanical properties of the rabbit atherosclerotic carotid artery were impaired after MPQ. Copyright © 2018. Published by Elsevier Inc.
Performance of the Fourier transform spectrometer (FTS) for FIS onboard ASTRO-F
NASA Astrophysics Data System (ADS)
Murakami, Noriko; Kawada, Mitsunobu; Takahashi, Hidenori; Ozawa, Keita; Imamura, Tetsuo; Shibai, Hiroshi; Nakagawa, Takao
2004-10-01
We have developed the imaging Fourier Transform Spectrometer (FTS) for the FIS (Far-Infrared Surveyor) onboard the ASTRO-F satellite. A Martin-Puplett interferometer is adopted to achieve high optical efficiency in a wide wavelength range. The total optical efficiency of this spectrometer is achieved 40-80% of the ideal value which is 25% of the incident flux. The wavelength range of 50-200μm is covered with two kinds of detector; the monolithic Ge:Ga photoconductor array for short wavelength (50-110μm) and the stressed Ge:Ga photoconductor array for long wavelength (110-200μm). The spectral resolution expected from the maximum optical path difference is 0.18cm-1. In order to evaluate the spectral resolution of the FTS, we measured absorption lines of H2O in atmosphere using the optics of the FTS with a bolometer at the room temperature. The measured line widths are consistent with the expected instrumental resolution of 0.18 cm-1. Some spectral measurements at the cryogenic temperature were carried out by using cold blackbody sources whose temperatures are controlled in a range from 20 to 50 K. The derived spectra considering with the spectral response of the system are consistent with expected ones. Spectroscopic observations with the FTS will provide a lot of astronomical information; SED of galaxies detected in the all sky survey and the physical diagnostics of the interstellar matter by using the excited atomic or molecular lines.
NASA Technical Reports Server (NTRS)
Arya, V. K.; Kaufman, A.
1989-01-01
A description of the finite element implementation of Robinson's unified viscoplastic model into the General Purpose Finite Element Program (MARC) is presented. To demonstrate its application, the implementation is applied to some uniaxial and multiaxial problems. A comparison of the results for the multiaxial problem of a thick internally pressurized cylinder, obtained using the finite element implementation and an analytical solution, is also presented. The excellent agreement obtained confirms the correct finite element implementation of Robinson's model.
NASA Technical Reports Server (NTRS)
Arya, V. K.; Kaufman, A.
1987-01-01
A description of the finite element implementation of Robinson's unified viscoplastic model into the General Purpose Finite Element Program (MARC) is presented. To demonstrate its application, the implementation is applied to some uniaxial and multiaxial problems. A comparison of the results for the multiaxial problem of a thick internally pressurized cylinder, obtained using the finite element implementation and an analytical solution, is also presented. The excellent agreement obtained confirms the correct finite element implementation of Robinson's model.
NASA Astrophysics Data System (ADS)
Chen, Bai-Qiao; Guedes Soares, C.
2018-03-01
The present work investigates the compressive axial ultimate strength of fillet-welded steel-plated ship structures subjected to uniaxial compression, in which the residual stresses in the welded plates are calculated by a thermo-elasto-plastic finite element analysis that is used to fit an idealized model of residual stress distribution. The numerical results of ultimate strength based on the simplified model of residual stress show good agreement with those of various methods including the International Association of Classification Societies (IACS) Common Structural Rules (CSR), leading to the conclusion that the simplified model can be effectively used to represent the distribution of residual stresses in steel-plated structures in a wide range of engineering applications. It is concluded that the widths of the tension zones in the welded plates have a quasi-linear behavior with respect to the plate slenderness. The effect of residual stress on the axial strength of the stiffened plate is analyzed and discussed.
NASA Astrophysics Data System (ADS)
Gómez-Urrea, H. A.; Duque, C. A.; Mora-Ramos, M. E.
2015-11-01
The properties of the optical-phonon-associated polaritonic modes that appear under oblique light incidence in 1D superlattices made of photonic materials are studied. The investigated systems result from the periodic repetition of quasiregular Rudin-Shapiro (RS) multilayer units. It is assume that the structure consists of both passive non-dispersive layers of constant refraction index and active layers of uniaxial polar materials. In particular, we consider III-V wurtzite nitrides. The optical axis of these polaritonic materials is taken along the growth direction. Maxwell equations are solved using the transfer matrix technique for all admissible values of the incidence angle.
The effect of stress state on zirconium hydride reorientation
NASA Astrophysics Data System (ADS)
Cinbiz, Mahmut Nedim
Prior to storage in a dry-cask facility, spent nuclear fuel must undergo a vacuum drying cycle during which the spent fuel rods are heated up to elevated temperatures of ≤ 400°C to remove moisture the canisters within the cask. As temperature increases during heating, some of the hydride particles within the cladding dissolve while the internal gas pressure in fuel rods increases generating multi-axial hoop and axial stresses in the closed-end thin-walled cladding tubes. As cool-down starts, the hydrogen in solid solution precipitates as hydride platelets, and if the multiaxial stresses are sufficiently large, the precipitating hydrides reorient from their initial circumferential orientation to radial orientation. Radial hydrides can severely embrittle the spent nuclear fuel cladding at low temperature in response to hoop stress loading. Because the cladding can experience a range of stress states during the thermo-mechanical treatment induced during vacuum drying, this study has investigated the effect of stress state on the process of hydride reorientation during controlled thermo-mechanical treatments utilizing the combination of in situ X-ray diffraction and novel mechanical testing analyzed by the combination of metallography and finite element analysis. The study used cold worked and stress relieved Zircaloy-4 sheet containing approx. 180 wt. ppm hydrogen as its material basis. The failure behavior of this material containing radial hydrides was also studied over a range of temperatures. Finally, samples from reactor-irradiated cladding tubes were examined by X-ray diffraction using synchrotron radiation. To reveal the stress state effect on hydride reorientation, the critical threshold stress to reorient hydrides was determined by designing novel mechanical test samples which produce a range of stress states from uniaxial to "near-equibiaxial" tension when a load is applied. The threshold stress was determined after thermo-mechanical treatments by
Local Mechanical Response of Superelastic NiTi Shape-Memory Alloy Under Uniaxial Loading
NASA Astrophysics Data System (ADS)
Xiao, Yao; Zeng, Pan; Lei, Liping; Du, Hongfei
2015-11-01
In this paper, we focus on the local mechanical response of superelastic NiTi SMA at different temperatures under uniaxial loading. In situ DIC is applied to measure the local strain of the specimen. Based on the experimental results, two types of mechanical response, which are characterized with localized phase transformation and homogenous phase transformation, are identified, respectively. Motivated by residual strain accumulation phenomenon of the superelastic mechanical response, we conduct controlled experiments, and infer that for a given material point, all (or most) of the irreversibility is accumulated when the transformation front is traversing the material point. A robust constitutive model is established to explain the experimental phenomena and we successfully simulate the evolution of local strain that agrees closely with the experimental results.
Engineering the quantum anomalous Hall effect in graphene with uniaxial strains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diniz, G. S., E-mail: ginetom@gmail.com; Guassi, M. R.; Qu, F.
2013-12-28
We theoretically investigate the manipulation of the quantum anomalous Hall effect (QAHE) in graphene by means of the uniaxial strain. The values of Chern number and Hall conductance demonstrate that the strained graphene in presence of Rashba spin-orbit coupling and exchange field, for vanishing intrinsic spin-orbit coupling, possesses non-trivial topological phase, which is robust against the direction and modulus of the strain. Besides, we also find that the interplay between Rashba and intrinsic spin-orbit couplings results in a topological phase transition in the strained graphene. Remarkably, as the strain strength is increased beyond approximately 7%, the critical parameters of themore » exchange field for triggering the quantum anomalous Hall phase transition show distinct behaviors—decrease (increase) for strains along zigzag (armchair) direction. Our findings open up a new platform for manipulation of the QAHE by an experimentally accessible strain deformation of the graphene structure, with promising application on novel quantum electronic devices with high efficiency.« less
Effect of loading speed on the stress-induced magnetic behavior of ferromagnetic steel
NASA Astrophysics Data System (ADS)
Bao, Sheng; Gu, Yibin; Fu, Meili; Zhang, Da; Hu, Shengnan
2017-02-01
The primary goal of this research is to investigate the effect of loading speed on the stress-induced magnetic behavior of a ferromagnetic steel. Uniaxial tension tests on Q235 steel were carried out with various stress levels under different loading speeds. The variation of the magnetic signals surrounding the tested specimen was detected by a fluxgate magnetometer. The results indicated that the magnetic signal variations depended not only on the tensile load level but on the loading speed during the test. The magnetic field amplitude seemed to decrease gradually with the increase in loading speed at the same tensile load level. Furthermore, the evolution of the magnetic reversals is also related to the loading speed. Accordingly, the loading speed should be considered as one of the influencing variables in the Jies-Atherton model theory of the magnetomechanical effect.
NASA Astrophysics Data System (ADS)
Singh, A. K.; Rathi, Amit; Riyaj, Md.; Bhardwaj, Garima; Alvi, P. A.
2017-11-01
Quaternary and ternary alloy semiconductors offer an extra degree of flexibility in terms of bandgap tuning. Modifications in the wave functions and alterations in optical transitions in quaternary and ternary QW (quantum well) heterostructures due to external uniaxial strain provide valuable insights on the characteristics of the heterostructure. This paper reports the optical gain in strained InGaAsP/GaAsSb type-II QW heterostructure (well width = 20 Å) under external uniaxial strain at room temperature (300 K). The entire heterostructure is supposed to be grown on InP substrate pseudomorphically. Band structure, wave functions, energy dispersion and momentum matrix elements of the heterostructure have been computed. 6 × 6 diagonalised k → ·p → Hamiltonian matrix of the system is evaluated and Luttinger-Kohn model has been applied for the band structure and wavefunction calculations. TE mode optical gain spectrum in the QW-heterostructure under uniaxial strain along [110] is calculated. Optical gain of the heterostructure as a function of 2D carrier density and temperature variation is investigated. The variation of the peak optical gain as a function of As and Sb fractions in InGaAsP as a barrier and GaAsSb as a well respectively is exhibited. For a charge carrier injection of 5 ×1012 /cm2 , the TE optical gain is 3952 cm-1 at room temperature under no external uniaxial strain. Significant increase in TE mode optical gain is observed under high external uniaxial strain (1, 5 and 10 GPa) along [110] within IR (Infrared region) region.
NASA Astrophysics Data System (ADS)
Coskun, Aycan; Sonmez, Harun; Ercin Kasapoglu, K.; Ozge Dinc, S.; Celal Tunusluoglu, M.
2010-05-01
The uniaxial compressive strength (UCS) of rock material is a crucial parameter to be used for design stages of slopes, tunnels and foundations to be constructed in/on geological medium. However, preparation of high quality cores from geological mixtures or fragmented rocks such as melanges, fault rocks, coarse pyroclastic rocks, breccias and sheared serpentinites is often extremely difficult. According to the studies performed in literature, this type of geological materials may be grouped as welded and unwelded birmocks. Success of preparation of core samples from welded bimrocks is slightly better than unwelded ones. Therefore, some studies performed on the welded bimrocks to understand the mechanical behavior of geological mixture materials composed of stronger and weaker components (Gokceoglu, 2002; Sonmez et al., 2004; Sonmez et al., 2006; Kahraman, et al., 2008). The overall strength of bimrocks are generally depends on strength contrast between blocks and matrix; types and strength of matrix; type, size, strength, shape and orientation of blocks and volumetric block proportion. In previously proposed prediction models, while UCS of unwelded bimrocks may be determined by decreasing the UCS of matrix considering the volumetric block proportion, the welded ones can be predicted by considering both UCS of matrix and blocks together (Lindquist, 1994; Lindquist and Goodman, 1994; Sonmez et al., 2006 and Sonmez et al., 2009). However, there is a few attempts were performed about the effect of blocks shape and orientation on the strength of bimrock (Linqduist, 1994 and Kahraman, et al., 2008). In this study, Ankara agglomerate, which is composed of andesite blocks and surrounded weak tuff matrix, was selected as study material. Image analyses were performed on bottom, top and side faces of cores to identify volumetric block portions. In addition to the image analyses, andesite blocks on bottom, top and side faces were digitized for determination of fractal
Multilinear stress-strain and failure calibrations for Ti-6Al-4V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corona, Edmundo
This memo concerns calibration of an elastic-plastic J 2 material model for Ti-6Al-4V (grade 5) alloy based on tensile uniaxial stress-strain data obtained in the laboratory. In addition, tension tests on notched specimens provided data to calibrate two ductile failure models: Johnson-Cook and Wellman's tearing parameter. The tests were conducted by Kim Haulen- beek and Dave Johnson (1528) in the Structural Mechanics Laboratory (SML) during late March and early April, 2017. The SML EWP number was 4162. The stock material was a TIMETALR® 6-4 Titanium billet with 9 in. by 9 in. square section and length of 137 in. Themore » product description indicates that it was a forging delivered in annealed condition (2 hours @ 1300oF, AC at the mill). The tensile mechanical properties reported in the material certi cation are given in Table 1, where σ o represents the 0.2% strain offset yield stress, σ u the ultimate stress, ε f the elongation at failure and R.A. the reduction in area.« less
NASA Astrophysics Data System (ADS)
Meraj, Md.; Deng, Chuang; Pal, Snehanshu
2018-01-01
In this study, the feasibility of stress induced solid-state amorphization (SSA) of nanocrystalline (NC) Ni and NiZr alloys having ˜10 nm grain size has been investigated under constant tensile load (uniaxial and triaxial) via molecular dynamics simulations. In order to track the structural evaluation in both NC Ni and NiZr alloys during the SSA process, various types of analysis have been used, including simulated X-ray diffraction, centro-symmetry parameter, Voronoi cluster, common neighbor analysis, and radial distribution function. It is found that SSA in both NC Ni and NiZr alloys can only be achieved under triaxial loading conditions, and the hydrostatic tensile stress required for SSA is significantly lower when at. % Zr is increased in the NC NiZr alloy. Specifically, SSA in NC Ni and Ni-5 at. % Zr alloy was observed only when the temperature and hydrostatic tensile stress reached 800 K and 6 GPa, while SSA could occur in NC Ni-10 at. % Zr alloy under just 2 GPa of hydrostatic tensile stress at 300 K.
Li, J; Guo, L-X; Zeng, H; Han, X-B
2009-06-01
A message-passing-interface (MPI)-based parallel finite-difference time-domain (FDTD) algorithm for the electromagnetic scattering from a 1-D randomly rough sea surface is presented. The uniaxial perfectly matched layer (UPML) medium is adopted for truncation of FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different processors is illustrated for one sea surface realization, and the computation time of the parallel FDTD algorithm is dramatically reduced compared to a single-process implementation. Finally, some numerical results are shown, including the backscattering characteristics of sea surface for different polarization and the bistatic scattering from a sea surface with large incident angle and large wind speed.
Propagation optical quarks after an uniaxial crystal: the experiment
NASA Astrophysics Data System (ADS)
Egorov, Yu. A.; Konovalenko, V. L.; Zinovev, A. O.; Anischenko, P. M.; Glumova, M. V.
2013-12-01
There is a lots of different papers reporting about the propagation of the different types of an optical beams in a uniaxial crystals are known by that time. This beams are: Lager-Gaussian and Bessel- Gaussian beams. It is common for all this types of beams, that if propagation axis and crystal axis coincides, and accident beam had a circular polarization, are can get type spiral type degenerated umbilici, which corresponds to the charge 2 optical vortex in the orthogonal polarized beam component, generated by crystal [1] (Fig 1). This generation accurse due to total angular momentum conservation law symmetry axis of the crystal. One to the changing of the spin momentum which is associated with the beam polarization, this leads to the orbital momentum changes that associated with topological charge of formed orthogonal circular component. Double charged optical vortex could be easily perturbed by tilting beam axis with respect to the crystal axis. If the tilt angles are small (<0.1°) central umbilici splits on two lemons and the surrounding ring umbilici splits on two pairs of monster-star. The further increasing of the tilt angle leads to the topological charge of circular components becomes, equal, and additional orbital moment correspond to the beam mass center displacement.
Uniaxial Compression Analysis and Microdeformation Characterization of Kevin Dome Anhydrite Caprock
NASA Astrophysics Data System (ADS)
Malenda, M. G.; Frash, L.; Carey, J. W.
2015-12-01
The Department of Energy currently manages the Regional Carbon Sequestration Partnership (RCSP) in efforts to develop techniques to characterize promising CO2 storage sites, efficient and durable technology for injection, and suitable regulations for future CO2 storage. Within the RCSP, the Montana State University-Bozeman led Big Sky Carbon Sequestration Project has focused on potential CO2 storage sites, including the Kevin Dome in northern Montana. The 750mi2 large dome lies along the north-southwest trending Sweetgrass Arch and is a natural CO2 reservoir with the potential to produce one million tonnes of CO2. The Project intends to extract and reinject this one million tonnes of CO2back into the water-leg of the Dome within the dolomitic, middle Duperow Formation to monitor impacts on the surrounding environment and communities. The caprock system includes extremely low porosity dolomite in the upper Duperow that is overlain by the anhydrite-dominated Potlatch caprock. Core was extracted by the Project from the Wallawein 22-1 well. Six 1"-diameter sub-samples were taken at depths of 3687 and 3689' of the 4"-diameter core in both vertical and horizontal directions. Unconfined uniaxial compression tests were conducted at room temperature using an Instron 4483 load frame with a 150kN load cell operated at a strain rate of 6.835-5mm per second. Samples were instrumented with four strain gages to record elastic moduli and characterize fracture behavior. The Potlatch anhydrite has demonstrated to be both strong and stiff with an average uniaxial compressive strength of 150.62±23.95MPa, a Young's modulus of 89.96±10.22GPa, and a Poisson's ratio of 0.32±0.05. These three variables are essential to developing geomechanical models that assess caprock responses to injection during CO2 sequestration. Petrographic characterizations of the fractured samples reveal an 80% groundmass of subeuhedral anhydrite crystals measuring 97-625μm and 20% 0.12-1mm wide veins
Effect of Layering on Cracking Initiation and Propagation under Uniaxial Compression
NASA Astrophysics Data System (ADS)
Modiriasari, A.; Jiang, L.; Yoon, H.; Bobet, A.; Pyrak-Nolte, L. J.
2017-12-01
Rock anisotropy can arise from textural and structural causes both of which contribute to anisotropic strength and moduli. Rock variability makes it difficult to determine which properties dominate failure. Here, laboratory experiments were performed on 3D printed samples to examine the effect of layering on crack formation. Samples with two pre-existing coplanar flaws were fabricated using an additive 3D printing process (Projet CJP 360). Layers of gypsum (0.2 mm thick) were printed in either a horizontal (H) or a vertical (V) orientation to create prismatic samples (152.4 mm x 76.2 mm x 25.1 mm) with two 12.7 mm long coplanar flaws (19.05 mm apart) oriented at 450 with the load. Cracks were induced under uniaxial loading conditions. Digital image correlation (DIC) and acoustic emission (AE) (18 AE sensors with a frequency range of 100-450 kHz) were used to monitor crack evolution. DIC imaging of the V specimen during uniaxial compression showed that smooth cracks were initiated and propagated from the tips of the flaws parallel to the layering. Unlike the strongly bonded samples, no cracks were formed between the pre-existing flaws. The failure mechanism between the flaws was controlled by the weak bonding between the layers, and not by the coalescence of the new cracks. However, for the H specimen, failure was caused by crack coalescence between the two flaws. The new cracks exhibited a step-like roughness that was influenced by the layering in the sample. AE events were only detected when a synchronized mode was used. 3D printed samples can be effectively used to study the effect of anisotropic layering on crack initiation and propagation in a repeatable and controlled manner. Acknowledgements: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security
NASA Astrophysics Data System (ADS)
Duan, Leiguang; Wang, Guang; Zhang, Guoxing; Sun, Xinya; Shang, Hehao
2018-06-01
In order to study the uniaxial and quasi-biaxial mechanical properties of aging solid propellants under low temperature and high strain rate, stress-strain curves and tensile fracture surfaces of HTPB propellant were obtained in a wide range of temperature (-30,25 °C) and strain rates (0.4,4.0 and 14.29 s-1), respectively, by means of uniaxial and biaxial tensile tests and electron microscopy scanning on the fracture cross section. The results indicate that the quasi-biaxial tensile mechanical properties of aging HTPB propellant is same as the uniaxial tensile mechanical properties influenced distinctly by temperature and strain rate. With decreasing temperature and increasing strain rate, the mechanical properties gradually strengthen. The damage for HTPB propellant changes from "dehumidification" to grain fracture. The initial elastic modulus E and maximum tensile stress σ of the uniaxial and biaxial tensile increase gradually with decreasing temperature and increasing strain rate, and well present linear-log function relation with strain rate. The ratio of quasi-biaxial and uniaxial stretching under different loading conditions was obtained so that the researchers could predict the quasi-biaxial tensile mechanical properties of the propellant based on the uniaxial test data.
Plastic flow modeling in glassy polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clements, Brad
2010-12-13
Glassy amorphous and semi-crystalline polymers exhibit strong rate, temperature, and pressure dependent polymeric yield. As a rule of thumb, in uniaxial compression experiments the yield stress increases with the loading rate and applied pressure, and decreases as the temperature increases. Moreover, by varying the loading state itself complex yield behavior can be observed. One example that illustrates this complexity is that most polymers in their glassy regimes (i.e., when the temperature is below their characteristic glass transition temperature) exhibit very pronounced yield in their uniaxial stress stress-strain response but very nebulous yield in their uniaxial strain response. In uniaxial compression,more » a prototypical glassy-polymer stress-strain curve has a stress plateau, often followed by softening, and upon further straining, a hardening response. Uniaxial compression experiments of this type are typically done from rates of 10{sup -5} s{sup -1} up to about 1 s{sup -1}. At still higher rates, say at several thousands per second as determined from Split Hopkinson Pressure Bar experiments, the yield can again be measured and is consistent with the above rule of thumb. One might expect that that these two sets of experiments should allow for a successful extrapolation to yet higher rates. A standard means to probe high rates (on the order of 105-107 S-I) is to use a uniaxial strain plate impact experiment. It is well known that in plate impact experiments on metals that the yield stress is manifested in a well-defined Hugoniot Elastic Limit (HEL). In contrast however, when plate impact experiments are done on glassy polymers, the HEL is arguably not observed, let alone observed at the stress estimated by extrapolating from the lower strain rate experiments. One might argue that polymer yield is still active but somehow masked by the experiment. After reviewing relevant experiments, we attempt to address this issue. We begin by first presenting our
Orthotropic Laminated Open-cell Frameworks Retaining Strong Auxeticity under Large Uniaxial Loading
NASA Astrophysics Data System (ADS)
Tanaka, Hiro; Suga, Kaito; Iwata, Naoki; Shibutani, Yoji
2017-01-01
Anisotropic materials form inside living tissue and are widely applied in engineered structures, where sophisticated structural and functional design principles are essential to employing these materials. This paper presents a candidate laminated open-cell framework, which is an anisotropic material that shows remarkable mechanical performance. Using additive manufacturing, artificial frameworks are fabricated by lamination of in-plane orthotropic microstructures made of elbowed beam and column members; this fabricated structure features orthogonal anisotropy in three-dimensional space. Uniaxial loading tests reveal strong auxeticity (high negative Poisson’s ratios) in the out-of-plane direction, which is retained reproducibly up to the nonlinear elastic region, and is equal under tensile and compressive loading. Finite element simulations support the observed auxetic behaviors for a unit cell in the periodic framework, which preserve the theoretical elastic properties of an orthogonal solid. These findings open the possibility of conceptual materials design based on geometry.
Effective Stress Law in Unconventional Reservoirs under Different Boundary Conditions
NASA Astrophysics Data System (ADS)
Saurabh, S.; Harpalani, S.
2017-12-01
Unconventional reservoirs have attracted a great deal of research interest worldwide during the past two decades. Low permeability and specialized techniques required to exploit these resources present opportunities for improvement in both production rates and ultimate recovery. Understanding subsurface stress modifications and permeability evolution are valuable when evaluating the prospects of unconventional reservoirs. These reservoir properties are functions of effective stress. As a part of this study, effective stress law, specifically the variation of anisotropic Biot's coefficient under various boundary conditions believed to exist in gas reservoirs by different researchers, has been established. Pressure-dependent-permeability (PdK) experiments were carried out on San Juan coal under different boundary conditions, that is, uniaxial strain condition and constant volume condition. Stress and strain in the vertical and horizontal directions were monitored throughout the experiment. Data collected during the experiments was used to determine the Biot's coefficient in vertical and horizontal directions under these two boundary conditions, treating coal as transversely isotropic. The variation of Biot's coefficient was found to be well correlated with the variation in coal permeability. Based on the estimated values of Biot's coefficients, a theory of variation in its value is presented for other boundary conditions. The findings of the study shed light on the inherent behavior of Biot's coefficient under different reservoir boundary conditions. This knowledge can improve the modeling work requiring estimation of effective stress in reservoirs, such as, pressure-/stress- dependent permeability. At the same time, if the effective stresses are known with more certainty by other methods, it enables assessment of the unknown reservoir boundary conditions.
Xie, Jintao; Zhang, Jianbin; Zheng, Xitao; Ye, Junran; Deng, Dongmei
2018-04-30
We study the paraxial propagation of the radially polarized Airy beams (RPAiBs) in uniaxial crystals orthogonal to the optical axis analytically and numerically. The propagation trajectory, the intensity and the radiation forces of the RPAiBs are investigated and the properties are elucidated by numerical examples in this paper. Results show that the RPAiBs evolve into the beams produced by the x-direction electric field (RPAiXBs) and the y-direction electric field (PRAiYBs) which are totally different in uniaxial crystals. During the propagation, the intensity of the RPAiXBs transfers from the side lobe in the x-direction to the main lobe and finally returns to the side lobe in the x-direction again, but that of the RPAiYBs transfers from the side lobe in the y-direction to the main lobe and flows to the side lobe in the x-direction at last. The effect of the intensity focusing for the RPAiXBs can be modulated by the ratio of the extraordinary index (ne) to the ordinary index (no) in anisotropic medium, which contributes to the intensity focusing of the RPAiBs in a short distance a lot. We can adjust the intensity distribution especially the focusing position, the propagation trajectory and the radiation forces distributions of the RPAiXBs through choosing an appropriate value of the ratio of ne to no to meet the actual usage accordingly.
Pressurized feeding on the GEGAS system
NASA Technical Reports Server (NTRS)
Furman, A. H.
1977-01-01
A continuous process to feed coal directly into a pressurized gasifier is described. Coal fines are heated and mixed with a recycled tar binder and extruded through a novel die system against gasifier pressure. Performance data on a 2 in. system is given and scale up to a larger 6 in. system is described.
Calculation of the shrinkage-induced residual stress in a viscoelastic dental restorative material
NASA Astrophysics Data System (ADS)
Grassia, Luigi; D'Amore, Alberto
2013-02-01
A procedure able to describe the curing process of a particulate composite material used in a dental restoration is developed in the ANSYS environment. The material under concern is a multifunctional methacrylate-based composite for dental restoration, activated by visible light. The model accounts for the dependence of the viscoelastic functions on temperature and degree of cure. Three geometries have been considered in the analysis that are representative of three different classes of dental restoration and mainly differ by the C (constrained)-factor, (i.e. the bounded to unbounded surface ratio). It was found that the temperature could give a necrosis in the vicinity of the tooth nerve and that the average stress at the interface between the composite and the tooth scales exponentially with the C-factor. The residual stress at the dental restoration interface is also compared with the uniaxial tensile strength of twelve commercially available composite materials: it clearly appears that the level of residual stress may overcome the strength of the composite, especially at high C-factors.
Uniaxial compression on the superconductivity of β-BDA-TTP salts
NASA Astrophysics Data System (ADS)
Ito, Hiroshi; Ishihara, Tetsuo; Tanaka, Hisaaki; Kuroda, Shin-ichi; Yamada, Jun-ichi
2008-10-01
The β-type BDA-TTP superconductors attract attention due to the high transition temperature Tc at ambient pressure for organic superconductors. In order to get insight into the superconductivity in terms of the dimerized anisotropic triangular lattice model, Tc of β-(BDA-TTP)2X [X = SbF6, X = AsF6] is studied under uniaxial compression by resistivity measurements. Under compression parallel to the donor stack, Tc increases gradually up to 3 (X = SbF6), 5 (X = AsF6) kbar, and decreases under further piston pressure. Under compression perpendicular to the donor stack, Tc decreases gradually up to 2.5 (X = SbF6), 4 (X = AsF6) kbar and then decreases rapidly under further pressure. Only for X = AsF6, a Tc minimum at 3 kbar is found for both direction. These trends in Tc are understood as an interplay between the enhancement of antiferromagnetic spin fluctuation and frustration on the triangular lattice. By the interplane compression, Tc increased by 0.5 K up to 2 kbar for both salts, demonstrating the importance of the interlayer interaction.
The origin of uniaxial negative thermal expansion in layered perovskites
NASA Astrophysics Data System (ADS)
Ablitt, Chris; Craddock, Sarah; Senn, Mark S.; Mostofi, Arash A.; Bristowe, Nicholas C.
2017-10-01
Why is it that ABO3 perovskites generally do not exhibit negative thermal expansion (NTE) over a wide temperature range, whereas layered perovskites of the same chemical family often do? It is generally accepted that there are two key ingredients that determine the extent of NTE: the presence of soft phonon modes that drive contraction (have negative Grüneisen parameters); and anisotropic elastic compliance that predisposes the material to the deformations required for NTE along a specific axis. This difference in thermal expansion properties is surprising since both ABO3 and layered perovskites often possess these ingredients in equal measure in their high-symmetry phases. Using first principles calculations and symmetry analysis, we show that in layered perovskites there is a significant enhancement of elastic anisotropy due to symmetry breaking that results from the combined effect of layering and condensed rotations of oxygen octahedra. This feature, unique to layered perovskites of certain symmetry, is what allows uniaxial NTE to persist over a large temperature range. This fundamental insight means that symmetry and the elastic tensor can be used as descriptors in high-throughput screening and to direct materials design.
NASA Astrophysics Data System (ADS)
Hance, Brandon Michael
It was hypothesized that, in dual-phase (DP) steels, strain partitioning between ferrite (alpha) and martensite (alpha') during deformation results in a distribution of post-deformation residual stresses that, in turn, affects the subsequent strength, work hardening behavior and formability when the strain path is changed. The post-forming deformation-induced residual stress state was expected to depend upon the microstructure, the amount of strain and the prestrain path. The primary objective of this research program was to understand the influence of deformation-induced residual stresses on the post-forming tensile stress/strain behavior of DP steels. Three commercially produced sheet steels were considered in this analysis: (1) a DP steel with approximately 15 vol. % martensite, (2) a conventional high-strength, low-alloy (HSLA) steel, and (3) a conventional, ultra-low-carbon interstitial-free (IF) steel. Samples of each steel were subjected to various prestrain levels in various plane-stress forming modes, including uniaxial tension, plane strain and balanced biaxial stretching. Neutron diffraction experiments confirmed the presence of large post-forming deformation-induced residual stresses in the ferrite phase of the DP steel. The deformation-alphainduced residual stress state varied systematically with the prestrain mode, where the principal residual stress components are proportional to the principal strain components of the prestrain mode, but opposite in sign. For the first time, and by direct experimental correlation, it was shown that deformation-induced residual stresses greatly affect the post-forming tensile stress/strain behavior of DP steels. As previously reported in the literature, the formability (residual tensile ductility) of the IF steel and the HSLA steel was adversely affected by strain path changes. The DP steel presents a formability advantage over the conventional IF and HSLA steels, and is expected to be particularly well suited for
Electrical resistivity of CeNiSn under uniaxial and hydrostatic pressures
NASA Astrophysics Data System (ADS)
Echizen, Y.; Umeo, K.; Igaue, T.; Takabatake, T.
2002-05-01
We present measurements of the electrical resistivity ρ(T) on high-quality single-crystalline CeNiSn under both hydrostatic pressure up to 1 GPa and uniaxial pressure up to 0.25 GPa. At ambient pressure, ρ(T) along the orthorhombic a-axis (b-axis) shows two maxima at TL = 12 K (14 K) and TH = 74 K (40 K), respectively, which arise from the Kondo scattering of conduction electrons by the crystal-field ground state and excited states. With increasing hydrostatic pressure, both TL and TH increase linearly, and for P≥0.8 GPa, the anisotropy in ρ(T) for I∥a and I∥b almost vanishes as a result of increased hybridization between the 4f electrons and the conduction electrons. Under P∥a, both TL and TH in ρ(I∥b) increase similarly to under hydrostatic pressure. Under P∥c, however, the depression of TL in ρ(I∥a) and ρ(I∥b) suggests that the c-f hybridization in the crystal-field ground state is weakened in the a-b plane of CeNiSn.
Structural and magnetic properties of new uniaxial nanocrystalline Pr5Co19 compound
NASA Astrophysics Data System (ADS)
Bouzidi, W.; Mliki, N.; Bessais, L.
2017-11-01
Highly-coercive nanocrystalline Pr5Co19 powders have been synthesized by mechanical milling for the first time. The structural properties are studied by X-ray diffraction and refined with Rietveld method. This analysis revealed that whatever annealing temperature, samples crystallize in the rhombohedral (3R) of Ce5Co19-type structure (space group R 3 bar m). The magnetization curve as a function of temperature shows a magnetic transition state at the Curie temperature TC = 690 K. The optimum hard magnetic properties have been obtained for Pr5Co19 milled for 5 h and annealed at 1048 K for 30 min. These alloys exhibit a coercivity of 15 kOe at room temperature. This high coercivity is attributed to the high uniaxial magnetocrystalline anisotropy, nanoscale grain size, and to the homogeneous nanostructure developed by mechanical milling process and subsequent annealing.
Gupta, Abhay; Peck, Garnet E; Miller, Ronald W; Morris, Kenneth R
2005-10-01
This study evaluates the effect of variation in the ambient moisture on the compaction behavior of microcrystalline cellulose (MCC) powder. The study was conducted by comparing the physico-mechanical properties of, and the near infrared (NIR) spectra collected on, compacts prepared by roller compaction with those collected on simulated ribbons, that is, compacts prepared under uni-axial compression. Relative density, moisture content, tensile strength (TS), and Young modulus were used as key sample attributes for comparison. Samples prepared at constant roller compactor settings and feed mass showed constant density and a decrease in TS with increasing moisture content. Compacts prepared under uni-axial compression at constant pressure and compact mass showed the opposite effect, that is, density increased while TS remained almost constant with increasing moisture content. This suggests difference in the influence of moisture on the material under roller compaction, in which the roll gap (i.e., thickness and therefore density) remains almost constant, vs. under uni-axial compression, in which the thickness is free to change in response to the applied pressure. Key sample attributes were also related to the NIR spectra using multivariate data analysis by the partial least squares projection to latent structures (PLS). Good agreement was observed between the measured and the NIR-PLS predicted values for all key attributes for both, the roller compacted samples as well as the simulated ribbons. Copyright (c) 2005 Wiley-Liss, Inc. and the American Pharmacists Association
Nonlinear deformation of composites with consideration of the effect of couple-stresses
NASA Astrophysics Data System (ADS)
Lagzdiņš, A.; Teters, G.; Zilaucs, A.
1998-09-01
Nonlinear deformation of spatially reinforced composites under active loading (without unloading) is considered. All the theoretical constructions are based on the experimental data on unidirectional and ±π/4 cross-ply epoxy plastics reinforced with glass fibers. Based on the elastic properties of the fibers and EDT-10 epoxy binder, the linear elastic characteristics of a transversely isotropic unidirectionally reinforced fiberglass plastic are found, whereas the nonlinear characteristics are obtained from experiments. For calculating the deformation properties of the ±π/4 cross-ply plastic, a refined version of the Voigt method is applied taking into account also the couple-stresses arising in the composite due to relative rotation of the reinforcement fibers. In addition, a fourth-rank damage tensor is introduced in order to account for the impact of fracture caused by the couple-stresses. The unknown constants are found from the experimental uniaxial tension curve for the cross-ply composite. The comparison between the computed curves and experimental data for other loading paths shows that the description of the nonlinear behavior of composites can be improved by considering the effect of couple-stresses generated by rotations of the reinforcing fibers.
Liu, Yue; Li, Nan; Mariyappan, Arul Kumar; ...
2017-06-07
Basal slip and {01more » $$\\bar{1}$$2} twinning are two major plastic deformation mechanisms in hexagonal closed-packed magnesium. Here in this paper, we quantify the critical stresses associated with basal slip and twinning in single-crystal and bi-crystal magnesium samples by performing in situ compression of micropillars with different diameters in a scanning electron microscope. The micropillars are designed to favor either slip or twinning under uniaxial compression. Compression tests imply a negligible size effect related to basal slip and twinning as pillar diameter is greater than 10 μm. The critical resolved shear stresses are deduced to be 29 MPa for twinning and 6 MPa for basal slip from a series of micropillar compression tests. Employing full-field elasto-visco-plastic simulations, we further interpret the experimental observations in terms of the local stress distribution associated with multiple twinning, twin nucleation, and twin growth. Our simulation results suggest that the twinning features being studied should not be close to the top surface of the micropillar because of local stress perturbations induced by the hard indenter.« less
Importance of uniaxial compression for the appearance of superconductivity in NdO1-xFxBiS2
NASA Astrophysics Data System (ADS)
A, Omachi; T, Hiroi; J, Kajitani; O, Miura; Y, Mizuguchi
2014-05-01
We have investigated the crystal structure and superconducting properties of the new layered superconductor NdO1-xFxBiS2. Bulk superconductivity with a Tc above 4.5 K was observed. It was found that the Tc depended on both F concentration and crystal structure. Uniaxial compression along the c axis upon F substitution seemed to be linked with the appearance of bulk superconductivity. Furthermore, we considered that a higher Tc can be achieved when the c/a parameter was optimized in the NdO1-xFxBiS2 system.
A Modified Mechanical Threshold Stress Constitutive Model for Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Prasad, K. Sajun; Gupta, Amit Kumar; Singh, Yashjeet; Singh, Swadesh Kumar
2016-12-01
This paper presents a modified mechanical threshold stress (m-MTS) constitutive model. The m-MTS model incorporates variable athermal and dynamic strain aging (DSA) Components to accurately predict the flow stress behavior of austenitic stainless steels (ASS)-316 and 304. Under strain rate variations between 0.01-0.0001 s-1, uniaxial tensile tests were conducted at temperatures ranging from 50-650 °C to evaluate the material constants of constitutive models. The test results revealed the high dependence of flow stress on strain, strain rate and temperature. In addition, it was observed that DSA occurred at elevated temperatures and very low strain rates, causing an increase in flow stress. While the original MTS model is capable of predicting the flow stress behavior for ASS, statistical parameters point out the inefficiency of the model when compared to other models such as Johnson Cook model, modified Zerilli-Armstrong (m-ZA) model, and modified Arrhenius-type equations (m-Arr). Therefore, in order to accurately model both the DSA and non-DSA regimes, the original MTS model was modified by incorporating variable athermal and DSA components. The suitability of the m-MTS model was assessed by comparing the statistical parameters. It was observed that the m-MTS model was highly accurate for the DSA regime when compared to the existing models. However, models like m-ZA and m-Arr showed better results for the non-DSA regime.
Stress induced phase transitions in silicon
NASA Astrophysics Data System (ADS)
Budnitzki, M.; Kuna, M.
2016-10-01
Silicon has a tremendous importance as an electronic, structural and optical material. Modeling the interaction of a silicon surface with a pointed asperity at room temperature is a major step towards the understanding of various phenomena related to brittle as well as ductile regime machining of this semiconductor. If subjected to pressure or contact loading, silicon undergoes a series of stress-driven phase transitions accompanied by large volume changes. In order to understand the material's response for complex non-hydrostatic loading situations, dedicated constitutive models are required. While a significant body of literature exists for the dislocation dominated high-temperature deformation regime, the constitutive laws used for the technologically relevant rapid low-temperature loading have severe limitations, as they do not account for the relevant phase transitions. We developed a novel finite deformation constitutive model set within the framework of thermodynamics with internal variables that captures the stress induced semiconductor-to-metal (cd-Si → β-Si), metal-to-amorphous (β-Si → a-Si) as well as amorphous-to-amorphous (a-Si → hda-Si, hda-Si → a-Si) transitions. The model parameters were identified in part directly from diamond anvil cell data and in part from instrumented indentation by the solution of an inverse problem. The constitutive model was verified by successfully predicting the transformation stress under uniaxial compression and load-displacement curves for different indenters for single loading-unloading cycles as well as repeated indentation. To the authors' knowledge this is the first constitutive model that is able to adequately describe cyclic indentation in silicon.
Determination of stresses in RC eccentrically compressed members using optimization methods
NASA Astrophysics Data System (ADS)
Lechman, Marek; Stachurski, Andrzej
2018-01-01
The paper presents an optimization method for determining the strains and stresses in reinforced concrete (RC) members subjected to the eccentric compression. The governing equations for strains in the rectangular cross-sections are derived by integrating the equilibrium equations of cross-sections, taking account of the effect of concrete softening in plastic range and the mean compressive strength of concrete. The stress-strain relationship for concrete in compression for short term uniaxial loading is assumed according to Eurocode 2 for nonlinear analysis. For reinforcing steel linear-elastic model with hardening in plastic range is applied. The task consists in the solving the set of the derived equations s.t. box constraints. The resulting problem was solved by means of fmincon function implemented from the Matlab's Optimization Toolbox. Numerical experiments have shown the existence of many points verifying the equations with a very good accuracy. Therefore, some operations from the global optimization were included: start of fmincon from many points and clusterization. The model is verified on the set of data encountered in the engineering practice.
Dynamic fracture of sintered Nd-Fe-B magnet under uniaxial compression
NASA Astrophysics Data System (ADS)
Wang, Huanran; Wan, Yin; Chen, Danian; Lei, Guohua; Ren, Chunying
2018-06-01
The dynamic fracture of the Nd-Fe-B magnets under uniaxial compression is investigated using a split Hopkinson pressure bar (SHPB). The surface deformation and fracture processes of the Nd-Fe-B specimens are recorded adopting a high-speed photography (HSP) with digital image correlation (DIC). The load and work applied to the specimens in the SHPB tests are determined with the strain signals of the transmitted and reflected waves. The surface strain distributions of the Nd-Fe-B specimen during the SHPB testing are revealed with DIC. It is shown by the HSP with DIC that when the load is near the maximum, the cracks at some positions on the surface of the expanding Nd-Fe-B specimen are formed and ran along certain directions. The work applied to the specimen per unit volume which corresponds to the maximal load is used to characterize the impact stability of the Nd-Fe-B specimen. The localized fracture strains at some positions on the surface of the expanding specimens at some characteristic times are determined with DIC, which are the projections of the strains onto the DIC plane.
NASA Technical Reports Server (NTRS)
Krempl, Erhard; An, Deukman
1991-01-01
Fatigue tests conducted with and without internal pressure have been found to possess approximately the same fatigue life as (+/-45)s graphite/epoxy tubes for zero-to-tension axial load-controlled conditions on an axial torsion servohydraulic apparatus. These tests therefore cannot be considered as confirmations of the suspected detrimental effect of interlaminar tensile stresses on the fatigue performance of thin-walled tubes. The addition of 90-deg plies on both the inside and the outside is found to significantly improve the tubes' static and fatigue strengths.
Mechanical and hydraulic properties of Nankai accretionary prism sediments: Effect of stress path
NASA Astrophysics Data System (ADS)
Kitajima, Hiroko; Chester, Frederick M.; Biscontin, Giovanna
2012-10-01
We have conducted triaxial deformation experiments along different loading paths on prism sediments from the Nankai Trough. Different load paths of isotropic loading, uniaxial strain loading, triaxial compression (at constant confining pressure, Pc), undrained Pc reduction, drained Pc reduction, and triaxial unloading at constant Pc, were used to understand the evolution of mechanical and hydraulic properties under complicated stress states and loading histories in accretionary subduction zones. Five deformation experiments were conducted on three sediment core samples for the Nankai prism, specifically from older accreted sediments at the forearc basin, underthrust slope sediments beneath the megasplay fault, and overthrust Upper Shikoku Basin sediments along the frontal thrust. Yield envelopes for each sample were constructed based on the stress paths of Pc-reduction using the modified Cam-clay model, and in situ stress states of the prism were constrained using the results from the other load paths and accounting for horizontal stress. Results suggest that the sediments in the vicinity of the megasplay fault and frontal thrust are highly overconsolidated, and thus likely to deform brittle rather than ductile. The porosity of sediments decreases as the yield envelope expands, while the reduction in permeability mainly depends on the effective mean stress before yield, and the differential stress after yield. An improved understanding of sediment yield strength and hydromechanical properties along different load paths is necessary to treat accurately the coupling of deformation and fluid flow in accretionary subduction zones.
NASA Astrophysics Data System (ADS)
Prikryl, Richard; Lokajíček, Tomáš
2017-04-01
According to previous studies, evaluation of stress-strain behaviour (in uniaxial compression) of various rocks appears to be effective tool allowing for prediction of resistance of natural stone to some physical weathering processes. Precise determination of critical thresholds, specifically of 'crack initiation' and 'crack damage' is fundamental issue in this approach. In contrast to 'crack damage stress/strain threshold', which can be easily read from deflection point on volumetric curve, detection of 'crack initiation' is much more difficult. Besides previously proposed mathematical processing of axial stress-strain curve, recording of acoustic emission (AE) data and their processing provide direct measure of various stress/strain thresholds, specifically of 'crack initiation'. This specific parameter is required during successive computation of energetic parameters (mechanical work), that can be stored by a material without formation of new defects (microcracks) due to acting stress. Based on our experimental data, this mechanical work seems to be proportional to the resistance of a material to formation of mode I (tensile) cracks that are responsible for destruction of subsurface below exposed faces of natural stone.
Higher order acoustoelastic Lamb wave propagation in stressed plates.
Pei, Ning; Bond, Leonard J
2016-11-01
Modeling and experiments are used to investigate Lamb wave propagation in the direction perpendicular to an applied stress. Sensitivity, in terms of changes in velocity, for both symmetrical and anti-symmetrical modes was determined. Codes were developed based on analytical expressions for waves in loaded plates and they were used to give wave dispersion curves. The experimental system used a pair of compression wave transducers on variable angle wedges, with set separation, and variable frequency tone burst excitation, on an aluminum plate 0.16 cm thick with uniaxial applied loads. The loads, which were up to 600 με, were measured using strain gages. Model results and experimental data are in good agreement. It was found that the change in Lamb wave velocity, due to the acoustoelastic effect, for the S 1 mode exhibits about ten times more sensitive, in terms of velocity change, than the traditional bulk wave measurements, and those performed using the fundamental Lamb modes. The data presented demonstrate the potential for the use of higher order Lamb modes for online industrial stress measurement in plate, and that the higher sensitivity seen offers potential for improved measurement systems.
The finite scaling for S = 1 XXZ chains with uniaxial single-ion-type anisotropy
NASA Astrophysics Data System (ADS)
Wang, Honglei; Xiong, Xingliang
2014-03-01
The scaling behavior of criticality for spin-1 XXZ chains with uniaxial single-ion-type anisotropy is investigated by employing the infinite matrix product state representation with the infinite time evolving block decimation method. At criticality, the accuracy of the ground state of a system is limited by the truncation dimension χ of the local Hilbert space. We present four evidences for the scaling of the entanglement entropy, the largest eigenvalue of the Schmidt decomposition, the correlation length, and the connection between the actual correlation length ξ and the energy. The result shows that the finite scalings are governed by the central charge of the critical system. Also, it demonstrates that the infinite time evolving block decimation algorithm by the infinite matrix product state representation can be a quite accurate method to simulate the critical properties at criticality.
NASA Astrophysics Data System (ADS)
Wen, Dandan; Bai, Feiming; Wang, Yicheng; Zhong, Zhiyong; Zhang, Huaiwu
2013-05-01
Laminated amorphous FeSiBC films with various spacer layers, including Cu, Co0.45Cu0.55, Co0.8Cu0.2, and CoFe, were prepared in order to study the effect of interface structure and magnetic exchange interaction on the magnetic softness and uniaxial anisotropy of multilayered film. It is found that laminating FeSiBC film with thin nonmagnetic or weak magnetic spacers yields much lower coercivity and higher remanent magnetization than those with magnetic spacers. Optimal films with the desired properties of Hc ˜ 1.5 Oe, Mr/Ms = 95%, and Hk ˜ 16 Oe were obtained. Therefore, it is confirmed that the exchange interaction constant of spacer layer plays a more important role than that of interface structure. Furthermore, laminating FeSiBC with nonmagnetic layers only slightly changes magnetostrictive coefficient.
Test and Analyses of a Composite Multi-Bay Fuselage Panel Under Uni-Axial Compression
NASA Technical Reports Server (NTRS)
Li, Jian; Baker, Donald J.
2004-01-01
A composite panel containing three stringers and two frames cut from a vacuum-assisted resin transfer molded (VaRTM) stitched fuselage article was tested under uni-axial compression loading. The stringers and frames divided the panel into six bays with two columns of three bays each along the compressive loading direction. The two frames were supported at the ends with pins to restrict the out-of-plane translation. The free edges of the panel were constrained by knife-edges. The panel was modeled with shell finite elements and analyzed with ABAQUS nonlinear solver. The nonlinear predictions were compared with the test results in out-of-plane displacements, back-to-back surface strains on stringer flanges and back-to-back surface strains at the centers of the skin-bays. The analysis predictions were in good agreement with the test data up to post-buckling.
Teng, Zhongzhao; Zhang, Yongxue; Huang, Yuan; Feng, Jiaxuan; Yuan, Jianmin; Lu, Qingsheng; Sutcliffe, Michael P F; Brown, Adam J; Jing, Zaiping; Gillard, Jonathan H
2014-12-01
Computational modelling to calculate the mechanical loading within atherosclerotic plaques has been shown to be complementary to defining anatomical plaque features in determining plaque vulnerability. However, its application has been partially impeded by the lack of comprehensive knowledge about the mechanical properties of various tissues within the plaque. Twenty-one human carotid plaques were collected from endarterectomy. The plaque was cut into rings, and different type of atherosclerotic tissues, including media, fibrous cap (FC), lipid and intraplaque haemorrhage/thrombus (IPH/T) was dissected for uniaxial extension testing. In total, 65 media strips from 17 samples, 59 FC strips from 14 samples, 38 lipid strips from 11 samples, and 21 IPH/T strips from 11 samples were tested successfully. A modified Mooney-Rivlin strain energy density function was used to characterize the stretch-stress relationship. The stiffnesses of media and FC are comparable, as are lipid and IPH/T. However, both media and FC are stiffer than either lipid or IPH/T. The median values of incremental Young's modulus of media, FC, lipid and IPH/T at λ=1 are 290.1, 244.5, 104.4, 52.9, respectively; they increase to 1019.5, 817.4, 220.7 and 176.9 at λ=1.1; and 4302.7, 3335.0, 533.4 and 268.8 at λ=1.15 (unit, kPa; λ, stretch ratio). The material constants of each tissue type are suggested to be: media, c1=0.138kPa, D1=3.833kPa and D2=18.803; FC, c1=0.186kPa, D1=5.769kPa and D2=18.219; lipid, c1=0.046kPa, D1=4.885kPa and D2=5.426; and IPH/T, c1=0.212kPa, D1=4.260kPa and D2=5.312. It is concluded that all soft atherosclerotic tissues are non-linear, and both media and FC are stiffer than either lipid or IPH/T. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Miranda, Daniel; Yin, Chaoqing; Runt, James
Fluorinated semi-crystalline polymer films are attractive for dielectric film applications due to their chemical inertness, heat resistance, and high thermal stability. In the present investigation we explore the influence of orientation induced by uniaxial drawing on the crystalline microstructure and relaxation processes of poly(ethylene-tetrafluoroethylene) (ETFE), in order to ascertain how morphological control can benefit polymer dielectric design. When drawn below or near the Tg, the crystallinity of the drawn films is unchanged, and oriented amorphous structures and crystalline microfibrils form at high draw ratios. This orientation slows segmental relaxation, reflected by an increase in the dynamic Tg, and also delays the transition to the high temperature crystalline form of ETFE. When drawing above the Tg, the films undergo strain-induced crystallization at high draw ratios. For these films an increase in the dynamic Tg is also observed, in addition to a second segmental relaxation process, appearing as a shoulder on the primary process. We propose that this represents a contribution from a rigid amorphous fraction, having slowed chain dynamics. Supported by Office of Naval Research.
Largely Tunable Band Structures of Few-Layer InSe by Uniaxial Strain.
Song, Chaoyu; Fan, Fengren; Xuan, Ningning; Huang, Shenyang; Zhang, Guowei; Wang, Chong; Sun, Zhengzong; Wu, Hua; Yan, Hugen
2018-01-31
Because of the strong quantum confinement effect, few-layer γ-InSe exhibits a layer-dependent band gap, spanning the visible and near infrared regions, and thus recently has been drawing tremendous attention. As a two-dimensional material, the mechanical flexibility provides an additional tuning knob for the electronic structures. Here, for the first time, we engineer the band structures of few-layer and bulk-like InSe by uniaxial tensile strain and observe a salient shift of photoluminescence peaks. The shift rate of the optical gap is approximately 90-100 meV per 1% strain for four- to eight-layer samples, which is much larger than that for the widely studied MoS 2 monolayer. Density functional theory calculations well reproduce the observed layer-dependent band gaps and the strain effect and reveal that the shift rate decreases with the increasing layer number for few-layer InSe. Our study demonstrates that InSe is a very versatile two-dimensional electronic and optoelectronic material, which is suitable for tunable light emitters, photodetectors, and other optoelectronic devices.
Yilmaz, Ezgi D; Jelitto, Hans; Schneider, Gerold A
2015-04-01
In this work, the compressive elastic modulus and failure strength values of bovine enamel at the first hierarchical level formed by hydroxyapatite (HA) nanofibers and organic matter are identified in longitudinal, transverse and oblique direction with the uniaxial micro-compression method. The elastic modulus values (∼70 GPa) measured here are within the range of results reported in the literature but these values were found surprisingly uniform in all orientations as opposed to the previous nanoindentation findings revealing anisotropic elastic properties in enamel. Failure strengths were recorded up to ∼1.7 GPa and different failure modes (such as shear, microbuckling, fiber fracture) governed by the orientation of the HA nanofibers were visualized. Structural irregularities leading to mineral contacts between the nanofibers are postulated as the main reason for the high compressive strength and direction-independent elastic behavior on enamels first hierarchical level. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Tidjarat, Siripran; Winotapun, Weerapath; Opanasopit, Praneet; Ngawhirunpat, Tanasait; Rojanarata, Theerasak
2014-11-07
Uniaxially aligned cellulose acetate (CA) nanofibers were successfully fabricated by electrospinning and applied to use as stationary phase for thin layer chromatography. The control of alignment was achieved by using a drum collector rotating at a high speed of 6000 rpm. Spin time of 6h was used to produce the fiber thickness of about 10 μm which was adequate for good separation. Without any chemical modification after the electrospinning process, CA nanofibers could be readily devised for screening hydroquinone (HQ) and retinoic acid (RA) adulterated in cosmetics using the mobile phase consisting of 65:35:2.5 methanol/water/acetic acid. It was found that the separation run on the aligned nanofibers over a distance of 5 cm took less than 15 min which was two to three times faster than that on the non-aligned ones. On the aligned nanofibers, the masses of HQ and RA which could be visualized were 10 and 25 ng, respectively, which were two times lower than those on the non-aligned CA fibers and five times lower than those on conventional silica plates due to the appearance of darker and sharper of spots on the aligned nanofibers. Furthermore, the proposed method efficiently resolved HQ from RA and ingredients commonly found in cosmetic creams. Due to the satisfactory analytical performance, facile and inexpensive production process, uniaxially aligned electrospun CA nanofibers are promising alternative media for planar chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of Temper Condition on Stress Relaxation Behavior of an Aluminum Copper Lithium Alloy
NASA Astrophysics Data System (ADS)
Mishra, Sumeet; Beura, Vikrant Kumar; Singh, Amit; Yadava, Manasij; Nayan, Niraj
2018-07-01
Deformation behavior of an Al-Cu-Li alloy in different temper conditions (solutionized and T8) is investigated using stress relaxation tests. Fundamental parameters such as the apparent and physical activation volume, strain rate sensitivity, effective stress, and exhaustion rate of mobile dislocation density are determined from single and multiple relaxation tests. It was found that dislocation-dislocation interaction controls the kinetics of plastic deformation in the solutionized sample, whereas dislocation-precipitate interaction is the overriding factor in the presence of T1 precipitates. The apparent activation volume was found to be significantly lower in the presence of T1 precipitates compared with solutionized samples. Strain rate sensitivity and effective stress were found to be higher in the presence of T1 precipitates. In addition, multiple relaxation tests showed that irrespective of microstructural features (solutes, semi-coherent precipitates), the mobile dislocation density reduces during the relaxation period. Further evidence regarding reduction in mobile dislocation density is obtained from uniaxial tensile tests carried out after stress relaxation tests, where both solutionized and T8 samples show an increase in strength. Additional discussion on relaxation strain is included to provide a complete overview regarding the time-dependent deformation behavior of the Al-Cu-Li alloy in different temper conditions.
Effect of Temper Condition on Stress Relaxation Behavior of an Aluminum Copper Lithium Alloy
NASA Astrophysics Data System (ADS)
Mishra, Sumeet; Beura, Vikrant Kumar; Singh, Amit; Yadava, Manasij; Nayan, Niraj
2018-04-01
Deformation behavior of an Al-Cu-Li alloy in different temper conditions (solutionized and T8) is investigated using stress relaxation tests. Fundamental parameters such as the apparent and physical activation volume, strain rate sensitivity, effective stress, and exhaustion rate of mobile dislocation density are determined from single and multiple relaxation tests. It was found that dislocation-dislocation interaction controls the kinetics of plastic deformation in the solutionized sample, whereas dislocation-precipitate interaction is the overriding factor in the presence of T1 precipitates. The apparent activation volume was found to be significantly lower in the presence of T1 precipitates compared with solutionized samples. Strain rate sensitivity and effective stress were found to be higher in the presence of T1 precipitates. In addition, multiple relaxation tests showed that irrespective of microstructural features (solutes, semi-coherent precipitates), the mobile dislocation density reduces during the relaxation period. Further evidence regarding reduction in mobile dislocation density is obtained from uniaxial tensile tests carried out after stress relaxation tests, where both solutionized and T8 samples show an increase in strength. Additional discussion on relaxation strain is included to provide a complete overview regarding the time-dependent deformation behavior of the Al-Cu-Li alloy in different temper conditions.
Detecting uniaxial single domain grains with a modified IRM technique
NASA Astrophysics Data System (ADS)
Mitra, R.; Tauxe, L.; Gee, J. S.
2011-12-01
Mid-ocean ridge basalt (MORB) specimens have often been found to have high ratios of saturation remanence to saturation magnetization (Mrs/Ms). This has been attributed either to dominant cubic anisotropy or to insufficient saturating field leading to overestimation of Mrs/Ms of a dominantly uniaxial single domain (USD) assemblage. To resolve this debate, we develop an independent technique to detect USD assemblages. The experimental protocol involves subjecting the specimen to bidirectional impulse fields at each step. The experiment is similar to the conventional isothermal remanent magnetization (IRM) acquisition experiment but the field is applied twice, in antiparallel directions. We define a new parameter, IRAT, as the ratio of the remanences at each field step and show it to have characteristic behaviour for the two assemblages; IRAT ˜1 at all field steps for USD and <1 with a strong field dependence for multi-axial single domain (MSD) grains. We verified the theoretical predictions experimentally with representative USD and MSD specimens. Experiments with MORBs gave low IRATs for specimens having high Mrs/Ms. This argues for a dominant MSD assemblage in the MORBs, possibly cubic in nature. Although undersaturation of the samples can indeed be a contributing factor to the exceptionally high Mrs/Ms, this study shows that the nature of the assemblage cannot be dominantly USD.
Weiss, S; Henle, P; Roth, W; Bock, R; Boeuf, S; Richter, W
2011-01-01
A computer controlled dynamic bioreactor for continuous ultra-slow uniaxial distraction of a scaffold-free three-dimensional (3D) mesenchymal stem cell pellet culture was designed to investigate the influence of stepless tensile strain on behavior of distinct primary cells like osteoblasts, chondroblasts, or stem cells without the influence of an artificial culture matrix. The main advantages of this device include the following capabilities: (1) Application of uniaxial ultra-slow stepless distraction within a range of 0.5-250 μm/h and real-time control of the distraction distance with high accuracy (mean error -3.4%); (2) tension strain can be applied on a 3D cell culture within a standard CO(2) -incubator without use of an artificial culture matrix; (3) possibility of histological investigation without loss of distraction; (4) feasibility of molecular analysis on RNA and protein level. This is the first report on a distraction device capable of applying continuous tensile strain to a scaffold-free 3D cell culture within physiological ranges of motion comparable to distraction ostegenesis in vivo. We expect the newly designed microdistraction device to increase our understanding on the regulatory mechanisms of mechanical strains on the metabolism of stem cells. Copyright © 2010 American Institute of Chemical Engineers (AIChE).
The effects of magnetic and mechanical microstructures on the twinning stress in Ni-Mn-Ga
NASA Astrophysics Data System (ADS)
Faran, Eilon; Benichou, Itamar; Givli, Sefi; Shilo, Doron
2015-12-01
The ferromagnetic 10M Ni-Mn-Ga alloy exhibits complex magnetic and mechanical microstructures, which are expected to form barriers for motion of macro twin boundaries. Here, the contributions of both microstructures to the magnitude of the twinning stress property are investigated experimentally. A series of uniaxial loading-unloading curves are taken under different orientation angles of a constant magnetic field. The different 180 ° magnetic domains microstructures that are formed across the twin boundary in each case are visualised using a magneto optical film. Analysis of the different loading curves and the corresponding magnetic microstructures show that the latter does not contribute to the barriers for twin boundary motion. In accordance, the internal resisting stress for twin boundary motion under any magnetic field can be taken as the twinning stress measured in the absence of an external field. In addition, a statistical analysis of the fine features in the loading profiles reveals that the barrier for twinning is associated with a μ m sized characteristic length scale. This length scale corresponds to the typical thickness of micro-twinning laminates that constitute a mechanical microstructure. These findings indicate that the magnitude of the twinning stress in 10M Ni-Mn-Ga is determined by the characteristic fine twinned mechanical microstructure of this alloy.
NASA Astrophysics Data System (ADS)
Correa, M. A.; Bohn, F.
2018-05-01
We perform a theoretical and experimental investigation of the magnetic properties and magnetization dynamics of a ferromagnetic magnetostrictive multilayer grown onto a flexible substrate and submitted to external stress. We calculate the magnetic behavior and magnetoimpedance effect for a trilayered system from an approach that considers a magnetic permeability model for planar geometry and a magnetic free energy density which takes into account induced uniaxial and magnetoelastic anisotropy contributions. We verify remarkable modifications of the magnetic anisotropy with external stress, as well as we show that the dynamic magnetic response is strongly affected by these changes. We discuss the magnetic features that lead to modifications of the frequency limits where distinct mechanisms are responsible by the magnetoimpedance variations, enabling us to manipulate the resonance fields. To test the robustness of the approach, we directly compare theoretical results with experimental data. Thus, we provide experimental evidence to confirm the validity of the theoretical approach, as well as to manipulate the resonance fields to tune the MI response according to real applications in devices.
NASA Astrophysics Data System (ADS)
Jing, Hailong; Su, Xianyu; You, Zhisheng
2017-03-01
A uniaxial three-dimensional shape measurement system with multioperation modes for different modulation algorithms is proposed. To provide a general measurement platform that satisfies the specific measurement requirements in different application scenarios, a measuring system with multioperation modes based on modulation measuring profilometry (MMP) is presented. Unlike the previous solutions, vertical scanning by focusing control of an electronic focus (EF) lens is implemented. The projection of a grating pattern is based on a digital micromirror device, which means fast phase-shifting with high precision. A field programmable gate array-based master control center board acts as the coordinator of the MMP system; it harmonizes the workflows, such as grating projection, focusing control of the EF lens, and fringe pattern capture. Fourier transform, phase-shifting technique, and temporary Fourier transform are used for modulation analysis in different operation modes. The proposed system features focusing control, speed, programmability, compactness, and availability. This paper details the principle of MMP for multioperation modes and the design of the proposed system. The performances of different operation modes are analyzed and compared, and a work piece with steep holes is measured to verify this multimode MMP system.
Designing a Uniaxial Tension/Compression Test for Springback Analysis in High-Strength Steel Sheets
Stoudt, M. R.; Levine, L. E.; Ma, L.
2016-01-01
We describe an innovative design for an in-plane measurement technique that subjects thin sheet metal specimens to bidirectional loading. The goal of this measurement is to provide the critical performance data necessary to validate complex predictions of the work hardening behavior during reversed uniaxial deformation. In this approach, all of the principal forces applied to the specimen are continually measured in real-time throughout the test. This includes the lateral forces that are required to prevent out of plane displacements in the specimen that promote buckling. This additional information will, in turn, improve the accuracy of the compensation for the friction generated between the anti-bucking guides and the specimen during compression. The results from an initial series of experiments not only demonstrate that our approach is feasible, but that it generates data with the accuracy necessary to quantify the directionally-dependent changes in the yield behavior that occur when the strain path is reversed (i.e., the Bauschinger Effect). PMID:28133391
Textile properties of synthetic prolapse mesh in response to uniaxial loading.
Barone, William R; Moalli, Pamela A; Abramowitch, Steven D
2016-09-01
Although synthetic mesh is associated with superior anatomic outcomes for the repair of pelvic organ prolapse, the benefits of mesh have been questioned because of the relatively high complication rates. To date, the mechanisms that result in such complications are poorly understood, yet the textile characteristics of mesh products are believed to play an important role. Interestingly, the pore diameter of synthetic mesh has been shown to impact the host response after hernia repair greatly, and such findings have served as design criteria for prolapse meshes, with larger pores viewed as more favorable. Although pore size and porosity are well-characterized before implantation, the changes in these textile properties after implantation are unclear; the application of mechanical forces has the potential to greatly alter pore geometries in vivo. Understanding the impact of mechanical loading on the textile properties of mesh is essential for the development of more effective devices for prolapse repair. The objective of this study was to determine the effect of tensile loading and pore orientation on mesh porosity and pore dimensions. In this study, the porosity and pore diameter of 4 currently available prolapse meshes were examined in response to uniaxial tensile loads of 0.1, 5, and 10 N while mimicking clinical loading conditions. The textile properties were compared with those observed for the unloaded mesh. Meshes included Gynemesh PS (Ethicon, Somerville, NJ), UltraPro (Artisyn; Ethicon), Restorelle (Coloplast, Minneapolis, MN), and Alyte Y-mesh (Bard, Covington, GA). In addition to the various pore geometries, 3 orientations of Restorelle (0-, 5-, 45-degree offset) and 2 orientations of UltraPro (0-, 90-degree offset) were examined. In response to uniaxial loading, both porosity and pore diameter dramatically decreased for most mesh products. The application of 5 N led to reductions in porosity for nearly all groups, with values decreasing by as much as 87
Scattering and propagation of a Laguerre-Gaussian vortex beam by uniaxial anisotropic bispheres
NASA Astrophysics Data System (ADS)
Qu, Tan; Wu, Zhensen; Shang, Qingchao; Li, Zhengjun; Wu, Jiaji; Li, Haiying
2018-04-01
Within the framework of the generalized multi-particle Mie (GMM) theory, analytical solution to electromagnetic scattering of two interacting homogeneous uniaxial anisotropic spheres by a Laguerre-Gaussian (LG) vortex beam is investigated. The particles with different size and dielectric parameter tensor elements are arbitrarily configured. Based on the continuous boundary conditions at each sphere surface, the interactive scattering coefficients are derived. The internal and near-surface field is investigated to describe the propagation of LG vortex beam through the NaCl crystal. In addition, the far fields of some typical anisotropic medium such as LiNbO3, TiO2 bispheres illuminated by an LG vortex beam are numerically presented in detail to analyze the influence of the anisotropic parameters, sphere positions, separation distance and topological charge etc. The results show that LG vortex beam has a better recovery after interacting with a spherical particle compared with Gaussian beam. The study in the paper are useful for the further research on the scattering and propagation characteristics of arbitrary vortex beam in anisotropic chains and periodic structure.
Radiation of X-Rays Using Uniaxially Polarized LiNbO3 Single Crystal
NASA Astrophysics Data System (ADS)
Fukao, Shinji; Nakanishi, Yoshikazu; Mizoguchi, Tadahiro; Ito, Yoshiaki; Nakamura, Toru; Yoshikado, Shinzo
2009-03-01
X-rays are radiated due to the bremsstrahlung caused by the collision of electrons with a metal target placed opposite the negative electric surface of a crystal by changing the temperature of a LiNbO3 single crystal uniaxially polarized in the c-axis direction. It is suggested that both electric field intensity and electron density determine the intensity of X-ray radiation. Electrons are supplied by the ionization of residual gas in space, field emission from a case inside which a crystal is located, considered to be due to the high electric-field intensity formed by the surface charges on the crystal, and an external electron source, such as a thermionic source. In a high vacuum, it was found that the electrons supplied by electric-field emission mainly contribute to the radiation of X-rays. It was found that the integrated intensity of X-rays can be maximized by supplying electrons both external and by electric-field emission. Furthermore, the integrated intensity of the X-rays is stable for many repeated temperature changes.
Some Recent Developments in the Endochronic Theory with Application to Cyclic Histories
NASA Technical Reports Server (NTRS)
Valanis, K. C.; Lee, C. F.
1983-01-01
Constitutive equations with only two easily determined material constants predict the stress (strain) response of normalized mild steel to a variety of general strain (stress) histories, without a need for special unloading-reloading rules. The equations are derived from the endochronic theory of plasticity of isotropic materials with an intrinsic time scale defined in the plastic strain space. Agreement between theoretical predictions and experiments are are excellent quantitatively in cases of various uniaxial constant amplitude histories, variable uniaxial strain amplitude histories and cyclic relaxation. The cyclic ratcheting phenomenon is predicted by the present theory.
NASA Astrophysics Data System (ADS)
Wang, Xiaoqiong; Ge, Hongkui; Wang, Daobing; Wang, Jianbo; Chen, Hao
2017-12-01
An effective fracability evaluation on the fracture network is key to the whole process of shale gas exploitation. At present, neither a standard criteria nor a generally accepted evaluation method exist. Well log and laboratory results have shown that the commonly used brittleness index calculated from the mineralogy composition is not entirely consistent with that obtained from the elastic modulus of the rock, and is sometimes even contradictory. The brittle mineral reflects the brittleness of the rock matrix, and the stress sensitivity of the wave velocity reflects the development degree of the natural fracture system. They are both key factors in controlling the propagating fracture morphology. Thus, in this study, a novel fracability evaluation method of shale was developed combining brittleness and stress sensitivity. Based on this method, the fracability of three shale gas plays were evaluated. The cored cylindrical samples were loaded under uniaxial stress up to 30 MPa and the compressional wave velocities were obtained along the axis stress direction at each MPa stress. From the stress velocity evolution, the stress sensitivity coefficients could be obtained. Our results showed that the fracability of Niutitang shale is better than that of Lujiaping shale, and the fracability of Lujiaping shale is better than Longmaxi shale. This result is in good agreement with acoustic emission activity measurements. The new fracability evaluation method enables a comprehensive reflection of the characteristics of rock matrix brittleness and the natural fracture system. This work is valuable for the evaluation of hydraulic fracturing effects in unconventional oil and gas reservoirs in the future.
Krofta, Ladislav; Havelková, Linda; Urbánková, Iva; Krčmář, Michal; Hynčík, Luděk; Feyereisl, Jaroslav
2017-02-01
During vaginal delivery, the levator ani muscle (LAM) undergoes severe deformation. This stress can lead to stretch-related LAM injuries. The objective of this study was to develop a sophisticated MRI-based model to simulate changes in the LAM during vaginal delivery. A 3D finite element model of the female pelvic floor and fetal head was developed. The model geometry was based on MRI data from a nulliparous woman and 1-day-old neonate. Material parameters were estimated using uniaxial test data from the literature and by least-square minimization method. The boundary conditions reflected all anatomical constraints and supports. A simulation of vaginal delivery with regard to the cardinal movements of labor was then performed. The mean stress values in the iliococcygeus portion of the LAM during fetal head extension were 4.91-7.93 MPa. The highest stress values were induced in the pubovisceral and puborectal LAM portions (mean 27.46 MPa) at the outset of fetal head extension. The last LAM subdivision engaged in the changes in stress was the posteromedial section of the puborectal muscle. The mean stress values were 16.89 MPa at the end of fetal head extension. The LAM was elongated by nearly 2.5 times from its initial resting position. The cardinal movements of labor significantly affect the subsequent heterogeneous stress distribution in the LAM. The absolute stress values were highest in portions of the muscle that arise from the pubic bone. These areas are at the highest risk for muscle injuries with long-term complications.
Pu, Chao; Gao, Yanfei
2015-01-23
Two-phase advanced steels contain an optimized combination of high yield strength and large elongation strain at failure, as a result of stress partitioning between a hard phase (martensite) and a ductile phase (ferrite or austenite). Provided with strong interfaces between the constituent phases, the failure in the brittle martensite phase will be delayed by the surrounding geometric constraints, while the rule of mixture will dictate a large strength of the composite. To this end, the microstructural design of these composites is imperative especially in terms of the stress partitioning mechanisms among the constituent phases. Based on the characteristic microstructures ofmore » dual phase and multilayered steels, two polycrystalline aggregate models are constructed to simulate the microscopic lattice strain evolution of these materials during uniaxial tensile tests. By comparing the lattice strain evolution from crystal plasticity finite element simulations with advanced in situ diffraction measurements in literature, this study investigates the correlations between the material microstructure and the micromechanical interactions on the intergranular and interphase levels. Finally, it is found that although the applied stress will be ultimately accommodated by the hard phase and hard grain families, the sequence of the stress partitioning on grain and phase levels can be altered by microstructural designs. Implications of these findings on delaying localized failure are also discussed.« less
NASA Astrophysics Data System (ADS)
Colin, C.; Anderson, R. C.; Chasek, M. D.; Peters, G. H.; Carey, E. M.
2016-12-01
Identifiable precursors to rock failure have been a long pursued and infrequently encountered phenomena in rock mechanics and acoustic emission studies. Since acoustic emissions in compressed rocks were found to follow the Gutenberg-Richter law, failure-prediction strategies based on temporal changes in b-value have been recurrent. In this study, we extend on the results of Ohnaka and Mogi [Journal of Geophysical Research, Vol. 87, No. B5, p. 3873-3884, (1982)], where the bulk frequency characteristics of rocks under incremental uniaxial compression were observed in relation to changes in b-value before and after failure. Based on the proposition that the number of low-frequency acoustic emissions is proportional to the number of high-amplitude acoustic emissions in compressed rocks, Ohnaka and Mogi (1982) demonstrated that b-value changes in granite and andesite cores under incremental uniaxial compression could be expressed in terms of the percent abundance of low-frequency events. In this study, we attempt to demonstrate that the results of Ohnaka and Mogi (1982) hold true for different rock types (basalt, sandstone, and limestone) and different sample geometries (rectangular prisms). In order to do so, the design of the compression tests was kept similar to that of Ohnaka and Mogi (1982). Two high frequency piezoelectric transducers of 1 MHz and a 500 kHz coupled to the sides of the samples detected higher and lower frequency acoustic emission signals. However, rather than gathering parametric data from an analog signal using a counter as per Ohnaka and Mogi (1982), we used an oscilloscope as an analog to digital converter interfacing with LabVIEW 2015 to record the complete waveforms. The digitally stored waveforms were then processed, detecting acoustic emission events using a statistical method, and filtered using a 2nd order Butterworth filter. In addition to calculating the percent abundance of low-frequency events over time, the peak frequency of the
Electric Currents Generated by Gabbro during Dynamic Uniaxial Loading
NASA Astrophysics Data System (ADS)
Jones, H. H.; Lau, B. W.; Takeuchi, A. T.; Freund, F. T.
2006-12-01
Igneous rocks, when subjected to deviatory stress, turn into a battery. Dynamically stressed rocks can generate large currents. We report on gabbro (Shanxi, China). We use steel pistons to load ~10 cm3 in the center of 30 x 30 x 0.9 cm3 tiles, from 0 to 60 MPa, 1/3 failure strength. Instantly upon loading, a current begins to flow, increasing rapidly to 200-300 pA. One part of the current is carried by electrons, which flow from the stressed rock into the steel pistons and through the external circuit to the edges of the tile. The other part is carried by holes, which flow inside the rock, from the stressed to the unstressed rock and the edges of the tile. At the edges the two charge carriers meet, thereby closing the circuit. Changing the stress rates from 0.0002 to 100 MPa/sec causes the steady currents to increase from ~30,000 A/km3 to ~50,000 A/km3 and an initial spike to develop reaching 300,000 A/km3 at the highest stress rate. Both, electrons and holes, are associated with oxygen anions that changed their valence from 2- to 1- (peroxy). An O- among O2- represents a defect electron in the O2- sublattice, known as positive hole or p-hole for short. In unstressed rocks the O- exist in an electrically inactive form as O- pairs, chemically equivalent to peroxy links, O3X-OO-XO3 with X = Si4+, Al3+ etc. Stresses cause the peroxy links to break, allowing electrons from neighboring O2- to jump in and p-holes to jump out. The p-holes can spread through unstressed rocks using energy levels in the valence band. Sustained large battery currents can flow, for instance in the aftermath of an impact, when the holes can close the circuit by linking up with the electrons. If the circuit is not closed, no battery currents flow.
NASA Astrophysics Data System (ADS)
Hattori, T.; Sakai, H.; Tokunaga, Y.; Kambe, S.; Matsuda, T. D.; Haga, Y.
2018-01-01
In order to identify the spin contribution to superconducting pairing compatible with the so-called "hidden order",
Mechanical tensile stress effects on the expression of bone sialoprotein in bovine cementoblasts.
Yu, Hongyou; Ren, Yijin; Sandham, Andrew; Ren, Aishu; Huang, Lan; Bai, Ding
2009-03-01
To develop a new cementoblast culture method and to detect bone sialoprotein (BSP) expression in response to high and low mechanical tensile stress in cementoblast in vitro. Cementoblasts were collected from the roots of newborn bovine teeth and were identified with cementum-derived attachment protein (CAP) antibody 3G9. Cell proliferation was evaluated by MTT [3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay, and mineralization was confirmed by von Kossa staining. Mechanical tensile stress was applied in vitro to the cementoblast with the use of a uniaxial four-point bending system with 2000 or 4000 microstrains, at a frequency of 0.5 Hz for 3, 6, 12, 24, or 36 hours. BSP mRNA level was quantified by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). A large amount of cementoblast was observed to be expressing CAP. Cementoblasts had a proliferation tendency similar to that of osteoblasts but different from that of periodontal ligament (PDL) cells. Cementoblasts had the ability to become mineralized between osteoblasts and PDL cells. The mechanical tensile stress significantly up-regulated BSP mRNA expression, which reached a peak at 24 hours in both 2000 and 4000 microstrain groups (P < .01) and was tenfold and sixfold higher than that of controls, respectively. BSP expression dropped toward baseline levels at 36 hours in both groups. Mechanical tensile stress up-regulated the expression of BSP. Low mechanical tensile stress induced earlier and more intensive up-regulation of BSP mRNA; this might represent the optimal stimuli for cementoblast activity.
NASA Astrophysics Data System (ADS)
Flemings, Peter B.; Saffer, Demian M.
2018-02-01
We predict pressure and stress from porosity in the Nankai accretionary prism with a critical state soil model that describes porosity as a function of mean stress and maximum shear stress, and assumes Coulomb failure within the wedge and uniaxial burial beneath it. At Ocean Drilling Program Sites 1174 and 808, we find that pore pressure in the prism supports 70% to 90% of the overburden (λu = 0.7 to 0.9), for a range of assumed friction angles (5-30°). The prism pore pressure is equal to or greater than that in the underthrust sediments even though the porosity is lower within the prism. The high pore pressures lead to a mechanically weak wedge that supports low maximum shear stress, and this in turn requires very low basal traction to remain consistent with the observed narrowly tapered wedge geometry. We estimate the décollement friction coefficient (μb) to be 0.08-0.38 (ϕb' = 4.6°-21°). Our approach defines a pathway to predict pressure in a wide range of environments from readily observed quantities (e.g., porosity and seismic velocity). Pressure and stress control the form of the Earth's collisional continental margins and play a key role in its greatest earthquakes. However, heretofore, there has been no systematic approach to relate material state (e.g., porosity), pore pressure, and stress in these systems.
Strength statistics of single crystals and metallic glasses under small stressed volumes
Gao, Yanfei; Bei, Hongbin
2016-05-13
It has been well documented that plastic deformation of crystalline and amorphous metals/alloys shows a general trend of “smaller is stronger”. The majority of the experimental and modeling studies along this line have been focused on finding and reasoning the scaling slope or exponent in the logarithmic plot of strength versus size. In contrast to this view, here we show that the universal picture should be the thermally activated nucleation mechanisms in small stressed volume, the stochastic behavior as to find the weakest links in intermediate sizes of the stressed volume, and the convolution of these two mechanisms with respectmore » to variables such as indenter radius in nanoindentation pop-in, crystallographic orientation, pre-strain level, sample length as in uniaxial tests, and others. Furthermore, experiments that cover the entire spectrum of length scales and a unified model that treats both thermal activation and spatial stochasticity have discovered new perspectives in understanding and correlating the strength statistics in a vast of observations in nanoindentation, micro-pillar compression, and fiber/whisker tension tests of single crystals and metallic glasses.« less
Effect of high strain rates on peak stress in a Zr-based bulk metallic glass
NASA Astrophysics Data System (ADS)
Sunny, George; Yuan, Fuping; Prakash, Vikas; Lewandowski, John
2008-11-01
The mechanical behavior of Zr41.25Ti13.75Cu12.5Ni10Be22.5 (LM-1) has been extensively characterized under quasistatic loading conditions; however, its mechanical behavior under dynamic loading conditions is currently not well understood. A Split-Hopkinson pressure bar (SHPB) and a single-stage gas gun are employed to characterize the mechanical behavior of LM-1 in the strain-rate regime of 102-105/s. The SHPB experiments are conducted with a tapered insert design to mitigate the effects of stress concentrations and preferential failure at the specimen-insert interface. The higher strain-rate plate-impact compression-and-shear experiments are conducted by impacting a thick tungsten carbide (WC) flyer plate with a sandwich sample comprising a thin bulk metallic glass specimen between two thicker WC target plates. Specimens employed in the SHPB experiments failed in the gage-section at a peak stress of approximately 1.8 GPa. Specimens in the high strain-rate plate-impact experiments exhibited a flow stress in shear of approximately 0.9 GPa, regardless of the shear strain-rate. The flow stress under the plate-impact conditions was converted to an equivalent flow stress under uniaxial compression by assuming a von Mises-like material behavior and accounting for the plane strain conditions. The results of these experiments, when compared to the previous work conducted at quasistatic loading rates, indicate that the peak stress of LM-1 is essentially strain rate independent over the strain-rate range up to 105/s.
Thomopoulos, Stavros; Das, Rosalina; Birman, Victor; Smith, Lester; Ku, Katherine; Elson, Elliott L; Pryse, Kenneth M; Marquez, Juan Pablo; Genin, Guy M
2011-04-01
Although much is known about the effects of uniaxial mechanical loading on fibrocartilage development, the stress fields to which fibrocartilaginous regions are subjected to during development are mutiaxial. That fibrocartilage develops at tendon-to-bone attachments and in compressive regions of tendons is well established. However, the three-dimensional (3D) nature of the stresses needed for the development of fibrocartilage is not known. Here, we developed and applied an in vitro system to determine whether fibrocartilage can develop under a state of periodic hydrostatic tension in which only a single principal component of stress is compressive. This question is vital to efforts to mechanically guide morphogenesis and matrix expression in engineered tissue replacements. Mesenchymal stromal cells in a 3D culture were exposed to compressive and tensile stresses as a result of an external tensile hydrostatic stress field. The stress field was characterized through mechanical modeling. Tensile cyclic stresses promoted spindle-shaped cells, upregulation of scleraxis and type one collagen, and cell alignment with the direction of tension. Cells experiencing a single compressive stress component exhibited rounded cell morphology and random cell orientation. No difference in mRNA expression of the genes Sox9 and aggrecan was observed when comparing tensile and compressive regions unless the medium was supplemented with the chondrogenic factor transforming growth factor beta3. In that case, Sox9 was upregulated under static loading conditions and aggrecan was upregulated under cyclic loading conditions. In conclusion, the fibrous component of fibrocartilage could be generated using only mechanical cues, but generation of the cartilaginous component of fibrocartilage required biologic factors in addition to mechanical cues. These studies support the hypothesis that the 3D stress environment influences cell activity and gene expression in fibrocartilage development.
Das, Rosalina; Birman, Victor; Smith, Lester; Ku, Katherine; Elson, Elliott L.; Pryse, Kenneth M.; Marquez, Juan Pablo; Genin, Guy M.
2011-01-01
Although much is known about the effects of uniaxial mechanical loading on fibrocartilage development, the stress fields to which fibrocartilaginous regions are subjected to during development are mutiaxial. That fibrocartilage develops at tendon-to-bone attachments and in compressive regions of tendons is well established. However, the three-dimensional (3D) nature of the stresses needed for the development of fibrocartilage is not known. Here, we developed and applied an in vitro system to determine whether fibrocartilage can develop under a state of periodic hydrostatic tension in which only a single principal component of stress is compressive. This question is vital to efforts to mechanically guide morphogenesis and matrix expression in engineered tissue replacements. Mesenchymal stromal cells in a 3D culture were exposed to compressive and tensile stresses as a result of an external tensile hydrostatic stress field. The stress field was characterized through mechanical modeling. Tensile cyclic stresses promoted spindle-shaped cells, upregulation of scleraxis and type one collagen, and cell alignment with the direction of tension. Cells experiencing a single compressive stress component exhibited rounded cell morphology and random cell orientation. No difference in mRNA expression of the genes Sox9 and aggrecan was observed when comparing tensile and compressive regions unless the medium was supplemented with the chondrogenic factor transforming growth factor beta3. In that case, Sox9 was upregulated under static loading conditions and aggrecan was upregulated under cyclic loading conditions. In conclusion, the fibrous component of fibrocartilage could be generated using only mechanical cues, but generation of the cartilaginous component of fibrocartilage required biologic factors in addition to mechanical cues. These studies support the hypothesis that the 3D stress environment influences cell activity and gene expression in fibrocartilage development. PMID
Experimental investigation of cyclic thermomechanical deformation in torsion
NASA Technical Reports Server (NTRS)
Ellis, John R.; Castelli, Michael G.; Bakis, Charles E.
1992-01-01
An investigation of thermomechanical testing and deformation behavior of tubular specimens under torsional loading is described. Experimental issues concerning test accuracy and control specific to thermomechanical loadings under a torsional regime are discussed. A series of shear strain-controlled tests involving the nickel-base superalloy Hastelloy X were performed with various temperature excursions and compared to similar thermomechanical uniaxial tests. The concept and use of second invariants of the deviatoric stress and strain tensors as a means of comparing uniaxial and torsional specimens is also briefly presented and discussed in light of previous thermomechanical tests conducted under uniaxial conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong Hoe; Park, Jaehong; Li, Zhen
Organic-inorganic perovskites with intriguing optical and electrical properties have attracted significant research interests due to their excellent performance in optoelectronic devices. Recent efforts on preparing uniform and large-grain polycrystalline perovskite films have led to enhanced carrier lifetime up to several microseconds. However, the mobility and trap densities of polycrystalline perovskite films are still significantly behind their single-crystal counterparts. Here, a facile topotactic-oriented attachment (TOA) process to grow highly oriented perovskite films, featuring strong uniaxial-crystallographic texture, micrometer-grain morphology, high crystallinity, low trap density (≈4 x 10 14 cm -3), and unprecedented 9 GHz charge-carrier mobility (71 cm 2 V -1 smore » -1), is demonstrated. TOA-perovskite-based n-i-p planar solar cells show minimal discrepancies between stabilized efficiency (19.0%) and reverse-scan efficiency (19.7%). In conclusion, the TOA process is also applicable for growing other state-of-the-art perovskite alloys, including triple-cation and mixed-halide perovskites.« less
Kim, Dong Hoe; Park, Jaehong; Li, Zhen; ...
2017-04-18
Organic-inorganic perovskites with intriguing optical and electrical properties have attracted significant research interests due to their excellent performance in optoelectronic devices. Recent efforts on preparing uniform and large-grain polycrystalline perovskite films have led to enhanced carrier lifetime up to several microseconds. However, the mobility and trap densities of polycrystalline perovskite films are still significantly behind their single-crystal counterparts. Here, a facile topotactic-oriented attachment (TOA) process to grow highly oriented perovskite films, featuring strong uniaxial-crystallographic texture, micrometer-grain morphology, high crystallinity, low trap density (≈4 x 10 14 cm -3), and unprecedented 9 GHz charge-carrier mobility (71 cm 2 V -1 smore » -1), is demonstrated. TOA-perovskite-based n-i-p planar solar cells show minimal discrepancies between stabilized efficiency (19.0%) and reverse-scan efficiency (19.7%). In conclusion, the TOA process is also applicable for growing other state-of-the-art perovskite alloys, including triple-cation and mixed-halide perovskites.« less
Structure of vortices in superfluid 3He A-like phase in uniaxially stretched aerogel
NASA Astrophysics Data System (ADS)
Aoyama, Kazushi; Ikeda, Ryusuke
2009-02-01
Possible vortex-core transitions in A-like phase of superfluid 3He in uniaxially stretched aerogel are investigated. Since the global anisotropy in this system induces the polar pairing state in a narrow range close to the superfluid transition in addition to the A-like and B-like phases, the polar state may occur in the core of a vortex in the A-like phase identified with the ABM pairing state, like in the case of the bulk B phase where a core including the ABM state is realized at higher pressures. We examine the core structure of a single vortex under the boundary condition compatible with the Mermin-Ho vortex in the presence of the dipole interaction. Following Salomaa and Volovik's approach, we numerically solve the Ginzburg-Landau equation for an axially symmetric vortex and, by examining its stability against nonaxisymmetric perturbations, discuss possible vortex core states. It is found that a first order transition on core states may occur on warming from an axisymmetric vortex with a nonunitary core to a singular vortex with the polar core.
Prediction of hole expansion ratio for various steel sheets based on uniaxial tensile properties
NASA Astrophysics Data System (ADS)
Kim, Jae Hyung; Kwon, Young Jin; Lee, Taekyung; Lee, Kee-Ahn; Kim, Hyoung Seop; Lee, Chong Soo
2018-01-01
Stretch-flangeability is one of important formability parameters of thin steel sheets used in the automotive industry. There have been many attempts to predict hole expansion ratio (HER), a typical term to evaluate stretch-flangeability, using uniaxial tensile properties for convenience. This paper suggests a new approach that uses total elongation and average normal anisotropy to predict HER of thin steel sheets. The method provides a good linear relationship between HER of the machined hole and the predictive variables in a variety of materials with different microstructures obtained using different processing methods. The HER of the punched hole was also well predicted using the similar approach, which reflected only the portion of post uniform elongation. The physical meaning drawn by our approach successfully explained the poor HER of austenitic steels despite their considerable elongation. The proposed method to predict HER is simple and cost-effective, so it will be useful in industry. In addition, the model provides a physical explanation of HER, so it will be useful in academia.
Dependence of the optical conductivity on the uniaxial and biaxial strains in black phosphorene
NASA Astrophysics Data System (ADS)
Yang, C. H.; Zhang, J. Y.; Wang, G. X.; Zhang, C.
2018-06-01
By using the Kubo formula, the optical conductivity of strained black phosphorene was studied. The anisotropic band dispersion gives rise to an orientation dependent optical conductivity. The energy gap can be tuned by the uniaxial and biaxial strains which can be observed from the interband optical conductivity polarized along the armchair (x ) direction. The preferential conducting direction is along the x direction. The dependence of the intraband optical conductivity along the zigzag (y ) direction on the Fermi energy and strain exhibits increasing or decreasing monotonously. However, along the x direction this dependence is complicated which originates from the carriers' inverse-direction movements obtained by two types of the nearest phosphorus atom interactions. The modification of the biaxial strain on the energy structure and optical-absorption property is more effective. The imaginary part of the total optical conductivity (Im σ ) can be negative around the threshold of the interband optical transition by modifying the chemical potential. Away from this frequency region, Im σ exhibits positive value. It can be used in the application of the surface plasmon propagations in multilayer dielectric structures.
NASA Technical Reports Server (NTRS)
Baker, Donald J.
2004-01-01
The experimental results from two stitched VARTM composite panels tested under uni-axial compression loading are presented. The curved panels are divided by frames and stringers into five or six bays with a column of three bays along the compressive loading direction. The frames are supported at the ends to resist out-of-plane translation. Back-to-back strain gages are used to record the strain and displacement transducers were used to record the out-of-plane displacements. In addition a full-field measurement technique that utilizes a camera-based-stero-vision system was used to record displacements. The panels were loaded in increments to determine the first bay to buckle. Loading was discontinued at limit load and the panels were removed from the test machine for impact testing. After impacting at 20 ft-lbs to 25 ft-lbs of energy with a spherical indenter, the panels were loaded in compression until failure. Impact testing reduced the axial stiffness 4 percent and less than 1 percent. Postbuckled axial panel stiffness was 52 percent and 70 percent of the pre-buckled stiffness.
Wang, Xuanye; Tantiwanichapan, Khwanchai; Christopher, Jason W; Paiella, Roberto; Swan, Anna K
2015-09-09
Graphene is a promising material for strain engineering based on its excellent flexibility and elastic properties, coupled with very high electrical mobility. In order to implement strain devices, it is important to understand and control the clamping of graphene to its support. Here, we investigate the limits of the strong van der Waals interaction on friction clamping. We find that the friction of graphene on a SiO2 substrate can support a maximum local strain gradient and that higher strain gradients result in sliding and strain redistribution. Furthermore, the friction decreases with increasing strain. The system used is graphene placed over a nanoscale SiO2 grating, causing strain and local strain variations. We use a combination of atomic force microscopy and Raman scattering to determine the friction coefficient, after accounting for compression and accidental charge doping, and model the local strain variation within the laser spot size. By using uniaxial strain aligned to a high crystal symmetry direction, we also determine the 2D Raman Grüneisen parameter and deformation potential in the zigzag direction.
Domain engineering of the metastable domains in the 4f-uniaxial-ferromagnet CeRu2Ga2B
NASA Astrophysics Data System (ADS)
Wulferding, D.; Kim, H.; Yang, I.; Jeong, J.; Barros, K.; Kato, Y.; Martin, I.; Ayala-Valenzuela, O. E.; Lee, M.; Choi, H. C.; Ronning, F.; Civale, L.; Baumbach, R. E.; Bauer, E. D.; Thompson, J. D.; Movshovich, R.; Kim, Jeehoon
2017-04-01
In search of novel, improved materials for magnetic data storage and spintronic devices, compounds that allow a tailoring of magnetic domain shapes and sizes are essential. Good candidates are materials with intrinsic anisotropies or competing interactions, as they are prone to host various domain phases that can be easily and precisely selected by external tuning parameters such as temperature and magnetic field. Here, we utilize vector magnetic fields to visualize directly the magnetic anisotropy in the uniaxial ferromagnet CeRu2Ga2B. We demonstrate a feasible control both globally and locally of domain shapes and sizes by the external field as well as a smooth transition from single stripe to bubble domains, which opens the door to future applications based on magnetic domain tailoring.
Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head
NASA Technical Reports Server (NTRS)
Krause, David L.; Kantzos, Pete T.
2006-01-01
For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110 W Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.
NASA Astrophysics Data System (ADS)
Cen, Duofeng; Huang, Da
2017-06-01
Tension-shear failure is a typical failure mode in the rock masses in unloading zones induced by excavation or river incision, etc., such as in excavation-disturbed zone of deep underground caverns and superficial rocks of high steep slopes. However, almost all the current shear failure criteria for rock are usually derived on the basis of compression-shear failure. This paper proposes a simple device for use with a servo-controlled compression-shear testing machine to conduct the tension-shear tests of cuboid rock specimens, to test the direct shear behavior of sandstone under different constant normal tensile stress conditions ( σ = -1, -1.5, -2, -2.5 and -3 MPa) as well as the uniaxial tension behavior. Generally, the fracture surface roughness decreases and the proportion of comminution areas in fracture surface increases as the change of stress state from tension to tension-shear and to compression-shear. Stepped fracture is a primary fracture pattern in the tension-shear tests. The shear stiffness, shear deformation and normal deformation (except the normal deformation for σ = -1 MPa) decrease during shearing, while the total normal deformation containing the pre-shearing portion increases as the normal tensile stress level (| σ|) goes up. Shear strength is more sensitive to the normal tensile stress than to the normal compressive stress, and the power function failure criterion (or Mohr envelope form of Hoek-Brown criterion) is examined to be the optimal criterion for the tested sandstone in the full region of tested normal stress in this study.
NASA Astrophysics Data System (ADS)
Wang, Chengxi; Jiang, Chuanhai; Zhao, Yuantao; Chen, Ming; Ji, Vincent
2017-10-01
As one of the most important surface strengthening method, shot peening is widely used to improve the fatigue and stress corrosion crack resistance of components by introducing the refined microstructure and compressive residual stress in the surface layer. However, the mechanical properties of this thin layer are different from the base metal and are difficult to be characterized by conventional techniques. In this work, a micro uniaxial tensile tester equipped with in-situ X-ray stress analyzer was employed to make it achievable on a nickel-aluminum bronze with shot peening treatment. According to the equivalent stress-strain relationship based on Von Mises stress criterion, the Young's modulus and yield strength of the peened layer were calculated. The results showed that the Young's modulus was the same as the bulk material, and the yield strength corresponding to the permanent plastic strain of 0.2% was increased by 21% after SP. But the fractographic analysis showed that the fracture feature of the surface layer was likely to transform from the dimple to the cleavage, indicating the improved strength might be attained at the expense of ductility. The monotonic and cyclic loading were also performed via the same combined set-up. In addition, the specific relaxation behavior of compressive residual stress was quantified by linear logarithm relationship between residual stress and cycle numbers. It was found that the compressive residual stress mainly relaxed in the first few cycles, and then reached steady state with further cycles. The relaxation rate and the stable value were chiefly depended on the stress amplitude and number of cycles. The retained residual stress kept in compressive under all given applied stress levels, suggesting that the shot peening could introduce a more stable surface layer of compressive residual stress other than the elevated strength of nickel-aluminum bronze alloy.
Kelly, Nicola; McGarry, J Patrick
2012-05-01
The inelastic pressure dependent compressive behaviour of bovine trabecular bone is investigated through experimental and computational analysis. Two loading configurations are implemented, uniaxial and confined compression, providing two distinct loading paths in the von Mises-pressure stress plane. Experimental results reveal distinctive yielding followed by a constant nominal stress plateau for both uniaxial and confined compression. Computational simulation of the experimental tests using the Drucker-Prager and Mohr-Coulomb plasticity models fails to capture the confined compression behaviour of trabecular bone. The high pressure developed during confined compression does not result in plastic deformation using these formulations, and a near elastic response is computed. In contrast, the crushable foam plasticity models provide accurate simulation of the confined compression tests, with distinctive yield and plateau behaviour being predicted. The elliptical yield surfaces of the crushable foam formulations in the von Mises-pressure stress plane accurately characterise the plastic behaviour of trabecular bone. Results reveal that the hydrostatic yield stress is equal to the uniaxial yield stress for trabecular bone, demonstrating the importance of accurate characterisation and simulation of the pressure dependent plasticity. It is also demonstrated in this study that a commercially available trabecular bone analogue material, cellular rigid polyurethane foam, exhibits similar pressure dependent yield behaviour, despite having a lower stiffness and strength than trabecular bone. This study provides a novel insight into the pressure dependent yield behaviour of trabecular bone, demonstrating the inadequacy of uniaxial testing alone. For the first time, crushable foam plasticity formulations are implemented for trabecular bone. The enhanced understanding of the inelastic behaviour of trabecular bone established in this study will allow for more realistic simulation
Yoneda, A; Kubo, A
2006-06-28
It is known that the {100} and {111} planes of cubic crystals subjected to uniaxial deviatoric stress conditions have strain responses that are free from the effect of lattice preferred orientation. By utilizing this special character, one can unambiguously and simultaneously determine the mean pressure and deviatoric stress from polycrystalline diffraction data of the cubic sample. Here we introduce a numerical tensor calculation method based on the generalized Hooke's law to simultaneously determine the hydrostatic component of the stress (mean pressure) and deviatoric stress in the sample. The feasibility of this method has been tested by examining the experimental data of the Au pressure marker enclosed in a diamond anvil cell using a pressure medium of methanol-ethanol mixture. The results demonstrated that the magnitude of the deviatoric stress is ∼0.07 GPa at the mean pressure of 10.5 GPa, which is consistent with previous results of Au strength under high pressure. Our results also showed that even a small deviatoric stress (∼0.07 GPa) could yield a ∼0.3 GPa mean pressure error at ∼10 GPa.
Effects of biaxial oscillatory shear stress on endothelial cell proliferation and morphology.
Chakraborty, Amlan; Chakraborty, Sutirtha; Jala, Venkatakrishna R; Haribabu, Bodduluri; Sharp, M Keith; Berson, R Eric
2012-03-01
Wall shear stress (WSS) on anchored cells affects their responses, including cell proliferation and morphology. In this study, the effects of the directionality of pulsatile WSS on endothelial cell proliferation and morphology were investigated for cells grown in a Petri dish orbiting on a shaker platform. Time and location dependent WSS was determined by computational fluid dynamics (CFD). At low orbital speed (50 rpm), WSS was shown to be uniform (0-1 dyne/cm(2)) across the bottom of the dish, while at higher orbital speed (100 and 150 rpm), WSS remained fairly uniform near the center and fluctuated significantly (0-9 dyne/cm(2)) near the side walls of the dish. Since WSS on the bottom of the dish is two-dimensional, a new directional oscillatory shear index (DOSI) was developed to quantify the directionality of oscillating shear. DOSI approached zero for biaxial oscillatory shear of equal magnitudes near the center and approached one for uniaxial pulsatile shear near the wall, where large tangential WSS dominated a much smaller radial component. Near the center (low DOSI), more, smaller and less elongated cells grew, whereas larger cells with greater elongation were observed in the more uniaxial oscillatory shear (high DOSI) near the periphery of the dish. Further, cells aligned with the direction of the largest component of shear but were randomly oriented in low magnitude biaxial shear. Statistical analyses of the individual and interacting effects of multiple factors (DOSI, shear magnitudes and orbital speeds) showed that DOSI significantly affected all the responses, indicating that directionality is an important determinant of cellular responses. Copyright © 2011 Wiley Periodicals, Inc.
On the Recovery Stress of a Ni50.3Ti29.7Hf20 High Temperature Shape Memory Alloy
NASA Technical Reports Server (NTRS)
Benafan, O.; Noebe, R. D.; Padula, S. A., II; Bigelow, G. S.; Gaydosh, D. J.; Garg, A.; Halsmer, T. J.
2015-01-01
Recovery stress in shape memory alloys (SMAs), also known as blocking stress, is an important property generally obtained during heating under a dimensional constraint as the material undergoes the martensitic phase transformation. This property has been instinctively utilized in most SMA shape-setting procedures, and has been used in numerous applications such as fastening and joining, rock splitting, safety release mechanisms, reinforced composites, medical devices, and many other applications. The stress generation is also relevant to actuator applications where jamming loads (e.g., in case the actuator gets stuck and is impeded from moving) need to be determined for proper hardware sizing. Recovery stresses in many SMA systems have been shown to reach stresses in the order of 800 MPa, achieved via thermo-mechanical training such as pre-straining, heat treatments or other factors. With the advent of high strength, high temperature SMAs, recovery stress data has been rarely probed, and there is no information pertinent to the magnitudes of these stresses. Thus, the purpose of this work is to investigate the recovery stress capability of a precipitation strengthened, Ni50.3Ti29.7Hf20 (at.) high temperature SMA in uniaxial tension and compression. This material has been shown to exhibit outstanding strength and stability during constant-stress, thermal cycling, but no data exists on constant-strain thermal cycling. Several training routines were implemented as part of this work including isothermal pre-straining, isobaric thermal cycling, and isothermal cyclic training routines. Regardless of the training method used, the recovery stress was characterized using constant-strain (strain-controlled condition) thermal cycling between the upper and lower cycle temperatures. Preliminary results indicate recovery stresses in excess of 1.5 GPa were obtained after a specific training routine. This stress magnitude is significantly higher than conventional NiTi stress
Bao-lin, Liu; Hai-yan, Zhu; Chuan-liang, Yan; Zhi-jun, Li; Zhi-qiao, Wang
2014-01-01
When exploiting the deep resources, the surrounding rock readily undergoes the hole shrinkage, borehole collapse, and loss of circulation under high temperature and high pressure. A series of experiments were conducted to discuss the compressional wave velocity, triaxial strength, and permeability of granite cored from 3500 meters borehole under high temperature and three-dimensional stress. In light of the coupling of temperature, fluid, and stress, we get the thermo-fluid-solid model and governing equation. ANSYS-APDL was also used to stimulate the temperature influence on elastic modulus, Poisson ratio, uniaxial compressive strength, and permeability. In light of the results, we establish a temperature-fluid-stress model to illustrate the granite's stability. The compressional wave velocity and elastic modulus, decrease as the temperature rises, while poisson ratio and permeability of granite increase. The threshold pressure and temperature are 15 MPa and 200°C, respectively. The temperature affects the fracture pressure more than the collapse pressure, but both parameters rise with the increase of temperature. The coupling of thermo-fluid-solid, greatly impacting the borehole stability, proves to be a good method to analyze similar problems of other formations. PMID:24778592
Wang, Yu; Liu, Bao-lin; Zhu, Hai-yan; Yan, Chuan-liang; Li, Zhi-jun; Wang, Zhi-qiao
2014-01-01
When exploiting the deep resources, the surrounding rock readily undergoes the hole shrinkage, borehole collapse, and loss of circulation under high temperature and high pressure. A series of experiments were conducted to discuss the compressional wave velocity, triaxial strength, and permeability of granite cored from 3500 meters borehole under high temperature and three-dimensional stress. In light of the coupling of temperature, fluid, and stress, we get the thermo-fluid-solid model and governing equation. ANSYS-APDL was also used to stimulate the temperature influence on elastic modulus, Poisson ratio, uniaxial compressive strength, and permeability. In light of the results, we establish a temperature-fluid-stress model to illustrate the granite's stability. The compressional wave velocity and elastic modulus, decrease as the temperature rises, while poisson ratio and permeability of granite increase. The threshold pressure and temperature are 15 MPa and 200 °C, respectively. The temperature affects the fracture pressure more than the collapse pressure, but both parameters rise with the increase of temperature. The coupling of thermo-fluid-solid, greatly impacting the borehole stability, proves to be a good method to analyze similar problems of other formations.
Ishige, Ryohei; Williams, Gregory A.; Higaki, Yuji; ...
2016-04-19
A molded film of single-component polymer-grafted nanoparticles (SPNP), consisting of a spherical silica core and densely grafted polymer chains bearing hydrogen-bonding side groups capable of physical crosslinking, was investigated byin situultra-small-angle X-ray scattering (USAXS) measurement during a uniaxial stretching process. Static USAXS revealed that the molded SPNP formed a highly oriented twinned face-centered cubic (f.c.c.) lattice structure with the [11-1] plane aligned nearly parallel to the film surface in the initial state. Structural analysis ofin situUSAXS using a model of uniaxial deformation induced by rearrangement of the nanoparticles revealed that the f.c.c. lattice was distorted in the stretching direction inmore » proportion to the macroscopic strain until the strain reached 35%, and subsequently changed into other f.c.c. lattices with different orientations. The lattice distortion and structural transition behavior corresponded well to the elastic and plastic deformation regimes, respectively, observed in the stress–strain curve. The attractive interaction of the hydrogen bond is considered to form only at the top surface of the shell and then plays an effective role in cross-linking between nanoparticles. The rearrangement mechanism of the nanoparticles is well accounted for by a strong repulsive interaction between the densely grafted polymer shells of neighboring particles.« less
NASA Astrophysics Data System (ADS)
Nuruzzaman, Md.; Yokogawa, Keiichi; Yoshino, Harukazu; Yoshimoto, Haruo; Kikuchi, Koichi; Kaihatsu, Takayuki; Yamada, Jun-ichi; Murata, Keizo
2012-12-01
We studied the electronic transport properties of the charge transfer salt β-(BDA-TTP)2I3 [BDA-TTP: 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene] by applying uniaxial strains along the three crystallographic axes, and obtained three corresponding temperature-pressure phase diagrams. Three phase diagrams were quite dependent on the direction of compression. Following the preceding paper by Kikuchi et al., we speculate that the insulating states are of 1/2-filled Mott insulators for the a- and b-axes compressions, and of 1/4-filled charge ordered states for the c-axis compression as well as hydrostatic pressure. The superconducting phase under uniaxial strain was realized with Tc = 5 K at 1.9 GPa along the a-axis and with Tc = 5.6 K at 1.75 GPa along the b-axis. Superconductivity was also reproduced with a Tc of 9.5 K at 1.0 GPa for the c-axis compressions in the range of 0.85 to 1.53 GPa as previously reported. We studied tentative measurement on upper critical fields, Bc2's of these superconductivities and found that the extrapolated values, Bc2(0)'s, exceeded Pauli-limit by about 2--3 times. However, at least in terms of Bc2, the difference in superconductivity associated with two different insulating states was not clear.
Stasuk, Alexander
2017-01-01
Adipose-derived mesenchymal stem cells have become a popular cell choice for tendon repair strategies due to their relative abundance, ease of isolation, and ability to differentiate into tenocytes. In this study, we investigated the solo effect of different uniaxial tensile strains and loading frequencies on the matrix directionality and tenogenic differentiation of adipose-derived stem cells encapsulated within three-dimensional collagen scaffolds. Samples loaded at 0%, 2%, 4%, and 6% strains and 0.1 Hz and 1 Hz frequencies for 2 hours/day over a 7-day period using a custom-built uniaxial tensile strain bioreactor were characterized in terms of matrix organization, cell viability, and musculoskeletal gene expression profiles. The results displayed that the collagen fibers of the loaded samples exhibited increased matrix directionality with an increase in strain values. Gene expression analyses demonstrated that ASC-encapsulated collagen scaffolds loaded at 2% strain and 0.1 Hz frequency showed significant increases in extracellular matrix genes and tenogenic differentiation markers. Importantly, no cross-differentiation potential to osteogenic, chondrogenic, and myogenic lineages was observed at 2% strain and 0.1 Hz frequency loading condition. Thus, 2% strain and 0.1 Hz frequency were identified as the appropriate mechanical loading regime to induce tenogenic differentiation of adipose-derived stem cells cultured in a three-dimensional environment. PMID:29375625
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shur, V. Ya., E-mail: vladimir.shur@urfu.ru; Zelenovskiy, P. S.
2014-08-14
The application of the most effective methods of the domain visualization in model uniaxial ferroelectrics of lithium niobate (LN) and lithium tantalate (LT) family, and relaxor strontium-barium niobate (SBN) have been reviewed in this paper. We have demonstrated the synergetic effect of joint usage of optical, confocal Raman, and piezoelectric force microscopies which provide extracting of the unique information about formation of the micro- and nanodomain structures. The methods have been applied for investigation of various types of domain structures with increasing complexity: (1) periodical domain structure in LN and LT, (2) nanodomain structures in LN, LT, and SBN, (3)more » nanodomain structures in LN with modified surface layer, (4) dendrite domain structure in LN. The self-assembled appearance of quasi-regular nanodomain structures in highly non-equilibrium switching conditions has been considered.« less
NASA Technical Reports Server (NTRS)
Jones, David J.; Kurath, Peter
1988-01-01
Fully reversed uniaxial strain controlled fatigue tests were performed on smooth cylindrical specimens made of 304 stainless steel. Fatigue life data and cracking observations for uniaxial tests were compared with life data and cracking behavior observed in fully reversed torsional tests. It was determined that the product of maximum principle strain amplitude and maximum principle stress provided the best correlation of fatigue lives for these two loading conditions. Implementation of this parameter is in agreement with observed physical damage and it accounts for the variation of stress-strain response, which is unique to specific loading conditions. Biaxial fatigue tests were conducted on tubular specimens employing both in-phase and out-of-phase tension torsion cyclic strain paths. Cracking observations indicated that the physical damage which occurred in the biaxial tests was similar to the damage observed in uniaxial and torsional tests. The Smith, Watson, and Topper parameter was then extended to predict the fatigue lives resulting from the more complex loading conditions.
NASA Astrophysics Data System (ADS)
Johnston, David C.
2017-03-01
The influence of uniaxial single-ion anisotropy -D Sz2 on the magnetic and thermal properties of Heisenberg antiferromagnets (AFMs) is investigated. The uniaxial anisotropy is treated exactly and the Heisenberg interactions are treated within unified molecular field theory (MFT) [Phys. Rev. B 91, 064427 (2015), 10.1103/PhysRevB.91.064427], where thermodynamic variables are expressed in terms of directly measurable parameters. The properties of collinear AFMs with ordering along the z axis (D >0 ) in applied field Hz=0 are calculated versus D and temperature T , including the ordered moment μ , the Néel temperature TN, the magnetic entropy, internal energy, heat capacity, and the anisotropic magnetic susceptibilities χ∥ and χ⊥ in the paramagnetic (PM) and AFM states. The high-field average magnetization per spin μz(Hz,D ,T ) is found, and the critical field Hc(D ,T ) is derived at which the second-order AFM to PM phase transition occurs. The magnetic properties of the spin-flop (SF) phase are calculated, including the zero-field properties TN(D ) and μ (D ,T ) . The high-field μz(Hz,D ,T ) is determined, together with the associated spin-flop field HSF(D ,T ) at which a second-order SF to PM phase transition occurs. The free energies of the AFM, SF, and PM phases are derived from which Hz-T phase diagrams are constructed. For fJ=-1 and -0.75 , where fJ=θp J/TN J and θp J and TN J are the Weiss temperature in the Curie-Weiss law and the Néel temperature due to exchange interactions alone, respectively, phase diagrams in the Hz-T plane similar to previous results are obtained. However, for fJ=0 we find a topologically different phase diagram where a spin-flop bubble with PM and AFM boundaries occurs at finite Hz and T . Also calculated are properties arising from a perpendicular magnetic field, including the perpendicular susceptibility χ⊥(D ,T ) , the associated effective torque at low fields arising from the -D Sz2 term in the Hamiltonian, the high
Johnston, David C.
2017-03-17
Here, the influence of uniaxial single-ion anisotropy –DS 2 z on the magnetic and thermal properties of Heisenberg antiferromagnets (AFMs) is investigated. The uniaxial anisotropy is treated exactly and the Heisenberg interactions are treated within unified molecular field theory (MFT), where thermodynamic variables are expressed in terms of directly measurable parameters. The properties of collinear AFMs with ordering along the z axis (D>0) in applied field H z = 0 are calculated versus D and temperature T, including the ordered moment μ, the Néel temperature T N, the magnetic entropy, internal energy, heat capacity, and the anisotropic magnetic susceptibilities χmore » ∥ and χ ⊥ in the paramagnetic (PM) and AFM states. The high-field average magnetization per spin μ z(H z,D,T) is found, and the critical field H c(D,T) is derived at which the second-order AFM to PM phase transition occurs. The magnetic properties of the spin-flop (SF) phase are calculated, including the zero-field properties T N(D) and μ(D,T). The high-field μ z(H z,D,T) is determined, together with the associated spin-flop field H SF(D,T) at which a second-order SF to PM phase transition occurs. The free energies of the AFM, SF, and PM phases are derived from which H z–T phase diagrams are constructed. For f J =–1 and –0.75, where f J = θ pJ/T NJ and θ pJ and T NJ are the Weiss temperature in the Curie-Weiss law and the Néel temperature due to exchange interactions alone, respectively, phase diagrams in the H z–T plane similar to previous results are obtained. However, for f J = 0 we find a topologically different phase diagram where a spin-flop bubble with PM and AFM boundaries occurs at finite H z and T. Also calculated are properties arising from a perpendicular magnetic field, including the perpendicular susceptibility χ ⊥(D,T), the associated effective torque at low fields arising from the –DS 2 z term in the Hamiltonian, the high-field perpendicular
Fracture modes in off-axis fiber composites
NASA Technical Reports Server (NTRS)
Sinclair, J. H.; Chamis, C. C.
1978-01-01
Criteria were developed for identifying, characterizing, and quantifying fracture modes in high-modulus graphite-fiber/resin unidirectional composites subjected to off-axis tensile loading. Procedures are described which use sensitivity analyses and off-axis data to determine the uniaxial strength of fiber composites. It was found that off-axis composites fail by three fracture modes which produce unique fracture surface characteristics. The stress that dominates each fracture mode and the load angle range of its dominance can be identified. Linear composite mechanics is adequate to describe quantitatively the mechanical behavior of off-axis composites. The uniaxial strengths predicted from off-axis data are comparable to these measured in uniaxial tests.
Ifeduba, Ebenezer A; Akoh, Casimir C
2016-05-15
The antioxidant capacity of Maillard reaction (MR)-modified gelatin (GE)-gum arabic (GA) coacervates was optimized to produce microcapsules with superior oxidative stability compared to the unmodified control. MR was used to crosslink GE and GA, with or without maltodextrin (MD), to produce anti-oxidative Maillard reaction products (MRP) which was used to encapsulate stearidonic acid soybean oil (SDASO) by complex coacervation. Biopolymer blends (GE-GA [1:1, w/w] or GE-GA-MD [2:2:1, w/w/w]) were crosslinked by dry-heating at 80°C for 4, 8, or 16h. Relationships between the extent of browning, Trolox equivalent antioxidant capacity (TEAC), and the total oxidation (TOTOX) of encapsulated SDASO were fitted to quadratic models. The [GE-GA-MD] blends exhibited higher browning rates and TEAC values than corresponding [GE-GA] blends. Depending on the type of biopolymer blend and dry-heating time, TOTOX values of SDASO in MRP-derived microcapsules were 29-87% lower than that of the non-crosslinked control after 30 days of storage. Copyright © 2015 Elsevier Ltd. All rights reserved.
Influence of Dissipated Forming Energy on Flow Curves of Austenitic Stainless Steel
NASA Astrophysics Data System (ADS)
Steinheimer, Rainer; Engel, Bernd
2011-08-01
Finite element (FE) simulations are widely used to design sheet metal forming processes. Flow curves and forming limit curves of the semi-finished goods are required for these computations. Mostly flow curves are obtained by conversions of stress-strain caracteristics from uniaxial tensile tests. In these calculations, uniform strain and stress within the gauge length is postulated until reaching elongation without necking. This precondition is true only if specimens remain homogenous during the test procedure. Effects from dissipated mechanical energy and heat flow on the results of uniaxial tensile tests were examined with specimen made of austenitic stainless steels with practical experiments and FE simulations.
Domain engineering of the metastable domains in the 4f-uniaxial-ferromagnet CeRu 2Ga 2B
Wulferding, Dirk; Kim, Hoon; Yang, Ilkyu; ...
2017-04-10
In search of novel, improved materials for magnetic data storage and spintronic devices, compounds that allow a tailoring of magnetic domain shapes and sizes are essential. Good candidates are materials with intrinsic anisotropies or competing interactions, as they are prone to host various domain phases that can be easily and precisely selected by external tuning parameters such as temperature and magnetic field. Here, we utilize vector magnetic fields to visualize directly the magnetic anisotropy in the uniaxial ferromagnet CeRu 2Ga 2B. We demonstrate a feasible control both globally and locally of domain shapes and sizes by the external field asmore » well as a smooth transition from single stripe to bubble domains, which opens the door to future applications based on magnetic domain tailoring.« less
The Association Between Physical Activity and Sex-Specific Oxidative Stress in Older Adults
Takahashi, Masaki; Miyashita, Masashi; Park, Jong-Hwan; Kim, Hyun-Shik; Nakamura, Yoshio; Sakamoto, Shizuo; Suzuki, Katsuhiko
2013-01-01
Oxidative stress increases with advancing age and is a mediator of several diseases including cancer, cardiovascular disease, and diabetes. Moreover, postmenopausal women have a lower estrogen concentration, which is associated with elevated oxidative stress. However, there is no definitive evidence regarding the relationship between daily physical activity and oxidative stress status in older adults, including postmenopausal women. Twenty-nine adults (age, 70.1 ± 1.0 years, mean ± SE; 12 women and 17 men) were examined in this cross-sectional study. Prior to blood collection, the participants were asked to wear a uniaxial accelerometer for 4 consecutive weeks to determine their level of physical activity. After a 48-h period of physical activity avoidance and a 10-h overnight fast, venous blood samples were obtained from each participant. Fasting plasma derivatives of reactive oxygen metabolites (d-ROMs) and malondialdehyde (MDA) concentrations of oxidative stress markers were negatively correlated with the amount of physical activity in women (d-ROMs; r = -0.708, p = 0.002) (MDA; r = -0.549, p = 0. 028), but not in men. Fasting plasma biological antioxidant potential of antioxidant capacity marker was positively correlated with the amount of physical activity in women (BAP; r = 0.657, p = 0.006) (GSH; r = 0.549, p = 0.028), but not in men. Moreover, superoxide dismutase activity of antioxidant capacity marker was positively correlated with the amount of physical activity in men (r = 0.627, p = 0.039), but not in women. There were no associations between physical activity and other oxidative stress markers (reduced and oxidized glutathione, glutathione peroxidise, thioredoxin). These findings suggest that regular physical activity may have a protective effect against oxidative stress by increasing total antioxidant capacity, especially in postmenopausal women. Key Points It is important to consider daily physical activity status when evaluating antioxidant
The association between physical activity and sex-specific oxidative stress in older adults.
Takahashi, Masaki; Miyashita, Masashi; Park, Jong-Hwan; Kim, Hyun-Shik; Nakamura, Yoshio; Sakamoto, Shizuo; Suzuki, Katsuhiko
2013-01-01
Oxidative stress increases with advancing age and is a mediator of several diseases including cancer, cardiovascular disease, and diabetes. Moreover, postmenopausal women have a lower estrogen concentration, which is associated with elevated oxidative stress. However, there is no definitive evidence regarding the relationship between daily physical activity and oxidative stress status in older adults, including postmenopausal women. Twenty-nine adults (age, 70.1 ± 1.0 years, mean ± SE; 12 women and 17 men) were examined in this cross-sectional study. Prior to blood collection, the participants were asked to wear a uniaxial accelerometer for 4 consecutive weeks to determine their level of physical activity. After a 48-h period of physical activity avoidance and a 10-h overnight fast, venous blood samples were obtained from each participant. Fasting plasma derivatives of reactive oxygen metabolites (d-ROMs) and malondialdehyde (MDA) concentrations of oxidative stress markers were negatively correlated with the amount of physical activity in women (d-ROMs; r = -0.708, p = 0.002) (MDA; r = -0.549, p = 0. 028), but not in men. Fasting plasma biological antioxidant potential of antioxidant capacity marker was positively correlated with the amount of physical activity in women (BAP; r = 0.657, p = 0.006) (GSH; r = 0.549, p = 0.028), but not in men. Moreover, superoxide dismutase activity of antioxidant capacity marker was positively correlated with the amount of physical activity in men (r = 0.627, p = 0.039), but not in women. There were no associations between physical activity and other oxidative stress markers (reduced and oxidized glutathione, glutathione peroxidise, thioredoxin). These findings suggest that regular physical activity may have a protective effect against oxidative stress by increasing total antioxidant capacity, especially in postmenopausal women. Key PointsIt is important to consider daily physical activity status when evaluating antioxidant
NASA Astrophysics Data System (ADS)
Cao, Ri-hong; Cao, Ping; Lin, Hang; Pu, Cheng-zhi; Ou, Ke
2016-03-01
Joints and fissures with similar orientation or characteristics are common in natural rocks; the inclination and density of the fissures affect the mechanical properties and failure mechanism of the rock mass. However, the strength, crack coalescence pattern, and failure mode of rock specimens containing multi-fissures have not been studied comprehensively. In this paper, combining similar material testing and discrete element numerical method (PFC2D), the peak strength and failure characteristics of rock-like materials with multi-fissures are explored. Rock-like specimens were made of cement and sand and pre-existing fissures created by inserting steel shims into cement mortar paste and removing them during curing. The peak strength of multi-fissure specimens depends on the fissure angle α (which is measured counterclockwise from horizontal) and fissure number ( N f). Under uniaxial compressional loading, the peak strength increased with increasing α. The material strength was lowest for α = 25°, and highest for α = 90°. The influence of N f on the peak strength depended on α. For α = 25° and 45°, N f had a strong effect on the peak strength, while for higher α values, especially for the 90° sample, there were no obvious changes in peak strength with different N f. Under uniaxial compression, the coalescence modes between the fissures can be classified into three categories: S-mode, T-mode, and M-mode. Moreover, the failure mode can be classified into four categories: mixed failure, shear failure, stepped path failure, and intact failure. The failure mode of the specimen depends on α and N f. The peak strength and failure modes in the numerically simulated and experimental results are in good agreement.
NASA Astrophysics Data System (ADS)
Osgerby, S.; Loveday, M. S.
1992-06-01
A manual for the NPL Creep Laboratory, a collective name given to two testing laboratories, the Uniaxial Creep Laboratory and the Advanced High Temperature Mechanical Testing Laboratory, is presented. The first laboratory is devoted to uniaxial creep testing and houses approximately 50 high sensitivity creep machines including 10 constant stress cam lever machines. The second laboratory houses a low cycle fatigue testing machine of 100 kN capacity driven by a servo-electric actuator, five machines for uniaxial tensile creep testing of engineering ceramics at temperatures up to 1600C, and an electronic creep machine. Details of the operational procedures for carrying out uniaxial creep testing are given. Calibration procedures to be followed in order to comply with the specifications laid down by British standards, and to provide traceability back to the primary standards are described.
NASA Astrophysics Data System (ADS)
Feng, Yu; Li, Wei-Li; Yu, Yang; Jia, He-Nan; Qiao, Yu-Long; Fei, Wei-Dong
2017-11-01
An approach to greatly enhance the piezoelectric properties (˜4 00 pC/N) of the tetragonal BaTi O3 polycrystal using a small number of A -site acceptor-donor substitutions [D. Xu et al., Acta Mater. 79, 84 (2014), 10.1016/j.actamat.2014.07.023] has been proposed. In this study, Pb (ZrTi ) O3 (PZT) based polycrystals with various crystal symmetries (tetragonal, rhombohedral, and so on) were chosen to investigate the piezoelectricity enhancement mechanism. X-ray diffraction results show that doping generates an intrinsic uniaxial compressive stress along the [001] pc direction in the A B O3 lattices. Piezoelectric maps in the parameter space of temperature and Ti concentration in the PZT and doped system show a more significant enhancement effect of L i+-A l3 + codoping in tetragonal PZT than in the rhombohedral phase. Phenomenological thermodynamic analysis indicates that the compressive stress results in more serious flattening of the free-energy profile in tetragonal PZT, compared with that in the rhombohedral phase. The chemical stress obtained by this acceptor-donor codoping can be utilized to optimize the piezoelectric performance on the tetragonal-phase site of the morphotropic phase boundary in the PZT system. The present study provides a promising route to the large piezoelectric effect induced by chemical-stress-driven flattening of the free-energy profile.
NASA Astrophysics Data System (ADS)
Tsutsumi, Yasumasa; Nomoto, Takuya; Ikeda, Hiroaki; Machida, Kazushige
2016-12-01
We propose a spectroscopic method to identify the nodal gap structure in unconventional superconductors. This method is best suited for locating the horizontal line node and for pinpointing the isolated point nodes by measuring polar angle (θ ) resolved zero-energy density of states N (θ ) . This is measured by specific heat or thermal conductivity at low temperatures under a magnetic field. We examine a variety of uniaxially symmetric nodal structures, including point and/or line nodes with linear and quadratic dispersions, by solving the Eilenberger equation in vortex states. It is found that (a) the maxima of N (θ ) continuously shift from the antinodal to the nodal direction (θn) as a field increases accompanying the oscillation pattern reversal at low and high fields. Furthermore, (b) local minima emerge next to θn on both sides, except for the case of the linear point node. These features are robust and detectable experimentally. Experimental results of N (θ ) performed on several superconductors, UPd2Al3,URu2Si2,CuxBi2Se3 , and UPt3, are examined and commented on in light of the present theory.
NASA Astrophysics Data System (ADS)
Wang, Ashu; Zeng, Lingyan; Wang, Wen; Calle, Fernando
2018-03-01
Due to the piezoelectricity, the density of 2DEG (NS) formed in the AlGaN/GaN heterostructure can be altered when it is deformed externally, which may be exploited to develop pressure sensors and to enhance the performance of power devices by stress engineering based on the heterostructure. In this paper, a 3D electro-mechanical simulation is presented to study how the induced strains and NS for the AlGaN/GaN wafer under bending exerted uniaxial stress are influenced by the edges caused by processing: the fabrication of the mesa used for isolation, the ohmic contact metal, the gate metal, and the passivation. Results show that the influences are dependent on distance between the edges, depth of the edges, and direction of the exerted uniaxial stress.
Krasny, Witold; Morin, Claire; Magoariec, Hélène; Avril, Stéphane
2017-07-15
The load bearing properties of large blood vessels are principally conferred by collagen and elastin networks and their microstructural organization plays an important role in the outcomes of various arterial pathologies. In particular, these fibrous networks are able to rearrange and reorient spatially during mechanical deformations. In this study, we investigate for the first time whether these well-known morphological rearrangements are the same across the whole thickness of blood vessels, and subsequently if the underlying mechanisms that govern these rearrangements can be predicted using affine kinematics. To this aim, we submitted rabbit carotid samples to uniaxial load in three distinct deformation directions, while recording live images of the 3D microstructure using multiphoton microscopy. Our results show that the observed realignment of collagen and elastin in the media layer, along with elastin of the adventitia layer, remained limited to small angles that can be predicted by affine kinematics. We show also that collagen bundles of fibers in the adventitia layer behaved in significantly different fashion. They showed a remarkable capacity to realign in the direction of the load, whatever the loading direction. Measured reorientation angles of the fibers were significantly higher than affine predictions. This remarkable property of collagen bundles in the adventitia was never observed before, it shows that the medium surrounding collagen in the adventitia undergoes complex deformations challenging traditional hyperelastic models based on mixture theories. The biomechanical properties of arteries are conferred by the rearrangement under load of the collagen and elastin fibers making up the arterial microstructure. Their kinematics under deformation is not yet characterized for all fiber networks. In this respect we have submitted samples of arterial tissue to uniaxial tension, simultaneously to confocal imaging of their microstructure. Our method allowed
NASA Astrophysics Data System (ADS)
Gao, Siwen; Fivel, Marc; Ma, Anxin; Hartmaier, Alexander
2015-03-01
In the characteristic γ / γ ‧ microstructure of single crystal superalloys, misfit stresses occur due to a significant lattice mismatch of those two phases. The magnitude of this lattice mismatch depends on the chemical composition of both phases as well as on temperature. Furthermore, the lattice mismatch of γ and γ ‧ phases can be either positive or negative in sign. The internal stresses caused by such lattice mismatch play a decisive role for the micromechanical processes that lead to the observed macroscopic athermal deformation behavior of these high-temperature alloys. Three-dimensional discrete dislocation dynamics (DDD) simulations are applied to investigate dislocation glide in γ matrix channels and shearing of γ ‧ precipitates by superdislocations under externally applied uniaxial stresses, by fully taking into account internal misfit stresses. Misfit stress fields are calculated by the fast Fourier transformation (FFT) method and hybridized with DDD simulations. For external loading along the crystallographic [001] direction of the single crystal, it was found that the different internal stress states for negative and positive lattice mismatch result in non-uniform dislocation movement and different dislocation patterns in horizontal and vertical γ matrix channels. Furthermore, positive lattice mismatch produces a lower deformation rate than negative lattice mismatch under the same tensile loading, but for an increasing magnitude of lattice mismatch, the deformation resistance always diminishes. Hence, the best deformation performance is expected to result from alloys with either small positive, or even better, vanishing lattice mismatch between γ and γ ‧ phase.
Structural Benchmark Testing for Stirling Convertor Heater Heads
NASA Technical Reports Server (NTRS)
Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.
2007-01-01
The National Aeronautics and Space Administration (NASA) has identified high efficiency Stirling technology for potential use on long duration Space Science missions such as Mars rovers, deep space missions, and lunar applications. For the long life times required, a structurally significant design limit for the Stirling convertor heater head is creep deformation induced even under relatively low stress levels at high material temperatures. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and much creep data is available for the proposed Inconel-718 (IN-718) and MarM-247 nickel-based superalloy materials of construction. However, very little experimental creep information is available that directly applies to the atypical thin walls, the specific microstructures, and the low stress levels. In addition, the geometry and loading conditions apply multiaxial stress states on the heater head components, far from the conditions of uniaxial testing. For these reasons, experimental benchmark testing is underway to aid in accurately assessing the durability of Stirling heater heads. The investigation supplements uniaxial creep testing with pneumatic testing of heater head test articles at elevated temperatures and with stress levels ranging from one to seven times design stresses. This paper presents experimental methods, results, post-test microstructural analyses, and conclusions for both accelerated and non-accelerated tests. The Stirling projects use the results to calibrate deterministic and probabilistic analytical creep models of the heater heads to predict their life times.
NASA Astrophysics Data System (ADS)
Du, Yi-Chun; Chen, Yung-Fu; Li, Chien-Ming; Lin, Chia-Hung; Yang, Chia-En; Wu, Jian-Xing; Chen, Tainsong
2013-12-01
The Achilles tendon is one of the most commonly observed tendons injured with a variety of causes, such as trauma, overuse and degeneration, in the human body. Rupture and tendinosis are relatively common for this strong tendon. Stress-strain properties and shape change are important biomechanical properties of the tendon to assess surgical repair or healing progress. Currently, there are rather limited non-invasive methods available for precisely quantifying the in vivo biomechanical properties of the tendons. The aim of this study was to apply quantitative ultrasound (QUS) methods, including ultrasonic attenuation and speed of sound (SOS), to investigate porcine tendons in different stress-strain conditions. In order to find a reliable method to evaluate the change of tendon shape, ultrasound measurement was also utilized for measuring tendon thickness and compared with the change in tendon cross-sectional area under different stress. A total of 15 porcine tendons of hind trotters were examined. The test results show that the attenuation and broadband ultrasound attenuation decreased and the SOS increased by a smaller magnitude as the uniaxial loading of the stress-strain upon tendons increased. Furthermore, the tendon thickness measured with the ultrasound method was significantly correlated with tendon cross-sectional area (Pearson coefficient = 0.86). These results also indicate that attenuation of QUS and ultrasonic thickness measurement are reliable and potential parameters for assessing biomechanical properties of tendons. Further investigations are needed to warrant the application of the proposed method in a clinical setting.
Effect of hydrostatic pressure and uniaxial strain on the electronic structure of Pb 1-xSn xTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geilhufe, Matthias; Nayak, Sanjeev K.; Thomas, Stefan
2015-12-09
The electronic structure of Pb 1–xSn xTe is studied by using the relativistic Korringa-Kohn-Rostoker Green function method in the framework of density functional theory. For all concentrations x, Pb 1–xSn xTe is a direct semiconductor with a narrow band gap. In contrast to pure lead telluride, tin telluride shows an inverted band characteristic close to the Fermi energy. It will be shown that this particular property can be tuned, first, by alloying PbTe and SnTe and, second, by applying hydrostatic pressure or uniaxial strain. Furthermore, the magnitude of strain needed to switch between the regular and inverted band gap canmore » be tuned by the alloy composition. In conclusion, there is a range of potential usage of Pb 1–xSn xTe for spintronic applications.« less
NASA Astrophysics Data System (ADS)
Revil-Baudard, Benoit; Chandola, Nitin; Cazacu, Oana; Barlat, Frédéric
2014-10-01
The Swift phenomenon, which refers to the occurrence of permanent axial deformation during monotonic free-end torsion, has been known for a very long time. While plastic anisotropy is considered to be its main cause, there is no explanation as to why in certain materials irreversible elongation occurs while in others permanent shortening is observed. In this paper, a correlation between Swift effects and the stress-strain behavior in uniaxial tension and compression is established. It is based on an elastic-plastic model that accounts for the combined influence of anisotropy and tension-compression asymmetry. It is shown that, if for a given orientation the uniaxial yield stress in tension is larger than that in compression, the specimen will shorten when twisted about that direction; however, if the yield stress in uniaxial compression is larger than that in uniaxial tension, axial elongation will occur. Furthermore, it is shown that on the basis of a few simple mechanical tests it is possible to predict the particularities of the plastic response in torsion for both isotropic and initially anisotropic materials. Unlike other previous interpretations of the Swift effects, which were mainly based on crystal plasticity and/or texture evolution, it is explained the occurrence of Swift effects at small to moderate plastic strains. In particular, the very good quantitative agreement between model and data for a strongly anisotropic AZ31-Mg alloy confirm the correlation established in this work between tension-compression asymmetry and Swift effects. Furthermore, it is explained why the sign of the axial plastic strains that develop depends on the twisting direction.
Ra, Yong-Ho; Navamathavan, R; Park, Ji-Hyeon; Lee, Cheul-Ro
2013-03-01
This article describes the growth and device characteristics of vertically aligned high-quality uniaxial p-GaN/InxGa1-xN/GaN multiple quantum wells (MQW)/n-GaN nanowires (NWs) on Si(111) substrates grown by metal-organic chemical vapor deposition (MOCVD) technique. The resultant nanowires (NWs), with a diameter of 200-250 nm, have an average length of 2 μm. The feasibility of growing high-quality NWs with well-controlled indium composition MQW structure is demonstrated. These resultant NWs grown on Si(111) substrates were utilized for fabricating vertical-type light-emitting diodes (LEDs). The steep and intense photoluminescence (PL) and cathodoluminescence (CL) spectra are observed, based on the strain-free NWs on Si(111) substrates. High-resolution transmission electron microscopy (HR-TEM) analysis revealed that the MQW NWs are grown along the c-plane with uniform thickness. The current-voltage (I-V) characteristics of these NWs exhibited typical p-n junction LEDs and showed a sharp onset voltage at 2.75 V in the forward bias. The output power is linearly increased with increasing current. The result indicates that the pulsed MOCVD technique is an effective method to grow uniaxial p-GaN/InxGa1-xN/GaN MQW/n-GaN NWs on Si(111), which is more advantageous than other growth techniques, such as molecular beam epitaxy. These results suggest the uniaxial NWs are promising to allow flat-band quantum structures, which can enhance the efficiency of LEDs.
A Computing Method to Determine the Performance of an Ionic Liquid Gel Soft Actuator
Zhang, Chenghong; Zhou, Yanmin; Wang, Zhipeng
2018-01-01
A new type of soft actuator material—an ionic liquid gel (ILG) that consists of BMIMBF4, HEMA, DEAP, and ZrO2—is polymerized into a gel state under ultraviolet (UV) light irradiation. In this paper, we first propose that the ILG conforms to the assumptions of hyperelastic theory and that the Mooney-Rivlin model can be used to study the properties of the ILG. Under the five-parameter and nine-parameter Mooney-Rivlin models, the formulas for the calculation of the uniaxial tensile stress, plane uniform tensile stress, and 3D directional stress are deduced. The five-parameter and nine-parameter Mooney-Rivlin models of the ILG with a ZrO2 content of 3 wt% were obtained by uniaxial tensile testing, and the parameters are denoted as c10, c01, c20, c11, and c02 and c10, c01, c20, c11, c02, c30, c21, c12, and c03, respectively. Through the analysis and comparison of the uniaxial tensile stress between the calculated and experimental data, the error between the stress data calculated from the five-parameter Mooney-Rivlin model and the experimental data is less than 0.51%, and the error between the stress data calculated from the nine-parameter Mooney-Rivlin model and the experimental data is no more than 8.87%. Hence, our work presents a feasible and credible formula for the calculation of the stress of the ILG. This work opens a new path to assess the performance of a soft actuator composed of an ILG and will contribute to the optimized design of soft robots. PMID:29853999
A Computing Method to Determine the Performance of an Ionic Liquid Gel Soft Actuator.
He, Bin; Zhang, Chenghong; Zhou, Yanmin; Wang, Zhipeng
2018-01-01
A new type of soft actuator material-an ionic liquid gel (ILG) that consists of BMIMBF 4 , HEMA, DEAP, and ZrO 2 -is polymerized into a gel state under ultraviolet (UV) light irradiation. In this paper, we first propose that the ILG conforms to the assumptions of hyperelastic theory and that the Mooney-Rivlin model can be used to study the properties of the ILG. Under the five-parameter and nine-parameter Mooney-Rivlin models, the formulas for the calculation of the uniaxial tensile stress, plane uniform tensile stress, and 3D directional stress are deduced. The five-parameter and nine-parameter Mooney-Rivlin models of the ILG with a ZrO 2 content of 3 wt% were obtained by uniaxial tensile testing, and the parameters are denoted as c 10 , c 01 , c 20 , c 11 , and c 02 and c 10 , c 01 , c 20 , c 11 , c 02 , c 30 , c 21 , c 12 , and c 03 , respectively. Through the analysis and comparison of the uniaxial tensile stress between the calculated and experimental data, the error between the stress data calculated from the five-parameter Mooney-Rivlin model and the experimental data is less than 0.51%, and the error between the stress data calculated from the nine-parameter Mooney-Rivlin model and the experimental data is no more than 8.87%. Hence, our work presents a feasible and credible formula for the calculation of the stress of the ILG. This work opens a new path to assess the performance of a soft actuator composed of an ILG and will contribute to the optimized design of soft robots.
NASA Astrophysics Data System (ADS)
Kendrick, Jackie Evan; Smith, Rosanna; Sammonds, Peter; Meredith, Philip G.; Dainty, Matthew; Pallister, John S.
2013-07-01
Stratovolcanoes and lava domes are particularly susceptible to sector collapse resulting from wholesale rock failure as a consequence of decreasing rock strength. Here, we provide insights into the influence of thermal and cyclic stressing on the strength and mechanical properties of volcanic rocks. Specifically, this laboratory study examines the properties of samples from Mount St. Helens; chosen because its strength and stability have played a key role in its history, influencing the character of the infamous 1980 eruption. We find that thermal stressing exerts different effects on the strengths of different volcanic units; increasing the heterogeneity of rocks in situ. Increasing the uniaxial compressive stress generates cracking, the timing and magnitude of which was monitored via acoustic emission (AE) output during our experiments. AEs accelerated in the approach to failure, sometimes following the pattern predicted by the failure forecast method (Kilburn 2003). Crack damage during the experiments was tracked using the evolving static Young's modulus and Poisson's ratio, which represent the quasi-static deformation in volcanic edifices more accurately than dynamic elastic moduli which are usually implemented in volcanic models. Cyclic loading of these rocks resulted in a lower failure strength, confirming that volcanic rocks may be weakened by repeated inflation and deflation of the volcanic edifice. Additionally, volcanic rocks in this study undergo significant elastic hysteresis; in some instances, a material may fail at a stress lower than the peak stress which has previously been endured. Thus, a volcanic dome repeatedly inflated and deflated may progressively weaken, possibly inducing failure without necessarily exceeding earlier conditions.
NASA Astrophysics Data System (ADS)
Chea, Limdara O.
Given a nonlinear viscoelastic (NLVE) constitutive model for a polymer, this numerical study aims at simulating local stress concentrations in a boundary value problem with a corner stress singularity. A rectangular sample of Polyvinyl Acetate (PVAc)-like cross-linked polymer clamped by two metallic rigid grips and subjected to a compression and tension load is numerically simulated. A modified version of the finite element code FEAP, that incorporated a NLVE model based on the free volume theory, was used. First, the program was validated by comparing numerical and analytical results. Two simple mechanical tests (a uniaxial and a simple shear test) were performed on a Standard Linear Solid material model, using a linear viscoelastic (LVE) constitutive model. The LVE model was obtained by setting the proportionality coefficient [...] to zero in the free volume theory equations. Second, the LVE model was used on the corner singularity boundary value problem for three material models with different bulk relaxation functions K(t). The time-dependent stress field distribution was investigated using two sets of plots: the stress distribution contour plots and the stress time curves. Third, using the NLVE constitutive model, compression and tension cases were compared using the stress results (normal stress [...] and shear stress [...]). These two cases assessed the effect of the creep retardation-creep acceleration phenomena. The shift between the beginning of the relaxation moduli was shown to play an important role. This parameter affects strongly the fluctuation pattern of the stress curves. For two different shift values, in one case, the stress response presents a 'double peak' and 'stress inversion' characteristic whereas, in the other case, it presents a 'single peak' and no 'inversion'. Another important factor was the material's compressibility. In the case of a nearly-incompressible material, the LVE and NLVE models yielded identical results; thus, the simpler
Mechanical characterization of stomach tissue under uniaxial tensile action.
Jia, Z G; Li, W; Zhou, Z R
2015-02-26
In this article, the tensile properties of gastric wall were investigated by using biomechanical test and theoretical analysis. The samples of porcine stomach strips from smaller and greater curvature of the stomach were cut in longitudinal and circumferential direction, respectively. The loading-unloading, stress relaxation, strain creep, tensile fracture tests were performed at mucosa-submucosa, serosa-muscle and intact layer, respectively. Results showed that the biomechanical properties of the porcine stomach depended on the layers, orientations and locations of the gastric wall and presented typical viscoelastic, nonlinear and anisotropic mechanical properties. During loading-unloading test, the stress of serosa-muscle layer in the longitudinal direction was 15-20% more than that in the circumferential direction at 12% stretch ratio, while it could reach about 40% for the intact layer and 50% for the mucosa-submucosa layer. The results of stress relaxation and strain creep showed that the variation degree was obviously faster in the circumferential direction than that in the longitudinal direction, and the ultimate residual values were also different for the different layers, orientations and locations. In the process of fracture test, the serosa-muscle layer fractured firstly followed by the mucosa-submucosa layer when the intact layer was tested, the longitudinal strips firstly began to fracture and the required stress value was about twice as much as that in the circumferential strips. The anisotropy and heterogeneity of mechanical characterization of the porcine stomach were related to its complicated geometry, structure and functions. The results would help us to understand the biomechanics of soft organ tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Rui; Schweizer, Kenneth S.
2012-04-01
We generalize the microscopic naïve mode coupling and nonlinear Langevin equation theories of the coupled translation-rotation dynamics of dense suspensions of uniaxial colloids to treat the effect of applied stress on shear elasticity, cooperative cage escape, structural relaxation, and dynamic and static yielding. The key concept is a stress-dependent dynamic free energy surface that quantifies the center-of-mass force and torque on a moving colloid. The consequences of variable particle aspect ratio and volume fraction, and the role of plastic versus double glasses, are established in the context of dense, glass-forming suspensions of hard-core dicolloids. For low aspect ratios, the theory provides a microscopic basis for the recently observed phenomenon of double yielding as a consequence of stress-driven sequential unlocking of caging constraints via reduction of the distinct entropic barriers associated with the rotational and translational degrees of freedom. The existence, and breadth in volume fraction, of the double yielding phenomena is predicted to generally depend on both the degree of particle anisotropy and experimental probing frequency, and as a consequence typically occurs only over a window of (high) volume fractions where there is strong decoupling of rotational and translational activated relaxation. At high enough concentrations, a return to single yielding is predicted. For large aspect ratio dicolloids, rotation and translation are always strongly coupled in the activated barrier hopping event, and hence for all stresses only a single yielding process is predicted.
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Feldman, Mark
1993-01-01
Two complimentary studies were performed to determine the effects of stress and physical aging on the matrix dominated time dependent properties of IM7/8320 composite. The first of these studies, experimental in nature, used isothermal tensile creep/aging test techniques developed for polymers and adapted them for testing of the composite material. From these tests, the time dependent transverse (S22) and shear (S66) compliance's for an orthotropic plate were found from short term creep compliance measurements at constant, sub-T(sub g) temperatures. These compliance terms were shown to be affected by physical aging. Aging time shift factors and shift rates were found to be a function of temperature and applied stress. The second part of the study relied upon isothermal uniaxial tension tests of IM7/8320 to determine the effects of physical aging on the nonlinear material behavior at elevated temperature. An elastic/viscoplastic constitutive model was used to quantify the effects of aging on the rate-independent plastic and rate-dependent viscoplastic response. Sensitivity of the material constants required by the model to aging time were determined for aging times up to 65 hours. Verification of the analytical model indicated that the effects of prior aging on the nonlinear stress/strain/time data of matrix dominated laminates can be predicted.
NASA Astrophysics Data System (ADS)
Chen, Hui; Cai, Li-Xun
2018-04-01
Based on the power-law stress-strain relation and equivalent energy principle, theoretical equations for converting between Brinell hardness (HB), Rockwell hardness (HR), and Vickers hardness (HV) were established. Combining the pre-existing relation between the tensile strength ( σ b ) and Hollomon parameters ( K, N), theoretical conversions between hardness (HB/HR/HV) and tensile strength ( σ b ) were obtained as well. In addition, to confirm the pre-existing σ b -( K, N) relation, a large number of uniaxial tensile tests were conducted in various ductile materials. Finally, to verify the theoretical conversions, plenty of statistical data listed in ASTM and ISO standards were adopted to test the robustness of the converting equations with various hardness and tensile strength. The results show that both hardness conversions and hardness-strength conversions calculated from the theoretical equations accord well with the standard data.
Modeling of long-term fatigue damage of soft tissue with stress softening and permanent set effects
Martin, Caitlin; Sun, Wei
2012-01-01
One of the major failure modes of bioprosthetic heart valves is non-calcific structural deterioration due to fatigue of the tissue leaflets. Experimental methods to characterize tissue fatigue properties are complex and time-consuming. A constitutive fatigue model that could be calibrated by isolated material tests would be ideal for investigating the effects of more complex loading conditions. However, there is a lack of tissue fatigue damage models in the literature. To address these limitations, in this study, a phenomenological constitutive model was developed to describe the stress softening and permanent set effects of tissue subjected to long-term cyclic loading. The model was used to capture characteristic uniaxial fatigue data for glutaraldehyde-treated bovine pericardium and was then implemented into finite element software. The simulated fatigue response agreed well with the experimental data and thus demonstrates feasibility of this approach. PMID:22945802
Assessment of Multiaxial Mechanical Response of Rigid Polyurethane Foams
NASA Astrophysics Data System (ADS)
Pettarin, Valeria; Fasce, Laura A.; Frontini, Patricia M.
2014-02-01
Multiaxial deformation behavior and failure surface of rigid polyurethane foams were determined using standard experimental facilities. Two commercial foams of different densities were assayed under uniaxial, biaxial, and triaxial stress states. These different stress states were reached in a uniaxial universal testing machine using suitable testing configurations which imply the use of special grips and lateral restricted samples. Actual strains were monitored with a video extensometer. Polyurethane foams exhibited typical isotropic brittle behavior, except under compressive loads where the response turned out to be ductile. A general failure surface in the stress space which accounts for density effects could be successfully generated. All of failure data, determined at the loss of linear elasticity point, collapsed in a single locus defined as the combination of a brittle crushing of closed-cell cellular materials criterion capped by an elastic buckling criterion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, M H; Kim, B S; Kim, D H
2014-04-25
We investigated the effect of geometrically constrained stress-strain conditions on the formation of nanotwins in alpha-brass phase reinforced Ni59Zr20Ti16Si2Sn3 metallic glass (MG) matrix deformed under macroscopic uniaxial compression. The specific geometrically constrained conditions in the samples lead to a deviation from a simple uniaxial state to a multi-axial stress state, for which nanocrystallization in the MG matrix together with nanoscale twinning of the brass reinforcement is observed in localized regions during plastic flow. The nanocrystals in the MG matrix and the appearance of the twinned structure in the reinforcements indicate that the strain energy is highly confined and the localmore » stress reaches a very high level upon yielding. Both the effective distribution of reinforcements on the strain enhancement of composite and the effects of the complicated stress states on the development of nanotwins in the second-phase brass particles are discussed.« less
NASA Astrophysics Data System (ADS)
Lee, Jinwoo; Kim, Se-Jong; Lee, Myoung-Gyu; Song, Jung Han; Choi, Seogou; Han, Heung Nam; Kim, Daeyong
2016-06-01
The uniaxial tensile and compressive stress-strain responses of AZ31B magnesium alloy sheet under pulsed electric current are reported. Tension and compression tests with pulsed electric current showed that flow stresses dropped instantaneously when the electric pulses were applied. Thermo-mechanical-electrical finite element analyses were also performed to investigate the effects of Joule heating and electro-plasticity on the flow responses of AZ31B sheets under electric-pulsed tension and compression tests. The proposed finite element simulations could reproduce the measured uniaxial tensile and compressive stress-strain curves under pulsed electric currents, when the temperature-dependent flow stress hardening model and thermal properties of AZ31B sheet were properly described in the simulations. In particular, the simulation results that fit best with experimental results showed that almost 100 pct of the electric current was subject to transform into Joule heating during electrically assisted tensile and compressive tests.
Germanium:gallium photoconductors for far infrared heterodyne detection
NASA Technical Reports Server (NTRS)
Park, I. S.; Haller, E. E.; Grossman, E. N.; Watson, Dan M.
1988-01-01
Highly compensated Ge:Ga photoconductors for high bandwidth heterodyne detection have been fabricated and evaluated. Bandwidths up to 60 MHz have been achieved with a corresponding current responsivity of 0.01 A/W. The expected dependence of bandwidth on bias field is obtained. It is noted that increased bandwidth is obtained at the price of greater required local oscillator power.
NASA Astrophysics Data System (ADS)
Sánchez-Marín, N.; Cuchillo, A.; Knobel, M.; Vargas, P.
2018-04-01
We study the effect of the uniaxial anisotropy in a system of ideal, noninteracting ferromagnetic nanoparticles by means of a thermodynamical model. We show that the effect of the anisotropy can be easily assimilated in a temperature shift Ta∗, in analogy to what was proposed by Allia et al. (2001) in the case of interacting nanomagnets. The phenomenological anisotropic Ta∗ parameter can be negative, indicating an antiferromagnetic-like behavior, or positive, indicating a ferromagnetic-like character as seen in the inverse susceptibility behavior as a function of temperature. The study is done considering an easy axis distribution to take into account the anisotropy axis dispersion in real samples (texture). In the case of a volumetric uniform distribution of anisotropy axes, the net effect makes Ta∗ to vanish, and the magnetic susceptibility behaves like a conventional superparamagnetic system, whereas in the others a finite value is obtained for Ta∗ . When magnetic moment distribution is considered, the effect is to enhance the Ta∗ parameter, when the dispersion of the magnetic moments becomes wider.
Facility Instrumentation for SOFIA: Technical Specifications and Scientific Goals
NASA Astrophysics Data System (ADS)
Stacey, G. J.
2000-05-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA's next generation airborne observatory consisting of a 2.5 m telescope in a modified Boeing 747 SP. First light is expected in late 2002. Three "Facility Class" instruments were among the first generation of instruments selected to fly on SOFIA. These instruments, currently under development are (1) a 5 to 38 um imaging photometer based on twin As:Si and Sb:Sb BIB arrays (FORCAST), (2) a 40 to 300 um photometer based on three arrays of bolometers, and (3) a 17 to 210 um eschelle grating spectrometer based on an Sb:Sb BIB array and a Ge:Sb and stressed Ge:Ga array of photoconductors. I will discuss both the technical aspects of these facility instruments, and some of the exciting new science that is possible with these ground breaking instruments on an airborne 2.5 meter telescope. Science topics include circumstellar debris disks, star formation, the Galactic Center, and distant galaxies.
NASA Astrophysics Data System (ADS)
Zhi, Jie; Zhao, Libin; Zhang, Jianyu; Liu, Zhanli
2016-06-01
In this paper, a new numerical method that combines a surface-based cohesive model and extended finite element method (XFEM) without predefining the crack paths is presented to simulate the microscopic damage evolution in composites under uniaxial transverse tension. The proposed method is verified to accurately capture the crack kinking into the matrix after fiber/matrix debonding. A statistical representative volume element (SRVE) under periodic boundary conditions is used to approximate the microstructure of the composites. The interface parameters of the cohesive models are investigated, in which the initial interface stiffness has a great effect on the predictions of the fiber/matrix debonding. The detailed debonding states of SRVE with strong and weak interfaces are compared based on the surface-based and element-based cohesive models. The mechanism of damage in composites under transverse tension is described as the appearance of the interface cracks and their induced matrix micro-cracking, both of which coalesce into transversal macro-cracks. Good agreement is found between the predictions of the model and the in situ experimental observations, demonstrating the efficiency of the presented model for simulating the microscopic damage evolution in composites.
Design and fabrication of a micron scale free-standing specimen for uniaxial micro-tensile tests
NASA Astrophysics Data System (ADS)
Tang, Jun; Wang, Hong; Li, Shi Chen; Liu, Rui; Mao, Sheng Ping; Li, Xue Ping; Zhang, Cong Chun; Ding, Guifu
2009-10-01
This paper presents a novel design and fabrication of test chips with a nickel free-standing specimen for the micro uniaxial tensile test. To fabricate test chips on the quartz substrate significantly reduces the fabrication time, minimizes the number of steps and eliminates the effect of the wet anisotropic etching process on mechanical properties. The test chip can be gripped tightly to the test machine and aligned accurately in the pulling direction; furthermore, the approximately straight design of the specimen rather than the traditional dog-bone structure enables the strain be directly measured by a displacement sensor. Both finite-element method (FEM) analysis and experimental results indicate the reliability of the new design. The test chip can also be extended to other materials. The experimental measured Young's modulus of a thin nickel film and the ultimate tensile strength are approximately 94.5 Gpa and 1.76 Gpa, respectively. The results were substantially supported by the experiment on larger gauge specimens by a commercial dynamic mechanical analysis (DMA) instrument. These specimens were electroplated under the same conditions. The low Young's modulus and the high ultimate tensile strength might be explained by the fine grain in the electroplated structure.
NASA Astrophysics Data System (ADS)
Schönhöfer, Philipp W. A.; Schröder-Turk, Gerd E.; Marechal, Matthieu
2018-03-01
We develop a density functional for hard particles with a smooth uniaxial shape (including non-inversion-symmetric particles) within the framework of fundamental measure theory. By applying it to a system of tapered, aspherical liquid-crystal formers, reminiscent of pears, we analyse their behaviour near a hard substrate. The theory predicts a complex orientational ordering close to the substrate, which can be directly related to the particle shape, in good agreement with our simulation results. Furthermore, the lack of particle inversion-symmetry implies the possibility of alternating orientations in subsequent layers as found in a smectic/lamellar phase of such particles. Both theory and Monte Carlo simulations confirm that such ordering occurs in our system. Our results are relevant for adsorption processes of asymmetric colloidal particles and molecules at hard interfaces and show once again that tapering strongly affects the properties of orientationally ordered phases.
Dynamic Uniaxial Tensile Loading of Vector Polymers
2011-11-01
to apply the loading velocity to the strip at x = 0 after impact by a steel slug projectile. The flange has two sets of grooves. One set, denoted as...travels down the barrel . The strip is clamped to the outside of the barrel at x = L. A Photron SA1 high-speed video camera with a framing rate of...nominal stress. Equation 1 is expressed in terms of particle displacement to obtain the wave equation Flange Gun Barrel Rubber Strip Clamp x = 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley
Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current paper focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-inducedmore » increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa–30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. Finally, the disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.« less
Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley; ...
2017-06-27
Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current paper focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-inducedmore » increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa–30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. Finally, the disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.« less
NASA Astrophysics Data System (ADS)
Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley; Vo, Hi T.; Maloy, Stuart A.; Hosemann, Peter; Mara, Nathan A.
2017-09-01
Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current work focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-induced increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa-30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. The disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley
Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current paper focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-inducedmore » increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa–30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. Finally, the disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.« less
1988-01-01
corrosion and stress analytical methods. corrosion cracking (SCC) in certain aqueous 3 EXPERIMENTAL PROCEDURE treatments were performed using variable time...properly oriented with the applied uniaxial approach a comparable EPR-DOS in the control stress are influenced. Deformation may specimens. EPR-DOS values...corrosion and stress corrosion. Atteridge, Sensitization Development Deformation above 20% prior strain, however, in Austenitic Stainless Steel: II. induces
Quantification of local strain distributions in nanoscale strained SiGe FinFET structures
NASA Astrophysics Data System (ADS)
Mochizuki, Shogo; Murray, Conal E.; Madan, Anita; Pinto, Teresa; Wang, Yun-Yu; Li, Juntao; Weng, Weihao; Jagannathan, Hemanth; Imai, Yasuhiko; Kimura, Shigeru; Takeuchi, Shotaro; Sakai, Akira
2017-10-01
Strain within nanoscale strained SiGe FinFET structures has been investigated using a combination of X-ray diffraction and transmission electron microscopy-based nanobeam diffraction (NBD) techniques to reveal the evolution of the stress state within the FinFETs. Reciprocal space maps collected using high-resolution X-ray diffraction exhibited distinct features corresponding to the SiGe fin width, pitch, and lattice deformation and were analyzed to quantify the state of stress within the fins. Although the majority of the SiGe fin volume exhibited a uniaxial stress state due to elastic relaxation of the transverse in-plane stress, NBD measurements confirmed a small interaction region near the SOI interface that is mechanically constrained by the underlying substrate. We have quantitatively characterized the evolution of the fin stress state from biaxial to uniaxial as a function of fin aspect ratio and Ge fraction and confirmed that the fins obey elastic deformation based on a model that depends on the relative difference between the equilibrium Si and SiGe lattice constants and relative fraction of in-plane stress transverse to the SiGe fins. Spatially resolved, nanobeam X-ray diffraction measurements conducted near the SiGe fin edge indicate the presence of additional elastic relaxation from a uniaxial stress state to a fully relaxed state at the fin edge. Mapping of the lattice deformation within 500 nm of this fin edge by NBD revealed large gradients, particularly at the top corner of the fin. The values of the volume averaged lattice deformation obtained by nanoXRD and NBD are qualitatively consistent. Furthermore, the modulation of strain at the fin edge obtained by quantitative analysis of the nanoXRD results agrees with the lattice deformation profile obtained by NBD.
Finite-temperature stress calculations in atomic models using moments of position.
Parthasarathy, Ranganathan; Misra, Anil; Ouyang, Lizhi
2018-07-04
Continuum modeling of finite temperature mechanical behavior of atomic systems requires refined description of atomic motions. In this paper, we identify additional kinematical quantities that are relevant for a more accurate continuum description as the system is subjected to step-wise loading. The presented formalism avoids the necessity for atomic trajectory mapping with deformation, provides the definitions of the kinematic variables and their conjugates in real space, and simplifies local work conjugacy. The total work done on an atom under deformation is decomposed into the work corresponding to changing its equilibrium position and work corresponding to changing its second moment about equilibrium position. Correspondingly, we define two kinematic variables: a deformation gradient tensor and a vibration tensor, and derive their stress conjugates, termed here as static and vibration stresses, respectively. The proposed approach is validated using MD simulation in NVT ensembles for fcc aluminum subjected to uniaxial extension. The observed evolution of second moments in the MD simulation with macroscopic deformation is not directly related to the transformation of atomic trajectories through the deformation gradient using generator functions. However, it is noteworthy that deformation leads to a change in the second moment of the trajectories. Correspondingly, the vibration part of the Piola stress becomes particularly significant at high temperature and high tensile strain as the crystal approaches the softening limit. In contrast to the eigenvectors of the deformation gradient, the eigenvectors of the vibration tensor show strong spatial heterogeneity in the vicinity of softening. More importantly, the elliptic distribution of local atomic density transitions to a dumbbell shape, before significant non-affinity in equilibrium positions has occurred.
Finite-temperature stress calculations in atomic models using moments of position
NASA Astrophysics Data System (ADS)
Parthasarathy, Ranganathan; Misra, Anil; Ouyang, Lizhi
2018-07-01
Continuum modeling of finite temperature mechanical behavior of atomic systems requires refined description of atomic motions. In this paper, we identify additional kinematical quantities that are relevant for a more accurate continuum description as the system is subjected to step-wise loading. The presented formalism avoids the necessity for atomic trajectory mapping with deformation, provides the definitions of the kinematic variables and their conjugates in real space, and simplifies local work conjugacy. The total work done on an atom under deformation is decomposed into the work corresponding to changing its equilibrium position and work corresponding to changing its second moment about equilibrium position. Correspondingly, we define two kinematic variables: a deformation gradient tensor and a vibration tensor, and derive their stress conjugates, termed here as static and vibration stresses, respectively. The proposed approach is validated using MD simulation in NVT ensembles for fcc aluminum subjected to uniaxial extension. The observed evolution of second moments in the MD simulation with macroscopic deformation is not directly related to the transformation of atomic trajectories through the deformation gradient using generator functions. However, it is noteworthy that deformation leads to a change in the second moment of the trajectories. Correspondingly, the vibration part of the Piola stress becomes particularly significant at high temperature and high tensile strain as the crystal approaches the softening limit. In contrast to the eigenvectors of the deformation gradient, the eigenvectors of the vibration tensor show strong spatial heterogeneity in the vicinity of softening. More importantly, the elliptic distribution of local atomic density transitions to a dumbbell shape, before significant non-affinity in equilibrium positions has occurred.
Commisso, Maria S; Martínez-Reina, Javier; Mayo, Juana; Domínguez, Jaime
2013-02-01
The main objectives of this work are: (a) to introduce an algorithm for adjusting the quasi-linear viscoelastic model to fit a material using a stress relaxation test and (b) to validate a protocol for performing such tests in temporomandibular joint discs. This algorithm is intended for fitting the Prony series coefficients and the hyperelastic constants of the quasi-linear viscoelastic model by considering that the relaxation test is performed with an initial ramp loading at a certain rate. This algorithm was validated before being applied to achieve the second objective. Generally, the complete three-dimensional formulation of the quasi-linear viscoelastic model is very complex. Therefore, it is necessary to design an experimental test to ensure a simple stress state, such as uniaxial compression to facilitate obtaining the viscoelastic properties. This work provides some recommendations about the experimental setup, which are important to follow, as an inadequate setup could produce a stress state far from uniaxial, thus, distorting the material constants determined from the experiment. The test considered is a stress relaxation test using unconfined compression performed in cylindrical specimens extracted from temporomandibular joint discs. To validate the experimental protocol, the test was numerically simulated using finite-element modelling. The disc was arbitrarily assigned a set of quasi-linear viscoelastic constants (c1) in the finite-element model. Another set of constants (c2) was obtained by fitting the results of the simulated test with the proposed algorithm. The deviation of constants c2 from constants c1 measures how far the stresses are from the uniaxial state. The effects of the following features of the experimental setup on this deviation have been analysed: (a) the friction coefficient between the compression plates and the specimen (which should be as low as possible); (b) the portion of the specimen glued to the compression plates (smaller
Vishwakarma, R K; Shivhare, U S; Nanda, S K
2012-09-01
Hertz's theory of contact stresses was applied to predict the splitting of guar seeds during uni-axial compressive loading between 2 rigid parallel plates. The apparent modulus of elasticity of guar seeds varied between 296.18 and 116.19 MPa when force was applied normal to hilum joint (horizontal position), whereas it varied between 171.86 and 54.18 MPa when force was applied in the direction of hilum joint (vertical position) with in moisture content range of 5.16% to 15.28% (d.b.). At higher moisture contents, the seeds yielded after considerable deformation, thus showing ductile nature. Distribution of stresses below the point of contact were plotted to predict the location of critical point, which was found at 0.44 to 0.64 mm and 0.37 to 0.53 mm below the contact point in vertical and horizontal loading, respectively, depending upon moisture content. The separation of cotyledons from each other initiated before yielding of cotyledons and thus splitting of seed took place. The relationships between apparent modulus of elasticity, principal stresses with moisture content were described using second-order polynomial equations and validated experimentally. Manufacture of guar gum powder requires dehulling and splitting of guar seeds. This article describes splitting behavior of guar seeds under compressive loading. Results of this study may be used for design of dehulling and splitting systems of guar seeds. © 2012 Institute of Food Technologists®
Zhang, Jiaxiang; Zallo, Eugenio; Höfer, Bianca; Chen, Yan; Keil, Robert; Zopf, Michael; Böttner, Stefan; Ding, Fei; Schmidt, Oliver G
2017-01-11
We explore a method to achieve electrical control over the energy of on-demand entangled-photon emission from self-assembled quantum dots (QDs). The device used in our work consists of an electrically tunable diode-like membrane integrated onto a piezoactuator, which is capable of exerting a uniaxial stress on QDs. We theoretically reveal that, through application of the quantum-confined Stark effect to QDs by a vertical electric field, the critical uniaxial stress used to eliminate the fine structure splitting of QDs can be linearly tuned. This feature allows experimental realization of a triggered source of energy-tunable entangled-photon emission. Our demonstration represents an important step toward realization of a solid-state quantum repeater using indistinguishable entangled photons in Bell state measurements.
NASA Astrophysics Data System (ADS)
Liu, Jia; Li, Jing; Zhang, Zhong-ping
2013-04-01
In this article, a fatigue damage parameter is proposed to assess the multiaxial fatigue lives of ductile metals based on the critical plane concept: Fatigue crack initiation is controlled by the maximum shear strain, and the other important effect in the fatigue damage process is the normal strain and stress. This fatigue damage parameter introduces a stress-correlated factor, which describes the degree of the non-proportional cyclic hardening. Besides, a three-parameter multiaxial fatigue criterion is used to correlate the fatigue lifetime of metallic materials with the proposed damage parameter. Under the uniaxial loading, this three-parameter model reduces to the recently developed Zhang's model for predicting the uniaxial fatigue crack initiation life. The accuracy and reliability of this three-parameter model are checked against the experimental data found in literature through testing six different ductile metals under various strain paths with zero/non-zero mean stress.
Stress-Strain Properties of SIFCON in Uniaxial Compression and Tension
1988-08-01
direction act as contacting beams whereas fibers aligned parallel to the loading direction act as individual columns . The combination of fiber-to-fiber...applicable to the study of SIFCON. These include such topics as the influence of strain rate on composite behavior, cyclic loading response, fiber-to-matrix...the specimen are shown in Figure 17. The grips consisted of self-clamping steel plates and a universal joint connection to the loading machine which
Mechanics of instability-related delimination growth
NASA Technical Reports Server (NTRS)
Whitcomb, John D.
1988-01-01
Local buckling of a delaminated group of plies can lead to higher interlaminar stresses and delamination growth. The mechanics of instability-related delamination growth (IRDG) had been described previously for the through-width delamination. This paper describes the mechanics of IRDG for the embedded delamination subjected to either uniaxial or axisymmetric loads. The mechanics of IRDG are used to explain the dramatic differences in strain-energy release rates observed for the through-width, the axisymmetrically loaded embedded delamination, and the uniaxially loaded embedded delamination.
Electronic excitations and chemistry in Nitromethane and HMX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, E J; Manaa, M R; Joannopoulos, J D
2001-06-19
The nature of electronic excitations in crystalline solid nitromethane under conditions of shock loading and static compression are examined. Density functional theory calculations are used to determine the crystal bandgap under hydrostatic stress, uniaxial strain, and shear strain. Bandgap lowering under uniaxial strain due to molecular defects and vacancies is considered. In all cases, the bandgap is not lowered enough to produce a significant population of excited states in the crystal. Preliminary simulations on the formation of detonation product molecules from HMX are discussed.
Nonlinear modeling of crystal system transition of black phosphorus using continuum-DFT model.
Setoodeh, A R; Farahmand, H
2018-01-24
In this paper, the nonlinear behavior of black phosphorus crystals is investigated in tandem with dispersion-corrected density functional theory (DFT-D) analysis under uniaxial loadings. From the identified anisotropic behavior of black phosphorus due to its morphological anisotropy, a hyperelastic anisotropic (HA) model named continuum-DFT is established to predict the nonlinear behavior of the material. In this respect, uniaxial Cauchy stresses are employed on both the DFT-D and HA models along the zig-zag and armchair directions. Simultaneously, the transition of the crystal system is recognized at about 4.5 GPa of the applied uniaxial tensile stress along the zig-zag direction on the DFT-D simulation in the nonlinear region. In order to develop the nonlinear continuum model, unknown constants are surveyed with the optimized least square technique. In this regard, the continuum model is obtained to reproduce the Cauchy stress-stretch and density of strain-stretch results of the DFT-D simulation. Consequently, the modified HA model is introduced to characterize the nonlinear behavior of black phosphorus along the zig-zag direction. More importantly, the specific transition of the crystal system is successfully predicted in the new modified continuum-DFT model. The results reveal that the multiscale continuum-DFT model is well defined to replicate the nonlinear behavior of black phosphorus along the zig-zag and armchair directions.
Lewan, Michael D.; Birdwell, Justin E.; Baez, Luis; Beeney, Ken; Sonnenberg, Steve
2013-01-01
Understanding changes in petrophysical and geochemical parameters during source rock thermal maturation is a critical component in evaluating source-rock petroleum accumulations. Natural core data are preferred, but obtaining cores that represent the same facies of a source rock at different thermal maturities is seldom possible. An alternative approach is to induce thermal maturity changes by laboratory pyrolysis on aliquots of a source-rock sample of a given facies of interest. Hydrous pyrolysis is an effective way to induce thermal maturity on source-rock cores and provide expelled oils that are similar in composition to natural crude oils. However, net-volume increases during bitumen and oil generation result in expanded cores due to opening of bedding-plane partings. Although meaningful geochemical measurements on expanded, recovered cores are possible, the utility of the core for measuring petrophysical properties relevant to natural subsurface cores is not suitable. This problem created during hydrous pyrolysis is alleviated by using a stainless steel uniaxial confinement clamp on rock cores cut perpendicular to bedding fabric. The clamp prevents expansion just as overburden does during natural petroleum formation in the subsurface. As a result, intact cores can be recovered at various thermal maturities for the measurement of petrophysical properties as well as for geochemical analyses. This approach has been applied to 1.7-inch diameter cores taken perpendicular to the bedding fabric of a 2.3- to 2.4-inch thick slab of Mahogany oil shale from the Eocene Green River Formation. Cores were subjected to hydrous pyrolysis at 360 °C for 72 h, which represents near maximum oil generation. One core was heated unconfined and the other was heated in the uniaxial confinement clamp. The unconfined core developed open tensile fractures parallel to the bedding fabric that result in a 38 % vertical expansion of the core. These open fractures did not occur in the
NASA Astrophysics Data System (ADS)
Béres, Gábor; Weltsch, Zoltán; Lukács, Zsolt; Tisza, Miklós
2018-05-01
Forming limit is a complex concept of limit values related to the onset of local necking in the sheet metal. In cold sheet metal forming, major and minor limit strains are influenced by the sheet thickness, strain path (deformation history) as well as material parameters and microstructure. Forming Limit Curves are plotted in ɛ1 - ɛ2 coordinate system providing the classic strain-based Forming Limit Diagram (FLD). Using the appropriate constitutive model, the limit strains can be changed into the stress-based Forming Limit Diagram (SFLD), irrespective of the strain path. This study is about the effect of the hardening model parameters on defining of limit stress values during Nakazima tests for automotive dual phase (DP) steels. Five limit strain pairs were specified experimentally with the loading of five different sheet geometries, which performed different strain-paths from pure shear (-2ɛ2=ɛ1) up to biaxial stretching (ɛ2=ɛ1). The former works of Hill, Levy-Tyne and Keeler-Brazier made possible some kind of theoretical strain determination, too. This was followed by the stress calculation based on the experimental and theoretical strain data. Since the n exponent in the Nádai expression is varying with the strain at some DP steels, we applied the least-squares method to fit other hardening model parameters (Ludwik, Voce, Hockett-Sherby) to calculate the stress fields belonging to each limit strains. The results showed that each model parameters could produce some discrepancies between the limit stress states in the range of higher equivalent strains than uniaxial stretching. The calculated hardening models were imported to FE code to extend and validate the results by numerical simulations.
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Tamekuni, M.
1973-01-01
Analytical methods based on linear theory are presented for predicting the thermal stresses in and the buckling of heated structures with arbitrary uniform cross section. The structure is idealized as an assemblage of laminated plate-strip elements, curved and planar, and beam elements. Uniaxially stiffened plates and shells of arbitrary cross section are typical examples. For the buckling analysis the structure or selected elements may be subjected to mechanical loads, in additional to thermal loads, in any desired combination of inplane transverse load and axial compression load. The analysis is also applicable to stiffened structures under inplane loads varying through the cross section, as in stiffened shells under bending. The buckling analysis is general and covers all modes of instability. The analysis has been applied to a limited number of problems and the results are presented. These while showing the validity and the applicability of the method do not reflect its full capability.
A microstructure-based yield stress and work-hardening model for textured 6xxx aluminium alloys
NASA Astrophysics Data System (ADS)
Khadyko, M.; Myhr, O. R.; Dumoulin, S.; Hopperstad, O. S.
2016-04-01
The plastic properties of an aluminium alloy are defined by its microstructure. The most important factors are the presence of alloying elements in the form of solid solution and precipitates of various sizes, and the crystallographic texture. A nanoscale model that predicts the work-hardening curves of 6xxx aluminium alloys was proposed by Myhr et al. The model predicts the solid solution concentration and the particle size distributions of different types of metastable precipitates from the chemical composition and thermal history of the alloy. The yield stress and the work hardening of the alloy are then determined from dislocation mechanics. The model was largely used for non-textured materials in previous studies. In this work, a crystal plasticity-based approach is proposed for the work hardening part of the nanoscale model, which allows including the influence of the crystallographic texture. The model is evaluated by comparison with experimental data from uniaxial tensile tests on two textured 6xxx alloys in five temper conditions.
NASA Technical Reports Server (NTRS)
Bosi, F.; Pellegrino, S.
2017-01-01
A molecular formulation of the onset of plasticity is proposed to assess temperature and strain rate effects in anisotropic semi-crystalline rubbery films. The presented plane stress criterion is based on the strain rate-temperature superposition principle and the cooperative theory of yielding, where some parameters are assumed to be material constants, while others are considered to depend on specific modes of deformation. An orthotropic yield function is developed for a linear low density polyethylene thin film. Uniaxial and biaxial inflation experiments were carried out to determine the yield stress of the membrane via a strain recovery method. It is shown that the 3% offset method predicts the uniaxial elastoplastic transition with good accuracy. Both the tensile yield points along the two principal directions of the film and the biaxial yield stresses are found to obey the superposition principle. The proposed yield criterion is compared against experimental measurements, showing excellent agreement over a wide range of deformation rates and temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buechler, Miles A.
2012-05-02
This memo discusses observations that have been made in regards to a series of monotonic and cyclic uniaxial experiments performed on PBX9501 by Darla Thompson under Enhanced Surveilance Campaign support. These observations discussed in Section Cyclic compression observations strongly suggest the presence of viscoelastic, plastic, and damage phenomena in the mechanical response of the material. In Secton Uniaxial data analysis and observations methods are discussed for separating out the viscoelastic effects. A crude application of those methods suggests the possibility of a critical stress below which plasticity and damage may be negligible. The threshold should be explored because if itmore » exists it will be an important feature of any constitutive model. Additionally, if the threshold exists then modifications of experimental methods may be feasible which could potentially simplify future experiments or provide higher quality data from those experiments. A set of experiments to explore the threshold stress are proposed in Section Exploratory tests program for identifying threshold stress.« less
Anisotropic Constitutive Relationships in Energetic Materials: Nitromethane and Rdx
NASA Astrophysics Data System (ADS)
Oleynik, I. I.; Conroy, M.; White, C. T.
2007-12-01
The anisotropic constitutive relationships in solid nitromethane (NM) and α-RDX were studied using first-principles density functional theory (DFT). In addition to hydrostatic compressions, we performed uniaxial compressions in the [100], [010], [001], [110], [101], [011], and [111] directions up to the compression ratio V/V0 = 0.70. Equilibrium properties, including lattice parameters and elastic constants, as well as hydrostatic EOS, are in good agreement with available experimental data. The shear stresses of uniaxially compressed NM and α-RDX were used to predict the relative shock sensitivity between different crystallographic directions.
Design parameters of a resonant infrared photoconductor with unity quantum efficiency
NASA Technical Reports Server (NTRS)
Farhoomand, Jam; Mcmurray, Robert E., Jr.
1991-01-01
This paper proposes a concept of a resonant infrared photoconductor that has characteristics of 100 percent quantum efficiency, high photoconductive gain, and very low noise equivalent power. Central to this concept is an establishment of a high-finesse absorption cavity internal to the detector element. A theoretical analysis is carried out, demonstrating this concept and providing some design guidelines. A Ge:Ga FIR detector is presently being fabricated using this approach.
NASA Astrophysics Data System (ADS)
Chen, Xu; Ren, Bin; Yu, Dunji; Xu, Bin; Zhang, Zhe; Chen, Gang
2018-06-01
The effects of uniaxial tension properties and low cycle fatigue behavior of 16MND5 bainitic steel cylinder pre-corroded in simulated pressurized water reactor (PWR) were investigated by fatigue at room temperature in air and immersion test system, scanning electron microscopy (SEM), energy disperse spectroscopy (EDS). The experimental results indicated that the corrosion fatigue lives of 16MND5 specimen were significantly affected by the strain amplitude and simulated PWR environments. The compositions of corrosion products were complexly formed in simulated PWR environments. The porous corrosion surface of pre-corroded materials tended to generate pits as a result of promoting contact area to the fresh metal, which promoted crack initiation. For original materials, the fatigue cracks initiated at inclusions imbedded in the micro-cracks. Moreover, the simulated PWR environments degraded the mechanical properties and low cycle fatigue behavior of 16MND5 specimens remarkably. Pre-corrosion of 16MND5 specimen mainly affected the plastic term of the Coffin-Manson equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Shin, E-mail: ssaito@ecei.tohoku.ac.jp; Nozawa, Naoki; Hinata, Shintaro
An atomic layer stacking structure in hexagonal close packed (hcp) Co{sub 100−x}Pt{sub x} alloy films with c-plane sheet texture was directly observed by a high-angle annular dark-field imaging scanning transmission electron microscopy. The analysis of sequential and/or compositional atomic layer stacking structure and uniaxial magnetocrystalline anisotropy (K{sub u} = K{sub u1} + K{sub u2}) revealed that (1) integrated intensity of the superlattice diffraction takes the maximum at x = 20 at. % and shows broadening feature against x for the film fabricated under the substrate temperature (T{sub sub}) of 400 °C. (2) Compositional separation structure in atomic layers is formed for the films fabricated under T{sub sub} = 400 °C.more » A sequential alternative stacking of atomic layers with different compositions is hardly formed in the film with x = 50 at. %, whereas easily formed in the film with x = 20 at. %. This peculiar atomic layer stacking structure consists of in-plane-disordered Pt-rich and Pt-poor layers, which is completely different from the so-called atomic site ordered structure. (3) A face centered cubic atomic layer stacking as faults appeared in the host hcp atomic layer stacking exists in accompanies with irregularities for the periodicity of the compositional modulation atomic layers. (4) K{sub u1} takes the maximum of 1.4 × 10{sup 7 }erg/cm{sup 3} at around x = 20 at. %, whereas K{sub u2} takes the maximum of 0.7 × 10{sup 7 }erg/cm{sup 3} at around x = 40 at. %, which results in the maximum of 1.8 × 10{sup 7 }erg/cm{sup 3} of K{sub u} at x = 30 at. % and a shoulder in compositional dependence of K{sub u} in the range of x = 30–60 at. %. Not only compositional separation of atomic layers but also sequential alternative stacking of different compositional layers is quite important to improve essential uniaxial magnetocrystalline anisotropy.« less
NASA Astrophysics Data System (ADS)
Ito, Hiroshi; Ishihara, Tetsuo; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Suzuki, Takeo; Onari, Seiichiro; Tanaka, Yukio; Yamada, Jun-Ichi; Kikuchi, Koichi
2008-11-01
β -type BDA-TTP [ BDA-TTP=2,5 -bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene] salts possess high transition temperatures TC reaching 7 K among organic superconductors. TC of β-(BDA-TTP)2X (X=SbF6,AsF6) is studied by resistive measurements under uniaxial compression. TC once increases and takes a maximum under compression parallel to the donor stack while it decreases under compression perpendicular to the donor stack. These results are in agreement with the half-filled Hubbard model on the triangular lattice in which the compression controls the spin fluctuation and frustration in the weak pressure region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinert, Marian; Kratz, Marita; Jones, David B.
2014-10-15
In this paper, we present a system that allows imaging of cartilage tissue via optical coherence tomography (OCT) during controlled uniaxial unconfined compression of cylindrical osteochondral cores in vitro. We describe the system design and conduct a static and dynamic performance analysis. While reference measurements yield a full scale maximum deviation of 0.14% in displacement, force can be measured with a full scale standard deviation of 1.4%. The dynamic performance evaluation indicates a high accuracy in force controlled mode up to 25 Hz, but it also reveals a strong effect of variance of sample mechanical properties on the tracking performancemore » under displacement control. In order to counterbalance these disturbances, an adaptive feed forward approach was applied which finally resulted in an improved displacement tracking accuracy up to 3 Hz. A built-in imaging probe allows on-line monitoring of the sample via OCT while being loaded in the cultivation chamber. We show that cartilage topology and defects in the tissue can be observed and demonstrate the visualization of the compression process during static mechanical loading.« less
NASA Astrophysics Data System (ADS)
Choi, Hyeok-Cheol; You, Chun-Yeol; Kim, Ki-Yeon; Lee, Jeong-Soo; Shim, Je-Ho; Kim, Dong-Hyun
2010-06-01
We have investigated the dependence of magnetic anisotropies of the exchange-biased NiFe/FeMn/CoFe trilayers on the antiferromagnetic (AF) layer thickness (tAF) by measuring in-plane angular-dependent ferromagnetic resonance fields. The resonance fields of NiFe and CoFe sublayers are shifted to lower and higher values compared to those of single unbiased ferromagnetic (F) layers, respectively, due to the interfacial exchange coupling when tAF≥2nm . In-plane angular dependence of resonance field reveals that uniaxial and unidirectional anisotropies coexist in the film plane, however, they are not collinear with each other. It is found that these peculiar noncollinear anisotropies significantly depend on tAF . The angle of misalignment displays a maximum around tAF=5nm and converges to zero when tAF is thicker than 10 nm. Contributions from thickness-dependent AF anisotropy and spin frustrations at both F/AF interfaces due to the structural imperfections should be accounted in order to understand the AF-layer thickness dependence of noncollinear magnetic anisotropies.
Kastrup, U.; Zoback, M.L.; Deichmann, N.; Evans, Kenneth F.; Giardini, D.; Michael, A.J.
2004-01-01
This study is devoted to a systematic analysis of the state of stress of the central European Alps and northern Alpine foreland in Switzerland based on focal mechanisms of 138 earthquakes with magnitudes between 1 and 5. The most robust feature of the results is that the azimuth of the minimum compressive stress, S3, is generally well constrained for all data subsets and always lies in the NE quadrant. However, within this quadrant, the orientation of S3 changes systematically both along the structural strike of the Alpine chain and across it. The variation in stress along the mountain belt from NE to SW involves a progressive, counterclockwise rotation of S3 and is most clear in the foreland, where it amounts to 45??-50??. This pattern of rotation is compatible with the disturbance to the stress field expected from the indentation of the Adriatic Block into the central European Plate, possibly together with buoyancy forces arising from the strongly arcuate structure of the Moho to the immediate west of our study area. Across the Alps, the variation in azimuth of S3 is defined by a progressive, counterclockwise rotation of about 45?? from the foreland in the north across the Helvetic domain to the Penninic nappes in the south and is accompanied by a change from a slight predominance of strike-slip mechanisms in the foreland to a strong predominance of normal faulting in the high parts of the Alps. The observed rotation can be explained by the perturbation of the large-scale regional stress by a local uniaxial deviatoric tension with a magnitude similar to that of the regional differential stress and with an orientation perpendicular to the strike of the Alpine belt. The tensile nature and orientation of this stress is consistent with the "spreading" stress expected from lateral density changes due to a crustal root beneath the Alps. Copyright 2004 by the American Geophysical Union.
Intrinsic polarization switching in BaTi O3 crystal under uniaxial electromechanical loading
NASA Astrophysics Data System (ADS)
Li, Yingwei; Wang, Jie; Li, Faxin
2016-11-01
Both 180∘ and 90∘ intrinsic polarization switching (IPS) in BaTi O3 crystal were investigated by Landau-Ginzburg-Devonshire (LGD) theory under combined electric field and stress loading. Results show that for 180∘PS , the coercive electric field (EIC 180∘) increases under tension but decreases under compression with increasing stresses. The 90∘PS was classified into two types. For type I 90∘PS , EIC I (90∘) increases under tension but decreases under compression with increasing stresses, similar to 180∘PS ; while for type II 90∘PS , an opposite variation trend is observed. (The definition of the type I and the type II 90∘PS is given in the text.) Additionally, the calculation demonstrates that under tensile stresses or under compressive stresses between -140 and 0 MPa, the electric field needed to drive both types of 90∘PS is smaller than that needed for driving 180∘PS , implying that 180∘PS is favorable to accomplish by two-step 90∘PS . As EI C refers to 180∘PS in the past investigations, these demonstrate that the EI C calculated by others may be overestimated. Moreover, the coercive stresses needed to drive 90∘ ferroelastic IPS was also calculated as a function of preloading bias electric fields.
Aksakal, Baki; Koç, Kenan; Yargı, Önder; Tsobkallo, Katherina
2016-01-05
The effect of UV-light on the uniaxial tensile properties and the structure of uncoated and TiO2 coated silk fibers in the bave form by using sol-gel method was investigated with tensile testing and FT-IR/ATR spectroscopy methods after the silk filaments were exposed to UV-light with high intensity of 760W/m(2) for different times from 0.5h to 1day. It was clearly observed that TiO2 coating considerably increased the Young's modulus of the uncoated silk single filament by around 17% before the UV-irradiation. The yield point and the post yield region disappeared on the stress-strain curves of both uncoated and TiO2 coated silk filaments after UV-irradiation time higher than 1h. Except for the Young's modulus, most of the tensile characteristics of both uncoated and TiO2 coated silk filaments decreased remarkably with increasing UV-irradiation time, e.g., after 1h irradiation, although the Young's modulus slightly changed and ultimate tensile strength decreased by only around 18% and 23%, for the uncoated and TiO2 coated silk filaments, respectively; breaking extension decreased dramatically by 67% and 72%, respectively, for uncoated and TiO2 coated silk filaments. Only the Young's modulus of TiO2 coated silk filaments which can be considered as a more stable tensile characteristic became significantly higher than that of the uncoated silk filaments with increasing UV-irradiation time. After 1day irradiation, even though the uncoated silk filaments could not be tested and completely lost of their fiber properties, the TiO2 coated silk filaments showed a stress-strain curve in initial elastic region with Young's modulus of ∼13GPa which indicates considerable protective effect of TiO2 on the silk fiber structure, especially on the β-sheet microcrystals against UV-radiation. The FT-IR/ATR spectral results showed that significant photodegradation took place in not only crystalline but also amorphous regions which were deduced from the decrease in the absorbance
NASA Astrophysics Data System (ADS)
Aksakal, Baki; Koç, Kenan; Yargı, Önder; Tsobkallo, Katherina
2016-01-01
The effect of UV-light on the uniaxial tensile properties and the structure of uncoated and TiO2 coated silk fibers in the bave form by using sol-gel method was investigated with tensile testing and FT-IR/ATR spectroscopy methods after the silk filaments were exposed to UV-light with high intensity of 760 W/m2 for different times from 0.5 h to 1 day. It was clearly observed that TiO2 coating considerably increased the Young's modulus of the uncoated silk single filament by around 17% before the UV-irradiation. The yield point and the post yield region disappeared on the stress-strain curves of both uncoated and TiO2 coated silk filaments after UV-irradiation time higher than 1 h. Except for the Young's modulus, most of the tensile characteristics of both uncoated and TiO2 coated silk filaments decreased remarkably with increasing UV-irradiation time, e.g., after 1 h irradiation, although the Young's modulus slightly changed and ultimate tensile strength decreased by only around 18% and 23%, for the uncoated and TiO2 coated silk filaments, respectively; breaking extension decreased dramatically by 67% and 72%, respectively, for uncoated and TiO2 coated silk filaments. Only the Young's modulus of TiO2 coated silk filaments which can be considered as a more stable tensile characteristic became significantly higher than that of the uncoated silk filaments with increasing UV-irradiation time. After 1 day irradiation, even though the uncoated silk filaments could not be tested and completely lost of their fiber properties, the TiO2 coated silk filaments showed a stress-strain curve in initial elastic region with Young's modulus of ∼13 GPa which indicates considerable protective effect of TiO2 on the silk fiber structure, especially on the β-sheet microcrystals against UV-radiation. The FT-IR/ATR spectral results showed that significant photodegradation took place in not only crystalline but also amorphous regions which were deduced from the decrease in the absorbance
Nonlinear viscoelastic characterization of polycarbonate
NASA Technical Reports Server (NTRS)
Caplan, E. S.; Brinson, H. F.
1982-01-01
Uniaxial tensile creep and recovery data from polycarbonate at six temperatures and six stress levels are analyzed for nonlinear viscoelastic constitutive modeling. A theory to account for combined effects of two or more accelerating factors is presented.
NASA Astrophysics Data System (ADS)
Pan, Yucong; Liu, Quansheng; Liu, Jianping; Peng, Xingxin; Kong, Xiaoxuan
2018-06-01
In order to study the influence of confining stress on rock cutting forces by tunnel boring machine (TBM) disc cutter, full-scale linear cutting tests are conducted in Chongqing Sandstone (uniaxial compressive strength 60.76 MPa) using five equal biaxial confining stressed conditions, i.e. 0-0, 5-5, 10-10, 15-15 and 20-20 MPa; disc cutter normal force, rolling force, cutting coefficient and normalized resultant force are analysed. It is found that confining stress can greatly affect disc cutter resultant force, its proportion in normal and rolling directions and its acting point for the hard Chongqing Sandstone and the confining stress range used in this study. For every confining stressed condition, as cutter penetration depth increases, disc cutter normal force increases with decreasing speed, rolling force and cutting coefficient both increase linearly, and acting point of the disc cutter resultant force moves downward at some extent firstly and then upward back to its initial position. For same cutter penetration depth, as confining stress increases, disc cutter normal force, rolling force, cutting coefficient and normalized resultant force all increase at some extent firstly and then decrease rapidly to very small values (quite smaller than those obtained under the non-stressed condition) after some certain confining stress thresholds. The influence of confining stress on rock cutting by TBM disc cutter can be generally divided into three stages as confining stress increases, i.e. strengthening effect stage, damaging effect stage and rupturing effect stage. In the former two stages (under low confining stress), rock remains intact and rock cutting forces are higher than those obtained under the non-stressed condition, and thus rock cutting by TBM disc cutter is restrained; in the last stage (under high confining stress), rock becomes non-intact and rock slabbing failure is induced by confining stress before disc cutting, and thus rock cutting by TBM disc
NASA Astrophysics Data System (ADS)
Lucier, A. M.; Heesakkers, V.; Zoback, M. D.; Reches, Z.
2006-12-01
As part of the Natural Earthquake Laboratory in South African Mines (NELSAM) project, we are investigating the far-field in-situ stress state around the TauTona gold mine. The far-field stress state is used as a boundary condition to quantify the stresses within the active mining area, and to evaluate the potential for reactivation of existing faults (or creation of new faults) in the NELSAM study area. Our main goals are to gain insight into earthquake processes under induced faulting conditions and to guide mining practices in improving underground seismic safety. To characterize in-situ stresses, we use an integrated stress measurement strategy that incorporates rock properties with breakout and drilling-induced tensile fracture observations from camera log images of several boreholes in the NELSAM study area at a depth of 3.5 km below the ground surface. The quantification of the far-field in-situ stress state is based on breakouts observed in a sub-horizontal borehole that extends 418 m away from the mined region and intersects the Pretorius fault, the largest fault-zone in the mine. The location, width and orientation of these breakouts were interpreted along the length of the borehole. Breakouts occur along most of the length of the borehole, with widths ranging from 25-95 deg and orientations fluctuating up to 45 deg around the sidewalls of the borehole. The fluctuations in breakout orientations are presumably due to slip on fault segments, and modeling these fluctuations provides constraints on the far-field stress state. Rock properties (uniaxial compressive strength, Young's modulus and Poisson's ratio) from on-going laboratory experiments will further constrain the stress magnitudes. The results of the stress characterization in this long borehole have been compared with independent stress determinations made in several 10-40 m long boreholes within the mined region to ensure consistency between the modeled far-field stress magnitudes and the observed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, A.; LeMay, J.D.; Sanchez, R.J.
Tearing energies (T) have been evaluated for carbon-black-reinforced SBR tested in uniaxial tension. The influence of notch depth on T and fracture morphology have also been determined. The influence of notch depth on the stress-strain behavior and on the failure stress and failure strain is also illustrated. The ratio of recovered-to-input energy as a function of both stress and strain was determined for notched and notch-free samples.
Measures of Bulk and Grain Strain in Deformation Processes(PREPRINT)
2007-04-01
the process and a similar measure of the flow stress of the material. The effective , or equivalent, strain, based on an analogous definition for...The conjugate effective stress in this case is the uniaxial tensile stress . Based on equations (12) and (13), expressions for effective bulk strains...t |L(t)| in the reference state deformed to an image, x′ = t′ | L′(t′)|, in the deformed state . In both cases an equation of the form of
NASA Technical Reports Server (NTRS)
Bratt, P. R.; Lewis, N. N.; Long, L. E.
1978-01-01
The development of doped-germanium detectors which have optimized performance in the 30- to 120-mu m wavelength range and are capable of achieving the objectives of the infrared astronomical satellite (IRAS) space mission is discussed. Topics covered include the growth and evaluation of Ge:Ga and Ge:Be crystals, procedures for the fabrication and testing of detectors, irradiance calculations, detector responsivity, and resistance measurements through MOSFET. Test data are presented in graphs and charts.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Shao, J. F.; Xu, W. Y.; Zhao, H. B.; Wang, W.
2015-05-01
This work is devoted to characterization of the deformation and strength properties of cataclastic sandstones. Before conducting mechanical tests, the physical properties were first examined. These sandstones are characterized by a loose damaged microstructure and poorly cemented contacts. Then, a series of mechanical tests including hydrostatic, uniaxial, and triaxial compression tests were performed to study the mechanical strength and deformation of the sandstones. The results obtained show nonlinear stress-strain responses. The initial microcracks are closed at hydrostatic stress of 2.6 MPa, and the uniaxial compressive strength is about 0.98 MPa. Under triaxial compression, there is a clear transition from volumetric compressibility to dilatancy and a strong dependency on confining pressure. Based on the experimental evidence, an elastoplastic model is proposed using a linear yield function and a nonassociated plastic potential. There is good agreement between numerical results and experimental data.
Buccarello, A; Azzarito, M; Michoud, F; Lacour, S P; Kucera, J P
2018-05-01
Cardiac tissue deformation can modify tissue resistance, membrane capacitance and ion currents and hence cause arrhythmogenic slow conduction. Our aim was to investigate whether uniaxial strain causes different changes in conduction velocity (θ) when the principal strain axis is parallel vs perpendicular to impulse propagation. Cardiomyocyte strands were cultured on stretchable custom microelectrode arrays, and θ was determined during steady-state pacing. Uniaxial strain (5%) with principal axis parallel (orthodromic) or perpendicular (paradromic) to propagation was applied for 1 minute and controlled by imaging a grid of markers. The results were analysed in terms of cable theory. Both types of strain induced immediate changes of θ upon application and release. In material coordinates, orthodromic strain decreased θ significantly more (P < .001) than paradromic strain (2.2 ± 0.5% vs 1.0 ± 0.2% in n = 8 mouse cardiomyocyte cultures, 2.3 ± 0.4% vs 0.9 ± 0.5% in n = 4 rat cardiomyocyte cultures, respectively). The larger effect of orthodromic strain can be explained by the increase in axial myoplasmic resistance, which is not altered by paradromic strain. Thus, changes in tissue resistance substantially contributed to the changes of θ during strain, in addition to other influences (eg stretch-activated channels). Besides these immediate effects, the application of strain also consistently initiated a slow progressive decrease in θ and a slow recovery of θ upon release. Changes in cardiac conduction velocity caused by acute stretch do not only depend on the magnitude of strain but also on its orientation relative to impulse propagation. This dependence is due to different effects on tissue resistance. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Mechanical properties of thermal protection system materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul
2005-06-01
An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPSmore » materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.« less
Magnetization reversal of in-plane uniaxial Co films and its dependence on epitaxial alignment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idigoras, O., E-mail: o.idigoras@nanogune.eu; Suszka, A. K.; Berger, A.
2014-02-28
This work studies the influence of crystallographic alignment onto magnetization reversal in partially epitaxial Co films. A reproducible growth sequence was devised that allows for the continuous tuning of grain orientation disorder in Co films with uniaxial in-plane anisotropy by the controlled partial suppression of epitaxy. While all stable or meta-stable magnetization states occurring during a magnetic field cycle exhibit a uniform magnetization for fully epitaxial samples, non-uniform states appear for samples with sufficiently high grain orientation disorder. Simultaneously with the occurrence of stable domain states during the magnetization reversal, we observe a qualitative change of the applied field anglemore » dependence of the coercive field. Upon increasing the grain orientation disorder, we observe a disappearance of transient domain wall propagation as the dominating reversal process, which is characterized by an increase of the coercive field for applied field angles away from the easy axis for well-ordered epitaxial samples. Upon reaching a certain disorder threshold level, we also find an anomalous magnetization reversal, which is characterized by a non-monotonic behavior of the remanent magnetization and coercive field as a function of the applied field angle in the vicinity of the nominal hard axis. This anomaly is a collective reversal mode that is caused by disorder-induced frustration and it can be qualitatively and even quantitatively explained by means of a two Stoner-Wohlfarth particle model. Its predictions are furthermore corroborated by Kerr microscopy and by Brillouin light scattering measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGonegle, David, E-mail: d.mcgonegle1@physics.ox.ac.uk; Wark, Justin S.; Higginbotham, Andrew
2015-08-14
A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as maymore » occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. The simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.« less
McGonegle, David; Milathianaki, Despina; Remington, Bruce A.; ...
2015-08-11
A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as maymore » occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. In conclusion, the simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.« less
Lu, L.; Huang, J. W.; Fan, D.; ...
2016-08-29
In situ synchrotron x-ray imaging and diffraction are used to investigate anisotropic deformation of an extruded magnesium alloy AZ31 under uniaxial compression along two different directions, with the loading axis (LA) either parallel or perpendicular to the extrusion direction (ED), referred to as LA∥ED and LAED, respectively. Multiscale measurements including stress–strain curves (macroscale), x-ray digital image correlation (mesoscale), and diffraction (microscale) are obtained simultaneously. Electron backscatter diffraction is performed on samples collected at various strains to characterize deformation twins. The rapid increase in strain hardening rate for the LA∥ED loading is attributed to marked {101¯2} extension twinning and subsequent homogenizationmore » of deformation, while dislocation motion leads to inhomogeneous deformation and a decrease in strain hardening rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alaniz, Ariana J.; Delgado, Luc R.; Werbick, Brett M.
The objective of this senior student project is to design and build a prototype construction of a machine that simultaneously provides the proper pressure and temperature parameters to sinter ceramic powders in-situ to create pellets of rather high densities of above 90% (theoretical). This ROHUP (Remote Operated Hot Uniaxial Press) device is designed specifically to fabricate advanced ceramic Tc-99 bearing waste forms and therefore radiological barriers have been included in the system. The HUP features electronic control and feedback systems to set and monitor pressure, load, and temperature parameters. This device operates wirelessly via portable computer using Bluetooth{sup R} technology.more » The HUP device is designed to fit in a standard atmosphere controlled glove box to further allow sintering under inert conditions (e.g. under Ar, He, N{sub 2}). This will further allow utilizing this HUP for other potential applications, including radioactive samples, novel ceramic waste forms, advanced oxide fuels, air-sensitive samples, metallic systems, advanced powder metallurgy, diffusion experiments and more. (authors)« less
Park, Jun Wuk; Doi, Yoshiharu; Iwata, Tadahisa
2004-01-01
Blends of poly(L-lactic acid) (PLLA) with two kinds of poly[(R)-3-hydroxybutyrate] (PHB) having different molecular weights, commercial-grade bacterial PHB (bacterial-PHB) and ultrahigh molecular weight PHB (UHMW-PHB), were prepared by the solvent-casting method and uniaxially drawn at two drawing temperatures, around PHB's T(g) (2 degrees C) for PHB-rich blends and around PLLA's T(g) (60 degrees C) for PLLA-rich blends. Differential scanning calorimetry analysis showed that this system was immiscible over the entire composition range. Mechanical properties of all of the samples were improved in proportion to the draw ratio. Although PLLA domains in bacterial-PHB-rich blends remained almost unstretched during cold drawing, a good interfacial adhesion between two polymers and the reinforcing role of PLLA components led to enhanced mechanical properties proportionally to the PLLA content at the same draw ratio. On the contrary, in the case of UHMW-PHB-rich blends, the minor component PLLA was found to be also oriented by cold drawing in ice water due to an increase in the interfacial entanglements caused by the very long chain length of the matrix polymer. As a result, their mechanical properties were considerably improved with increasing PLLA content compared with the bacterial-PHB system. Scanning electron microscopy observations on the surface and cross-section revealed that a layered structure with uniformly oriented microporous in the interior was obtained by selectively removal of PLLA component after simple alkaline treatment.
Smoothly varying in-plane stiffness heterogeneity evaluated under uniaxial tensile stress
J.M. Considine; F. Pierron; K.T. Turner; P. Lava; X. Tang
2017-01-01
Identification of spatially varying stiffness is a challenging, but important, research topic in the mechanics of materials and can provide the necessary information for material suitability, damage, and process control, especially for highâvalue applications. One homogeneous and 3 heterogeneous virtual field method (VFM) formulations were used to create a methodology...
NASA Astrophysics Data System (ADS)
Wang, Cuiling; Zhang, Shouheng; Qiao, Shizhu; Du, Honglei; Liu, Xiaomin; Sun, Ruicong; Chu, Xian-Ming; Miao, Guo-Xing; Dai, Youyong; Kang, Shishou; Yan, Shishen; Li, Shandong
2018-05-01
Dual-mode ferromagnetic resonance is observed in FeCoB/Ru/FeCoB trilayer synthetic antiferromagnets with uniaxial in-plane magnetic anisotropy. The optical mode is present in the (0-108 Oe) magnetic field range, where the top and bottom layer magnetizations are aligned in opposite directions. The strong acoustic mode appears, when the magnetic field exceeds the 300 Oe value, which corresponds to the flop transition in the trilayer. Magnetic field and angular dependences of resonant frequencies are studied for both optical (low-field) and acoustic (high field) modes. The low-field mode is found to be anisotropic but insensitive to the magnetic field value. In contrast, the high field mode is quasi-isotropic, but its resonant frequency is tunable by the value of the magnetic field. The coexistence of two modes of ferromagnetic resonance as well as switching between them with the increase in the magnetic field originates from the difference in the sign of interlayer coupling energy at the parallel and antiparallel configurations of the synthetic antiferromagnet. The dual-mode resonance in the studied trilayer structures provides greater flexibility in the design and functionalization of micro-inductors in monolithic microwave integrated circuits.
NASA Astrophysics Data System (ADS)
Boettcher, Igor; Herbut, Igor F.
2018-02-01
We investigate unconventional superconductivity in three-dimensional electronic systems with the chemical potential close to a quadratic band touching point in the band dispersion. Short-range interactions can lead to d -wave superconductivity, described by a complex tensor order parameter. We elucidate the general structure of the corresponding Ginzburg-Landau free energy and apply these concepts to the case of an isotropic band touching point. For a vanishing chemical potential, the ground state of the system is given by the superconductor analogue of the uniaxial nematic state, which features line nodes in the excitation spectrum of quasiparticles. In contrast to the theory of real tensor order in liquid crystals, however, the ground state is selected here by the sextic terms in the free energy. At a finite chemical potential, the nematic state has an additional instability at weak coupling and low temperatures. In particular, the one-loop coefficients in the free energy indicate that at weak coupling genuinely complex orders, which break time-reversal symmetry, are energetically favored. We relate our analysis to recent measurements in the half-Heusler compound YPtBi and discuss the role of cubic crystal symmetry.
Phase transition studies of Na3Bi system under uniaxial strain
NASA Astrophysics Data System (ADS)
Nie, Tiaoping; Meng, Lijun; Li, Yanru; Luan, Yanhua; Yu, Jun
2018-03-01
We investigated the electronic properties and phase transitions of Na3Bi in four structural phases (space groups P63/mmc, P \\overline{3} c1, Fm \\overline{3} m and Cmcm) under constant-volume uniaxial strain using the first-principles method. For P63/mmc and P \\overline{3} c1-Na3Bi, an important phase transition from a topological Dirac semimetal (TDS) to a topological insulator appears under compression strain around 4.5%. The insulating gap increases with the increasing compressive strain and up to around 0.1 eV at a strain of 10%. However, both P63/mmc and P \\overline{3} c1-Na3Bi still keep the properties of a TDS within a tensile strain of 0-10%, although the Dirac points move away from the Γ point along Γ-A in reciprocal space as the tensile strain increases. The Na3Bi with space group Fm \\overline{3} m is identified as a topological semimetal with the inverted bands between Na-3s and Bi-6p and a parabolic dispersion in the vicinity of Γ point. Interestingly, for Fm \\overline{3} m-Na3Bi, both compression and tensile strain lead to a TDS which is identified by calculating surface Fermi arcs and topological invariants at time-reversal planes (k z = 0 and k z = π/c) in reciprocal space. Additionally, we confirmed the high pressure phase Cmcm-Na3Bi is an ordinary insulator with a gap of about 0.62 eV. It is noteworthy that its gap almost keeps constant around 0.60 eV within a compression strain of 0-10%. In contrast, a remarkable phase transition from an insulator to a metal phase appears under tensile strain. Moreover, this phase transition is highly sensitive to tensile strain and takes place only at a strain 1.0%. These strain-induced electronic structures and phase transitions of the Na3Bi system in various phases are important due to their possible applications under high pressure in future electronic devices.
Substructure based modeling of nickel single crystals cycled at low plastic strain amplitudes
NASA Astrophysics Data System (ADS)
Zhou, Dong
In this dissertation a meso-scale, substructure-based, composite single crystal model is fully developed from the simple uniaxial model to the 3-D finite element method (FEM) model with explicit substructures and further with substructure evolution parameters, to simulate the completely reversed, strain controlled, low plastic strain amplitude cyclic deformation of nickel single crystals. Rate-dependent viscoplasticity and Armstrong-Frederick type kinematic hardening rules are applied to substructures on slip systems in the model to describe the kinematic hardening behavior of crystals. Three explicit substructure components are assumed in the composite single crystal model, namely "loop patches" and "channels" which are aligned in parallel in a "vein matrix," and persistent slip bands (PSBs) connected in series with the vein matrix. A magnetic domain rotation model is presented to describe the reverse magnetostriction of single crystal nickel. Kinematic hardening parameters are obtained by fitting responses to experimental data in the uniaxial model, and the validity of uniaxial assumption is verified in the 3-D FEM model with explicit substructures. With information gathered from experiments, all control parameters in the model including hardening parameters, volume fraction of loop patches and PSBs, and variation of Young's modulus etc. are correlated to cumulative plastic strain and/or plastic strain amplitude; and the whole cyclic deformation history of single crystal nickel at low plastic strain amplitudes is simulated in the uniaxial model. Then these parameters are implanted in the 3-D FEM model to simulate the formation of PSB bands. A resolved shear stress criterion is set to trigger the formation of PSBs, and stress perturbation in the specimen is obtained by several elements assigned with PSB material properties a priori. Displacement increment, plastic strain amplitude control and overall stress-strain monitor and output are carried out in the user
Performance of the SBRC 190, a cryogenic multiplexer for photoconductor arrays
NASA Technical Reports Server (NTRS)
Dotson, Jessie L.; Koerber, C. T.; Mason, C. G.; Simpson, J. P.; Moore, E. M.; Witteborn, F. C.; Farhoomand, J.; Erickson, E. F.; DeVincenzi, D. (Technical Monitor)
2002-01-01
The SBRC 190 cryogenic readouts were developed for use with far-infrared arrays of Ge:Sb and Ge:Ga photoconductor detectors. The SBRC 190 provides an AC-coupled CTIA (capacitance transimpedance amplifier) unit cell for each detector and multiplexes up to 32 detectors. This paper presents our test results characterizing and optimizing the performance of these novel devices. We will discuss their basic behavior in addition to describing the trade-offs inherent in different sampling strategies.
NASA Astrophysics Data System (ADS)
Fabian, K.
2012-10-01
In a recent article, Mitra et al. (2011) propose a modified IRM technique to identify the symmetry of magnetic anisotropy in single domain particle ensembles. They apply this technique to support an earlier suggestion that single domain grains in young mid-ocean ridge basalts (MORB) exhibit multiaxial anisotropy. Here it is shown that the design of their measurement is flawed, in that they do not take into account that the outcome essentially depends on the initial demagnetization state of the sample before the experiment, and on the coercivity distribution of the sample. Because all MORB specimens measured by Mitra et al. (2011) carried their original NRM, which closely resembles a thermally demagnetized state, their measurements first of all reflect the coercivity distributions and domain states of the samples, and contain little or no information about the symmetry of the magnetic anisotropy. All arguments previously put forward in favour of a dominant uniaxial anisotropy in MORB are therefore still valid.
Nanoindentation cannot accurately predict the tensile strength of graphene or other 2D materials
NASA Astrophysics Data System (ADS)
Han, Jihoon; Pugno, Nicola M.; Ryu, Seunghwa
2015-09-01
Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip position along the grain boundaries. Also, it approaches the strength of pristine graphene if the tip is located slightly away from the grain boundary line. Our findings reveal the limitations of nanoindentation testing in quantifying the strength of graphene, and show that the loading-mode-specific failure mechanism must be taken into account in designing reliable devices from graphene and other technologically important 2D materials.Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Jordan S.; Khosravani, Ali; Castillo, Andrew
Recent spherical nanoindentation protocols have proven robust at capturing the local elastic-plastic response of polycrystalline metal samples at length scales much smaller than the grain size. In this work, we extend these protocols to length scales that include multiple grains to recover microindentation stress-strain curves. These new protocols are first established in this paper and then demonstrated for Al-6061 by comparing the measured indentation stress-strain curves with the corresponding measurements from uniaxial tension tests. More specifically, the scaling factors between the uniaxial yield strength and the indentation yield strength was determined to be about 1.9, which is significantly lower thanmore » the value of 2.8 used commonly in literature. Furthermore, the reasons for this difference are discussed. Second, the benefits of these new protocols in facilitating high throughput exploration of process-property relationships are demonstrated through a simple case study.« less
Weaver, Jordan S.; Khosravani, Ali; Castillo, Andrew; ...
2016-06-14
Recent spherical nanoindentation protocols have proven robust at capturing the local elastic-plastic response of polycrystalline metal samples at length scales much smaller than the grain size. In this work, we extend these protocols to length scales that include multiple grains to recover microindentation stress-strain curves. These new protocols are first established in this paper and then demonstrated for Al-6061 by comparing the measured indentation stress-strain curves with the corresponding measurements from uniaxial tension tests. More specifically, the scaling factors between the uniaxial yield strength and the indentation yield strength was determined to be about 1.9, which is significantly lower thanmore » the value of 2.8 used commonly in literature. Furthermore, the reasons for this difference are discussed. Second, the benefits of these new protocols in facilitating high throughput exploration of process-property relationships are demonstrated through a simple case study.« less
Predicting Deformation Limits of Dual-Phase Steels Under Complex Loading Paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, G.; Choi, K. S.; Hu, X.
The deformation limits of various DP980 steels are examined in this study with deformation instability theory. Under uniaxial tension, overall stress-strain curves of the material are estimated based on simple rule of mixture (ROM) with both iso-strain and iso-stress assumptions. Under complex loading paths, actual microstructure-based finite element (FE) method is used to explicitly resolve the deformation incompatibilities between the soft ferrite and hard martensite phases. The results show that, for uniaxial tension, the deformation instability theory with iso-strain-based ROM can be used to provide the lower bound estimate of the uniform elongation (UE) for the various DP980 considered. Undermore » complex loading paths, the deformation instability theory with microstructure-based FE method can be used in examining the effects of various microstructural features on the deformation limits of DP980 steels.« less
2011-11-01
where s1, s2 and s3 are the principal values of the stress deviator. The material parameter k captures strength differential effects while a is the...condition can be written as re ¼ rT1; ð11Þ where re is the effective stress associated to the yield function of Eq. (9) and rT1 is the uniaxial tensile...CPB06 yield cri- terion reduces to that of Hill (1948). 3.1. Local stress potential For a = 2, the effective stress of Eq. (12) becomes re ¼ m̂
Resizing procedure for optimum design of structures under combined mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Adelman, H. M.; Narayanaswami, R.
1976-01-01
An algorithm is reported for resizing structures subjected to combined thermal and mechanical loading. The algorithm is applicable to uniaxial stress elements (rods) and membrane biaxial stress members. Thermal Fully Stressed Design (TFSD) is based on the basic difference between mechanical and thermal stresses in their response to resizing. The TFSD technique is found to converge in fewer iterations than ordinary fully stressed design for problems where thermal stresses are comparable to the mechanical stresses. The improved convergence is demonstrated by example with a study of a simplified wing structure, built-up with rods and membranes and subjected to a combination of mechanical loads and a three dimensional temperature distribution.
McKayed, Katey; Prendergast, Patrick J; Campbell, Veronica A
2016-02-08
Mechanical priming can be employed in tissue engineering strategies to control the fate and differentiation pattern of mesenchymal stromal cells. This is relevant to regenerative medicine whereby mechanical cues can promote the regeneration of a specific tissue type from mesenchymal precursors. The ability of cells to respond to mechanical forces is dependent upon mechanotransduction pathways that involve membrane-associated proteins, such as integrins. During the aging process changes in the mechanotransduction machinery may influence how cells from aged individuals respond to mechanical priming. In this study mesenchymal stromal cells were prepared from young adult and aged rats and exposed to uniaxial tensile strain at 5% and 10% for 3 days, or 2.5% for 7 days. Application of 5% tensile strain had no impact on cell viability. In contrast, application of 10% tensile strain evoked apoptosis and the strain-induced apoptosis was significantly higher in the mesenchymal stromal cells prepared from the aged rats. In parallel to the age-related difference in cellular responsiveness to strain, an age-related decrease in expression of α2 integrin and actin, and enhanced lipid peroxidation was observed. This study demonstrates that mesenchymal stem cells from aged animals have an altered membrane environment, are more vulnerable to the pro-apoptotic effects of 10% tensile strain and less responsive to the pro-osteogenic effects of 2.5% tensile strain. Thus, it is essential to consider how aged cells respond to mechanical stimuli in order to identify optimal mechanical priming strategies that minimise cell loss, particularly if this approach is to be applied to an aged population. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, J.; Pouchon, M. A.; Kimura, A.; Jung, P.; Hoffelner, W.
2009-04-01
An advanced oxide dispersion strengthened (ODS) ferritic steel with very fine oxide particles has been homogeneously implanted with helium under uniaxial tensile stresses from 20 to 250 MPa to a maximum dose of about 0.38 dpa (1650 appm-He) with displacement damage rates of 4.4 × 10 -6 dpa/s at temperatures of 573 and 773 K. The samples were in the form of miniaturized dog-bones, where during the helium implantation the straining and the electrical resistance were monitored simultaneously. Creep compliances were measured to be 4.0 × 10 -6 and 11 × 10 -6 dpa -1 MPa -1 at 573 and 773 K, respectively. The resistivity of ODS steel samples decreased with dose, indicating segregation and/or precipitation. Evolution of microstructure during helium implantation was studied in detail by TEM. The effects of ODS particle size on irradiation creep and microstructural changes was investigated by comparing the results from the present advanced ODS (K1) to a commercial ODS ferritic steels (PM2000) with much bigger oxide particles.
Mousavi, S Jamaleddin; Avril, Stéphane
2017-10-01
wall stress distribution in vivo under the effects of physiological pressure. Finally, we simulated the whole process preceding traditional in vitro uniaxial tensile testing of arteries, including excision from the body, radial cutting, flattening and subsequent tensile loading, showing how this process may impact the final mechanical properties derived from these in vitro tests.
NASA Astrophysics Data System (ADS)
Kotlyar, R.; Linton, T. D.; Rios, R.; Giles, M. D.; Cea, S. M.; Kuhn, K. J.; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard
2012-06-01
The hole surface roughness and phonon limited mobility in the silicon <100>, <110>, and <111> square nanowires under the technologically important conditions of applied gate bias and stress are studied with the self-consistent Poisson-sp3d5s*-SO tight-binding bandstructure method. Under an applied gate field, the hole carriers in a wire undergo a volume to surface inversion transition diminishing the positive effects of the high <110> and <111> valence band nonparabolicities, which are known to lead to the large gains of the phonon limited mobility at a zero field in narrow wires. Nonetheless, the hole mobility in the unstressed wires down to the 5 nm size remains competitive or shows an enhancement at high gate field over the large wire limit. Down to the studied 3 nm sizes, the hole mobility is degraded by strong surface roughness scattering in <100> and <110> wires. The <111> channels are shown to experience less surface scattering degradation. The physics of the surface roughness scattering dependence on wafer and channel orientations in a wire is discussed. The calculated uniaxial compressive channel stress gains of the hole mobility are found to reduce in the narrow wires and at the high field. This exacerbates the stressed mobility degradation with size. Nonetheless, stress gains of a factor of 2 are obtained for <110> wires down to 3 nm size at a 5×1012 cm-2 hole inversion density per gate area.