Sample records for parasitic genetic elements

  1. Inevitability of Genetic Parasites

    PubMed Central

    Iranzo, Jaime; Puigbò, Pere; Lobkovsky, Alexander E.; Wolf, Yuri I.

    2016-01-01

    Abstract Almost all cellular life forms are hosts to diverse genetic parasites with various levels of autonomy including plasmids, transposons and viruses. Theoretical modeling of the evolution of primordial replicators indicates that parasites (cheaters) necessarily evolve in such systems and can be kept at bay primarily via compartmentalization. Given the (near) ubiquity, abundance and diversity of genetic parasites, the question becomes pertinent: are such parasites intrinsic to life? At least in prokaryotes, the persistence of parasites is linked to the rate of horizontal gene transfer (HGT). We mathematically derive the threshold value of the minimal transfer rate required for selfish element persistence, depending on the element duplication and loss rates as well as the cost to the host. Estimation of the characteristic gene duplication, loss and transfer rates for transposons, plasmids and virus-related elements in multiple groups of diverse bacteria and archaea indicates that most of these rates are compatible with the long term persistence of parasites. Notably, a small but non-zero rate of HGT is also required for the persistence of non-parasitic genes. We hypothesize that cells cannot tune their horizontal transfer rates to be below the threshold required for parasite persistence without experiencing highly detrimental side-effects. As a lower boundary to the minimum DNA transfer rate that a cell can withstand, we consider the process of genome degradation and mutational meltdown of populations through Muller’s ratchet. A numerical assessment of this hypothesis suggests that microbial populations cannot purge parasites while escaping Muller’s ratchet. Thus, genetic parasites appear to be virtually inevitable in cellular organisms. PMID:27503291

  2. Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements

    PubMed Central

    Gogarten, J Peter; Hilario, Elena

    2006-01-01

    Self splicing introns and inteins that rely on a homing endonuclease for propagation are parasitic genetic elements. Their life-cycle and evolutionary fate has been described through the homing cycle. According to this model the homing endonuclease is selected for function only during the spreading phase of the parasite. This phase ends when the parasitic element is fixed in the population. Upon fixation the homing endonuclease is no longer under selection, and its activity is lost through random processes. Recent analyses of these parasitic elements with functional homing endonucleases suggest that this model in its most simple form is not always applicable. Apparently, functioning homing endonuclease can persist over long evolutionary times in populations and species that are thought to be asexual or nearly asexual. Here we review these recent findings and discuss their implications. Reasons for the long-term persistence of a functional homing endonuclease include: More recombination (sexual and as a result of gene transfer) than previously assumed for these organisms; complex population structures that prevent the element from being fixed; a balance between active spreading of the homing endonuclease and a decrease in fitness caused by the parasite in the host organism; or a function of the homing endonuclease that increases the fitness of the host organism and results in purifying selection for the homing endonuclease activity, even after fixation in a local population. In the future, more detailed studies of the population dynamics of the activity and regulation of homing endonucleases are needed to decide between these possibilities, and to determine their relative contributions to the long term survival of parasitic genes within a population. Two outstanding publications on the amoeba Naegleria group I intron (Wikmark et al. BMC Evol Biol 2006, 6:39) and the PRP8 inteins in ascomycetes (Butler et al.BMC Evol Biol 2006, 6:42) provide important stepping stones

  3. Even parasites have parasites: oscillatory population dynamics of mobile genetic elements in your genome

    NASA Astrophysics Data System (ADS)

    Xue, Chi; Goldenfeld, Nigel

    Transposable elements (TEs), or transposons, are a class of mobile genetic elements that can either move or duplicate themselves in the genome, sometimes interfering with gene expression as a result. Some TEs can code all necessary enzymes for their transposition and are thus autonomous, while non-autonomous TEs are parasitic and must depend on the machinery of autonomous ones. I present and solve a stochastic model to describe the dynamics of non-autonomous/autonomous pairs of retrotransposons in the human genome that proliferate by a copy-and-paste mechanism. We predict noise-induced persistent oscillations in their copy numbers, analogous to predator-prey dynamics in an ecosystem. We discuss if it is experimentally feasible to measure these phenomena in the laboratory and to observe them over evolutionary time through bioinformatics. This work shows that it is fruitful to regard the genome as an ecosystem that is host to diverse interacting populations. This work was partially supported by the National Science Foundation through Grant No. PHY-1430124, and by the National Aeronautics and Space Administration Astrobiology Institute (NAI) under Cooperative Agreement No. NNA13AA91A.

  4. The genetic architecture of susceptibility to parasites.

    PubMed

    Wilfert, Lena; Schmid-Hempel, Paul

    2008-06-30

    The antagonistic co-evolution of hosts and their parasites is considered to be a potential driving force in maintaining host genetic variation including sexual reproduction and recombination. The examination of this hypothesis calls for information about the genetic basis of host-parasite interactions - such as how many genes are involved, how big an effect these genes have and whether there is epistasis between loci. We here examine the genetic architecture of quantitative resistance in animal and plant hosts by concatenating published studies that have identified quantitative trait loci (QTL) for host resistance in animals and plants. Collectively, these studies show that host resistance is affected by few loci. We particularly show that additional epistatic interactions, especially between loci on different chromosomes, explain a majority of the effects. Furthermore, we find that when experiments are repeated using different host or parasite genotypes under otherwise identical conditions, the underlying genetic architecture of host resistance can vary dramatically - that is, involves different QTLs and epistatic interactions. QTLs and epistatic loci vary much less when host and parasite types remain the same but experiments are repeated in different environments. This pattern of variability of the genetic architecture is predicted by strong interactions between genotypes and corroborates the prevalence of varying host-parasite combinations over varying environmental conditions. Moreover, epistasis is a major determinant of phenotypic variance for host resistance. Because epistasis seems to occur predominantly between, rather than within, chromosomes, segregation and chromosome number rather than recombination via cross-over should be the major elements affecting adaptive change in host resistance.

  5. Speciation in parasites: a population genetics approach.

    PubMed

    Huyse, Tine; Poulin, Robert; Théron, André

    2005-10-01

    Parasite speciation and host-parasite coevolution should be studied at both macroevolutionary and microevolutionary levels. Studies on a macroevolutionary scale provide an essential framework for understanding the origins of parasite lineages and the patterns of diversification. However, because coevolutionary interactions can be highly divergent across time and space, it is important to quantify and compare the phylogeographic variation in both the host and the parasite throughout their geographical range. Furthermore, to evaluate demographic parameters that are relevant to population genetics structure, such as effective population size and parasite transmission, parasite populations must be studied using neutral genetic markers. Previous emphasis on larger-scale studies means that the connection between microevolutionary and macroevolutionary events is poorly explored. In this article, we focus on the spatial fragmentation of parasites and the population genetics processes behind their diversification in an effort to bridge the micro- and macro-scales.

  6. Microstrip antenna arrays with parasitic elements

    NASA Technical Reports Server (NTRS)

    Lee, Kai-Fong

    1996-01-01

    This research was concerned with using parasitic elements to improve the bandwidth, gain and axial ratio characteristics of microstrip antennas and arrays. Significant improvements in these characteristics were obtained using stacked and coplanar parasitic elements. Details of the results are described in a total of 16 journal and 17 conference papers. These are listed in Section four of this report.

  7. The Effect and Relative Importance of Neutral Genetic Diversity for Predicting Parasitism Varies across Parasite Taxa

    PubMed Central

    Ruiz-López, María José; Monello, Ryan J.; Gompper, Matthew E.; Eggert, Lori S.

    2012-01-01

    Understanding factors that determine heterogeneity in levels of parasitism across individuals is a major challenge in disease ecology. It is known that genetic makeup plays an important role in infection likelihood, but the mechanism remains unclear as does its relative importance when compared to other factors. We analyzed relationships between genetic diversity and macroparasites in outbred, free-ranging populations of raccoons (Procyon lotor). We measured heterozygosity at 14 microsatellite loci and modeled the effects of both multi-locus and single-locus heterozygosity on parasitism using an information theoretic approach and including non-genetic factors that are known to influence the likelihood of parasitism. The association of genetic diversity and parasitism, as well as the relative importance of genetic diversity, differed by parasitic group. Endoparasite species richness was better predicted by a model that included genetic diversity, with the more heterozygous hosts harboring fewer endoparasite species. Genetic diversity was also important in predicting abundance of replete ticks (Dermacentor variabilis). This association fit a curvilinear trend, with hosts that had either high or low levels of heterozygosity harboring fewer parasites than those with intermediate levels. In contrast, genetic diversity was not important in predicting abundance of non-replete ticks and lice (Trichodectes octomaculatus). No strong single-locus effects were observed for either endoparasites or replete ticks. Our results suggest that in outbred populations multi-locus diversity might be important for coping with parasitism. The differences in the relationships between heterozygosity and parasitism for the different parasites suggest that the role of genetic diversity varies with parasite-mediated selective pressures. PMID:23049796

  8. The biology and evolution of transposable elements in parasites.

    PubMed

    Thomas, M Carmen; Macias, Francisco; Alonso, Carlos; López, Manuel C

    2010-07-01

    Transposable elements (TEs) are dynamic elements that can reshape host genomes by generating rearrangements with the potential to create or disrupt genes, to shuffle existing genes, and to modulate their patterns of expression. In the genomes of parasites that infect mammals several TEs have been identified that probably have been maintained throughout evolution due to their contribution to gene function and regulation of gene expression. This review addresses how TEs are organized, how they colonize the genomes of mammalian parasites, the functional role these elements play in parasite biology, and the interactions between these elements and the parasite genome. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Parasites and genetic diversity in an invasive bumblebee.

    PubMed

    Jones, Catherine M; Brown, Mark J F

    2014-11-01

    Biological invasions are facilitated by the global transportation of species and climate change. Given that invasions may cause ecological and economic damage and pose a major threat to biodiversity, understanding the mechanisms behind invasion success is essential. Both the release of non-native populations from natural enemies, such as parasites, and the genetic diversity of these populations may play key roles in their invasion success. We investigated the roles of parasite communities, through enemy release and parasite acquisition, and genetic diversity in the invasion success of the non-native bumblebee, Bombus hypnorum, in the United Kingdom. The invasive B. hypnorum had higher parasite prevalence than most, or all native congeners for two high-impact parasites, probably due to higher susceptibility and parasite acquisition. Consequently parasites had a higher impact on B. hypnorum queens' survival and colony-founding success than on native species. Bombus hypnorum also had lower functional genetic diversity at the sex-determining locus than native species. Higher parasite prevalence and lower genetic diversity have not prevented the rapid invasion of the United Kingdom by B. hypnorum. These data may inform our understanding of similar invasions by commercial bumblebees around the world. This study suggests that concerns about parasite impacts on the small founding populations common to re-introduction and translocation programs may be less important than currently believed. © 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  10. Genetically attenuated Trypanosoma cruzi parasites as a potential vaccination tool

    PubMed Central

    Brandan, Cecilia Pérez; Basombrío, Miguel Ángel

    2012-01-01

    Chagas disease is the clinical manifestation of the infection produced by the parasite Trypanosoma cruzi. Currently there is no vaccine to prevent this disease and the protection attained with vaccines containing non-replicating parasites is limited. Genetically attenuated trypanosomatid parasites can be obtained by deletion of selected genes. Gene deletion takes advantage of the fact that this parasite can undergo homologous recombination between endogenous and foreign DNA sequences artificially introduced in the cells. This approach facilitated the discovery of several unknown gene functions, as well as allowing us to speculate about the potential for genetically attenuated live organisms as experimental immunogens. Vaccination with live attenuated parasites has been used effectively in mice to reduce parasitemia and histological damage, and in dogs, to prevent vector-delivered infection in the field. However, the use of live parasites as immunogens is controversial due to the risk of reversion to a virulent phenotype. Herein, we present our results from experiments on genetic manipulation of two T. cruzi strains to produce parasites with impaired replication and infectivity, and using the mutation of the dhfr-ts gene as a safety device against reversion to virulence. PMID:22705838

  11. Extensive Genetic Diversity, Unique Population Structure and Evidence of Genetic Exchange in the Sexually Transmitted Parasite Trichomonas vaginalis

    PubMed Central

    Conrad, Melissa D.; Gorman, Andrew W.; Schillinger, Julia A.; Fiori, Pier Luigi; Arroyo, Rossana; Malla, Nancy; Dubey, Mohan Lal; Gonzalez, Jorge; Blank, Susan; Secor, William E.; Carlton, Jane M.

    2012-01-01

    Background Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes. Methodology/Principal Findings Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages. Conclusions/Significance Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease. PMID:22479659

  12. Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis.

    PubMed

    Conrad, Melissa D; Gorman, Andrew W; Schillinger, Julia A; Fiori, Pier Luigi; Arroyo, Rossana; Malla, Nancy; Dubey, Mohan Lal; Gonzalez, Jorge; Blank, Susan; Secor, William E; Carlton, Jane M

    2012-01-01

    Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes. Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages. Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease.

  13. Non-Genetic Determinants of Mosquito Competence for Malaria Parasites

    PubMed Central

    Lefèvre, Thierry; Vantaux, Amélie; Dabiré, Kounbobr R.; Mouline, Karine; Cohuet, Anna

    2013-01-01

    Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies. PMID:23818841

  14. Plant-parasite coevolution: bridging the gap between genetics and ecology.

    PubMed

    Brown, James K M; Tellier, Aurélien

    2011-01-01

    We review current ideas about coevolution of plants and parasites, particularly processes that generate genetic diversity. Frequencies of host resistance and parasite virulence alleles that interact in gene-for-gene (GFG) relationships coevolve in the familiar boom-and-bust cycle, in which resistance is selected when virulence is rare, and virulence is selected when resistance is common. The cycle can result in stable polymorphism when diverse ecological and epidemiological factors cause negative direct frequency-dependent selection (ndFDS) on host resistance, parasite virulence, or both, such that the benefit of a trait to fitness declines as its frequency increases. Polymorphism can also be stabilized by overdominance, when heterozygous hosts have greater resistance than homozygotes to diverse pathogens. Genetic diversity can also persist in the form of statistical polymorphism, sustained by random processes acting on gene frequencies and population size. Stable polymorphism allows alleles to be long-lived and genetic variation to be detectable in natural populations. In agriculture, many of the factors promoting stability in host-parasite interactions have been lost, leading to arms races of host defenses and parasite effectors. Copyright © 2011 by Annual Reviews. All rights reserved.

  15. Protocol for production of a genetic cross of the rodent malaria parasites.

    PubMed

    Pattaradilokrat, Sittiporn; Li, Jian; Su, Xin-zhuan

    2011-01-03

    Variation in response to antimalarial drugs and in pathogenicity of malaria parasites is of biologic and medical importance. Linkage mapping has led to successful identification of genes or loci underlying various traits in malaria parasites of rodents and humans. The malaria parasite Plasmodium yoelii is one of many malaria species isolated from wild African rodents and has been adapted to grow in laboratories. This species reproduces many of the biologic characteristics of the human malaria parasites; genetic markers such as microsatellite and amplified fragment length polymorphism (AFLP) markers have also been developed for the parasite. Thus, genetic studies in rodent malaria parasites can be performed to complement research on Plasmodium falciparum. Here, we demonstrate the techniques for producing a genetic cross in P. yoelii that were first pioneered by Drs. David Walliker, Richard Carter, and colleagues at the University of Edinburgh. Genetic crosses in P. yoelii and other rodent malaria parasites are conducted by infecting mice Mus musculus with an inoculum containing gametocytes of two genetically distinct clones that differ in phenotypes of interest and by allowing mosquitoes to feed on the infected mice 4 days after infection. The presence of male and female gametocytes in the mouse blood is microscopically confirmed before feeding. Within 48 hrs after feeding, in the midgut of the mosquito, the haploid gametocytes differentiate into male and female gametes, fertilize, and form a diploid zygote (Fig. 1). During development of a zygote into an ookinete, meiosis appears to occur. If the zygote is derived through cross-fertilization between gametes of the two genetically distinct parasites, genetic exchanges (chromosomal reassortment and cross-overs between the non-sister chromatids of a pair of homologous chromosomes; Fig. 2) may occur, resulting in recombination of genetic material at homologous loci. Each zygote undergoes two successive nuclear

  16. Analysis of Resonance Response Performance of C-Band Antenna Using Parasitic Element

    PubMed Central

    Islam, M. T.; Misran, N.; Mandeep, J. S.

    2014-01-01

    Analysis of the resonance response improvement of a planar C-band (4–8 GHz) antenna is proposed using parasitic element method. This parasitic element based method is validated for change in the active and parasitic antenna elements. A novel dual-band antenna for C-band application covering 5.7 GHz and 7.6 GHz is designed and fabricated. The antenna is composed of circular parasitic element with unequal microstrip lines at both sides and a rectangular partial ground plane. A fractional bandwidth of 13.5% has been achieved from 5.5 GHz to 6.3 GHz (WLAN band) for the lower band. The upper band covers from 7.1 GHz to 8 GHz with a fractional bandwidth of 12%. A gain of 6.4 dBi is achieved at the lower frequency and 4 dBi is achieved at the upper frequency. The VSWR of the antenna is less than 2 at the resonance frequency. PMID:24895643

  17. Analysis of resonance response performance of C-band antenna using parasitic element.

    PubMed

    Zaman, M R; Islam, M T; Misran, N; Mandeep, J S

    2014-01-01

    Analysis of the resonance response improvement of a planar C-band (4-8 GHz) antenna is proposed using parasitic element method. This parasitic element based method is validated for change in the active and parasitic antenna elements. A novel dual-band antenna for C-band application covering 5.7 GHz and 7.6 GHz is designed and fabricated. The antenna is composed of circular parasitic element with unequal microstrip lines at both sides and a rectangular partial ground plane. A fractional bandwidth of 13.5% has been achieved from 5.5 GHz to 6.3 GHz (WLAN band) for the lower band. The upper band covers from 7.1 GHz to 8 GHz with a fractional bandwidth of 12%. A gain of 6.4 dBi is achieved at the lower frequency and 4 dBi is achieved at the upper frequency. The VSWR of the antenna is less than 2 at the resonance frequency.

  18. Genetic Mapping Identifies Novel Highly Protective Antigens for an Apicomplexan Parasite

    PubMed Central

    Blake, Damer P.; Billington, Karen J.; Copestake, Susan L.; Oakes, Richard D.; Quail, Michael A.; Wan, Kiew-Lian; Shirley, Martin W.; Smith, Adrian L.

    2011-01-01

    Apicomplexan parasites are responsible for a myriad of diseases in humans and livestock; yet despite intensive effort, development of effective sub-unit vaccines remains a long-term goal. Antigenic complexity and our inability to identify protective antigens from the pool that induce response are serious challenges in the development of new vaccines. Using a combination of parasite genetics and selective barriers with population-based genetic fingerprinting, we have identified that immunity against the most important apicomplexan parasite of livestock (Eimeria spp.) was targeted against a few discrete regions of the genome. Herein we report the identification of six genomic regions and, within two of those loci, the identification of true protective antigens that confer immunity as sub-unit vaccines. The first of these is an Eimeria maxima homologue of apical membrane antigen-1 (AMA-1) and the second is a previously uncharacterised gene that we have termed ‘immune mapped protein-1’ (IMP-1). Significantly, homologues of the AMA-1 antigen are protective with a range of apicomplexan parasites including Plasmodium spp., which suggest that there may be some characteristic(s) of protective antigens shared across this diverse group of parasites. Interestingly, homologues of the IMP-1 antigen, which is protective against E. maxima infection, can be identified in Toxoplasma gondii and Neospora caninum. Overall, this study documents the discovery of novel protective antigens using a population-based genetic mapping approach allied with a protection-based screen of candidate genes. The identification of AMA-1 and IMP-1 represents a substantial step towards development of an effective anti-eimerian sub-unit vaccine and raises the possibility of identification of novel antigens for other apicomplexan parasites. Moreover, validation of the parasite genetics approach to identify effective antigens supports its adoption in other parasite systems where legitimate protective

  19. The cellular immune response of Daphnia magna under host-parasite genetic variation and variation in initial dose

    PubMed Central

    Auld, Stuart K. J. R; Edel, Kai H.; Little, Tom J.

    2013-01-01

    In invertebrate-parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host-parasite system with a well-established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host-parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity. PMID:23025616

  20. The cellular immune response of Daphnia magna under host-parasite genetic variation and variation in initial dose.

    PubMed

    Auld, Stuart K J R; Edel, Kai H; Little, Tom J

    2012-10-01

    In invertebrate-parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host-parasite system with a well-established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host-parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  1. Genetic co-structuring in host-parasite systems: Empirical data from raccoons and raccoon ticks

    DOE PAGES

    Dharmarajan, Guha; Beasley, James C.; Beatty, William S.; ...

    2016-03-31

    Many aspects of parasite biology critically depend on their hosts, and understanding how host-parasite populations are co-structured can help improve our understanding of the ecology of parasites, their hosts, and host-parasite interactions. Here, this study utilized genetic data collected from raccoons (Procyon lotor), and a specialist parasite, the raccoon tick (Ixodes texanus), to test for genetic co-structuring of host-parasite populations at both landscape and host scales. At the landscape scale, our analyses revealed a significant correlation between genetic and geographic distance matrices (i.e., isolation by distance) in ticks, but not their hosts. While there are several mechanisms that could leadmore » to a stronger pattern of isolation by distance in tick vs. raccoon datasets, our analyses suggest that at least one reason for the above pattern is the substantial increase in statistical power (due to the ≈8-fold increase in sample size) afforded by sampling parasites. Host-scale analyses indicated higher relatedness between ticks sampled from related vs. unrelated raccoons trapped within the same habitat patch, a pattern likely driven by increased contact rates between related hosts. Lastly, by utilizing fine-scale genetic data from both parasites and hosts, our analyses help improve our understanding of epidemiology and host ecology.« less

  2. Haemosporidian parasite infections in grouse and ptarmigan: Prevalence and genetic diversity of blood parasites in resident Alaskan birds

    USGS Publications Warehouse

    Smith, Matthew M.; Van Hemert, Caroline R.; Merizon, Richard

    2016-01-01

    Projections related to future climate warming indicate the potential for an increase in the distribution and prevalence of blood parasites in northern regions. However, baseline data are lacking for resident avian host species in Alaska. Grouse and ptarmigan occupy a diverse range of habitat types throughout the northern hemisphere and are among the most well-known and important native game birds in North America. Information regarding the prevalence and diversity of haemosporidian parasites in tetraonid species is limited, with few recent studies and an almost complete lack of genetic data. To better understand the genetic diversity of haemosporidian parasites in Alaskan tetraonids and to determine current patterns of geographic range and host specificity, we used molecular methods to screen 459 tissue samples collected from grouse and ptarmigan species across multiple regions of Alaska for infection by Leucocytozoon, Haemoproteus, and Plasmodium blood parasites. Infections were detected in 342 individuals, with overall apparent prevalence of 53% for Leucocytozoon, 21% for Haemoproteus, and 9% for Plasmodium. Parasite prevalence varied by region, with different patterns observed between species groups (grouse versus ptarmigan). Leucocytozoon was more common in ptarmigan, whereas Haemoproteus was more common in grouse. We detected Plasmodium infections in grouse only. Analysis of haemosporidian mitochondrial DNA cytochrome b sequences revealed 23 unique parasite haplotypes, several of which were identical to lineages previously detected in other avian hosts. Phylogenetic analysis showed close relationships between haplotypes from our study and those identified in Alaskan waterfowl for Haemoproteus and Plasmodium parasites. In contrast, Leucocytozoon lineages were structured strongly by host family. Our results provide some of the first genetic data for haemosporidians in grouse and ptarmigan species, and provide an initial baseline on the prevalence and diversity

  3. Genetic structure and breeding system in a social wasp and its social parasite

    PubMed Central

    2008-01-01

    Background Social insects dominate ecological communities because of their sophisticated group behaviors. However, the intricate behaviors of social insects may be exploited by social parasites, which manipulate insect societies for their own benefit. Interactions between social parasites and their hosts lead to unusual coevolutionary dynamics that ultimately affect the breeding systems and population structures of both species. This study represents one of the first attempts to understand the population and colony genetic structure of a parasite and its host in a social wasp system. Results We used DNA microsatellite markers to investigate gene flow, genetic variation, and mating behavior of the facultative social parasite Vespula squamosa and its primary host, V. maculifrons. Our analyses of genetic variability uncovered that both species possessed similar amounts of genetic variation and failed to show genetic structure over the sampling area. Our analysis of mating system of V. maculifrons and V. squamosa revealed high levels of polyandry and no evidence for inbreeding in the two species. Moreover, we found no significant differences between estimates of worker relatedness in this study and a previous investigation conducted over two decades ago, suggesting that the selective pressures operating on queen mate number have remained constant. Finally, the distribution of queen mate number in both species deviated from simple expectations suggesting that mate number may be under stabilizing selection. Conclusion The general biology of V. squamosa has not changed substantially from that of a typical, nonparasitic Vespula wasp. For example, population sizes of the host and its parasite appear to be similar, in contrast to other social parasites, which often display lower population sizes than their hosts. In addition, parasitism has not caused the mating behavior of V. squamosa queens to deviate from the high levels of multiple mating that typify Vespula wasps. This

  4. Advances in the application of genetic manipulation methods to apicomplexan parasites.

    PubMed

    Suarez, C E; Bishop, R P; Alzan, H F; Poole, W A; Cooke, B M

    2017-10-01

    Apicomplexan parasites such as Babesia, Theileria, Eimeria, Cryptosporidium and Toxoplasma greatly impact animal health globally, and improved, cost-effective measures to control them are urgently required. These parasites have complex multi-stage life cycles including obligate intracellular stages. Major gaps in our understanding of the biology of these relatively poorly characterised parasites and the diseases they cause severely limit options for designing novel control methods. Here we review potentially important shared aspects of the biology of these parasites, such as cell invasion, host cell modification, and asexual and sexual reproduction, and explore the potential of the application of relatively well-established or newly emerging genetic manipulation methods, such as classical transfection or gene editing, respectively, for closing important gaps in our knowledge of the function of specific genes and proteins, and the biology of these parasites. In addition, genetic manipulation methods impact the development of novel methods of control of the diseases caused by these economically important parasites. Transient and stable transfection methods, in conjunction with whole and deep genome sequencing, were initially instrumental in improving our understanding of the molecular biology of apicomplexan parasites and paved the way for the application of the more recently developed gene editing methods. The increasingly efficient and more recently developed gene editing methods, in particular those based on the CRISPR/Cas9 system and previous conceptually similar techniques, are already contributing to additional gene function discovery using reverse genetics and related approaches. However, gene editing methods are only possible due to the increasing availability of in vitro culture, transfection, and genome sequencing and analysis techniques. We envisage that rapid progress in the development of novel gene editing techniques applied to apicomplexan parasites of

  5. Hemosporidian parasites in forest birds from Venezuela: genetic lineage analyses.

    PubMed

    Mijares, Alfredo; Rosales, Romel; Silva-Iturriza, Adriana

    2012-09-01

    Avian hemosporidian parasites of the genera Haemoproteus, Plasmodium, and Leucocytozoon are transmitted by different dipteran vectors. In the present work, we looked for the presence of these parasites in 47 birds from 12 families, which were sampled in the migratory corridor Paso de Portachuelo, located at the Henri Pittier National Park, Venezuela. The presence of the parasites was evidenced by amplification of a region of 471 bp of their cytochrome b gene. This region of the marker presents enough polymorphism to identify most of the mitochondrial lineages. Therefore, the obtained amplicons were sequenced, not only to identify the genus of the parasites sampled, but also to analyze their genetic diversity in the study area. The overall parasite prevalence was low (11%). We reported, for the first time, Plasmodium in birds of the species Formicarius analis and Chamaeza campanisona (Formicariidae) and Haemoproteus in Geotrygon linearis (Columbidae). A phylogenetic tree was generated using the Haemoproteus, Plasmodium, and Leucocytozoon sequences obtained in this study, together with representative sequences from previous studies. The highest genetic diversities between the two Haemoproteus lineages (11.70%) and among the three Plasmodium lineages (7.86%) found in this study are also similar to those found when lineages reported in the literature were used. These results indicate that in the migratory corridor Paso de Portachuleo, representative parasite lineages are found, making this location an attractive location for future studies.

  6. Selfish genetic elements favor the evolution of a distinction between soma and germline.

    PubMed

    Johnson, Louise J

    2008-08-01

    Many multicellular organisms have evolved a dedicated germline. This can benefit the whole organism, but its advantages to genetic parasites have not been explored. Here I model the evolutionary success of a selfish element, such as a transposable element or endosymbiont, which is capable of creating or strengthening a germline-soma distinction in a primitively multicellular host, and find that it will always benefit the element to do so. Genes causing germline sequestration can therefore spread in a population even if germline sequestration is maladaptive for the host organism. Costly selfish elements are expected to survive only in sexual populations, so sexual species may experience an additional push toward germline-soma distinction, and hence toward cell differentiation and multicellularity.

  7. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya.

    PubMed

    Ingasia, Luicer A; Cheruiyot, Jelagat; Okoth, Sheila Akinyi; Andagalu, Ben; Kamau, Edwin

    2016-04-01

    Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; p<0.0001) whereas Kisii had the least significant index of association values (0.03; p<0.0001). Our data suggest high genetic diversity in Kenyan parasite population with the exception of parasite from Malindi where malaria has been on the decline. The presence of significant LD suggests that there is occurrence of inbreeding in the parasite population. Parasite populations from Kisii showed the strongest evidence for epidemic population structure whereas the rest of the regions showed panmixia. Defining the genetic diversity of the parasites in different ecological regions of Kenya after

  8. Inorganic elements in the fat bodies of Diatraea saccharalis (Lepidoptera: Crambidae) larvae parasitized by Cotesia flavipes (Hymenoptera: Braconidae).

    PubMed

    Pinheiro, D O; Zucchi, T D; Zucchi, O L A D; Nascimento Filho, V F; Almeida, E; Cônsoli, F L

    2010-08-01

    Koinobiont parasitoids use several strategies to regulate the host's physiological processes during parasitism. Although many aspects of host-parasitoid interactions have been explored, studies that attempted to assess the effects of parasitism on the availability of inorganic elements in the host are virtually nonexistent. Therefore, we aimed to evaluate the effects of parasitism on the concentrations of inorganic elements in the fat bodies of larvae of Diatraea saccharalis (Lepidoptera: Crambidae) during the development of the parasitoid Cotesia flavipes (Hymenoptera: Braconidae), by using total reflection X-ray fluorescence (TXRF). TXRF analysis allowed comparisons of the changes in the availability of the elements P, S, K, Ca, Cr, Fe, Ni, Cu, and Zn in the fat body tissues of D. saccharalis larvae parasitized by C. flavipes. Overall, the concentration of inorganic elements was higher early in parasitoid development (1 and 3days after parasitism) compared to non-parasitized larvae, but much lower towards the end of parasitoid development (7 and 9days after parasitism). Ca, K, and S were reduced after the fifth day of parasitism, which affected the total abundance of inorganic elements observed in the fat bodies of the parasitized hosts. The regulatory mechanisms or pathological effects related to the observed variation of the host inorganic elements induced by the parasitoid remain unknown, but there might be a strategy to make these elements available to the parasitoid larvae at the end of their development, when higher metabolic activity of the host fat body is required to sustain parasitoid growth. The observed variation of the host's inorganic elements could also be related to the known effects of parasitism on the host's immune response. 2010 Elsevier Inc. All rights reserved.

  9. Genetic variation for maternal effects on parasite susceptibility.

    PubMed

    Stjernman, M; Little, T J

    2011-11-01

    The expression of infectious disease is increasingly recognized to be impacted by maternal effects, where the environmental conditions experienced by mothers alter resistance to infection in offspring, independent of heritability. Here, we studied how maternal effects (high or low food availability to mothers) mediated the resistance of the crustacean Daphnia magna to its bacterial parasite Pasteuria ramosa. We sought to disentangle maternal effects from the effects of host genetic background by studying how maternal effects varied across 24 host genotypes sampled from a natural population. Under low-food conditions, females produced offspring that were relatively resistant, but this maternal effect varied strikingly between host genotypes, i.e. there were genotype by maternal environment interactions. As infection with P. ramosa causes a substantial reduction in host fecundity, this maternal effect had a large effect on host fitness. Maternal effects were also shown to impact parasite fitness, both because they prevented the establishment of the parasites and because even when parasites did establish in the offspring of poorly fed mothers, and they tended to grow more slowly. These effects indicate that food stress in the maternal generation can greatly influence parasite susceptibility and thus perhaps the evolution and coevolution of host-parasite interactions. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  10. Genetic correlations between endo-parasite phenotypes and economically important traits in dairy and beef cattle.

    PubMed

    Twomey, Alan J; Carroll, Rebecca I; Doherty, Michael L; Byrne, Noel; Graham, David A; Sayers, Riona G; Blom, Astrid; Berry, Donagh P

    2018-03-06

    Parasitic diseases have economic consequences in cattle production systems. Although breeding for parasite resistance can complement current control practices to reduce the prevalence globally, there is little knowledge of the implications of such a strategy on other performance traits. Records on individual animal antibody responses to Fasciola hepatica, Ostertagia ostertagi, and Neospora caninum were available from cows in 68 dairy herds (study herds); national abattoir data on F. hepatica-damaged livers were also available from dairy and beef cattle. After data edits, 9,271 dairy cows remained in the study herd dataset, whereas 19,542 dairy cows and 68,048 young dairy and beef animals had a record for the presence or absence of F. hepatica-damaged liver in the national dataset. Milk, reproductive, and carcass phenotypes were also available for a proportion of these animals as well as their contemporaries. Linear mixed models were used to estimate variance components of antibody responses to the three parasites; covariance components were estimated between the parasite phenotypes and economically important traits. Heritability of antibody responses to the different parasites, when treated as a continuous trait, ranged from 0.07 (O. ostertagi) to 0.13 (F. hepatica), whereas the coefficient of genetic variation ranged from 4% (O. ostertagi) to 20% (F. hepatica). The antibody response to N. caninum was genetically correlated with the antibody response to both F. hepatica (-0.29) and O. ostertagi (-0.67); a moderately positive genetic correlation existed between the antibody response to F. hepatica and O. ostertagi (0.66). Genetic correlations between the parasite phenotypes and the milk production traits were all close to zero (-0.14 to 0.10), as were the genetic correlations between F. hepatica-damaged livers and the carcass traits of carcass weight, conformation, and fat score evaluated in cows and young animals (0.00 to 0.16). The genetic correlation between F

  11. Virophages, polintons, and transpovirons: a complex evolutionary network of diverse selfish genetic elements with different reproduction strategies.

    PubMed

    Yutin, Natalya; Raoult, Didier; Koonin, Eugene V

    2013-05-23

    Recent advances of genomics and metagenomics reveal remarkable diversity of viruses and other selfish genetic elements. In particular, giant viruses have been shown to possess their own mobilomes that include virophages, small viruses that parasitize on giant viruses of the Mimiviridae family, and transpovirons, distinct linear plasmids. One of the virophages known as the Mavirus, a parasite of the giant Cafeteria roenbergensis virus, shares several genes with large eukaryotic self-replicating transposon of the Polinton (Maverick) family, and it has been proposed that the polintons evolved from a Mavirus-like ancestor. We performed a comprehensive phylogenomic analysis of the available genomes of virophages and traced the evolutionary connections between the virophages and other selfish genetic elements. The comparison of the gene composition and genome organization of the virophages reveals 6 conserved, core genes that are organized in partially conserved arrays. Phylogenetic analysis of those core virophage genes, for which a sufficient diversity of homologs outside the virophages was detected, including the maturation protease and the packaging ATPase, supports the monophyly of the virophages. The results of this analysis appear incompatible with the origin of polintons from a Mavirus-like agent but rather suggest that Mavirus evolved through recombination between a polinton and an unknown virus. Altogether, virophages, polintons, a distinct Tetrahymena transposable element Tlr1, transpovirons, adenoviruses, and some bacteriophages form a network of evolutionary relationships that is held together by overlapping sets of shared genes and appears to represent a distinct module in the vast total network of viruses and mobile elements. The results of the phylogenomic analysis of the virophages and related genetic elements are compatible with the concept of network-like evolution of the virus world and emphasize multiple evolutionary connections between bona fide

  12. Virophages, polintons, and transpovirons: a complex evolutionary network of diverse selfish genetic elements with different reproduction strategies

    PubMed Central

    2013-01-01

    Background Recent advances of genomics and metagenomics reveal remarkable diversity of viruses and other selfish genetic elements. In particular, giant viruses have been shown to possess their own mobilomes that include virophages, small viruses that parasitize on giant viruses of the Mimiviridae family, and transpovirons, distinct linear plasmids. One of the virophages known as the Mavirus, a parasite of the giant Cafeteria roenbergensis virus, shares several genes with large eukaryotic self-replicating transposon of the Polinton (Maverick) family, and it has been proposed that the polintons evolved from a Mavirus-like ancestor. Results We performed a comprehensive phylogenomic analysis of the available genomes of virophages and traced the evolutionary connections between the virophages and other selfish genetic elements. The comparison of the gene composition and genome organization of the virophages reveals 6 conserved, core genes that are organized in partially conserved arrays. Phylogenetic analysis of those core virophage genes, for which a sufficient diversity of homologs outside the virophages was detected, including the maturation protease and the packaging ATPase, supports the monophyly of the virophages. The results of this analysis appear incompatible with the origin of polintons from a Mavirus-like agent but rather suggest that Mavirus evolved through recombination between a polinton and an unknownvirus. Altogether, virophages, polintons, a distinct Tetrahymena transposable element Tlr1, transpovirons, adenoviruses, and some bacteriophages form a network of evolutionary relationships that is held together by overlapping sets of shared genes and appears to represent a distinct module in the vast total network of viruses and mobile elements. Conclusions The results of the phylogenomic analysis of the virophages and related genetic elements are compatible with the concept of network-like evolution of the virus world and emphasize multiple evolutionary

  13. Selfish genetic elements, genetic conflict, and evolutionary innovation.

    PubMed

    Werren, John H

    2011-06-28

    Genomes are vulnerable to selfish genetic elements (SGEs), which enhance their own transmission relative to the rest of an individual's genome but are neutral or harmful to the individual as a whole. As a result, genetic conflict occurs between SGEs and other genetic elements in the genome. There is growing evidence that SGEs, and the resulting genetic conflict, are an important motor for evolutionary change and innovation. In this review, the kinds of SGEs and their evolutionary consequences are described, including how these elements shape basic biological features, such as genome structure and gene regulation, evolution of new genes, origin of new species, and mechanisms of sex determination and development. The dynamics of SGEs are also considered, including possible "evolutionary functions" of SGEs.

  14. Selfish genetic elements, genetic conflict, and evolutionary innovation

    PubMed Central

    Werren, John H.

    2011-01-01

    Genomes are vulnerable to selfish genetic elements (SGEs), which enhance their own transmission relative to the rest of an individual's genome but are neutral or harmful to the individual as a whole. As a result, genetic conflict occurs between SGEs and other genetic elements in the genome. There is growing evidence that SGEs, and the resulting genetic conflict, are an important motor for evolutionary change and innovation. In this review, the kinds of SGEs and their evolutionary consequences are described, including how these elements shape basic biological features, such as genome structure and gene regulation, evolution of new genes, origin of new species, and mechanisms of sex determination and development. The dynamics of SGEs are also considered, including possible “evolutionary functions” of SGEs. PMID:21690392

  15. Host and parasite life history interplay to yield divergent population genetic structures in two ectoparasites living on the same bat species.

    PubMed

    van Schaik, J; Dekeukeleire, D; Kerth, G

    2015-05-01

    Host-parasite interactions are ubiquitous in nature. However, how parasite population genetic structure is shaped by the interaction between host and parasite life history remains understudied. Studies comparing multiple parasites infecting a single host can be used to investigate how different parasite life history traits interplay with host behaviour and life history. In this study, we used 10 newly developed microsatellite loci to investigate the genetic structure of a parasitic bat fly (Basilia nana). Its host, the Bechstein's bat (Myotis bechsteinii), has a social system and roosting behaviour that restrict opportunities for parasite transmission. We compared fly genetic structure to that of the host and another parasite, the wing-mite, Spinturnix bechsteini. We found little spatial or temporal genetic structure in B. nana, suggesting a large, stable population with frequent genetic exchange between fly populations from different bat colonies. This contrasts sharply with the genetic structure of the wing-mite, which is highly substructured between the same bat colonies as well as temporally unstable. Our results suggest that although host and parasite life history interact to yield similar transmission patterns in both parasite species, the level of gene flow and eventual spatiotemporal genetic stability is differentially affected. This can be explained by the differences in generation time and winter survival between the flies and wing-mites. Our study thus exemplifies that the population genetic structure of parasites on a single host can vary strongly as a result of how their individual life history characteristics interact with host behaviour and life history traits. © 2015 John Wiley & Sons Ltd.

  16. How a haemosporidian parasite of bats gets around: the genetic structure of a parasite, vector and host compared.

    PubMed

    Witsenburg, F; Clément, L; López-Baucells, A; Palmeirim, J; Pavlinić, I; Scaravelli, D; Ševčík, M; Dutoit, L; Salamin, N; Goudet, J; Christe, P

    2015-02-01

    Parasite population structure is often thought to be largely shaped by that of its host. In the case of a parasite with a complex life cycle, two host species, each with their own patterns of demography and migration, spread the parasite. However, the population structure of the parasite is predicted to resemble only that of the most vagile host species. In this study, we tested this prediction in the context of a vector-transmitted parasite. We sampled the haemosporidian parasite Polychromophilus melanipherus across its European range, together with its bat fly vector Nycteribia schmidlii and its host, the bent-winged bat Miniopterus schreibersii. Based on microsatellite analyses, the wingless vector, and not the bat host, was identified as the least structured population and should therefore be considered the most vagile host. Genetic distance matrices were compared for all three species based on a mitochondrial DNA fragment. Both host and vector populations followed an isolation-by-distance pattern across the Mediterranean, but not the parasite. Mantel tests found no correlation between the parasite and either the host or vector populations. We therefore found no support for our hypothesis; the parasite population structure matched neither vector nor host. Instead, we propose a model where the parasite's gene flow is represented by the added effects of host and vector dispersal patterns. © 2015 John Wiley & Sons Ltd.

  17. Genetic architecture of resistance in Daphnia hosts against two species of host-specific parasites.

    PubMed

    Routtu, J; Ebert, D

    2015-02-01

    Understanding the genetic architecture of host resistance is key for understanding the evolution of host-parasite interactions. Evolutionary models often assume simple genetics based on few loci and strong epistasis. It is unknown, however, whether these assumptions apply to natural populations. Using a quantitative trait loci (QTL) approach, we explore the genetic architecture of resistance in the crustacean Daphnia magna to two of its natural parasites: the horizontally transmitted bacterium Pasteuria ramosa and the horizontally and vertically transmitted microsporidium Hamiltosporidium tvaerminnensis. These two systems have become models for studies on the evolution of host-parasite interactions. In the QTL panel used here, Daphnia's resistance to P. ramosa is controlled by a single major QTL (which explains 50% of the observed variation). Resistance to H. tvaerminnensis horizontal infections shows a signature of a quantitative trait based in multiple loci with weak epistatic interactions (together explaining 38% variation). Resistance to H. tvaerminnensis vertical infections, however, shows only one QTL (explaining 13.5% variance) that colocalizes with one of the QTLs for horizontal infections. QTLs for resistance to Pasteuria and Hamiltosporidium do not colocalize. We conclude that the genetics of resistance in D. magna are drastically different for these two parasites. Furthermore, we infer that based on these and earlier results, the mechanisms of coevolution differ strongly for the two host-parasite systems. Only the Pasteuria-Daphnia system is expected to follow the negative frequency-dependent selection (Red Queen) model. How coevolution works in the Hamiltosporidium-Daphnia system remains unclear.

  18. Genetic architecture of resistance in Daphnia hosts against two species of host-specific parasites

    PubMed Central

    Routtu, J; Ebert, D

    2015-01-01

    Understanding the genetic architecture of host resistance is key for understanding the evolution of host–parasite interactions. Evolutionary models often assume simple genetics based on few loci and strong epistasis. It is unknown, however, whether these assumptions apply to natural populations. Using a quantitative trait loci (QTL) approach, we explore the genetic architecture of resistance in the crustacean Daphnia magna to two of its natural parasites: the horizontally transmitted bacterium Pasteuria ramosa and the horizontally and vertically transmitted microsporidium Hamiltosporidium tvaerminnensis. These two systems have become models for studies on the evolution of host–parasite interactions. In the QTL panel used here, Daphnia's resistance to P. ramosa is controlled by a single major QTL (which explains 50% of the observed variation). Resistance to H. tvaerminnensis horizontal infections shows a signature of a quantitative trait based in multiple loci with weak epistatic interactions (together explaining 38% variation). Resistance to H. tvaerminnensis vertical infections, however, shows only one QTL (explaining 13.5% variance) that colocalizes with one of the QTLs for horizontal infections. QTLs for resistance to Pasteuria and Hamiltosporidium do not colocalize. We conclude that the genetics of resistance in D. magna are drastically different for these two parasites. Furthermore, we infer that based on these and earlier results, the mechanisms of coevolution differ strongly for the two host–parasite systems. Only the Pasteuria–Daphnia system is expected to follow the negative frequency-dependent selection (Red Queen) model. How coevolution works in the Hamiltosporidium–Daphnia system remains unclear. PMID:25335558

  19. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies.

    PubMed

    Jara, Laura; Muñoz, Irene; Cepero, Almudena; Martín-Hernández, Raquel; Serrano, José; Higes, Mariano; De la Rúa, Pilar

    2015-10-01

    In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.

  20. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies

    NASA Astrophysics Data System (ADS)

    Jara, Laura; Muñoz, Irene; Cepero, Almudena; Martín-Hernández, Raquel; Serrano, José; Higes, Mariano; De la Rúa, Pilar

    2015-10-01

    In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.

  1. Parasites as biological tags to assess host population structure: Guidelines, recent genetic advances and comments on a holistic approach☆

    PubMed Central

    Catalano, Sarah R.; Whittington, Ian D.; Donnellan, Stephen C.; Gillanders, Bronwyn M.

    2013-01-01

    We review the use of parasites as biological tags of marine fishes and cephalopods in host population structure studies. The majority of the work published has focused on marine fish and either single parasite species or more recently, whole parasite assemblages, as biological tags. There is representation of host organisms and parasites from a diverse range of taxonomic groups, although focus has primarily been on host species of commercial importance. In contrast, few studies have used parasites as tags to assess cephalopod population structure, even though records of parasites infecting cephalopods are well-documented. Squid species are the only cephalopod hosts for which parasites as biological tags have been applied, with anisakid nematode larvae and metacestodes being the parasite taxa most frequently used. Following a brief insight into the importance of accurate parasite identification, the population studies that have used parasites as biological tags for marine fishes and cephalopods are reviewed, including comments on the dicyemid mesozoans. The advancement of molecular genetic techniques is discussed in regards to the new ways parasite genetic data can be incorporated into population structure studies, alongside host population genetic analyses, followed by an update on the guidelines for selecting a parasite species as a reliable tag candidate. As multiple techniques and methods can be used to assess the population structure of marine organisms (e.g. artificial tags, phenotypic characters, biometrics, life history, genetics, otolith microchemistry and parasitological data), we conclude by commenting on a holistic approach to allow for a deeper insight into population structuring. PMID:25197624

  2. In-circuit-measurement of parasitic elements in high gain high bandwidth low noise transimpedance amplifiers.

    PubMed

    Cochems, P; Kirk, A; Zimmermann, S

    2014-12-01

    Parasitic elements play an important role in the development of every high performance circuit. In the case of high gain, high bandwidth transimpedance amplifiers, the most important parasitic elements are parasitic capacitances at the input and in the feedback path, which significantly influence the stability, the frequency response, and the noise of the amplifier. As these parasitic capacitances range from a few picofarads down to only a few femtofarads, it is nearly impossible to measure them accurately using traditional LCR meters. Unfortunately, they also cannot be easily determined from the transfer function of the transimpedance amplifier, as it contains several overlapping effects and its measurement is only possible when the circuit is already stable. Therefore, we developed an in-circuit measurement method utilizing minimal modifications to the input stage in order to measure its parasitic capacitances directly and with unconditional stability. Furthermore, using the data acquired with this measurement technique, we both proposed a model for the complicated frequency response of high value thick film resistors as they are used in high gain transimpedance amplifiers and optimized our transimpedance amplifier design.

  3. Genetic characterization of human-pathogenic Cyclospora cayetanensis parasites from three endemic regions at the 18S ribosomal RNA locus.

    PubMed

    Sulaiman, Irshad M; Ortega, Ynes; Simpson, Steven; Kerdahi, Khalil

    2014-03-01

    Cyclospora cayetanensis is an apicocomplexan parasite that infects the gastrointestinal tract and causes acute diarrheal disease in humans. In recent years, this human-pathogenic parasite has led to several foodborne outbreaks in the United States and Canada, mostly associated with imported produce. Understanding the biology and epidemiology of C. cayetanensis is difficult because little is known about its origin, possible zoonotic reservoirs, and genetic relationships with other coccidian parasites. Recently, we developed a 70kDa heat shock protein (HSP70) gene based nested PCR protocol for detection of C. cayetanensis parasite and sequenced the PCR products of 16 human isolates from Nepal, Mexico, and Peru. In this study, we have characterized the regions of 18S ribosomal RNA (rRNA) gene of 17 human C. cayetanensis isolates for molecular detection, and also to ascertain the genetic diversity of this parasite. The 18S rRNA primer sets were further tested by PCR amplification followed by nucleotide sequencing of the PCR amplified products of previously characterized C. cayetanensis isolates from three endemic regions at HSP70 locus. Although no genetic polymorphism was observed at the regions of HSP70 locus characterized in our previous study, the data analysis of this study revealed a minor genetic diversity at the 18S rRNA locus among the C. cayetanensis isolates. The 18S rRNA gene-based nested PCR protocol provides a useful genetic marker for the detection of C. cayetanensis parasite and confirms it as a genetically distinct species in genus Cyclospora. The results also supported lack of geographic segregation and existence of genetically homogeneous population for the C. cayetanensis parasites both at the HSP70 as well as at the18S rRNA loci. Published by Elsevier B.V.

  4. The parasite that causes whirling disease, Myxobolus cerebralis, is genetically variable within and across spatial scales.

    PubMed

    Lodh, Nilanjan; Kerans, Billie L; Stevens, Lori

    2012-01-01

    Understanding the genetic structure of parasite populations on the natural landscape can reveal important aspects of disease ecology and epidemiology and can indicate parasite dispersal across the landscape. Myxobolus cerebralis (Myxozoa: Myxosporea), the causative agent of whirling disease in the definitive host Tubifex tubifex, is native to Eurasia and has spread to more than 25 states in the USA. The small amounts of data available to date suggest that M. cerebralis has little genetic variability. We examined the genetic variability of parasites infecting the definitive host T. tubifex in the Madison River, MT, and also from other parts of North America and Europe. We cloned and sequenced 18S ribosomal DNA and the internal transcribed spacer-1 (ITS-1) gene. Five oligochaetes were examined for 18S and five for ITS-1, only one individual was examined for both genes. We found two different 18S rRNA haplotypes of M. cerebralis from five worms and both intra- and interworm genetic variation for ITS-1, which showed 16 different haplotypes from among 20 clones. Comparison of our sequences with those from other studies revealed M. cerebralis from MT was similar to the parasite collected from Alaska, Oregon, California, and Virginia in the USA and from Munich, Germany, based on 18S, whereas parasite sequences from West Virginia were very different. Combined with the high haplotype diversity of ITS-1 and uniqueness of ITS-1 haplotypes, our results show that M. cerebralis is more variable than previously thought and raises the possibility of multiple introductions of the parasite into North America. © 2011 The Author(s) Journal of Eukaryotic Microbiology © 2011 International Society of Protistologists.

  5. Genetic variation in the cellular response of Daphnia magna (Crustacea: Cladocera) to its bacterial parasite.

    PubMed

    Auld, Stuart K J R; Scholefield, Jennifer A; Little, Tom J

    2010-11-07

    Linking measures of immune function with infection, and ultimately, host and parasite fitness is a major goal in the field of ecological immunology. In this study, we tested for the presence and timing of a cellular immune response in the crustacean Daphnia magna following exposure to its sterilizing endoparasite Pasteuria ramosa. We found that D. magna possesses two cell types circulating in the haemolymph: a spherical one, which we call a granulocyte and an irregular-shaped amoeboid cell first described by Metchnikoff over 125 years ago. Daphnia magna mounts a strong cellular response (of the amoeboid cells) just a few hours after parasite exposure. We further tested for, and found, considerable genetic variation for the magnitude of this cellular response. These data fostered a heuristic model of resistance in this naturally coevolving host-parasite interaction. Specifically, the strongest cellular responses were found in the most susceptible hosts, indicating resistance is not always borne from a response that destroys invading parasites, but rather stems from mechanisms that prevent their initial entry. Thus, D. magna may have a two-stage defence--a genetically determined barrier to parasite establishment and a cellular response once establishment has begun.

  6. Genetic variation in the cellular response of Daphnia magna (Crustacea: Cladocera) to its bacterial parasite

    PubMed Central

    Auld, Stuart K. J. R.; Scholefield, Jennifer A.; Little, Tom J.

    2010-01-01

    Linking measures of immune function with infection, and ultimately, host and parasite fitness is a major goal in the field of ecological immunology. In this study, we tested for the presence and timing of a cellular immune response in the crustacean Daphnia magna following exposure to its sterilizing endoparasite Pasteuria ramosa. We found that D. magna possesses two cell types circulating in the haemolymph: a spherical one, which we call a granulocyte and an irregular-shaped amoeboid cell first described by Metchnikoff over 125 years ago. Daphnia magna mounts a strong cellular response (of the amoeboid cells) just a few hours after parasite exposure. We further tested for, and found, considerable genetic variation for the magnitude of this cellular response. These data fostered a heuristic model of resistance in this naturally coevolving host–parasite interaction. Specifically, the strongest cellular responses were found in the most susceptible hosts, indicating resistance is not always borne from a response that destroys invading parasites, but rather stems from mechanisms that prevent their initial entry. Thus, D. magna may have a two-stage defence—a genetically determined barrier to parasite establishment and a cellular response once establishment has begun. PMID:20534618

  7. Characterizing the genetic diversity of the monkey malaria parasite Plasmodium cynomolgi

    PubMed Central

    Sutton, Patrick L.; Luo, Zunping; Divis, Paul C. S.; Friedrich, Volney K.; Conway, David J.; Singh, Balbir; Barnwell, John W.; Carlton, Jane M.; Sullivan, Steven A.

    2016-01-01

    Plasmodium cynomolgi is a malaria parasite that typically infects Asian macaque monkeys, and humans on rare occasions. P. cynomolgi serves as a model system for the human malaria parasite Plasmodium vivax, with which it shares such important biological characteristics as formation of a dormant liver stage and a preference to invade reticulocytes. While genomes of three P. cynomolgi strains have been sequenced, genetic diversity of P. cynomolgi has not been widely investigated. To address this we developed the first panel of P. cynomolgi microsatellite markers to genotype eleven P. cynomolgi laboratory strains and 18 field isolates from Sarawak, Malaysian Borneo. We found diverse genotypes among most of the laboratory strains, though two nominally different strains were found to be genetically identical, We also investigated sequence polymorphism in two erythrocyte invasion gene families, the reticulocyte binding protein and Duffy binding protein genes, in these strains. We also observed copy number variation in rbp genes. PMID:26980604

  8. Molecular genetic transfection of the coccidian parasite Sarcocystis neurona.

    PubMed

    Gaji, Rajshekhar Y; Zhang, Deqing; Breathnach, Cormac C; Vaishnava, Shipra; Striepen, Boris; Howe, Daniel K

    2006-11-01

    Sarcocystis neurona is an apicomplexan parasite that is the major cause of equine protozoal myeloencephalitis (EPM). The biology of this pathogen remains poorly understood in part due to unavailability of molecular genetic tools. Hence, with an objective to develop DNA transfection capabilities for S. neurona, the 5' flanking region of the SnSAG1 gene was isolated from a genomic library and used to construct expression plasmids. In transient assays, the reporter molecules beta-galactosidase (beta-gal) and yellow fluorescent protein (YFP) could be detected in electroporated S. neurona, thereby confirming the feasibility of transgene expression in this organism. Stable transformation of S. neurona was achieved using a mutant dihydrofolate reductase thymidylate synthase (DHFR-TS) gene of Toxoplasma gondii that confers resistance to pyrimethamine. This selection system was used to create transgenic S. neurona that stably express beta-gal and YFP. As shown in this study, these transgenic clones can be useful for analyzing growth rate of parasites in vitro and for assessing drug sensitivities. More importantly, the DNA transfection methods described herein should greatly facilitate studies examining intracellular parasitism by this important coccidian pathogen.

  9. Phylogeographic Evidence for 2 Genetically Distinct Zoonotic Plasmodium knowlesi Parasites, Malaysia.

    PubMed

    Yusof, Ruhani; Ahmed, Md Atique; Jelip, Jenarun; Ngian, Hie Ung; Mustakim, Sahlawati; Hussin, Hani Mat; Fong, Mun Yik; Mahmud, Rohela; Sitam, Frankie Anak Thomas; Japning, J Rovie-Ryan; Snounou, Georges; Escalante, Ananias A; Lau, Yee Ling

    2016-08-01

    Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia.

  10. Phylogeographic Evidence for 2 Genetically Distinct Zoonotic Plasmodium knowlesi Parasites, Malaysia

    PubMed Central

    Yusof, Ruhani; Ahmed, Md Atique; Jelip, Jenarun; Ngian, Hie Ung; Mustakim, Sahlawati; Hussin, Hani Mat; Fong, Mun Yik; Mahmud, Rohela; Sitam, Frankie Anak Thomas; Japning, J. Rovie-Ryan; Snounou, Georges; Escalante, Ananias A.

    2016-01-01

    Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia. PMID:27433965

  11. Genetic Variations of the Parasitic Dinoflagellate Hematodinium Infecting Cultured Marine Crustaceans in China.

    PubMed

    Xiao, Jie; Miao, Xiaoxiang; Li, Caiwen; Xu, Wenjun; Zhang, Xuelei; Wang, Zongling

    2016-12-01

    The parasitic dinoflagellate Hematodinium infects multiple cultured marine crustaceans and has resulted in significant economic losses to their aquaculture in China. Limited molecular data implied a close relationship among Hematodinium reported in China, whereas the genetic diversity and detailed genetic variation within Hematodinium remains unclear. In order to investigate the genetic diversity and composition of the parasitic dinoflagellate in China, the sequences of the internal transcribed spacer region (ITS1 - 5.8S - ITS2) were amplified from 104 infected hosts cultured in three geographic locations. Two strains were identified, Hematodinium perezi II was the prevalent strain observed in all three host taxa throughout the survey, the other novel one was detected from the single Exopalaemon carinicauda collected from Zhejiang province. Eight ITS haplotypes within H. perezi II were identified with a similarity of 99.8% -100%. The distinct haplotype compositions and AMOVA analysis suggested a significant genetic differentiation and population structure among the three geographic populations of H. perezi II. The novel strain, genetically affiliated with H. perezi, was quite divergent from the three known genotypes (I, II and III) of H. perezi, and further investigation is needed to determine the distribution and host range of this new strain. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Life history determines genetic structure and evolutionary potential of host-parasite interactions.

    PubMed

    Barrett, Luke G; Thrall, Peter H; Burdon, Jeremy J; Linde, Celeste C

    2008-12-01

    Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns.

  13. Host-parasite coevolution: genetic variation in a virus population and the interaction with a host gene.

    PubMed

    Wilfert, L; Jiggins, F M

    2010-07-01

    Host-parasite coevolution is considered to be an important factor in maintaining genetic variation in resistance to pathogens. Drosophila melanogaster is naturally infected by the sigma virus, a vertically transmitted and host-specific pathogen. In fly populations, there is a large amount of genetic variation in the transmission rate from parent to offspring, much of which is caused by major-effect resistance polymorphisms. We have found that there are similarly high levels of genetic variation in the rate of paternal transmission among 95 different isolates of the virus as in the host. However, when we examined a transmission-blocking gene in the host, we found that it was effective across virus isolates. Therefore, the high levels of genetic variation observed in this system do not appear to be maintained because of coevolution resulting from interactions between this host gene and parasite genes.

  14. Leishmania major: Genetic Profiles of the Parasites Isolated from Chabahar, Southeastern Iran by PPIP-PCR

    PubMed Central

    SHARIFI-RAD, Mehdi; DABIRZADEH, Mansour; SHARIFI, Iraj; BABAEI, Zahra

    2016-01-01

    Background: Leishmaniasis is important vector-borne parasitic disease worldwide, caused by the genus Leishmania. The objective of the current study was to identify genetic polymorphism in L. major, one of the species causing cutaneous leishmaniasis (CL), isolated from southeastern Iran, using Permissively Primed Intergenic Polymorphic-Polymerase Chain Reaction (PPIP-PCR) method. Methods: Overall, 340 patients with suspected CL were examined. They referred to the Central Laboratory in Chabahar, Iran during Apr 2013 to Feb 2014. Microscopic examination of Giemsa-stained slides from lesions as well as aspirates cultured in Novy- Mac Neal-Nicolle (NNN) Media was employed in order to diagnose CL in these patients. Our analyses detected 86 suspected subjects as having CL from which 35 isolates were cultured successfully. PPIP-PCR method was performed on extracted genomic DNA from selected isolates in order to determine the genetic polymorphism among L. major isolates. Results: The electrophoresis patterns demonstrated two genetic profiles including A or A1 patterns between all samples tested. Frequency of A and A1 sub-types were 33 (94.3%) and two (5.7%), respectively. Conclusion: Both host and parasite factors may contribute to the clinical profile of human leishmaniasis in the endemic foci of the disease. Here we showed that genetic variations pertaining to the Leishmania parasites might determine, in part, the clinical outcomes of human leishmaniasis. PMID:28127333

  15. Life history determines genetic structure and evolutionary potential of host–parasite interactions

    PubMed Central

    Barrett, Luke G.; Thrall, Peter H.; Burdon, Jeremy J.; Linde, Celeste C.

    2009-01-01

    Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns. PMID:18947899

  16. Individual genetic diversity and probability of infection by avian malaria parasites in blue tits (Cyanistes caeruleus).

    PubMed

    Ferrer, E S; García-Navas, V; Sanz, J J; Ortego, J

    2014-11-01

    Understanding the importance of host genetic diversity for coping with parasites and infectious diseases is a long-standing goal in evolutionary biology. Here, we study the association between probability of infection by avian malaria (Plasmodium relictum) and individual genetic diversity in three blue tit (Cyanistes caeruleus) populations that strongly differ in prevalence of this parasite. For this purpose, we screened avian malaria infections and genotyped 789 blue tits across 26 microsatellite markers. We used two different arrays of markers: 14 loci classified as neutral and 12 loci classified as putatively functional. We found a significant relationship between probability of infection and host genetic diversity estimated at the subset of neutral markers that was not explained by strong local effects and did not differ among the studied populations. This relationship was not linear, and probability of infection increased up to values of homozygosity by locus (HL) around 0.15, reached a plateau at values of HL from 0.15 to 0.40 and finally declined among a small proportion of highly homozygous individuals (HL > 0.4). We did not find evidence for significant identity disequilibrium, which may have resulted from a low variance of inbreeding in the study populations and/or the small power of our set of markers to detect it. A combination of subtle positive and negative local effects and/or a saturation threshold in the association between probability of infection and host genetic diversity in combination with increased resistance to parasites in highly homozygous individuals may explain the observed negative quadratic relationship. Overall, our study highlights that parasites play an important role in shaping host genetic variation and suggests that the use of large sets of neutral markers may be more appropriate for the study of heterozygosity-fitness correlations. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014

  17. New insights into the genetic diversity of Leishmania RNA Virus 1 and its species-specific relationship with Leishmania parasites.

    PubMed

    Cantanhêde, Lilian Motta; Fernandes, Flavia Gonçalves; Ferreira, Gabriel Eduardo Melim; Porrozzi, Renato; Ferreira, Ricardo de Godoi Mattos; Cupolillo, Elisa

    2018-01-01

    Cutaneous leishmaniasis is a neglected parasitic disease that manifests in infected individuals under different phenotypes, with a range of factors contributing to its broad clinical spectrum. One factor, Leishmania RNA Virus 1 (LRV1), has been described as an endosymbiont present in different species of Leishmania. LRV1 significantly worsens the lesion, exacerbating the immune response in both experimentally infected animals and infected individuals. Little is known about the composition and genetic diversity of these viruses. Here, we investigated the relationship between the genetic composition of LRV1 detected in strains of Leishmania (Viannia) braziliensis and L. (V.) guyanensis and the interaction between the endosymbiont and the parasitic species, analyzing an approximately 850 base pair region of the viral genome. We also included one LRV1 sequence detected in L. (V.) shawi, representing the first report of LRV1 in a species other than L. braziliensis and L. guyanensis. The results illustrate the genetic diversity of the LRV1 strains analyzed here, with smaller divergences detected among viral sequences from the same parasite species. Phylogenetic analyses showed that the LRV1 sequences are grouped according to the parasite species and possibly according to the population of the parasite in which the virus was detected, corroborating the hypothesis of joint evolution of the viruses with the speciation of Leishmania parasites.

  18. Molecular Genetic Analysis of Parasite Survival in P. falciparum Malaria.

    DTIC Science & Technology

    1991-03-15

    conducting research utilizing recombinant DNA technology , the investigator(s) adhered to current guidelines promulgated by the National Institute of Health...oligonucleotides unrelated to the conserved elements of Plasmodium falciparum were used (lane marked random oligo). Furthermore, extracts prepared...once with Ix Trager’s buffer. The following steps were carried out on ice. Erythrocytes were lysed in 0.05% saponin (19). The released parasites were

  19. A novel approach to parasite population genetics: experimental infection reveals geographic differentiation, recombination and host-mediated population structure in Pasteuria ramosa, a bacterial parasite of Daphnia.

    PubMed

    Andras, J P; Ebert, D

    2013-02-01

    The population structure of parasites is central to the ecology and evolution of host-parasite systems. Here, we investigate the population genetics of Pasteuria ramosa, a bacterial parasite of Daphnia. We used natural P. ramosa spore banks from the sediments of two geographically well-separated ponds to experimentally infect a panel of Daphnia magna host clones whose resistance phenotypes were previously known. In this way, we were able to assess the population structure of P. ramosa based on geography, host resistance phenotype and host genotype. Overall, genetic diversity of P. ramosa was high, and nearly all infected D. magna hosted more than one parasite haplotype. On the basis of the observation of recombinant haplotypes and relatively low levels of linkage disequilibrium, we conclude that P. ramosa engages in substantial recombination. Isolates were strongly differentiated by pond, indicating that gene flow is spatially restricted. Pasteuria ramosa isolates within one pond were segregated completely based on the resistance phenotype of the host-a result that, to our knowledge, has not been previously reported for a nonhuman parasite. To assess the comparability of experimental infections with natural P. ramosa isolates, we examined the population structure of naturally infected D. magna native to one of the two source ponds. We found that experimental and natural infections of the same host resistance phenotype from the same source pond were indistinguishable, indicating that experimental infections provide a means to representatively sample the diversity of P. ramosa while reducing the sampling bias often associated with studies of parasite epidemics. These results expand our knowledge of this model parasite, provide important context for the large existing body of research on this system and will guide the design of future studies of this host-parasite system. © 2012 Blackwell Publishing Ltd.

  20. Population genetics, community of parasites, and resistance to rodenticides in an urban brown rat (Rattus norvegicus) population

    PubMed Central

    Gasqui, Patrick; Cosson, Jean-François; Benoît, Etienne; Lattard, Virginie; Crespin, Laurent; Lorvelec, Olivier; Pisanu, Benoît; Teynié, Alexandre; Vayssier-Taussat, Muriel; Bonnet, Sarah; Marianneau, Philippe; Lacôte, Sandra; Bourhy, Pascale; Berny, Philippe; Pavio, Nicole; Le Poder, Sophie; Gilot-Fromont, Emmanuelle; Jourdain, Elsa; Hammed, Abdessalem; Fourel, Isabelle; Chikh, Farid; Vourc’h, Gwenaël

    2017-01-01

    Brown rats are one of the most widespread urban species worldwide. Despite the nuisances they induce and their potential role as a zoonotic reservoir, knowledge on urban rat populations remains scarce. The main purpose of this study was to characterize an urban brown rat population from Chanteraines park (Hauts-de-Seine, France), with regards to haematology, population genetics, immunogenic diversity, resistance to anticoagulant rodenticides, and community of parasites. Haematological parameters were measured. Population genetics was investigated using 13 unlinked microsatellite loci. Immunogenic diversity was assessed for Mhc-Drb. Frequency of the Y139F mutation (conferring resistance to rodenticides) and two linked microsatellites were studied, concurrently with the presence of anticoagulant residues in the liver. Combination of microscopy and molecular methods were used to investigate the occurrence of 25 parasites. Statistical approaches were used to explore multiple parasite relationships and model parasite occurrence. Eighty-six rats were caught. The first haematological data for a wild urban R. norvegicus population was reported. Genetic results suggested high genetic diversity and connectivity between Chanteraines rats and surrounding population(s). We found a high prevalence (55.8%) of the mutation Y139F and presence of rodenticide residues in 47.7% of the sampled individuals. The parasite species richness was high (16). Seven potential zoonotic pathogens were identified, together with a surprisingly high diversity of Leptospira species (4). Chanteraines rat population is not closed, allowing gene flow and making eradication programs challenging, particularly because rodenticide resistance is highly prevalent. Parasitological results showed that co-infection is more a rule than an exception. Furthermore, the presence of several potential zoonotic pathogens, of which four Leptospira species, in this urban rat population raised its role in the maintenance

  1. Population genetics, community of parasites, and resistance to rodenticides in an urban brown rat (Rattus norvegicus) population.

    PubMed

    Desvars-Larrive, Amélie; Pascal, Michel; Gasqui, Patrick; Cosson, Jean-François; Benoît, Etienne; Lattard, Virginie; Crespin, Laurent; Lorvelec, Olivier; Pisanu, Benoît; Teynié, Alexandre; Vayssier-Taussat, Muriel; Bonnet, Sarah; Marianneau, Philippe; Lacôte, Sandra; Bourhy, Pascale; Berny, Philippe; Pavio, Nicole; Le Poder, Sophie; Gilot-Fromont, Emmanuelle; Jourdain, Elsa; Hammed, Abdessalem; Fourel, Isabelle; Chikh, Farid; Vourc'h, Gwenaël

    2017-01-01

    Brown rats are one of the most widespread urban species worldwide. Despite the nuisances they induce and their potential role as a zoonotic reservoir, knowledge on urban rat populations remains scarce. The main purpose of this study was to characterize an urban brown rat population from Chanteraines park (Hauts-de-Seine, France), with regards to haematology, population genetics, immunogenic diversity, resistance to anticoagulant rodenticides, and community of parasites. Haematological parameters were measured. Population genetics was investigated using 13 unlinked microsatellite loci. Immunogenic diversity was assessed for Mhc-Drb. Frequency of the Y139F mutation (conferring resistance to rodenticides) and two linked microsatellites were studied, concurrently with the presence of anticoagulant residues in the liver. Combination of microscopy and molecular methods were used to investigate the occurrence of 25 parasites. Statistical approaches were used to explore multiple parasite relationships and model parasite occurrence. Eighty-six rats were caught. The first haematological data for a wild urban R. norvegicus population was reported. Genetic results suggested high genetic diversity and connectivity between Chanteraines rats and surrounding population(s). We found a high prevalence (55.8%) of the mutation Y139F and presence of rodenticide residues in 47.7% of the sampled individuals. The parasite species richness was high (16). Seven potential zoonotic pathogens were identified, together with a surprisingly high diversity of Leptospira species (4). Chanteraines rat population is not closed, allowing gene flow and making eradication programs challenging, particularly because rodenticide resistance is highly prevalent. Parasitological results showed that co-infection is more a rule than an exception. Furthermore, the presence of several potential zoonotic pathogens, of which four Leptospira species, in this urban rat population raised its role in the maintenance

  2. Absence of genetic structure in Baylisascaris schroederi populations, a giant panda parasite, determined by mitochondrial sequencing.

    PubMed

    Xie, Yue; Zhou, Xuan; Zhang, Zhihe; Wang, Chengdong; Sun, Yun; Liu, Tianyu; Gu, Xiaobin; Wang, Tao; Peng, Xuerong; Yang, Guangyou

    2014-12-23

    Infection with the parasitic nematode, Baylisascaris schroederi (Ascaridida: Nematoda), is one of the most important causes of death in giant pandas, and was responsible for half of deaths between 2001 and 2005. Mitochondrial (mt) DNA sequences of parasites can unveil their genetic diversity and depict their likely dynamic evolution and therefore may provide insights into parasite survival and responses to host changes, as well as parasite control. Based on previous studies, the present study further annotated the genetic variability and structure of B. schroederi populations by combining two different mtDNA markers, ATPase subunit 6 (atp6) and cytochrome c oxidase subunit I (cox1). Both sequences were completely amplified and genetically analyzed among 57 B. schroederi isolates, which were individually collected from ten geographical regions located in three important giant panda habitats in China (Minshan, Qionglai and Qinling mountain ranges). For the DNA dataset, we identified 20 haplotypes of atp6, 24 haplotypes of cox1, and 39 haplotypes of atp6 + cox1. Further haplotype network and phylogenetic analyses demonstrated that B. schroederi populations were predominantly driven by three common haplotypes, atp6 A1, cox1 C10, and atp6 + cox1 H11. However, due to low rates of gene differentiation between the three populations, both the atp6 and cox1 genes appeared not to be significantly associated with geographical divisions. In addition, high gene flow was detected among the B. schroederi populations, consistent with previous studies, suggesting that this parasite may be essentially homogenous across endemic areas. Finally, neutrality tests and mismatch analysis indicated that B. schroederi had undergone earlier demographic expansion. These results confirmed that B. schroederi populations do not follow a pattern of isolation by distance, further revealing the possible existence of physical connections before geographic separation. This study should also

  3. Prevalence, transmission, and genetic diversity of blood parasites infecting tundra-nesting geese in Alaska

    USGS Publications Warehouse

    Ramey, Andy M.; Reed, John A.; Schmutz, Joel A.; Fondell, Tom F.; Meixell, Brandt W.; Hupp, Jerry W.; Ward, David H.; Terenzi, John; Ely, Craig R.

    2014-01-01

    A total of 842 blood samples collected from five species of tundra-nesting geese in Alaska was screened for haemosporidian parasites using molecular techniques. Parasites of the generaLeucocytozoon Danilewsky, 1890, Haemoproteus Kruse, 1890, and Plasmodium Marchiafava and Celli, 1885 were detected in 169 (20%), 3 (<1%), and 0 (0%) samples, respectively. Occupancy modeling was used to estimate prevalence of Leucocytozoon parasites and assess variation relative to species, age, sex, geographic area, year, and decade. Species, age, and decade were identified as important in explaining differences in prevalence of Leucocytozoonparasites. Leucocytozoon parasites were detected in goslings sampled along the Arctic Coastal Plain using both historic and contemporary samples, which provided support for transmission in the North American Arctic. In contrast, lack of detection of Haemoproteus and Plasmodiumparasites in goslings (n = 238) provided evidence to suggest that the transmission of parasites of these genera may not occur among waterfowl using tundra habitats in Alaska, or alternatively, may only occur at low levels. Five haemosporidian genetic lineages shared among different species of geese sampled from two geographic areas were indicative of interspecies parasite transmission and supported broad parasite or vector distributions. However, identicalLeucocytozoon and Haemoproteus lineages on public databases were limited to waterfowl hosts suggesting constraints in the range of parasite hosts.

  4. Parasite and vertebrate host genetic heterogeneity determine the outcome of infection by Schistosoma mansoni.

    PubMed

    Nino Incani, R; Morales, G; Cesari, I M

    2001-02-01

    Intraspecific variation in Schistosoma mansoni infection and modulation of its expression by vertebrate host genetics was studied by evaluation of some biological parameters of the infection in BALB/c and C57BL/6 mice infected with one Brazilian (BH) and two Venezuelan (YT and SM) laboratory strains of the parasite. Mice infected with 60 cercariae of each parasite strain were euthanized at 5, 6, 8, and 12 weeks. Parameters recorded included the number of adult worms recovered by portal perfusion (infectivity); the number of eggs in the feces, the intestine, and the liver; and the ability of the eggs to cross the intestine, expressed as a quotient of the number of eggs in the intestine versus the feces. Results showed that the parasite appeared to determine the infectivity, the sex ratio, the onset and timing of oviposition, the number of eggs produced, initial egg laying toward the liver, and the ability to cross the intestinal wall. In this sense the BH strain appeared to be the most efficient and the SM strain, the most delayed; the YT strain was intermediate, although closer to the SM strain. On the other hand, the host appeared to influence the susceptibility to infection, the fecundity, and the percentage of eggs distributed in the liver and in the intestine during the chronic stage. In this sense, although they have been shown to be less susceptible to infection than BALB/c mice, C57BL/6 mice permit more eggs to be produced and exhibit similar numbers of eggs in the intestine and the liver at certain time points. It appears from these results that parasite genetics is essential for the outcome of infection with S. mansoni, but some characteristics may be quantitatively modulated by host genetics.

  5. Modularization of genetic elements promotes synthetic metabolic engineering.

    PubMed

    Qi, Hao; Li, Bing-Zhi; Zhang, Wen-Qian; Liu, Duo; Yuan, Ying-Jin

    2015-11-15

    In the context of emerging synthetic biology, metabolic engineering is moving to the next stage powered by new technologies. Systematical modularization of genetic elements makes it more convenient to engineer biological systems for chemical production or other desired purposes. In the past few years, progresses were made in engineering metabolic pathway using synthetic biology tools. Here, we spotlighted the topic of implementation of modularized genetic elements in metabolic engineering. First, we overviewed the principle developed for modularizing genetic elements and then discussed how the genetic modules advanced metabolic engineering studies. Next, we picked up some milestones of engineered metabolic pathway achieved in the past few years. Last, we discussed the rapid raised synthetic biology field of "building a genome" and the potential in metabolic engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Natural genetic and induced plant resistance, as a control strategy to plant-parasitic nematodes alternative to pesticides.

    PubMed

    Molinari, Sergio

    2011-03-01

    Plant-parasitic nematodes are pests of a wide range of economically important crops, causing severe losses to agriculture. Natural genetic resistance of plants is expected to be a valid solution of the many problems nematodes cause all over the world. Progress in resistance applications is particularly important for the less-developed countries of tropical and subtropical regions, since use of resistant cultivars may be the only possible and economically feasible control strategy in those farming systems. Resistance is being considered of particular importance also in modern high-input production systems of developed countries, as the customary reliance on chemical nematicides has been restricted or has come to an end. This review briefly describes the genetic bases of resistance to nematodes in plants and focuses on the chances and problems of its exploitation as a key element in an integrated management program. Much space is dedicated to the major problem of resistance durability, in that the intensive use of resistant cultivars is likely to increasingly induce the selection of virulent populations able to "break" the resistance. Protocols of pest-host suitability are described, as bioassays are being used to evaluate local nematode populations in their potential to be selected on resistant germplasm and endanger resistant crops. The recent progress in using robust and durable resistances against nematodes as an efficient method for growers in vegetable cropping systems is reported, as well as the possible use of chemicals that do not show any unfavorable impact on environment, to induce in plants resistance against plant-parasitic nematodes.

  7. Genetic evidence of extra-pair paternity and intraspecific brood parasitism in the monk parakeet

    PubMed Central

    2013-01-01

    Introduction The monk parakeet (Myiopsitta monachus) is a widespread invasive species native to southern South America that has become established in many regions of the world. Monk parakeets breed in a large, fully enclosed structure built from twigs, which consist of one to many individual brooding chambers. The species has been considered to be socially and genetically monogamous. However, genetic relatedness of adults to juveniles in the native area was found to be lower than expected for monogamy. To assess the significance of this discrepancy, we examined individual and population genetic patterns of microsatellite loci at two sites in Córdoba province, Argentina. Results We sampled 154 nestlings and 42 adults in Córdoba, Argentina. Mean value of pairwise relatedness of nestlings within chambers was about 0.40. Contrarily, relatedness of nestlings between chambers was close to zero. We found a considerable degree of variation in nestling pairwise relatedness and parentage within chambers, including chambers with combinations of unrelated, half-sib, and full-sib nestlings. The proportion of sibling relatedness indicated monogamy in 47% and extra pair-paternity in 40% of the chambers. We also found intra-brood parasitism in 3% of the chambers. Conclusions Our results indicate that the monk parakeet is sexually polygamous in its native range in Argentina, which is consistent with the observed mean value of relatedness of adults to juveniles of about 0.4. We also confirm the existence of intra-brood parasitism. High density of monk parakeets may favor occurrence of extra-pair paternity and intra-brood parasitism in the native sites. PMID:24209709

  8. Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites

    PubMed Central

    2010-01-01

    Background Classical and quantitative linkage analyses of genetic crosses have traditionally been used to map genes of interest, such as those conferring chloroquine or quinine resistance in malaria parasites. Next-generation sequencing technologies now present the possibility of determining genome-wide genetic variation at single base-pair resolution. Here, we combine in vivo experimental evolution, a rapid genetic strategy and whole genome re-sequencing to identify the precise genetic basis of artemisinin resistance in a lineage of the rodent malaria parasite, Plasmodium chabaudi. Such genetic markers will further the investigation of resistance and its control in natural infections of the human malaria, P. falciparum. Results A lineage of isogenic in vivo drug-selected mutant P. chabaudi parasites was investigated. By measuring the artemisinin responses of these clones, the appearance of an in vivo artemisinin resistance phenotype within the lineage was defined. The underlying genetic locus was mapped to a region of chromosome 2 by Linkage Group Selection in two different genetic crosses. Whole-genome deep coverage short-read re-sequencing (Illumina® Solexa) defined the point mutations, insertions, deletions and copy-number variations arising in the lineage. Eight point mutations arise within the mutant lineage, only one of which appears on chromosome 2. This missense mutation arises contemporaneously with artemisinin resistance and maps to a gene encoding a de-ubiquitinating enzyme. Conclusions This integrated approach facilitates the rapid identification of mutations conferring selectable phenotypes, without prior knowledge of biological and molecular mechanisms. For malaria, this model can identify candidate genes before resistant parasites are commonly observed in natural human malaria populations. PMID:20846421

  9. The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model

    PubMed Central

    Fields, Peter D.; Bourgeois, Yann; Du Pasquier, Louis; Ebert, Dieter

    2017-01-01

    Negative frequency-dependent selection (NFDS) is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus associated with D. magna resistance to P. ramosa and genetically characterize two haplotypes of the Pasteuria resistance (PR-) locus using de novo genome and transcriptome sequencing. Sequence comparison of PR-locus haplotypes finds dramatic structural polymorphisms between PR-locus haplotypes including a large portion of each haplotype being composed of non-homologous sequences resulting in haplotypes differing in size by 66 kb. The high divergence of PR-locus haplotypes suggest a history of multiple, diverse and repeated instances of structural mutation events and restricted recombination. Annotation of the haplotypes reveals striking differences in gene content. In particular, a group of glycosyltransferase genes that is present in the susceptible but absent in the resistant haplotype. Moreover, in natural populations, we find that the PR-locus polymorphism is associated with variation in resistance to different P. ramosa genotypes, pointing to the PR-locus polymorphism as being responsible for the matching-allele interactions that have been previously described for this system. Our results conclusively identify a genetic basis for the matching-allele interaction observed in a coevolving host-parasite system and provide a first insight into its molecular basis

  10. The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model.

    PubMed

    Bento, Gilberto; Routtu, Jarkko; Fields, Peter D; Bourgeois, Yann; Du Pasquier, Louis; Ebert, Dieter

    2017-02-01

    Negative frequency-dependent selection (NFDS) is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus associated with D. magna resistance to P. ramosa and genetically characterize two haplotypes of the Pasteuria resistance (PR-) locus using de novo genome and transcriptome sequencing. Sequence comparison of PR-locus haplotypes finds dramatic structural polymorphisms between PR-locus haplotypes including a large portion of each haplotype being composed of non-homologous sequences resulting in haplotypes differing in size by 66 kb. The high divergence of PR-locus haplotypes suggest a history of multiple, diverse and repeated instances of structural mutation events and restricted recombination. Annotation of the haplotypes reveals striking differences in gene content. In particular, a group of glycosyltransferase genes that is present in the susceptible but absent in the resistant haplotype. Moreover, in natural populations, we find that the PR-locus polymorphism is associated with variation in resistance to different P. ramosa genotypes, pointing to the PR-locus polymorphism as being responsible for the matching-allele interactions that have been previously described for this system. Our results conclusively identify a genetic basis for the matching-allele interaction observed in a coevolving host-parasite system and provide a first insight into its molecular basis.

  11. Multiple genetic origins of histidine-rich protein 2 gene deletion in Plasmodium falciparum parasites from Peru

    PubMed Central

    Akinyi, Sheila; Hayden, Tonya; Gamboa, Dionicia; Torres, Katherine; Bendezu, Jorge; Abdallah, Joseph F.; Griffing, Sean M.; Quezada, Wilmer Marquiño; Arrospide, Nancy; De Oliveira, Alexandre Macedo; Lucas, Carmen; Magill, Alan J.; Bacon, David J.; Barnwell, John W.; Udhayakumar, Venkatachalam

    2013-01-01

    The majority of malaria rapid diagnostic tests (RDTs) detect Plasmodium falciparum histidine-rich protein 2 (PfHRP2), encoded by the pfhrp2 gene. Recently, P. falciparum isolates from Peru were found to lack pfhrp2 leading to false-negative RDT results. We hypothesized that pfhrp2-deleted parasites in Peru derived from a single genetic event. We evaluated the parasite population structure and pfhrp2 haplotype of samples collected between 1998 and 2005 using seven neutral and seven chromosome 8 microsatellite markers, respectively. Five distinct pfhrp2 haplotypes, corresponding to five neutral microsatellite-based clonal lineages, were detected in 1998-2001; pfhrp2 deletions occurred within four haplotypes. In 2003-2005, outcrossing among the parasite lineages resulted in eight population clusters that inherited the five pfhrp2 haplotypes seen previously and a new haplotype; pfhrp2 deletions occurred within four of these haplotypes. These findings indicate that the genetic origin of pfhrp2 deletion in Peru was not a single event, but likely occurred multiple times. PMID:24077522

  12. Identification of opportunistic enteric parasites among immunocompetent patients with diarrhoea from Northern India and genetic characterisation of Cryptosporidium and Microsporidia.

    PubMed

    Ghoshal, U; Dey, A; Ranjan, P; Khanduja, S; Agarwal, V; Ghoshal, U C

    2016-01-01

    Enteric parasitic infestation is a major public health problem in developing countries. Parasites such as Cryptosporidium spp., Cyclospora spp., Cystoisospora spp. and Microsporidia may cause severe diarrhoea among immunocompromised patients. There is scanty data on their frequency among immunocompetent patients. Accordingly, we studied the frequency of enteric opportunistic parasites among immunocompetent patients with diarrhoea from northern India; we also performed genetic characterisation of Cryptosporidia and Microsporidia among them. Stool samples from 80 immunocompetent patients with diarrhoea, and 110 healthy controls were examined. Parasites were detected by direct microscopy, modified acid-fast (Kinyoun's) and modified trichrome stain. Polymerase chain reaction--restriction fragment length polymorphism was used for genetic characterisation of selected species such as Cryptosporidia and Microsporidia. Enteric parasites were detected in 16/80 (20%) patients (mean age 28.8±20 years, 45, 56% males) and in 2/110 (1.8%) healthy controls (P=0.00007). Parasites detected were Cryptosporidium spp. (8/16, 50.0%), Cystoisospora spp. (4/16, 25%), Microsporidia (1/16, 6.25%), Cyclospora spp. (1/16, 6.25%) and Giardia spp. (1/16, 6.25%). One patient had mixed infection with Cystoisospora spp. and Giardia spp. The species of Cryptosporidia and Microsporidia detected were Cryptosporidium hominis and Enterocytozoon bieneusi, respectively. Parasites were more often detected in younger patients (≤20 years of age) than in older. Most of the parasite infected patients presented with chronic diarrhoea. Opportunistic enteric parasitic infestation was more common among immunocompetent patients with diarrhoea than healthy subjects. Special staining as well as molecular methods are essential for appropriate diagnosis of these parasites.

  13. A parasitic selfish gene that affects host promiscuity.

    PubMed

    Giraldo-Perez, Paulina; Goddard, Matthew R

    2013-11-07

    Selfish genes demonstrate transmission bias and invade sexual populations despite conferring no benefit to their hosts. While the molecular genetics and evolutionary dynamics of selfish genes are reasonably well characterized, their effects on hosts are not. Homing endonuclease genes (HEGs) are one well-studied family of selfish genes that are assumed to be benign. However, we show that carrying HEGs is costly for Saccharomyces cerevisiae, demonstrating that these genetic elements are not necessarily benign but maybe parasitic. We estimate a selective load of approximately 1-2% in 'natural' niches. The second aspect we examine is the ability of HEGs to affect hosts' sexual behaviour. As all selfish genes critically rely on sex for spread, then any selfish gene correlated with increased host sexuality will enjoy a transmission advantage. While classic parasites are known to manipulate host behaviour, we are not aware of any evidence showing a selfish gene is capable of affecting host promiscuity. The data presented here show a selfish element may increase the propensity of its eukaryote host to undergo sex and along with increased rates of non-Mendelian inheritance, this may counterbalance mitotic selective load and promote spread. Demonstration that selfish genes are correlated with increased promiscuity in eukaryotes connects with ideas suggesting that selfish genes promoted the evolution of sex initially.

  14. Landscape genetics of Schistocephalus solidus parasites in threespine stickleback (Gasterosteus aculeatus) from Alaska.

    PubMed

    Sprehn, C Grace; Blum, Michael J; Quinn, Thomas P; Heins, David C

    2015-01-01

    The nature of gene flow in parasites with complex life cycles is poorly understood, particularly when intermediate and definitive hosts have contrasting movement potential. We examined whether the fine-scale population genetic structure of the diphyllobothriidean cestode Schistocephalus solidus reflects the habits of intermediate threespine stickleback hosts or those of its definitive hosts, semi-aquatic piscivorous birds, to better understand complex host-parasite interactions. Seventeen lakes in the Cook Inlet region of south-central Alaska were sampled, including ten in the Matanuska-Susitna Valley, five on the Kenai Peninsula, and two in the Bristol Bay drainage. We analyzed sequence variation across a 759 bp region of the mitochondrial DNA (mtDNA) cytochrome oxidase I region for 1,026 S. solidus individuals sampled from 2009-2012. We also analyzed allelic variation at 8 microsatellite loci for 1,243 individuals. Analysis of mtDNA haplotype and microsatellite genotype variation recovered evidence of significant population genetic structure within S. solidus. Host, location, and year were factors in structuring observed genetic variation. Pairwise measures revealed significant differentiation among lakes, including a pattern of isolation-by-distance. Bayesian analysis identified three distinct genotypic clusters in the study region, little admixture within hosts and lakes, and a shift in genotype frequencies over time. Evidence of fine-scale population structure in S. solidus indicates that movement of its vagile, definitive avian hosts has less influence on gene flow than expected based solely on movement potential. Observed patterns of genetic variation may reflect genetic drift, behaviors of definitive hosts that constrain dispersal, life history of intermediate hosts, and adaptive specificity of S. solidus to intermediate host genotype.

  15. Extrachromosomal genetic elements in Micrococcus.

    PubMed

    Dib, Julián Rafael; Liebl, Wolfgang; Wagenknecht, Martin; Farías, María Eugenia; Meinhardt, Friedhelm

    2013-01-01

    Micrococci are Gram-positive G + C-rich, nonmotile, nonspore-forming actinomycetous bacteria. Micrococcus comprises ten members, with Micrococcus luteus being the type species. Representatives of the genus play important roles in the biodegradation of xenobiotics, bioremediation processes, production of biotechnologically important enzymes or bioactive compounds, as test strains in biological assays for lysozyme and antibiotics, and as infective agents in immunocompromised humans. The first description of plasmids dates back approximately 28 years, when several extrachromosomal elements ranging in size from 1.5 to 30.2 kb were found in Micrococcus luteus. Up to the present, a number of circular plasmids conferring antibiotic resistance, the ability to degrade aromatic compounds, and osmotolerance are known, as well as cryptic elements with unidentified functions. Here, we review the Micrococcus extrachromosomal traits reported thus far including phages and the only quite recently described large linear extrachromosomal genetic elements, termed linear plasmids, which range in size from 75 kb (pJD12) to 110 kb (pLMA1) and which confer putative advantageous capabilities, such as antibiotic or heavy metal resistances (inferred from sequence analyses and curing experiments). The role of the extrachromosomal elements for the frequently proven ecological and biotechnological versatility of the genus will be addressed as well as their potential for the development and use as genetic tools.

  16. An analysis of mobile genetic elements in three Plasmodium species and their potential impact on the nucleotide composition of the P. falciparum genome.

    PubMed

    Durand, Pierre M; Oelofse, Andries J; Coetzer, Theresa L

    2006-11-04

    The completed genome sequences of the malaria parasites P. falciparum, P. y. yoelii and P. vivax have revealed some unusual features. P. falciparum contains the most AT rich genome sequenced so far--over 90% in some regions. In comparison, P. y. yoelii is approximately 77% and P. vivax is approximately 55% AT rich. The evolutionary reasons for these findings are unknown. Mobile genetic elements have a considerable impact on genome evolution but a thorough investigation of these elements in Plasmodium has not been undertaken. We therefore performed a comprehensive genome analysis of these elements and their derivatives in the three Plasmodium species. Whole genome analysis was performed using bioinformatic methods. Forty potential protein encoding sequences with features of transposable elements were identified in P. vivax, eight in P. y. yoelii and only six in P. falciparum. Further investigation of the six open reading frames in P. falciparum revealed that only one is potentially an active mobile genetic element. Most of the open reading frames identified in all three species are hypothetical proteins. Some represent annotated host proteins such as the putative telomerase reverse transcriptase genes in P. y. yoelii and P. falciparum. One of the P. vivax open reading frames identified in this study demonstrates similarity to telomerase reverse transcriptase and we conclude it to be the orthologue of this gene. There is a divergence in the frequencies of mobile genetic elements in the three Plasmodium species investigated. Despite the limitations of whole genome analytical methods, it is tempting to speculate that mobile genetic elements might have been a driving force behind the compositional bias of the P. falciparum genome.

  17. Genetic variation in the invasive avian parasite, Philornis downsi (Diptera, Muscidae) on the Galápagos archipelago

    PubMed Central

    Dudaniec, Rachael Y; Gardner, Michael G; Donnellan, Steve; Kleindorfer, Sonia

    2008-01-01

    Background Understanding the dispersal and genetic structure of invasive insects across islands is important for designing management plans that are appropriate at spatial and temporal scales. For invasive parasites, population dynamics are largely determined by the distribution and density of their host species. The introduced parasitic fly, Philornis downsi, parasitises nestlings of endemic birds on all major islands of the Galápagos archipelago. The fly's high mortality and fitness impacts are of conservation concern for vulnerable and declining species of Darwin's finches. Using microsatellite data in Bayesian clustering and landscape genetic analyses, we examine gene flow and dispersal in P. downsi between three islands and across habitats (highlands, lowlands) and examine for the presence of population bottlenecks. We also examine variation at the mitochondrial gene CO1 across islands to establish if cryptic species were present. Results Both the mitochondrial and microsatellite data were consistent with there being a single species across islands. We found low genetic differentiation between islands and strong evidence for inter-island gene flow, or shared recent ancestry among individuals. Landscape genetic analysis identified two genetic clusters: one encompassing Santa Cruz and Isabela, and one on Floreana Island. There was no evidence of genetic differentiation between habitats and molecular variance was mainly attributable to within individuals. The combined P. downsi population was found to have undergone a population bottleneck. Conclusion Philornis downsi populations have high connectivity within and between islands, with low levels of genetic differentiation between Floreana and the other two islands examined. The genetic bottleneck found across islands suggests there was a small founding population or few introduction events of P. downsi. The high dispersal capacity and wide habitat use of P. downsi highlights the significant threat that this

  18. Genetic variation in the invasive avian parasite, Philornis downsi (Diptera, Muscidae) on the Galápagos archipelago.

    PubMed

    Dudaniec, Rachael Y; Gardner, Michael G; Donnellan, Steve; Kleindorfer, Sonia

    2008-07-31

    Understanding the dispersal and genetic structure of invasive insects across islands is important for designing management plans that are appropriate at spatial and temporal scales. For invasive parasites, population dynamics are largely determined by the distribution and density of their host species. The introduced parasitic fly, Philornis downsi, parasitises nestlings of endemic birds on all major islands of the Galápagos archipelago. The fly's high mortality and fitness impacts are of conservation concern for vulnerable and declining species of Darwin's finches. Using microsatellite data in Bayesian clustering and landscape genetic analyses, we examine gene flow and dispersal in P. downsi between three islands and across habitats (highlands, lowlands) and examine for the presence of population bottlenecks. We also examine variation at the mitochondrial gene CO1 across islands to establish if cryptic species were present. Both the mitochondrial and microsatellite data were consistent with there being a single species across islands. We found low genetic differentiation between islands and strong evidence for inter-island gene flow, or shared recent ancestry among individuals. Landscape genetic analysis identified two genetic clusters: one encompassing Santa Cruz and Isabela, and one on Floreana Island. There was no evidence of genetic differentiation between habitats and molecular variance was mainly attributable to within individuals. The combined P. downsi population was found to have undergone a population bottleneck. Philornis downsi populations have high connectivity within and between islands, with low levels of genetic differentiation between Floreana and the other two islands examined. The genetic bottleneck found across islands suggests there was a small founding population or few introduction events of P. downsi. The high dispersal capacity and wide habitat use of P. downsi highlights the significant threat that this parasite poses to the Gal

  19. PCR detection and genetic diversity of bovine hemoprotozoan parasites in Vietnam.

    PubMed

    Sivakumar, Thillaiampalam; Lan, Dinh Thi Bich; Long, Phung Thang; Yoshinari, Takeshi; Tattiyapong, Muncharee; Guswanto, Azirwan; Okubo, Kazuhiro; Igarashi, Ikuo; Inoue, Noboru; Xuan, Xuenan; Yokoyama, Naoaki

    2013-11-01

    Hemoprotozoan infections often cause serious production losses in livestock. In the present study, we conducted a PCR-based survey of Babesia bovis, Babesia bigemina, Theileria annulata, Theileria orientalis, Trypanosoma evansi and Trypanosoma theileri, using 423 DNA samples extracted from blood samples of cattle (n=202), water buffaloes (n=43), sheep (n=51) and goats (n=127) bred in the Hue and Hanoi provinces of Vietnam. With the exception of T. annulata and T. evansi, all other parasite species (B. bovis, B. bigemina, T. orientalis and T. theileri) were detected in the cattle populations with B. bovis being the most common among them. Additionally, four water buffaloes and a single goat were infected with B. bovis and B. bigemina, respectively. The Hue province had more hemoprotozoan-positive animals than those from the Hanoi region. In the phylogenetic analyses, B. bovis-MSA-2b, B. bigemina-AMA-1 and T. theileri-CATL gene sequences were dispersed across four, one and three different clades in the respective phylograms. This is the first study in which the presence of Babesia, Theileria and Trypanosoma parasites was simultaneously investigated by PCR in Vietnam. The findings suggest that hemoprotozoan parasites, some of which are genetically diverse, continue to be a threat to the livestock industry in this country.

  20. Genetic Diversity and Host Specificity Varies across Three Genera of Blood Parasites in Ducks of the Pacific Americas Flyway

    PubMed Central

    Reeves, Andrew B.; Smith, Mathew M.; Meixell, Brandt W.; Fleskes, Joseph P; Ramey, Andrew M.

    2015-01-01

    Birds of the order Anseriformes, commonly referred to as waterfowl, are frequently infected by Haemosporidia of the genera Haemoproteus, Plasmodium, and Leucocytozoon via dipteran vectors. We analyzed nucleotide sequences of the Cytochrome b (Cytb) gene from parasites of these genera detected in six species of ducks from Alaska and California, USA to characterize the genetic diversity of Haemosporidia infecting waterfowl at two ends of the Pacific Americas Flyway. In addition, parasite Cytb sequences were compared to those available on a public database to investigate specificity of genetic lineages to hosts of the order Anseriformes. Haplotype and nucleotide diversity of Haemoproteus Cytb sequences was lower than was detected for Plasmodium and Leucocytozoon parasites. Although waterfowl are presumed to be infected by only a single species of Leucocytozoon, L. simondi, diversity indices were highest for haplotypes from this genus and sequences formed five distinct clades separated by genetic distances of 4.9%–7.6%, suggesting potential cryptic speciation. All Haemoproteus and Leucocytozoon haplotypes derived from waterfowl samples formed monophyletic clades in phylogenetic analyses and were unique to the order Anseriformes with few exceptions. In contrast, waterfowl-origin Plasmodium haplotypes were identical or closely related to lineages found in other avian orders. Our results suggest a more generalist strategy for Plasmodium parasites infecting North American waterfowl as compared to those of the genera Haemoproteus and Leucocytozoon. PMID:25710468

  1. Reduced host-specificity in a parasite infecting non-littoral Lake Tanganyika cichlids evidenced by intraspecific morphological and genetic diversity

    PubMed Central

    Kmentová, Nikol; Gelnar, Milan; Mendlová, Monika; Van Steenberge, Maarten; Koblmüller, Stephan; Vanhove, Maarten P. M.

    2016-01-01

    Lake Tanganyika is well-known for its high species-richness and rapid radiation processes. Its assemblage of cichlid fishes recently gained momentum as a framework to study parasite ecology and evolution. It offers a rare chance to investigate the influence of a deepwater lifestyle in a freshwater fish-parasite system. Our study represents the first investigation of parasite intraspecific genetic structure related to host specificity in the lake. It focused on the monogenean flatworm Cichlidogyrus casuarinus infecting deepwater cichlids belonging to Bathybates and Hemibates. Morphological examination of C. casuarinus had previously suggested a broad host range, while the lake’s other Cichlidogyrus species are usually host specific. However, ongoing speciation or cryptic diversity could not be excluded. To distinguish between these hypotheses, we analysed intraspecific diversity of C. casuarinus. Monogeneans from nearly all representatives of the host genera were examined using morphometrics, geomorphometrics and genetics. We confirmed the low host-specificity of C. casuarinus based on morphology and nuclear DNA. Yet, intraspecific variation of sclerotized structures was observed. Nevertheless, the highly variable mitochondrial DNA indicated recent population expansion, but no ongoing parasite speciation, confirming, for the first time in freshwater, reduced parasite host specificity in the deepwater realm, probably an adaptation to low host availability. PMID:28004766

  2. Parasite-mediated heterozygote advantage in an outbred songbird population

    PubMed Central

    MacDougall-Shackleton, Elizabeth A; Derryberry, Elizabeth P; Foufopoulos, Johannes; Dobson, Andrew P; Hahn, Thomas P

    2005-01-01

    Coevolution with parasites is thought to maintain genetic diversity in host populations. However, while there are sound theoretical reasons to expect heterozygosity and parasite resistance to be related, this pattern has generally been shown only in inbred laboratory and island populations. This leaves doubt as to whether parasite-mediated selection for genetic diversity is in fact a general process. Here we show that haematozoan parasite load is linked to two complementary measures of microsatellite variability in an outbred population of mountain white-crowned sparrows (Zonotrichia leucophrys oriantha) for which we know that parasites reduce fitness. Moreover, each of the genetic measures predicts a subtly different aspect of parasitism. Microsatellite heterozygosity is related to an individual's risk of parasitism, and mean d2 (a broader, more long-term measure of parental relatedness) to the severity of infection among parasitized individuals. PMID:17148140

  3. Role of parasitic vaccines in integrated control of parasitic diseases in livestock

    PubMed Central

    Sharma, Neelu; Singh, Veer; Shyma, K. P.

    2015-01-01

    Parasitic infections adversely affect animal’s health and threaten profitable animal production, thus affecting the economy of our country. These infections also play a major role in the spread of zoonotic diseases. Parasitic infections cause severe morbidity and mortality in animals especially those affecting the gastrointestinal system and thus affect the economy of livestock owner by decreasing the ability of the farmer to produce economically useful animal products. Due to all these reasons proper control of parasitic infection is critically important for sustained animal production. The most common and regularly used method to control parasitic infection is chemotherapy, which is very effective but has several disadvantages like drug resistance and drug residues. Integrated approaches to control parasitic infections should be formulated including grazing management, biological control, genetic resistance of hosts, and parasitic vaccines. India ranks first in cattle and buffalo population, but the majority of livestock owners have fewer herds, so other measures like grazing management, biological control, genetic resistance of hosts are not much practical to use. The most sustainable and economical approach to control parasitic infection in our country is to vaccinate animals, although vaccines increase the initial cost, but the immunity offered by the vaccine are long lived. Thus, vaccination of animals for various clinical, chronic, subclinical parasitic infections will be a cheaper and effective alternative to control parasitic infection for long time and improve animal production. PMID:27047140

  4. Viruses and mobile elements as drivers of evolutionary transitions

    PubMed Central

    2016-01-01

    The history of life is punctuated by evolutionary transitions which engender emergence of new levels of biological organization that involves selection acting at increasingly complex ensembles of biological entities. Major evolutionary transitions include the origin of prokaryotic and then eukaryotic cells, multicellular organisms and eusocial animals. All or nearly all cellular life forms are hosts to diverse selfish genetic elements with various levels of autonomy including plasmids, transposons and viruses. I present evidence that, at least up to and including the origin of multicellularity, evolutionary transitions are driven by the coevolution of hosts with these genetic parasites along with sharing of ‘public goods’. Selfish elements drive evolutionary transitions at two distinct levels. First, mathematical modelling of evolutionary processes, such as evolution of primitive replicator populations or unicellular organisms, indicates that only increasing organizational complexity, e.g. emergence of multicellular aggregates, can prevent the collapse of the host–parasite system under the pressure of parasites. Second, comparative genomic analysis reveals numerous cases of recruitment of genes with essential functions in cellular life forms, including those that enable evolutionary transitions. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431520

  5. Viruses and mobile elements as drivers of evolutionary transitions.

    PubMed

    Koonin, Eugene V

    2016-08-19

    The history of life is punctuated by evolutionary transitions which engender emergence of new levels of biological organization that involves selection acting at increasingly complex ensembles of biological entities. Major evolutionary transitions include the origin of prokaryotic and then eukaryotic cells, multicellular organisms and eusocial animals. All or nearly all cellular life forms are hosts to diverse selfish genetic elements with various levels of autonomy including plasmids, transposons and viruses. I present evidence that, at least up to and including the origin of multicellularity, evolutionary transitions are driven by the coevolution of hosts with these genetic parasites along with sharing of 'public goods'. Selfish elements drive evolutionary transitions at two distinct levels. First, mathematical modelling of evolutionary processes, such as evolution of primitive replicator populations or unicellular organisms, indicates that only increasing organizational complexity, e.g. emergence of multicellular aggregates, can prevent the collapse of the host-parasite system under the pressure of parasites. Second, comparative genomic analysis reveals numerous cases of recruitment of genes with essential functions in cellular life forms, including those that enable evolutionary transitions.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The Authors.

  6. Selfish genetic elements and the gene’s-eye view of evolution

    PubMed Central

    2016-01-01

    During the last few decades, we have seen an explosion in the influx of details about the biology of selfish genetic elements. Ever since the early days of the field, the gene’s-eye view of Richard Dawkins, George Williams, and others, has been instrumental to make sense of new empirical observations and to the generation of new hypotheses. However, the close association between selfish genetic elements and the gene’s-eye view has not been without critics and several other conceptual frameworks have been suggested. In particular, proponents of multilevel selection models have used selfish genetic elements to criticize the gene’s-eye view. In this paper, I first trace the intertwined histories of the study of selfish genetic elements and the gene’s-eye view and then discuss how their association holds up when compared with other proposed frameworks. Next, using examples from transposable elements and the major transitions, I argue that different models highlight separate aspects of the evolution of selfish genetic elements and that the productive way forward is to maintain a plurality of perspectives. Finally, I discuss how the empirical study of selfish genetic elements has implications for other conceptual issues associated with the gene’s-eye view, such as agential thinking, adaptationism, and the role of fitness maximizing models in evolution. PMID:29491953

  7. [Progress of research on genetic engineering antibody and its application in prevention and control of parasitic diseases].

    PubMed

    Yao, Yuan; Yu, Chuan-xin

    2013-08-01

    Antibody has extensive application prospects in the biomedical field. The inherent disadvantages of traditional polyclonal antibody and monoclonal antibody limit their application values. The humanized and fragmented antibody remodeling has given a rise to a series of genetic engineered antibody variant. This paper reviews the progress of research on genetic engineering antibody and its application in prevention and control of parasitic diseases.

  8. A parasitic selfish gene that affects host promiscuity

    PubMed Central

    Giraldo-Perez, Paulina; Goddard, Matthew R.

    2013-01-01

    Selfish genes demonstrate transmission bias and invade sexual populations despite conferring no benefit to their hosts. While the molecular genetics and evolutionary dynamics of selfish genes are reasonably well characterized, their effects on hosts are not. Homing endonuclease genes (HEGs) are one well-studied family of selfish genes that are assumed to be benign. However, we show that carrying HEGs is costly for Saccharomyces cerevisiae, demonstrating that these genetic elements are not necessarily benign but maybe parasitic. We estimate a selective load of approximately 1–2% in ‘natural’ niches. The second aspect we examine is the ability of HEGs to affect hosts' sexual behaviour. As all selfish genes critically rely on sex for spread, then any selfish gene correlated with increased host sexuality will enjoy a transmission advantage. While classic parasites are known to manipulate host behaviour, we are not aware of any evidence showing a selfish gene is capable of affecting host promiscuity. The data presented here show a selfish element may increase the propensity of its eukaryote host to undergo sex and along with increased rates of non-Mendelian inheritance, this may counterbalance mitotic selective load and promote spread. Demonstration that selfish genes are correlated with increased promiscuity in eukaryotes connects with ideas suggesting that selfish genes promoted the evolution of sex initially. PMID:24048156

  9. A genetic linkage map for the apicomplexan protozoan parasite Eimeria maxima and comparison with Eimeria tenella.

    PubMed

    Blake, Damer P; Oakes, Richard; Smith, Adrian L

    2011-02-01

    Eimeria maxima is one of the seven Eimeria spp. that infect the chicken and cause the disease coccidiosis. The well characterised immunogenicity and genetic diversity associated with E. maxima promote its use in genetics-led studies on avian coccidiosis. The development of a genetic map for E. maxima, presented here based upon 647 amplified fragment length polymorphism markers typed from 22 clonal hybrid lines and assembled into 13 major linkage groups, is a major new resource for work with this parasite. Comparison with genetic maps produced for other coccidial parasites indicates relatively high levels of genetic recombination. Conversion of ∼14% of the markers representing the major linkage groups to sequence characterised amplified region markers can provide a scaffold for the assembly of future genomic sequences as well as providing a foundation for more detailed genetic maps. Comparison with the Eimeria tenella genetic map produced 10years ago has revealed a less biased marker distribution, with no more than nine markers mapped within any unresolved heritable unit. Nonetheless, preliminary bioinformatic characterisation of the three largest publicly available genomic E. maxima sequences suggest that the feature-poor/feature-rich structure which has previously been found to define the first sequenced E. tenella chromosome also defines the E. maxima genome. The significance of such a segmented genome and the apparent potential for variation in genetic recombination will be relevant to haplotype stability and the longevity of future anticoccidial strategies based upon multiple loci targeted by novel chemotherapeutic drugs or recombinant subunit vaccines. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  10. The Tc1/mariner transposable element family shapes genetic variation and gene expression in the protist Trichomonas vaginalis

    PubMed Central

    2014-01-01

    Background Trichomonas vaginalis is the most prevalent non-viral sexually transmitted parasite. Although the protist is presumed to reproduce asexually, 60% of its haploid genome contains transposable elements (TEs), known contributors to genome variability. The availability of a draft genome sequence and our collection of >200 global isolates of T. vaginalis facilitate the study and analysis of TE population dynamics and their contribution to genomic variability in this protist. Results We present here a pilot study of a subset of class II Tc1/mariner TEs that belong to the T. vaginalis Tvmar1 family. We report the genetic structure of 19 Tvmar1 loci, their ability to encode a full-length transposase protein, and their insertion frequencies in 94 global isolates from seven regions of the world. While most of the Tvmar1 elements studied exhibited low insertion frequencies, two of the 19 loci (locus 1 and locus 9) show high insertion frequencies of 1.00 and 0.96, respectively. The genetic structuring of the global populations identified by principal component analysis (PCA) of the Tvmar1 loci is in general agreement with published data based on genotyping, showing that Tvmar1 polymorphisms are a robust indicator of T. vaginalis genetic history. Analysis of expression of 22 genes flanking 13 Tvmar1 loci indicated significantly altered expression of six of the genes next to five Tvmar1 insertions, suggesting that the insertions have functional implications for T. vaginalis gene expression. Conclusions Our study is the first in T. vaginalis to describe Tvmar1 population dynamics and its contribution to genetic variability of the parasite. We show that a majority of our studied Tvmar1 insertion loci exist at very low frequencies in the global population, and insertions are variable between geographical isolates. In addition, we observe that low frequency insertion is related to reduced or abolished expression of flanking genes. While low insertion frequencies might be

  11. A matching-allele model explains host resistance to parasites.

    PubMed

    Luijckx, Pepijn; Fienberg, Harris; Duneau, David; Ebert, Dieter

    2013-06-17

    The maintenance of genetic variation and sex despite its costs has long puzzled biologists. A popular idea, the Red Queen Theory, is that under rapid antagonistic coevolution between hosts and their parasites, the formation of new rare host genotypes through sex can be advantageous as it creates host genotypes to which the prevailing parasite is not adapted. For host-parasite coevolution to lead to an ongoing advantage for rare genotypes, parasites should infect specific host genotypes and hosts should resist specific parasite genotypes. The most prominent genetics capturing such specificity are matching-allele models (MAMs), which have the key feature that resistance for two parasite genotypes can reverse by switching one allele at one host locus. Despite the lack of empirical support, MAMs have played a central role in the theoretical development of antagonistic coevolution, local adaptation, speciation, and sexual selection. Using genetic crosses, we show that resistance of the crustacean Daphnia magna against the parasitic bacterium Pasteuria ramosa follows a MAM. Simulation results show that the observed genetics can explain the maintenance of genetic variation and contribute to the maintenance of sex in the facultatively sexual host as predicted by the Red Queen Theory. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Sexual reproduction and genetic exchange in parasitic protists.

    PubMed

    Weedall, Gareth D; Hall, Neil

    2015-02-01

    A key part of the life cycle of an organism is reproduction. For a number of important protist parasites that cause human and animal disease, their sexuality has been a topic of debate for many years. Traditionally, protists were considered to be primitive relatives of the 'higher' eukaryotes, which may have diverged prior to the evolution of sex and to reproduce by binary fission. More recent views of eukaryotic evolution suggest that sex, and meiosis, evolved early, possibly in the common ancestor of all eukaryotes. However, detecting sex in these parasites is not straightforward. Recent advances, particularly in genome sequencing technology, have allowed new insights into parasite reproduction. Here, we review the evidence on reproduction in parasitic protists. We discuss protist reproduction in the light of parasitic life cycles and routes of transmission among hosts.

  13. A maternal-effect selfish genetic element in Caenorhabditis elegans.

    PubMed

    Ben-David, Eyal; Burga, Alejandro; Kruglyak, Leonid

    2017-06-09

    Selfish genetic elements spread in natural populations and have an important role in genome evolution. We discovered a selfish element causing embryonic lethality in crosses between wild strains of the nematode Caenorhabditis elegans The element is made up of sup-35 , a maternal-effect toxin that kills developing embryos, and pha-1 , its zygotically expressed antidote. pha-1 has long been considered essential for pharynx development on the basis of its mutant phenotype, but this phenotype arises from a loss of suppression of sup-35 toxicity. Inactive copies of the sup-35/pha-1 element show high sequence divergence from active copies, and phylogenetic reconstruction suggests that they represent ancestral stages in the evolution of the element. Our results suggest that other essential genes identified by genetic screens may turn out to be components of selfish elements. Copyright © 2017, American Association for the Advancement of Science.

  14. Population Genetics of Hirsutella rhossiliensis, a Dominant Parasite of Cyst Nematode Juveniles on a Continental Scale.

    PubMed

    Wang, Niuniu; Zhang, Yongjie; Jiang, Xianzhi; Shu, Chi; Hamid, M Imran; Hussain, Muzammil; Chen, Senyu; Xu, Jianping; Xiang, Meichun; Liu, Xingzhong

    2016-11-01

    Hirsutella rhossiliensis is a parasite of juvenile nematodes, effective against a diversity of plant-parasitic nematodes. Its global distribution on various nematode hosts and its genetic variation for several geographic regions have been reported, while the global population genetic structure and factors underlying patterns of genetic variation of H. rhossiliensis are unclear. In this study, 87 H. rhossiliensis strains from five nematode species (Globodera sp., Criconemella xenoplax, Rotylenchus robustus, Heterodera schachtii, and Heterodera glycines) in Europe, the United States, and China were investigated by multilocus sequence analyses. A total of 280 variable sites (frequency, 0.6%) at eight loci and six clustering in high accordance with geographic populations or host nematode-associated populations were identified. Although H. rhossiliensis is currently recognized as an asexual fungus, recombination events were frequently detected. In addition, significant genetic isolation by geography and nematode hosts was revealed. Overall, our analyses showed that recombination, geographic isolation, and nematode host adaptation have played significant roles in the evolutionary history of H. rhossiliensis IMPORTANCE: H. rhossiliensis has great potential for use as a biocontrol agent to control nematodes in a sustainable manner as an endoparasitic fungus. Therefore, this study has important implications for the use of H. rhossiliensis as a biocontrol agent and provides interesting insights into the biology of this species. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Host–parasite genotypic interactions in the honey bee: the dynamics of diversity

    PubMed Central

    Evison, Sophie E F; Fazio, Geraldine; Chappell, Paula; Foley, Kirsten; Jensen, Annette B; Hughes, William O H

    2013-01-01

    Parasites are thought to be a major driving force shaping genetic variation in their host, and are suggested to be a significant reason for the maintenance of sexual reproduction. A leading hypothesis for the occurrence of multiple mating (polyandry) in social insects is that the genetic diversity generated within-colonies through this behavior promotes disease resistance. This benefit is likely to be particularly significant when colonies are exposed to multiple species and strains of parasites, but host–parasite genotypic interactions in social insects are little known. We investigated this using honey bees, which are naturally polyandrous and consequently produce genetically diverse colonies containing multiple genotypes (patrilines), and which are also known to host multiple strains of various parasite species. We found that host genotypes differed significantly in their resistance to different strains of the obligate fungal parasite that causes chalkbrood disease, while genotypic variation in resistance to the facultative fungal parasite that causes stonebrood disease was less pronounced. Our results show that genetic variation in disease resistance depends in part on the parasite genotype, as well as species, with the latter most likely relating to differences in parasite life history and host–parasite coevolution. Our results suggest that the selection pressure from genetically diverse parasites might be an important driving force in the evolution of polyandry, a mechanism that generates significant genetic diversity in social insects. PMID:23919163

  16. Host-parasite genotypic interactions in the honey bee: the dynamics of diversity.

    PubMed

    Evison, Sophie E F; Fazio, Geraldine; Chappell, Paula; Foley, Kirsten; Jensen, Annette B; Hughes, William O H

    2013-07-01

    Parasites are thought to be a major driving force shaping genetic variation in their host, and are suggested to be a significant reason for the maintenance of sexual reproduction. A leading hypothesis for the occurrence of multiple mating (polyandry) in social insects is that the genetic diversity generated within-colonies through this behavior promotes disease resistance. This benefit is likely to be particularly significant when colonies are exposed to multiple species and strains of parasites, but host-parasite genotypic interactions in social insects are little known. We investigated this using honey bees, which are naturally polyandrous and consequently produce genetically diverse colonies containing multiple genotypes (patrilines), and which are also known to host multiple strains of various parasite species. We found that host genotypes differed significantly in their resistance to different strains of the obligate fungal parasite that causes chalkbrood disease, while genotypic variation in resistance to the facultative fungal parasite that causes stonebrood disease was less pronounced. Our results show that genetic variation in disease resistance depends in part on the parasite genotype, as well as species, with the latter most likely relating to differences in parasite life history and host-parasite coevolution. Our results suggest that the selection pressure from genetically diverse parasites might be an important driving force in the evolution of polyandry, a mechanism that generates significant genetic diversity in social insects.

  17. Resolving the infection process reveals striking differences in the contribution of environment, genetics and phylogeny to host-parasite interactions

    PubMed Central

    2011-01-01

    Background Infection processes consist of a sequence of steps, each critical for the interaction between host and parasite. Studies of host-parasite interactions rarely take into account the fact that different steps might be influenced by different factors and might, therefore, make different contributions to shaping coevolution. We designed a new method using the Daphnia magna - Pasteuria ramosa system, one of the rare examples where coevolution has been documented, in order to resolve the steps of the infection and analyse the factors that influence each of them. Results Using the transparent Daphnia hosts and fluorescently-labelled spores of the bacterium P. ramosa, we identified a sequence of infection steps: encounter between parasite and host; activation of parasite dormant spores; attachment of spores to the host; and parasite proliferation inside the host. The chances of encounter had been shown to depend on host genotype and environment. We tested the role of genetic and environmental factors in the newly described activation and attachment steps. Hosts of different genotypes, gender and species were all able to activate endospores of all parasite clones tested in different environments; suggesting that the activation cue is phylogenetically conserved. We next established that parasite attachment occurs onto the host oesophagus independently of host species, gender and environmental conditions. In contrast to spore activation, attachment depended strongly on the combination of host and parasite genotypes. Conclusions Our results show that different steps are influenced by different factors. Host-type-independent spore activation suggests that this step can be ruled out as a major factor in Daphnia-Pasteuria coevolution. On the other hand, we show that the attachment step is crucial for the pronounced genetic specificities of this system. We suggest that this one step can explain host population structure and could be a key force behind coevolutionary

  18. Resolving the infection process reveals striking differences in the contribution of environment, genetics and phylogeny to host-parasite interactions.

    PubMed

    Duneau, David; Luijckx, Pepijn; Ben-Ami, Frida; Laforsch, Christian; Ebert, Dieter

    2011-02-22

    Infection processes consist of a sequence of steps, each critical for the interaction between host and parasite. Studies of host-parasite interactions rarely take into account the fact that different steps might be influenced by different factors and might, therefore, make different contributions to shaping coevolution. We designed a new method using the Daphnia magna - Pasteuria ramosa system, one of the rare examples where coevolution has been documented, in order to resolve the steps of the infection and analyse the factors that influence each of them. Using the transparent Daphnia hosts and fluorescently-labelled spores of the bacterium P. ramosa, we identified a sequence of infection steps: encounter between parasite and host; activation of parasite dormant spores; attachment of spores to the host; and parasite proliferation inside the host. The chances of encounter had been shown to depend on host genotype and environment. We tested the role of genetic and environmental factors in the newly described activation and attachment steps. Hosts of different genotypes, gender and species were all able to activate endospores of all parasite clones tested in different environments; suggesting that the activation cue is phylogenetically conserved. We next established that parasite attachment occurs onto the host oesophagus independently of host species, gender and environmental conditions. In contrast to spore activation, attachment depended strongly on the combination of host and parasite genotypes. Our results show that different steps are influenced by different factors. Host-type-independent spore activation suggests that this step can be ruled out as a major factor in Daphnia-Pasteuria coevolution. On the other hand, we show that the attachment step is crucial for the pronounced genetic specificities of this system. We suggest that this one step can explain host population structure and could be a key force behind coevolutionary cycles. We discuss how different

  19. Textile antenna integrated with compact AMC and parasitic elements for WLAN/WBAN applications

    NASA Astrophysics Data System (ADS)

    Lago, Herwansyah; Soh, Ping Jack; Jamlos, Mohd Faizal; Shohaimi, Nursuriati; Yan, Sen; Vandenbosch, Guy A. E.

    2016-12-01

    A wearable antenna fully designed and fabricated using textile is presented. Both antenna and artificial magnetic conductor plane are designed for operation in the wireless local area network (WLAN)/wireless body area network (WBAN) band from 2.4 to 2.5 GHz. The AMC unit element is designed based on the rectangular patch structure, which is then integrated using slots and slits for bandwidth broadening. Meanwhile, the combination of the slits and L-shaped parasitic elements applied at four edges of the rectangular antenna structure enabled unidirectional radiation outwards from the body. The structure is coaxially fed using a rectangular ring slot centered on the radiating element. Simulated and measured reflection and radiation performance indicate a satisfactory agreement, fulfilling the requirements for WLAN/WBAN applications both in free space and on body. The shielding effectiveness provided by the AMC plane is also evaluated numerically in terms of specific absorption rate, indicating levels below the European regulatory limit of 2 W/kg.

  20. Limited genetic and antigenic diversity within parasite isolates used in a live vaccine against Theileria parva.

    PubMed

    Hemmink, Johanneke D; Weir, William; MacHugh, Niall D; Graham, Simon P; Patel, Ekta; Paxton, Edith; Shiels, Brian; Toye, Philip G; Morrison, W Ivan; Pelle, Roger

    2016-07-01

    An infection and treatment protocol is used to vaccinate cattle against Theileria parva infection. Due to incomplete cross-protection between different parasite isolates, a mixture of three isolates, termed the Muguga cocktail, is used for vaccination. While vaccination of cattle in some regions provides high levels of protection, some animals are not protected against challenge with buffalo-derived T. parva. Knowledge of the genetic composition of the Muguga cocktail vaccine is required to understand how vaccination is able to protect against field challenge and to identify the potential limitations of the vaccine. The aim of the current study was to determine the extent of genetic and antigenic diversity within the parasite isolates that constitute the Muguga cocktail. High throughput multi-locus sequencing of antigen-encoding loci was performed in parallel with typing using a panel of micro- and mini-satellite loci. The former focused on genes encoding CD8(+) T cell antigens, believed to be relevant to protective immunity. The results demonstrate that each of the three component stocks of the cocktail contains limited parasite genotypic diversity, with single alleles detected at many gene/satellite loci and, moreover, that two of the components show a very high level of similarity. Thus, the vaccine incorporates very little of the genetic and antigenic diversity observed in field populations of T. parva. The presence of alleles at low frequency (<10%) within vaccine component populations also points to the possibility of variability in the content of vaccine doses and the potential for loss of allelic diversity during tick passage. The results demonstrate that there is scope to modify the content of the vaccine in order to enhance its diversity and thus its potential for providing broad protection. The ability to accurately quantify genetic diversity in vaccine component stocks will facilitate improved quality control procedures designed to ensure the long

  1. Mobile Genetic Elements: In Silico, In Vitro, In Vivo

    PubMed Central

    Arkhipova, Irina R.; Rice, Phoebe A.

    2016-01-01

    Mobile genetic elements (MGEs), also called transposable elements (TEs), represent universal components of most genomes and are intimately involved in nearly all aspects of genome organization, function, and evolution. However, there is currently a gap between fast-paced TE discovery in silico, stimulated by exponential growth of comparative genomic studies, and a limited number of experimental models amenable to more traditional in vitro and in vivo studies of structural, mechanistic, and regulatory properties of diverse MGEs. Experimental and computational scientists came together to bridge this gap at a recent conference, “Mobile Genetic Elements: in silico, in vitro, in vivo,” held at the Marine Biological Laboratory (MBL) in Woods Hole, MA, USA. PMID:26822117

  2. Genetic diversity and host specificity varies across three genera of blood parasites in ducks of the Pacific Americas Flyway

    USGS Publications Warehouse

    Reeves, Andrew B.; Smith, Matthew M.; Meixell, Brandt W.; Fleskes, Joseph P.; Ramey, Andrew M.

    2015-01-01

    Birds of the order Anseriformes, commonly referred to as waterfowl, are frequently infected by Haemosporidia of the genera Haemoproteus, Plasmodium, and Leucocytozoon via dipteran vectors. We analyzed nucleotide sequences of the Cytochrome b (Cytb) gene from parasites of these genera detected in six species of ducks from Alaska and California, USA to characterize the genetic diversity of Haemosporidia infecting waterfowl at two ends of the Pacific Americas Flyway. In addition, parasite Cytb sequences were compared to those available on a public database to investigate specificity of genetic lineages to hosts of the order Anseriformes. Haplotype and nucleotide diversity of Haemoproteus Cytb sequences was lower than was detected for Plasmodium and Leucocytozoon parasites. Although waterfowl are presumed to be infected by only a single species of Leucocytozoon, L. simondi, diversity indices were highest for haplotypes from this genus and sequences formed five distinct clades separated by genetic distances of 4.9%–7.6%, suggesting potential cryptic speciation. All Haemoproteus andLeucocytozoon haplotypes derived from waterfowl samples formed monophyletic clades in phylogenetic analyses and were unique to the order Anseriformes with few exceptions. In contrast, waterfowl-origin Plasmodium haplotypes were identical or closely related to lineages found in other avian orders. Our results suggest a more generalist strategy for Plasmodiumparasites infecting North American waterfowl as compared to those of the generaHaemoproteus and Leucocytozoon.

  3. Microstrip antenna array with parasitic elements

    NASA Technical Reports Server (NTRS)

    Lee, Kai F.; Acosta, Roberto J.; Lee, Richard Q.

    1987-01-01

    Discussed is the design of a large microstrip antenna array in terms of subarrays consisting of one fed patch and several parasitic patches. The potential advantages of this design are discussed. Theoretical radiation patterns of a subarray in the configuration of a cross are presented.

  4. Development of the piggyBac transposable system for Plasmodium berghei and its application for random mutagenesis in malaria parasites

    PubMed Central

    2011-01-01

    Background The genome of a number of species of malaria parasites (Plasmodium spp.) has been sequenced in the hope of identifying new drug and vaccine targets. However, almost one-half of predicted Plasmodium genes are annotated as hypothetical and are difficult to analyse in bulk due to the inefficiency of current reverse genetic methodologies for Plasmodium. Recently, it has been shown that the transposase piggyBac integrates at random into the genome of the human malaria parasite P. falciparum offering the possibility to develop forward genetic screens to analyse Plasmodium gene function. This study reports the development and application of the piggyBac transposition system for the rodent malaria parasite P. berghei and the evaluation of its potential as a tool in forward genetic studies. P. berghei is the most frequently used malaria parasite model in gene function analysis since phenotype screens throughout the complete Plasmodium life cycle are possible both in vitro and in vivo. Results We demonstrate that piggyBac based gene inactivation and promoter-trapping is both easier and more efficient in P. berghei than in the human malaria parasite, P. falciparum. Random piggyBac-mediated insertion into genes was achieved after parasites were transfected with the piggyBac donor plasmid either when transposase was expressed either from a helper plasmid or a stably integrated gene in the genome. Characterization of more than 120 insertion sites demonstrated that more than 70 most likely affect gene expression classifying their protein products as non-essential for asexual blood stage development. The non-essential nature of two of these genes was confirmed by targeted gene deletion one of which encodes P41, an ortholog of a human malaria vaccine candidate. Importantly for future development of whole genome phenotypic screens the remobilization of the piggyBac element in parasites that stably express transposase was demonstrated. Conclusion These data demonstrate

  5. Prediction and Prevention of Parasitic Diseases Using a Landscape Genomics Framework.

    PubMed

    Schwabl, Philipp; Llewellyn, Martin S; Landguth, Erin L; Andersson, Björn; Kitron, Uriel; Costales, Jaime A; Ocaña, Sofía; Grijalva, Mario J

    2017-04-01

    Substantial heterogeneity exists in the dispersal, distribution and transmission of parasitic species. Understanding and predicting how such features are governed by the ecological variation of landscape they inhabit is the central goal of spatial epidemiology. Genetic data can further inform functional connectivity among parasite, host and vector populations in a landscape. Gene flow correlates with the spread of epidemiologically relevant phenotypes among parasite and vector populations (e.g., virulence, drug and pesticide resistance), as well as invasion and re-invasion risk where parasite transmission is absent due to current or past intervention measures. However, the formal integration of spatial and genetic data ('landscape genetics') is scarcely ever applied to parasites. Here, we discuss the specific challenges and practical prospects for the use of landscape genetics and genomics to understand the biology and control of parasitic disease and present a practical framework for doing so. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. CRISPR-Cas systems target a diverse collection of invasive mobile genetic elements in human microbiomes

    PubMed Central

    2013-01-01

    Background Bacteria and archaea develop immunity against invading genomes by incorporating pieces of the invaders' sequences, called spacers, into a clustered regularly interspaced short palindromic repeats (CRISPR) locus between repeats, forming arrays of repeat-spacer units. When spacers are expressed, they direct CRISPR-associated (Cas) proteins to silence complementary invading DNA. In order to characterize the invaders of human microbiomes, we use spacers from CRISPR arrays that we had previously assembled from shotgun metagenomic datasets, and identify contigs that contain these spacers' targets. Results We discover 95,000 contigs that are putative invasive mobile genetic elements, some targeted by hundreds of CRISPR spacers. We find that oral sites in healthy human populations have a much greater variety of mobile genetic elements than stool samples. Mobile genetic elements carry genes encoding diverse functions: only 7% of the mobile genetic elements are similar to known phages or plasmids, although a much greater proportion contain phage- or plasmid-related genes. A small number of contigs share similarity with known integrative and conjugative elements, providing the first examples of CRISPR defenses against this class of element. We provide detailed analyses of a few large mobile genetic elements of various types, and a relative abundance analysis of mobile genetic elements and putative hosts, exploring the dynamic activities of mobile genetic elements in human microbiomes. A joint analysis of mobile genetic elements and CRISPRs shows that protospacer-adjacent motifs drive their interaction network; however, some CRISPR-Cas systems target mobile genetic elements lacking motifs. Conclusions We identify a large collection of invasive mobile genetic elements in human microbiomes, an important resource for further study of the interaction between the CRISPR-Cas immune system and invaders. PMID:23628424

  7. Population structure and genetic diversity of the parasite Trichomonas vaginalis in Bristol, UK.

    PubMed

    Hawksworth, Joseph; Levy, Max; Smale, Chloe; Cheung, Dean; Whittle, Alice; Longhurst, Denise; Muir, Peter; Gibson, Wendy

    2015-08-01

    The protozoan parasite Trichomonas vaginalis is the causative agent of trichomoniasis, an extremely common, but non-life-threatening, sexually-transmitted disease throughout the world. Recent population genetics studies of T. vaginalis have detected high genetic diversity and revealed a two-type population structure, associated with phenotypic differences in sensitivity to metronidazole, the drug commonly used for treatment, and presence of T. vaginalis virus. There is currently a lack of data on UK isolates; most isolates examined to date are from the US. Here we used a recently described system for multilocus sequence typing (MLST) of T. vaginalis to study diversity of clinical isolates from Bristol, UK. We used MLST to characterise 23 clinical isolates of T. vaginalis collected from female patients during 2013. Seven housekeeping genes were PCR-amplified for each isolate and sequenced. The concatenated sequences were then compared with data from other MLST-characterised isolates available from http://tvaginalis.mlst.net/ to analyse the population structure and construct phylogenetic trees. Among the 23 isolates from the Bristol population of T. vaginalis, we found 23 polymorphic nucleotide sites, 25 different alleles and 19 sequence types (genotypes). Most isolates had a unique genotype, in agreement with the high levels of heterogeneity observed elsewhere in the world. A two-type population structure was evident from population genetic analysis and phylogenetic reconstruction split the isolates into two major clades. Tests for recombination in the Bristol population of T. vaginalis gave conflicting results, suggesting overall a clonal pattern of reproduction. We conclude that the Bristol population of T. vaginalis parasites conforms to the two-type population structure found in most other regions of the world. We found the MLST scheme to be an efficient genotyping method. The online MLST database provides a useful repository and resource that will prove

  8. Trace elements in sediments, blue spotted tilapia Oreochromis leucostictus (Trewavas, 1933) and its parasite Contracaecum multipapillatum from Lake Naivasha, Kenya, including a comprehensive health risk analysis.

    PubMed

    Otachi, Elick O; Körner, Wilfried; Avenant-Oldewage, Annemariè; Fellner-Frank, Christine; Jirsa, Franz

    2014-06-01

    This study presents the distribution of 15 major and trace elements in sediments and fish and their pericardial parasites from Lake Naivasha, Kenya. The lake is one of the few freshwater lakes in the Great Rift Valley and is under strong anthropogenic pressure mainly due to agricultural activities. Its fish provide a valuable protein source for approximately 100,000 people in the area. Fish and their parasites have been acknowledged as indicators of environmental quality due to their accumulation potential for both essential and nonessential trace elements. A total of 34 specimens of the blue spotted tilapia Oreochromis leucostictus and pooled samples of their pericardial parasite, the anisakid nematode Contracaecum multipapillatum (larvae 3), were examined. Element concentrations were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and graphite furnace atomic absorption spectrometry (GF-AAS). The concentrations of elements in the sediments reflected the geology of the area and did not point to pollution: none of the investigated trace elements, including Pb, Cd, Cu, and Zn, showed elevated values. In contrast, concentrations in the fish muscle were elevated for Li, Sr, Cd, and Zn, with high target hazard quotients (THQ > 0.1) indicating a potential health risk to the consumers of this fish. Fish liver showed significantly higher concentrations of the trace elements Fe, Mn, Cd, and Cu compared to the muscle and C. multipapillatum. In the parasite, Zn had the highest concentration, but the worms only minimally accumulated trace elements in relation to their fish host.

  9. A Population Genetic Model for the Initial Spread of Partially Resistant Malaria Parasites under Anti-Malarial Combination Therapy and Weak Intrahost Competition

    PubMed Central

    Kim, Yuseob; Escalante, Ananias A.; Schneider, Kristan A.

    2014-01-01

    To develop public-health policies that extend the lifespan of affordable anti-malarial drugs as effective treatment options, it is necessary to understand the evolutionary processes leading to the origin and spread of mutations conferring drug resistance in malarial parasites. We built a population-genetic model for the emergence of resistance under combination drug therapy. Reproductive cycles of parasites are specified by their absolute fitness determined by clinical parameters, thus coupling the evolutionary-genetic with population-dynamic processes. Initial mutations confer only partial drug-resistance. Therefore, mutant parasites rarely survive combination therapy and within-host competition is very weak among parasites. The model focuses on the early phase of such unsuccessful recurrent mutations. This ends in the rare event of mutants enriching in an infected individual from which the successful spread of resistance over the entire population is initiated. By computer simulations, the waiting time until the establishment of resistant parasites is analysed. Resistance spreads quickly following the first appearance of a host infected predominantly by mutant parasites. This occurs either through a rare transmission of a resistant parasite to an uninfected host or through a rare failure of drugs in removing “transient” mutant alleles. The emergence of resistance is delayed with lower mutation rate, earlier treatment, higher metabolic cost of resistance, longer duration of high drug dose, and higher drug efficacy causing a stronger reduction in the sensitive and resistant parasites’ fitnesses. Overall, contrary to other studies’ proposition, the current model based on absolute fitness suggests that aggressive drug treatment delays the emergence of drug resistance. PMID:25007207

  10. Autonomy and integration in complex parasite life cycles.

    PubMed

    Benesh, Daniel P

    2016-12-01

    Complex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.

  11. Genetic variation in anti-parasite behavior in oysters

    USDA-ARS?s Scientific Manuscript database

    Behavioral avoidance of disease-causing parasites provides a first line of defense against the threat of infection, particularly when hosts are exposed to free-living parasite stages in the external environment. We report that suspension-feeding oysters (Crassostrea virginica) respond to the presenc...

  12. The evolutionary history of Plasmodium vivax as inferred from mitochondrial genomes: parasite genetic diversity in the Americas.

    PubMed

    Taylor, Jesse E; Pacheco, M Andreína; Bacon, David J; Beg, Mohammad A; Machado, Ricardo Luiz; Fairhurst, Rick M; Herrera, Socrates; Kim, Jung-Yeon; Menard, Didier; Póvoa, Marinete Marins; Villegas, Leopoldo; Mulyanto; Snounou, Georges; Cui, Liwang; Zeyrek, Fadile Yildiz; Escalante, Ananias A

    2013-09-01

    Plasmodium vivax is the most prevalent human malaria parasite in the Americas. Previous studies have contrasted the genetic diversity of parasite populations in the Americas with those in Asia and Oceania, concluding that New World populations exhibit low genetic diversity consistent with a recent introduction. Here we used an expanded sample of complete mitochondrial genome sequences to investigate the diversity of P. vivax in the Americas as well as in other continental populations. We show that the diversity of P. vivax in the Americas is comparable to that in Asia and Oceania, and we identify several divergent clades circulating in South America that may have resulted from independent introductions. In particular, we show that several haplotypes sampled in Venezuela and northeastern Brazil belong to a clade that diverged from the other P. vivax lineages at least 30,000 years ago, albeit not necessarily in the Americas. We propose that, unlike in Asia where human migration increases local genetic diversity, the combined effects of the geographical structure and the low incidence of vivax malaria in the Americas has resulted in patterns of low local but high regional genetic diversity. This could explain previous views that P. vivax in the Americas has low genetic diversity because these were based on studies carried out in limited areas. Further elucidation of the complex geographical pattern of P. vivax variation will be important both for diversity assessments of genes encoding candidate vaccine antigens and in the formulation of control and surveillance measures aimed at malaria elimination.

  13. The Evolutionary History of Plasmodium vivax as Inferred from Mitochondrial Genomes: Parasite Genetic Diversity in the Americas

    PubMed Central

    Taylor, Jesse E.; Pacheco, M. Andreína; Bacon, David J.; Beg, Mohammad A.; Machado, Ricardo Luiz; Fairhurst, Rick M.; Herrera, Socrates; Kim, Jung-Yeon; Menard, Didier; Póvoa, Marinete Marins; Villegas, Leopoldo; Mulyanto; Snounou, Georges; Cui, Liwang; Zeyrek, Fadile Yildiz; Escalante, Ananias A.

    2013-01-01

    Plasmodium vivax is the most prevalent human malaria parasite in the Americas. Previous studies have contrasted the genetic diversity of parasite populations in the Americas with those in Asia and Oceania, concluding that New World populations exhibit low genetic diversity consistent with a recent introduction. Here we used an expanded sample of complete mitochondrial genome sequences to investigate the diversity of P. vivax in the Americas as well as in other continental populations. We show that the diversity of P. vivax in the Americas is comparable to that in Asia and Oceania, and we identify several divergent clades circulating in South America that may have resulted from independent introductions. In particular, we show that several haplotypes sampled in Venezuela and northeastern Brazil belong to a clade that diverged from the other P. vivax lineages at least 30,000 years ago, albeit not necessarily in the Americas. We propose that, unlike in Asia where human migration increases local genetic diversity, the combined effects of the geographical structure and the low incidence of vivax malaria in the Americas has resulted in patterns of low local but high regional genetic diversity. This could explain previous views that P. vivax in the Americas has low genetic diversity because these were based on studies carried out in limited areas. Further elucidation of the complex geographical pattern of P. vivax variation will be important both for diversity assessments of genes encoding candidate vaccine antigens and in the formulation of control and surveillance measures aimed at malaria elimination. PMID:23733143

  14. Influence of parasitism on trace element contents in tissues of red fox (Vulpes vulpes) and its parasites Mesocestoides spp. (Cestoda) and Toxascaris leonina (Nematoda).

    PubMed

    Jankovská, Ivana; Miholová, Daniela; Bejcek, Vladimír; Vadlejch, Jaroslav; Sulc, Miloslav; Száková, Jirina; Langrová, Iva

    2010-02-01

    Bioaccumulation of cadmium, chromium, copper, manganese, nickel, lead, and zinc in 56 foxes (Vulpes vulpes) and their parasites Mesocestoides spp. (Cestoda) and Toxascaris leonina (Nematoda) was studied. The levels of heavy metals were determined in the livers and kidneys of the animals depending on parasitism in the following ranges: Pb, 0.029-3.556; Cd, 0.055-9.967; Cr, 0.001-0.304; Cu, 4.15-41.15; Mn, 1.81-19.94; Ni: 0.037-0.831; Zn, 52.0-212.9 microg/g dry weight (dw). Cd in parasites (0.038-3.678 microg/g dw) were comparable with those in the livers of the host and lower than in the kidneys (0.095-6.032 microg/g dw). Contents of Pb, Cr, Cu, Mn, Ni, and Zn in cestodes were predominantly higher than those in the kidney and liver of the host. Median lead levels in Mesocestoides spp. (45.6 microg/g dw) were 52-fold higher than in the kidney and liver of the red fox (Vulpes vulpes) infected by both parasites and median Pb values in T. leonina (8.98 microg/g dw) were 8-fold higher than in the tissues of the parasitized red fox. Bioaccumulation factors of copper, zinc, nickel, and manganese are lower than those of lead and mostly range from 1.9 to 24 for Mesocestoides spp. and from 1.5 to 6 for nematode T. leonina depending on the tissue of host and element. A significant decrease in the content of Pb was found in the kidney of animals infected by T. leonina (0.260 microg/g dw) as well as those infected by Mesocestoides spp. (0.457 microg/g dw) in comparison with the lead content (0.878 microg/g dw) in the kidneys of the nonparasitized red fox. Regardless of a bioaccumulation of copper and manganese in the parasites, a significant increase of the concentrations of Mn and Cu was observed in the host's livers infected predominantly by Mesocestoides spp.

  15. Targeted mutagenesis in a human-parasitic nematode

    PubMed Central

    Gang, Spencer S.; Castelletto, Michelle L.

    2017-01-01

    Parasitic nematodes infect over 1 billion people worldwide and cause some of the most common neglected tropical diseases. Despite their prevalence, our understanding of the biology of parasitic nematodes has been limited by the lack of tools for genetic intervention. In particular, it has not yet been possible to generate targeted gene disruptions and mutant phenotypes in any parasitic nematode. Here, we report the development of a method for introducing CRISPR-Cas9-mediated gene disruptions in the human-parasitic threadworm Strongyloides stercoralis. We disrupted the S. stercoralis twitchin gene unc-22, resulting in nematodes with severe motility defects. Ss-unc-22 mutations were resolved by homology-directed repair when a repair template was provided. Omission of a repair template resulted in deletions at the target locus. Ss-unc-22 mutations were heritable; we passed Ss-unc-22 mutants through a host and successfully recovered mutant progeny. Using a similar approach, we also disrupted the unc-22 gene of the rat-parasitic nematode Strongyloides ratti. Our results demonstrate the applicability of CRISPR-Cas9 to parasitic nematodes, and thereby enable future studies of gene function in these medically relevant but previously genetically intractable parasites. PMID:29016680

  16. Life in a rock pool: Radiation and population genetics of myxozoan parasites in hosts inhabiting restricted spaces.

    PubMed

    Bartošová-Sojková, Pavla; Lövy, Alena; Reed, Cecile C; Lisnerová, Martina; Tomková, Tereza; Holzer, Astrid S; Fiala, Ivan

    2018-01-01

    Intertidal rock pools where fish and invertebrates are in constant close contact due to limited space and water level fluctuations represent ideal conditions to promote life cycles in parasites using these two alternate hosts and to study speciation processes that could contribute to understanding the roles of parasitic species in such ecosystems. Gall bladder and liver samples from five clinid fish species (Blenniiformes: Clinidae) were morphologically and molecularly examined to determine the diversity, prevalence, distribution and host specificity of Ceratomyxa parasites (Cnidaria: Myxozoa) in intertidal habitats along the coast of South Africa. Phylogenetic relationships of clinid ceratomyxids based on the SSU rDNA, LSU rDNA and ITS regions were assessed additionally to the investigation of population genetic structure of Ceratomyxa cottoidii and subsequent comparison with the data known from type fish host Clinus cottoides. Seven Ceratomyxa species including previously described Ceratomyxa dehoopi and C. cottoidii were recognized in clinids. They represent a diverse group of rapidly evolving, closely related species with a remarkably high prevalence in their hosts, little host specificity and frequent concurrent infections, most probably as a result of parasite radiation after multiple speciation events triggered by limited host dispersal within restricted spaces. C. cottoidii represents the most common clinid parasite with a population structure characterized by young expanding populations in the south west and south east coast and by older populations in equilibrium on the west coast of its distribution. Parasite and fish host population structures show overlapping patterns and are very likely affected by similar oceanographic barriers possibly due to reduced host dispersal enhancing parasite community differentiation. While fish host specificity had little impact on parasite population structure, the habitat preference of the alternate invertebrate host as

  17. Life in a rock pool: Radiation and population genetics of myxozoan parasites in hosts inhabiting restricted spaces

    PubMed Central

    Reed, Cecile C.; Lisnerová, Martina; Tomková, Tereza; Holzer, Astrid S.; Fiala, Ivan

    2018-01-01

    Introduction Intertidal rock pools where fish and invertebrates are in constant close contact due to limited space and water level fluctuations represent ideal conditions to promote life cycles in parasites using these two alternate hosts and to study speciation processes that could contribute to understanding the roles of parasitic species in such ecosystems. Material and methods Gall bladder and liver samples from five clinid fish species (Blenniiformes: Clinidae) were morphologically and molecularly examined to determine the diversity, prevalence, distribution and host specificity of Ceratomyxa parasites (Cnidaria: Myxozoa) in intertidal habitats along the coast of South Africa. Phylogenetic relationships of clinid ceratomyxids based on the SSU rDNA, LSU rDNA and ITS regions were assessed additionally to the investigation of population genetic structure of Ceratomyxa cottoidii and subsequent comparison with the data known from type fish host Clinus cottoides. Results and discussion Seven Ceratomyxa species including previously described Ceratomyxa dehoopi and C. cottoidii were recognized in clinids. They represent a diverse group of rapidly evolving, closely related species with a remarkably high prevalence in their hosts, little host specificity and frequent concurrent infections, most probably as a result of parasite radiation after multiple speciation events triggered by limited host dispersal within restricted spaces. C. cottoidii represents the most common clinid parasite with a population structure characterized by young expanding populations in the south west and south east coast and by older populations in equilibrium on the west coast of its distribution. Parasite and fish host population structures show overlapping patterns and are very likely affected by similar oceanographic barriers possibly due to reduced host dispersal enhancing parasite community differentiation. While fish host specificity had little impact on parasite population structure, the

  18. Prediction and prevention of parasitic diseases using a landscape genomics framework

    PubMed Central

    Schwabl, Philipp; Llewellyn, Martin; Landguth, Erin L.; Andersson, Björn; Kitron, Uriel; Costales, Jaime A.; Ocaña, Sofía; Grijalva, Mario J.

    2016-01-01

    Summary Substantial heterogeneity exists in the dispersal, distribution and transmission of parasitic species. Understanding and predicting how such features are governed by the ecological variation of landscape they inhabit is the central goal of spatial epidemiology. Genetic data can further inform functional connectivity among parasite, host and vector populations in a landscape. Gene flow correlates with the spread of epidemiologically relevant phenotypes among parasite and vector populations (e.g., virulence, drug and pesticide resistance), as well as invasion and re-invasion risk where parasite transmission is absent due to current or past intervention measures. However, the formal integration of spatial and genetic data (‘landscape genetics’) is scarcely ever applied to parasites. Here, we discuss the specific challenges and practical prospects for the use of landscape genetics and genomics to understand the biology and control of parasitic disease and present a practical framework for doing so. PMID:27863902

  19. Local and global genetic diversity of protozoan parasites: Spatial distribution of Cryptosporidium and Giardia genotypes.

    PubMed

    Garcia-R, Juan C; French, Nigel; Pita, Anthony; Velathanthiri, Niluka; Shrestha, Rima; Hayman, David

    2017-07-01

    Cryptosporidiosis and giardiasis are recognized as significant enteric diseases due to their long-term health effects in humans and their economic impact in agriculture and medical care. Molecular analysis is essential to identify species and genotypes causing these infectious diseases and provides a potential tool for monitoring. This study uses information on species and genetic variants to gain insights into the geographical distribution and spatial patterns of Cryptosporidium and Giardia parasites. Here, we describe the population heterogeneity of genotypic groups within Cryptosporidium and Giardia present in New Zealand using gp60 and gdh markers to compare the observed variation with other countries around the globe. Four species of Cryptosporidium (C. hominis, C. parvum, C. cuniculus and C. erinacei) and one species of Giardia (G. intestinalis) were identified. These species have been reported worldwide and there are not unique Cryptosporidium gp60 subtype families and Giardia gdh assemblages in New Zealand, most likely due to high gene flow of historical and current human activity (travel and trade) and persistence of large host population sizes. The global analysis revealed that genetic variants of these pathogens are widely distributed. However, genetic variation is underestimated by data biases (e.g. neglected submission of sequences to genetic databases) and low sampling. New genotypes are likely to be discovered as sampling efforts increase according to accumulation prediction analyses, especially for C. parvum. Our study highlights the need for greater sampling and archiving of genotypes globally to allow comparative analyses that help understand the population dynamics of these protozoan parasites. Overall our study represents a comprehensive overview for exploring local and global protozoan genotype diversity and advances our understanding of the importance for surveillance and potential risk associated with these infectious diseases.

  20. Expression of parasite genetic variation changes over the course of infection: implications of within-host dynamics for the evolution of virulence

    PubMed Central

    Clerc, Melanie; Ebert, Dieter; Hall, Matthew D.

    2015-01-01

    How infectious disease agents interact with their host changes during the course of infection and can alter the expression of disease-related traits. Yet by measuring parasite life-history traits at one or few moments during infection, studies have overlooked the impact of variable parasite growth trajectories on disease evolution. Here we show that infection-age-specific estimates of host and parasite fitness components can reveal new insight into the evolution of parasites. We do so by characterizing the within-host dynamics over an entire infection period for five genotypes of the castrating bacterial parasite Pasteuria ramosa infecting the crustacean Daphnia magna. Our results reveal that genetic variation for parasite-induced gigantism, host castration and parasite spore loads increases with the age of infection. Driving these patterns appears to be variation in how well the parasite maintains control of host reproduction late in the infection process. We discuss the evolutionary consequences of this finding with regard to natural selection acting on different ages of infection and the mechanism underlying the maintenance of castration efficiency. Our results highlight how elucidating within-host dynamics can shed light on the selective forces that shape infection strategies and the evolution of virulence. PMID:25761710

  1. Expression of parasite genetic variation changes over the course of infection: implications of within-host dynamics for the evolution of virulence.

    PubMed

    Clerc, Melanie; Ebert, Dieter; Hall, Matthew D

    2015-04-07

    How infectious disease agents interact with their host changes during the course of infection and can alter the expression of disease-related traits. Yet by measuring parasite life-history traits at one or few moments during infection, studies have overlooked the impact of variable parasite growth trajectories on disease evolution. Here we show that infection-age-specific estimates of host and parasite fitness components can reveal new insight into the evolution of parasites. We do so by characterizing the within-host dynamics over an entire infection period for five genotypes of the castrating bacterial parasite Pasteuria ramosa infecting the crustacean Daphnia magna. Our results reveal that genetic variation for parasite-induced gigantism, host castration and parasite spore loads increases with the age of infection. Driving these patterns appears to be variation in how well the parasite maintains control of host reproduction late in the infection process. We discuss the evolutionary consequences of this finding with regard to natural selection acting on different ages of infection and the mechanism underlying the maintenance of castration efficiency. Our results highlight how elucidating within-host dynamics can shed light on the selective forces that shape infection strategies and the evolution of virulence. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Transposable Elements and Genetic Instabilities in Crop Plants

    DOE R&D Accomplishments Database

    Burr, B.; Burr, F.

    1981-04-10

    Transposable elements have long been associated with certain unstable loci in maize and have been intensively studied by McClintock and others. It is known that a transposable element can control the expression of the structural genes at the locus where it resides. These controlling elements in maize are now beginning to be studied at the molecular level. Using recombinant molecular probes we have been able to describe the changes induced by the controlling element Ds at the shrunken locus. Ds elements appear to be large and dissimilar insertions into the wild-type locus - two elements actually map within the transcribed region of the gene. Genetic instabilities have been described in other economically important plants but the bases for these phenomena have not been understood. We believe that it is likely that some of these instabilities are the result of transposable element activity much as in the case of maize.

  3. Genetic characterization of Babesia and Theileria parasites in water buffaloes in Sri Lanka.

    PubMed

    Sivakumar, Thillaiampalam; Tattiyapong, Muncharee; Fukushi, Shintaro; Hayashida, Kyoko; Kothalawala, Hemal; Silva, Seekkuge Susil Priyantha; Vimalakumar, Singarayar Caniciyas; Kanagaratnam, Ratnam; Meewewa, Asela Sanjeewa; Suthaharan, Kalpana; Puvirajan, Thamotharampillai; de Silva, Weligodage Kumarawansa; Igarashi, Ikuo; Yokoyama, Naoaki

    2014-02-24

    Water buffaloes are thought to be the reservoir hosts for several hemoprotozoan parasites that infect cattle. In the present study, we surveyed Sri Lankan bred water buffaloes for infections with Babesia bovis, Babesia bigemina, Theileria annulata, and Theileria orientalis using parasite-specific PCR assays. When 320 blood-derived DNA samples from water buffaloes reared in three different districts (Polonnaruwa, Mannar, and Mullaitivu) of Sri Lanka were PCR screened, B. bovis, B. bigemina, and T. orientalis were detected. While T. orientalis was the predominant parasite (82.5%), low PCR-positive rates were observed for B. bovis (1.9%) and B. bigemina (1.6%). Amplicons of the gene sequences of the Rhoptry Associated Protein-1 (RAP-1) of B. bovis, the Apical Membrane Antigen-1 (AMA-1) of B. bigemina, and the Major Piroplasm Surface Protein (MPSP) of T. orientalis were compared with those characterized previously in Sri Lankan cattle. While the B. bigemina AMA-1 sequences from water buffaloes shared high identity values with those from cattle, B. bovis RAP-1 sequences from water buffaloes diverged genetically from those of cattle. For T. orientalis, none of the MPSP sequence types reported previously in Sri Lankan cattle (types 1, 3, 5, and 7) were detected in the water buffaloes, and the MPSP sequences analyzed in the present study belonged to types N1 or N2. In summary, in addition to reporting the first PCR-based survey of Babesia and Theileria parasites in water buffaloes in Sri Lanka, the present study found that the predominant variants of water buffalo-derived B. bovis RAP-1 and T. orientalis MPSP sequences were different from those previously described from cattle in this country. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Shared elements of host-targeting pathways among apicomplexan parasites of differing lifestyles.

    PubMed

    Pellé, Karell G; Jiang, Rays H Y; Mantel, Pierre-Yves; Xiao, Yu-Ping; Hjelmqvist, Daisy; Gallego-Lopez, Gina M; O T Lau, Audrey; Kang, Byung-Ho; Allred, David R; Marti, Matthias

    2015-11-01

    Apicomplexans are a diverse group of obligate parasites occupying different intracellular niches that require modification to meet the needs of the parasite. To efficiently manipulate their environment, apicomplexans translocate numerous parasite proteins into the host cell. Whereas some parasites remain contained within a parasitophorous vacuole membrane (PVM) throughout their developmental cycle, others do not, a difference that affects the machinery needed for protein export. A signal-mediated pathway for protein export into the host cell has been characterized in Plasmodium parasites, which maintain the PVM. Here, we functionally demonstrate an analogous host-targeting pathway involving organellar staging prior to secretion in the related bovine parasite, Babesia bovis, a parasite that destroys the PVM shortly after invasion. Taking into account recent identification of a similar signal-mediated pathway in the coccidian parasite Toxoplasma gondii, we suggest a model in which this conserved pathway has evolved in multiple steps from signal-mediated trafficking to specific secretory organelles for controlled secretion to a complex protein translocation process across the PVM. © 2015 John Wiley & Sons Ltd.

  5. Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements

    PubMed Central

    Dolja, Valerian V.

    2014-01-01

    SUMMARY Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus “self” that defines the identity of deep, ancient viral lineages. However, several other widespread viral “hallmark genes” encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host. PMID:24847023

  6. Virus world as an evolutionary network of viruses and capsidless selfish elements.

    PubMed

    Koonin, Eugene V; Dolja, Valerian V

    2014-06-01

    Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus "self" that defines the identity of deep, ancient viral lineages. However, several other widespread viral "hallmark genes" encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Genetic diversity of the Plasmodium falciparum apical membrane antigen I gene in parasite population from the China-Myanmar border area.

    PubMed

    Zhu, Xiaotong; Zhao, Zhenjun; Feng, Yonghui; Li, Peipei; Liu, Fei; Liu, Jun; Yang, Zhaoqing; Yan, Guiyun; Fan, Qi; Cao, Yaming; Cui, Liwang

    2016-04-01

    To investigate the genetic diversity of the Plasmodium falciparum apical membrane antigen 1 (PfAMA1) gene in Southeast Asia, we determined PfAMA1 sequences from 135 field isolates collected from the China-Myanmar border area and compared them with 956 publically available PfAMA1 sequences from seven global P. falciparum populations. This analysis revealed high genetic diversity of PfAMA1 in global P. falciparum populations with a total of 229 haplotypes identified. The genetic diversity of PfAMA1 gene from the China-Myanmar border is not evenly distributed in the different domains of this gene. Sequence diversity in PfAMA1 from the China-Myanmar border is lower than that observed in Thai, African and Oceanian populations, but higher than that in the South American population. This appeared to correlate well with the levels of endemicity of different malaria-endemic regions, where hyperendemic regions favor genetic cross of the parasite isolates and generation of higher genetic diversity. Neutrality tests show significant departure from neutrality in the entire ectodomain and Domain I of PfAMA1 in the China-Myanmar border parasite population. We found evidence supporting a substantial continent-wise genetic structure among P. falciparum populations, with the highest genetic differentiation detected between the China-Myanmar border and the South American populations. Whereas no alleles were unique to a specific region, there were considerable geographical differences in major alleles and their frequencies, highlighting further necessity to include more PfAMA1 alleles in vaccine designs. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A selfish genetic element confers non-Mendelian inheritance in rice.

    PubMed

    Yu, Xiaowen; Zhao, Zhigang; Zheng, Xiaoming; Zhou, Jiawu; Kong, Weiyi; Wang, Peiran; Bai, Wenting; Zheng, Hai; Zhang, Huan; Li, Jing; Liu, Jiafan; Wang, Qiming; Zhang, Long; Liu, Kai; Yu, Yang; Guo, Xiuping; Wang, Jiulin; Lin, Qibing; Wu, Fuqing; Ren, Yulong; Zhu, Shanshan; Zhang, Xin; Cheng, Zhijun; Lei, Cailin; Liu, Shijia; Liu, Xi; Tian, Yunlu; Jiang, Ling; Ge, Song; Wu, Chuanyin; Tao, Dayun; Wang, Haiyang; Wan, Jianmin

    2018-06-08

    Selfish genetic elements are pervasive in eukaryote genomes, but their role remains controversial. We show that qHMS7 , a major quantitative genetic locus for hybrid male sterility between wild rice ( Oryza meridionalis ) and Asian cultivated rice ( O. sativa ), contains two tightly linked genes [ Open Reading Frame 2 ( ORF2 ) and ORF3 ]. ORF2 encodes a toxic genetic element that aborts pollen in a sporophytic manner, whereas ORF3 encodes an antidote that protects pollen in a gametophytic manner. Pollens lacking ORF3 are selectively eliminated, leading to segregation distortion in the progeny. Analysis of the genetic sequence suggests that ORF3 arose first, followed by gradual functionalization of ORF2 Furthermore, this toxin-antidote system may have promoted the differentiation and/or maintained the genome stability of wild and cultivated rice. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Host-Parasite Interactions and Purifying Selection in a Microsporidian Parasite of Honey Bees

    PubMed Central

    Huang, Qiang; Chen, Yan Ping; Wang, Rui Wu; Cheng, Shang; Evans, Jay D.

    2016-01-01

    To clarify the mechanisms of Nosema ceranae parasitism, we deep-sequenced both honey bee host and parasite mRNAs throughout a complete 6-day infection cycle. By time-series analysis, 1122 parasite genes were significantly differently expressed during the reproduction cycle, clustering into 4 expression patterns. We found reactive mitochondrial oxygen species modulator 1 of the host to be significantly down regulated during the entire infection period. Our data support the hypothesis that apoptosis of honey bee cells was suppressed during infection. We further analyzed genome-wide genetic diversity of this parasite by comparing samples collected from the same site in 2007 and 2013. The number of SNP positions per gene and the proportion of non-synonymous substitutions per gene were significantly reduced over this time period, suggesting purifying selection on the parasite genome and supporting the hypothesis that a subset of N. ceranae strains might be dominating infection. PMID:26840596

  10. Host-Parasite Interactions and Purifying Selection in a Microsporidian Parasite of Honey Bees.

    PubMed

    Huang, Qiang; Chen, Yan Ping; Wang, Rui Wu; Cheng, Shang; Evans, Jay D

    2016-01-01

    To clarify the mechanisms of Nosema ceranae parasitism, we deep-sequenced both honey bee host and parasite mRNAs throughout a complete 6-day infection cycle. By time-series analysis, 1122 parasite genes were significantly differently expressed during the reproduction cycle, clustering into 4 expression patterns. We found reactive mitochondrial oxygen species modulator 1 of the host to be significantly down regulated during the entire infection period. Our data support the hypothesis that apoptosis of honey bee cells was suppressed during infection. We further analyzed genome-wide genetic diversity of this parasite by comparing samples collected from the same site in 2007 and 2013. The number of SNP positions per gene and the proportion of non-synonymous substitutions per gene were significantly reduced over this time period, suggesting purifying selection on the parasite genome and supporting the hypothesis that a subset of N. ceranae strains might be dominating infection.

  11. Sex-dependent genetic effects on immune responses to a parasitic nematode.

    PubMed

    Hayes, Kelly S; Hager, Reinmar; Grencis, Richard K

    2014-03-14

    Many disease aetiologies have sex specific effects, which have important implications for disease management. It is now becoming increasingly evident that such effects are the result of the differential expression of autosomal genes rather than sex-specific genes. Such sex-specific variation in the response to Trichuris muris, a murine parasitic nematode infection and model for the human parasitic nematode T. trichiura, has been well documented, however, the underlying genetic causes of these differences have been largely neglected. We used the BXD mouse set of recombinant inbred strains to identify sex-specific loci that contribute to immune phenotypes in T. muris infection. Response phenotypes to T. muris infection were found to be highly variable between different lines of BXD mice. A significant QTL on chromosome 5 (TM5) associated with IFN-γ production was found in male mice but not in female mice. This QTL was in the same location as a suggestive QTL for TNF-α and IL-6 production in male mice suggesting a common control of these pro-inflammatory cytokines. A second QTL was identified on chromosome 4 (TM4) affecting worm burden in both male and female cohorts. We have identified several genes as potential candidates for modifying responses to T. muris infection. We have used the largest mammalian genetic model system, the BXD mouse population, to identify candidate genes with sex-specific effects in immune responses to T. muris infection. Some of these genes may be differentially expressed in male and female mice leading to the difference in immune response between the sexes reported in previous studies. Our study further highlights the importance of considering sex as an important factor in investigations of immune response at the genome-wide level, in particular the bias that can be introduced when generalizing results obtained from only one sex or a mixed sex population. Rather, analyses of interaction effects between sex and genotype should be part of

  12. PlasmoGEM, a database supporting a community resource for large-scale experimental genetics in malaria parasites.

    PubMed

    Schwach, Frank; Bushell, Ellen; Gomes, Ana Rita; Anar, Burcu; Girling, Gareth; Herd, Colin; Rayner, Julian C; Billker, Oliver

    2015-01-01

    The Plasmodium Genetic Modification (PlasmoGEM) database (http://plasmogem.sanger.ac.uk) provides access to a resource of modular, versatile and adaptable vectors for genome modification of Plasmodium spp. parasites. PlasmoGEM currently consists of >2000 plasmids designed to modify the genome of Plasmodium berghei, a malaria parasite of rodents, which can be requested by non-profit research organisations free of charge. PlasmoGEM vectors are designed with long homology arms for efficient genome integration and carry gene specific barcodes to identify individual mutants. They can be used for a wide array of applications, including protein localisation, gene interaction studies and high-throughput genetic screens. The vector production pipeline is supported by a custom software suite that automates both the vector design process and quality control by full-length sequencing of the finished vectors. The PlasmoGEM web interface allows users to search a database of finished knock-out and gene tagging vectors, view details of their designs, download vector sequence in different formats and view available quality control data as well as suggested genotyping strategies. We also make gDNA library clones and intermediate vectors available for researchers to produce vectors for themselves. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. A quantitative trait locus for recognition of foreign eggs in the host of a brood parasite.

    PubMed

    Martín-Gálvez, D; Soler, J J; Martínez, J G; Krupa, A P; Richard, M; Soler, M; Møller, A P; Burke, T

    2006-03-01

    Avian brood parasites reduce the reproductive output of their hosts and thereby select for defence mechanisms such as ejection of parasitic eggs. Such defence mechanisms simultaneously select for counter-defences in brood parasites, causing a coevolutionary arms race. Although coevolutionary models assume that defences and counter-defences are genetically influenced, this has never been demonstrated for brood parasites. Here, we give strong evidence for genetic differences between ejector and nonejectors, which could allow the study of such host defence at the genetic level, as well as studies of maintenance of genetic variation in defences. Briefly, we found that magpies, that are the main host of the great spotted cuckoo in Europe, have alleles of one microsatellite locus (Ase64) that segregate between accepters and rejecters of experimental parasitic eggs. Furthermore, differences in ejection rate among host populations exploited by the brood parasite covaried significantly with the genetic distance for this locus.

  14. In silico exploration of the impact of pasture larvae contamination and anthelmintic treatment on genetic parameter estimates for parasite resistance in grazing sheep.

    PubMed

    Laurenson, Y C S M; Kyriazakis, I; Bishop, S C

    2012-07-01

    A mathematical model was developed to investigate the impact of level of Teladorsagia circumcincta larval pasture contamination and anthelmintic treatment on genetic parameter estimates for performance and resistance to parasites in sheep. Currently great variability is seen for published correlations between performance and resistance, with estimates appearing to vary with production environment. The model accounted for host genotype and parasitism in a population of lambs, incorporating heritable between-lamb variation in host-parasite interactions, with genetic independence of input growth and immunological variables. An epidemiological module was linked to the host-parasite interaction module via food intake (FI) to create a grazing scenario. The model was run for a population of lambs growing from 2 mo of age, grazing on pasture initially contaminated with 0, 1,000, 3,000, or 5,000 larvae/kg DM, and given either no anthelmintic treatment or drenched at 30-d intervals. The mean population values for FI and empty BW (EBW) decreased with increasing levels of initial larval contamination (IL(0)), with non-drenched lambs having a greater reduction than drenched ones. For non-drenched lambs the maximum mean population values for worm burden (WB) and fecal egg count (FEC) increased and occurred earlier for increasing IL(0), with values being similar for all IL(0) at the end of the simulation. Drenching was predicted to suppress WB and FEC, and cause reduced pasture contamination. The heritability of EBW for non-drenched lambs was predicted to be initially high (0.55) and decreased over time with increasing IL(0), whereas drenched lambs remained high throughout. The heritability of WB and FEC for all lambs was initially low (∼0.05) and increased with time to ∼0.25, with increasing IL(0) leading to this value being reached at faster rates. The genetic correlation between EBW and FEC was initially ∼-0.3. As time progressed the correlation tended towards 0, before

  15. Nuclear inheritance and genetic exchange without meiosis in the binucleate parasite Giardia intestinalis

    PubMed Central

    Carpenter, Meredith L.; Assaf, Zoe June; Gourguechon, Stéphane; Cande, W. Zacheus

    2012-01-01

    The protozoan parasite Giardia intestinalis (also known as Giardia lamblia) is a major waterborne pathogen. During its life cycle, Giardia alternates between the actively growing trophozoite, which has two diploid nuclei with low levels of allelic heterozygosity, and the infectious cyst, which has four nuclei and a tough outer wall. Although the formation of the cyst wall has been studied extensively, we still lack basic knowledge about many fundamental aspects of the cyst, including the sources of the four nuclei and their distribution during the transformation from cyst into trophozoite. In this study, we tracked the identities of the nuclei in the trophozoite and cyst using integrated nuclear markers and immunofluorescence staining. We demonstrate that the cyst is formed from a single trophozoite by a mitotic division without cytokinesis and not by the fusion of two trophozoites. During excystation, the cell completes cytokinesis to form two daughter trophozoites. The non-identical nuclear pairs derived from the parent trophozoite remain associated in the cyst and are distributed to daughter cells during excystation as pairs. Thus, nuclear sorting (such that each daughter cell receives a pair of identical nuclei) does not appear to be a mechanism by which Giardia reduces heterozygosity between its nuclei. Rather, we show that the cyst nuclei exchange chromosomal genetic material, perhaps as a way to reduce heterozygosity in the absence of meiosis and sex, which have not been described in Giardia. These results shed light on fundamental aspects of the Giardia life cycle and have implications for our understanding of the population genetics and cell biology of this binucleate parasite. PMID:22366460

  16. Selecting Random Distributed Elements for HIFU using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng

    2011-09-01

    As an effective and noninvasive therapeutic modality for tumor treatment, high-intensity focused ultrasound (HIFU) has attracted attention from both physicians and patients. New generations of HIFU systems with the ability to electrically steer the HIFU focus using phased array transducers have been under development. The presence of side and grating lobes may cause undesired thermal accumulation at the interface of the coupling medium (i.e. water) and skin, or in the intervening tissue. Although sparse randomly distributed piston elements could reduce the amplitude of grating lobes, there are theoretically no grating lobes with the use of concave elements in the new phased array HIFU. A new HIFU transmission strategy is proposed in this study, firing a number of but not all elements for a certain period and then changing to another group for the next firing sequence. The advantages are: 1) the asymmetric position of active elements may reduce the side lobes, and 2) each element has some resting time during the entire HIFU ablation (up to several hours for some clinical applications) so that the decreasing efficiency of the transducer due to thermal accumulation is minimized. Genetic algorithm was used for selecting randomly distributed elements in a HIFU array. Amplitudes of the first side lobes at the focal plane were used as the fitness value in the optimization. Overall, it is suggested that the proposed new strategy could reduce the side lobe and the consequent side-effects, and the genetic algorithm is effective in selecting those randomly distributed elements in a HIFU array.

  17. Concentrations of 17 elements in the zebra mussel (Dreissena polymorpha), in different tissues of perch (Perca fluviatilis), and in perch intestinal parasites (Acanthocephalus lucii) from the subalpine lake Mondsee, Austria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sures, B.; Steiner, W.; Rydlo, M.

    1999-11-01

    Concentrations of the elements Al, Ag, Ba, ca, Cd, Co, Cr, cu, Fe, Ga, Mg, Mn, Ni, Pb, Sr, Tl, and Zn were analyzed by inductively coupled plasma mass spectrometry in the acanthocephalan Acanthocephalus lucii (Mueller); in its host, Perca fluviatilis (L.), and in the soft tissue of the zebra mussel, Dreissena polymorpha (Pallas). All animals were collected from the same sampling site in a subalpine lake, Mondsee, in Austria. Most of the elements were found at significantly higher concentrations in the acanthocephalan than in different tissues (muscle, liver, and intestinal wall) of its perch host. Only Co was concentratedmore » in the liver of perch to a level that was significantly higher than that found in the parasite. Most of the analyzed elements were also present at significantly higher concentrations in A. lucii than in D. polymorpha. Barium and Cr were the only elements recorded at higher concentrations in the mussel compared with the acanthocephalan. Thus, when comparing the accumulation of elements, the acanthocephalans appear to be even more suitable than the zebra mussels in terms of their use in the detection of metal contamination within aquatic biotopes. Spearman correlation analysis revealed that the concentrations of several elements within the parasites decreased with increasing infrapopulation. Furthermore, the levels of some elements in the perch liver were negatively correlated with the weight of A. lucii in the intestine. Thus, it emerged that not only is there competition for elements between acanthocephalans inside the gut but there is also competition for these elements between the host and the parasites. The elevated element concentrations demonstrated here in the parasitic worm A. lucii provide support for further investigations of these common helminthes and of their accumulation properties.« less

  18. Extreme Heterogeneity in Parasitism Despite Low Population Genetic Structure among Monarch Butterflies Inhabiting the Hawaiian Islands

    PubMed Central

    Pierce, Amanda A.; de Roode, Jacobus C.; Altizer, Sonia; Bartel, Rebecca A.

    2014-01-01

    Host movement and spatial structure can strongly influence the ecology and evolution of infectious diseases, with limited host movement potentially leading to high spatial heterogeneity in infection. Monarch butterflies (Danaus plexippus) are best known for undertaking a spectacular long-distance migration in eastern North America; however, they also form non-migratory populations that breed year-round in milder climates such as Hawaii and other tropical locations. Prior work showed an inverse relationship between monarch migratory propensity and the prevalence of the protozoan parasite, Ophryocystis elektroscirrha. Here, we sampled monarchs from replicate sites within each of four Hawaiian Islands to ask whether these populations show consistently high prevalence of the protozoan parasite as seen for monarchs from several other non-migratory populations. Counter to our predictions, we observed striking spatial heterogeneity in parasite prevalence, with infection rates per site ranging from 4–85%. We next used microsatellite markers to ask whether the observed variation in infection might be explained by limited host movement and spatial sub-structuring among sites. Our results showed that monarchs across the Hawaiian Islands form one admixed population, supporting high gene flow among sites. Moreover, measures of individual-level genetic diversity did not predict host infection status, as might be expected if more inbred hosts harbored higher parasite loads. These results suggest that other factors such as landscape-level environmental variation or colonization-extinction processes might instead cause the extreme heterogeneity in monarch butterfly infection observed here. PMID:24926796

  19. Integrating Anisakis spp. parasites data and host genetic structure in the frame of a holistic approach for stock identification of selected Mediterranean Sea fish species.

    PubMed

    Mattiucci, S; Cimmaruta, R; Cipriani, P; Abaunza, P; Bellisario, B; Nascetti, G

    2015-01-01

    The unique environment of the Mediterranean Sea makes fish stock assessment a major challenge. Stock identification of Mediterranean fisheries has been based mostly from data on biology, morphometrics, artificial tags, otolith shape and fish genetics, with less effort on the use of parasites as biomarkers. Here we use some case studies comparing Mediterranean vs Atlantic fish stocks in a multidisciplinary framework. The generalized Procrustes Rotation (PR) was used to assess the association between host genetics and larval Anisakis spp. datasets on demersal (hake) and pelagic (horse mackerel, swordfish) species. When discordant results emerged, they were due to the different features of the data. While fish population genetics can detect changes over an evolutionary timescale, providing indications on the cohesive action of gene flow, parasites are more suitable biomarkers when considering fish stocks over smaller temporal and spatial scales, hence giving information of fish movements over their lifespan. Future studies on the phylogeographic analysis of parasites suitable as biomarkers, and that of their fish host, performed on the same genes, will represent a further tool to be included in multidisciplinary studies on fish stock structure.

  20. Evolution and genetic diversity of Theileria.

    PubMed

    Sivakumar, Thillaiampalam; Hayashida, Kyoko; Sugimoto, Chihiro; Yokoyama, Naoaki

    2014-10-01

    Theileria parasites infect a wide range of domestic and wild ruminants worldwide, causing diseases with varying degrees of severity. A broad classification, based on the parasite's ability to transform the leukocytes of host animals, divides Theileria into two groups, consisting of transforming and non-transforming species. The evolution of transforming Theileria has been accompanied by drastic changes in its genetic makeup, such as acquisition or expansion of gene families, which are thought to play critical roles in the transformation of host cells. Genetic variation among Theileria parasites is sometimes linked with host specificity and virulence in the parasites. Immunity against Theileria parasites primarily involves cell-mediated immune responses in the host. Immunodominance and major histocompatibility complex class I phenotype-specificity result in a host immunity that is tightly focused and strain-specific. Immune escape in Theileria is facilitated by genetic diversity in its antigenic determinants, which potentially results in a loss of T cell receptor recognition in its host. In the recent past, several reviews have focused on genetic diversity in the transforming species, Theileriaparva and Theileriaannulata. In contrast, genetic diversity in Theileriaorientalis, a benign non-transforming parasite, which occasionally causes disease outbreaks in cattle, has not been extensively examined. In this review, therefore, we provide an outline of the evolution of Theileria, which includes T. orientalis, and discuss the possible mechanisms generating genetic diversity among parasite populations. Additionally, we discuss the potential implications of a genetically diverse parasite population in the context of Theileria vaccine development. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Proceedings of the fourth international workshop on the genetics of host-parasite interactions in forestry: Disease and insect resistance in forest trees

    Treesearch

    Richard A. Sniezko; Alvin D. Yanchuk; John T. Kliejunas; Katharine M. Palmieri; Janice M. Alexander; Susan J. Frankel

    2012-01-01

    Individual papers are available at http://www.fs.fed.us/psw/publications/documents/psw_gtr240/The Fourth International Workshop on the Genetics of Host-Parasite Interactions in Forestry: Disease and Insect Resistance in Forest Trees...

  2. [Characteristics of the genetic structure of parasite and host populations by the example of helminthes from moor frog Rana arvalis Nilsson].

    PubMed

    Zhigalev, O N

    2010-01-01

    The genetic structure of populations of four helminth species from moor frog Rana arvalis, in comparison with the population-genetic structure of the host, has been studied with the gel-electrophoresis method. As compared with the host, parasites are characterized by more distinct deviation from the balance of genotypic frequencies and higher level of interpopulation genetic differences. The genetic variability indices in the three of four frog helminthes examined are lower than those in the host. Moreover, these indices are lower than the average indices typical of free-living invertebrates; this fact contradicts the opinion on polyhostality of these helminthes and their wide distribution.

  3. Phloem-Conducting Cells in Haustoria of the Root-Parasitic Plant Phelipanche aegyptiaca Retain Nuclei and Are Not Mature Sieve Elements.

    PubMed

    Ekawa, Minako; Aoki, Koh

    2017-12-05

    Phelipanche aegyptiaca parasitizes a wide range of plants, including important crops, and causes serious damage to their production. P. aegyptiaca develops a specialized intrusive organ called a haustorium that establishes connections to the host's xylem and phloem. In parallel with the development of xylem vessels, the differentiation of phloem-conducting cells has been demonstrated by the translocation of symplasmic tracers from the host to the parasite. However, it is unclear yet whether haustorial phloem-conducting cells are sieve elements. In this study, we identified phloem-conducting cells in haustoria by the host-to-parasite translocation of green fluorescent protein (GFP) from AtSUC2pro::GFP tomato sieve tubes. Haustorial GFP-conducting cells contained nuclei but not callose-rich sieve plates, indicating that phloem-conducting cells in haustoria differ from conventional sieve elements. To ascertain why the nuclei were not degenerated, expression of the P. aegyptiaca homologs NAC-domain containing transcription factor ( NAC45 ), NAC45/86-dependent exonuclease-domain protein 1 ( NEN1 ), and NEN4 was examined. However, these genes were more highly expressed in the haustorium than in tubercle protrusion, implying that nuclear degradation in haustoria may not be exclusively controlled by the NAC45 / 86 - NEN regulatory pathway. Our results also suggest that the formation of plasmodesmata with large size exclusion limits is independent of nuclear degradation and callose deposition.

  4. Intestinal parasite infections in a rural community of Rio de Janeiro (Brazil): Prevalence and genetic diversity of Blastocystis subtypes.

    PubMed

    Barbosa, Carolina Valença; Barreto, Magali Muniz; Andrade, Rosemary de Jesus; Sodré, Fernando; d'Avila-Levy, Claudia Masini; Peralta, José Mauro; Igreja, Ricardo Pereira; de Macedo, Heloisa Werneck; Santos, Helena Lucia Carneiro

    2018-01-01

    Intestinal parasitic infections are considered a serious public health problem and widely distributed worldwide, mainly in urban and rural environments of tropical and subtropical countries. Globally, soil-transmitted helminths and protozoa are the most common intestinal parasites. Blastocystis sp. is a highly prevalent suspected pathogenic protozoan, and considered an unusual protist due to its significant genetic diversity and host plasticity. A total of 294 stool samples were collected from inhabitants of three rural valleys in Rio de Janeiro, Brazil. The stool samples were evaluated by parasitological methods, fecal culture, nested PCR and PCR/Sequencing. Overall prevalence by parasitological analyses was 64.3% (189 out of 294 cases). Blastocystis sp. (55.8%) was the most prevalent, followed by Endolimax nana (18.7%), Entamoeba histolytica complex (7.1%), hookworm infection (7.1%), Entomoeba coli (5.8%), Giardia intestinalis (4.1%), Iodamoeba butchilii (1.0%), Trichuris trichiura (1.0%), Pentatrichomonas hominis (0.7%), Enterobius vermicularis (0.7%), Ascaris lumbricoides (0.7%) and Strongyloides stercoralis (0.7%). Prevalence of IPIs was significantly different by gender. Phylogenetic analysis of Blastocystis sp. and BLAST search revealed five different subtypes: ST3 (34.0%), ST1 (27.0%), ST2 (27.0%), ST4 (3.5%), ST8 (7.0%) and a non-identified subtype. Our findings demonstrate that intestinal parasite infection rates in rural areas of the Sumidouro municipality of Rio de Janeiro, Brazil are still high and remain a challenge to public health. Moreover, our data reveals significant genetic heterogeneity of Blastocystis sp. subtypes and a possible novel subtype, whose confirmation will require additional data. Our study contributes to the understanding of potential routes of transmission, epidemiology, and genetic diversity of Blastocystis sp. in rural areas both at a regional and global scale.

  5. Intestinal parasite infections in a rural community of Rio de Janeiro (Brazil): Prevalence and genetic diversity of Blastocystis subtypes

    PubMed Central

    Barbosa, Carolina Valença; Barreto, Magali Muniz; Andrade, Rosemary de Jesus; Sodré, Fernando; d’Avila-Levy, Claudia Masini; Peralta, José Mauro; Igreja, Ricardo Pereira; de Macedo, Heloisa Werneck

    2018-01-01

    Background Intestinal parasitic infections are considered a serious public health problem and widely distributed worldwide, mainly in urban and rural environments of tropical and subtropical countries. Globally, soil-transmitted helminths and protozoa are the most common intestinal parasites. Blastocystis sp. is a highly prevalent suspected pathogenic protozoan, and considered an unusual protist due to its significant genetic diversity and host plasticity. Methodology/main findings A total of 294 stool samples were collected from inhabitants of three rural valleys in Rio de Janeiro, Brazil. The stool samples were evaluated by parasitological methods, fecal culture, nested PCR and PCR/Sequencing. Overall prevalence by parasitological analyses was 64.3% (189 out of 294 cases). Blastocystis sp. (55.8%) was the most prevalent, followed by Endolimax nana (18.7%), Entamoeba histolytica complex (7.1%), hookworm infection (7.1%), Entomoeba coli (5.8%), Giardia intestinalis (4.1%), Iodamoeba butchilii (1.0%), Trichuris trichiura (1.0%), Pentatrichomonas hominis (0.7%), Enterobius vermicularis (0.7%), Ascaris lumbricoides (0.7%) and Strongyloides stercoralis (0.7%). Prevalence of IPIs was significantly different by gender. Phylogenetic analysis of Blastocystis sp. and BLAST search revealed five different subtypes: ST3 (34.0%), ST1 (27.0%), ST2 (27.0%), ST4 (3.5%), ST8 (7.0%) and a non-identified subtype. Conclusions/significance Our findings demonstrate that intestinal parasite infection rates in rural areas of the Sumidouro municipality of Rio de Janeiro, Brazil are still high and remain a challenge to public health. Moreover, our data reveals significant genetic heterogeneity of Blastocystis sp. subtypes and a possible novel subtype, whose confirmation will require additional data. Our study contributes to the understanding of potential routes of transmission, epidemiology, and genetic diversity of Blastocystis sp. in rural areas both at a regional and global scale. PMID

  6. Social transmission of a host defense against cuckoo parasitism.

    PubMed

    Davies, Nicholas B; Welbergen, Justin A

    2009-06-05

    Coevolutionary arms races between brood parasites and hosts involve genetic adaptations and counter-adaptations. However, hosts sometimes acquire defenses too rapidly to reflect genetic change. Our field experiments show that observation of cuckoo (Cuculus canorus) mobbing by neighbors on adjacent territories induced reed warblers (Acrocephalus scirpaceus) to increase the mobbing of cuckoos but not of parrots (a harmless control) on their own territory. In contrast, observation of neighbors mobbing parrots had no effect on reed warblers' responses to either cuckoos or parrots. These results indicate that social learning provides a mechanism by which hosts rapidly increase their nest defense against brood parasites. Such enemy-specific social transmission enables hosts to track fine-scale spatiotemporal variation in parasitism and may influence the coevolutionary trajectories and population dynamics of brood parasites and hosts.

  7. Empirical Support for Optimal Virulence in a Castrating Parasite

    PubMed Central

    Jensen, Knut Helge; Little, Tom; Skorping, Arne; Ebert, Dieter

    2006-01-01

    The trade-off hypothesis for the evolution of virulence predicts that parasite transmission stage production and host exploitation are balanced such that lifetime transmission success (LTS) is maximised. However, the experimental evidence for this prediction is weak, mainly because LTS, which indicates parasite fitness, has been difficult to measure. For castrating parasites, this simple model has been modified to take into account that parasites convert host reproductive resources into transmission stages. Parasites that kill the host too early will hardly benefit from these resources, while postponing the killing of the host results in diminished returns. As predicted from optimality models, a parasite inducing castration should therefore castrate early, but show intermediate levels of virulence, where virulence is measured as time to host killing. We studied virulence in an experimental system where a bacterial parasite castrates its host and produces spores that are not released until after host death. This permits estimating the LTS of the parasite, which can then be related to its virulence. We exposed replicate individual Daphnia magna (Crustacea) of one host clone to the same amount of bacterial spores and followed individuals until their death. We found that the parasite shows strong variation in the time to kill its host and that transmission stage production peaks at an intermediate level of virulence. A further experiment tested for the genetic basis of variation in virulence by comparing survival curves of daphniids infected with parasite spores obtained from early killing versus late killing infections. Hosts infected with early killer spores had a significantly higher death rate as compared to those infected with late killers, indicating that variation in time to death was at least in part caused by genetic differences among parasites. We speculate that the clear peak in lifetime reproductive success at intermediate killing times may be caused by the

  8. The Origin of Malarial Parasites in Orangutans

    PubMed Central

    Pacheco, M. Andreína; Reid, Michael J. C.; Schillaci, Michael A.; Lowenberger, Carl A.; Galdikas, Biruté M. F.; Jones-Engel, Lisa; Escalante, Ananias A.

    2012-01-01

    Background Recent findings of Plasmodium in African apes have changed our perspectives on the evolution of malarial parasites in hominids. However, phylogenetic analyses of primate malarias are still missing information from Southeast Asian apes. In this study, we report molecular data for a malaria parasite lineage found in orangutans. Methodology/Principal Findings We screened twenty-four blood samples from Pongo pygmaeus (Kalimantan, Indonesia) for Plasmodium parasites by PCR. For all the malaria positive orangutan samples, parasite mitochondrial genomes (mtDNA) and two antigens: merozoite surface protein 1 42 kDa (MSP-142) and circumsporozoite protein gene (CSP) were amplified, cloned, and sequenced. Fifteen orangutans tested positive and yielded 5 distinct mitochondrial haplotypes not previously found. The haplotypes detected exhibited low genetic divergence among them, indicating that they belong to one species. We report phylogenetic analyses using mitochondrial genomes, MSP-142 and CSP. We found that the orangutan malaria parasite lineage was part of a monophyletic group that includes all the known non-human primate malaria parasites found in Southeast Asia; specifically, it shares a recent common ancestor with P. inui (a macaque parasite) and P. hylobati (a gibbon parasite) suggesting that this lineage originated as a result of a host switch. The genetic diversity of MSP-142 in orangutans seems to be under negative selection. This result is similar to previous findings in non-human primate malarias closely related to P. vivax. As has been previously observed in the other Plasmodium species found in non-human primates, the CSP shows high polymorphism in the number of repeats. However, it has clearly distinctive motifs from those previously found in other malarial parasites. Conclusion The evidence available from Asian apes indicates that these parasites originated independently from those found in Africa, likely as the result of host switches from other non

  9. The origin and genetic differentiation of the socially parasitic aphid Tamalia inquilinus.

    PubMed

    Miller, Donald G; Lawson, Sarah P; Rinker, David C; Estby, Heather; Abbot, Patrick

    2015-11-01

    Social and brood parasitisms are nonconsumptive forms of parasitism involving the exploitation of the colonies or nests of a host. Such parasites are often related to their hosts and may evolve in various ecological contexts, causing evolutionary constraints and opportunities for both parasites and their hosts. In extreme cases, patterns of diversification between social parasites and their hosts can be coupled, such that diversity of one is correlated with or even shapes the diversity of the other. Aphids in the genus Tamalia induce galls on North American manzanita (Arctostaphylos) and related shrubs (Arbutoideae) and are parasitized by nongalling social parasites or inquilines in the same genus. We used RNA sequencing to identify and generate new gene sequences for Tamalia and performed maximum-likelihood, Bayesian and phylogeographic analyses to reconstruct the origins and patterns of diversity and host-associated differentiation in the genus. Our results indicate that the Tamalia inquilines are monophyletic and closely related to their gall-forming hosts on Arctostaphylos, supporting a previously proposed scenario for origins of these parasitic aphids. Unexpectedly, population structure and host-plant-associated differentiation were greater in the non-gall-inducing parasites than in their gall-inducing hosts. RNA-seq indicated contrasting patterns of gene expression between host aphids and parasites, and perhaps functional differences in host-plant relationships. Our results suggest a mode of speciation in which host plants drive within-guild diversification in insect hosts and their parasites. Shared host plants may be sufficient to promote the ecological diversification of a network of phytophagous insects and their parasites, as exemplified by Tamalia aphids. © 2015 John Wiley & Sons Ltd.

  10. Plants that attack plants: molecular elucidation of plant parasitism.

    PubMed

    Yoshida, Satoko; Shirasu, Ken

    2012-12-01

    Obligate parasitic plants in the family Orobanchaceae, such as Striga and Orobanche (including Phelipanche) spp., parasitize important crops and cause severe agricultural damage. Recent molecular studies have begun to reveal how these parasites have adapted to hosts in a parasitic lifecycle. The parasites detect nearby host roots and germinate by a mechanism that seems to have evolved from a conserved germination system found in non-parasites. The development of a specialized infecting organ called a haustorium is a unique feature of plant parasites and is triggered by host compounds and redox signals. Newly developed genomic and genetic resources will facilitate more rapid progress toward a molecular understanding of plant parasitism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Mobile genetic elements of Staphylococcus aureus.

    PubMed

    Malachowa, Natalia; DeLeo, Frank R

    2010-09-01

    Bacteria such as Staphylococcus aureus are successful as commensal organisms or pathogens in part because they adapt rapidly to selective pressures imparted by the human host. Mobile genetic elements (MGEs) play a central role in this adaptation process and are a means to transfer genetic information (DNA) among and within bacterial species. Importantly, MGEs encode putative virulence factors and molecules that confer resistance to antibiotics, including the gene that confers resistance to beta-lactam antibiotics in methicillin-resistant S. aureus (MRSA). Inasmuch as MRSA infections are a significant problem worldwide and continue to emerge in epidemic waves, there has been significant effort to improve diagnostic assays and to develop new antimicrobial agents for treatment of disease. Our understanding of S. aureus MGEs and the molecules they encode has played an important role toward these ends and has provided detailed insight into the evolution of antimicrobial resistance mechanisms and virulence.

  12. Evidence for parasite-mediated selection during short-lasting toxic algal blooms.

    PubMed

    Blanquart, François; Valero, Myriam; Alves-de-Souza, Catharina; Dia, Aliou; Lepelletier, Frédéric; Bigeard, Estelle; Jeanthon, Christian; Destombe, Christophe; Guillou, Laure

    2016-10-26

    Parasites play a role in the control of transient algal blooms, but it is not known whether parasite-mediated selection results in coevolution of the host and the parasites over this short time span. We investigated the presence of coevolution between the toxic dinoflagellate Alexandrium minutum and two naturally occurring endoparasites during blooms lasting a month in two river estuaries, using cross-inoculation experiments across time and space. Higher parasite abundance was associated with a large daily reduction in relative A. minutum abundances, demonstrating strong parasite-mediated selection. There was genetic variability in infectivity in both parasite species, and in resistance in the host. We found no evidence for coevolution in one estuary; however, in the other estuary, we found high genetic diversity in the two parasite species, fluctuations in infectivity and suggestion that the two parasites are well adapted to their host, as in 'Red Queen' dynamics. Thus, coevolution is possible over the short time span of a bloom, but geographically variable, and may feedback on community dynamics. © 2016 The Authors.

  13. Genetic Recombination between Human and Animal Parasites Creates Novel Strains of Human Pathogen

    PubMed Central

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-01-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT. PMID:25816228

  14. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    PubMed

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-03-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  15. Parasite transmission among relatives halts Red Queen dynamics.

    PubMed

    Greenspoon, Philip B; Mideo, Nicole

    2017-03-01

    The theory that coevolving hosts and parasites create a fluctuating selective environment for one another (i.e., produce Red Queen dynamics) has deep roots in evolutionary biology; yet empirical evidence for Red Queen dynamics remains scarce. Fluctuating coevolutionary dynamics underpin the Red Queen hypothesis for the evolution of sex, as well as hypotheses explaining the persistence of genetic variation under sexual selection, local parasite adaptation, the evolution of mutation rate, and the evolution of nonrandom mating. Coevolutionary models that exhibit Red Queen dynamics typically assume that hosts and parasites encounter one another randomly. However, if related individuals aggregate into family groups or are clustered spatially, related hosts will be more likely to encounter parasites transmitted by genetically similar individuals. Using a model that incorporates familial parasite transmission, we show that a slight degree of familial parasite transmission is sufficient to halt coevolutionary fluctuations. Our results predict that evidence for Red Queen dynamics, and its evolutionary consequences, are most likely to be found in biological systems in which hosts and parasites mix mainly at random, and are less likely to be found in systems with familial aggregation. This presents a challenge to the Red Queen hypothesis and other hypotheses that depend on coevolutionary cycling. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  16. Genetic incompatibility drives mate choice in a parasitic wasp.

    PubMed

    Thiel, Andra; Weeda, Anne C; de Boer, Jetske G; Hoffmeister, Thomas S

    2013-07-30

    Allelic incompatibility between individuals of the same species should select for mate choice based on the genetic make-up of both partners at loci that influence offspring fitness. As a consequence, mate choice may be an important driver of allelic diversity. A complementary sex determination (CSD) system is responsible for intraspecific allelic incompatibility in many species of ants, bees, and wasps. CSD may thus favour disassortative mating and in this, resembles the MHC of the vertebrate immune system, or the self-incompatibility (SI) system of higher plants. Here we show that in the monogamous parasitic wasp Bracon brevicornis (Wesmael), females are able to reject partners with incompatible alleles. Forcing females to accept initially rejected partners resulted in sex ratio distortion and partial infertility of offspring. CSD-disassortative mating occurred independent of kin recognition and inbreeding avoidance in our experiment. The fitness consequences of mate choice are directly observable, not influenced by environmental effects, and more severe than in comparable systems (SI or MHC), on individuals as well as at the population level. Our results thus demonstrate the strong potential of female mate choice for maintaining high offspring fitness in this species.

  17. Parasites as Biological Tags for Stock Discrimination of Beaked Redfish (Sebastes mentella): Parasite Infra-Communities vs. Limited Resolution of Cytochrome Markers

    PubMed Central

    Klapper, Regina; Kochmann, Judith; O’Hara, Robert B.; Karl, Horst; Kuhn, Thomas

    2016-01-01

    The use of parasites as biological tags for discrimination of fish stocks has become a commonly used approach in fisheries management. Metazoan parasite community analysis and anisakid nematode population genetics based on a mitochondrial cytochrome marker were applied in order to assess the usefulness of the two parasitological methods for stock discrimination of beaked redfish Sebastes mentella of three fishing grounds in the North East Atlantic. Multivariate, model-based approaches demonstrated that the metazoan parasite fauna of beaked redfish from East Greenland differed from Tampen, northern North Sea, and Bear Island, Barents Sea. A joint model (latent variable model) was used to estimate the effects of covariates on parasite species and identified four parasite species as main source of differences among fishing grounds; namely Chondracanthus nodosus, Anisakis simplex s.s., Hysterothylacium aduncum, and Bothriocephalus scorpii. Due to its high abundance and differences between fishing grounds, Anisakis simplex s.s. was considered as a major biological tag for host stock differentiation. Whilst the sole examination of Anisakis simplex s.s. on a population genetic level is only of limited use, anisakid nematodes (in particular, A. simplex s.s.) can serve as biological tags on a parasite community level. This study confirmed the use of multivariate analyses as a tool to evaluate parasite infra-communities and to identify parasite species that might serve as biological tags. The present study suggests that S. mentella in the northern North Sea and Barents Sea is not sub-structured. PMID:27104735

  18. The evolution of parasitism in Nematoda.

    PubMed

    Blaxter, Mark; Koutsovoulos, Georgios

    2015-02-01

    Nematodes are abundant and diverse, and include many parasitic species. Molecular phylogenetic analyses have shown that parasitism of plants and animals has arisen at least 15 times independently. Extant nematode species also display lifestyles that are proposed to be on the evolutionary trajectory to parasitism. Recent advances have permitted the determination of the genomes and transcriptomes of many nematode species. These new data can be used to further resolve the phylogeny of Nematoda, and identify possible genetic patterns associated with parasitism. Plant-parasitic nematode genomes show evidence of horizontal gene transfer from other members of the rhizosphere, and these genes play important roles in the parasite-host interface. Similar horizontal transfer is not evident in animal parasitic groups. Many nematodes have bacterial symbionts that can be essential for survival. Horizontal transfer from symbionts to the nematode is also common, but its biological importance is unclear. Over 100 nematode species are currently targeted for sequencing, and these data will yield important insights into the biology and evolutionary history of parasitism. It is important that these new technologies are also applied to free-living taxa, so that the pre-parasitic ground state can be inferred, and the novelties associated with parasitism isolated.

  19. Cuckoos and parasitic ants: Interspecific brood parasitism as an evolutionary arms race.

    PubMed

    Davies, N B; Bourke, A F; de L Brooke, M

    1989-09-01

    Each summer thousands of nesting birds feed cuckoo chicks that have killed the hosts' own young. Likewise, worker ants rear the brood of other ants that have killed the workers' queen or even induced the workers to kill their queen themselves. In both cases the hosts spend time and energy raising offspring that, to them, are of no genetic value. Such exploitation involves intricate parasitic adaptations for deceiving hosts. It should also provoke host defences. Brood and social parasites and their hosts therefore provide excellent opportunities for the study of evolutionary arms races. Copyright © 1989. Published by Elsevier Ltd.

  20. Assessment of nuclear and mitochondrial genes in precise identification and analysis of genetic polymorphisms for the evaluation of Leishmania parasites.

    PubMed

    Fotouhi-Ardakani, Reza; Dabiri, Shahriar; Ajdari, Soheila; Alimohammadian, Mohammad Hossein; AlaeeNovin, Elnaz; Taleshi, Neda; Parvizi, Parviz

    2016-12-01

    The polymorphism and genetic diversity of Leishmania genus has status under discussion depending on many items such as nuclear and/or mitochondrial genes, molecular tools, Leishmania species, geographical origin, condition of micro-environment of Leishmania parasites and isolation of Leishmania from clinical samples, reservoir host and vectors. The genetic variation of Leishmania species (L. major, L. tropica, L. tarentolae, L. mexicana, L. infantum) were analyzed and compared using mitochondrial (COII and Cyt b) and nuclear (nagt, ITS-rDNA and HSP70) genes. The role of each enzymatic (COII, Cyt b and nagt) or housekeeping (ITS-rDNA, HSP70) gene was employed for accurate identification of Leishmania parasites. After DNA extractions and amplifying of native, natural and reference strains of Leishmania parasites, polymerase chain reaction (PCR) products were sequenced and evaluation of genetic proximity and phylogenetic analysis were performed using MEGA6 and DnaSP5 software. Among the 72 sequences of the five genes, the number of polymorphic sites was significantly lower as compared to the monomorphic sites. Of the 72 sequences, 54 new haplotypes (five genes) of Leishmania species were submitted in GenBank (Access number: KU680818 - KU680871). Four genes had a remarkable number of informative sites (P=0.00), except HSP70 maybe because of its microsatellite regions. The non-synonymous (dN) variants of nagt gene were more than that of other expression genes (47.4%). The synonymous (dS)/dN ratio in three expression genes showed a significant variation between five Leishmania species (P=0.001). The highest and lowest levels of haplotype diversity were observed in L. tropica (81.35%) and L. major (28.38%) populations, respectively. Tajima's D index analyses showed that Cyt b gene in L. tropica species was significantly negative (Tajima's D=-2.2, P<0.01), while COII and nagt genes were produced through evolutionary processes for both L. tropica and L. major (Tajima's D=2

  1. Identification of Multiple Loci Associated with Social Parasitism in Honeybees

    PubMed Central

    Pirk, Christian W.; Allsopp, Mike H.

    2016-01-01

    In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis. PMID:27280405

  2. Identification of Multiple Loci Associated with Social Parasitism in Honeybees.

    PubMed

    Wallberg, Andreas; Pirk, Christian W; Allsopp, Mike H; Webster, Matthew T

    2016-06-01

    In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis.

  3. Engineering of Genetically Arrested Parasites (GAPs) For a Precision Malaria Vaccine.

    PubMed

    Kreutzfeld, Oriana; Müller, Katja; Matuschewski, Kai

    2017-01-01

    Continuous stage conversion and swift changes in the antigenic repertoire in response to acquired immunity are hallmarks of complex eukaryotic pathogens, including Plasmodium species, the causative agents of malaria. Efficient elimination of Plasmodium liver stages prior to blood infection is one of the most promising malaria vaccine strategies. Here, we describe different genetically arrested parasites (GAPs) that have been engineered in Plasmodium berghei, P. yoelii and P. falciparum and compare their vaccine potential. A better understanding of the immunological mechanisms of prime and boost by arrested sporozoites and experimental strategies to enhance vaccine efficacy by further engineering existing GAPs into a more immunogenic form hold promise for continuous improvements of GAP-based vaccines. A critical hurdle for vaccines that elicit long-lasting protection against malaria, such as GAPs, is safety and efficacy in vulnerable populations. Vaccine research should focus on solutions toward turning malaria into a vaccine-preventable disease, which would offer an exciting new path of malaria control.

  4. Transposable elements in sexual and ancient asexual taxa

    PubMed Central

    Arkhipova, Irina; Meselson, Matthew

    2000-01-01

    Sexual reproduction allows deleterious transposable elements to proliferate in populations, whereas the loss of sex, by preventing their spread, has been predicted eventually to result in a population free of such elements [Hickey, D. A. (1982) Genetics 101, 519–531]. We tested this expectation by screening representatives of a majority of animal phyla for LINE-like and gypsy-like reverse transcriptases and mariner/Tc1-like transposases. All species tested positive for reverse transcriptases except rotifers of the class Bdelloidea, the largest eukaryotic taxon in which males, hermaphrodites, and meiosis are unknown and for which ancient asexuality is supported by molecular genetic evidence. Mariner-like transposases are distributed sporadically among species and are present in bdelloid rotifers. The remarkable lack of LINE-like and gypsy-like retrotransposons in bdelloids and their ubiquitous presence in other taxa support the view that eukaryotic retrotransposons are sexually transmitted nuclear parasites and that bdelloid rotifers evolved asexually. PMID:11121049

  5. Sex as a strategy against rapidly evolving parasites

    PubMed Central

    Tinkler, Shona K.; Tinsley, Matthew C.

    2016-01-01

    Why is sex ubiquitous when asexual reproduction is much less costly? Sex disrupts coadapted gene complexes; it also causes costs associated with mate finding and the production of males who do not themselves bear offspring. Theory predicts parasites select for host sex, because genetically variable offspring can escape infection from parasites adapted to infect the previous generations. We examine this using a facultative sexual crustacean, Daphnia magna, and its sterilizing bacterial parasite, Pasteuria ramosa. We obtained sexually and asexually produced offspring from wild-caught hosts and exposed them to contemporary parasites or parasites isolated from the same population one year later. We found rapid parasite adaptation to replicate within asexual but not sexual offspring. Moreover, sexually produced offspring were twice as resistant to infection as asexuals when exposed to parasites that had coevolved alongside their parents (i.e. the year two parasite). This fulfils the requirement that the benefits of sex must be both large and rapid for sex to be favoured by selection. PMID:28003455

  6. A DTU-dependent blood parasitism and a DTU-independent tissue parasitism during mixed infection of Trypanosoma cruzi in immunosuppressed mice.

    PubMed

    Sales-Campos, Helioswilton; Kappel, Henrique Borges; Andrade, Cristiane Pontes; Lima, Tiago Pereira; Mattos, Mardén Estevão; de Castilho, Alessandra; Correia, Dalmo; Giraldo, Luis Eduardo Ramirez; Lages-Silva, Eliane

    2014-01-01

    Trypanosoma cruzi (Tc) diversity is determined by different biological, genetic, and biochemical markers and has been grouped into six discrete typing units (DTUs) or taxonomic groups (TcI-TcVI). This variability, coupled with natural reinfection or the hosts' immunosuppression, may play an important role in the pathogenesis of Chagas disease. Therefore, we evaluated the blood and tissue parasitism and genetic profile of mice coinfected with the TcII (JG) strain and TcI AQ1-7 (AQ) or MUTUM (MT) strains during the acute and chronic phases of the disease and during immunosuppression. T. cruzi blood populations in mixed infections were clearly associated with the TcII strain during acute and chronic phases or during immunosuppression. However, in tissues, the parasite populations were distributed according to the strain and the stage of infection. TcII populations overlapped TcI strains during the acute phase; in contrast, during chronic phase, both TcI strains were more prevalent than the TcII strain. The immunosuppression induced selective exacerbation of parasite populations, leading to reactivation of the TcII strain when associated with the AQ, but not with MT strain. Thus, a differential distribution of T. cruzi populations in blood and tissues with overlapping according to the stage of infection and strain used was observed. Blood parasitism was associated with the DTU TcII and tissue parasitism with a specific parasite strain and not with DTUs. Finally, to our knowledge, this is the first study to analyze subpatent blood parasitism and to simultaneously identify different T. cruzi populations in tissues and blood.

  7. Genetic exchange between endogenous and exogenous LINE-1 repetitive elements in mouse cells.

    PubMed Central

    Belmaaza, A; Wallenburg, J C; Brouillette, S; Gusew, N; Chartrand, P

    1990-01-01

    The repetitive LINE (L1) elements of the mouse, which are present at about 10(5) copies per genome and share over 80% of sequence homology, were examined for their ability to undergo genetic exchange with exogenous L1 sequences. The exogenous L1 sequences, carried by a shuttle vector, consisted of an internal fragment from L1Md-A2, a previously described member of the L1 family of the mouse. Using an assay that does not require the reconstitution of a selectable marker we found that this vector, in either circular or linear form, acquired DNA sequences from endogenous L1 elements at a frequency of 10(-3) to 10(-4) per rescued vector. Physical analysis of the acquired L1 sequences revealed that distinct endogenous L1 elements acted as donors and that different subfamilies participated. These results demonstrate that L1 elements are readily capable of genetic exchange. Apart from gene conversion events, the acquisition of L1 sequences outside the region of homology suggested that a second mechanism was also involved in the genetic exchange. A model which accounts for this mechanism is presented and its potential implication on the rearrangement of L1 elements is discussed. Images PMID:1978749

  8. Parasites and deleterious mutations: interactions influencing the evolutionary maintenance of sex.

    PubMed

    Park, A W; Jokela, J; Michalakis, Y

    2010-05-01

    The restrictive assumptions associated with purely genetic and purely ecological mechanisms suggest that neither of the two forces, in isolation, can offer a general explanation for the evolutionary maintenance of sex. Consequently, attention has turned to pluralistic models (i.e. models that apply both ecological and genetic mechanisms). Existing research has shown that combining mutation accumulation and parasitism allows restrictive assumptions about genetic and parasite parameter values to be relaxed while still predicting the maintenance of sex. However, several empirical studies have shown that deleterious mutations and parasitism can reduce fitness to a greater extent than would be expected if the two acted independently. We show how interactions between these genetic and ecological forces can completely reverse predictions about the evolution of reproductive modes. Moreover, we demonstrate that synergistic interactions between infection and deleterious mutations can render sex evolutionarily stable even when there is antagonistic epistasis among deleterious mutations, thereby widening the conditions for the evolutionary maintenance of sex.

  9. Analysis of the genetic diversity of the nematode parasite Baylisascaris schroederi from wild giant pandas in different mountain ranges in China.

    PubMed

    Zhou, Xuan; Xie, Yue; Zhang, Zhi-he; Wang, Cheng-dong; Sun, Yun; Gu, Xiao-bin; Wang, Shu-xian; Peng, Xue-rong; Yang, Guang-you

    2013-08-08

    Baylisascaris schroederi is one of the most common nematodes of the giant panda, and can cause severe baylisascarosis in both wild and captive giant pandas. Previous studies of the giant pandas indicated that this population is genetically distinct, implying the presence of a new subspecies. Based on the co-evolution between the parasite and the host, the aim of this study was to investigate the genetic differentiation in the B. schroederi population collected from giant pandas inhabiting different mountain ranges, and further to identify whether the evolution of this parasite correlates with the evolution of giant pandas. In this study, 48 B. schroederi were collected from 28 wild giant pandas inhabiting the Qinling, Minshan and Qionglai mountain ranges in China. The complete sequence of the mitochondrial cytochrome b (mtCytb) gene was amplified by PCR, and the corresponding population genetic diversity of the three mountain populations was determined. In addition, we discussed the evolutionary relationship between B. schroederi and its host giant panda. For the DNA dataset, insignificant Fst values and a significant, high level of gene flow were detected among the three mountain populations of B. schroederi, and high genetic variation within populations and a low genetic distance were observed. Both phylogenetic analyses and network mapping of the 16 haplotypes revealed a dispersed pattern and an absence of branches strictly corresponding to the three mountain range sampling sites. Neutrality tests and mismatch analysis indicated that B. schroederi experienced a population expansion in the past. Taken together, the dispersed haplotype map, extremely high gene flow among the three populations of B. schroederi, low genetic structure and rapid evolutionary rate suggest that the B. schroederi populations did not follow a pattern of isolation by distance, indicating the existence of physical connections before these populations became geographically separated.

  10. Found in Translation: Applying Lessons from Model Systems to Strigolactone Signaling in Parasitic Plants.

    PubMed

    Lumba, Shelley; Subha, Asrinus; McCourt, Peter

    2017-07-01

    Strigolactones (SLs) are small molecules that act as endogenous hormones to regulate plant development as well as exogenous cues that help parasitic plants to infect their hosts. Given that parasitic plants are experimentally challenging systems, researchers are using two approaches to understand how they respond to host-derived SLs. The first involves extrapolating information on SLs from model genetic systems to dissect their roles in parasitic plants. The second uses chemicals to probe SL signaling directly in the parasite Striga hermonthica. These approaches indicate that parasitic plants have co-opted a family of α/β hydrolases to perceive SLs. The importance of this genetic and chemical information cannot be overstated since parasitic plant infestations are major obstacles to food security in the developing world. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Mobile genetic elements and cancer. From mutations to gene therapy.

    PubMed

    Kozeretska, I A; Demydov, S V; Ostapchenko, L I

    2011-12-01

    In the present review, an association between cancer and the activity of the non-LTR retroelements L1, Alu, and SVA, as well as endogenous retroviruses, in the human genome, is analyzed. Data suggesting that transposons have been involved in embryogenesis and malignization processes, are presented. Events that lead to the activation of mobile elements in mammalian somatic cells, as well as the use of mobile elements in genetic screening and cancer gene therapy, are reviewed.

  12. ICE Afe 1, an actively excising genetic element from the biomining bacterium Acidithiobacillus ferrooxidans.

    PubMed

    Bustamante, Paula; Covarrubias, Paulo C; Levicán, Gloria; Katz, Assaf; Tapia, Pablo; Holmes, David; Quatrini, Raquel; Orellana, Omar

    2012-01-01

    Integrative conjugative elements (ICEs) are self-transferred mobile genetic elements that contribute to horizontal gene transfer. An ICE (ICEAfe1) was identified in the genome of Acidithiobacillus ferrooxidans ATCC 23270. Excision of the element and expression of relevant genes under normal and DNA-damaging growth conditions was analyzed. Bioinformatic tools and DNA amplification methods were used to identify and to assess the excision and expression of genes related to the mobility of the element. Both basal and mitomycin C-inducible excision as well as expression and induction of the genes for integration/excision are demonstrated, suggesting that ICEAfe1 is an actively excising SOS-regulated mobile genetic element. The presence of a complete set of genes encoding self-transfer functions that are induced in response to DNA damage caused by mitomycin C additionally suggests that this element is capable of conjugative transfer to suitable recipient strains. Transfer of ICEAfe1 may provide selective advantages to other acidophiles in this ecological niche through dissemination of gene clusters expressing transfer RNAs, CRISPRs, and exopolysaccharide biosynthesis enzymes, probably by modification of translation efficiency, resistance to bacteriophage infection and biofilm formation, respectively. These data open novel avenues of research on conjugative transformation of biotechnologically relevant microorganisms recalcitrant to genetic manipulation. Copyright © 2013 S. Karger AG, Basel.

  13. Stress Response and Artemisinin Resistance in Malaria Parasite

    DTIC Science & Technology

    2017-07-01

    AWARD NUMBER: W81XWH-16-1-0241 TITLE: Stress Response and Artemisinin Resistance in Malaria Parasite PRINCIPAL INVESTIGATOR: Juan C. Pizarro...SUBTITLE Stress Response and Artemisinin Resistance in Malaria Parasite 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0241 5c. PROGRAM ELEMENT...explored the role of GRP78, a protein chaperone from the stress response, in arteminisin resistant parasites. The GRP78 expression at the mRNA and

  14. Advances in the application of genetic manipulation methods to apicomplexan parasites

    USDA-ARS?s Scientific Manuscript database

    Apicomplexan parasites such as Babesia, Theileria, Cryptosporidium, and Toxoplasma have a high negative impact on animal health globally, and improved, cost-effective measures to control them are urgently required. These parasites have complex multi-stage life cycles including obligate intracellular...

  15. Functional genomics approaches in parasitic helminths.

    PubMed

    Hagen, J; Lee, E F; Fairlie, W D; Kalinna, B H

    2012-01-01

    As research on parasitic helminths is moving into the post-genomic era, an enormous effort is directed towards deciphering gene function and to achieve gene annotation. The sequences that are available in public databases undoubtedly hold information that can be utilized for new interventions and control but the exploitation of these resources has until recently remained difficult. Only now, with the emergence of methods to genetically manipulate and transform parasitic worms will it be possible to gain a comprehensive understanding of the molecular mechanisms involved in nutrition, metabolism, developmental switches/maturation and interaction with the host immune system. This review focuses on functional genomics approaches in parasitic helminths that are currently used, to highlight potential applications of these technologies in the areas of cell biology, systems biology and immunobiology of parasitic helminths. © 2011 Blackwell Publishing Ltd.

  16. Finite element analysis and genetic algorithm optimization design for the actuator placement on a large adaptive structure

    NASA Astrophysics Data System (ADS)

    Sheng, Lizeng

    The dissertation focuses on one of the major research needs in the area of adaptive/intelligent/smart structures, the development and application of finite element analysis and genetic algorithms for optimal design of large-scale adaptive structures. We first review some basic concepts in finite element method and genetic algorithms, along with the research on smart structures. Then we propose a solution methodology for solving a critical problem in the design of a next generation of large-scale adaptive structures---optimal placements of a large number of actuators to control thermal deformations. After briefly reviewing the three most frequently used general approaches to derive a finite element formulation, the dissertation presents techniques associated with general shell finite element analysis using flat triangular laminated composite elements. The element used here has three nodes and eighteen degrees of freedom and is obtained by combining a triangular membrane element and a triangular plate bending element. The element includes the coupling effect between membrane deformation and bending deformation. The membrane element is derived from the linear strain triangular element using Cook's transformation. The discrete Kirchhoff triangular (DKT) element is used as the plate bending element. For completeness, a complete derivation of the DKT is presented. Geometrically nonlinear finite element formulation is derived for the analysis of adaptive structures under the combined thermal and electrical loads. Next, we solve the optimization problems of placing a large number of piezoelectric actuators to control thermal distortions in a large mirror in the presence of four different thermal loads. We then extend this to a multi-objective optimization problem of determining only one set of piezoelectric actuator locations that can be used to control the deformation in the same mirror under the action of any one of the four thermal loads. A series of genetic algorithms

  17. Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation

    PubMed Central

    2013-01-01

    Background Microsporidian Nosema bombycis has received much attention because the pébrine disease of domesticated silkworms results in great economic losses in the silkworm industry. So far, no effective treatment could be found for pébrine. Compared to other known Nosema parasites, N. bombycis can unusually parasitize a broad range of hosts. To gain some insights into the underlying genetic mechanism of pathological ability and host range expansion in this parasite, a comparative genomic approach is conducted. The genome of two Nosema parasites, N. bombycis and N. antheraeae (an obligatory parasite to undomesticated silkworms Antheraea pernyi), were sequenced and compared with their distantly related species, N. ceranae (an obligatory parasite to honey bees). Results Our comparative genomics analysis show that the N. bombycis genome has greatly expanded due to the following three molecular mechanisms: 1) the proliferation of host-derived transposable elements, 2) the acquisition of many horizontally transferred genes from bacteria, and 3) the production of abundnant gene duplications. To our knowledge, duplicated genes derived not only from small-scale events (e.g., tandem duplications) but also from large-scale events (e.g., segmental duplications) have never been seen so abundant in any reported microsporidia genomes. Our relative dating analysis further indicated that these duplication events have arisen recently over very short evolutionary time. Furthermore, several duplicated genes involving in the cytotoxic metabolic pathway were found to undergo positive selection, suggestive of the role of duplicated genes on the adaptive evolution of pathogenic ability. Conclusions Genome expansion is rarely considered as the evolutionary outcome acting on those highly reduced and compact parasitic microsporidian genomes. This study, for the first time, demonstrates that the parasitic genomes can expand, instead of shrink, through several common molecular mechanisms

  18. Chimpanzee Malaria Parasites Related to Plasmodium ovale in Africa

    PubMed Central

    Duval, Linda; Nerrienet, Eric; Rousset, Dominique; Sadeuh Mba, Serge Alain; Houze, Sandrine; Fourment, Mathieu; Le Bras, Jacques; Robert, Vincent; Ariey, Frederic

    2009-01-01

    Since the 1970's, the diversity of Plasmodium parasites in African great apes has been neglected. Surprisingly, P. reichenowi, a chimpanzee parasite, is the only such parasite to have been molecularly characterized. This parasite is closely phylogenetically related to P. falciparum, the principal cause of the greatest malaria burden in humans. Studies of malaria parasites from anthropoid primates may provide relevant phylogenetic information, improving our understanding of the origin and evolutionary history of human malaria species. In this study, we screened 130 DNA samples from chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) from Cameroon for Plasmodium infection, using cytochrome b molecular tools. Two chimpanzees from the subspecies Pan t. troglodytes presented single infections with Plasmodium strains molecularly related to the human malaria parasite P. ovale. These chimpanzee parasites and 13 human strains of P. ovale originated from a various sites in Africa and Asia were characterized using cytochrome b and cytochrome c oxidase 1 mitochondrial partial genes and nuclear ldh partial gene. Consistent with previous findings, two genetically distinct types of P. ovale, classical and variant, were observed in the human population from a variety of geographical locations. One chimpanzee Plasmodium strain was genetically identical, on all three markers tested, to variant P. ovale type. The other chimpanzee Plasmodium strain was different from P. ovale strains isolated from humans. This study provides the first evidence of possibility of natural cross-species exchange of P. ovale between humans and chimpanzees of the subspecies Pan t. troglodytes. PMID:19436742

  19. HOW HUMAN HISTORY HAS INFLUENCED GEOGRAPHY AND GENETICS OF PARASITE POPULATIONS

    USDA-ARS?s Scientific Manuscript database

    Human beings have radically altered agricultural landscapes, establishing a limited repertoire of plants and animals over vast expanses. Here, I consider what impact such a history may have had on the distribution and diversity of animal parasite, hypothesizing that certain parasites may have been '...

  20. How has agriculture influenced the geography and genetics of animal parasites?

    PubMed

    Rosenthal, Benjamin M

    2009-02-01

    Have farmers inadvertently promoted the distribution, and limited the diversity, of animal parasites? Abundant and broadly distributed livestock hosts evidently harbor exceptionally uniform populations of Trichinella, Taenia, Toxoplasma and Sarcocystis, indicating a fruitful avenue for future research on how we have influenced parasite evolutionary ecology.

  1. The Chagas disease domestic transmission cycle in Guatemala: Parasite-vector switches and lack of mitochondrial co-diversification between Triatoma dimidiata and Trypanosoma cruzi subpopulations suggest non-vectorial parasite dispersal across the Motagua valley.

    PubMed

    Pennington, Pamela M; Messenger, Louisa Alexandra; Reina, Jeffrey; Juárez, José G; Lawrence, Gena G; Dotson, Ellen M; Llewellyn, Martin S; Cordón-Rosales, Celia

    2015-11-01

    Parasites transmitted by insects must adapt to their vectors and reservoirs. Chagas disease, an American zoonosis caused by Trypanosoma cruzi, is transmitted by several species of triatomines. In Central America, Triatoma dimidiata is a widely dispersed vector found in sylvatic and domestic habitats, with distinct populations across the endemic region of Guatemala. Our aim was to test the strength of association between vector and parasite genetic divergence in domestic environments. Microsatellite (MS) loci were used to characterize parasites isolated from T. dimidiata (n=112) collected in domestic environments. Moderate genetic differentiation was observed between parasites north and south of the Motagua Valley, an ancient biogeographic barrier (FST 0.138, p=0.009). Slightly reduced genotypic diversity and increased heterozygosity in the north (Allelic richness (Ar)=1.00-6.05, FIS -0.03) compared to the south (Ar=1.47-6.30, FIS 0.022) suggest either a selective or demographic process during parasite dispersal. Based on parasite genotypes and geographic distribution, 15 vector specimens and their parasite isolates were selected for mitochondrial co-diversification analysis. Genetic variability and phylogenetic congruence were determined with mitochondrial DNA sequences (10 parasite maxicircle gene fragments and triatomine ND4+CYT b). A Mantel test as well as phylogenetic, network and principal coordinates analyses supported at least three T. dimidiata haplogroups separated by geographic distance across the Motagua Valley. Maxicircle sequences showed low T. cruzi genetic variability (π nucleotide diversity 0.00098) with no evidence of co-diversification with the vector, having multiple host switches across the valley. Sylvatic Didelphis marsupialis captured across the Motagua Valley were found to be infected with T. cruzi strains sharing MS genotypes with parasites isolated from domiciliated triatomines. The current parasite distribution in domestic environments

  2. Parasite genetics and the immune host: recombination between antigenic types of Eimeria maxima as an entrée to the identification of protective antigens.

    PubMed

    Blake, Damer P; Hesketh, Patricia; Archer, Andrew; Carroll, Fionnadh; Smith, Adrian L; Shirley, Martin W

    2004-11-01

    The genomes of protozoan parasites encode thousands of gene products and identification of the subset that stimulates a protective immune response is a daunting task. Most screens for vaccine candidates identify molecules by capacity to induce immune responses rather than protection. This paper describes the core findings of a strategy developed with the coccidial parasite Eimeria maxima to rationally identify loci within its genome that encode immunoprotective antigens. Our strategy uses a novel combination of parasite genetics, DNA fingerprinting, drug-resistance and strain-specific immunity and centres on two strains of E. maxima that each induce a lethal strain-specific protective immune response in the host and show a differential response to anti-Eimeria chemotherapy. Through classical mating studies with these strains we have demonstrated that loci encoding molecules stimulating strain-specific protective immunity or resistance to the anti-coccidial drug robenidine segregate independently. Furthermore, passage of populations of recombinant parasites in the face of killing in the immune host was accompanied by the elimination of some polymorphic DNA markers defining the parent strain used to immunise the host. Consideration of the numbers of parasites recombinant for the two traits implicates very few antigen-encoding loci. Our data provide a potential strategy to identify putative antigen-encoding loci in other parasites.

  3. Heritable variation in host tolerance and resistance inferred from a wild host-parasite system.

    PubMed

    Mazé-Guilmo, Elise; Loot, Géraldine; Páez, David J; Lefèvre, Thierry; Blanchet, Simon

    2014-03-22

    Hosts have evolved two distinct defence strategies against parasites: resistance (which prevents infection or limit parasite growth) and tolerance (which alleviates the fitness consequences of infection). However, heritable variation in resistance and tolerance and the genetic correlation between these two traits have rarely been characterized in wild host populations. Here, we estimate these parameters for both traits in Leuciscus burdigalensis, a freshwater fish parasitized by Tracheliastes polycolpus. We used a genetic database to construct a full-sib pedigree in a wild L. burdigalensis population. We then used univariate animal models to estimate inclusive heritability (i.e. all forms of genetic and non-genetic inheritance) in resistance and tolerance. Finally, we assessed the genetic correlation between these two traits using a bivariate animal model. We found significant heritability for resistance (H = 17.6%; 95% CI: 7.2-32.2%) and tolerance (H = 18.8%; 95% CI: 4.4-36.1%), whereas we found no evidence for the existence of a genetic correlation between these traits. Furthermore, we confirm that resistance and tolerance are strongly affected by environmental effects. Our results demonstrate that (i) heritable variation exists for parasite resistance and tolerance in wild host populations, and (ii) these traits can evolve independently in populations.

  4. Sex as a strategy against rapidly evolving parasites.

    PubMed

    Auld, Stuart K J R; Tinkler, Shona K; Tinsley, Matthew C

    2016-12-28

    Why is sex ubiquitous when asexual reproduction is much less costly? Sex disrupts coadapted gene complexes; it also causes costs associated with mate finding and the production of males who do not themselves bear offspring. Theory predicts parasites select for host sex, because genetically variable offspring can escape infection from parasites adapted to infect the previous generations. We examine this using a facultative sexual crustacean, Daphnia magna, and its sterilizing bacterial parasite, Pasteuria ramosa We obtained sexually and asexually produced offspring from wild-caught hosts and exposed them to contemporary parasites or parasites isolated from the same population one year later. We found rapid parasite adaptation to replicate within asexual but not sexual offspring. Moreover, sexually produced offspring were twice as resistant to infection as asexuals when exposed to parasites that had coevolved alongside their parents (i.e. the year two parasite). This fulfils the requirement that the benefits of sex must be both large and rapid for sex to be favoured by selection. © 2016 The Author(s).

  5. Global and local genetic diversity at two microsatellite loci in Plasmodium vivax parasites from Asia, Africa and South America.

    PubMed

    Schousboe, Mette L; Ranjitkar, Samir; Rajakaruna, Rupika S; Amerasinghe, Priyanie H; Konradsen, Flemming; Morales, Francisco; Ord, Rosalynn; Pearce, Richard; Leslie, Toby; Rowland, Mark; Gadalla, Nahla; Bygbjerg, Ib C; Alifrangis, Michael; Roper, Cally

    2014-10-02

    Even though Plasmodium vivax has the widest worldwide distribution of the human malaria species and imposes a serious impact on global public health, the investigation of genetic diversity in this species has been limited in comparison to Plasmodium falciparum. Markers of genetic diversity are vital to the evaluation of drug and vaccine efficacy, tracking of P. vivax outbreaks, and assessing geographical differentiation between parasite populations. The genetic diversity of eight P. vivax populations (n=543) was investigated by using two microsatellites (MS), m1501 and m3502, chosen because of their seven and eight base-pair (bp) repeat lengths, respectively. These were compared with published data of the same loci from six other P. vivax populations. In total, 1,440 P. vivax samples from 14 countries on three continents were compared. There was highest heterozygosity within Asian populations, where expected heterozygosity (He) was 0.92-0.98, and alleles with a high repeat number were more common. Pairwise FST revealed significant differentiation between most P. vivax populations, with the highest divergence found between Asian and South American populations, yet the majority of the diversity (~89%) was found to exist within rather than between populations. The MS markers used were informative in both global and local P. vivax population comparisons and their seven and eight bp repeat length facilitated population comparison using data from independent studies. A complex spatial pattern of MS polymorphisms among global P. vivax populations was observed which has potential utility in future epidemiological studies of the P. vivax parasite.

  6. Anthropogenics: Human influence on global and genetic homogenization of parasite populations

    USDA-ARS?s Scientific Manuscript database

    The distribution, abundance, and diversity of life on Earth have been greatly shaped by human activities. This is no truer than in the geographic expansion of parasites; however, measuring the extent to which humans have influenced the dissemination and population structure of parasites has been cha...

  7. Reexamining the P-Element Invasion of Drosophila melanogaster Through the Lens of piRNA Silencing

    PubMed Central

    Kelleher, Erin S.

    2016-01-01

    Transposable elements (TEs) are both important drivers of genome evolution and genetic parasites with potentially dramatic consequences for host fitness. The recent explosion of research on regulatory RNAs reveals that small RNA-mediated silencing is a conserved genetic mechanism through which hosts repress TE activity. The invasion of the Drosophila melanogaster genome by P elements, which happened on a historical timescale, represents an incomparable opportunity to understand how small RNA-mediated silencing of TEs evolves. Repression of P-element transposition emerged almost concurrently with its invasion. Recent studies suggest that this repression is implemented in part, and perhaps predominantly, by the Piwi-interacting RNA (piRNA) pathway, a small RNA-mediated silencing pathway that regulates TE activity in many metazoan germlines. In this review, I consider the P-element invasion from both a molecular and evolutionary genetic perspective, reconciling classic studies of P-element regulation with the new mechanistic framework provided by the piRNA pathway. I further explore the utility of the P-element invasion as an exemplar of the evolution of piRNA-mediated silencing. In light of the highly-conserved role for piRNAs in regulating TEs, discoveries from this system have taxonomically broad implications for the evolution of repression. PMID:27516614

  8. Introduced cryptic species of parasites exhibit different invasion pathways.

    PubMed

    Miura, Osamu; Torchin, Mark E; Kuris, Armand M; Hechinger, Ryan F; Chiba, Satoshi

    2006-12-26

    Sometimes infectious agents invade and become established in new geographic regions. Others may be introduced yet never become established because of the absence of suitable hosts in the new region. This phenomenon may be particularly true for the many parasites with complex life cycles, where various life stages require different host species. Homogenization of the world's biota through human-mediated invasions may reunite hosts and parasites, resulting in disease outbreaks in novel regions. Here we use molecular genetics to differentiate invasion pathways for two digenean trematode parasites and their exotic host, the Asian mud snail, Batillaria attramentaria. All of the snail haplotypes found in introduced populations in North America were identical to haplotypes common in the areas of Japan that provided oysters for cultivation in North America, supporting the hypothesis that the snails were introduced from Japan with seed oysters. Two cryptic trematode species were introduced to North American populations in high frequencies. We found a marked reduction of genetic variation in one of these species, suggesting it experienced a bottleneck or founder event comparable to that of the host snail. In contrast, no genetic variation was lost in the other parasite species. We hypothesize that this parasite was and is dispersed naturally by migratory shorebirds and was able to establish only after the host snail, B. attramentaria, was introduced to North America. Evaluation of the nature of invasion pathways and postinvasion consequences will aid mitigation of spreading diseases of humans, livestock, and wildlife in an increasingly globalized world.

  9. The Obscure World of Integrative and Mobilizable Elements, Highly Widespread Elements that Pirate Bacterial Conjugative Systems

    PubMed Central

    Guédon, Gérard; Libante, Virginie; Coluzzi, Charles; Payot, Sophie

    2017-01-01

    Conjugation is a key mechanism of bacterial evolution that involves mobile genetic elements. Recent findings indicated that the main actors of conjugative transfer are not the well-known conjugative or mobilizable plasmids but are the integrated elements. This paper reviews current knowledge on “integrative and mobilizable elements” (IMEs) that have recently been shown to be highly diverse and highly widespread but are still rarely described. IMEs encode their own excision and integration and use the conjugation machinery of unrelated co-resident conjugative element for their own transfer. Recent studies revealed a much more complex and much more diverse lifecycle than initially thought. Besides their main transmission as integrated elements, IMEs probably use plasmid-like strategies to ensure their maintenance after excision. Their interaction with conjugative elements reveals not only harmless hitchhikers but also hunters that use conjugative elements as target for their integration or harmful parasites that subvert the conjugative apparatus of incoming elements to invade cells that harbor them. IMEs carry genes conferring various functions, such as resistance to antibiotics, that can enhance the fitness of their hosts and that contribute to their maintenance in bacterial populations. Taken as a whole, IMEs are probably major contributors to bacterial evolution. PMID:29165361

  10. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research.

    PubMed

    Siciliano, Giulia; Alano, Pietro

    2015-01-01

    The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.

  11. Reproduction in Leishmania: A focus on genetic exchange.

    PubMed

    Rougeron, V; De Meeûs, T; Bañuls, A-L

    2017-06-01

    One key process of the life cycle of pathogens is their mode of reproduction. Indeed, this fundamental biological process conditions the multiplication and the transmission of genes and thus the propagation of diseases in the environment. Reproductive strategies of protozoan parasites have been a subject of debate for many years, principally due to the difficulty in making direct observations of sexual reproduction (i.e. genetic recombination). Traditionally, these parasites were considered as characterized by a preeminent clonal structure. Nevertheless, with the development of elaborate culture experiments, population genetics and evolutionary and population genomics, several studies suggested that most of these pathogens were also characterized by constitutive genetic recombination events. In this opinion, we focused on Leishmania parasites, pathogens responsible of leishmaniases, a major public health issue. We first discuss the evolutionary advantages of a mixed mating reproductive strategy, then we review the evidence of genetic exchange, and finally we detail available tools to detect naturally occurring genetic recombination in Leishmania parasites and more generally in protozoan parasites. Copyright © 2016. Published by Elsevier B.V.

  12. Maternal effects in vulnerability to eye-parasites and correlations between behavior and parasitism in juvenile Arctic charr.

    PubMed

    Kortet, Raine; Lautala, Tiina; Kekäläinen, Jukka; Taskinen, Jouni; Hirvonen, Heikki

    2017-11-01

    Hatchery-reared fish show high mortalities after release to the wild environment. Explanations for this include potentially predetermined genetics, behavioral, and physiological acclimation to fish farm environments, and increased vulnerability to predation and parasitism in the wild. We studied vulnerability to Diplostomum spp. parasites (load of eye flukes in the lenses), immune defense (relative spleen size) and antipredator behaviors (approaches toward predator odor, freezing, and swimming activity) in hatchery-reared juvenile Arctic charr ( Salvelinus alpinus ) using a nested mating design. Fish were exposed to eye-fluke larvae via the incoming water at the hatchery. Fish size was positively associated with parasite load, but we did not find any relationship between relative spleen size and parasitism. The offspring of different females showed significant variation in their parasite load within sires, implying a dam effect in the vulnerability to parasites. However, the family background did not have any effect on spleen size. In the mean sire level over dams, the fish from the bolder (actively swimming) families in the predator trials suffered higher loads of eye flukes than those from more cautiously behaving families. Thus, the results indicate potentially maternally inherited differences in vulnerability to eye-fluke parasites, and that the vulnerability to parasites and behavioral activity are positively associated with each other at the sire level. This could lead to artificial and unintentional selection for increased vulnerability to both parasitism and predation if these traits are favored in fish farm environments.

  13. Foodborne parasites from wildlife: how wild are they?

    PubMed

    Kapel, Christian M O; Fredensborg, Brian L

    2015-04-01

    The majority of wild foods consumed by humans are sourced from intensively managed or semi-farmed populations. Management practices inevitably affect wildlife density and habitat characteristics, which are key elements in the transmission of parasites. We consider the risk of transmission of foodborne parasites to humans from wildlife maintained under natural or semi-natural conditions. A deeper understanding will be useful in counteracting foodborne parasites arising from the growing industry of novel and exotic foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Malaria parasite mutants with altered erythrocyte permeability: a new drug resistance mechanism and important molecular tool

    PubMed Central

    Hill, David A; Desai, Sanjay A

    2010-01-01

    Erythrocytes infected with plasmodia, including those that cause human malaria, have increased permeability to a diverse collection of organic and inorganic solutes. While these increases have been known for decades, their mechanistic basis was unclear until electrophysiological studies revealed flux through one or more ion channels on the infected erythrocyte membrane. Current debates have centered on the number of distinct ion channels, which channels mediate the transport of each solute and whether the channels represent parasite-encoded proteins or human channels activated after infection. This article reviews the identification of the plasmodial surface anion channel and other proposed channels with an emphasis on two distinct channel mutants generated through in vitro selection. These mutants implicate parasite genetic elements in the parasite-induced permeability, reveal an important new antimalarial drug resistance mechanism and provide tools for molecular studies. We also critically examine the technical issues relevant to the detection of ion channels by electrophysiological methods; these technical considerations have general applicability for interpreting studies of various ion channels proposed for the infected erythrocyte membrane. PMID:20020831

  15. Bovine immunity - a driver for diversity in Theileria parasites?

    PubMed

    McKeever, Declan J

    2009-06-01

    Theileria parva and Theileria annulata are tick-borne parasites of cattle that infect and transform leukocytes, causing severe and often fatal parasitic leukoses. Both species provoke strong immunity against subsequent infection. However, considerable diversity is observed in field populations of each parasite and protection is only assured against homologous challenge. The life cycles of these parasites are complex and involve prolonged exposure to host and vector defence mechanisms. Although the relevant vector mechanisms are poorly defined, protective responses of cattle seem to be tightly focused and variable in their specificity between individuals. This review considers whether bovine immunity acts as a driver for diversity in T. parva and T. annulata and explores other factors that might underlie genetic variation in these parasites.

  16. Worldwide genetic diversity for mineral element concentrations in rice grain

    USDA-ARS?s Scientific Manuscript database

    With the aim of identifying rice (Oryza spp.) germplasm having enhanced grain nutritional value, the mineral nutrient and trace element content (a.k.a. ionome) of whole (unmilled) grains from a set of 1763 rice accessions of diverse geographic and genetic origin were evaluated. Seed for analysis o...

  17. Archaeal Extrachromosomal Genetic Elements

    PubMed Central

    Wang, Haina; Peng, Nan; Shah, Shiraz A.

    2015-01-01

    SUMMARY Research on archaeal extrachromosomal genetic elements (ECEs) has progressed rapidly in the past decade. To date, over 60 archaeal viruses and 60 plasmids have been isolated. These archaeal viruses exhibit an exceptional diversity in morphology, with a wide array of shapes, such as spindles, rods, filaments, spheres, head-tails, bottles, and droplets, and some of these new viruses have been classified into one order, 10 families, and 16 genera. Investigation of model archaeal viruses has yielded important insights into mechanisms underlining various steps in the viral life cycle, including infection, DNA replication and transcription, and virion egression. Many of these mechanisms are unprecedented for any known bacterial or eukaryal viruses. Studies of plasmids isolated from different archaeal hosts have also revealed a striking diversity in gene content and innovation in replication strategies. Highly divergent replication proteins are identified in both viral and plasmid genomes. Genomic studies of archaeal ECEs have revealed a modular sequence structure in which modules of DNA sequence are exchangeable within, as well as among, plasmid families and probably also between viruses and plasmids. In particular, it has been suggested that ECE-host interactions have shaped the coevolution of ECEs and their archaeal hosts. Furthermore, archaeal hosts have developed defense systems, including the innate restriction-modification (R-M) system and the adaptive CRISPR (clustered regularly interspaced short palindromic repeats) system, to restrict invasive plasmids and viruses. Together, these interactions permit a delicate balance between ECEs and their hosts, which is vitally important for maintaining an innovative gene reservoir carried by ECEs. In conclusion, while research on archaeal ECEs has just started to unravel the molecular biology of these genetic entities and their interactions with archaeal hosts, it is expected to accelerate in the next decade. PMID

  18. A Plasmodium yoelii HECT-like E3 ubiquitin ligase regulates parasite growth and virulence.

    PubMed

    Nair, Sethu C; Xu, Ruixue; Pattaradilokrat, Sittiporn; Wu, Jian; Qi, Yanwei; Zilversmit, Martine; Ganesan, Sundar; Nagarajan, Vijayaraj; Eastman, Richard T; Orandle, Marlene S; Tan, John C; Myers, Timothy G; Liu, Shengfa; Long, Carole A; Li, Jian; Su, Xin-Zhuan

    2017-08-09

    Infection of mice with strains of Plasmodium yoelii parasites can result in different pathology, but molecular mechanisms to explain this variation are unclear. Here we show that a P. yoelii gene encoding a HECT-like E3 ubiquitin ligase (Pyheul) influences parasitemia and host mortality. We genetically cross two lethal parasites with distinct disease phenotypes, and identify 43 genetically diverse progeny by typing with microsatellites and 9230 single-nucleotide polymorphisms. A genome-wide quantitative trait loci scan links parasite growth and host mortality to two major loci on chromosomes 1 and 7 with LOD (logarithm of the odds) scores = 6.1 and 8.1, respectively. Allelic exchange of partial sequences of Pyheul in the chromosome 7 locus and modification of the gene expression alter parasite growth and host mortality. This study identifies a gene that may have a function in parasite growth, virulence, and host-parasite interaction, and therefore could be a target for drug or vaccine development.Many strains of Plasmodium differ in virulence, but factors that control these distinctions are not known. Here the authors comparatively map virulence loci using the offspring from a P. yoelii YM and N67 genetic cross, and identify a putative HECT E3 ubiquitin ligase that may explain the variance.

  19. [Plant transposable elements and their application in genetics and biotechnology].

    PubMed

    Ovcharenko, O O; Rudas, V A; Kuchuk, M V

    2006-01-01

    Data concerning plant transposable elements and their contribution to plant genome evolution are reviewed. Much attention is focused on utilization of transgenic plants as heterologous hosts of transposons for investigation of transposition mechanisms and gene cloning. Probable ways of the use of plant transposons as genetic tools in biotechnology are discussed.

  20. Genetic Nature of Elemental Contents in Wheat Grains and Its Genomic Prediction: Toward the Effective Use of Wheat Landraces from Afghanistan

    PubMed Central

    Yamaoka, Shuhei; Yoshimura, Kazusa; Kondou, Youichi; Onogi, Akio; Matsui, Minami; Iwata, Hiroyoshi; Ban, Tomohiro

    2017-01-01

    Profiling elemental contents in wheat grains and clarifying the underlying genetic systems are important for the breeding of biofortified crops. Our objective was to evaluate the genetic potential of 269 Afghan wheat landraces for increasing elemental contents in wheat cultivars. The contents of three major (Mg, K, and P) and three minor (Mn, Fe, and Zn) elements in wheat grains were measured by energy dispersive X-ray fluorescence spectrometry. Large variations in elemental contents were observed among landraces. Marker-based heritability estimates were low to moderate, suggesting that the elemental contents are complex quantitative traits. Genetic correlations between two locations (Japan and Afghanistan) and among the six elements were estimated using a multi-response Bayesian linear mixed model. Low-to-moderate genetic correlations were observed among major elements and among minor elements respectively, but not between major and minor elements. A single-response genome-wide association study detected only one significant marker, which was associated with Zn, suggesting it will be difficult to increase the elemental contents of wheat by conventional marker-assisted selection. Genomic predictions for major elemental contents were moderately or highly accurate, whereas those for minor elements were mostly low or moderate. Our results indicate genomic selection may be useful for the genetic improvement of elemental contents in wheat. PMID:28072876

  1. Is trace element concentration correlated to parasite abundance? A case study in a population of the green frog Pelophylax synkl. hispanicus from the Neto River (Calabria, southern Italy).

    PubMed

    De Donato, Carlo; Barca, Donatella; Milazzo, Concetta; Santoro, Raffaella; Giglio, Gianni; Tripepi, Sandro; Sperone, Emilio

    2017-06-01

    Bioaccumulation of 13 trace elements in the livers of 38 Pelophylax sinkl. hispanicus (Ranidae) and its helminth communities were studied and compared among three sites, each with a different degree of pollution along River Neto (south Italy) during September, 2014. Trace element concentrations in water and liver were measured using inductively coupled plasma mass spectrometry. For most elements, the highest concentration was recorded in the frogs inhabiting the third site, the one with the highest degree of pollution. The trend of trace element concentration in the liver can be represented as follows: Cu > Zn > Mn > Se > Cr. Concentrations of some elements in water and liver samples were significantly different among the three sites and this is evidenced by the bioaccumulation in the frogs. Four species of helminths, all belonging to Nematoda, were found: Rhabdias sp., Oswaldocruzia filiformis (Goeze, 1782), Cosmocerca ornata (Dujarden, 1845), Seuratascaris numidica (Seurat, 1917). The parasite survey presents an important difference of prevalence and average number of helminths in frogs between the three sites. Correlating parasitological and ecotoxicological data showed a strong positive correlation between prevalence and number of parasites with some trace elements such as Mn, Co, Ni, As, Se, and Cd.

  2. Rendering the Intractable More Tractable: Tools from Caenorhabditis elegans Ripe for Import into Parasitic Nematodes

    PubMed Central

    Ward, Jordan D.

    2015-01-01

    Recent and rapid advances in genetic and molecular tools have brought spectacular tractability to Caenorhabditis elegans, a model that was initially prized because of its simple design and ease of imaging. C. elegans has long been a powerful model in biomedical research, and tools such as RNAi and the CRISPR/Cas9 system allow facile knockdown of genes and genome editing, respectively. These developments have created an additional opportunity to tackle one of the most debilitating burdens on global health and food security: parasitic nematodes. I review how development of nonparasitic nematodes as genetic models informs efforts to import tools into parasitic nematodes. Current tools in three commonly studied parasites (Strongyloides spp., Brugia malayi, and Ascaris suum) are described, as are tools from C. elegans that are ripe for adaptation and the benefits and barriers to doing so. These tools will enable dissection of a huge array of questions that have been all but completely impenetrable to date, allowing investigation into host–parasite and parasite–vector interactions, and the genetic basis of parasitism. PMID:26644478

  3. DNA Repair Mechanisms and Their Biological Roles in the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Lee, Andrew H.; Symington, Lorraine S.

    2014-01-01

    SUMMARY Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen. PMID:25184562

  4. Nutrient sensing modulates malaria parasite virulence

    PubMed Central

    Mancio-Silva, Liliana; Slavic, Ksenija; Grilo Ruivo, Margarida T.; Grosso, Ana Rita; Modrzynska, Katarzyna K.; Vera, Iset Medina; Sales-Dias, Joana; Gomes, Ana Rita; MacPherson, Cameron Ross; Crozet, Pierre; Adamo, Mattia; Baena-Gonzalez, Elena; Tewari, Rita; Llinás, Manuel; Billker, Oliver; Mota, Maria M.

    2017-01-01

    The lifestyle of intracellular pathogens, such as malaria parasites, is intimately connected to that of their host(s), primarily for nutrient supply. Nutrients act not only as primary sources of energy but also as regulators of gene expression, metabolism and growth, through various signaling networks that confer to cells the ability to sense and adapt to varying environmental conditions1,2. Canonical nutrient-sensing pathways are presumably absent in the causing agent of malaria Plasmodium3–5, thus raising the question of whether these parasites possess the capacity to sense and cope with host nutrient fluctuations. Here, we show that Plasmodium blood-stage parasites actively respond to host dietary calorie alterations through a rearrangement of their transcriptome accompanied by a significant adjustment of their multiplication rate. A kinome analysis combined with chemical and genetic approaches identified KIN as a critical regulator that mediates sensing of nutrients and controls a transcriptional response to the host nutritional status. KIN shares homology to SNF1/AMPKα and yeast complementation studies suggest functional conservation of an ancient cellular energy sensing pathway. Overall, these findings reveal a key parasite nutrient-sensing mechanism that is critical to modulate parasite replication and virulence. PMID:28678779

  5. Nutrient sensing modulates malaria parasite virulence.

    PubMed

    Mancio-Silva, Liliana; Slavic, Ksenija; Grilo Ruivo, Margarida T; Grosso, Ana Rita; Modrzynska, Katarzyna K; Vera, Iset Medina; Sales-Dias, Joana; Gomes, Ana Rita; MacPherson, Cameron Ross; Crozet, Pierre; Adamo, Mattia; Baena-Gonzalez, Elena; Tewari, Rita; Llinás, Manuel; Billker, Oliver; Mota, Maria M

    2017-07-13

    The lifestyle of intracellular pathogens, such as malaria parasites, is intimately connected to that of their host, primarily for nutrient supply. Nutrients act not only as primary sources of energy but also as regulators of gene expression, metabolism and growth, through various signalling networks that enable cells to sense and adapt to varying environmental conditions. Canonical nutrient-sensing pathways are presumed to be absent from the causative agent of malaria, Plasmodium, thus raising the question of whether these parasites can sense and cope with fluctuations in host nutrient levels. Here we show that Plasmodium blood-stage parasites actively respond to host dietary calorie alterations through rearrangement of their transcriptome accompanied by substantial adjustment of their multiplication rate. A kinome analysis combined with chemical and genetic approaches identified KIN as a critical regulator that mediates sensing of nutrients and controls a transcriptional response to the host nutritional status. KIN shares homology with SNF1/AMPKα, and yeast complementation studies suggest that it is part of a functionally conserved cellular energy-sensing pathway. Overall, these findings reveal a key parasite nutrient-sensing mechanism that is critical for modulating parasite replication and virulence.

  6. The use of transgenic parasites in malaria vaccine research.

    PubMed

    Othman, Ahmad Syibli; Marin-Mogollon, Catherin; Salman, Ahmed M; Franke-Fayard, Blandine M; Janse, Chris J; Khan, Shahid M

    2017-07-01

    Transgenic malaria parasites expressing foreign genes, for example fluorescent and luminescent proteins, are used extensively to interrogate parasite biology and host-parasite interactions associated with malaria pathology. Increasingly transgenic parasites are also exploited to advance malaria vaccine development. Areas covered: We review how transgenic malaria parasites are used, in vitro and in vivo, to determine protective efficacy of different antigens and vaccination strategies and to determine immunological correlates of protection. We describe how chimeric rodent parasites expressing P. falciparum or P. vivax antigens are being used to directly evaluate and rank order human malaria vaccines before their advancement to clinical testing. In addition, we describe how transgenic human and rodent parasites are used to develop and evaluate live (genetically) attenuated vaccines. Expert commentary: Transgenic rodent and human malaria parasites are being used to both identify vaccine candidate antigens and to evaluate both sub-unit and whole organism vaccines before they are advanced into clinical testing. Transgenic parasites combined with in vivo pre-clinical testing models (e.g. mice) are used to evaluate vaccine safety, potency and the durability of protection as well as to uncover critical protective immune responses and to refine vaccination strategies.

  7. Importance and pitfalls of molecular analysis to parasite epidemiology.

    PubMed

    Constantine, Clare C

    2003-08-01

    Molecular tools are increasingly being used to address questions about parasite epidemiology. Parasites represent a diverse group and they might not fit traditional population genetic models. Testing hypotheses depends equally on correct sampling, appropriate tool and/or marker choice, appropriate analysis and careful interpretation. All methods of analysis make assumptions which, if violated, make the results invalid. Some guidelines to avoid common pitfalls are offered here.

  8. Genetically Modified Live Attenuated Leishmania donovani Parasites Induce Innate Immunity through Classical Activation of Macrophages That Direct the Th1 Response in Mice

    PubMed Central

    Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K.; Kruhlak, Michael; Ismail, Nevien; Debrabant, Alain; Joshi, Amritanshu B.; Akue, Adovi; Kukuruga, Mark; Takeda, Kazuyo; Selvapandiyan, Angamuthu; McCoy, John Philip

    2015-01-01

    Visceral leishmaniasis (VL) causes significant mortality and there is no effective vaccine. Previously, we have shown that genetically modified Leishmania donovani parasites, here described as live attenuated parasites, induce a host protective adaptive immune response in various animal models. In this study, we demonstrate an innate immune response upon infection with live attenuated parasites in macrophages from BALB/c mice both in vitro and in vivo. In vitro infection of macrophages with live attenuated parasites (compared to that with wild-type [WT] L. donovani parasites) induced significantly higher production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-12 [IL-12], gamma interferon [IFN-γ], and IL-6), chemokines (monocyte chemoattractant protein 1/CCL-2, macrophage inflammatory protein 1α/CCL-3, and IP-10), reactive oxygen species (ROS), and nitric oxide, while concomitantly reducing anti-inflammatory cytokine IL-10 and arginase-1 activities, suggesting a dominant classically activated/M1 macrophage response. The classically activated response in turn helps in presenting antigen to T cells, as observed with robust CD4+ T cell activation in vitro. Similarly, parasitized splenic macrophages from live attenuated parasite-infected mice also demonstrated induction of an M1 macrophage phenotype, indicated by upregulation of IL-1β, TNF-α, IL-12, and inducible nitric oxide synthase 2 and downregulation of genes associated with the M2 phenotype, i.e., the IL-10, YM1, Arg-1, and MRC-1 genes, compared to WT L. donovani-infected mice. Furthermore, an ex vivo antigen presentation assay showed macrophages from live attenuated parasite-infected mice induced higher IFN-γ and IL-2 but significantly less IL-10 production by ovalbumin-specific CD4+ T cells, resulting in proliferation of Th1 cells. These data suggest that infection with live attenuated parasites promotes a state of classical activation (M1 dominant) in macrophages that

  9. Genetically Modified Live Attenuated Leishmania donovani Parasites Induce Innate Immunity through Classical Activation of Macrophages That Direct the Th1 Response in Mice.

    PubMed

    Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K; Kruhlak, Michael; Ismail, Nevien; Debrabant, Alain; Joshi, Amritanshu B; Akue, Adovi; Kukuruga, Mark; Takeda, Kazuyo; Selvapandiyan, Angamuthu; McCoy, John Philip; Nakhasi, Hira L

    2015-10-01

    Visceral leishmaniasis (VL) causes significant mortality and there is no effective vaccine. Previously, we have shown that genetically modified Leishmania donovani parasites, here described as live attenuated parasites, induce a host protective adaptive immune response in various animal models. In this study, we demonstrate an innate immune response upon infection with live attenuated parasites in macrophages from BALB/c mice both in vitro and in vivo. In vitro infection of macrophages with live attenuated parasites (compared to that with wild-type [WT] L. donovani parasites) induced significantly higher production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-12 [IL-12], gamma interferon [IFN-γ], and IL-6), chemokines (monocyte chemoattractant protein 1/CCL-2, macrophage inflammatory protein 1α/CCL-3, and IP-10), reactive oxygen species (ROS), and nitric oxide, while concomitantly reducing anti-inflammatory cytokine IL-10 and arginase-1 activities, suggesting a dominant classically activated/M1 macrophage response. The classically activated response in turn helps in presenting antigen to T cells, as observed with robust CD4(+) T cell activation in vitro. Similarly, parasitized splenic macrophages from live attenuated parasite-infected mice also demonstrated induction of an M1 macrophage phenotype, indicated by upregulation of IL-1β, TNF-α, IL-12, and inducible nitric oxide synthase 2 and downregulation of genes associated with the M2 phenotype, i.e., the IL-10, YM1, Arg-1, and MRC-1 genes, compared to WT L. donovani-infected mice. Furthermore, an ex vivo antigen presentation assay showed macrophages from live attenuated parasite-infected mice induced higher IFN-γ and IL-2 but significantly less IL-10 production by ovalbumin-specific CD4(+) T cells, resulting in proliferation of Th1 cells. These data suggest that infection with live attenuated parasites promotes a state of classical activation (M1 dominant) in macrophages that

  10. Malaria case clinical profiles and Plasmodium falciparum parasite genetic diversity: a cross sectional survey at two sites of different malaria transmission intensities in Rwanda.

    PubMed

    Kateera, Fredrick; Nsobya, Sam L; Tukwasibwe, Stephen; Mens, Petra F; Hakizimana, Emmanuel; Grobusch, Martin P; Mutesa, Leon; Kumar, Nirbhay; van Vugt, Michele

    2016-04-26

    Malaria remains a public health challenge in sub-Saharan Africa with Plasmodium falciparum being the principal cause of malaria disease morbidity and mortality. Plasmodium falciparum virulence is attributed, in part, to its population-level genetic diversity-a characteristic that has yet to be studied in Rwanda. Characterizing P. falciparum molecular epidemiology in an area is needed for a better understand of malaria transmission and to inform choice of malaria control strategies. In this health-facility based survey, malaria case clinical profiles and parasite densities as well as parasite genetic diversity were compared among P. falciparum-infected patients identified at two sites of different malaria transmission intensities in Rwanda. Data on demographics and clinical features and finger-prick blood samples for microscopy and parasite genotyping were collected(.) Nested PCR was used to genotype msp-2 alleles of FC27 and 3D7. Patients' variables of age group, sex, fever (both by patient report and by measured tympanic temperatures), parasite density, and bed net use were found differentially distributed between the higher endemic (Ruhuha) and lower endemic (Mubuga) sites. Overall multiplicity of P. falciparum infection (MOI) was 1.73 but with mean MOI found to vary significantly between 2.13 at Ruhuha and 1.29 at Mubuga (p < 0.0001). At Ruhuha, expected heterozygosity (EH) for FC27 and 3D7 alleles were 0.62 and 0.49, respectively, whilst at Mubuga, EH for FC27 and 3D7 were 0.26 and 0.28, respectively. In this study, a higher geometrical mean parasite counts, more polyclonal infections, higher MOI, and higher allelic frequency were observed at the higher malaria-endemic (Ruhuha) compared to the lower malaria-endemic (Mubuga) area. These differences in malaria risk and MOI should be considered when choosing setting-specific malaria control strategies, assessing p. falciparum associated parameters such as drug resistance, immunity and impact of used

  11. Genetic variation affecting host-parasite interactions: major-effect quantitative trait loci affect the transmission of sigma virus in Drosophila melanogaster.

    PubMed

    Bangham, Jenny; Knott, Sara A; Kim, Kang-Wook; Young, Robert S; Jiggins, Francis M

    2008-09-01

    In natural populations, genetic variation affects resistance to disease. Whether that genetic variation comprises lots of small-effect polymorphisms or a small number of large-effect polymorphisms has implications for adaptation, selection and how genetic variation is maintained in populations. Furthermore, how much genetic variation there is, and the genes that underlie this variation, affects models of co-evolution between parasites and their hosts. We are studying the genetic variation that affects the resistance of Drosophila melanogaster to its natural pathogen--the vertically transmitted sigma virus. We have carried out three separate quantitative trait locus mapping analyses to map gene variants on the second chromosome that cause variation in the rate at which males transmit the infection to their offspring. All three crosses identified a locus in a similar chromosomal location that causes a large drop in the rate at which the virus is transmitted. We also found evidence for an additional smaller-effect quantitative trait locus elsewhere on the chromosome. Our data, together with previous experiments on the sigma virus and parasitoid wasps, indicate that the resistance of D. melanogaster to co-evolved pathogens is controlled by a limited number of major-effect polymorphisms.

  12. The Gypsy Database (GyDB) of mobile genetic elements

    PubMed Central

    Lloréns, C.; Futami, R.; Bezemer, D.; Moya, A.

    2008-01-01

    In this article, we introduce the Gypsy Database (GyDB) of mobile genetic elements, an in-progress database devoted to the non-redundant analysis and evolutionary-based classification of mobile genetic elements. In this first version, we contemplate eukaryotic Ty3/Gypsy and Retroviridae long terminal repeats (LTR) retroelements. Phylogenetic analyses based on the gag-pro-pol internal region commonly presented by these two groups strongly support a certain number of previously described Ty3/Gypsy lineages originally reported from reverse-transcriptase (RT) analyses. Vertebrate retroviruses (Retroviridae) are also constituted in several monophyletic groups consistent with genera proposed by the ICTV nomenclature, as well as with the current tendency to classify both endogenous and exogenous retroviruses by three major classes (I, II and III). Our inference indicates that all protein domains codified by the gag-pro-pol internal region of these two groups agree in a collective presentation of a particular evolutionary history, which may be used as a main criterion to differentiate their molecular diversity in a comprehensive collection of phylogenies and non-redundant molecular profiles useful in the identification of new Ty3/Gypsy and Retroviridae species. The GyDB project is available at http://gydb.uv.es. PMID:17895280

  13. [Where do the parasites of man come from?].

    PubMed

    Combes, C

    1990-01-01

    The Hominids have come in contact, over the last few million years, with the infective stages of many parasites which had up to then evolved in non Primate hosts; this is because Hominids have occupied multiple environments and acquired diversified behaviour. The high number of these lateral transfers explains the multiplicity of current human parasitic diseases whereas their youth on an evolutionary scale accounts for the seriousness of most of these diseases. The basic questions arising from the exceptional opportunities offered to parasites by the evolution of the human lineage concern: the precise role played by human behaviour, the mechanisms of alterations in specificity, the identity of the original host phyla, the dynamic and genetic consequences for parasites, the relationship with the evolutionary history of the ancestors of Homo sapiens sapiens; for instance, it is suggested that man's mastery of fire, allowing him to cook his food, dramatically reduced his contamination by certain parasites and that this contributed to the subsequent success of Hominids.

  14. Disease ecology in the Galápagos Hawk (Buteo galapagoensis): host genetic diversity, parasite load and natural antibodies

    PubMed Central

    Whiteman, Noah Kerness; Matson, Kevin D; Bollmer, Jennifer L; Parker, Patricia G

    2005-01-01

    An increased susceptibility to disease is one hypothesis explaining how inbreeding hastens extinction in island endemics and threatened species. Experimental studies show that disease resistance declines as inbreeding increases, but data from in situ wildlife systems are scarce. Genetic diversity increases with island size across the entire range of an extremely inbred Galápagos endemic bird, providing the context for a natural experiment examining the effects of inbreeding on disease susceptibility. Extremely inbred populations of Galápagos hawks had higher parasite abundances than relatively outbred populations. We found a significant island effect on constitutively produced natural antibody (NAb) levels and inbred populations generally harboured lower average and less variable NAb levels than relatively outbred populations. Furthermore, NAb levels explained abundance of amblyceran lice, which encounter the host immune system. This is the first study linking inbreeding, innate immunity and parasite load in an endemic, in situ wildlife population and provides a clear framework for assessment of disease risk in a Galápagos endemic. PMID:16618672

  15. [Molecular-genetic analysis of wheat (T. aestivum L.) genome with introgression of Ae. cylindrica Host genetic elements].

    PubMed

    Galaev, A V; Sivolap, Iu M

    2005-01-01

    Wheat-aegilops hybrid plants Triticum aestivum L. (2n = 42) x Aegilops cylindrica Host (2n = 28) were investigated with using microsatellite markers. In two BC1F9 lines some genome modifications connected with losing DNA fragments of initial variety or appearing of Aegilops genome elements were detected. In some investigated hybrids new amplicons lacking in parental plants were found. Substitution of wheat chromosomes for aegilops chromosomes was not revealed. Analysis of microsatellite loci in BC2F5 plants showed stable introgression of aegilops genetic elements into wheat; elimination of some transferred aegilops DNA fragments in the course of backcrossing; decreasing size of introgressive elements after backcrossing. Introgressive lines were classified according to genome changes.

  16. Links between Genetic Groups, Indole Alkaloid Profiles and Ecology within the Grass-Parasitic Claviceps purpurea Species Complex.

    PubMed

    Negård, Mariell; Uhlig, Silvio; Kauserud, Håvard; Andersen, Tom; Høiland, Klaus; Vrålstad, Trude

    2015-04-28

    The grass parasitic fungus Claviceps purpurea sensu lato produces sclerotia with toxic indole alkaloids. It constitutes several genetic groups with divergent habitat preferences that recently were delimited into separate proposed species. We aimed to 1) analyze genetic variation of C. purpurea sensu lato in Norway, 2) characterize the associated indole alkaloid profiles, and 3) explore relationships between genetics, alkaloid chemistry and ecology. Approximately 600 sclerotia from 14 different grass species were subjected to various analyses including DNA sequencing and HPLC-MS. Molecular results, supported by chemical and ecological data, revealed one new genetic group (G4) in addition to two of the three known; G1 (C. purpurea sensu stricto) and G2 (C. humidiphila). G3 (C. spartinae) was not found. G4, which was apparently con-specific with the recently described C. arundinis sp. nov, was predominantly found in very wet habitats on Molinia caerulea and infrequently in saline habitats on Leymus arenarius. Its indole-diterpene profile resembled G2, while its ergot alkaloid profile differed from G2 in high amounts of ergosedmam. In contrast to G1, indole-diterpenes were consistently present in G2 and G4. Our study supports and complements the newly proposed species delimitation of the C. purpurea complex, but challenges some species characteristics including host spectrum, habitat preferences and sclerotial floating ability.

  17. Links between Genetic Groups, Indole Alkaloid Profiles and Ecology within the Grass-Parasitic Claviceps purpurea Species Complex

    PubMed Central

    Negård, Mariell; Uhlig, Silvio; Kauserud, Håvard; Andersen, Tom; Høiland, Klaus; Vrålstad, Trude

    2015-01-01

    The grass parasitic fungus Claviceps purpurea sensu lato produces sclerotia with toxic indole alkaloids. It constitutes several genetic groups with divergent habitat preferences that recently were delimited into separate proposed species. We aimed to 1) analyze genetic variation of C. purpurea sensu lato in Norway, 2) characterize the associated indole alkaloid profiles, and 3) explore relationships between genetics, alkaloid chemistry and ecology. Approximately 600 sclerotia from 14 different grass species were subjected to various analyses including DNA sequencing and HPLC-MS. Molecular results, supported by chemical and ecological data, revealed one new genetic group (G4) in addition to two of the three known; G1 (C. purpurea sensu stricto) and G2 (C. humidiphila). G3 (C. spartinae) was not found. G4, which was apparently con-specific with the recently described C. arundinis sp. nov, was predominantly found in very wet habitats on Molinia caerulea and infrequently in saline habitats on Leymus arenarius. Its indole-diterpene profile resembled G2, while its ergot alkaloid profile differed from G2 in high amounts of ergosedmam. In contrast to G1, indole-diterpenes were consistently present in G2 and G4. Our study supports and complements the newly proposed species delimitation of the C. purpurea complex, but challenges some species characteristics including host spectrum, habitat preferences and sclerotial floating ability. PMID:25928134

  18. Host density drives the postglacial migration of the tree parasite, Epifagus virginiana.

    PubMed

    Tsai, Yi-Hsin Erica; Manos, Paul S

    2010-09-28

    To survive changes in climate, successful species shift their geographic ranges to remain in suitable habitats. For parasites and other highly specialized species, distributional changes not only are dictated by climate but can also be engineered by their hosts. The extent of host control on parasite range expansion is revealed through comparisons of host and parasite migration and demographic histories. However, understanding the codistributional history of entire forest communities is complicated by challenges in synthesizing datasets from multiple interacting species of differing datatypes. Here we integrate genetic and fossil pollen datasets from a host-parasite pair; specifically, the population structure of the parasitic plant (Epifagus virginiana) was compared with both its host (Fagus grandifolia) genetic patterns and abundance data from the paleopollen record of the last 21,000 y. Through tests of phylogeographic structure and spatial linear regression models we find, surprisingly, host range changes had little effect on the parasite's range expansion and instead host density is the main driver of parasite spread. Unlike other symbionts that have been used as proxies to track their host's movements, this parasite's migration routes are incongruent with the host and instead reflect the greater importance of host density in this community's assembly. Furthermore, these results confirm predictions of disease ecological models regarding the role of host density in the spread of pathogens. Due to host density constraints, highly specialized species may have low migration capacities and long lag times before colonization of new areas.

  19. Meso- and bathy-pelagic fish parasites at the Mid-Atlantic Ridge (MAR): Low host specificity and restricted parasite diversity

    NASA Astrophysics Data System (ADS)

    Klimpel, Sven; Busch, Markus Wilhelm; Sutton, Tracey; Palm, Harry Wilhelm

    2010-04-01

    Seven meso- and bathy-pelagic fish species from the Mid-Atlantic Ridge (MAR) were firstly studied for fish parasites and feeding ecology. With a total of seven parasite species, the 247 meso- and bathy-pelagic deep-sea fish specimens belonging to the families Melamphaidae (3 spp.), Myctophidae (3 spp.) and Stomiidae (1 sp.) revealed low parasite diversity. The genetically identified nematodes Anisakis simplex (s.s.) and Anisakis pegreffii from the body cavity, liver and muscles of Myctophum punctatum were the most abundant parasites, reaching a prevalence of 91.4% and mean intensity of 3.1 (1-14). Anisakis sp. (unidentified) infected Chauliodus sloani and Poromitra crassiceps. Bothriocephalidean and tetraphyllidean cestode larvae infected Benthosema glaciale, the latter also occurring in C. sloani and Scopelogadus beanii, at low prevalences. Adult parasites at low infection rates included the digenean Lethadena sp. (2.9%), and the two copepod species Sarcotretes scopeli (5.7%) and Tautochondria dolichoura (5.3-11.4%). The myctophid Lampanyctus macdonaldi and the melamphaid Scopelogadus mizolepis mizolepis were free of parasites. Analyses of the stomach contents revealed crustaceans, especially copepods and euphausiids for the myctophids and also amphipods for the melamphaids as predominant prey items. While all stomachs showing distinct content comprising often unidentified 'tissue' (possibly gelatinous zooplankton), only C. sloani preyed upon fish. Though this feeding habit would enable transfer of a variety of crustacean-transmitted parasites into the fish, the parasite fauna in the meso- and bathy-pelagic fish was species poor. All observed parasites showed low host specificity, demonstrating no distinct pattern of host-parasite co-evolution. The MAR is no barrier for the parasite distribution in the North Atlantic meso- and bathy-pelagial.

  20. Genetic diversity, virulence and fitness evolution in an obligate fungal parasite of bees.

    PubMed

    Evison, S E F; Foley, K; Jensen, A B; Hughes, W O H

    2015-01-01

    Within-host competition is predicted to drive the evolution of virulence in parasites, but the precise outcomes of such interactions are often unpredictable due to many factors including the biology of the host and the parasite, stochastic events and co-evolutionary interactions. Here, we use a serial passage experiment (SPE) with three strains of a heterothallic fungal parasite (Ascosphaera apis) of the Honey bee (Apis mellifera) to assess how evolving under increasing competitive pressure affects parasite virulence and fitness evolution. The results show an increase in virulence after successive generations of selection and consequently faster production of spores. This faster sporulation, however, did not translate into more spores being produced during this longer window of sporulation; rather, it appeared to induce a loss of fitness in terms of total spore production. There was no evidence to suggest that a greater diversity of competing strains was a driver of this increased virulence and subsequent fitness cost, but rather that strain-specific competitive interactions influenced the evolutionary outcomes of mixed infections. It is possible that the parasite may have evolved to avoid competition with multiple strains because of its heterothallic mode of reproduction, which highlights the importance of understanding parasite biology when predicting disease dynamics. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  1. Host specificity in parasitic plants-perspectives from mistletoes.

    PubMed

    Okubamichael, Desale Y; Griffiths, Megan E; Ward, David

    2016-01-01

    Host specificity has been investigated for centuries in mistletoes, viruses, insects, parasitoids, lice and flukes, yet it is poorly understood. Reviewing the numerous studies on mistletoe host specificity may contribute to our understanding of these plants and put into context the dynamics at work in root parasitic plants and animal parasites. The mechanisms that determine host specificity in mistletoes are not as well documented and understood as those in other groups of parasites. To rectify this, we synthesized the available literature and analyzed data compiled from herbaria, published monographs and our own field studies in South Africa. As for other groups of parasites, multiple factors influence mistletoe host specificity. Initially, pollination affects gene flow. Subsequently, seed dispersal vectors (birds and marsupials), host abundance and compatibility (genetic, morphological, physiological and chemical), history and environmental conditions affect the interaction of mistletoes and their hosts and determine host specificity. Mistletoe-host network analyses and a geographic mosaic approach combined with long-term monitoring of reciprocal transplant experiments, genetic analyses of confined mistletoe populations and comparative phylogenetic studies could provide further insights to our understanding of host specificity. Some of these approaches have been used to study animal-plant interactions and could be adopted to test and evaluate host specificity in mistletoes at local and larger geographic scales. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  2. Host specificity in parasitic plants—perspectives from mistletoes

    PubMed Central

    Okubamichael, Desale Y.; Griffiths, Megan E.; Ward, David

    2016-01-01

    Host specificity has been investigated for centuries in mistletoes, viruses, insects, parasitoids, lice and flukes, yet it is poorly understood. Reviewing the numerous studies on mistletoe host specificity may contribute to our understanding of these plants and put into context the dynamics at work in root parasitic plants and animal parasites. The mechanisms that determine host specificity in mistletoes are not as well documented and understood as those in other groups of parasites. To rectify this, we synthesized the available literature and analyzed data compiled from herbaria, published monographs and our own field studies in South Africa. As for other groups of parasites, multiple factors influence mistletoe host specificity. Initially, pollination affects gene flow. Subsequently, seed dispersal vectors (birds and marsupials), host abundance and compatibility (genetic, morphological, physiological and chemical), history and environmental conditions affect the interaction of mistletoes and their hosts and determine host specificity. Mistletoe–host network analyses and a geographic mosaic approach combined with long-term monitoring of reciprocal transplant experiments, genetic analyses of confined mistletoe populations and comparative phylogenetic studies could provide further insights to our understanding of host specificity. Some of these approaches have been used to study animal–plant interactions and could be adopted to test and evaluate host specificity in mistletoes at local and larger geographic scales. PMID:27658817

  3. Temporal stability of parasite distribution and genetic variability values of Contracaecum osculatum sp. D and C. osculatum sp. E (Nematoda: Anisakidae) from fish of the Ross Sea (Antarctica)

    PubMed Central

    Mattiucci, Simonetta; Cipriani, Paolo; Paoletti, Michela; Nardi, Valentina; Santoro, Mario; Bellisario, Bruno; Nascetti, Giuseppe

    2015-01-01

    The Ross Sea, Eastern Antarctica, is considered a “pristine ecosystem” and a biodiversity “hotspot” scarcely impacted by humans. The sibling species Contracaecum osculatum sp. D and C. osculatum sp. E are anisakid parasites embedded in the natural Antarctic marine ecosystem. Aims of this study were to: identify the larvae of C. osculatum (s.l.) recovered in fish hosts during the XXVII Italian Expedition to Antarctica (2011–2012); perform a comparative analysis of the contemporary parasitic load and genetic variability estimates of C. osculatum sp. D and C. osculatum sp. E with respect to samples collected during the expedition of 1993–1994; to provide ecological data on these parasites. 200 fish specimens (Chionodraco hamatus, Trematomus bernacchii, Trematomus hansoni, Trematomus newnesi) were analysed for Contracaecum sp. larvae, identified at species level by allozyme diagnostic markers and sequences analysis of the mtDNA cox2 gene. Statistically significant differences were found between the occurrence of C. osculatum sp. D and C. osculatum sp. E in different fish species. C. osculatum sp. E was more prevalent in T. bernacchii; while, a higher percentage of C. osculatum sp. D occurred in Ch. hamatus and T. hansoni. The two species also showed differences in the host infection site: C. osculatum sp. D showed higher percentage of infection in the fish liver. High genetic variability values at both nuclear and mitochondrial level were found in the two species in both sampling periods. The parasitic infection levels by C. osculatum sp. D and sp. E and their estimates of genetic variability showed no statistically significant variation over a temporal scale (2012 versus 1994). This suggests that the low habitat disturbance of the Antarctic region permits the maintenance of stable ecosystem trophic webs, which contributes to the maintenance of a large populations of anisakid nematodes with high genetic variability. PMID:26767164

  4. Crosses prior to parthenogenesis explain the current genetic diversity of tropical plant-parasitic Meloidogyne species (Nematoda: Tylenchida).

    PubMed

    Fargette, Mireille; Berthier, Karine; Richaud, Myriam; Lollier, Virginie; Franck, Pierre; Hernandez, Adan; Frutos, Roger

    2010-08-01

    The tropical and subtropical parthenogenetic plant-parasitic nematodes Meloidogyne are polyphagous major agricultural pests. Implementing proper pest management approaches requires a good understanding of mechanisms, population structure, evolutionary patterns and species identification. A comparative analysis of the mitochondrial vs nuclear diversity was conducted on a selected set of Meloidogyne lines from various geographic origins. Mitochondrial co2-16S sequences and AFLP markers of total DNA were applied because of their ability to evidence discrete genetic variation between closely related isolates. Several distinct maternal lineages were present, now associated with different genetic backgrounds. Relative discordances were found when comparing mitochondrial and nuclear diversity patterns. These patterns are most likely related to crosses within one ancestral genetic pool, followed by the establishment of parthenogenesis. In this case, they mirror the genetic backgrounds of the original individuals. Another aspect could be that species emergence was recent or on process from this original genetic pool and that the relatively short time elapsed since then and before parthenogenesis settlement did not allow for lineage sorting. This could also be compatible with the hypothesis of hybrids between closely related species. This genetic pool would correspond to a species as defined by the species interbreeding concept, but also including the grey area of species boundaries. This complex process has implications on the way genotypic and phenotypic diversity should be addressed. The phenotype of parthenogenetic lines is at least for part determined by the ancestral amphimictic genetic background. A direct consequence is, therefore, in terms of risk management, the limited confidence one can have on the direct association of an agronomic threat to a simple typing or species delineation. Risk management strategies and tools must thus consider this complexity when

  5. Host genotype by parasite genotype interactions underlying the resistance of anopheline mosquitoes to Plasmodium falciparum.

    PubMed

    Lambrechts, Louis; Halbert, Jean; Durand, Patrick; Gouagna, Louis C; Koella, Jacob C

    2005-01-11

    Most studies on the resistance of mosquitoes to their malaria parasites focus on the response of a mosquito line or colony against a single parasite genotype. In natural situations, however, it may be expected that mosquito-malaria relationships are based, as are many other host-parasite systems, on host genotype by parasite genotype interactions. In such systems, certain hosts are resistant to one subset of the parasite's genotypes, while other hosts are resistant to a different subset. To test for genotype by genotype interactions between malaria parasites and their anopheline vectors, different genetic backgrounds (families consisting of the F1 offspring of individual females) of the major African vector Anopheles gambiae were challenged with several isolates of the human malaria parasite Plasmodium falciparum (obtained from naturally infected children in Kenya). Averaged across all parasites, the proportion of infected mosquitoes and the number of oocysts found in their midguts were similar in all mosquito families. Both indices of resistance, however, differed considerably among isolates of the parasite. In particular, no mosquito family was most resistant to all parasites, and no parasite isolate was most infectious to all mosquitoes. These results suggest that the level of mosquito resistance depends on the interaction between its own and the parasite's genotype. This finding thus emphasizes the need to take into account the range of genetic diversity exhibited by mosquito and malaria field populations in ideas and studies concerning the control of malaria.

  6. Conserved mosquito/parasite interactions affect development of Plasmodium falciparum in Africa.

    PubMed

    Mendes, Antonio M; Schlegelmilch, Timm; Cohuet, Anna; Awono-Ambene, Parfait; De Iorio, Maria; Fontenille, Didier; Morlais, Isabelle; Christophides, George K; Kafatos, Fotis C; Vlachou, Dina

    2008-05-16

    In much of sub-Saharan Africa, the mosquito Anopheles gambiae is the main vector of the major human malaria parasite, Plasmodium falciparum. Convenient laboratory studies have identified mosquito genes that affect positively or negatively the developmental cycle of the model rodent parasite, P. berghei. Here, we use transcription profiling and reverse genetics to explore whether five disparate mosquito gene regulators of P. berghei development are also pertinent to A. gambiae/P. falciparum interactions in semi-natural conditions, using field isolates of this parasite and geographically related mosquitoes. We detected broadly similar albeit not identical transcriptional responses of these genes to the two parasite species. Gene silencing established that two genes affect similarly both parasites: infections are hindered by the intracellular local activator of actin cytoskeleton dynamics, WASP, but promoted by the hemolymph lipid transporter, ApoII/I. Since P. berghei is not a natural parasite of A. gambiae, these data suggest that the effects of these genes have not been drastically altered by constant interaction and co-evolution of A. gambiae and P. falciparum; this conclusion allowed us to investigate further the mode of action of these two genes in the laboratory model system using a suite of genetic tools and infection assays. We showed that both genes act at the level of midgut invasion during the parasite's developmental transition from ookinete to oocyst. ApoII/I also affects the early stages of oocyst development. These are the first mosquito genes whose significant effects on P. falciparum field isolates have been established by direct experimentation. Importantly, they validate for semi-field human malaria transmission the concept of parasite antagonists and agonists.

  7. Diptera vectors of avian Haemosporidian parasites: untangling parasite life cycles and their taxonomy.

    PubMed

    Santiago-Alarcon, Diego; Palinauskas, Vaidas; Schaefer, Hinrich Martin

    2012-11-01

    Haemosporida is a large group of vector-borne intracellular parasites that infect amphibians, reptiles, birds, and mammals. This group includes the different malaria parasites (Plasmodium spp.) that infect humans around the world. Our knowledge on the full life cycle of these parasites is most complete for those parasites that infect humans and, to some extent, birds. However, our current knowledge on haemosporidian life cycles is characterized by a paucity of information concerning the vector species responsible for their transmission among vertebrates. Moreover, our taxonomic and systematic knowledge of haemosporidians is far from complete, in particular because of insufficient sampling in wild vertebrates and in tropical regions. Detailed experimental studies to identify avian haemosporidian vectors are uncommon, with only a few published during the last 25 years. As such, little knowledge has accumulated on haemosporidian life cycles during the last three decades, hindering progress in ecology, evolution, and systematic studies of these avian parasites. Nonetheless, recently developed molecular tools have facilitated advances in haemosporidian research. DNA can now be extracted from vectors' blood meals and the vertebrate host identified; if the blood meal is infected by haemosporidians, the parasite's genetic lineage can also be identified. While this molecular tool should help to identify putative vector species, detailed experimental studies on vector competence are still needed. Furthermore, molecular tools have helped to refine our knowledge on Haemosporida taxonomy and systematics. Herein we review studies conducted on Diptera vectors transmitting avian haemosporidians from the late 1800s to the present. We also review work on Haemosporida taxonomy and systematics since the first application of molecular techniques and provide recommendations and suggest future research directions. Because human encroachment on natural environments brings human

  8. Contrasting parasite communities among allopatric colour morphs of the Lake Tanganyika cichlid Tropheus

    PubMed Central

    2013-01-01

    Background Adaptation to different ecological environments is thought to drive ecological speciation. This phenomenon culminates in the radiations of cichlid fishes in the African Great Lakes. Multiple characteristic traits of cichlids, targeted by natural or sexual selection, are considered among the driving factors of these radiations. Parasites and pathogens have been suggested to initiate or accelerate speciation by triggering both natural and sexual selection. Three prerequisites for parasite-driven speciation can be inferred from ecological speciation theory. The first prerequisite is that different populations experience divergent infection levels. The second prerequisite is that these infection levels cause divergent selection and facilitate adaptive divergence. The third prerequisite is that parasite-driven adaptive divergence facilitates the evolution of reproductive isolation. Here we investigate the first and the second prerequisite in allopatric chromatically differentiated lineages of the rock-dwelling cichlid Tropheus spp. from southern Lake Tanganyika (Central Africa). Macroparasite communities were screened in eight populations belonging to five different colour morphs. Results Parasite communities were mainly composed of acanthocephalans, nematodes, monogeneans, copepods, branchiurans, and digeneans. In two consecutive years (2011 and 2012), we observed significant variation across populations for infection with acanthocephalans, nematodes, monogeneans of the genera Gyrodactylus and Cichlidogyrus, and the copepod Ergasilus spp. Overall, parasite community composition differed significantly between populations of different colour morphs. Differences in parasite community composition were stable in time. The genetic structure of Tropheus populations was strong and showed a significant isolation-by-distance pattern, confirming that spatial isolation is limiting host dispersal. Correlations between parasite community composition and Tropheus genetic

  9. Spatial variation in the parasite communities and genomic structure of urban rats in New York City.

    PubMed

    Angley, L P; Combs, M; Firth, C; Frye, M J; Lipkin, I; Richardson, J L; Munshi-South, J

    2018-02-01

    Brown rats (Rattus norvegicus) are a globally distributed pest. Urban habitats can support large infestations of rats, posing a potential risk to public health from the parasites and pathogens they carry. Despite the potential influence of rodent-borne zoonotic diseases on human health, it is unclear how urban habitats affect the structure and transmission dynamics of ectoparasite and microbial communities (all referred to as "parasites" hereafter) among rat colonies. In this study, we use ecological data on parasites and genomic sequencing of their rat hosts to examine associations between spatial proximity, genetic relatedness and the parasite communities associated with 133 rats at five sites in sections of New York City with persistent rat infestations. We build on previous work showing that rats in New York carry a wide variety of parasites and report that these communities differ significantly among sites, even across small geographical distances. Ectoparasite community similarity was positively associated with geographical proximity; however, there was no general association between distance and microbial communities of rats. Sites with greater overall parasite diversity also had rats with greater infection levels and parasite species richness. Parasite community similarity among sites was not linked to genetic relatedness of rats, suggesting that these communities are not associated with genetic similarity among host individuals or host dispersal among sites. Discriminant analysis identified site-specific associations of several parasite species, suggesting that the presence of some species within parasite communities may allow researchers to determine the sites of origin for newly sampled rats. The results of our study help clarify the roles that colony structure and geographical proximity play in determining the ecology of R. norvegicus as a significant urban reservoir of zoonotic diseases. Our study also highlights the spatial variation present in urban

  10. Rapid identification of genes controlling virulence and immunity in malaria parasites

    PubMed Central

    Xangsayarath, Phonepadith; Tang, Jianxia; Yahata, Kazuhide; Zoungrana, Augustin; Mitaka, Hayato; Acharjee, Arita; Datta, Partha P.; Hunt, Paul; Carter, Richard; Kaneko, Osamu; Mustonen, Ville; Pain, Arnab

    2017-01-01

    Identifying the genetic determinants of phenotypes that impact disease severity is of fundamental importance for the design of new interventions against malaria. Here we present a rapid genome-wide approach capable of identifying multiple genetic drivers of medically relevant phenotypes within malaria parasites via a single experiment at single gene or allele resolution. In a proof of principle study, we found that a previously undescribed single nucleotide polymorphism in the binding domain of the erythrocyte binding like protein (EBL) conferred a dramatic change in red blood cell invasion in mutant rodent malaria parasites Plasmodium yoelii. In the same experiment, we implicated merozoite surface protein 1 (MSP1) and other polymorphic proteins, as the major targets of strain-specific immunity. Using allelic replacement, we provide functional validation of the substitution in the EBL gene controlling the growth rate in the blood stages of the parasites. PMID:28704525

  11. H2O2 dynamics in the malaria parasite Plasmodium falciparum

    PubMed Central

    Rahbari, Mahsa; Bogeski, Ivan

    2017-01-01

    Hydrogen peroxide is an important antimicrobial agent but is also crucially involved in redox signaling and pathogen-host cell interactions. As a basis for systematically investigating intracellular H2O2 dynamics and regulation in living malaria parasites, we established the genetically encoded fluorescent H2O2 sensors roGFP2-Orp1 and HyPer-3 in Plasmodium falciparum. Both ratiometric redox probes as well as the pH control SypHer were expressed in the cytosol of blood-stage parasites. Both redox sensors showed reproducible sensitivity towards H2O2 in the lower micromolar range in vitro and in the parasites. Due to the pH sensitivity of HyPer-3, we used parasites expressing roGFP2-Orp1 for evaluation of short-, medium-, and long-term effects of antimalarial drugs on H2O2 levels and detoxification in Plasmodium. None of the quinolines or artemisinins tested had detectable direct effects on the H2O2 homeostasis at pharmacologically relevant concentrations. However, pre-treatment of the cells with antimalarial drugs or heat shock led to a higher tolerance towards exogenous H2O2. The systematic evaluation and comparison of the two genetically encoded cytosolic H2O2 probes in malaria parasites provides a basis for studying parasite-host cell interactions or drug effects with spatio-temporal resolution while preserving cell integrity. PMID:28369083

  12. Host associations and turnover of haemosporidian parasites in manakins (Aves: Pipridae).

    PubMed

    Fecchio, Alan; Svensson-Coelho, Maria; Bell, Jeffrey; Ellis, Vincenzo A; Medeiros, Matthew C; Trisos, Christopher H; Blake, John G; Loiselle, Bette A; Tobias, Joseph A; Fanti, Rebeka; Coffey, Elyse D; DE Faria, Iubatã P; Pinho, João B; Felix, Gabriel; Braga, Erika M; Anciães, Marina; Tkach, Vasyl; Bates, John; Witt, Christopher; Weckstein, Jason D; Ricklefs, Robert E; Farias, Izeni P

    2017-06-01

    Parasites of the genera Plasmodium and Haemoproteus (Apicomplexa: Haemosporida) are a diverse group of pathogens that infect birds nearly worldwide. Despite their ubiquity, the ecological and evolutionary factors that shape the diversity and distribution of these protozoan parasites among avian communities and geographic regions are poorly understood. Based on a survey throughout the Neotropics of the haemosporidian parasites infecting manakins (Pipridae), a family of Passerine birds endemic to this region, we asked whether host relatedness, ecological similarity and geographic proximity structure parasite turnover between manakin species and local manakin assemblages. We used molecular methods to screen 1343 individuals of 30 manakin species for the presence of parasites. We found no significant correlations between manakin parasite lineage turnover and both manakin species turnover and geographic distance. Climate differences, species turnover in the larger bird community and parasite lineage turnover in non-manakin hosts did not correlate with manakin parasite lineage turnover. We also found no evidence that manakin parasite lineage turnover among host species correlates with range overlap and genetic divergence among hosts. Our analyses indicate that host switching (turnover among host species) and dispersal (turnover among locations) of haemosporidian parasites in manakins are not constrained at this scale.

  13. The systematics and population genetics of Opisthorchis viverrini sensu lato: implications in parasite epidemiology and bile duct cancer.

    PubMed

    Sithithaworn, Paiboon; Andrews, Ross H; Petney, Trevor N; Saijuntha, Weerachai; Laoprom, Nonglak

    2012-03-01

    Together with host and environmental factors, the systematics and population genetic variation of Opisthorchis viverrini may contribute to recorded local and regional differences in epidemiology and host morbidity in opisthorchiasis and cholangiocarcinoma (CCA). In this review, we address recent findings that O. viverrini comprises a species complex with varying degrees of population genetic variation which are associated with specific river wetland systems within Thailand as well as the Lao PDR. Having an accurate understanding of systematics is a prerequisite for a meaningful assessment of the population structure of each species within the O. viverrini complex in nature, as well as a better understanding of the magnitude of genetic variation that occurs within different species of hosts in its life cycle. Whether specific genotypes are related to habitat type(s) and/or specific intermediate host species are discussed based on current available data. Most importantly, we focus on whether there is a correlation between incidence of CCA and genotype(s) of O. viverrini. This will provide a solid basis for further comprehensive investigations of the role of genetic variation within each species of O. viverrini sensu lato in human epidemiology and genotype related morbidity as well as co-evolution of parasites with primary and secondary intermediate species of host. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Macrolide resistance gene erm(TR) and erm(TR)-carrying genetic elements in Streptococcus agalactiae: characterization of ICESagTR7, a new composite element containing IMESp2907.

    PubMed

    Mingoia, Marina; Morici, Eleonora; Marini, Emanuela; Brenciani, Andrea; Giovanetti, Eleonora; Varaldo, Pietro E

    2016-03-01

    The objective of this study was to investigate macrolide-resistant Streptococcus agalactiae isolates harbouring erm(TR), an erm(A) gene subclass, with emphasis on their erm(TR)-carrying genetic elements. Four erm(TR)-carrying elements have been described to date: three closely related (ICE10750-RD.2, Tn1806 and ICESp1108) in Streptococcus pyogenes, Streptococcus pneumoniae and S. pyogenes, respectively; and one completely different (IMESp2907, embedded in ICESp2906 to form ICESp2905) in S. pyogenes. Seventeen macrolide-resistant erm(TR)-positive S. agalactiae isolates were phenotypically and genotypically characterized. Their erm(TR)-carrying elements were explored by analysing the distinctive recombination genes of known erm(TR)-carrying integrative and conjugative elements (ICEs) and by PCR mapping. The new genetic context and organization of IMESp2907 in S. agalactiae were explored using several experimental procedures and in silico analyses. Five isolates harboured ICE10750-RD.2/Tn1806, five isolates harboured ICESp1108 and five isolates bore unknown erm(TR)-carrying elements. The remaining two isolates, exhibiting identical serotypes and pulsotypes, harboured IMESp2907 in a new genetic environment, which was further investigated in one of the two isolates, SagTR7. IMESp2907 was circularizable in S. agalactiae, as described in S. pyogenes. The new IMESp2907 junctions were identified based on its site-specific integration; the att sites were almost identical to those in S. pyogenes. In strain SagTR7, erm(TR)-carrying IMESp2907 was embedded in an erm(TR)-less internal element related to ICE10750-RD.2/Tn1806, which, in turn, was embedded in an ICESde3396-like element. The resulting whole ICE, ICESagTR7 (∼129 kb), was integrated into the chromosome downstream of the rplL gene, and was excisable in circular form and transferable by conjugation. This is the first study exploring erm(TR)-carrying genetic elements in S. agalactiae. © The Author 2015. Published by

  15. The geography of malaria genetics in the Democratic Republic of Congo: A complex and fragmented landscape

    PubMed Central

    Carrel, Margaret; Patel, Jaymin; Taylor, Steve M.; Janko, Mark; Mwandagalirwa, Melchior Kashamuka; Tshefu, Antoinette K.; Escalante, Ananias A.; McCollum, Andrea; Alam, Md Tauqeer; Udhayakumar, Venkatachalam; Meshnick, Steven; Emch, Michael

    2014-01-01

    Understanding how malaria parasites move between populations is important, particularly given the potential for malaria to be reintroduced into areas where it was previously eliminated. We examine the distribution of malaria genetics across seven sites within the Democratic Republic of Congo (DRC) and two nearby countries, Ghana and Kenya, in order to understand how the relatedness of malaria parasites varies across space, and whether there are barriers to the flow of malaria parasites within the DRC or across borders. Parasite DNA was retrieved from dried blood spots from 7 Demographic and Health Survey sample clusters in the DRC. Malaria genetic characteristics of parasites from Ghana and Kenya were also obtained. For each of 9 geographic sites (7 DRC, 1 Ghana and 1 Kenya), a pair-wise RST statistic was calculated, indicating the genetic distance between malaria parasites found in those locations. Mapping genetics across the spatial extent of the study area indicates a complex genetic landscape, where relatedness between two proximal sites may be relatively high (RST > 0.64) or low (RST < 0.05), and where distal sites also exhibit both high and low genetic similarity. Mantel’s tests suggest that malaria genetics differ as geographic distances increase. Principal Coordinate Analysis suggests that genetically related samples are not co-located. Barrier analysis reveals no significant barriers to gene flow between locations. Malaria genetics in the DRC have a complex and fragmented landscape. Limited exchange of genes across space is reflected in greater genetic distance between malaria parasites isolated at greater geographic distances. There is, however, evidence for close genetic ties between distally located sample locations, indicating that movement of malaria parasites and flow of genes is being driven by factors other than distance decay. This research demonstrates the contributions that spatial disease ecology and landscape genetics can make to

  16. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species.

    PubMed

    Stapley, Jessica; Santure, Anna W; Dennis, Stuart R

    2015-05-01

    Rapid adaptation of invasive species to novel habitats has puzzled evolutionary biologists for decades, especially as this often occurs in the face of limited genetic variability. Although some ecological traits common to invasive species have been identified, little is known about the possible genomic/genetic mechanisms that may underlie their success. A common scenario in many introductions is that small founder population sizes will often lead to reduced genetic diversity, but that invading populations experience large environmental perturbations, such as changes in habitat and environmental stress. Although sudden and intense stress is usually considered in a negative context, these perturbations may actually facilitate rapid adaptation by affecting genome structure, organization and function via interactions with transposable elements (TEs), especially in populations with low genetic diversity. Stress-induced changes in TE activity can alter gene action and can promote structural variation that may facilitate the rapid adaptation observed in new environments. We focus here on the adaptive potential of TEs in relation to invasive species and highlight their role as powerful mutational forces that can rapidly create genetic diversity. We hypothesize that activity of transposable elements can explain rapid adaptation despite low genetic variation (the genetic paradox of invasive species), and provide a framework under which this hypothesis can be tested using recently developed and emerging genomic technologies. © 2015 John Wiley & Sons Ltd.

  17. A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila.

    PubMed

    Chen, Chun-Hong; Huang, Haixia; Ward, Catherine M; Su, Jessica T; Schaeffer, Lorian V; Guo, Ming; Hay, Bruce A

    2007-04-27

    One proposed strategy for controlling the transmission of insect-borne pathogens uses a drive mechanism to ensure the rapid spread of transgenes conferring disease refractoriness throughout wild populations. Here, we report the creation of maternal-effect selfish genetic elements in Drosophila that drive population replacement and are resistant to recombination-mediated dissociation of drive and disease refractoriness functions. These selfish elements use microRNA-mediated silencing of a maternally expressed gene essential for embryogenesis, which is coupled with early zygotic expression of a rescuing transgene.

  18. Phylogeography of the ant Myrmica rubra and its inquiline social parasite

    PubMed Central

    Leppänen, Jenni; Vepsäläinen, Kari; Savolainen, Riitta

    2011-01-01

    Widely distributed Palearctic insects are ideal to study phylogeographic patterns owing to their high potential to survive in many Pleistocene refugia and—after the glaciation—to recolonize vast, continuous areas. Nevertheless, such species have received little phylogeographic attention. Here, we investigated the Pleistocene refugia and subsequent postglacial colonization of the common, abundant, and widely distributed ant Myrmica rubra over most of its Palearctic area, using mitochondrial DNA (mtDNA). The western and eastern populations of M. rubra belonged predominantly to separate haplogroups, which formed a broad secondary contact zone in Central Europe. The distribution of genetic diversity and haplogroups implied that M. rubra survived the last glaciation in multiple refugia located over an extensive area from Iberia in the west to Siberia in the east, and colonized its present areas of distribution along several routes. The matrilineal genetic structure of M. rubra was probably formed during the last glaciation and subsequent postglacial expansion. Additionally, because M. rubra has two queen morphs, the obligately socially parasitic microgyne and its macrogyne host, we tested the suggested speciation of the parasite. Locally, the parasite and host usually belonged to the same haplogroup but differed in haplotype frequencies. This indicates that genetic differentiation between the morphs is a universal pattern and thus incipient, sympatric speciation of the parasite from its host is possible. If speciation is taking place, however, it is not yet visible as lineage sorting of the mtDNA between the morphs. PMID:22393482

  19. Lineage sorting in multihost parasites: Eidmanniella albescens and Fregatiella aurifasciata on seabirds from the Galapagos Islands.

    PubMed

    Rivera-Parra, Jose L; Levin, Iris I; Johnson, Kevin P; Parker, Patricia G

    2015-08-01

    Parasites comprise a significant percentage of the biodiversity of the planet and are useful systems to test evolutionary and ecological hypotheses. In this study, we analyze the effect of host species identity and the immediate local species assemblage within mixed species colonies of nesting seabirds on patterns of genetic clustering within two species of multihost ectoparasitic lice. We use three genetic markers (one mitochondrial, COI, and two nuclear, EF1-α and wingless) and maximum likelihood phylogenetic trees to test whether (1) parasites show lineage sorting based on their host species; and (2) switching of lineages to the alternate host species depends on the immediate local species assemblage of individual hosts within a colony. Specifically, we examine the genetic structure of two louse species: Eidmanniella albescens, infecting both Nazca (Sula granti) and blue-footed boobies (Sula nebouxii), and Fregatiella aurifasciata, infecting both great (Fregata minor) and magnificent frigatebirds (Fregata magnificens). We found that host species identity was the only factor explaining the patterns of genetic structure in both parasites. In both cases, there is evident genetic differentiation depending on the host species. Thus, a revision of the taxonomy of these louse species is needed. One possible explanation of this pattern is extremely low louse migration rates between host species, perhaps influenced by fine-scale spatial separation of host species within mixed colonies, and low parasite infrapopulation numbers.

  20. Lineage sorting in multihost parasites: Eidmanniella albescens and Fregatiella aurifasciata on seabirds from the Galapagos Islands

    PubMed Central

    Rivera-Parra, Jose L; Levin, Iris I; Johnson, Kevin P; Parker, Patricia G

    2015-01-01

    Parasites comprise a significant percentage of the biodiversity of the planet and are useful systems to test evolutionary and ecological hypotheses. In this study, we analyze the effect of host species identity and the immediate local species assemblage within mixed species colonies of nesting seabirds on patterns of genetic clustering within two species of multihost ectoparasitic lice. We use three genetic markers (one mitochondrial, COI, and two nuclear, EF1-α and wingless) and maximum likelihood phylogenetic trees to test whether (1) parasites show lineage sorting based on their host species; and (2) switching of lineages to the alternate host species depends on the immediate local species assemblage of individual hosts within a colony. Specifically, we examine the genetic structure of two louse species: Eidmanniella albescens, infecting both Nazca (Sula granti) and blue-footed boobies (Sula nebouxii), and Fregatiella aurifasciata, infecting both great (Fregata minor) and magnificent frigatebirds (Fregata magnificens). We found that host species identity was the only factor explaining the patterns of genetic structure in both parasites. In both cases, there is evident genetic differentiation depending on the host species. Thus, a revision of the taxonomy of these louse species is needed. One possible explanation of this pattern is extremely low louse migration rates between host species, perhaps influenced by fine-scale spatial separation of host species within mixed colonies, and low parasite infrapopulation numbers. PMID:26380662

  1. Gene expression during ovarian differentiation in parasitic and non-parasitic lampreys: implications for fecundity and life history types.

    PubMed

    Spice, Erin K; Whyard, Steven; Docker, Margaret F

    2014-11-01

    Lampreys diverged from the jawed vertebrate lineage approximately 500million years ago. Lampreys undergo sex differentiation much later than most other vertebrates, and ovarian differentiation occurs several years before testicular differentiation. The genetic basis of lamprey sex differentiation is of particular interest both because of the phylogenetic importance of lampreys and because of their unusual pattern of sex differentiation. As well, differences between parasitic and non-parasitic lampreys may first become evident at ovarian differentiation. However, nothing is known about the genetic basis of ovarian differentiation in lampreys. This study examined potential differences in gene expression before, during, and after ovarian differentiation in parasitic chestnut lamprey Ichthyomyzon castaneus and non-parasitic northern brook lamprey Ichthyomyzonfossor. Eight target genes (17β-hydroxysteroid dehydrogenase, germ cell-less, estrogen receptor β, insulin-like growth factor 1 receptor, daz-associated protein 1, cytochrome c oxidase subunit III, Wilms' tumour suppressor protein 1, and dehydrocholesterol reductase 7) were examined. Northern brook lamprey displayed higher expression of cytochrome c oxidase subunit III, whereas chestnut lamprey displayed higher expression of insulin-like growth factor 1 receptor; these genes may be involved in apoptosis and oocyte growth, respectively. Presumptive male larvae had higher expression of Wilms' tumour suppressor protein 1, which may be involved in the undifferentiated gonad and/or later testicular development. Differentiated females had higher expression of 17β hydroxysteroid dehydrogenase and daz-associated protein 1, which may be involved in female development. This study is the first to identify genes that may be involved in ovarian differentiation and fecundity in lampreys. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Migratory behavior of birds affects their coevolutionary relationship with blood parasites.

    PubMed

    Jenkins, Tania; Thomas, Gavin H; Hellgren, Olof; Owens, Ian P F

    2012-03-01

    Host traits, such as migratory behavior, could facilitate the dispersal of disease-causing parasites, potentially leading to the transfer of infections both across geographic areas and between host species. There is, however, little quantitative information on whether variation in such host attributes does indeed affect the evolutionary outcome of host-parasite associations. Here, we employ Leucocytozoon blood parasites of birds, a group of parasites closely related to avian malaria, to study host-parasite coevolution in relation to host behavior using a phylogenetic comparative approach. We reconstruct the molecular phylogenies of both the hosts and parasites and use cophylogenetic tools to assess whether each host-parasite association contributes significantly to the overall congruence between the two phylogenies. We find evidence for a significant fit between host and parasite phylogenies in this system, but show that this is due only to associations between nonmigrant parasites and their hosts. We also show that migrant bird species harbor a greater genetic diversity of parasites compared with nonmigrant species. Taken together, these results suggest that the migratory habits of birds could influence their coevolutionary relationship with their parasites, and that consideration of host traits is important in predicting the outcome of coevolutionary interactions. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  3. Colour, vision and coevolution in avian brood parasitism.

    PubMed

    Stoddard, Mary Caswell; Hauber, Mark E

    2017-07-05

    The coevolutionary interactions between avian brood parasites and their hosts provide a powerful system for investigating the diversity of animal coloration. Specifically, reciprocal selection pressure applied by hosts and brood parasites can give rise to novel forms and functions of animal coloration, which largely differ from those that arise when selection is imposed by predators or mates. In the study of animal colours, avian brood parasite-host dynamics therefore invite special consideration. Rapid advances across disciplines have paved the way for an integrative study of colour and vision in brood parasite-host systems. We now know that visually driven host defences and host life history have selected for a suite of phenotypic adaptations in parasites, including mimicry, crypsis and supernormal stimuli. This sometimes leads to vision-based host counter-adaptations and increased parasite trickery. Here, we review vision-based adaptations that arise in parasite-host interactions, emphasizing that these adaptations can be visual/sensory, cognitive or phenotypic in nature. We highlight recent breakthroughs in chemistry, genomics, neuroscience and computer vision, and we conclude by identifying important future directions. Moving forward, it will be essential to identify the genetic and neural bases of adaptation and to compare vision-based adaptations to those arising in other sensory modalities.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).

  4. Immunological Change in a Parasite-Impoverished Environment: Divergent Signals from Four Island Taxa

    PubMed Central

    Beadell, Jon S.; Atkins, Colm; Cashion, Erin; Jonker, Michelle; Fleischer, Robert C.

    2007-01-01

    Dramatic declines of native Hawaiian avifauna due to the human-mediated emergence of avian malaria and pox prompted an examination of whether island taxa share a common altered immunological signature, potentially driven by reduced genetic diversity and reduced exposure to parasites. We tested this hypothesis by characterizing parasite prevalence, genetic diversity and three measures of immune response in two recently-introduced species (Neochmia temporalis and Zosterops lateralis) and two island endemics (Acrocephalus aequinoctialis and A. rimitarae) and then comparing the results to those observed in closely-related mainland counterparts. The prevalence of blood parasites was significantly lower in 3 of 4 island taxa, due in part to the absence of certain parasite lineages represented in mainland populations. Indices of genetic diversity were unchanged in the island population of N. temporalis; however, allelic richness was significantly lower in the island population of Z. lateralis while both allelic richness and heterozygosity were significantly reduced in the two island-endemic species examined. Although parasite prevalence and genetic diversity generally conformed to expectations for an island system, we did not find evidence for a pattern of uniformly altered immune responses in island taxa, even amongst endemic taxa with the longest residence times. The island population of Z. lateralis exhibited a significantly reduced inflammatory cell-mediated response while levels of natural antibodies remained unchanged for this and the other recently introduced island taxon. In contrast, the island endemic A. rimitarae exhibited a significantly increased inflammatory response as well as higher levels of natural antibodies and complement. These measures were unchanged or lower in A. aequinoctialis. We suggest that small differences in the pathogenic landscape and the stochastic history of mutation and genetic drift are likely to be important in shaping the unique

  5. Micro-epidemiological structuring of Plasmodium falciparum parasite populations in regions with varying transmission intensities in Africa.

    PubMed Central

    Omedo, Irene; Mogeni, Polycarp; Bousema, Teun; Rockett, Kirk; Amambua-Ngwa, Alfred; Oyier, Isabella; C. Stevenson, Jennifer; Y. Baidjoe, Amrish; de Villiers, Etienne P.; Fegan, Greg; Ross, Amanda; Hubbart, Christina; Jeffreys, Anne; N. Williams, Thomas; Kwiatkowski, Dominic; Bejon, Philip

    2017-01-01

    Background: The first models of malaria transmission assumed a completely mixed and homogeneous population of parasites.  Recent models include spatial heterogeneity and variably mixed populations. However, there are few empiric estimates of parasite mixing with which to parametize such models. Methods: Here we genotype 276 single nucleotide polymorphisms (SNPs) in 5199 P. falciparum isolates from two Kenyan sites (Kilifi county and Rachuonyo South district) and one Gambian site (Kombo coastal districts) to determine the spatio-temporal extent of parasite mixing, and use Principal Component Analysis (PCA) and linear regression to examine the relationship between genetic relatedness and distance in space and time for parasite pairs. Results: Using 107, 177 and 82 SNPs that were successfully genotyped in 133, 1602, and 1034 parasite isolates from The Gambia, Kilifi and Rachuonyo South district, respectively, we show that there are no discrete geographically restricted parasite sub-populations, but instead we see a diffuse spatio-temporal structure to parasite genotypes.  Genetic relatedness of sample pairs is predicted by relatedness in space and time. Conclusions: Our findings suggest that targeted malaria control will benefit the surrounding community, but unfortunately also that emerging drug resistance will spread rapidly through the population. PMID:28612053

  6. Uncovering the transmission dynamics of Plasmodium vivax using population genetics

    PubMed Central

    Barry, Alyssa E.; Waltmann, Andreea; Koepfli, Cristian; Barnadas, Celine; Mueller, Ivo

    2015-01-01

    Population genetic analysis of malaria parasites has the power to reveal key insights into malaria epidemiology and transmission dynamics with the potential to deliver tools to support control and elimination efforts. Analyses of parasite genetic diversity have suggested that Plasmodium vivax populations are more genetically diverse and less structured than those of Plasmodium falciparum indicating that P. vivax may be a more ancient parasite of humans and/or less susceptible to population bottlenecks, as well as more efficient at disseminating its genes. These population genetic insights into P. vivax transmission dynamics provide an explanation for its relative resilience to control efforts. Here, we describe current knowledge on P. vivax population genetic structure, its relevance to understanding transmission patterns and relapse and how this information can inform malaria control and elimination programmes. PMID:25891915

  7. Phenotypic plasticity in reproductive effort: malaria parasites respond to resource availability

    PubMed Central

    Repton, Charlotte; O'Donnell, Aidan J.; Schneider, Petra; Reece, Sarah E.

    2017-01-01

    The trade-off between survival and reproduction is fundamental in the life history of all sexually reproducing organisms. This includes malaria parasites, which rely on asexually replicating stages for within-host survival and on sexually reproducing stages (gametocytes) for between-host transmission. The proportion of asexual stages that form gametocytes (reproductive effort) varies during infections—i.e. is phenotypically plastic—in response to changes in a number of within-host factors, including anaemia. However, how the density and age structure of red blood cell (RBC) resources shape plasticity in reproductive effort and impacts upon parasite fitness is controversial. Here, we examine how and why the rodent malaria parasite Plasmodium chabaudi alters its reproductive effort in response to experimental perturbations of the density and age structure of RBCs. We show that all four of the genotypes studied increase reproductive effort when the proportion of RBCs that are immature is elevated during host anaemia, and that the responses of the genotypes differ. We propose that anaemia (counterintuitively) generates a resource-rich environment in which parasites can afford to allocate more energy to reproduction (i.e. transmission) and that anaemia also exposes genetic variation to selection. From an applied perspective, adaptive plasticity in parasite reproductive effort could explain the maintenance of genetic variation for virulence and why anaemia is often observed as a risk factor for transmission in human infections. PMID:28768894

  8. microRNAs in parasites and parasite infection

    PubMed Central

    Zheng, Yadong; Cai, Xuepeng; Bradley, Janette E.

    2013-01-01

    miRNAs, a subclass of small regulatory RNAs, are present from ancient unicellular protozoans to parasitic helminths and parasitic arthropods. The miRNA-silencing mechanism appears, however, to be absent in a number of protozoan parasites. Protozoan miRNAs and components of their silencing machinery possess features different from other eukaryotes, providing some clues on the evolution of the RNA-induced silencing machinery. miRNA functions possibly associate with neoblast biology, development, physiology, infection and immunity of parasites. Parasite infection can alter host miRNA expression that can favor both parasite clearance and infection. miRNA pathways are, thus, a potential target for the therapeutic control of parasitic diseases. PMID:23392243

  9. Evidence for a population bottleneck in an Apicomplexan parasite of caribou and reindeer, Besnoitia tarandi

    USDA-ARS?s Scientific Manuscript database

    The evolutionary history and epidemiology of parasites may be reflected in the extent and geographic distribution of their genetic variation. Among coccidian parasites, the population structure of only Toxoplasma gondii has been extensively examined. Intraspecific variation in other coccidia, for ...

  10. Similar evolutionary potentials in an obligate ant parasite and its two host species

    PubMed Central

    Pennings, P S; Achenbach, A; Foitzik, S

    2011-01-01

    The spatial structure of host–parasite coevolution is shaped by population structure and genetic diversity of the interacting species. We analysed these population genetic parameters in three related ant species: the parasitic slavemaking ant Protomognathus americanus and its two host species Temnothorax longispinosus and T. curvispinosus. We sampled throughout their range, genotyped ants on six to eight microsatellite loci and an MtDNA sequence and found high levels of genetic variation and strong population structure in all three species. Interestingly, the most abundant species and primary host, T. longispinosus, is characterized by less structure, but lower local genetic diversity. Generally, differences between the species were small, and we conclude that they have similar evolutionary potentials. The coevolutionary interaction between this social parasite and its hosts may therefore be less influenced by divergent evolutionary potentials, but rather by varying selection pressures. We employed different methods to quantify and compare genetic diversity and structure between species and genetic markers. We found that Jost D is well suited for these comparisons, as long as mutation rates between markers and species are similar. If this is not the case, for example, when using MtDNA and microsatellites to study sex-specific dispersal, model-based inference should be used instead of descriptive statistics (such as D or GST). Using coalescent-based methods, we indeed found that males disperse much more than females, but this sex bias in dispersal differed between species. The findings of the different approaches with regard to genetic diversity and structure were in good accordance with each other. PMID:21324025

  11. Density of the Waterborne Parasite Ceratomyxa shasta and Its Biological Effects on Salmon

    PubMed Central

    Ray, R. Adam; Hurst, Charlene N.; Holt, Richard A.; Buckles, Gerri R.; Atkinson, Stephen D.

    2012-01-01

    The myxozoan parasite Ceratomyxa shasta is a significant pathogen of juvenile salmonids in the Pacific Northwest of North America and is limiting recovery of Chinook (Oncorhynchus tshawytscha) and coho (O. kisutch) salmon populations in the Klamath River. We conducted a 5-year monitoring program that comprised concurrent sentinel fish exposures and water sampling across 212 river kilometers of the Klamath River. We used percent mortality and degree-days to death to measure disease severity in fish. We analyzed water samples using quantitative PCR and Sanger sequencing, to determine total parasite density and relative abundance of C. shasta genotypes, which differ in their pathogenicity to salmonids. We detected the parasite throughout the study zone, but parasite density and genetic composition fluctuated spatially and temporally. Chinook and coho mortality increased with density of their specific parasite genotype, but mortality-density thresholds and time to death differed. A lethality threshold of 40% mortality was reached with 10 spores liter−1 for Chinook but only 5 spores liter−1 for coho. Parasite density did not affect degree-days to death for Chinook but was negatively correlated for coho, and there was wider variation among coho individuals. These differences likely reflect the different life histories and genetic heterogeneity of the salmon populations. Direct quantification of the density of host-specific parasite genotypes in water samples offers a management tool for predicting host population-level impacts. PMID:22407689

  12. Control of toxic marine dinoflagellate blooms by serial parasitic killers.

    PubMed

    Chambouvet, Aurelie; Morin, Pascal; Marie, Dominique; Guillou, Laure

    2008-11-21

    The marine dinoflagellates commonly responsible for toxic red tides are parasitized by other dinoflagellate species. Using culture-independent environmental ribosomal RNA sequences and fluorescence markers, we identified host-specific infections among several species. Each parasitoid produces 60 to 400 offspring, leading to extraordinarily rapid control of the host's population. During 3 consecutive years of observation in a natural estuary, all dinoflagellates observed were chronically infected, and a given host species was infected by a single genetically distinct parasite year after year. Our observations in natural ecosystems suggest that although bloom-forming dinoflagellates may escape control by grazing organisms, they eventually succumb to parasite attack.

  13. Evidence for intercontinental parasite exchange through molecular detection and characterization of haematozoa in northern pintails (Anas acuta) sampled throughout the North Pacific Basin.

    PubMed

    Ramey, Andrew M; Schmutz, Joel A; Reed, John A; Fujita, Go; Scotton, Bradley D; Casler, Bruce; Fleskes, Joseph P; Konishi, Kan; Uchida, Kiyoshi; Yabsley, Michael J

    2015-04-01

    Empirical evidence supports wild birds as playing a role in the interhemispheric exchange of bacteria and viruses; however, data supporting the redistribution of parasites among continents are limited. In this study, the hypothesis that migratory birds contribute to the redistribution of parasites between continents was tested by sampling northern pintails (Anas acuta) at locations throughout the North Pacific Basin in North America and East Asia for haemosporidian infections and assessing the genetic evidence for parasite exchange. Of 878 samples collected from birds in Alaska (USA), California (USA), and Hokkaido (Japan) during August 2011-May 2012 and screened for parasitic infections using molecular techniques, Leucocytozoon, Haemoproteus, and Plasmodium parasites were detected in 555 (63%), 44 (5%), and 52 (6%) samples, respectively. Using an occupancy modeling approach, the probability of detecting parasites via replicate genetic tests was estimated to be high (ρ > 0.95). Multi-model inference supported variation of Leucocytozoon parasite prevalence by northern pintail age class and geographic location of sampling in contrast to Haemoproteus and Plasmodium parasites for which there was only support for variation in parasite prevalence by sampling location. Thirty-one unique mitochondrial DNA haplotypes were detected among haematozoa infecting northern pintails including seven lineages shared between samples from North America and Japan. The finding of identical parasite haplotypes at widely distributed geographic locations and general lack of genetic structuring by continent in phylogenies for Leucocytozoon and Plasmodium provides evidence for intercontinental genetic exchange of haemosporidian parasites. Results suggest that migratory birds, including waterfowl, could therefore facilitate the introduction of avian malaria and other haemosporidia to novel hosts and spatially distant regions.

  14. Evidence for intercontinental parasite exchange through molecular detection and characterization of haematozoa in northern pintails (Anas acuta) sampled throughout the North Pacific Basin

    PubMed Central

    Ramey, Andrew M.; Schmutz, Joel A.; Reed, John A.; Fujita, Go; Scotton, Bradley D.; Casler, Bruce; Fleskes, Joseph P.; Konishi, Kan; Uchida, Kiyoshi; Yabsley, Michael J.

    2014-01-01

    Empirical evidence supports wild birds as playing a role in the interhemispheric exchange of bacteria and viruses; however, data supporting the redistribution of parasites among continents are limited. In this study, the hypothesis that migratory birds contribute to the redistribution of parasites between continents was tested by sampling northern pintails (Anas acuta) at locations throughout the North Pacific Basin in North America and East Asia for haemosporidian infections and assessing the genetic evidence for parasite exchange. Of 878 samples collected from birds in Alaska (USA), California (USA), and Hokkaido (Japan) during August 2011–May 2012 and screened for parasitic infections using molecular techniques, Leucocytozoon, Haemoproteus, and Plasmodium parasites were detected in 555 (63%), 44 (5%), and 52 (6%) samples, respectively. Using an occupancy modeling approach, the probability of detecting parasites via replicate genetic tests was estimated to be high (ρ > 0.95). Multi-model inference supported variation of Leucocytozoon parasite prevalence by northern pintail age class and geographic location of sampling in contrast to Haemoproteus and Plasmodium parasites for which there was only support for variation in parasite prevalence by sampling location. Thirty-one unique mitochondrial DNA haplotypes were detected among haematozoa infecting northern pintails including seven lineages shared between samples from North America and Japan. The finding of identical parasite haplotypes at widely distributed geographic locations and general lack of genetic structuring by continent in phylogenies for Leucocytozoon and Plasmodium provides evidence for intercontinental genetic exchange of haemosporidian parasites. Results suggest that migratory birds, including waterfowl, could therefore facilitate the introduction of avian malaria and other haemosporidia to novel hosts and spatially distant regions. PMID:25830100

  15. Evidence for intercontinental parasite exchange through molecular detection and characterization of haematozoa in northern pintails (Anas acuta) sampled throughout the North Pacific Basin

    USGS Publications Warehouse

    Ramey, Andy M.; Schmutz, Joel A.; Reed, John A.; Fujita, Go; Scotton, Bradley D.; Casler, Bruce; Fleskes, Joseph P.; Konishi, Kan; Uchida, Kiyoshi; Yabsley, Michael J.

    2015-01-01

    Empirical evidence supports wild birds as playing a role in the interhemispheric exchange of bacteria and viruses; however, data supporting the redistribution of parasites among continents are limited. In this study, the hypothesis that migratory birds contribute to the redistribution of parasites between continents was tested by sampling northern pintails (Anas acuta) at locations throughout the North Pacific Basin in North America and East Asia for haemosporidian infections and assessing the genetic evidence for parasite exchange. Of 878 samples collected from birds in Alaska (USA), California (USA), and Hokkaido (Japan) during August 2011 - May 2012 and screened for parasitic infections using molecular techniques, Leucocytozoon, Haemoproteus, and Plasmodium parasites were detected in 555 (63%), 44 (5%), and 52 (6%) samples, respectively. Using an occupancy modeling approach, the probability of detecting parasites via replicate genetic tests was estimated to be high (p ≥ 0.95). Multi-model inference supported variation of Leucocytozoon parasite prevalence by northern pintail age class and geographic location of sampling in contrast to Haemoproteus and Plasmodium parasites for which there was only support for variation in parasite prevalence by sampling location. Thirty-one unique mitochondrial DNA haplotypes were detected among haematozoa infecting northern pintails including seven lineages shared between samples from North America and Japan. The finding of identical parasite haplotypes at widely distributed geographic locations and general lack of genetic structuring by continent in phylogenies for Leucocytozoon and Plasmodium provides evidence for intercontinental genetic exchange of haemosporidian parasites. Results suggest that migratory birds, including waterfowl, could therefore facilitate the introduction of avian malaria and other haemosporidia to novel hosts and spatially distant regions.

  16. Host–parasite fluctuating selection in the absence of specificity

    PubMed Central

    Ashby, Ben; White, Andy; Bowers, Roger; Buckling, Angus; Koskella, Britt

    2017-01-01

    Fluctuating selection driven by coevolution between hosts and parasites is important for the generation of host and parasite diversity across space and time. Theory has focused primarily on infection genetics, with highly specific ‘matching-allele’ frameworks more likely to generate fluctuating selection dynamics (FSD) than ‘gene-for-gene’ (generalist–specialist) frameworks. However, the environment, ecological feedbacks and life-history characteristics may all play a role in determining when FSD occurs. Here, we develop eco-evolutionary models with explicit ecological dynamics to explore the ecological, epidemiological and host life-history drivers of FSD. Our key result is to demonstrate for the first time, to our knowledge, that specificity between hosts and parasites is not required to generate FSD. Furthermore, highly specific host–parasite interactions produce unstable, less robust stochastic fluctuations in contrast to interactions that lack specificity altogether or those that vary from generalist to specialist, which produce predictable limit cycles. Given the ubiquity of ecological feedbacks and the variation in the nature of specificity in host–parasite interactions, our work emphasizes the underestimated potential for host–parasite coevolution to generate fluctuating selection. PMID:29093222

  17. The inverse niche model for food webs with parasites

    USGS Publications Warehouse

    Warren, Christopher P.; Pascual, Mercedes; Lafferty, Kevin D.; Kuris, Armand M.

    2010-01-01

    Although parasites represent an important component of ecosystems, few field and theoretical studies have addressed the structure of parasites in food webs. We evaluate the structure of parasitic links in an extensive salt marsh food web, with a new model distinguishing parasitic links from non-parasitic links among free-living species. The proposed model is an extension of the niche model for food web structure, motivated by the potential role of size (and related metabolic rates) in structuring food webs. The proposed extension captures several properties observed in the data, including patterns of clustering and nestedness, better than does a random model. By relaxing specific assumptions, we demonstrate that two essential elements of the proposed model are the similarity of a parasite's hosts and the increasing degree of parasite specialization, along a one-dimensional niche axis. Thus, inverting one of the basic rules of the original model, the one determining consumers' generality appears critical. Our results support the role of size as one of the organizing principles underlying niche space and food web topology. They also strengthen the evidence for the non-random structure of parasitic links in food webs and open the door to addressing questions concerning the consequences and origins of this structure.

  18. Host and Toxoplasma gondii genetic and non-genetic factors influencing the development of ocular toxoplasmosis: A systematic review.

    PubMed

    Fernández, Carolina; Jaimes, Jesús; Ortiz, María Camila; Ramírez, Juan David

    2016-10-01

    Toxoplasmosis is a cosmopolitan infection caused by the apicomplexan parasite Toxoplasma gondii. This infectious disease is widely distributed across the world where cats play an important role in its spread. The symptomatology caused by this parasite is diverse but the ocular affectation emerges as the most important clinical phenotype. Therefore, we conducted a systematic review of the current knowledge of ocular toxoplasmosis from the genetic diversity of the pathogen towards the treatment available for this infection. This review represents an update to the scientific community regarding the genetic diversity of the parasite, the genetic factors of the host, the molecular pathogenesis and its association with disease, the available diagnostic tools and the available treatment of patients undergoing ocular toxoplamosis. This review will be an update for the scientific community in order to encourage researchers to deploy cutting-edge investigation across this field.

  19. Whole parasite blood stage malaria vaccines: a convergence of evidence.

    PubMed

    McCarthy, James S; Good, Michael F

    2010-01-01

    There is a growing realization of the limitations of recombinant protein-based malaria vaccines. This, coupled with a better understanding of the protective immunity to malaria, both in animal models and in naturally exposed human populations and experimentally infected volunteers, as well as the increased capacity to manipulate parasites provides new impetus to evaluate whole blood stage parasite approaches to malaria vaccine development. In this review previous studies in rodents and primates of whole killed and attenuated blood stage vaccines, and recent work on the effect of genetically attenuated parasites on immunity in rodent models of blood stage immunity are discussed. The relationship between these findings and what is now known about protective immunity in human populations, specifically against the blood stages of the parasite lifecycle is discussed and recent findings from human experimental infection are be reviewed. Finally, the prospect for and impediments to the development whole blood stage parasites are reviewed.

  20. Regulation of the resistance to nematode parasites of single- and twin-bearing Merino ewes through nutrition and genetic selection.

    PubMed

    Kahn, L P; Knox, M R; Walkden-Brown, S W; Lea, J M

    2003-05-15

    Periparturient Merino ewes obtained from lines of sheep that had been selected either for increased resistance to Haemonchus contortus (R) or at random (C) were supplemented, while grazing at pasture, with either nil or 250 g/day cottonseed meal (CSM) for the 6 weeks prior to or the 6 weeks after the start of parturition. Ewes from both supplement groups had lower (mean 66% reduction) faecal egg counts (FECs) during the postpartum period and this coincided with a period of maternal body weight loss. Factors which increased the rate of maternal body weight loss, such as pregnancy and lactation status, also increased FEC. Evidence is presented that the magnitude of the periparturient rise (PPR) in FEC in grazing ewes will be greatest during periods of maternal weight loss and at these times supplementation to increase metabolisable protein (MP) supply will be most effective in increasing resistance to nematode parasites. The resistance of R ewes to nematode parasites was greater than that of C ewes throughout the experiment and was sufficiently low such that anthelmintic treatment in a commercial environment may not have been required. Irrespective of actual FEC, ewes from all treatment combinations exhibited a PPR in FEC. Reduced FEC of R ewes resulted in reduced apparent pasture larval contamination after 18 weeks of continuous grazing but supplementation was ineffective in this regard. It is suggested that integrated parasite management (IPM) programs for periparturient ewes should make use of both protein supplementation and genetic selection to increase worm resistance and reduce dependency on anthelmintics for worm control.

  1. Quantifying Transmission Investment in Malaria Parasites

    PubMed Central

    Greischar, Megan A.; Mideo, Nicole; Read, Andrew F.; Bjørnstad, Ottar N.

    2016-01-01

    Many microparasites infect new hosts with specialized life stages, requiring a subset of the parasite population to forgo proliferation and develop into transmission forms. Transmission stage production influences infectivity, host exploitation, and the impact of medical interventions like drug treatment. Predicting how parasites will respond to public health efforts on both epidemiological and evolutionary timescales requires understanding transmission strategies. These strategies can rarely be observed directly and must typically be inferred from infection dynamics. Using malaria as a case study, we test previously described methods for inferring transmission stage investment against simulated data generated with a model of within-host infection dynamics, where the true transmission investment is known. We show that existing methods are inadequate and potentially very misleading. The key difficulty lies in separating transmission stages produced by different generations of parasites. We develop a new approach that performs much better on simulated data. Applying this approach to real data from mice infected with a single Plasmodium chabaudi strain, we estimate that transmission investment varies from zero to 20%, with evidence for variable investment over time in some hosts, but not others. These patterns suggest that, even in experimental infections where host genetics and other environmental factors are controlled, parasites may exhibit remarkably different patterns of transmission investment. PMID:26890485

  2. Identification of Genetic Elements Associated with EPSPS Gene Amplification

    PubMed Central

    Gaines, Todd A.; Wright, Alice A.; Molin, William T.; Lorentz, Lothar; Riggins, Chance W.; Tranel, Patrick J.; Beffa, Roland; Westra, Philip; Powles, Stephen B.

    2013-01-01

    Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene evolved in the weed species Amaranthus palmeri to confer resistance to glyphosate, the world’s most important herbicide. However, the gene amplification mechanism is unknown. We sequenced the EPSPS gene and genomic regions flanking EPSPS loci in A. palmeri, and searched for mobile genetic elements or repetitive sequences. The EPSPS gene was 10,229 bp, containing 8 exons and 7 introns. The gene amplification likely proceeded through a DNA-mediated mechanism, as introns exist in the amplified gene copies and the entire amplified sequence is at least 30 kb in length. Our data support the presence of two EPSPS loci in susceptible (S) A. palmeri, and that only one of these was amplified in glyphosate-resistant (R) A. palmeri. The EPSPS gene amplification event likely occurred recently, as no sequence polymorphisms were found within introns of amplified EPSPS copies from R individuals. Sequences with homology to miniature inverted-repeat transposable elements (MITEs) were identified next to EPSPS gene copies only in R individuals. Additionally, a putative Activator (Ac) transposase and a repetitive sequence region were associated with amplified EPSPS genes. The mechanism controlling this DNA-mediated amplification remains unknown. Further investigation is necessary to determine if the gene amplification may have proceeded via DNA transposon-mediated replication, and/or unequal recombination between different genomic regions resulting in replication of the EPSPS gene. PMID:23762434

  3. Parallel and nonparallel behavioural evolution in response to parasitism and predation in Trinidadian guppies.

    PubMed

    Jacquin, L; Reader, S M; Boniface, A; Mateluna, J; Patalas, I; Pérez-Jvostov, F; Hendry, A P

    2016-07-01

    Natural enemies such as predators and parasites are known to shape intraspecific variability of behaviour and personality in natural populations, yet several key questions remain: (i) What is the relative importance of predation vs. parasitism in shaping intraspecific variation of behaviour across generations? (ii) What are the contributions of genetic and plastic effects to this behavioural divergence? (iii) And to what extent are responses to predation and parasitism repeatable across independent evolutionary lineages? We addressed these questions using Trinidadian guppies (Poecilia reticulata) (i) varying in their exposure to dangerous fish predators and Gyrodactylus ectoparasites for (ii) both wild-caught F0 and laboratory-reared F2 individuals and coming from (iii) multiple independent evolutionary lineages (i.e. independent drainages). Several key findings emerged. First, a population's history of predation and parasitism influenced behavioural profiles, but to different extent depending on the behaviour considered (activity, shoaling or boldness). Second, we had evidence for some genetic effects of predation regime on behaviour, with differences in activity of F2 laboratory-reared individuals, but not for parasitism, which had only plastic effects on the boldness of wild-caught F0 individuals. Third, the two lineages showed a mixture of parallel and nonparallel responses to predation/parasitism, with parallel responses being stronger for predation than for parasitism and for activity and boldness than for shoaling. These findings suggest that different sets of behaviours provide different pay-offs in alternative predation/parasitism environments and that parasitism has more transient effects in shaping intraspecific variation of behaviour than does predation. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  4. Effect of enteric parasitic infection on serum trace elements and nutritional status in upper Egyptian children

    PubMed Central

    Yones, Doaa A; Galal, Lamia A; Abdallah, Alameldin M; Zaghlol, Khaled S

    2015-01-01

    Introduction: Enteric parasitic infections still the cause of major health problems among Egyptian children as they have great morbid effect on their physical and cognitive development. Malnutrition makes children more prone to micronutrient deficiency and subsequently more vulnerable to parasitic infection. The present study aimed to identify the effect of intestinal parasitism on micronutrient serum level and children nutritional status. Materials and Methods: A case control study was carried out on children from 1 to 6 years old who were attending the Assiut University Children Hospital outpatient clinic, after parasitological stool examination they were divided into Group 1 (G1, n: 60) positive with enteric parasite and Group 2 (G2, n: 60) age and sex matched and free of parasites. Anthropometric measurements were expressed as weight for age (WFA), height for age (HFA), and weight for height (WFH) parameters. Serum zinc (Zn) and copper (Cu) were determined by atomic absorption spectrophotometer. Results: Intestinal parasitic infection rate was 55.7%; more commonly detected parasites were Giardia lamblia 28%, Cryptosporidium sp. 20%, and polyparasitism 18%. All children (G1 and G2) were underweight (WFA) while 63% of G1 were malnourished, either in the form of wasting (WFH) or stunting (HFA) or both aspects. Stunting and wasting were more dominant among children infected with G. lamblia and Cryptosporidium sp. and most of them were below 2 years old. Conclusions: Coincident decrease in serum Zn level and an increase of serum Cu was more prominent among G. lamblia and Cryptosporidium sp. patients. G. lamblia and Cryptosporidium sp. were found to be more associated with nonstandard children nutritional status beside to an altered micronutrient level. PMID:25709950

  5. Genome sequencing and comparative genomics of honey bee microsporidia, Nosema apis reveal novel insights into host-parasite interactions.

    PubMed

    Chen, Yan ping; Pettis, Jeffery S; Zhao, Yan; Liu, Xinyue; Tallon, Luke J; Sadzewicz, Lisa D; Li, Renhua; Zheng, Huoqing; Huang, Shaokang; Zhang, Xuan; Hamilton, Michele C; Pernal, Stephen F; Melathopoulos, Andony P; Yan, Xianghe; Evans, Jay D

    2013-07-05

    The microsporidia parasite Nosema contributes to the steep global decline of honey bees that are critical pollinators of food crops. There are two species of Nosema that have been found to infect honey bees, Nosema apis and N. ceranae. Genome sequencing of N. apis and comparative genome analysis with N. ceranae, a fully sequenced microsporidia species, reveal novel insights into host-parasite interactions underlying the parasite infections. We applied the whole-genome shotgun sequencing approach to sequence and assemble the genome of N. apis which has an estimated size of 8.5 Mbp. We predicted 2,771 protein- coding genes and predicted the function of each putative protein using the Gene Ontology. The comparative genomic analysis led to identification of 1,356 orthologs that are conserved between the two Nosema species and genes that are unique characteristics of the individual species, thereby providing a list of virulence factors and new genetic tools for studying host-parasite interactions. We also identified a highly abundant motif in the upstream promoter regions of N. apis genes. This motif is also conserved in N. ceranae and other microsporidia species and likely plays a role in gene regulation across the microsporidia. The availability of the N. apis genome sequence is a significant addition to the rapidly expanding body of microsprodian genomic data which has been improving our understanding of eukaryotic genome diversity and evolution in a broad sense. The predicted virulent genes and transcriptional regulatory elements are potential targets for innovative therapeutics to break down the life cycle of the parasite.

  6. Disentangling the influence of parasite genotype, host genotype and maternal environment on different stages of bacterial infection in Daphnia magna.

    PubMed

    Hall, Matthew D; Ebert, Dieter

    2012-08-22

    Individuals naturally vary in the severity of infectious disease when exposed to a parasite. Dissecting this variation into genetic and environmental components can reveal whether or not this variation depends on the host genotype, parasite genotype or a range of environmental conditions. Complicating this task, however, is that the symptoms of disease result from the combined effect of a series of events, from the initial encounter between a host and parasite, through to the activation of the host immune system and the exploitation of host resources. Here, we use the crustacean Daphnia magna and its parasite Pasteuria ramosa to show how disentangling genetic and environmental factors at different stages of infection improves our understanding of the processes shaping infectious disease. Using compatible host-parasite combinations, we experimentally exclude variation in the ability of a parasite to penetrate the host, from measures of parasite clearance, the reduction in host fecundity and the proliferation of the parasite. We show how parasite resistance consists of two components that vary in environmental sensitivity, how the maternal environment influences all measured aspects of the within-host infection process and how host-parasite interactions following the penetration of the parasite into the host have a distinct temporal component.

  7. Disentangling the influence of parasite genotype, host genotype and maternal environment on different stages of bacterial infection in Daphnia magna

    PubMed Central

    Hall, Matthew D.; Ebert, Dieter

    2012-01-01

    Individuals naturally vary in the severity of infectious disease when exposed to a parasite. Dissecting this variation into genetic and environmental components can reveal whether or not this variation depends on the host genotype, parasite genotype or a range of environmental conditions. Complicating this task, however, is that the symptoms of disease result from the combined effect of a series of events, from the initial encounter between a host and parasite, through to the activation of the host immune system and the exploitation of host resources. Here, we use the crustacean Daphnia magna and its parasite Pasteuria ramosa to show how disentangling genetic and environmental factors at different stages of infection improves our understanding of the processes shaping infectious disease. Using compatible host–parasite combinations, we experimentally exclude variation in the ability of a parasite to penetrate the host, from measures of parasite clearance, the reduction in host fecundity and the proliferation of the parasite. We show how parasite resistance consists of two components that vary in environmental sensitivity, how the maternal environment influences all measured aspects of the within-host infection process and how host–parasite interactions following the penetration of the parasite into the host have a distinct temporal component. PMID:22593109

  8. The ecology and evolution of animal medication: genetically fixed response versus phenotypic plasticity.

    PubMed

    Choisy, Marc; de Roode, Jacobus C

    2014-08-01

    Animal medication against parasites can occur either as a genetically fixed (constitutive) or phenotypically plastic (induced) behavior. Taking the tritrophic interaction between the monarch butterfly Danaus plexippus, its protozoan parasite Ophryocystis elektroscirrha, and its food plant Asclepias spp. as a test case, we develop a game-theory model to identify the epidemiological (parasite prevalence and virulence) and environmental (plant toxicity and abundance) conditions that predict the evolution of genetically fixed versus phenotypically plastic forms of medication. Our model shows that the relative benefits (the antiparasitic properties of medicinal food) and costs (side effects of medicine, the costs of searching for medicine, and the costs of plasticity itself) crucially determine whether medication is genetically fixed or phenotypically plastic. Our model suggests that animals evolve phenotypic plasticity when parasite risk (a combination of virulence and prevalence and thus a measure of the strength of parasite-mediated selection) is relatively low to moderately high and genetically fixed medication when parasite risk becomes very high. The latter occurs because at high parasite risk, the costs of plasticity are outweighed by the benefits of medication. Our model provides a simple and general framework to study the conditions that drive the evolution of alternative forms of animal medication.

  9. The CRISPR/Cas9 system sheds new lights on the biology of protozoan parasites.

    PubMed

    Grzybek, Maciej; Golonko, Aleksandra; Górska, Aleksandra; Szczepaniak, Klaudiusz; Strachecka, Aneta; Lass, Anna; Lisowski, Paweł

    2018-06-01

    The CRISPR/Cas9 system, a natural defence system of bacterial organisms, has recently been used to modify genomes of the most important protozoa parasites. Successful genome manipulations with the CRISPR/Cas9 system are changing the present view of genetics in parasitology. The application of this system offers a major chance to overcome the current restriction in culturing, maintaining and analysing protozoan parasites, and allows dynamic analysis of parasite genes functions, leading to a better understanding of pathogenesis. CRISPR/Cas9 system will have a significant influence on the process of developing novel drugs and treatment strategies against protozoa parasites.

  10. Population structure analysis of the neglected parasite Thelazia callipaeda revealed high genetic diversity in Eastern Asia isolates.

    PubMed

    Zhang, Xi; Shi, Ya Li; Han, Lu Lu; Xiong, Chen; Yi, Shi Qi; Jiang, Peng; Wang, Zeng Xian; Shen, Ji Long; Cui, Jing; Wang, Zhong Quan

    2018-01-01

    Thelazia callipaeda is the causative agent of thelaziasis in canids, felids and humans. However, the population genetic structure regarding this parasite remains unclear. In this study, we first explored the genetic variation of 32 T. callipaeda clinical isolates using the following multi-molecular markers: cox1, cytb, 12S rDNA, ITS1 and 18S rDNA. The isolates were collected from 13 patients from 11 geographical locations in China. Next, the population structure of T. callipaeda from Europe and other Asian countries was analyzed using the cox1 sequences collected during this study and from the GenBank database. In general, the Chinese clinical isolates of T. callipaeda expressed high genetic diversity. Based on the cox1 gene, a total of 21 haplotypes were identified. One only circulated in European countries (Hap1), while the other 20 haplotypes were dispersed in Korea, Japan and China. There were five nucleotide positions in the cox1 sequences that were confirmed as invariable among individuals from Europe and Asia, but the sequences were distinct between these two regions. Population differences between Europe and Asian countries were greater than those among China, Korea and Japan. The T. callipaeda populations from Europe and Asia should be divided into two separate sub-populations. These two groups started to diverge during the middle Pleistocene. Neutrality tests, mismatch distribution and Bayesian skyline plot (BSP) analysis all rejected possible population expansion of T. callipaeda. The Asian population of T. callipaeda has a high level of genetic diversity, but further studies should be performed to explore the biology, ecology and epidemiology of T. callipaeda.

  11. Population structure analysis of the neglected parasite Thelazia callipaeda revealed high genetic diversity in Eastern Asia isolates

    PubMed Central

    Zhang, Xi; Shi, Ya Li; Han, Lu Lu; Xiong, Chen; Yi, Shi Qi; Jiang, Peng; Wang, Zeng Xian; Shen, Ji Long; Wang, Zhong Quan

    2018-01-01

    Background Thelazia callipaeda is the causative agent of thelaziasis in canids, felids and humans. However, the population genetic structure regarding this parasite remains unclear. Methodology/principal findings In this study, we first explored the genetic variation of 32 T. callipaeda clinical isolates using the following multi-molecular markers: cox1, cytb, 12S rDNA, ITS1 and 18S rDNA. The isolates were collected from 13 patients from 11 geographical locations in China. Next, the population structure of T. callipaeda from Europe and other Asian countries was analyzed using the cox1 sequences collected during this study and from the GenBank database. In general, the Chinese clinical isolates of T. callipaeda expressed high genetic diversity. Based on the cox1 gene, a total of 21 haplotypes were identified. One only circulated in European countries (Hap1), while the other 20 haplotypes were dispersed in Korea, Japan and China. There were five nucleotide positions in the cox1 sequences that were confirmed as invariable among individuals from Europe and Asia, but the sequences were distinct between these two regions. Population differences between Europe and Asian countries were greater than those among China, Korea and Japan. The T. callipaeda populations from Europe and Asia should be divided into two separate sub-populations. These two groups started to diverge during the middle Pleistocene. Neutrality tests, mismatch distribution and Bayesian skyline plot (BSP) analysis all rejected possible population expansion of T. callipaeda. Conclusions The Asian population of T. callipaeda has a high level of genetic diversity, but further studies should be performed to explore the biology, ecology and epidemiology of T. callipaeda. PMID:29324738

  12. Impact of regulated secretion on anti-parasitic CD8 T cell responses

    PubMed Central

    Grover, Harshita Satija; Chu, H. Hamlet; Kelly, Felice D.; Yang, Soo Jung; Reese, Michael L.; Blanchard, Nicolas; Gonzalez, Federico; Chan, Shiao Wei; Boothroyd, John C.; Shastri, Nilabh; Robey, Ellen A.

    2014-01-01

    Summary CD8 T cells play a key role in defense against the intracellular parasite Toxoplasma but why certain CD8 responses are more potent than others is not well understood. Here, we describe a parasite antigen ROP5 that elicits a modest CD8 T cell response in genetically susceptible mice. ROP5 is secreted via parasite organelles termed rhoptries that are injected directly into host cells during invasion, whereas the protective, dense granule antigen, GRA6, is constitutively secreted into the parasitophorous vacuole. Transgenic parasites in which the ROP5 antigenic epitope was targeted for secretion through dense granules led to enhanced CD8 T cell responses, whereas targeting the GRA6 epitope to rhoptries led to reduced CD8 responses. CD8 T cell responses to the dense granule-targeted ROP5 epitope resulted in reduced parasite load in the brain. These data suggest that the mode of secretion impacts the efficacy of parasite-specific CD8 T cell responses. PMID:24857659

  13. A Novel ‘Gene Insertion/Marker Out’ (GIMO) Method for Transgene Expression and Gene Complementation in Rodent Malaria Parasites

    PubMed Central

    Sajid, Mohammed; Chevalley-Maurel, Séverine; Ramesar, Jai; Klop, Onny; Franke-Fayard, Blandine M. D.; Janse, Chris J.; Khan, Shahid M.

    2011-01-01

    Research on the biology of malaria parasites has greatly benefited from the application of reverse genetic technologies, in particular through the analysis of gene deletion mutants and studies on transgenic parasites that express heterologous or mutated proteins. However, transfection in Plasmodium is limited by the paucity of drug-selectable markers that hampers subsequent genetic modification of the same mutant. We report the development of a novel ‘gene insertion/marker out’ (GIMO) method for two rodent malaria parasites, which uses negative selection to rapidly generate transgenic mutants ready for subsequent modifications. We have created reference mother lines for both P. berghei ANKA and P. yoelii 17XNL that serve as recipient parasites for GIMO-transfection. Compared to existing protocols GIMO-transfection greatly simplifies and speeds up the generation of mutants expressing heterologous proteins, free of drug-resistance genes, and requires far fewer laboratory animals. In addition we demonstrate that GIMO-transfection is also a simple and fast method for genetic complementation of mutants with a gene deletion or mutation. The implementation of GIMO-transfection procedures should greatly enhance Plasmodium reverse-genetic research. PMID:22216235

  14. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum.

    PubMed

    Vinayak, Sumiti; Pawlowic, Mattie C; Sateriale, Adam; Brooks, Carrie F; Studstill, Caleb J; Bar-Peled, Yael; Cipriano, Michael J; Striepen, Boris

    2015-07-23

    Recent studies into the global causes of severe diarrhoea in young children have identified the protozoan parasite Cryptosporidium as the second most important diarrhoeal pathogen after rotavirus. Diarrhoeal disease is estimated to be responsible for 10.5% of overall child mortality. Cryptosporidium is also an opportunistic pathogen in the contexts of human immunodeficiency virus (HIV)-caused AIDS and organ transplantation. There is no vaccine and only a single approved drug that provides no benefit for those in gravest danger: malnourished children and immunocompromised patients. Cryptosporidiosis drug and vaccine development is limited by the poor tractability of the parasite, which includes a lack of systems for continuous culture, facile animal models, and molecular genetic tools. Here we describe an experimental framework to genetically modify this important human pathogen. We established and optimized transfection of C. parvum sporozoites in tissue culture. To isolate stable transgenics we developed a mouse model that delivers sporozoites directly into the intestine, a Cryptosporidium clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system, and in vivo selection for aminoglycoside resistance. We derived reporter parasites suitable for in vitro and in vivo drug screening, and we evaluated the basis of drug susceptibility by gene knockout. We anticipate that the ability to genetically engineer this parasite will be transformative for Cryptosporidium research. Genetic reporters will provide quantitative correlates for disease, cure and protection, and the role of parasite genes in these processes is now open to rigorous investigation.

  15. Comparison of genetic diversity and population structure between two Schistosoma japonicum isolates--the field and the laboratory.

    PubMed

    Bian, Chao-Rong; Gao, Yu-Meng; Lamberton, Poppy H L; Lu, Da-Bing

    2015-06-01

    Schistosomiasis japonicum is one of the most important human parasitic diseases, and a number of studies have recently elucidated the difference in biological characteristics of S. japonicum among different parasite isolates, for example, between the field and the laboratory isolates. Therefore, the understanding of underlying genetic mechanism is of both theoretical and practical importance. In this study, we used six microsatellite markers to assess genetic diversity, population structure, and the bottleneck effect (a sharp reduction in population size) of two parasite populations, one field and one laboratory. A total of 136 S. japonicum cercariae from the field and 86 from the laboratory, which were genetically unique within single snails, were analyzed. The results showed bigger numbers of alleles and higher allelic richness in the field parasite population than in the laboratory indicating lower genetic diversity in the laboratory parasites. A bottleneck effect was detected in the laboratory population. When the field and laboratory isolates were combined, there was a clear distinction between two parasite populations using the software Structure. These genetic differences may partially explain the previously observed contrasted biological traits.

  16. Novel synthetic Medea selfish genetic elements drive population replacement in Drosophila; a theoretical exploration of Medea-dependent population suppression.

    PubMed

    Akbari, Omar S; Chen, Chun-Hong; Marshall, John M; Huang, Haixia; Antoshechkin, Igor; Hay, Bruce A

    2014-12-19

    Insects act as vectors for diseases of plants, animals, and humans. Replacement of wild insect populations with genetically modified individuals unable to transmit disease provides a potentially self-perpetuating method of disease prevention. Population replacement requires a gene drive mechanism in order to spread linked genes mediating disease refractoriness through wild populations. We previously reported the creation of synthetic Medea selfish genetic elements able to drive population replacement in Drosophila. These elements use microRNA-mediated silencing of myd88, a maternally expressed gene required for embryonic dorso-ventral pattern formation, coupled with early zygotic expression of a rescuing transgene, to bring about gene drive. Medea elements that work through additional mechanisms are needed in order to be able to carry out cycles of population replacement and/or remove existing transgenes from the population, using second-generation elements that spread while driving first-generation elements out of the population. Here we report the synthesis and population genetic behavior of two new synthetic Medea elements that drive population replacement through manipulation of signaling pathways involved in cellular blastoderm formation or Notch signaling, demonstrating that in Drosophila Medea elements can be generated through manipulation of diverse signaling pathways. We also describe the mRNA and small RNA changes in ovaries and early embryos associated from Medea-bearing females. Finally, we use modeling to illustrate how Medea elements carrying genes that result in diapause-dependent female lethality could be used to bring about population suppression.

  17. Hosts and parasites as aliens.

    PubMed

    Taraschewski, H

    2006-06-01

    Over the past decades, various free-living animals (hosts) and their parasites have invaded recipient areas in which they had not previously occurred, thus gaining the status of aliens or exotics. In general this happened to a low extent for hundreds of years. With variable frequency, invasions have been followed by the dispersal and establishment of non-indigenous species, whether host or parasite. In the literature thus far, colonizations by both hosts and parasites have not been treated and reviewed together, although both are usually interwoven in various ways. As to those factors permitting invasive success and colonization strength, various hypotheses have been put forward depending on the scientific background of respective authors and on the conspicuousness of certain invasions. Researchers who have tried to analyse characteristic developmental patterns, the speed of dispersal or the degree of genetic divergence in populations of alien species have come to different conclusions. Among parasitologists, the applied aspects of parasite invasions, such as the negative effects on economically important hosts, have long been at the centre of interest. In this contribution, invasions by hosts as well as parasites are considered comparatively, revealing many similarities and a few differences. Two helminths, the liver fluke, Fasciola hepatica, of cattle and sheep and the swimbladder nematode, Anguillicola crassus, of eels are shown to be useful as model parasites for the study of animal invasions and environmental global change. Introductions of F. hepatica have been associated with imports of cattle or other grazing animals. In various target areas, susceptible lymnaeid snails serving as intermediate hosts were either naturally present and/or were introduced from the donor continent of the parasite (Europe) and/or from other regions which were not within the original range of the parasite, partly reflecting progressive stages of a global biota change. In several

  18. Microsatellite diversity of isolates of the parasitic nematode Haemonchus contortus.

    PubMed

    Otsen, M; Plas, M E; Lenstra, J A; Roos, M H; Hoekstra, R

    2000-09-01

    The alarming development of anthelmintic resistance in important gastrointestinal nematode parasites of man and live-stock is caused by selection for specific genotypes. In order to provide genetic tools to study the nematode populations and the consequences of anthelmintic treatment, we isolated and sequenced 59 microsatellites of the sheep and goat parasite Haemonchus contortus. These microsatellites consist typically of 2-10 tandems CA/GT repeats that are interrupted by sequences of 1-10 bp. A predominant cause of the imperfect structure of the microsatellites appeared mutations of G/C bp in the tandem repeat. About 44% of the microsatellites were associated with the HcREP1 direct repeat, and it was demonstrated that a generic HcREP1 primer could be used to amplify HcREP1-associated microsatellites. Thirty microsatellites could be typed by polymerase chain reaction (PCR) of which 27 were polymorphic. A number of these markers were used to detect genetic contamination of an experimental inbred population. The microsatellites may also contribute to the genetic mapping of drug resistance genes.

  19. Sex-specific effects of a parasite evolving in a female-biased host population

    PubMed Central

    2012-01-01

    Background Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. Results We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. Conclusions We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration), which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts. PMID:23249484

  20. Sex-specific effects of a parasite evolving in a female-biased host population.

    PubMed

    Duneau, David; Luijckx, Pepijn; Ruder, Ludwig F; Ebert, Dieter

    2012-12-18

    Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration), which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts.

  1. Nematode parasites of commercially important fish from the southeast coast of Brazil: Morphological and genetic insight.

    PubMed

    Di Azevedo, Maria Isabel N; Iñiguez, Alena M

    2018-02-21

    Studies of nematofauna of teleost fish from the Brazilian coast are relatively scarce and limited to identification based on morphology. The objective of the present study was to determine the diversity and prevalence of nematode parasites in teleost fish from the southeast Atlantic coast of Rio de Janeiro, through morphological, molecular, and ecological approaches. Parasites were collected from sixty specimens each of Genypterus brasiliensis, Micropogonias furnieri, and Mullus argentinae obtained in winters and summers of 2012–2014. Morphological and genetic characterization was conducted using light microscopy and the molecular targets 18S rDNA, ITS1, and mtDNA cox2. Nematodes identified in M. furnieri were Cucculanus genypteri (n = 1575, P = 98.3%) and Hysterothylacium deardorffoverstreetorum (s.l.) (n = 2, P = 3.3%); in G. brasiliensis were Dichelyne (Cucullanellus) sciaenidicola (n = 99, P = 33.3%), Cucculanus pulcherrimus (n = 45, P = 18.3%), Hysterothylacium deardorffoverstreetorum (s.l.) (n = 3, P = 5%), and Anisakis typica (n = 1, P = 1.7%); and, in M. argentinae, were H. deardorffoverstreetorum (s.l.) (n = 146, P = 48.3%), and Procamallanus (Spirocamallanus) halitrophus (n = 4, P = 6.7%). DNA sequence data of C. genypteri, C. pulcherrimus, D. (C.) sciaenidicola, and P. (S.) halitrophus were reported for the first time. New host records are M. argentinae for P. (S.) halitrophus, M. furnieri for A. typica, while H. deardorffoverstreetorum (s.l.) was found in all three fish species. Intestine showed significantly higher intensity than other sites, and no significant seasonal variation in parasitological indices was observed. Hysterothylacium specimens (n = 6) were found in fish muscle, potentially a public health concern.

  2. A Cas9 transgenic Plasmodium yoelii parasite for efficient gene editing.

    PubMed

    Qian, Pengge; Wang, Xu; Yang, Zhenke; Li, Zhenkui; Gao, Han; Su, Xin-Zhuan; Cui, Huiting; Yuan, Jing

    2018-06-01

    The RNA-guided endonuclease Cas9 has applied as an efficient gene-editing method in malaria parasite Plasmodium. However, the size (4.2 kb) of the commonly used Cas9 from Streptococcus pyogenes (SpCas9) limits its utility for genome editing in the parasites only introduced with cas9 plasmid. To establish the endogenous and constitutive expression of Cas9 protein in the rodent malaria parasite P. yoelii, we replaced the coding region of an endogenous gene sera1 with the intact SpCas9 coding sequence using the CRISPR/Cas9-mediated genome editing method, generating the cas9-knockin parasite (PyCas9ki) of the rodent malaria parasite P. yoelii. The resulted PyCas9ki parasite displays normal progression during the whole life cycle and possesses the Cas9 protein expression in asexual blood stage. By introducing the plasmid (pYCs) containing only sgRNA and homologous template elements, we successfully achieved both deletion and tagging modifications for different endogenous genes in the genome of PyCas9ki parasite. This cas9-knockin PyCas9ki parasite provides a new platform facilitating gene functions study in the rodent malaria parasite P. yoelii. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Morphological variation in the cosmopolitan fish parasite Neobenedenia girellae (Capsalidae: Monogenea).

    PubMed

    Brazenor, Alexander K; Saunders, Richard J; Miller, Terrence L; Hutson, Kate S

    2018-02-01

    Intra-species morphological variation presents a considerable problem for species identification and can result in taxonomic confusion. This is particularly pertinent for species of Neobenedenia which are harmful agents in captive fish populations and have historically been identified almost entirely based on morphological characters. This study aimed to understand how the morphology of Neobenedenia girellae varies with host fish species and the environment. Standard morphological features of genetically indistinct parasites from various host fish species were measured under controlled temperatures and salinities. An initial field-based investigation found that parasite morphology significantly differed between genetically indistinct parasites infecting various host fish species. The majority of the morphological variation observed (60%) was attributed to features that assist in parasite attachment to the host (i.e. the posterior and anterior attachment organs and their accessory hooks) which are important characters in monogenean taxonomy. We then experimentally examined the effects of the interaction between host fish species and environmental factors (temperature and salinity) on the morphology of isogenic parasites derived from a single, isolated hermaphroditic N. girellae infecting barramundi, Lates calcarifer. Experimental infection of L. calcarifer and cobia, Rachycentron canadum, under controlled laboratory conditions did not confer host-mediated phenotypic plasticity in N. girellae, suggesting that measured morphological differences could be adaptive and only occur over multiple parasite generations. Subsequent experimental infection of a single host species, L. calcarifer, at various temperatures (22, 30 and 32 °C) and salinities (35 and 40‰) showed that in the cooler environments (22 °C) N. girellae body proportions were significantly smaller compared with warmer temperatures (30 and 32 °C; P < 0.0001), whereas salinity had no effect. This

  4. A hitchhikers guide to the Galápagos: co-phylogeography of Galápagos mockingbirds and their parasites

    PubMed Central

    2011-01-01

    Background Parasites are evolutionary hitchhikers whose phylogenies often track the evolutionary history of their hosts. Incongruence in the evolutionary history of closely associated lineages can be explained through a variety of possible events including host switching and host independent speciation. However, in recently diverged lineages stochastic population processes, such as retention of ancestral polymorphism or secondary contact, can also explain discordant genealogies, even in fully co-speciating taxa. The relatively simple biogeographic arrangement of the Galápagos archipelago, compared with mainland biomes, provides a framework to identify stochastic and evolutionary informative components of genealogic data in these recently diverged organisms. Results Mitochondrial DNA sequences were obtained for four species of Galápagos mockingbirds and three sympatric species of ectoparasites - two louse and one mite species. These data were complemented with nuclear EF1α sequences in selected samples of parasites and with information from microsatellite loci in the mockingbirds. Mitochondrial sequence data revealed differences in population genetic diversity between all taxa and varying degrees of topological congruence between host and parasite lineages. A very low level of genetic variability and lack of congruence was found in one of the louse parasites, which was excluded from subsequent joint analysis of mitochondrial data. The reconciled multi-species tree obtained from the analysis is congruent with both the nuclear data and the geological history of the islands. Conclusions The gene genealogies of Galápagos mockingbirds and two of their ectoparasites show strong phylogeographic correlations, with instances of incongruence mostly explained by ancestral genetic polymorphism. A third parasite genealogy shows low levels of genetic diversity and little evidence of co-phylogeny with their hosts. These differences can mostly be explained by variation in life

  5. The Use of Arabidopsis to Study Interactions between Parasitic Angiosperms and Their Plant Hosts

    PubMed Central

    Goldwasser, Y.; Westwood, J. H.; Yoder, J. I.

    2002-01-01

    Parasitic plants invade host plants in order to rob them of water, minerals and nutrients. The consequences to the infected hosts can be debilitating and some of the world's most pernicious agricultural weeds are parasitic. Parasitic genera of the Scrophulariaceae and Orobanchaceae directly invade roots of neighboring plants via underground structures called haustoria. The mechanisms by which these parasites identify and associate with host plants present unsurpassed opportunities for studying chemical signaling in plant-plant interactions. Seeds of some parasites require specific host factors for efficient germination, thereby insuring the availability of an appropriate host root prior to germination. A second set of signal molecules is required to induce haustorium development and the beginning of heterotrophy. Later stages in parasitism also require the presence of host factors, although these have not yet been well characterized. Arabidopsis is being used as a model host plant to identify genetic loci associated with stimulating parasite germination, haustorium development, and parasite support. Arabidopsis is also being employed to explore how host plants respond to parasite attack. Current methodologies and recent findings in Arabidopsis – parasitic plant interactions will be discussed. PMID:22303205

  6. Footprints of directional selection in wild Atlantic salmon populations: evidence for parasite-driven evolution?

    PubMed

    Zueva, Ksenia J; Lumme, Jaakko; Veselov, Alexey E; Kent, Matthew P; Lien, Sigbjørn; Primmer, Craig R

    2014-01-01

    Mechanisms of host-parasite co-adaptation have long been of interest in evolutionary biology; however, determining the genetic basis of parasite resistance has been challenging. Current advances in genome technologies provide new opportunities for obtaining a genome-scale view of the action of parasite-driven natural selection in wild populations and thus facilitate the search for specific genomic regions underlying inter-population differences in pathogen response. European populations of Atlantic salmon (Salmo salar L.) exhibit natural variance in susceptibility levels to the ectoparasite Gyrodactylus salaris Malmberg 1957, ranging from resistance to extreme susceptibility, and are therefore a good model for studying the evolution of virulence and resistance. However, distinguishing the molecular signatures of genetic drift and environment-associated selection in small populations such as land-locked Atlantic salmon populations presents a challenge, specifically in the search for pathogen-driven selection. We used a novel genome-scan analysis approach that enabled us to i) identify signals of selection in salmon populations affected by varying levels of genetic drift and ii) separate potentially selected loci into the categories of pathogen (G. salaris)-driven selection and selection acting upon other environmental characteristics. A total of 4631 single nucleotide polymorphisms (SNPs) were screened in Atlantic salmon from 12 different northern European populations. We identified three genomic regions potentially affected by parasite-driven selection, as well as three regions presumably affected by salinity-driven directional selection. Functional annotation of candidate SNPs is consistent with the role of the detected genomic regions in immune defence and, implicitly, in osmoregulation. These results provide new insights into the genetic basis of pathogen susceptibility in Atlantic salmon and will enable future searches for the specific genes involved.

  7. Genetic parameters of infectious bovine keratoconjunctivitis and its relationship with weight and parasite infestations in Australian tropical Bos taurus cattle.

    PubMed

    Ali, Abdirahman A; O'Neill, Christopher J; Thomson, Peter C; Kadarmideen, Haja N

    2012-07-27

    Infectious bovine keratoconjunctivitis (IBK) or 'pinkeye' is an economically important ocular disease that significantly impacts animal performance. Genetic parameters for IBK infection and its genetic and phenotypic correlations with cattle tick counts, number of helminth (unspecified species) eggs per gram of faeces and growth traits in Australian tropically adapted Bos taurus cattle were estimated. Animals were clinically examined for the presence of IBK infection before and after weaning when the calves were 3 to 6 months and 15 to 18 months old, respectively and were also recorded for tick counts, helminth eggs counts as an indicator of intestinal parasites and live weights at several ages including 18 months. Negative genetic correlations were estimated between IBK incidence and weight traits for animals in pre-weaning and post-weaning datasets. Genetic correlations among weight measurements were positive, with moderate to high values. Genetic correlations of IBK incidence with tick counts were positive for the pre-weaning and negative for the post-weaning datasets but negative with helminth eggs counts for the pre-weaning dataset and slightly positive for the post-weaning dataset. Genetic correlations between tick and helminth eggs counts were moderate and positive for both datasets. Phenotypic correlations of IBK incidence with helminth eggs per gram of faeces were moderate and positive for both datasets, but were close to zero for both datasets with tick counts. Our results suggest that genetic selection against IBK incidence in tropical cattle is feasible and that calves genetically prone to acquire IBK infection could also be genetically prone to have a slower growth. The positive genetic correlations among weight traits and between tick and helminth eggs counts suggest that they are controlled by common genes (with pleiotropic effects). Genetic correlations between IBK incidence and tick and helminth egg counts were moderate and opposite between pre

  8. Genetic parameters of infectious bovine keratoconjunctivitis and its relationship with weight and parasite infestations in Australian tropical Bos taurus cattle

    PubMed Central

    2012-01-01

    Background Infectious bovine keratoconjunctivitis (IBK) or ‘pinkeye’ is an economically important ocular disease that significantly impacts animal performance. Genetic parameters for IBK infection and its genetic and phenotypic correlations with cattle tick counts, number of helminth (unspecified species) eggs per gram of faeces and growth traits in Australian tropically adapted Bos taurus cattle were estimated. Methods Animals were clinically examined for the presence of IBK infection before and after weaning when the calves were 3 to 6 months and 15 to 18 months old, respectively and were also recorded for tick counts, helminth eggs counts as an indicator of intestinal parasites and live weights at several ages including 18 months. Results Negative genetic correlations were estimated between IBK incidence and weight traits for animals in pre-weaning and post-weaning datasets. Genetic correlations among weight measurements were positive, with moderate to high values. Genetic correlations of IBK incidence with tick counts were positive for the pre-weaning and negative for the post-weaning datasets but negative with helminth eggs counts for the pre-weaning dataset and slightly positive for the post-weaning dataset. Genetic correlations between tick and helminth eggs counts were moderate and positive for both datasets. Phenotypic correlations of IBK incidence with helminth eggs per gram of faeces were moderate and positive for both datasets, but were close to zero for both datasets with tick counts. Conclusions Our results suggest that genetic selection against IBK incidence in tropical cattle is feasible and that calves genetically prone to acquire IBK infection could also be genetically prone to have a slower growth. The positive genetic correlations among weight traits and between tick and helminth eggs counts suggest that they are controlled by common genes (with pleiotropic effects). Genetic correlations between IBK incidence and tick and helminth egg

  9. Paternity-parasitism trade-offs: a model and test of host-parasite cooperation in an avian conspecific brood parasite.

    PubMed

    Lyon, Bruce E; Hochachka, Wesley M; Eadie, John M

    2002-06-01

    Efforts to evaluate the evolutionary and ecological dynamics of conspecific brood parasitism in birds and other animals have focused on the fitness costs of parasitism to hosts and fitness benefits to parasites. However, it has been speculated recently that, in species with biparental care, host males might cooperate with parasitic females by allowing access to the host nest in exchange for copulations. We develop a cost-benefit model to explore the conditions under which such host-parasite cooperation might occur. When the brood parasite does not have a nest of her own, the only benefit to the host male is siring some of the parasitic eggs (quasi-parasitism). Cooperation with the parasite is favored when the ratio of host male paternity of his own eggs relative to his paternity of parasitic eggs exceeds the cost of parasitism. When the brood parasite has a nest of her own, a host male can gain additional, potentially more important benefits by siring the high-value, low-cost eggs laid by the parasite in her own nest. Under these conditions, host males should be even more likely to accept parasitic eggs in return for copulations with the parasitic female. We tested these predictions for American coots (Fulica americana), a species with a high frequency of conspecific brood parasitism. Multilocus DNA profiling indicated that host males did not sire any of the parasitic eggs laid in host nests, nor did they sire eggs laid by the parasite in her own nest. We used field estimates of the model parameters from a four-year study of coots to predict the minimum levels of paternity required for the costs of parasitism to be offset by the benefits of mating with brood parasites. Observed levels of paternity were significantly lower than those predicted under a variety of assumptions, and we reject the hypothesis that host males cooperated with parasitic females. Our model clarifies the specific costs and benefits that influence host-parasite cooperation and, more generally

  10. [Mobile genetic elements in plant sex evolution].

    PubMed

    Gerashchenkov, G A; Rozhnova, N A

    2010-11-01

    The most significant theories of the appearance and maintenance of sex are presented. However, in the overwhelming majority of existing theories, the problem of sex, which is the central problem of evolutionary biology, is considered primarily through the prism of reproductive features of living organisms, whereas the issue of molecular driving forces of sexual reproduction id restricted to the possible role of mobile genetic elements (MGEs) in the appearance of sexual reproduction. The structural and functional significance of MGEs in the genomic organization of plants is illustrated. It is shown that MGEs could act as important molecular drivers of sex evolution in plants. The involvement of MGEs in the formation of sex chromosomes and possible participation in seeds-without-sex reproduction (apomixis) is discussed. Thus, the hypothesis on the active MGE participation in sex evolution is in good agreement with the modern views on pathways and directions of sex evolution in plants.

  11. Resistance to a bacterial parasite in the crustacean Daphnia magna shows Mendelian segregation with dominance

    PubMed Central

    Luijckx, P; Fienberg, H; Duneau, D; Ebert, D

    2012-01-01

    The influence of host and parasite genetic background on infection outcome is a topic of great interest because of its pertinence to theoretical issues in evolutionary biology. In the present study, we use a classical genetics approach to examine the mode of inheritance of infection outcome in the crustacean Daphnia magna when exposed to the bacterial parasite Pasteuria ramosa. In contrast to previous studies in this system, we use a clone of P. ramosa, not field isolates, which allows for a more definitive interpretation of results. We test parental, F1, F2, backcross and selfed parental clones (total 284 genotypes) for susceptibility against a clone of P. ramosa using two different methods, infection trials and the recently developed attachment test. We find that D. magna clones reliably exhibit either complete resistance or complete susceptibility to P. ramosa clone C1 and that resistance is dominant, and inherited in a pattern consistent with Mendelian segregation of a single-locus with two alleles. The finding of a single host locus controlling susceptibility to P. ramosa suggests that the previously observed genotype–genotype interactions in this system have a simple genetic basis. This has important implications for the outcome of host–parasite co-evolution. Our results add to the growing body of evidence that resistance to parasites in invertebrates is mostly coded by one or few loci with dominance. PMID:22167056

  12. Resistance to a bacterial parasite in the crustacean Daphnia magna shows Mendelian segregation with dominance.

    PubMed

    Luijckx, P; Fienberg, H; Duneau, D; Ebert, D

    2012-05-01

    The influence of host and parasite genetic background on infection outcome is a topic of great interest because of its pertinence to theoretical issues in evolutionary biology. In the present study, we use a classical genetics approach to examine the mode of inheritance of infection outcome in the crustacean Daphnia magna when exposed to the bacterial parasite Pasteuria ramosa. In contrast to previous studies in this system, we use a clone of P. ramosa, not field isolates, which allows for a more definitive interpretation of results. We test parental, F1, F2, backcross and selfed parental clones (total 284 genotypes) for susceptibility against a clone of P. ramosa using two different methods, infection trials and the recently developed attachment test. We find that D. magna clones reliably exhibit either complete resistance or complete susceptibility to P. ramosa clone C1 and that resistance is dominant, and inherited in a pattern consistent with Mendelian segregation of a single-locus with two alleles. The finding of a single host locus controlling susceptibility to P. ramosa suggests that the previously observed genotype-genotype interactions in this system have a simple genetic basis. This has important implications for the outcome of host-parasite co-evolution. Our results add to the growing body of evidence that resistance to parasites in invertebrates is mostly coded by one or few loci with dominance.

  13. Host ploidy, parasitism and immune defence in a coevolutionary snail-trematode system.

    PubMed

    Osnas, E E; Lively, C M

    2006-01-01

    We studied the role of host ploidy and parasite exposure on immune defence allocation in a snail-trematode system (Potamopyrgus antipodarum-Microphallus sp.). In the field, haemocyte (the defence cell) concentration was lowest in deep-water habitats where infection is relatively low and highest in shallow-water habitats where infection is common. Because the frequency of asexual triploid snails is positively correlated with depth, we also experimentally studied the role of ploidy by exposing both diploid sexual and triploid asexual snails to Microphallus eggs. We found that triploid snails had lower haemocyte concentrations than did diploids in both parasite-addition and parasite-free treatments. We also found that both triploids and diploids increased their numbers of large granular haemocytes at similar rates after parasite exposure. Because triploid P. antipodarum have been shown to be more resistant to allopatric parasites than diploids, the current results suggest that the increased resistance of triploids is because of intrinsic genetic properties rather than to greater allocation to defence cells. This finding is consistent with recent theory on the advantages of increased ploidy for hosts combating coevolving parasites.

  14. Intraspecific queen parasitism in a highly eusocial bee.

    PubMed

    Wenseleers, Tom; Alves, Denise A; Francoy, Tiago M; Billen, Johan; Imperatriz-Fonseca, Vera L

    2011-04-23

    Insect societies are well-known for their advanced cooperation, but their colonies are also vulnerable to reproductive parasitism. Here, we present a novel example of an intraspecific social parasitism in a highly eusocial bee, the stingless bee Melipona scutellaris. In particular, we provide genetic evidence which shows that, upon loss of the mother queen, many colonies are invaded by unrelated queens that fly in from unrelated hives nearby. The reasons for the occurrence of this surprising form of social parasitism may be linked to the fact that unlike honeybees, Melipona bees produce new queens in great excess of colony needs, and that this exerts much greater selection on queens to seek alternative reproductive options, such as by taking over other nests. Overall, our results are the first to demonstrate that queens in highly eusocial bees can found colonies not only via supersedure or swarming, but also by infiltrating and taking over other unrelated nests.

  15. Intraspecific queen parasitism in a highly eusocial bee

    PubMed Central

    Wenseleers, Tom; Alves, Denise A.; Francoy, Tiago M.; Billen, Johan; Imperatriz-Fonseca, Vera L.

    2011-01-01

    Insect societies are well-known for their advanced cooperation, but their colonies are also vulnerable to reproductive parasitism. Here, we present a novel example of an intraspecific social parasitism in a highly eusocial bee, the stingless bee Melipona scutellaris. In particular, we provide genetic evidence which shows that, upon loss of the mother queen, many colonies are invaded by unrelated queens that fly in from unrelated hives nearby. The reasons for the occurrence of this surprising form of social parasitism may be linked to the fact that unlike honeybees, Melipona bees produce new queens in great excess of colony needs, and that this exerts much greater selection on queens to seek alternative reproductive options, such as by taking over other nests. Overall, our results are the first to demonstrate that queens in highly eusocial bees can found colonies not only via supersedure or swarming, but also by infiltrating and taking over other unrelated nests. PMID:20961883

  16. Preparation of live attenuated leishmania parasites by using laser technology

    NASA Astrophysics Data System (ADS)

    Hussain, Nabiha; Alkhouri, Hassan; Haddad, Shaden

    2018-05-01

    Leishmaniasis is a parasitic disease of humans, affecting the skin, mucosal and/or internal organs, caused by flagellate protozoa Leishmania of the Trypanosomatidae family. Leishmania would be one for which a vaccine could be developed with relative ease. Many studies mount an effective response that resolves the infection and confers solid immunity to reinfection and suggesting that infection may be a prerequisite for immunological memory. Genetically altered live attenuated parasites with controlled infectivity could achieve such immunological memory. Recent concepts include use of genetically modified live-attenuated Leishmania parasites, and proteomics approach for the search of a cross-protective leishmanial vaccine that would ideally protect against both cutaneous and visceral forms of the disease. No licensed vaccine is available till date against any form of leishmaniasis. The present study evaluated role of laser technology in development of a safe live Leishmania vaccine, a vaccine is a biological preparation that improves immunity to a particular disease, and is often made from weakened or killed forms of LPs. The parasite culture was expanded in RPMI 1640 medium with 10% fetal calf serum (FCS) and grown until stationary phase for experiments. 80 samples of leishmania promastigotes (Culture media of LPs) were exposed to Nd:YAG laser (wavelength 1064 nm, single spot or double) with different outputs powers (7w, 100 Hz, 99.03w/cm2, 0.99 J/cm2 and 8 w, 100 Hz, 113.18w/cm2 1.13J/cm2)) for suitable exposer times. The effect of semiconductor laser (wavelength 810 nm, 7w, 2000 Hz, 99.03w/cm2, 0.05 J/cm2) or (7 w, 500 Hz, 99.03 w/cm2, 0.2J/cm2) single spot or double with long exposure times. The viability of Leishmania parasites was measured using XTT method; viable parasites were decreased with long exposure times. XTT test referred both these wavelengths were effective in killing percentage of Leishmania promastigotes, the remaining were devoid flagellum that

  17. Interacting parasites

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2010-01-01

    Parasitism is the most popular life-style on Earth, and many vertebrates host more than one kind of parasite at a time. A common assumption is that parasite species rarely interact, because they often exploit different tissues in a host, and this use of discrete resources limits competition (1). On page 243 of this issue, however, Telfer et al. (2) provide a convincing case of a highly interactive parasite community in voles, and show how infection with one parasite can affect susceptibility to others. If some human parasites are equally interactive, our current, disease-by-disease approach to modeling and treating infectious diseases is inadequate (3).

  18. Novel Synthetic Medea selfish genetic elements drive population replacement in Drosophila, and a theoretical exploration of Medea-dependent population suppression

    PubMed Central

    Akbari, Omar S.; Chen, Chun-Hong; Marshall, John M.; Huang, Haixia; Antoshechkin, Igor; Hay, Bruce A.

    2013-01-01

    Insects act as vectors for diseases of plants, animals and humans. Replacement of wild insect populations with genetically modified individuals unable to transmit disease provides a potentially self-perpetuating method of disease prevention. Population replacement requires a gene drive mechanism in order to spread linked genes mediating disease refractoriness through wild populations. We previously reported the creation of synthetic Medea selfish genetic elements able to drive population replacement in Drosophila. These elements use microRNA-mediated silencing of myd88, a maternally expressed gene required for embryonic dorso-ventral pattern formation, coupled with early zygotic expression of a rescuing transgene, to bring about gene drive. Medea elements that work through additional mechanisms are needed in order to be able to carry out cycles of population replacement and/or remove existing transgenes from the population, using second-generation elements that spread while driving first-generation elements out of the population. Here we report the synthesis and population genetic behavior of two new synthetic Medea elements that drive population replacement through manipulation of signaling pathways involved in cellular blastoderm formation or Notch signaling, demonstrating that in Drosophila Medea elements can be generated through manipulation of diverse signaling pathways. We also describe the mRNA and small RNA changes in ovaries and early embryos associated from Medea-bearing females. Finally, we use modeling to illustrate how Medea elements carrying genes that result in diapause-dependent female lethality could be used to bring about population suppression. PMID:23654248

  19. The Emergence of Resistance to the Benzimidazole Anthlemintics in Parasitic Nematodes of Livestock Is Characterised by Multiple Independent Hard and Soft Selective Sweeps

    PubMed Central

    Redman, Elizabeth; Whitelaw, Fiona; Tait, Andrew; Burgess, Charlotte; Bartley, Yvonne; Skuce, Philip John; Jackson, Frank; Gilleard, John Stuart

    2015-01-01

    Anthelmintic resistance is a major problem for the control of parasitic nematodes of livestock and of growing concern for human parasite control. However, there is little understanding of how resistance arises and spreads or of the “genetic signature” of selection for this group of important pathogens. We have investigated these questions in the system for which anthelmintic resistance is most advanced; benzimidazole resistance in the sheep parasites Haemonchus contortus and Teladorsagia circumcincta. Population genetic analysis with neutral microsatellite markers reveals that T. circumcincta has higher genetic diversity but lower genetic differentiation between farms than H. contortus in the UK. We propose that this is due to epidemiological differences between the two parasites resulting in greater seasonal bottlenecking of H. contortus. There is a remarkably high level of resistance haplotype diversity in both parasites compared with drug resistance studies in other eukaryotic systems. Our analysis suggests a minimum of four independent origins of resistance mutations on just seven farms for H. contortus, and even more for T. circumincta. Both hard and soft selective sweeps have occurred with striking differences between individual farms. The sweeps are generally softer for T. circumcincta than H. contortus, consistent with its higher level of genetic diversity and consequent greater availability of new mutations. We propose a model in which multiple independent resistance mutations recurrently arise and spread by migration to explain the widespread occurrence of resistance in these parasites. Finally, in spite of the complex haplotypic diversity, we show that selection can be detected at the target locus using simple measures of genetic diversity and departures from neutrality. This work has important implications for the application of genome-wide approaches to identify new anthelmintic resistance loci and the likelihood of anthelmintic resistance emerging

  20. Genome Dynamics of Escherichia coli during Antibiotic Treatment: Transfer, Loss, and Persistence of Genetic Elements In situ of the Infant Gut.

    PubMed

    Porse, Andreas; Gumpert, Heidi; Kubicek-Sutherland, Jessica Z; Karami, Nahid; Adlerberth, Ingegerd; Wold, Agnes E; Andersson, Dan I; Sommer, Morten O A

    2017-01-01

    Elucidating the adaptive strategies and plasticity of bacterial genomes in situ is crucial for understanding the epidemiology and evolution of pathogens threatening human health. While much is known about the evolution of Escherichia coli in controlled laboratory environments, less effort has been made to elucidate the genome dynamics of E. coli in its native settings. Here, we follow the genome dynamics of co-existing E. coli lineages in situ of the infant gut during the first year of life. One E. coli lineage causes a urinary tract infection (UTI) and experiences several alterations of its genomic content during subsequent antibiotic treatment. Interestingly, all isolates of this uropathogenic E. coli strain carried a highly stable plasmid implicated in virulence of diverse pathogenic strains from all over the world. While virulence elements are certainly beneficial during infection scenarios, their role in gut colonization and pathogen persistence is poorly understood. We performed in vivo competitive fitness experiments to assess the role of this highly disseminated virulence plasmid in gut colonization, but found no evidence for a direct benefit of plasmid carriage. Through plasmid stability assays, we demonstrate that this plasmid is maintained in a parasitic manner, by strong first-line inheritance mechanisms, acting on the single-cell level, rather than providing a direct survival advantage in the gut. Investigating the ecology of endemic accessory genetic elements, in their pathogenic hosts and native environment, is of vital importance if we want to understand the evolution and persistence of highly virulent and drug resistant bacterial isolates.

  1. An Invasive Fish and the Time-Lagged Spread of Its Parasite across the Hawaiian Archipelago

    PubMed Central

    Gaither, Michelle R.; Aeby, Greta; Vignon, Matthias; Meguro, Yu-ichiro; Rigby, Mark; Runyon, Christina; Toonen, Robert J.; Wood, Chelsea L.; Bowen, Brian W.

    2013-01-01

    Efforts to limit the impact of invasive species are frustrated by the cryptogenic status of a large proportion of those species. Half a century ago, the state of Hawai'i introduced the Bluestripe Snapper, Lutjanus kasmira, to O'ahu for fisheries enhancement. Today, this species shares an intestinal nematode parasite, Spirocamallanus istiblenni, with native Hawaiian fishes, raising the possibility that the introduced fish carried a parasite that has since spread to naïve local hosts. Here, we employ a multidisciplinary approach, combining molecular, historical, and ecological data to confirm the alien status of S. istiblenni in Hawai'i. Using molecular sequence data we show that S. istiblenni from Hawai'i are genetically affiliated with source populations in French Polynesia, and not parasites at a geographically intermediate location in the Line Islands. S. istiblenni from Hawai'i are a genetic subset of the more diverse source populations, indicating a bottleneck at introduction. Ecological surveys indicate that the parasite has found suitable intermediate hosts in Hawai'i, which are required for the completion of its life cycle, and that the parasite is twice as prevalent in Hawaiian Bluestripe Snappers as in source populations. While the introduced snapper has spread across the entire 2600 km archipelago to Kure Atoll, the introduced parasite has spread only half that distance. However, the parasite faces no apparent impediments to invading the entire archipelago, with unknown implications for naïve indigenous Hawaiian fishes and the protected Papahānaumokuākea Marine National Monument. PMID:23468894

  2. [EXTERNAL QUALITY ASSESSMENT FOR THE LABORATORY IDENTIFICATION OF THE PATHOGENS OF PARASITIC DISEASES AS AN ELEMENT FOR IMPROVING THE POSTGRADUATE TRAINING OF SPECIALISTS].

    PubMed

    Dovgalev, A S; Astanina, S Yu; Malakhov, V N; Serdyuk, A P; Imamkuliev, K D; Gorbunova, Yu P; Pautova, E A; Prodeus, T V; Semenova, T A; Fedyanina, L V

    2016-01-01

    Within the framework of the Federal External Quality Assessment (EQA) System and in the context of postgraduate training improvement for health workers in 2010-2014, specialists from the laboratories of the therapeutic-prophylactic organizations and institutions of the Russian Federal Service for Supervision of Consumer Rights Protection and Human Welfare were examined for their professional competence in microscopically identifying the pathogens of parasitic diseases in feces. The virtual remote educational computer technology tools that included different combinations of 16 helminthic species, 5 intestinal protozoan species, and a number of artefacts, were used. The specialists from 984 laboratories of multidisciplinary therapeutic-prophylactic organizations and hygiene and epidemiology centers in all Federal Districts of the Russian Federation were covered. A total of 8245 replies were analyzed. The detection rate for helminths was 64.0%, including those by a taxonomic group (nematodes, 65.0%; cestodes, 72.0%; trematodes, 55.1%). There was a dynamic decrease in the above indicators. There were low detection rates for trematodes parasitizing the small intestine (Metagonimus, 10.2%; Nanophyetus, 26.2%) and hepatobiliary organs (Fasciola, 59.6%; Clonorchis, 34.9%). The similar trend was seen in the detection rates for the pathogens of geohelminthisms (ascariasis, trichocephaliasis, etc.) and contagious helminthisms (enterobiasis, hymenolepiasis). The level of competence in detecting and identifying intestinal protozoa was much lower than the similar rates for helminthism pathogens. EQA for the laboratory diagnosis of the pathogens of parasitic diseases, by using the virtual tools is a leading element of the postgraduate training system for laboratory specialists. The results of EQA for the laboratory diagnosis of the pathogens of parasitic diseases are a basic material for the development, and improvement of training modernization programs, by applying a modular

  3. Genetic diversity of Trichomonas vaginalis reinfection in HIV-positive women.

    PubMed

    Conrad, Melissa D; Kissinger, Patricia; Schmidt, Norine; Martin, David H; Carlton, Jane M

    2013-09-01

    Recently developed genotyping tools allow better understanding of Trichomonas vaginalis population genetics and epidemiology. These tools have yet to be applied to T vaginalis collected from HIV+ populations, where understanding the interaction between the pathogens is of great importance due to the correlation between T vaginalis infection and HIV transmission. The objectives of the study were twofold: first, to compare the genetic diversity and population structure of T vaginalis collected from HIV+ women with parasites from reference populations; second, to use the genetic markers to perform a case study demonstrating the usefulness of these techniques in investigating the mechanisms of repeat infections. Repository T vaginalis samples from a previously described treatment trial were genotyped at 11 microsatellite loci. Estimates of genetic diversity and population structure were determined using standard techniques and compared with previously reported estimates of global populations. Genotyping data were used in conjunction with behavioural data to evaluate mechanisms of repeat infections. T vaginalis from HIV+ women maintain many of the population genetic characteristics of parasites from global reference populations. Although there is evidence of reduced diversity and bias towards type 1 parasites in the HIV+ population, the populations share a two-type population structure and parasite haplotypes. Genotyping/behavioural data suggest that 36% (12/33) of repeat infections in HIV+ women can be attributed to treatment failure. T vaginalis infecting HIV+ women is not genetically distinct from T vaginalis infecting reference populations. Information from genotyping can be valuable for understanding mechanisms of repeat infections.

  4. Engineering host-derived resistance against plant parasites through RNA interference: challenges and opportunities.

    PubMed

    Runo, Steven

    2011-01-01

    RNA interference (RNAi) has rapidly advanced to become a powerful genetic tool and holds promise to revolutionizing agriculture by providing a strategy for controlling a wide array of crop pests. Numerous studies document RNAi efficacy in achieving silencing in viruses, insects, nematodes and weeds parasitizing crops. In general, host derived pest resistance through RNAi is achieved by genetically transforming host plants with double stranded RNA constructs targeted at essential parasite genes leading to generation of small interfering RNAs (siRNAs). Small interfering RNAs formed in the host are then delivered to the parasite and transported to target cells. Delivery can be oral - worms and insects, viral infections, viruses - or through a vascular connections - parasitic plants, while delivery to target cells is by cell to cell systemic movement of the silencing signal. Despite the overall optimism in generating pest resistant crops through RNAi-mediated silencing, some hurdles have recently begun to emerge. Presently, the main challenge is delivery of sufficient siRNAs, in the right cells, and at the right time to mount; a strong, durable, and broad-spectrum posttranscriptional gene silencing (PTGS) signal. This review highlights the novel strategies available for improving host derived RNAi resistance in downstream applied agriculture.

  5. Constraining the Deep Origin of Parasitic Flatworms and Host-Interactions with Fossil Evidence.

    PubMed

    De Baets, Kenneth; Dentzien-Dias, Paula; Upeniece, Ieva; Verneau, Olivier; Donoghue, Philip C J

    2015-01-01

    Novel fossil discoveries have contributed to our understanding of the evolutionary appearance of parasitism in flatworms. Furthermore, genetic analyses with greater coverage have shifted our views on the coevolution of parasitic flatworms and their hosts. The putative record of parasitic flatworms is consistent with extant host associations and so can be used to put constraints on the evolutionary origin of the parasites themselves. The future lies in new molecular clock analyses combined with additional discoveries of exceptionally preserved flatworms associated with hosts and coprolites. Besides direct evidence, the host fossil record and biogeography have the potential to constrain their evolutionary history, albeit with caution needed to avoid circularity, and a need for calibrations to be implemented in the most conservative way. This might result in imprecise, but accurate divergence estimates for the evolution of parasitic flatworms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Characterization of mobile genetic elements in antibiotic resistant Salmonella enterica isolates from food animals

    USDA-ARS?s Scientific Manuscript database

    Antibiotic resistance (AR) is a major concern for the agricultural industry in the U.S. and globally. The problem of AR is further complicated by AR genes often being located on mobile genetic elements (MGEs) resulting in their spread among bacteria. In order to investigate the relationship between ...

  7. Clonal population structures are derived from various population processes in the protistan oyster parasite Perkinsus marinus

    USDA-ARS?s Scientific Manuscript database

    Population genetic analysis of genotypes comprised of seven microsatellite loci revealed clonal genetic patterns in each of four populations of the protistan estuarine parasite Perkinsus marinus. Each locus was amplified directly from DNA extracted from infected oysters collected from four geographi...

  8. RNA interference as a resistance mechanism against crop parasites in Africa: a 'Trojan horse' approach.

    PubMed

    Runo, Steven; Alakonya, Amos; Machuka, Jesse; Sinha, Neelima

    2011-02-01

    Biological crop pests cause serious economic losses. In Africa, the most prevalent parasites are insect pests, plant pathogenic root-knot nematodes, viruses and parasitic plants. African smallholder farmers struggle to overcome these parasitic constraints to agricultural production. Crop losses and the host range of these parasites have continued to increase in spite of the use of widely advocated control methods. A sustainable method to overcome biological pests in Africa would be to develop crop germplasm resistant to parasites. This is achievable using either genetic modification (GM) or a non-GM approach. However, there is a paucity of resistant genes available for introduction. Additionally, the biological processes underpinning host parasite resistance are not sufficiently well understood. The authors review a technology platform for using RNA-mediated interference (RNAi) as bioengineered resistance to important crop parasites in Africa. To achieve acquired resistance, a host crop is stably transformed with a transgene that encodes a hairpin RNA targeting essential parasitic genes. The RNAi sequence is chosen in such a way that it shares no homology with the host's genes, so it remains 'inactive' until parasitism. Upon parasitism, the RNAi sequence enters the parasite and post-transcriptional gene silencing (PTGS) mechanisms are activated, leading to the death of the parasite. Copyright © 2010 Society of Chemical Industry.

  9. Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA.

    PubMed

    Queck, Shu Y; Khan, Burhan A; Wang, Rong; Bach, Thanh-Huy L; Kretschmer, Dorothee; Chen, Liang; Kreiswirth, Barry N; Peschel, Andreas; Deleo, Frank R; Otto, Michael

    2009-07-01

    Bacterial virulence and antibiotic resistance have a significant influence on disease severity and treatment options during bacterial infections. Frequently, the underlying genetic determinants are encoded on mobile genetic elements (MGEs). In the leading human pathogen Staphylococcus aureus, MGEs that contain antibiotic resistance genes commonly do not contain genes for virulence determinants. The phenol-soluble modulins (PSMs) are staphylococcal cytolytic toxins with a crucial role in immune evasion. While all known PSMs are core genome-encoded, we here describe a previously unidentified psm gene, psm-mec, within the staphylococcal methicillin resistance-encoding MGE SCCmec. PSM-mec was strongly expressed in many strains and showed the physico-chemical, pro-inflammatory, and cytolytic characteristics typical of PSMs. Notably, in an S. aureus strain with low production of core genome-encoded PSMs, expression of PSM-mec had a significant impact on immune evasion and disease. In addition to providing high-level resistance to methicillin, acquisition of SCCmec elements encoding PSM-mec by horizontal gene transfer may therefore contribute to staphylococcal virulence by substituting for the lack of expression of core genome-encoded PSMs. Thus, our study reveals a previously unknown role of methicillin resistance clusters in staphylococcal pathogenesis and shows that important virulence and antibiotic resistance determinants may be combined in staphylococcal MGEs.

  10. Evidence for the exchange of blood parasites between North America and the Neotropics in blue-winged teal (Anas discors).

    PubMed

    Ramey, Andrew M; Reed, John A; Walther, Patrick; Link, Paul; Schmutz, Joel A; Douglas, David C; Stallknecht, David E; Soos, Catherine

    2016-10-01

    Blue-winged teal (Anas discors) are abundant, small-bodied dabbling ducks that breed throughout the prairies of the northcentral USA and central Canada and that winter in the southern USA and northern Neotropics. Given the migratory tendencies of this species, it is plausible that blue-winged teal may disperse avian pathogens, such as parasites causing avian malaria, between spatially distant areas. To test the hypothesis that blue-winged teal play a role in the exchange of blood parasites between North America and areas further south, we collected information on migratory tendencies of this species and sampled birds at spatially distant areas during breeding and non-breeding periods to diagnose and genetically characterize parasitic infections. Using a combination of band recovery data, satellite telemetry, molecular diagnostics, and genetic analyses, we found evidence for (1) migratory connectivity of blue-winged teal between our sampling locations in the Canadian prairies and along the US Gulf Coast with areas throughout the northern Neotropics, (2) parasite acquisition at both breeding and non-breeding areas, (3) infection of blue-winged teal sampled in Canada and the USA with Plasmodium parasite lineages associated with the Neotropics, and (4) infection of blue-winged teal with parasites that were genetically related to those previously reported in waterfowl in both North America and South America. Collectively, our results suggest that blue-winged teal likely play a role in the dispersal of blood parasites between the Neotropics and North America, and therefore, the targeting of this species in surveillance programs for the early detection of Neotropical-origin avian pathogens in the USA may be informative.

  11. Evidence for the exchange of blood parasites between North America and the Neotropics in blue-winged teal (Anas discors)

    USGS Publications Warehouse

    Ramey, Andy M.; Reed, John; Walther, Patrick; Link, Paul; Schmutz, Joel A.; Douglas, David C.; Stallknecht, David E.; Soos, Catherine

    2016-01-01

    Blue-winged teal (Anas discors) are abundant, small-bodied dabbling ducks that breed throughout the prairies of the northcentral USA and central Canada and that winter in the southern USA and northern Neotropics. Given the migratory tendencies of this species, it is plausible that blue-winged teal may disperse avian pathogens, such as parasites causing avian malaria, between spatially distant areas. To test the hypothesis that blue-winged teal play a role in the exchange of blood parasites between North America and areas further south, we collected information on migratory tendencies of this species and sampled birds at spatially distant areas during breeding and non-breeding periods to diagnose and genetically characterize parasitic infections. Using a combination of band recovery data, satellite telemetry, molecular diagnostics, and genetic analyses, we found evidence for (1) migratory connectivity of blue-winged teal between our sampling locations in the Canadian prairies and along the US Gulf Coast with areas throughout the northern Neotropics, (2) parasite acquisition at both breeding and non-breeding areas, (3) infection of blue-winged teal sampled in Canada and the USA withPlasmodium parasite lineages associated with the Neotropics, and (4) infection of blue-winged teal with parasites that were genetically related to those previously reported in waterfowl in both North America and South America. Collectively, our results suggest that blue-winged teal likely play a role in the dispersal of blood parasites between the Neotropics and North America, and therefore, the targeting of this species in surveillance programs for the early detection of Neotropical-origin avian pathogens in the USA may be informative.

  12. Footprints of Directional Selection in Wild Atlantic Salmon Populations: Evidence for Parasite-Driven Evolution?

    PubMed Central

    Zueva, Ksenia J.; Lumme, Jaakko; Veselov, Alexey E.; Kent, Matthew P.; Lien, Sigbjørn; Primmer, Craig R.

    2014-01-01

    Mechanisms of host-parasite co-adaptation have long been of interest in evolutionary biology; however, determining the genetic basis of parasite resistance has been challenging. Current advances in genome technologies provide new opportunities for obtaining a genome-scale view of the action of parasite-driven natural selection in wild populations and thus facilitate the search for specific genomic regions underlying inter-population differences in pathogen response. European populations of Atlantic salmon (Salmo salar L.) exhibit natural variance in susceptibility levels to the ectoparasite Gyrodactylus salaris Malmberg 1957, ranging from resistance to extreme susceptibility, and are therefore a good model for studying the evolution of virulence and resistance. However, distinguishing the molecular signatures of genetic drift and environment-associated selection in small populations such as land-locked Atlantic salmon populations presents a challenge, specifically in the search for pathogen-driven selection. We used a novel genome-scan analysis approach that enabled us to i) identify signals of selection in salmon populations affected by varying levels of genetic drift and ii) separate potentially selected loci into the categories of pathogen (G. salaris)-driven selection and selection acting upon other environmental characteristics. A total of 4631 single nucleotide polymorphisms (SNPs) were screened in Atlantic salmon from 12 different northern European populations. We identified three genomic regions potentially affected by parasite-driven selection, as well as three regions presumably affected by salinity-driven directional selection. Functional annotation of candidate SNPs is consistent with the role of the detected genomic regions in immune defence and, implicitly, in osmoregulation. These results provide new insights into the genetic basis of pathogen susceptibility in Atlantic salmon and will enable future searches for the specific genes involved. PMID

  13. Functional characterization of malaria parasites deficient in the K+ channel Kch2.

    PubMed

    Ellekvist, Peter; Mlambo, Godfree; Kumar, Nirbhay; Klaerke, Dan A

    2017-11-04

    K + channels are integral membrane proteins, which contribute to maintain vital parameters such as the cellular membrane potential and cell volume. Malaria parasites encode two K + channel homologues, Kch1 and Kch2, which are well-conserved among members of the Plasmodium genus. In the rodent malaria parasite P. berghei, the functional significance of K + channel homologue PbKch2 was studied using targeted gene knock-out. The knockout parasites were characterized in a mouse model in terms of growth-kinetics and infectivity in the mosquito vector. Furthermore, using a tracer-uptake technique with 86 Rb + as a K + congener, the K + transporting properties of the knockout parasites were assessed. Genetic disruption of Kch2 did not grossly affect the phenotype in terms of asexual replication and pathogenicity in a mouse model. In contrast to Kch1-null parasites, Kch2-null parasites were fully capable of forming oocysts in female Anopheles stephensi mosquitoes. 86 Rb + uptake in Kch2-deficient blood-stage P. berghei parasites (Kch2-null) did not differ from that of wild-type (WT) parasites. About two-thirds of the 86 Rb + uptake in WT and in Kch2-null parasites could be inhibited by K + channel blockers and could be inferred to the presence of functional Kch1 in Kch2 knockout parasites. Kch2 is therefore not required for transport of K + in P. berghei and is not essential to mosquito-stage sporogonic development of the parasite. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Tactical reproductive parasitism via larval cannibalism in Peruvian poison frogs

    PubMed Central

    Brown, Jason L.; Morales, Victor; Summers, Kyle

    2008-01-01

    We report an unusual example of reproductive parasitism in amphibians. Dendrobates variabilis, an Amazonian poison frog, oviposits at the surface of the water in small pools in plants and deposits tadpoles within the pools. Tadpoles are highly cannibalistic and consume young tadpoles if they are accessible. Deposition of embryos and tadpoles in the same pool is common. Genetic analyses indicate that tadpoles are frequently unrelated to embryos in the same pool. A pool choice experiment in the field demonstrated that males carrying tadpoles prefer to place them in pools with embryos, facilitating reproductive parasitism via cannibalism. PMID:19042178

  15. Spatio-temporal variation in parasite communities maintains diversity at the major histocompatibility complex class IIβ in the endangered Rio Grande silvery minnow.

    PubMed

    Osborne, Megan J; Pilger, Tyler J; Lusk, Joel D; Turner, Thomas F

    2017-01-01

    Climate change will strongly impact aquatic ecosystems particularly in arid and semi-arid regions. Fish-parasite interactions will also be affected by predicted altered flow and temperature regimes, and other environmental stressors. Hence, identifying environmental and genetic factors associated with maintaining diversity at immune genes is critical for understanding species' adaptive capacity. Here, we combine genetic (MHC class IIβ and microsatellites), parasitological and ecological data to explore the relationship between these factors in the remnant wild Rio Grande silvery minnow (Hybognathus amarus) population, an endangered species found in the southwestern United States. Infections with multiple parasites on the gills were observed and there was spatio-temporal variation in parasite communities and patterns of infection among individuals. Despite its highly endangered status and chronically low genetic effective size, Rio Grande silvery minnow had high allelic diversity at MHC class IIβ with more alleles recognized at the presumptive DAB1 locus compared to the DAB3 locus. We identified significant associations between specific parasites and MHC alleles against a backdrop of generalist parasite prevalence. We also found that individuals with higher individual neutral heterozygosity and higher amino acid divergence between MHC alleles had lower parasite abundance and diversity. Taken together, these results suggest a role for fluctuating selection imposed by spatio-temporal variation in pathogen communities and divergent allele advantage in maintenance of high MHC polymorphism. Understanding the complex interaction of habitat, pathogens and immunity in protected species will require integrated experimental, genetic and field studies. © 2016 John Wiley & Sons Ltd.

  16. Pervasive epigenetic effects of Drosophila euchromatic transposable elements impact their evolution

    PubMed Central

    Lee, Yuh Chwen G; Karpen, Gary H

    2017-01-01

    Transposable elements (TEs) are widespread genomic parasites, and their evolution has remained a critical question in evolutionary genomics. Here, we study the relatively unexplored epigenetic impacts of TEs and provide the first genome-wide quantification of such effects in D. melanogaster and D. simulans. Surprisingly, the spread of repressive epigenetic marks (histone H3K9me2) to nearby DNA occurs at >50% of euchromatic TEs, and can extend up to 20 kb. This results in differential epigenetic states of genic alleles and, in turn, selection against TEs. Interestingly, the lower TE content in D. simulans compared to D. melanogaster correlates with stronger epigenetic effects of TEs and higher levels of host genetic factors known to promote epigenetic silencing. Our study demonstrates that the epigenetic effects of euchromatic TEs, and host genetic factors modulating such effects, play a critical role in the evolution of TEs both within and between species. DOI: http://dx.doi.org/10.7554/eLife.25762.001 PMID:28695823

  17. Multihost Bartonella parasites display covert host specificity even when transmitted by generalist vectors.

    PubMed

    Withenshaw, Susan M; Devevey, Godefroy; Pedersen, Amy B; Fenton, Andy

    2016-11-01

    Many parasites infect multiple sympatric host species, and there is a general assumption that parasite transmission between co-occurring host species is commonplace. Such between-species transmission could be key to parasite persistence within a disease reservoir and is consequently an emerging focus for disease control. However, while a growing body of theory indicates the potential importance of between-species transmission for parasite persistence, conclusive empirical evidence from natural communities is lacking, and the assumption that between-species transmission is inevitable may therefore be wrong. We investigated the occurrence of between-species transmission in a well-studied multihost parasite system. We identified the flea-borne Bartonella parasites infecting sympatric populations of Apodemus sylvaticus (wood mice) and Myodes glareolus (bank voles) in the UK and confirmed that several Bartonella species infect both rodent species. However, counter to previous knowledge, genetic characterization of these parasites revealed covert host specificity, where each host species is associated with a distinct assemblage of genetic variants, indicating that between-species transmission is rare. Limited between-species transmission could result from rare encounters between one host species and the parasites infecting another and/or host-parasite incompatibility. We investigated the occurrence of such encounter and compatibility barriers by identifying the flea species associated with each rodent host, and the Bartonella variants carried by individual fleas. We found that the majority of fleas were host-generalists but the assemblage of Bartonella variants in fleas tended to reflect the assemblage of Bartonella variants in the host species they were collected from, thus providing evidence of encounter barriers mediated by limited between-species flea transfer. However, we also found several fleas that were carrying variants never found in the host species from which

  18. Genetic variation and factors affecting the genetic structure of the lichenicolous fungus Heterocephalacria bachmannii (Filobasidiales, Basidiomycota)

    PubMed Central

    Laakso, Into; Stenroos, Soili

    2017-01-01

    Heterocephalacria bachmannii is a lichenicolous fungus that takes as hosts numerous lichen species of the genus Cladonia. In the present study we analyze whether the geographical distance, the host species or the host secondary metabolites determine the genetic structure of this parasite. To address the question, populations mainly from the Southern Europe, Southern Finland and the Azores were sampled. The specimens were collected from 20 different host species representing ten chemotypes. Three loci, ITS rDNA, LSU rDNA and mtSSU, were sequenced. The genetic structure was assessed by AMOVA, redundance analyses and Bayesian clustering methods. The results indicated that the host species and the host secondary metabolites are the most influential factors over the genetic structure of this lichenicolous fungus. In addition, the genetic structure of H. bachmannii was compared with that of one of its hosts, Cladonia rangiformis. The population structure of parasite and host were discordant. The contents in phenolic compounds and fatty acids of C. rangiformis were quantified in order to test whether it had some influence on the genetic structure of the species. But no correlation was found with the genetic clusters of H. bachmannii. PMID:29253026

  19. Hemosporidian blood parasites in seabirds—a comparative genetic study of species from Antarctic to tropical habitats

    NASA Astrophysics Data System (ADS)

    Quillfeldt, Petra; Martínez, Javier; Hennicke, Janos; Ludynia, Katrin; Gladbach, Anja; Masello, Juan F.; Riou, Samuel; Merino, Santiago

    2010-09-01

    Whereas some bird species are heavily affected by blood parasites in the wild, others reportedly are not. Seabirds, in particular, are often free from blood parasites, even in the presence of potential vectors. By means of polymerase chain reaction, we amplified a DNA fragment from the cytochrome b gene to detect parasites of the genera Plasmodium, Leucocytozoon, and Haemoproteus in 14 seabird species, ranging from Antarctica to the tropical Indian Ocean. We did not detect parasites in 11 of these species, including one Antarctic, four subantarctic, two temperate, and four tropical species. On the other hand, two subantarctic species, thin-billed prions Pachyptila belcheri and dolphin gulls Larus scoresbii, were found infected. One of 28 thin-billed prions had a Plasmodium infection whose DNA sequence was identical to lineage P22 of Plasmodium relictum, and one of 20 dolphin gulls was infected with a Haemoproteus lineage which appears phylogenetically clustered with parasites species isolated from passeriform birds such as Haemoproteus lanii, Haemoproteus magnus, Haemoproteus fringillae, Haemoproteus sylvae, Haemoproteus payevskyi, and Haemoproteus belopolskyi. In addition, we found a high parasite prevalence in a single tropical species, the Christmas Island frigatebird Fregata andrewsi, where 56% of sampled adults were infected with Haemoproteus. The latter formed a monophyletic group that includes a Haemoproteus line from Eastern Asian black-tailed gulls Larus crassirostris. Our results are in agreement with those showing that (a) seabirds are poor in hemosporidians and (b) latitude could be a determining factor to predict the presence of hemosporidians in birds. However, further studies should explore the relative importance of extrinsic and intrinsic factors on parasite prevalence, in particular using phylogenetically controlled comparative analyses, systematic sampling and screening of vectors, and within-species comparisons.

  20. Hemosporidian blood parasites in seabirds—a comparative genetic study of species from Antarctic to tropical habitats

    PubMed Central

    Martínez, Javier; Hennicke, Janos; Ludynia, Katrin; Gladbach, Anja; Masello, Juan F.; Riou, Samuel; Merino, Santiago

    2010-01-01

    Whereas some bird species are heavily affected by blood parasites in the wild, others reportedly are not. Seabirds, in particular, are often free from blood parasites, even in the presence of potential vectors. By means of polymerase chain reaction, we amplified a DNA fragment from the cytochrome b gene to detect parasites of the genera Plasmodium, Leucocytozoon, and Haemoproteus in 14 seabird species, ranging from Antarctica to the tropical Indian Ocean. We did not detect parasites in 11 of these species, including one Antarctic, four subantarctic, two temperate, and four tropical species. On the other hand, two subantarctic species, thin-billed prions Pachyptila belcheri and dolphin gulls Larus scoresbii, were found infected. One of 28 thin-billed prions had a Plasmodium infection whose DNA sequence was identical to lineage P22 of Plasmodium relictum, and one of 20 dolphin gulls was infected with a Haemoproteus lineage which appears phylogenetically clustered with parasites species isolated from passeriform birds such as Haemoproteus lanii, Haemoproteus magnus, Haemoproteus fringillae, Haemoproteus sylvae, Haemoproteus payevskyi, and Haemoproteus belopolskyi. In addition, we found a high parasite prevalence in a single tropical species, the Christmas Island frigatebird Fregata andrewsi, where 56% of sampled adults were infected with Haemoproteus. The latter formed a monophyletic group that includes a Haemoproteus line from Eastern Asian black-tailed gulls Larus crassirostris. Our results are in agreement with those showing that (a) seabirds are poor in hemosporidians and (b) latitude could be a determining factor to predict the presence of hemosporidians in birds. However, further studies should explore the relative importance of extrinsic and intrinsic factors on parasite prevalence, in particular using phylogenetically controlled comparative analyses, systematic sampling and screening of vectors, and within-species comparisons. PMID:20652673

  1. Ecology of malaria parasites infecting Southeast Asian macaques: evidence from cytochrome b sequences

    PubMed Central

    Putaporntip, Chaturong; Jongwutiwes, Somchai; Thongaree, Siriporn; Seethamchai, Sunee; Grynberg, Priscila; Hughes, Austin L.

    2010-01-01

    Although malaria parasites infecting non-human primates are important models for human malaria, little is known of the ecology of infection by these parasites in the wild. We extensively sequenced cytochrome b (cytb) of malaria parasites (Apicomplexa: Haemosporida) from free-living Southeast Asian monkeys Macaca nemestrina and M. fascicularis. The two most commonly observed taxa were P. inui and Hepatocystis sp., but certain other sequences did not cluster closely with any previously sequenced species. Most of the major clades of parasites were found in both Macaca species; and the two most commonly occurring parasite infected the two Macaca species at approximately equal levels. However, P. inui showed evidence of genetic differentiation between the populations infecting the two Macaca species, suggesting limited movement of this parasite among hosts. Moreover, coinfection with Plasmodium and Hepatocystis species occurred significantly less frequently than expected on the basis of the rates of infection with either taxon alone, suggesting the possibility of competitive exclusion. The results revealed unexpectedly complex communities of Plasmodium and Hepatocystis taxa infecting wild Southeast Asian monkeys. Parasite taxa differed with respect to both the frequency of between-host movement and their frequency of coinfection. PMID:20646216

  2. Genetic modification of Anopheles stephensi for resistance to multiple Plasmodium falciparum strains does not influence susceptibility to o'nyong'nyong virus or insecticides, or Wolbachia-mediated resistance to the malaria parasite.

    PubMed

    Pike, Andrew; Dimopoulos, George

    2018-01-01

    Mosquitoes that have been genetically engineered for resistance to human pathogens are a potential new tool for controlling vector-borne disease. However, genetic modification may have unintended off-target effects that could affect the mosquitoes' utility for disease control. We measured the resistance of five genetically modified Plasmodium-suppressing Anopheles stephensi lines to o'nyong'nyong virus, four classes of insecticides, and diverse Plasmodium falciparum field isolates and characterized the interactions between our genetic modifications and infection with the bacterium Wolbachia. The genetic modifications did not alter the mosquitoes' resistance to either o'nyong'nyong virus or insecticides, and the mosquitoes were equally resistant to all tested P. falciparum strains, regardless of Wolbachia infection status. These results indicate that mosquitoes can be genetically modified for resistance to malaria parasite infection and remain compatible with other vector-control measures without becoming better vectors for other pathogens.

  3. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria.

    PubMed

    El Salabi, Allaaeddin; Walsh, Timothey R; Chouchani, Chedly

    2013-05-01

    Infectious diseases due to Gram-negative bacteria are a leading cause of morbidity and mortality worldwide. Antimicrobial agents represent one major therapeutic tools implicated to treat these infections. The misuse of antimicrobial agents has resulted in the emergence of resistant strains of Gram-negatives in particular Enterobacteriaceae and non-fermenters; they have an effect not only on a human but on the public health when bacteria use the resistance mechanisms to spread in the hospital environment and to the community outside the hospitals by means of mobile genetic elements. Gram-negative bacteria have become increasingly resistant to antimicrobial agents. They have developed several mechanisms by which they can withstand to antimicrobials, these mechanisms include the production of Extended-spectrum β-lactamases (ESBLs) and carbapenemases, furthermore, Gram-negative bacteria are now capable of spreading such resistance between members of the family Enterobacteriaceae and non-fermenters using mobile genetic elements as vehicles for such resistance mechanisms rendering antibiotics useless. Therefore, addressing the issue of mechanisms of antimicrobial resistance is considered one of most urgent priorities. This review will help to illustrate different resistance mechanisms; ESBLs, carbapenemases encoded by genes carried by mobile genetic elements, which are used by Gram-negative bacteria to escape antimicrobial effect.

  4. Rethinking the extrinsic incubation period of malaria parasites.

    PubMed

    Ohm, Johanna R; Baldini, Francesco; Barreaux, Priscille; Lefevre, Thierry; Lynch, Penelope A; Suh, Eunho; Whitehead, Shelley A; Thomas, Matthew B

    2018-03-12

    The time it takes for malaria parasites to develop within a mosquito, and become transmissible, is known as the extrinsic incubation period, or EIP. EIP is a key parameter influencing transmission intensity as it combines with mosquito mortality rate and competence to determine the number of mosquitoes that ultimately become infectious. In spite of its epidemiological significance, data on EIP are scant. Current approaches to estimate EIP are largely based on temperature-dependent models developed from data collected on parasite development within a single mosquito species in the 1930s. These models assume that the only factor affecting EIP is mean environmental temperature. Here, we review evidence to suggest that in addition to mean temperature, EIP is likely influenced by genetic diversity of the vector, diversity of the parasite, and variation in a range of biotic and abiotic factors that affect mosquito condition. We further demonstrate that the classic approach of measuring EIP as the time at which mosquitoes first become infectious likely misrepresents EIP for a mosquito population. We argue for a better understanding of EIP to improve models of transmission, refine predictions of the possible impacts of climate change, and determine the potential evolutionary responses of malaria parasites to current and future mosquito control tools.

  5. Urbanization breaks up host-parasite interactions: a case study on parasite community ecology of rufous-bellied thrushes (Turdus rufiventris) along a rural-urban gradient.

    PubMed

    Calegaro-Marques, Cláudia; Amato, Suzana B

    2014-01-01

    Urbanization drastically alters natural ecosystems and the structure of their plant and animal communities. Whereas some species cope successfully with these environmental changes, others may go extinct. In the case of parasite communities, the expansion of urban areas has a critical effect by changing the availability of suitable substrates for the eggs or free-larval stages of those species with direct life cycles or for the range of hosts of those species with complex cycles. In this study we investigated the influence of the degree of urbanization and environmental heterogeneity on helminth richness, abundance and community structure of rufous-bellied thrushes (Turdus rufiventris) along a rural-urban gradient in the metropolitan region of Porto Alegre, State of Rio Grande do Sul, Brazil. This common native bird species of southern Brazil hosts 15 endoparasite species at the study region. A total of 144 thrushes were collected with mist nets at 11 sites. The degree of urbanization and environmental heterogeneity were estimated by quantifying five landscape elements: buildings, woodlands, fields, bare lands, and water. Landscape analyses were performed at two spatial scales (10 and 100 ha) taking into account home range size and the potential dispersal distance of thrushes and their prey (intermediate hosts). Mean parasite richness showed an inverse relationship with the degree of urbanization, but a positive relationship with environmental heterogeneity. Changes in the structure of component communities along the rural-urban gradient resulted from responses to the availability of particular landscape elements that are compatible with the parasites' life cycles. We found that the replacement of natural environments with buildings breaks up host-parasite interactions, whereas a higher environmental (substrate) diversity allows the survival of a wider range of intermediate hosts and vectors and their associated parasites.

  6. Parasites as biological tags in marine fisheries research: European Atlantic waters.

    PubMed

    Mackenzie, K; Hemmingsen, W

    2015-01-01

    Studies of the use of parasites as biological tags for stock identification and to follow migrations of marine fish, mammals and invertebrates in European Atlantic waters are critically reviewed and evaluated. The region covered includes the North, Baltic, Barents and White Seas plus Icelandic waters, but excludes the Mediterranean and Black Seas. Each fish species or ecological group of species is treated separately. More parasite tag studies have been carried out on Atlantic herring Clupea harengus than on any other species, while cod Gadus morhua have also been the subject of many studies. Other species that have been the subjects of more than one study are: blue whiting Micromesistius poutassou, whiting Merlangius merlangus, haddock Melanogrammus aeglefinus, Norway pout Trisopterus esmarkii, horse mackerel Trachurus trachurus and mackerel Scomber scombrus. Other species are dealt with under the general headings redfishes, flatfish, tunas, anadromous fish, elasmobranchs, marine mammals and invertebrates. A final section highlights how parasites can be, and have been, misused as biological tags, and how this can be avoided. It also reviews recent developments in methodology and parasite genetics, considers the potential effects of climate change on the distributions of both hosts and parasites, and suggests host-parasite systems that should reward further research.

  7. Genetic control of invasive plants species using selfish genetic elements

    PubMed Central

    Hodgins, Kathryn A; Rieseberg, Loren; Otto, Sarah P

    2009-01-01

    Invasive plants cause substantial environmental damage and economic loss. Here, we explore the possibility that a selfish genetic element found in plants called cytoplasmic male sterility (CMS) could be exploited for weed control. CMS is caused by mutations in the mitochondrial genome that sterilize male reproductive organs. We developed an analytical model and a spatial simulation to assess the use of CMS alleles to manage weed populations. Specifically, we examined how fertility, selfing, pollen limitation and dispersal influenced extinction rate and time until extinction in populations where CMS arises. We found that the introduction of a CMS allele can cause rapid population extinction, but only under a restricted set of conditions. Both models suggest that the CMS strategy will be appropriate for species where pollen limitation is negligible, inbreeding depression is high and the fertility advantage of females over hermaphrodites is substantial. In general, spatial structure did not have a strong influence on the simulation outcome, although low pollen dispersal and intermediate levels of seed dispersal tended to reduce population extinction rates. Given these results, the introduction of CMS alleles into a population of invasive plants probably represents an effective control method for only a select number of species. PMID:25567898

  8. ICESpy009, a Conjugative Genetic Element Carrying mef(E) in Streptococcus pyogenes

    PubMed Central

    Camilli, Romina; Rizzi, Ermanno; Pietrelli, Alessandro; De Bellis, Gianluca; Pantosti, Annalisa

    2016-01-01

    Efflux-mediated macrolide resistance due to mef(E) and mel, carried by the mega element, is common in Streptococcus pneumoniae, for which it was originally characterized, but it is rare in Streptococcus pyogenes. In S. pyogenes, mega was previously found to be enclosed in Tn2009, a composite genetic element of the Tn916 family containing tet(M) and conferring erythromycin and tetracycline resistance. In this study, S. pyogenes isolates containing mef(E), apparently not associated with other resistance determinants, were examined to characterize the genetic context of mega. By whole-genome sequencing of one isolate, MB56Spyo009, we identified a novel composite integrative and conjugative element (ICE) carrying mega, designated ICESpy009, belonging to the ICESa2603 family. ICESpy009 was 55 kb long, contained 61 putative open reading frames (ORFs), and was found to be integrated into hylA, a novel integration site for the ICESa2603 family. The modular organization of the ICE was similar to that of members of the ICESa2603 family carried by different streptococcal species. In addition, a novel cluster of accessory resistance genes was found inside a region that encloses mega. PCR mapping targeting ICESpy009 revealed the presence of a similar ICE in five other isolates under study. While in three isolates the integration site was the same as that of ICESpy009, in two isolates the ICE was integrated into rplL, the typical integration site of the ICESa2603 family. ICESpy009 was able to transfer macrolide resistance by conjugation to both S. pyogenes and S. pneumoniae, showing the first evidence of the transferability of mega from S. pyogenes. PMID:27067338

  9. Parasitic Cape honeybee workers, Apis mellifera capensis, evade policing

    NASA Astrophysics Data System (ADS)

    Martin, Stephen J.; Beekman, Madeleine; Wossler, Theresa C.; Ratnieks, Francis L. W.

    2002-01-01

    Relocation of the Cape honeybee, Apis mellifera capensis, by bee-keepers from southern to northern South Africa in 1990 has caused widespread death of managed African honeybee, A. m. scutellata, colonies. Apis mellifera capensis worker bees are able to lay diploid, female eggs without mating by means of automictic thelytoky (meiosis followed by fusion of two meiotic products to restore egg diploidy), whereas workers of other honeybee subspecies are able to lay only haploid, male eggs. The A. m. capensis workers, which are parasitizing and killing A. m. scutellata colonies in northern South Africa, are the asexual offspring of a single, original worker in which the small amount of genetic variation observed is due to crossing over during meiosis (P. Kryger, personal communication). Here we elucidate two principal mechanisms underlying this parasitism. Parasitic A. m. capensis workers activate their ovaries in host colonies that have a queen present (queenright colonies), and they lay eggs that evade being killed by other workers (worker policing)-the normal fate of worker-laid eggs in colonies with a queen. This unique parasitism by workers is an instance in which a society is unable to control the selfish actions of its members.

  10. Inequalities in body size among mermithid nematodes parasitizing earwigs.

    PubMed

    Maure, Fanny; Poulin, Robert

    2016-12-01

    Variation among body sizes of adult parasitic worms determines the relative genetic contribution of individuals to the next generation as it affects the effective parasite population size. Here, we investigate inequalities in body size and how they are affected by intensity of infection in Mermis nigrescens (Mermithidae: Nematoda) parasitizing the European earwig Forficula auricularia in New Zealand. Among a population of pre-adult worms prior to their emergence from the host, we observed only modest inequalities in body length; however, among worms sharing the same individual host, inequalities in body sizes decreased with increasing intensity of infection. Thus, the more worms occurred in a host, the more the second-longest, third-longest and even fourth-longest worms approached the longest worm in body length. This pattern, also known from another mermithid species, suggests that worms sharing the same host may have infected it roughly simultaneously, when the host encountered a clump of eggs in the environment. Thus, the life history and mode of infection of the parasite may explain the modest inequalities in the sizes achieved by pre-adult worms, which are lower than those reported for endoparasitic helminths of vertebrates.

  11. Role of nematode peptides and other small molecules in plant parasitism

    USDA-ARS?s Scientific Manuscript database

    Molecular, genetic, and biochemical studies are demonstrating an increasingly important role of peptide signaling in nematode parasitism of plants. To date, the majority of nematode-secreted peptides identified share similarity with plant CLAVATA3/ESR (CLE) peptides, but bioinformatics analyses of n...

  12. Arabidopsis and the Genetic Potential for the Phytoremediation of Toxic Elemental and Organic Pollutants

    PubMed Central

    Cobbett, Christopher S.; Meagher, Richard B.

    2002-01-01

    In a process called phytoremediation, plants can be used to extract, detoxify, and/or sequester toxic pollutants from soil, water, and air. Phytoremediation may become an essential tool in cleaning the environment and reducing human and animal exposure to potential carcinogens and other toxins. Arabidopsis has provided useful information about the genetic, physiological, and biochemical mechanisms behind phytoremediation, and it is an excellent model genetic organism to test foreign gene expression. This review focuses on Arabidopsis studies concerning: 1) the remediation of elemental pollutants; 2) the remediation of organic pollutants; and 3) the phytoremediation genome. Elemental pollutants include heavy metals and metalloids (e.g., mercury, lead, cadmium, arsenic) that are immutable. The general goal of phytoremediation is to extract, detoxify, and hyperaccumulate elemental pollutants in above-ground plant tissues for later harvest. A few dozen Arabidopsis genes and proteins that play direct roles in the remediation of elemental pollutants are discussed. Organic pollutants include toxic chemicals such as benzene, benzo(a)pyrene, polychlorinated biphenyls, trichloroethylene, trinitrotoluene, and dichlorodiphenyltrichloroethane. Phytoremediation of organic pollutants is focused on their complete mineralization to harmless products, however, less is known about the potential of plants to act on complex organic chemicals. A preliminary survey of the Arabidopsis genome suggests that as many as 700 genes encode proteins that have the capacity to act directly on environmental pollutants or could be modified to do so. The potential of the phytoremediation proteome to be used to reduce human exposure to toxic pollutants appears to be enormous and untapped. PMID:22303204

  13. Genetic diversity of Trichomonas vaginalis reinfection in HIV-positive women

    PubMed Central

    Conrad, Melissa D; Kissinger, Patricia; Schmidt, Norine; Martin, David H; Carlton, Jane M

    2013-01-01

    Objectives Recently developed genotyping tools allow better understanding of Trichomonas vaginalis population genetics and epidemiology. These tools have yet to be applied to T vaginalis collected from HIV+ populations, where understanding the interaction between the pathogens is of great importance due to the correlation between T vaginalis infection and HIV transmission. The objectives of the study were twofold: first, to compare the genetic diversity and population structure of T vaginalis collected from HIV+ women with parasites from reference populations; second, to use the genetic markers to perform a case study demonstrating the usefulness of these techniques in investigating the mechanisms of repeat infections. Methods Repository T vaginalis samples from a previously described treatment trial were genotyped at 11 microsatellite loci. Estimates of genetic diversity and population structure were determined using standard techniques and compared with previously reported estimates of global populations. Genotyping data were used in conjunction with behavioural data to evaluate mechanisms of repeat infections. Results T vaginalis from HIV+ women maintain many of the population genetic characteristics of parasites from global reference populations. Although there is evidence of reduced diversity and bias towards type 1 parasites in the HIV+ population, the populations share a two-type population structure and parasite haplotypes. Genotyping/behavioural data suggest that 36% (12/33) of repeat infections in HIV+ women can be attributed to treatment failure. Conclusions T vaginalis infecting HIV+ women is not genetically distinct from T vaginalis infecting reference populations. Information from genotyping can be valuable for understanding mechanisms of repeat infections. PMID:23694936

  14. Deciphering RNA Regulatory Elements Involved in the Developmental and Environmental Gene Regulation of Trypanosoma brucei.

    PubMed

    Gazestani, Vahid H; Salavati, Reza

    2015-01-01

    Trypanosoma brucei is a vector-borne parasite with intricate life cycle that can cause serious diseases in humans and animals. This pathogen relies on fine regulation of gene expression to respond and adapt to variable environments, with implications in transmission and infectivity. However, the involved regulatory elements and their mechanisms of actions are largely unknown. Here, benefiting from a new graph-based approach for finding functional regulatory elements in RNA (GRAFFER), we have predicted 88 new RNA regulatory elements that are potentially involved in the gene regulatory network of T. brucei. We show that many of these newly predicted elements are responsive to both transcriptomic and proteomic changes during the life cycle of the parasite. Moreover, we found that 11 of predicted elements strikingly resemble previously identified regulatory elements for the parasite. Additionally, comparison with previously predicted motifs on T. brucei suggested the superior performance of our approach based on the current limited knowledge of regulatory elements in T. brucei.

  15. Cultivation of parasites.

    PubMed

    Ahmed, Nishat Hussain

    2014-07-01

    Parasite cultivation techniques constitute a substantial segment of present-day study of parasites, especially of protozoa. Success in establishing in vitro and in vivo culture of parasites not only allows their physiology, behavior and metabolism to be studied dynamically, but also allows the nature of the antigenic molecules in the excretory and secretory products to be vigorously pursued and analyzed. The complex life-cycles of various parasites having different stages and host species requirements, particularly in the case of parasitic helminths, often make parasite cultivation an uphill assignment. Culturing of parasites depends on the combined expertise of all types of microbiological cultures. Different parasites require different cultivation conditions such as nutrients, temperature and even incubation conditions. Cultivation is an important method for diagnosis of many clinically important parasites, for example, Entamoeba histolytica, Trichomonas vaginalis, Leishmania spp., Strongyloides stercoralis and free-living amoebae. Many commercial systems like InPouch TV for T. vaginalis, microaerophilous stationary phase culture for Babesia bovis and Harada-Mori culture technique for larval-stage nematodes have been developed for the rapid diagnosis of the parasitic infections. Cultivation also has immense utility in the production of vaccines, testing vaccine efficacy, and antigen - production for obtaining serological reagents, detection of drug-resistance, screening of potential therapeutic agents and conducting epidemiological studies. Though in vitro cultivation techniques are used more often compared with in vivo techniques, the in vivo techniques are sometimes used for diagnosing some parasitic infections such as trypanosomiasis and toxoplasmosis. Parasite cultivation continues to be a challenging diagnostic option. This review provides an overview of intricacies of parasitic culture and update on popular methods used for cultivating parasites.

  16. Cultivation of parasites

    PubMed Central

    Ahmed, Nishat Hussain

    2014-01-01

    Parasite cultivation techniques constitute a substantial segment of present-day study of parasites, especially of protozoa. Success in establishing in vitro and in vivo culture of parasites not only allows their physiology, behavior and metabolism to be studied dynamically, but also allows the nature of the antigenic molecules in the excretory and secretory products to be vigorously pursued and analyzed. The complex life-cycles of various parasites having different stages and host species requirements, particularly in the case of parasitic helminths, often make parasite cultivation an uphill assignment. Culturing of parasites depends on the combined expertise of all types of microbiological cultures. Different parasites require different cultivation conditions such as nutrients, temperature and even incubation conditions. Cultivation is an important method for diagnosis of many clinically important parasites, for example, Entamoeba histolytica, Trichomonas vaginalis, Leishmania spp., Strongyloides stercoralis and free-living amoebae. Many commercial systems like InPouch TV for T. vaginalis, microaerophilous stationary phase culture for Babesia bovis and Harada-Mori culture technique for larval-stage nematodes have been developed for the rapid diagnosis of the parasitic infections. Cultivation also has immense utility in the production of vaccines, testing vaccine efficacy, and antigen - production for obtaining serological reagents, detection of drug-resistance, screening of potential therapeutic agents and conducting epidemiological studies. Though in vitro cultivation techniques are used more often compared with in vivo techniques, the in vivo techniques are sometimes used for diagnosing some parasitic infections such as trypanosomiasis and toxoplasmosis. Parasite cultivation continues to be a challenging diagnostic option. This review provides an overview of intricacies of parasitic culture and update on popular methods used for cultivating parasites. PMID

  17. Horizontal gene transfer and mobile genetic elements in marine systems.

    PubMed

    Sobecky, Patricia A; Hazen, Tracy H

    2009-01-01

    The pool of mobile genetic elements (MGE) in microbial communities consists of viruses, plasmids, and associated elements (insertion sequences, transposons, and integrons) that are either self-transmissible or use mobile plasmids and viruses as vehicles for their dissemination. This mobilome facilitates the horizontal transfer of genes that promote the evolution and adaptation of microbial communities. Efforts to characterize MGEs from microbial populations resident in a variety of ecological habitats have revealed a surprisingly novel and seemingly untapped biodiversity. To better understand the impact of horizontal gene transfer (HGT), as well as the agents that promote HGT in marine ecosystems and to determine whether or not environmental parameters can effect the composition and structure of the mobilome in marine microbial communities, information on the distribution, diversity, and ecological traits of the marine mobilome is presented. In this chapter we discuss recent insights gained from different methodological approaches used to characterize the biodiversity and ecology of MGE in marine environments and their contributions to HGT. In addition, we present case studies that highlight specific HGT examples in coastal, open-ocean, and deep-sea marine ecosystems.

  18. Mobile genetic elements, a key to microbial adaptation in extreme environments

    NASA Astrophysics Data System (ADS)

    van Houdt, Rob; Mijnendonckx, Kristel; Provoost, Ann; Monsieurs, Pieter; Mergeay, Max; Leys, Natalie

    To ensure well-being of the crew during manned spaceflight, continuous monitoring of different microbial contaminants in air, in water and on surfaces in the spacecraft is vital. Next to microorganisms originating mainly from human activity, strains from the closely related gen-era Cupriavidus and Ralstonia have been identified and isolated during numerous monitoring campaigns from different space-related environments. These strains have been found in the air of the Mars Exploration Rover assembly room, on the surface of the Mars Odyssey Orbiter and in different water sources from the International Space Station, Shuttle and Mir space station. In previous studies, we investigated the response of the model bacterium Cupriavidus metallidurans CH34 when cultured in the international space station (ISS) and space gravity and radiation simulation facilities, to understand it's ways to adapt to space flight conditions. It was also demonstrated that genetic rearrangements due to the movement of IS (insertion sequence) elements, enabled CH34 to adapt to toxic zinc concentrations, in space flight and on ground. In this study, we screened the full genome sequence of C. metallidurans CH34 for the presence of mobile genetic elements (MGEs), with the purpose to identified their putative role in adaptation to the new environments. Eleven genomic islands (GI) were identified in chro-mosome 1, three on the native plasmid pMOL28 and two on the native plasmid pMOL30. On the plasmids pMOL28 and pMOL30, all genes involved in the response to metals were located within GIs. Three of the GIs on chromosome 1 contained genes involved in the response to metals. Three GIs (CMGI-2, -3 and -4) on chromosome 1 belonged to the Tn4371 family, with CMGI-2 containing at least 25 genes involved in the degradation of toluene corresponding to CH34's ability to grow at expense of toluene, benzene or xylene as sole carbon source. CMGI-3 sheltered accessory genes involved in CO2 fixation and

  19. Genetic and immunological comparison of the cladoceran parasite Pasteuria ramosa with the nematode parasite Pasteuria penetrans.

    PubMed

    Schmidt, Liesbeth M; Mouton, Laurence; Nong, Guang; Ebert, Dieter; Preston, James F

    2008-01-01

    Pasteuria penetrans, an obligate endospore-forming parasite of Meloidogyne spp. (root knot nematodes), has been identified as a promising agent for biocontrol of these destructive agricultural crop pests. Pasteuria ramosa, an obligate parasite of water fleas (Daphnia spp.), has been shown to modulate cladoceran populations in natural ecosystems. Selected sporulation genes and an epitope associated with the spore envelope of these related species were compared. The sigE and spoIIAA/spoIIAB genes differentiate the two species to a greater extent than 16S rRNA and may serve as probes to differentiate the species. Single-nucleotide variations were observed in several conserved genes of five distinct populations of P. ramosa, and while most of these variations are silent single-nucleotide polymorphisms, a few result in conservative amino acid substitutions. A monoclonal antibody directed against an adhesin epitope present on P. penetrans P20 endospores, previously determined to be specific for Pasteuria spp. associated with several phytopathogenic nematodes, also detects an epitope associated with P. ramosa endospores. Immunoblotting provided patterns that differentiate P. ramosa from other Pasteuria spp. This monoclonal antibody thus provides a probe with which to detect and discriminate endospores of different Pasteuria spp. The presence of a shared adhesin epitope in two species with such ecologically distant hosts suggests that there is an ancient and ecologically significant recognition process in these endospore-forming bacilli that contributes to the virulence of both species in their respective hosts.

  20. Genetic and Immunological Comparison of the Cladoceran Parasite Pasteuria ramosa with the Nematode Parasite Pasteuria penetrans▿

    PubMed Central

    Schmidt, Liesbeth M.; Mouton, Laurence; Nong, Guang; Ebert, Dieter; Preston, James F.

    2008-01-01

    Pasteuria penetrans, an obligate endospore-forming parasite of Meloidogyne spp. (root knot nematodes), has been identified as a promising agent for biocontrol of these destructive agricultural crop pests. Pasteuria ramosa, an obligate parasite of water fleas (Daphnia spp.), has been shown to modulate cladoceran populations in natural ecosystems. Selected sporulation genes and an epitope associated with the spore envelope of these related species were compared. The sigE and spoIIAA/spoIIAB genes differentiate the two species to a greater extent than 16S rRNA and may serve as probes to differentiate the species. Single-nucleotide variations were observed in several conserved genes of five distinct populations of P. ramosa, and while most of these variations are silent single-nucleotide polymorphisms, a few result in conservative amino acid substitutions. A monoclonal antibody directed against an adhesin epitope present on P. penetrans P20 endospores, previously determined to be specific for Pasteuria spp. associated with several phytopathogenic nematodes, also detects an epitope associated with P. ramosa endospores. Immunoblotting provided patterns that differentiate P. ramosa from other Pasteuria spp. This monoclonal antibody thus provides a probe with which to detect and discriminate endospores of different Pasteuria spp. The presence of a shared adhesin epitope in two species with such ecologically distant hosts suggests that there is an ancient and ecologically significant recognition process in these endospore-forming bacilli that contributes to the virulence of both species in their respective hosts. PMID:17933927

  1. Identification of Loci Controlling Restriction of Parasite Growth in Experimental Taenia crassiceps Cysticercosis

    PubMed Central

    Fortin, Anny; Sciutto-Conde, Edda; Fragoso-González, Gladis; Gros, Philippe; Aguilar-Delfin, Irma

    2011-01-01

    Human neurocysticercosis (NC) caused by Taenia solium is a parasitic disease of the central nervous system that is endemic in many developing countries. In this study, a genetic approach using the murine intraperitoneal cysticercosis caused by the related cestode Taenia crassiceps was employed to identify host factors that regulate the establishment and proliferation of the parasite. A/J mice are permissive to T. crassiceps infection while C57BL/6J mice (B6) are comparatively restrictive, with a 10-fold difference in numbers of peritoneal cysticerci recovered 30 days after infection. The genetic basis of this inter-strain difference was explored using 34 AcB/BcA recombinant congenic strains derived from A/J and B6 progenitors, that were phenotyped for T. crassiceps replication. In agreement with their genetic background, most AcB strains (A/J-derived) were found to be permissive to infection while most BcA strains (B6-derived) were restrictive with the exception of a few discordant strains, together suggesting a possible simple genetic control. Initial haplotype association mapping using >1200 informative SNPs pointed to linkages on chromosomes 2 (proximal) and 6 as controlling parasite replication in the AcB/BcA panel. Additional linkage analysis by genome scan in informative [AcB55xDBA/2]F1 and F2 mice (derived from the discordant AcB55 strain), confirmed the effect of chromosome 2 on parasite replication, and further delineated a major locus (LOD = 4.76, p<0.01; peak marker D2Mit295, 29.7 Mb) that we designate Tccr1 (T. crassiceps cysticercosis restrictive locus 1). Resistance alleles at Tccr1 are derived from AcB55 and are inherited in a dominant fashion. Scrutiny of the minimal genetic interval reveals overlap of Tccr1 with other host resistance loci mapped to this region, most notably the defective Hc/C5 allele which segregates both in the AcB/BcA set and in the AcB55xDBA/2 cross. These results strongly suggest that the complement component 5 (C5) plays a

  2. Genetic Diversity and Population Structure of Theileria annulata in Oman

    PubMed Central

    Al-Hamidhi, Salama; H. Tageldin, Mohammed.; Weir, William; Al-Fahdi, Amira; Johnson, Eugene H.; Bobade, Patrick; Alqamashoui, Badar; Beja-Pereira, Albano; Thompson, Joanne; Kinnaird, Jane; Shiels, Brian; Tait, Andy; Babiker, Hamza

    2015-01-01

    Background Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle. Methods Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman. Results We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST

  3. Genetic Diversity and Population Structure of Theileria annulata in Oman.

    PubMed

    Al-Hamidhi, Salama; H Tageldin, Mohammed; Weir, William; Al-Fahdi, Amira; Johnson, Eugene H; Bobade, Patrick; Alqamashoui, Badar; Beja-Pereira, Albano; Thompson, Joanne; Kinnaird, Jane; Shiels, Brian; Tait, Andy; Babiker, Hamza

    2015-01-01

    Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle. Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman. We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST' = 0.075, θ = 0.07) were

  4. Genetic Surveillance Detects Both Clonal and Epidemic Transmission of Malaria following Enhanced Intervention in Senegal

    PubMed Central

    Séne, Papa Diogoye; Park, Danny C.; Neafsey, Daniel E.; Schaffner, Stephen F.; Hamilton, Elizabeth J.; Lukens, Amanda K.; Van Tyne, Daria; Mboup, Souleymane; Sabeti, Pardis C.; Ndiaye, Daouda; Wirth, Dyann F.

    2013-01-01

    Using parasite genotyping tools, we screened patients with mild uncomplicated malaria seeking treatment at a clinic in Thiès, Senegal, from 2006 to 2011. We identified a growing frequency of infections caused by genetically identical parasite strains, coincident with increased deployment of malaria control interventions and decreased malaria deaths. Parasite genotypes in some cases persisted clonally across dry seasons. The increase in frequency of genetically identical parasite strains corresponded with decrease in the probability of multiple infections. Further, these observations support evidence of both clonal and epidemic population structures. These data provide the first evidence of a temporal correlation between the appearance of identical parasite types and increased malaria control efforts in Africa, which here included distribution of insecticide treated nets (ITNs), use of rapid diagnostic tests (RDTs) for malaria detection, and deployment of artemisinin combination therapy (ACT). Our results imply that genetic surveillance can be used to evaluate the effectiveness of disease control strategies and assist a rational global malaria eradication campaign. PMID:23593309

  5. Is parasite pressure a driver of chemical cue diversity in ants?

    PubMed Central

    Martin, Stephen J.; Helanterä, Heikki; Drijfhout, Falko P.

    2011-01-01

    Parasites and pathogens are possibly key evolutionary forces driving recognition systems. However, empirical evidence remains sparse. The ubiquitous pioneering ant Formica fusca is exploited by numerous socially parasitic ant species. We compared the chemical cue diversity, egg and nest mate recognition abilities in two Finnish and two UK populations where parasite pressure is high or absent, respectively. Finnish populations had excellent egg and nest mate discrimination abilities, which were lost in the UK populations. The loss of discrimination behaviour correlates with a loss in key recognition compounds (C25-dimethylalkanes). This was not owing to genetic drift or different ecotypes since neutral gene diversity was the same in both countries. Furthermore, it is known that the cuticular hydrocarbon profiles of non-host ant species remain stable between Finland and the UK. The most parsimonious explanation for the striking difference in the cue diversity (number of C25-dimethylalkanes isomers) between the UK and Finland populations is the large differences in parasite pressure experienced by F. fusca in the two countries. These results have strong parallels with bird (cuckoo) studies and support the hypothesis that parasites are driving recognition cue diversity. PMID:20610426

  6. Gastropod-Borne Helminths: A Look at the Snail-Parasite Interplay.

    PubMed

    Giannelli, Alessio; Cantacessi, Cinzia; Colella, Vito; Dantas-Torres, Filipe; Otranto, Domenico

    2016-03-01

    More than 300 million people suffer from a range of diseases caused by gastropod-borne helminths, predominantly flatworms and roundworms, whose life cycles are characterized by a diversified ecology and epidemiology. Despite the plethora of data on these parasites, very little is known of the fundamental biology of their gastropod intermediate hosts, or of the interactions occurring at the snail-helminth interface. In this article, we focus on schistosomes and metastrongylids of human and animal significance, and review current knowledge of snail-parasite interplay. Future efforts aimed at elucidating key elements of the biology and ecology of the snail intermediate hosts, together with an improved understanding of snail-parasite interactions, will aid to identify, plan, and develop new strategies for disease control focused on gastropod intermediate hosts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Does the parasite-mediated selection drive the MHC class IIB diversity in wild populations of European chub (Squalius cephalus)?

    PubMed

    Seifertová, Mária; Jarkovský, Jiří; Šimková, Andrea

    2016-04-01

    The genes of major histocompatibility complex (MHC) provide an excellent opportunity to study host-parasite relationships because they are expected to evolve in response to parasites and variation in parasite communities. In this study, we investigated the potential role of parasite-mediated selection acting on MHC class IIB (DAB) genes in European chub (Squalius cephalus) natural populations. We found significant differences between populations in metazoan parasites, neutral and adaptive genetic diversities. The analyses based on pairwise data revealed that populations with dissimilar MHC allelic profiles were geographically distant populations with significantly different diversity in microsatellites and a dissimilar composition of parasite communities. The results from the generalized estimating equations method (GEE) on the level of individuals revealed that metazoan parasite load in European chub was influenced by the diversity of DAB alleles as well as by the diversity of neutral genetic markers and host traits reflecting condition and immunocompetence. The multivariate co-inertia analysis showed specific associations between DAB alleles and parasite species. DAB1-like alleles were more involved in associations with ectoparasites, while DAB3-like alleles were positively associated with endoparasites which could suggest potential differences between DAB genes caused by different selection pressure. Our study revealed that parasite-mediated selection is not the only variable affecting MHC diversity in European chub; however, we strongly support the role of neutral processes as the main driver of DAB diversity across populations. In addition, our study contributes to the understanding of the evolution of MHC genes in wild living fish.

  8. Self-mating in the definitive host potentiates clonal outbreaks of the apicomplexan parasites Sarcocystis neurona and Toxoplasma gondii.

    PubMed

    Wendte, Jered M; Miller, Melissa A; Lambourn, Dyanna M; Magargal, Spencer L; Jessup, David A; Grigg, Michael E

    2010-12-23

    Tissue-encysting coccidia, including Toxoplasma gondii and Sarcocystis neurona, are heterogamous parasites with sexual and asexual life stages in definitive and intermediate hosts, respectively. During its sexual life stage, T. gondii reproduces either by genetic out-crossing or via clonal amplification of a single strain through self-mating. Out-crossing has been experimentally verified as a potent mechanism capable of producing offspring possessing a range of adaptive and virulence potentials. In contrast, selfing and other life history traits, such as asexual expansion of tissue-cysts by oral transmission among intermediate hosts, have been proposed to explain the genetic basis for the clonal population structure of T. gondii. In this study, we investigated the contributing roles self-mating and sexual recombination play in nature to maintain clonal population structures and produce or expand parasite clones capable of causing disease epidemics for two tissue encysting parasites. We applied high-resolution genotyping against strains isolated from a T. gondii waterborne outbreak that caused symptomatic disease in 155 immune-competent people in Brazil and a S. neurona outbreak that resulted in a mass mortality event in Southern sea otters. In both cases, a single, genetically distinct clone was found infecting outbreak-exposed individuals. Furthermore, the T. gondii outbreak clone was one of several apparently recombinant progeny recovered from the local environment. Since oocysts or sporocysts were the infectious form implicated in each outbreak, the expansion of the epidemic clone can be explained by self-mating. The results also show that out-crossing preceded selfing to produce the virulent T. gondii clone. For the tissue encysting coccidia, self-mating exists as a key adaptation potentiating the epidemic expansion and transmission of newly emerged parasite clones that can profoundly shape parasite population genetic structures or cause devastating disease

  9. Self-Mating in the Definitive Host Potentiates Clonal Outbreaks of the Apicomplexan Parasites Sarcocystis neurona and Toxoplasma gondii

    PubMed Central

    Wendte, Jered M.; Miller, Melissa A.; Lambourn, Dyanna M.; Magargal, Spencer L.; Jessup, David A.; Grigg, Michael E.

    2010-01-01

    Tissue-encysting coccidia, including Toxoplasma gondii and Sarcocystis neurona, are heterogamous parasites with sexual and asexual life stages in definitive and intermediate hosts, respectively. During its sexual life stage, T. gondii reproduces either by genetic out-crossing or via clonal amplification of a single strain through self-mating. Out-crossing has been experimentally verified as a potent mechanism capable of producing offspring possessing a range of adaptive and virulence potentials. In contrast, selfing and other life history traits, such as asexual expansion of tissue-cysts by oral transmission among intermediate hosts, have been proposed to explain the genetic basis for the clonal population structure of T. gondii. In this study, we investigated the contributing roles self-mating and sexual recombination play in nature to maintain clonal population structures and produce or expand parasite clones capable of causing disease epidemics for two tissue encysting parasites. We applied high-resolution genotyping against strains isolated from a T. gondii waterborne outbreak that caused symptomatic disease in 155 immune-competent people in Brazil and a S. neurona outbreak that resulted in a mass mortality event in Southern sea otters. In both cases, a single, genetically distinct clone was found infecting outbreak-exposed individuals. Furthermore, the T. gondii outbreak clone was one of several apparently recombinant progeny recovered from the local environment. Since oocysts or sporocysts were the infectious form implicated in each outbreak, the expansion of the epidemic clone can be explained by self-mating. The results also show that out-crossing preceded selfing to produce the virulent T. gondii clone. For the tissue encysting coccidia, self-mating exists as a key adaptation potentiating the epidemic expansion and transmission of newly emerged parasite clones that can profoundly shape parasite population genetic structures or cause devastating disease

  10. The role of epigenetics in host-parasite coevolution: lessons from the model host insects Galleria mellonella and Tribolium castaneum.

    PubMed

    Vilcinskas, Andreas

    2016-08-01

    Recent studies addressing experimental host-parasite coevolution and transgenerational immune priming in insects provide evidence for heritable shifts in host resistance or parasite virulence. These rapid reciprocal adaptations may thus be transferred to offspring generations by either genetic changes or mechanisms that do not involve changes in the germline DNA sequence. Epigenetic inheritance refers to changes in gene expression that are heritable across generations and mediated by epigenetic modifications passed from parents to offspring. Highlighting the role of epigenetics in host-parasite coevolution, this review discusses the involvement of DNA methylation, histone acetylation/deacetylation and microRNAs in the interactions between bacterial or fungal parasites and model host insects such as the greater wax moth Galleria mellonella and the red flour beetle Tribolium castaneum. These epigenetic mechanisms are thought to participate in generation-spanning transcriptional reprogramming in the host insect, often linking immunity with developmentally related gene expression and contributing to the heredity of acquired adaptations. It is proposed that the interactions during host-parasite coevolution can therefore be expanded beyond reciprocal genetic changes to include reciprocal epigenetic changes. Epigenetics is thus a promising and prospering field in the context of host-parasite coevolution. Copyright © 2016 The Author. Published by Elsevier GmbH.. All rights reserved.

  11. Distinct Lineages of Schistocephalus Parasites in Threespine and Ninespine Stickleback Hosts Revealed by DNA Sequence Analysis

    PubMed Central

    Nishimura, Nicole; Heins, David C.; Andersen, Ryan O.; Barber, Iain; Cresko, William A.

    2011-01-01

    Parasitic interactions are often part of complex networks of interspecific relationships that have evolved in biological communities. Despite many years of work on the evolution of parasitism, the likelihood that sister taxa of parasites can co-evolve with their hosts to specifically infect two related lineages, even when those hosts occur sympatrically, is still unclear. Furthermore, when these specific interactions occur, the molecular and physiological basis of this specificity is still largely unknown. The presence of these specific parasitic relationships can now be tested using molecular markers such as DNA sequence variation. Here we test for specific parasitic relationships in an emerging host-parasite model, the stickleback-Schistocephalus system. Threespine and ninespine stickleback fish are intermediate hosts for Schistocephalus cestode parasites that are phenotypically very similar and have nearly identical life cycles through plankton, stickleback, and avian hosts. We analyzed over 2000 base pairs of COX1 and NADH1 mitochondrial DNA sequences in 48 Schistocephalus individuals collected from threespine and ninespine stickleback hosts from disparate geographic regions distributed across the Northern Hemisphere. Our data strongly support the presence of two distinct clades of Schistocephalus, each of which exclusively infects either threespine or ninespine stickleback. These clades most likely represent different species that diverged soon after the speciation of their stickleback hosts. In addition, genetic structuring exists among Schistocephalus taken from threespine stickleback hosts from Alaska, Oregon and Wales, although it is much less than the divergence between hosts. Our findings emphasize that biological communities may be even more complex than they first appear, and beg the question of what are the ecological, physiological, and genetic factors that maintain the specificity of the Schistocephalus parasites and their stickleback hosts. PMID

  12. Identification of genetic elements in metabolism by high-throughput mouse phenotyping.

    PubMed

    Rozman, Jan; Rathkolb, Birgit; Oestereicher, Manuela A; Schütt, Christine; Ravindranath, Aakash Chavan; Leuchtenberger, Stefanie; Sharma, Sapna; Kistler, Martin; Willershäuser, Monja; Brommage, Robert; Meehan, Terrence F; Mason, Jeremy; Haselimashhadi, Hamed; Hough, Tertius; Mallon, Ann-Marie; Wells, Sara; Santos, Luis; Lelliott, Christopher J; White, Jacqueline K; Sorg, Tania; Champy, Marie-France; Bower, Lynette R; Reynolds, Corey L; Flenniken, Ann M; Murray, Stephen A; Nutter, Lauryl M J; Svenson, Karen L; West, David; Tocchini-Valentini, Glauco P; Beaudet, Arthur L; Bosch, Fatima; Braun, Robert B; Dobbie, Michael S; Gao, Xiang; Herault, Yann; Moshiri, Ala; Moore, Bret A; Kent Lloyd, K C; McKerlie, Colin; Masuya, Hiroshi; Tanaka, Nobuhiko; Flicek, Paul; Parkinson, Helen E; Sedlacek, Radislav; Seong, Je Kyung; Wang, Chi-Kuang Leo; Moore, Mark; Brown, Steve D; Tschöp, Matthias H; Wurst, Wolfgang; Klingenspor, Martin; Wolf, Eckhard; Beckers, Johannes; Machicao, Fausto; Peter, Andreas; Staiger, Harald; Häring, Hans-Ulrich; Grallert, Harald; Campillos, Monica; Maier, Holger; Fuchs, Helmut; Gailus-Durner, Valerie; Werner, Thomas; Hrabe de Angelis, Martin

    2018-01-18

    Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes remain functionally completely unannotated. We compared human orthologues of these uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated with metabolic disease. We further identify common regulatory elements in promoters of candidate genes. As each regulatory element is composed of several transcription factor binding sites, our data reveal an extensive metabolic phenotype-associated network of co-regulated genes. Our systematic mouse phenotype analysis thus paves the way for full functional annotation of the genome.

  13. Optimization of the sources in local hyperthermia using a combined finite element-genetic algorithm method.

    PubMed

    Siauve, N; Nicolas, L; Vollaire, C; Marchal, C

    2004-12-01

    This article describes an optimization process specially designed for local and regional hyperthermia in order to achieve the desired specific absorption rate in the patient. It is based on a genetic algorithm coupled to a finite element formulation. The optimization method is applied to real human organs meshes assembled from computerized tomography scans. A 3D finite element formulation is used to calculate the electromagnetic field in the patient, achieved by radiofrequency or microwave sources. Space discretization is performed using incomplete first order edge elements. The sparse complex symmetric matrix equation is solved using a conjugate gradient solver with potential projection pre-conditionning. The formulation is validated by comparison of calculated specific absorption rate distributions in a phantom to temperature measurements. A genetic algorithm is used to optimize the specific absorption rate distribution to predict the phases and amplitudes of the sources leading to the best focalization. The objective function is defined as the specific absorption rate ratio in the tumour and healthy tissues. Several constraints, regarding the specific absorption rate in tumour and the total power in the patient, may be prescribed. Results obtained with two types of applicators (waveguides and annular phased array) are presented and show the faculties of the developed optimization process.

  14. Development and Assessment of Transgenic Rodent Parasites for the Preclinical Evaluation of Malaria Vaccines.

    PubMed

    Espinosa, Diego A; Radtke, Andrea J; Zavala, Fidel

    2016-01-01

    Rodent transgenic parasites are useful tools for the preclinical evaluation of malaria vaccines. Over the last decade, several studies have reported the development of transgenic rodent parasites expressing P. falciparum antigens for the assessment of vaccine-induced immune responses, which traditionally have been limited to in vitro assays. However, the genetic manipulation of rodent Plasmodium species can have detrimental effects on the parasite's infectivity and development. In this chapter, we present a few guidelines for designing transfection plasmids, which should improve transfection efficiency and facilitate the generation of functional transgenic parasite strains. In addition, we provide a transfection protocol for the development of transgenic P. berghei parasites as well as practical methods to assess the viability and infectivity of these newly generated strains throughout different stages of their life cycle. These techniques should allow researchers to develop novel rodent malaria parasites expressing antigens from human malaria species and to determine whether these transgenic strains are fully infectious and thus represent stringent platforms for the in vivo evaluation of malaria vaccine candidates.

  15. Mating system and extra-pair paternity in the Fan-tailed Gerygone Gerygone flavolateralis in relation to parasitism by the Shining Bronze-cuckoo Chalcites lucidus

    PubMed Central

    Kuehn, Ralph; Gazda, Małgorzata A.; Sato, Nozomu J.; Okahisa, Yuji; Tanaka, Keita D.; Attisano, Alfredo; Gula, Roman; Ueda, Keisuke; Theuerkauf, Jörn

    2018-01-01

    Extra-pair copulation can increase genetic diversity and offspring fitness. However, it may also increase intra-nest variability in avian hosts of brood parasites, which can decrease the discrimination ability of host parents towards the parasite. In New Caledonia, the Fan-tailed Gerygone (Gerygone flavolateralis), which is parasitized by the Shining Bronze-cuckoo (Chalcites lucidus), has two nestling morphs, dark and bright, that can occur in monomorphic and polymorphic broods. Gerygone parents recognize and eject parasite nestlings from their nest, but the presence of polymorphic broods may increase the chances of recognition errors. Using 17 microsatellite markers, we investigated the mating system of the Fan-tailed Gerygone to understand the mechanisms underlying nestling polymorphism. We hypothesised that extra-pair copulations would lead to a higher proportion of polymorphic broods caused by higher genetic variability, thus creating a trade-off between genetic benefits and host defence reliability. Extra-pair paternity occurred in 6 of 36 broods, which resulted in 6 of 69 offspring sired by extra-pair males. Broods with and without mixed paternity were comparably often parasitized. Extra-pair paternity did not influence the proportions of bright, dark and polymorphic broods. Compared to bright siblings in polymorphic broods, dark nestlings tended to have lower heterozygosity, particularly in loci associated with skin coloration. The results also suggested that there is no obstacle for genetic exchange between individuals from forest and savannah, possibly due to dispersal of offspring. We conclude that the Fan-tailed Gerygone is a socially monogamous species with a low rate of extra-pair paternity compared to closely related species. Extra-pair paternity increased offspring genetic variability without measurable associated costs by brood parasitism. The results highlight the importance of studying host mating systems to assess the trade-offs between host

  16. Chemical genetics and strigolactone perception

    PubMed Central

    Lumba, Shelley; Bunsick, Michael; McCourt, Peter

    2017-01-01

    Strigolactones (SLs) are a collection of related small molecules that act as hormones in plant growth and development. Intriguingly, SLs also act as ecological communicators between plants and mycorrhizal fungi and between host plants and a collection of parasitic plant species. In the case of mycorrhizal fungi, SLs exude into the soil from host roots to attract fungal hyphae for a beneficial interaction. In the case of parasitic plants, however, root-exuded SLs cause dormant parasitic plant seeds to germinate, thereby allowing the resulting seedling to infect the host and withdraw nutrients. Because a laboratory-friendly model does not exist for parasitic plants, researchers are currently using information gleaned from model plants like Arabidopsis in combination with the chemical probes developed through chemical genetics to understand SL perception of parasitic plants. This work first shows that understanding SL signaling is useful in developing chemical probes that perturb SL perception. Second, it indicates that the chemical space available to probe SL signaling in both model and parasitic plants is sizeable. Because these parasitic pests represent a major concern for food insecurity in the developing world, there is great need for chemical approaches to uncover novel lead compounds that perturb parasitic plant infections. PMID:28690842

  17. Genetics and evolution of triatomines: from phylogeny to vector control

    PubMed Central

    Gourbière, S; Dorn, P; Tripet, F; Dumonteil, E

    2012-01-01

    Triatomines are hemipteran bugs acting as vectors of the protozoan parasite Trypanosoma cruzi. This parasite causes Chagas disease, one of the major parasitic diseases in the Americas. Studies of triatomine genetics and evolution have been particularly useful in the design of rational vector control strategies, and are reviewed here. The phylogeography of several triatomine species is now slowly emerging, and the struggle to reconcile the phenotypic, phylogenetic, ecological and epidemiological species concepts makes for a very dynamic field. Population genetic studies using different markers indicate a wide range of population structures, depending on the triatomine species, ranging from highly fragmented to mobile, interbreeding populations. Triatomines transmit T. cruzi in the context of complex interactions between the insect vectors, their bacterial symbionts and the parasites; however, an integrated view of the significance of these interactions in triatomine biology, evolution and in disease transmission is still lacking. The development of novel genetic markers, together with the ongoing sequencing of the Rhodnius prolixus genome and more integrative studies, will provide key tools to expanding our understanding of these important insect vectors and allow the design of improved vector control strategies. PMID:21897436

  18. ICESpy009, a Conjugative Genetic Element Carrying mef(E) in Streptococcus pyogenes.

    PubMed

    Del Grosso, Maria; Camilli, Romina; Rizzi, Ermanno; Pietrelli, Alessandro; De Bellis, Gianluca; Pantosti, Annalisa

    2016-07-01

    Efflux-mediated macrolide resistance due to mef(E) and mel, carried by the mega element, is common in Streptococcus pneumoniae, for which it was originally characterized, but it is rare in Streptococcus pyogenes In S. pyogenes, mega was previously found to be enclosed in Tn2009, a composite genetic element of the Tn916 family containing tet(M) and conferring erythromycin and tetracycline resistance. In this study, S. pyogenes isolates containing mef(E), apparently not associated with other resistance determinants, were examined to characterize the genetic context of mega. By whole-genome sequencing of one isolate, MB56Spyo009, we identified a novel composite integrative and conjugative element (ICE) carrying mega, designated ICESpy009, belonging to the ICESa2603 family. ICESpy009 was 55 kb long, contained 61 putative open reading frames (ORFs), and was found to be integrated into hylA, a novel integration site for the ICESa2603 family. The modular organization of the ICE was similar to that of members of the ICESa2603 family carried by different streptococcal species. In addition, a novel cluster of accessory resistance genes was found inside a region that encloses mega. PCR mapping targeting ICESpy009 revealed the presence of a similar ICE in five other isolates under study. While in three isolates the integration site was the same as that of ICESpy009, in two isolates the ICE was integrated into rplL, the typical integration site of the ICESa2603 family. ICESpy009 was able to transfer macrolide resistance by conjugation to both S. pyogenes and S. pneumoniae, showing the first evidence of the transferability of mega from S. pyogenes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Molecular characterization of muscle-parasitizing didymozoid from a chub mackerel, Scomber japonicus.

    PubMed

    Abe, Niichiro; Okamoto, Mitsuru

    2015-09-01

    Didymozoids found in the muscles of marine fish are almost always damaged because they are usually found after being sliced. Therefore, identifying muscle-parasitizing didymozoids is difficult because of the difficulty in collecting non-damaged worms and observing their organs as key points for morphological identification. Moreover, muscle-parasitizing didymozoids are not easily found because they parasitize at the trunk muscles. Therefore, muscle-parasitizing didymozoid classification has not progressed because there are few opportunities to detect them. Our recent report was the first to describe the usefulness of sequencing analysis for discrimination among muscle-parasitizing didymozoids. Recently, we found a didymozoid in the trunk muscle of a chub mackerel Scomber japonicus. The present study genetically compares the present isolate with other muscle-parasitizing didymozoids. The present isolate differs markedly from the previously unidentified didymozoid from an Atlantic mackerel S. scombrus by phylogenetic analysis of 18S rDNA. It also differs from other muscle-parasitizing didymozoids from other host species based on phylogenetic analyses of 18S, 28S rDNAs, and coxI loci. These results suggest that sequencing analysis is useful for the discrimination of muscle-parasitizing didymozoids. Combining the present data with earlier data for sequencing analysis, muscle-parasitizing didymozoids from seven marine fish species were classified as seven species. We proposed appellations for six distinct muscle-parasitizing didymozoids for future analysis: sweetlips fish type from Diagramma pictum and Plectorhinchus cinctus, red sea bream type from Pagrus major, flying fish type from Cypselurus heterurus, Atlantic mackerel type from Scomber scombrus, chub mackerel type from S. japonicus, and purple rockcod type from Epinephelus cyanopodus.

  20. sp3-hybridized framework structure of group-14 elements discovered by genetic algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang

    2014-05-01

    Group-14 elements, including C, Si, Ge, and Sn, can form various stable and metastable structures. Finding new metastable structures of group-14 elements with desirable physical properties for new technological applications has attracted a lot of interest. Using a genetic algorithm, we discovered a new low-energy metastable distorted sp3-hybridized framework structure of the group-14 elements. It has P42/mnm symmetry with 12 atoms per unit cell. The void volume of this structure is as large as 139.7Å3 for Si P42/mnm, and it can be used for gas or metal-atom encapsulation. Band-structure calculations show that P42/mnm structures of Si and Ge are semiconductingmore » with energy band gaps close to the optimal values for optoelectronic or photovoltaic applications. With metal-atom encapsulation, the P42/mnm structure would also be a candidate for rattling-mediated superconducting or used as thermoelectric materials.« less

  1. Manifold habitat effects on the prevalence and diversity of avian blood parasites

    PubMed Central

    Sehgal, Ravinder N.M.

    2015-01-01

    Habitats are rapidly changing across the planet and the consequences will have major and long-lasting effects on wildlife and their parasites. Birds harbor many types of blood parasites, but because of their relatively high prevalence and ease of diagnosis, it is the haemosporidians – Plasmodium, Haemoproteus, and Leucocytozoon – that are the best studied in terms of ecology and evolution. For parasite transmission to occur, environmental conditions must be permissive, and given the many constraints on the competency of parasites, vectors and hosts, it is rather remarkable that these parasites are so prevalent and successful. Over the last decade, a rapidly growing body of literature has begun to clarify how environmental factors affect birds and the insects that vector their hematozoan parasites. Moreover, several studies have modeled how anthropogenic effects such as global climate change, deforestation and urbanization will impact the dynamics of parasite transmission. This review highlights recent research that impacts our understanding of how habitat and environmental changes can affect the distribution, diversity, prevalence and parasitemia of these avian blood parasites. Given the importance of environmental factors on transmission, it remains essential that researchers studying avian hematozoa document abiotic factors such as temperature, moisture and landscape elements. Ultimately, this continued research has the potential to inform conservation policies and help avert the loss of bird species and threatened habitats. PMID:26835250

  2. Gastrointestinal parasites of canids, a latent risk to human health in Tunisia.

    PubMed

    Oudni-M'rad, Myriam; Chaâbane-Banaoues, Raja; M'rad, Selim; Trifa, Fatma; Mezhoud, Habib; Babba, Hamouda

    2017-06-05

    Although data on the parasite environmental contamination are crucial to implement strategies for control and treatment, information about zoonotic helminths is very limited in Tunisia. Contamination of areas with canid faeces harboring infective parasite elements represents a relevant health-risk impact for humans. The aim of this study was to assess the environmental contamination with eggs and oocysts of gastrointestinal parasites of dogs and wild canids in Tunisia with special attention to those that can be transmitted to humans. One thousand two hundred and seventy faecal samples from stray dogs and 104 from wild canids (red foxes and golden jackals) were collected from different geographical regions throughout Tunisia. The helminth eggs and protozoan oocysts were concentrated by sucrose flotation and identified by microscopic examination. The most frequently observed parasites in dog samples were Toxocara spp. (27.2%), E. granulosus (25.8%), and Coccidia (13.1%). For wild canid faeces, the most commonly encountered parasites were Toxocara spp. (16.3%) followed by Capillaria spp. (9.6%). The parasite contamination of dog faeces varied significantly from one region to another in function of the climate. To our knowledge, the study highlights for the first time in Tunisia a serious environmental contamination by numerous parasitic stages infective to humans. Efforts should be made to increase the awareness of the contamination risk of such parasites in the environment and implement a targeted educational program.

  3. Parasitism and mutualism in Wolbachia: what the phylogenomic trees can and cannot say.

    PubMed

    Bordenstein, Seth R; Paraskevopoulos, Charalampos; Dunning Hotopp, Julie C; Sapountzis, Panagiotis; Lo, Nathan; Bandi, Claudio; Tettelin, Hervé; Werren, John H; Bourtzis, Kostas

    2009-01-01

    Ecological and evolutionary theories predict that parasitism and mutualism are not fixed endpoints of the symbiotic spectrum. Rather, parasitism and mutualism may be host or environment dependent, induced by the same genetic machinery, and shifted due to selection. These models presume the existence of genetic or environmental variation that can spur incipient changes in symbiotic lifestyle. However, for obligate intracellular bacteria whose genomes are highly reduced, studies specify that discrete symbiotic associations can be evolutionarily stable for hundreds of millions of years. Wolbachia is an inherited obligate, intracellular infection of invertebrates containing taxa that act broadly as both parasites in arthropods and mutualists in certain roundworms. Here, we analyze the ancestry of mutualism and parasitism in Wolbachia and the evolutionary trajectory of this variation in symbiotic lifestyle with a comprehensive, phylogenomic analysis. Contrary to previous claims, we show unequivocally that the transition in lifestyle cannot be reconstructed with current methods due to long-branch attraction (LBA) artifacts of the distant Anaplasma and Ehrlichia outgroups. Despite the use of 1) site-heterogenous phylogenomic methods that can overcome systematic error, 2) a taxonomically rich set of taxa, and 3) statistical assessments of the genes, tree topologies, and models of evolution, we conclude that the LBA artifact is serious enough to afflict past and recent claims including the root lies in the middle of the Wolbachia mutualists and parasites. We show that different inference methods yield different results and high bootstrap support did not equal phylogenetic accuracy. Recombination was rare among this taxonomically diverse data set, indicating that elevated levels of recombination in Wolbachia are restricted to specific coinfecting groups. In conclusion, we attribute the inability to root the tree to rate heterogeneity between the ingroup and outgroup. Site

  4. EVOLUTION. Fruit flies diversify their offspring in response to parasite infection.

    PubMed

    Singh, Nadia D; Criscoe, Dallas R; Skolfield, Shelly; Kohl, Kathryn P; Keebaugh, Erin S; Schlenke, Todd A

    2015-08-14

    The evolution of sexual reproduction is often explained by Red Queen dynamics: Organisms must continually evolve to maintain fitness relative to interacting organisms, such as parasites. Recombination accompanies sexual reproduction and helps diversify an organism's offspring, so that parasites cannot exploit static host genotypes. Here we show that Drosophila melanogaster plastically increases the production of recombinant offspring after infection. The response is consistent across genetic backgrounds, developmental stages, and parasite types but is not induced after sterile wounding. Furthermore, the response appears to be driven by transmission distortion rather than increased recombination. Our study extends the Red Queen model to include the increased production of recombinant offspring and uncovers a remarkable ability of hosts to actively distort their recombination fraction in rapid response to environmental cues. Copyright © 2015, American Association for the Advancement of Science.

  5. The coevolutionary dynamics of obligate ant social parasite systems--between prudence and antagonism.

    PubMed

    Brandt, Miriam; Foitzik, Susanne; Fischer-Blass, Birgit; Heinze, Jürgen

    2005-05-01

    In this synthesis we apply coevolutionary models to the interactions between socially parasitic ants and their hosts. Obligate social parasite systems are ideal models for coevolution, because the close phylogenetic relationship between these parasites and their hosts results in similar evolutionary potentials, thus making mutual adaptations in a stepwise fashion especially likely to occur. The evolutionary dynamics of host-parasite interactions are influenced by a number of parameters, for example the parasite's transmission mode and rate, the genetic structure of host and parasite populations, the antagonists' migration rates, and the degree of mutual specialisation. For the three types of obligate ant social parasites, queen-tolerant and queen-intolerant inquilines and slavemakers, several of these parameters, and thus the evolutionary trajectory, are likely to differ. Because of the fundamental differences in lifestyle between these social parasite systems, coevolution should further select for different traits in the parasites and their hosts. Queen-tolerant inquilines are true parasites that exert a low selection pressure on their host, because of their rarity and the fact that they do not conduct slave raids to replenish their labour force. Due to their high degree of specialisation and the potential for vertical transmission, coevolutionary theory would predict interactions between these workerless parasites and their hosts to become even more benign over time. Queen-intolerant inquilines that kill the host queen during colony take-over are best described as parasitoids, and their reproductive success is limited by the existing worker force of the invaded host nest. These parasites should therefore evolve strategies to best exploit this fixed resource. Slavemaking ants, by contrast, act as parasites only during colony foundation, while their frequent slave raids follow a predator prey dynamic. They often exploit a number of host species at a given site, and

  6. Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites.

    PubMed

    Kaczanowski, Szymon; Sajid, Mohammed; Reece, Sarah E

    2011-03-25

    Apoptosis-like programmed cell death (PCD) has recently been described in multiple taxa of unicellular protists, including the protozoan parasites Plasmodium, Trypanosoma and Leishmania. Apoptosis-like PCD in protozoan parasites shares a number of morphological features with programmed cell death in multicellular organisms. However, both the evolutionary explanations and mechanisms involved in parasite PCD are poorly understood. Explaining why unicellular organisms appear to undergo 'suicide' is a challenge for evolutionary biology and uncovering death executors and pathways is a challenge for molecular and cell biology. Bioinformatics has the potential to integrate these approaches by revealing homologies in the PCD machinery of diverse taxa and evaluating their evolutionary trajectories. As the molecular mechanisms of apoptosis in model organisms are well characterised, and recent data suggest similar mechanisms operate in protozoan parasites, key questions can now be addressed. These questions include: which elements of apoptosis machinery appear to be shared between protozoan parasites and multicellular taxa and, have these mechanisms arisen through convergent or divergent evolution? We use bioinformatics to address these questions and our analyses suggest that apoptosis mechanisms in protozoan parasites and other taxa have diverged during their evolution, that some apoptosis factors are shared across taxa whilst others have been replaced by proteins with similar biochemical activities.

  7. Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites

    PubMed Central

    2011-01-01

    Apoptosis-like programmed cell death (PCD) has recently been described in multiple taxa of unicellular protists, including the protozoan parasites Plasmodium, Trypanosoma and Leishmania. Apoptosis-like PCD in protozoan parasites shares a number of morphological features with programmed cell death in multicellular organisms. However, both the evolutionary explanations and mechanisms involved in parasite PCD are poorly understood. Explaining why unicellular organisms appear to undergo 'suicide' is a challenge for evolutionary biology and uncovering death executors and pathways is a challenge for molecular and cell biology. Bioinformatics has the potential to integrate these approaches by revealing homologies in the PCD machinery of diverse taxa and evaluating their evolutionary trajectories. As the molecular mechanisms of apoptosis in model organisms are well characterised, and recent data suggest similar mechanisms operate in protozoan parasites, key questions can now be addressed. These questions include: which elements of apoptosis machinery appear to be shared between protozoan parasites and multicellular taxa and, have these mechanisms arisen through convergent or divergent evolution? We use bioinformatics to address these questions and our analyses suggest that apoptosis mechanisms in protozoan parasites and other taxa have diverged during their evolution, that some apoptosis factors are shared across taxa whilst others have been replaced by proteins with similar biochemical activities. PMID:21439063

  8. Applying ecological models to communities of genetic elements: the case of neutral theory.

    PubMed

    Linquist, Stefan; Cottenie, Karl; Elliott, Tyler A; Saylor, Brent; Kremer, Stefan C; Gregory, T Ryan

    2015-07-01

    A promising recent development in molecular biology involves viewing the genome as a mini-ecosystem, where genetic elements are compared to organisms and the surrounding cellular and genomic structures are regarded as the local environment. Here, we critically evaluate the prospects of ecological neutral theory (ENT), a popular model in ecology, as it applies at the genomic level. This assessment requires an overview of the controversy surrounding neutral models in community ecology. In particular, we discuss the limitations of using ENT both as an explanation of community dynamics and as a null hypothesis. We then analyse a case study in which ENT has been applied to genomic data. Our central finding is that genetic elements do not conform to the requirements of ENT once its assumptions and limitations are made explicit. We further compare this genome-level application of ENT to two other, more familiar approaches in genomics that rely on neutral mechanisms: Kimura's molecular neutral theory and Lynch's mutational-hazard model. Interestingly, this comparison reveals that there are two distinct concepts of neutrality associated with these models, which we dub 'fitness neutrality' and 'competitive neutrality'. This distinction helps to clarify the various roles for neutral models in genomics, for example in explaining the evolution of genome size. © 2015 John Wiley & Sons Ltd.

  9. Anthelmintic metabolism in parasitic helminths: proteomic insights.

    PubMed

    Brophy, Peter M; MacKintosh, Neil; Morphew, Russell M

    2012-08-01

    Anthelmintics are the cornerstone of parasitic helminth control. Surprisingly, understanding of the biochemical pathways used by parasitic helminths to detoxify anthelmintics is fragmented, despite the increasing global threat of anthelmintic resistance within the ruminant and equine industries. Reductionist biochemistry has likely over-estimated the enzymatic role of glutathione transferases in anthelmintic metabolism and neglected the potential role of the cytochrome P-450 superfamily (CYPs). Proteomic technologies offers the opportunity to support genomics, reverse genetics and pharmacokinetics, and provide an integrated insight into both the cellular mechanisms underpinning response to anthelmintics and also the identification of biomarker panels for monitoring the development of anthelmintic resistance. To date, there have been limited attempts to include proteomics in anthelmintic metabolism studies. Optimisations of membrane, post-translational modification and interaction proteomic technologies in helminths are needed to especially study Phase I CYPs and Phase III ABC transporter pumps for anthelmintics and their metabolites.

  10. Genetic Variability of the Neogregarine Apicystis bombi, an Etiological Agent of an Emergent Bumblebee Disease

    PubMed Central

    Maebe, Kevin; Arbetman, Marina; Morales, Carolina; Graystock, Peter; Hughes, William O. H.; Plischuk, Santiago; Lange, Carlos E.; de Graaf, Dirk C.; Zapata, Nelson; de la Rosa, Jose Javier Perez; Murray, Tomás E.; Brown, Mark J. F.; Smagghe, Guy

    2013-01-01

    The worldwide spread of diseases is considered a major threat to biodiversity and a possible driver of the decline of pollinator populations, particularly when novel species or strains of parasites emerge. Previous studies have suggested that populations of introduced European honeybee (Apis mellifera) and bumblebee species (Bombus terrestris and Bombus ruderatus) in Argentina share the neogregarine parasite Apicystis bombi with the native bumblebee (Bombus dahlbomii). In this study we investigated whether A. bombi is acting as an emergent parasite in the non-native populations. Specifically, we asked whether A. bombi, recently identified in Argentina, was introduced by European, non-native bees. Using ITS1 and ITS2 to assess the parasite’s intraspecific genetic variation in bees from Argentina and Europe, we found a largely unstructured parasite population, with only 15% of the genetic variation being explained by geographic location. The most abundant haplotype in Argentina (found in all 9 specimens of non-native species) was identical to the most abundant haplotype in Europe (found in 6 out of 8 specimens). Similarly, there was no evidence of structuring by host species, with this factor explaining only 17% of the genetic variation. Interestingly, parasites in native Bombus ephippiatus from Mexico were genetically distant from the Argentine and European samples, suggesting that sufficient variability does exist in the ITS region to identify continent-level genetic structure in the parasite. Thus, the data suggest that A. bombi from Argentina and Europe share a common, relatively recent origin. Although our data did not provide information on the direction of transfer, the absence of genetic structure across space and host species suggests that A. bombi may be acting as an emergent infectious disease across bee taxa and continents. PMID:24324696

  11. Specific interactions between host and parasite genotypes do not act as a constraint on the evolution of antiviral resistance in Drosophila.

    PubMed

    Carpenter, Jennifer A; Hadfield, Jarrod D; Bangham, Jenny; Jiggins, Francis M

    2012-04-01

    Genetic correlations between parasite resistance and other traits can act as an evolutionary constraint and prevent a population from evolving increased resistance. For example, previous studies have found negative genetic correlations between host resistance and life-history traits. In invertebrates, the level of resistance often depends on the combination of the host and parasite genotypes, and in this study, we have investigated whether such specific resistance also acts as an evolutionary constraint. We measured the resistance of different genotypes of the fruit fly Drosophila melanogaster to different genotypes of a naturally occurring pathogen, the sigma virus. Using a multitrait analysis, we examine whether genetic covariances alter the potential to select for general resistance against all of the different viral genotypes. We found large amounts of heritable variation in resistance, and evidence for specific interactions between host and parasite, but these interactions resulted in little constraint on Drosophila evolving greater resistance. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  12. Detrimental effects of an autosomal selfish genetic element on sperm competitiveness in house mice

    PubMed Central

    Sutter, Andreas; Lindholm, Anna K.

    2015-01-01

    Female multiple mating (polyandry) is widespread across many animal taxa and indirect genetic benefits are a major evolutionary force favouring polyandry. An incentive for polyandry arises when multiple mating leads to sperm competition that disadvantages sperm from genetically inferior mates. A reduction in genetic quality is associated with costly selfish genetic elements (SGEs), and studies in invertebrates have shown that males bearing sex ratio distorting SGEs are worse sperm competitors than wild-type males. We used a vertebrate model species to test whether females can avoid an autosomal SGE, the t haplotype, through polyandry. The t haplotype in house mice exhibits strong drive in t heterozygous males by affecting spermatogenesis and is associated with homozygous in utero lethality. We used controlled matings to test the effect of the t haplotype on sperm competitiveness. Regardless of mating order, t heterozygous males sired only 11% of zygotes when competing against wild-type males, suggesting a very strong effect of the t haplotype on sperm quality. We provide, to our knowledge, the first substantial evidence that polyandry ameliorates the harmful effects of an autosomal SGE arising through genetic incompatibility. We discuss potential mechanisms in our study species and the broader implications for the benefits of polyandry. PMID:26136452

  13. Genetic diversity of Plasmodium vivax over time and space: a community-based study in rural Amazonia.

    PubMed

    Batista, Camilla L; Barbosa, Susana; Da Silva Bastos, Melissa; Viana, Susana Ariane S; Ferreira, Marcelo U

    2015-02-01

    To examine how community-level genetic diversity of the malaria parasite Plasmodium vivax varies across time and space, we investigated the dynamics of parasite polymorphisms during the early phases of occupation of a frontier settlement in the Amazon Basin of Brazil. Microsatellite characterization of 84 isolates of P. vivax sampled over 3 years revealed a moderate-to-high genetic diversity (mean expected heterozygosity, 0.699), with a large proportion (78.5%) of multiple-clone infections (MCI), but also a strong multilocus linkage disequilibrium (LD) consistent with rare outcrossing. Little temporal and no spatial clustering was observed in the distribution of parasite haplotypes. A single microsatellite haplotype was shared by 3 parasites collected during an outbreak; all other 81 haplotypes were recovered only once. The lowest parasite diversity, with the smallest proportion of MCI and the strongest LD, was observed at the time of the outbreak, providing a clear example of epidemic population structure in a human pathogen. Population genetic parameters returned to pre-outbreak values during last 2 years of study, despite the concomitant decline in malaria incidence. We suggest that parasite genotyping can be useful for tracking the spread of new parasite strains associated with outbreaks in areas approaching malaria elimination.

  14. When parasites become prey: ecological and epidemiological significance of eating parasites

    USGS Publications Warehouse

    Johnson, Pieter T.J.; Dobson, Andrew P.; Lafferty, Kevin D.; Marcogliese, David J.; Memmott, Jane; Orlofske, Sarah A.; Poulin, Robert; Thieltges, David W.

    2010-01-01

    Recent efforts to include parasites in food webs have drawn attention to a previously ignored facet of foraging ecology: parasites commonly function as prey within ecosystems. Because of the high productivity of parasites, their unique nutritional composition and their pathogenicity in hosts, their consumption affects both food-web topology and disease risk in humans and wildlife. Here, we evaluate the ecological, evolutionary and epidemiological significance of feeding on parasites, including concomitant predation, grooming, predation on free-living stages and intraguild predation. Combining empirical data and theoretical models, we show that consumption of parasites is neither rare nor accidental, and that it can sharply affect parasite transmission and food web properties. Broader consideration of predation on parasites will enhance our understanding of disease control, food web structure and energy transfer, and the evolution of complex life cycles.

  15. Screening for Hepatozoon parasites in gerbils and potential predators in South Africa.

    PubMed

    Harris, D James; Pereira, Ana; Halajian, Ali; Luus-Powell, Wilmien J; Kunutu, Katlego D

    2017-02-08

    Samples of gerbils and their potential predators were screened for the presence of Hepatozoon parasites (Apicomplexa: Adeleorina) using both microscopic examination and sequencing of partial 18S rRNA sequences. Positive samples were compared to published sequences in a phylogenetic framework. The results indicate that genets can be infected with Hepatozoon felis. A Cape fox was infected with Hepatozoon canis, whereas the sequence from an infected rodent fell within a group of parasites primarily recovered from other rodents and snakes.

  16. Parasites that cause problems in Malaysia: soil-transmitted helminths and malaria parasites.

    PubMed

    Singh, B; Cox-Singh, J

    2001-12-01

    Malaysia is a developing country with a range of parasitic infections. Indeed, soil-transmitted helminths and malaria parasites continue to have a significant impact on public health in Malaysia. In this article, the prevalence and distribution of these parasites, the problems associated with parasitic infections, the control measures taken to deal with these parasites and implications for the future will be discussed.

  17. A transcriptional switch underlies commitment to sexual development in malaria parasites.

    PubMed

    Kafsack, Björn F C; Rovira-Graells, Núria; Clark, Taane G; Bancells, Cristina; Crowley, Valerie M; Campino, Susana G; Williams, April E; Drought, Laura G; Kwiatkowski, Dominic P; Baker, David A; Cortés, Alfred; Llinás, Manuel

    2014-03-13

    The life cycles of many parasites involve transitions between disparate host species, requiring these parasites to go through multiple developmental stages adapted to each of these specialized niches. Transmission of malaria parasites (Plasmodium spp.) from humans to the mosquito vector requires differentiation from asexual stages replicating within red blood cells into non-dividing male and female gametocytes. Although gametocytes were first described in 1880, our understanding of the molecular mechanisms involved in commitment to gametocyte formation is extremely limited, and disrupting this critical developmental transition remains a long-standing goal. Here we show that expression levels of the DNA-binding protein PfAP2-G correlate strongly with levels of gametocyte formation. Using independent forward and reverse genetics approaches, we demonstrate that PfAP2-G function is essential for parasite sexual differentiation. By combining genome-wide PfAP2-G cognate motif occurrence with global transcriptional changes resulting from PfAP2-G ablation, we identify early gametocyte genes as probable targets of PfAP2-G and show that their regulation by PfAP2-G is critical for their wild-type level expression. In the asexual blood-stage parasites pfap2-g appears to be among a set of epigenetically silenced loci prone to spontaneous activation. Stochastic activation presents a simple mechanism for a low baseline of gametocyte production. Overall, these findings identify PfAP2-G as a master regulator of sexual-stage development in malaria parasites and mark the first discovery of a transcriptional switch controlling a differentiation decision in protozoan parasites.

  18. Flow cytometry-assisted rapid isolation of recombinant Plasmodium berghei parasites exemplified by functional analysis of aquaglyceroporin

    PubMed Central

    Kenthirapalan, Sanketha; Waters, Andrew P.; Matuschewski, Kai; Kooij, Taco W.A.

    2012-01-01

    The most critical bottleneck in the generation of recombinant Plasmodium berghei parasites is the mandatory in vivo cloning step following successful genetic manipulation. This study describes a new technique for rapid selection of recombinant P. berghei parasites. The method is based on flow cytometry to isolate isogenic parasite lines and represents a major advance for the field, in that it will speed the generation of recombinant parasites as well as cut down on animal use significantly. High expression of GFP during blood infection, a prerequisite for robust separation of transgenic lines by flow cytometry, was achieved. Isogenic recombinant parasite populations were isolated even in the presence of a 100-fold excess of wild-type (WT) parasites. Aquaglyceroporin (AQP) loss-of-function mutants and parasites expressing a tagged AQP were generated to validate this approach. aqp− parasites grow normally within the WT phenotypic range during blood infection of NMRI mice. Similarly, colonization of the insect vector and establishment of an infection after mosquito transmission were unaffected, indicating that AQP is dispensable for life cycle progression in vivo under physiological conditions, refuting its use as a suitable drug target. Tagged AQP localized to perinuclear structures and not the parasite plasma membrane. We suggest that flow-cytometric isolation of isogenic parasites overcomes the major roadblock towards a genome-scale repository of mutant and transgenic malaria parasite lines. PMID:23137753

  19. The effect of parasites on sex differences in selection.

    PubMed

    Sharp, N P; Vincent, C M

    2015-04-01

    The life history strategies of males and females are often divergent, creating the potential for sex differences in selection. Deleterious mutations may be subject to stronger selection in males, owing to sexual selection, which can improve the mean fitness of females and reduce mutation load in sexual populations. However, sex differences in selection might also maintain sexually antagonistic genetic variation, creating a sexual conflict load. The overall impact of separate sexes on fitness is unclear, but the net effect is likely to be positive when there is a large sex difference in selection against deleterious mutations. Parasites can also have sex-specific effects on fitness, and there is evidence that parasites can intensify the fitness consequences of deleterious mutations. Using lines that accumulated mutations for over 60 generations, we studied the effect of the pathogenic bacterium Pseudomonas aeruginosa on sex differences in selection in the fruit fly Drosophila melanogaster. Pseudomonas infection increased the sex difference in selection, but may also have weakened the intersexual correlation for fitness. Our results suggest that parasites may increase the benefits of sexual selection.

  20. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0

    PubMed Central

    Llorens, Carlos; Futami, Ricardo; Covelli, Laura; Domínguez-Escribá, Laura; Viu, Jose M.; Tamarit, Daniel; Aguilar-Rodríguez, Jose; Vicente-Ripolles, Miguel; Fuster, Gonzalo; Bernet, Guillermo P.; Maumus, Florian; Munoz-Pomer, Alfonso; Sempere, Jose M.; Latorre, Amparo; Moya, Andres

    2011-01-01

    This article introduces the second release of the Gypsy Database of Mobile Genetic Elements (GyDB 2.0): a research project devoted to the evolutionary dynamics of viruses and transposable elements based on their phylogenetic classification (per lineage and protein domain). The Gypsy Database (GyDB) is a long-term project that is continuously progressing, and that owing to the high molecular diversity of mobile elements requires to be completed in several stages. GyDB 2.0 has been powered with a wiki to allow other researchers participate in the project. The current database stage and scope are long terminal repeats (LTR) retroelements and relatives. GyDB 2.0 is an update based on the analysis of Ty3/Gypsy, Retroviridae, Ty1/Copia and Bel/Pao LTR retroelements and the Caulimoviridae pararetroviruses of plants. Among other features, in terms of the aforementioned topics, this update adds: (i) a variety of descriptions and reviews distributed in multiple web pages; (ii) protein-based phylogenies, where phylogenetic levels are assigned to distinct classified elements; (iii) a collection of multiple alignments, lineage-specific hidden Markov models and consensus sequences, called GyDB collection; (iv) updated RefSeq databases and BLAST and HMM servers to facilitate sequence characterization of new LTR retroelement and caulimovirus queries; and (v) a bibliographic server. GyDB 2.0 is available at http://gydb.org. PMID:21036865

  1. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0.

    PubMed

    Llorens, Carlos; Futami, Ricardo; Covelli, Laura; Domínguez-Escribá, Laura; Viu, Jose M; Tamarit, Daniel; Aguilar-Rodríguez, Jose; Vicente-Ripolles, Miguel; Fuster, Gonzalo; Bernet, Guillermo P; Maumus, Florian; Munoz-Pomer, Alfonso; Sempere, Jose M; Latorre, Amparo; Moya, Andres

    2011-01-01

    This article introduces the second release of the Gypsy Database of Mobile Genetic Elements (GyDB 2.0): a research project devoted to the evolutionary dynamics of viruses and transposable elements based on their phylogenetic classification (per lineage and protein domain). The Gypsy Database (GyDB) is a long-term project that is continuously progressing, and that owing to the high molecular diversity of mobile elements requires to be completed in several stages. GyDB 2.0 has been powered with a wiki to allow other researchers participate in the project. The current database stage and scope are long terminal repeats (LTR) retroelements and relatives. GyDB 2.0 is an update based on the analysis of Ty3/Gypsy, Retroviridae, Ty1/Copia and Bel/Pao LTR retroelements and the Caulimoviridae pararetroviruses of plants. Among other features, in terms of the aforementioned topics, this update adds: (i) a variety of descriptions and reviews distributed in multiple web pages; (ii) protein-based phylogenies, where phylogenetic levels are assigned to distinct classified elements; (iii) a collection of multiple alignments, lineage-specific hidden Markov models and consensus sequences, called GyDB collection; (iv) updated RefSeq databases and BLAST and HMM servers to facilitate sequence characterization of new LTR retroelement and caulimovirus queries; and (v) a bibliographic server. GyDB 2.0 is available at http://gydb.org.

  2. SPECIES AND STRAIN-SPECIFIC TYPING OF CRYPTOSPORIDIUM PARASITES IN CLINICAL AND ENVIRONMENTAL SAMPLES

    EPA Science Inventory

    Cryptosporidiosis has recently attracted attention as an emerging water borne and food borne disease as well as an opportunistic infection in HIV infected indivduals. The lack of genetic information, however, has resulted in confusion in the taxonomy of Cryptosporidium parasites ...

  3. Clonorchis sinensis and Clonorchiasis: The Relevance of Exploring Genetic Variation.

    PubMed

    Wang, Daxi; Young, Neil D; Korhonen, Pasi K; Gasser, Robin B

    2018-01-01

    Parasitic trematodes (flukes) cause substantial mortality and morbidity in humans. The Chinese liver fluke, Clonorchis sinensis, is one of the most destructive parasitic worms in humans in China, Vietnam, Korea and the Russian Far East. Although C. sinensis infection can be controlled relatively well using anthelmintics, the worm is carcinogenic, inducing cholangiocarcinoma and causing major suffering in ~15 million people in Asia. This chapter provides an account of C. sinensis and clonorchiasis research-covering aspects of biology, epidemiology, pathogenesis and immunity, diagnosis, treatment and control, genetics and genomics. It also describes progress in the area of molecular biology (genetics, genomics, transcriptomics and proteomics) and highlights challenges associated with comparative genomics and population genetics. It then reviews recent advances in the sequencing and characterisation of the mitochondrial and nuclear genomes for a Korean isolate of C. sinensis and summarises salient comparative genomic work and the implications thereof. The chapter concludes by considering how advances in genomic and informatics will enable research on the genetics of C. sinensis and related parasites, as well as the discovery of new fluke-specific intervention targets. © 2018 Elsevier Ltd All rights reserved.

  4. Immune defence, parasite evasion strategies and their relevance for ‘macroscopic phenomena’ such as virulence

    PubMed Central

    Schmid-Hempel, Paul

    2008-01-01

    The discussion of host–parasite interactions, and of parasite virulence more specifically, has so far, with a few exceptions, not focused much attention on the accumulating evidence that immune evasion by parasites is not only almost universal but also often linked to pathogenesis, i.e. the appearance of virulence. Now, the immune evasion hypothesis offers a deeper insight into the evolution of virulence than previous hypotheses. Sensitivity analysis for parasite fitness and life-history theory shows promise to generate a more general evolutionary theory of virulence by including a major element, immune evasion to prevent parasite clearance from the host. Also, the study of dose–response relationships and multiple infections should be particularly illuminating to understand the evolution of virulence. Taking into account immune evasion brings immunological processes to the core of understanding the evolution of parasite virulence and for a range of related issues such as dose, host specificity or immunopathology. The aim of this review is to highlight the mechanism underlying immune evasion and to discuss possible consequences for the evolutionary ecology analysis of host–parasite interactions. PMID:18930879

  5. Deep sequencing-based transcriptome analysis of Plutella xylostella larvae parasitized by Diadegma semiclausum

    PubMed Central

    2011-01-01

    Background Parasitoid insects manipulate their hosts' physiology by injecting various factors into their host upon parasitization. Transcriptomic approaches provide a powerful approach to study insect host-parasitoid interactions at the molecular level. In order to investigate the effects of parasitization by an ichneumonid wasp (Diadegma semiclausum) on the host (Plutella xylostella), the larval transcriptome profile was analyzed using a short-read deep sequencing method (Illumina). Symbiotic polydnaviruses (PDVs) associated with ichneumonid parasitoids, known as ichnoviruses, play significant roles in host immune suppression and developmental regulation. In the current study, D. semiclausum ichnovirus (DsIV) genes expressed in P. xylostella were identified and their sequences compared with other reported PDVs. Five of these genes encode proteins of unknown identity, that have not previously been reported. Results De novo assembly of cDNA sequence data generated 172,660 contigs between 100 and 10000 bp in length; with 35% of > 200 bp in length. Parasitization had significant impacts on expression levels of 928 identified insect host transcripts. Gene ontology data illustrated that the majority of the differentially expressed genes are involved in binding, catalytic activity, and metabolic and cellular processes. In addition, the results show that transcription levels of antimicrobial peptides, such as gloverin, cecropin E and lysozyme, were up-regulated after parasitism. Expression of ichnovirus genes were detected in parasitized larvae with 19 unique sequences identified from five PDV gene families including vankyrin, viral innexin, repeat elements, a cysteine-rich motif, and polar residue rich protein. Vankyrin 1 and repeat element 1 genes showed the highest transcription levels among the DsIV genes. Conclusion This study provides detailed information on differential expression of P. xylostella larval genes following parasitization, DsIV genes expressed in the

  6. Genome-wide polymorphisms and development of a microarray platform to detect genetic variations in Plasmodium yoelii.

    PubMed

    Nair, Sethu C; Pattaradilokrat, Sittiporn; Zilversmit, Martine M; Dommer, Jennifer; Nagarajan, Vijayaraj; Stephens, Melissa T; Xiao, Wenming; Tan, John C; Su, Xin-Zhuan

    2014-01-01

    The rodent malaria parasite Plasmodium yoelii is an important model for studying malaria immunity and pathogenesis. One approach for studying malaria disease phenotypes is genetic mapping, which requires typing a large number of genetic markers from multiple parasite strains and/or progeny from genetic crosses. Hundreds of microsatellite (MS) markers have been developed to genotype the P. yoelii genome; however, typing a large number of MS markers can be labor intensive, time consuming, and expensive. Thus, development of high-throughput genotyping tools such as DNA microarrays that enable rapid and accurate large-scale genotyping of the malaria parasite will be highly desirable. In this study, we sequenced the genomes of two P. yoelii strains (33X and N67) and obtained a large number of single nucleotide polymorphisms (SNPs). Based on the SNPs obtained, we designed sets of oligonucleotide probes to develop a microarray that could interrogate ∼11,000 SNPs across the 14 chromosomes of the parasite in a single hybridization. Results from hybridizations of DNA samples of five P. yoelii strains or cloned lines (17XNL, YM, 33X, N67 and N67C) and two progeny from a genetic cross (N67×17XNL) to the microarray showed that the array had a high call rate (∼97%) and accuracy (99.9%) in calling SNPs, providing a simple and reliable tool for typing the P. yoelii genome. Our data show that the P. yoelii genome is highly polymorphic, although isogenic pairs of parasites were also detected. Additionally, our results indicate that the 33X parasite is a progeny of 17XNL (or YM) and an unknown parasite. The highly accurate and reliable microarray developed in this study will greatly facilitate our ability to study the genetic basis of important traits and the disease it causes. Published by Elsevier B.V.

  7. Cell-Free Expression and In Situ Immobilization of Parasite Proteins from Clonorchis sinensis for Rapid Identification of Antigenic Candidates

    PubMed Central

    Ju, Jung Won; Kim, Ho-Cheol; Shin, Hyun-Il; Kim, Yu Jung; Kim, Dong-Myung

    2015-01-01

    Progress towards genetic sequencing of human parasites has provided the groundwork for a post-genomic approach to develop novel antigens for the diagnosis and treatment of parasite infections. To fully utilize the genomic data, however, high-throughput methodologies are required for functional analysis of the proteins encoded in the genomic sequences. In this study, we investigated cell-free expression and in situ immobilization of parasite proteins as a novel platform for the discovery of antigenic proteins. PCR-amplified parasite DNA was immobilized on microbeads that were also functionalized to capture synthesized proteins. When the microbeads were incubated in a reaction mixture for cell-free synthesis, proteins expressed from the microbead-immobilized DNA were instantly immobilized on the same microbeads, providing a physical linkage between the genetic information and encoded proteins. This approach of in situ expression and isolation enables streamlined recovery and analysis of cell-free synthesized proteins and also allows facile identification of the genes coding antigenic proteins through direct PCR of the microbead-bound DNA. PMID:26599101

  8. Genetic parameters for fecal egg counts and their relationship with body weights in Katahdin lambs

    USDA-ARS?s Scientific Manuscript database

    Reliance on anthelminthic drugs to control internal parasites in sheep is no longer sustainable because of the development of resistance to these drugs in parasite populations. Genetic selection may offer an alternative long-term solution, as differences in parasite resistance exist both within and ...

  9. Developmental Stage of Parasites Influences the Structure of Fish-Parasite Networks

    PubMed Central

    Bellay, Sybelle; de Oliveira, Edson Fontes; Almeida-Neto, Mário; Lima Junior, Dilermando Pereira; Takemoto, Ricardo Massato; Luque, José Luis

    2013-01-01

    Specialized interactions tend to be more common in systems that require strong reciprocal adaptation between species, such as those observed between parasites and hosts. Parasites exhibit a high diversity of species and life history strategies, presenting host specificity which increases the complexity of these antagonistic systems. However, most studies are limited to the description of interactions between a few parasite and host species, which restricts our understanding of these systems as a whole. We investigated the effect of the developmental stage of the parasite on the structure of 30 metazoan fish-parasite networks, with an emphasis on the specificity of the interactions, connectance and modularity. We assessed the functional role of each species in modular networks and its interactions within and among the modules according to the developmental stage (larval and adult) and taxonomic group of the parasites. We observed that most parasite and host species perform a few interactions but that parasites at the larval stage tended to be generalists, increasing the network connectivity within and among modules. The parasite groups did not differ among each other in the number of interactions within and among the modules when considering only species at the larval stage. However, the same groups of adult individuals differed from each other in their interaction patterns, which were related to variations in the degree of host specificity at this stage. Our results show that the interaction pattern of fishes with parasites, such as acanthocephalans, cestodes, digeneans and nematodes, is more closely associated with their developmental stage than their phylogenetic history. This finding corroborates the hypothesis that the life history of parasites results in adaptations that cross phylogenetic boundaries. PMID:24124506

  10. Developmental stage of parasites influences the structure of fish-parasite networks.

    PubMed

    Bellay, Sybelle; de Oliveira, Edson Fontes; Almeida-Neto, Mário; Lima Junior, Dilermando Pereira; Takemoto, Ricardo Massato; Luque, José Luis

    2013-01-01

    Specialized interactions tend to be more common in systems that require strong reciprocal adaptation between species, such as those observed between parasites and hosts. Parasites exhibit a high diversity of species and life history strategies, presenting host specificity which increases the complexity of these antagonistic systems. However, most studies are limited to the description of interactions between a few parasite and host species, which restricts our understanding of these systems as a whole. We investigated the effect of the developmental stage of the parasite on the structure of 30 metazoan fish-parasite networks, with an emphasis on the specificity of the interactions, connectance and modularity. We assessed the functional role of each species in modular networks and its interactions within and among the modules according to the developmental stage (larval and adult) and taxonomic group of the parasites. We observed that most parasite and host species perform a few interactions but that parasites at the larval stage tended to be generalists, increasing the network connectivity within and among modules. The parasite groups did not differ among each other in the number of interactions within and among the modules when considering only species at the larval stage. However, the same groups of adult individuals differed from each other in their interaction patterns, which were related to variations in the degree of host specificity at this stage. Our results show that the interaction pattern of fishes with parasites, such as acanthocephalans, cestodes, digeneans and nematodes, is more closely associated with their developmental stage than their phylogenetic history. This finding corroborates the hypothesis that the life history of parasites results in adaptations that cross phylogenetic boundaries.

  11. Ape parasite origins of human malaria virulence genes

    PubMed Central

    Larremore, Daniel B.; Sundararaman, Sesh A.; Liu, Weimin; Proto, William R.; Clauset, Aaron; Loy, Dorothy E.; Speede, Sheri; Plenderleith, Lindsey J.; Sharp, Paul M.; Hahn, Beatrice H.; Rayner, Julian C.; Buckee, Caroline O.

    2015-01-01

    Antigens encoded by the var gene family are major virulence factors of the human malaria parasite Plasmodium falciparum, exhibiting enormous intra- and interstrain diversity. Here we use network analysis to show that var architecture and mosaicism are conserved at multiple levels across the Laverania subgenus, based on var-like sequences from eight single-species and three multi-species Plasmodium infections of wild-living or sanctuary African apes. Using select whole-genome amplification, we also find evidence of multi-domain var structure and synteny in Plasmodium gaboni, one of the ape Laverania species most distantly related to P. falciparum, as well as a new class of Duffy-binding-like domains. These findings indicate that the modular genetic architecture and sequence diversity underlying var-mediated host-parasite interactions evolved before the radiation of the Laverania subgenus, long before the emergence of P. falciparum. PMID:26456841

  12. Parasites and cancers: parasite antigens as possible targets for cancer immunotherapy.

    PubMed

    Darani, Hossein Yousofi; Yousefi, Morteza

    2012-12-01

    An adverse relationship between some parasite infections and cancer in the human population has been reported by different research groups. Anticancer activity of some parasites such as Trypanosoma cruzi, Toxoplasma gondii, Toxocara canis, Acantamoeba castellani and Plasmodium yoelii has been shown in experimental animals. Moreover, it has been shown that cancer-associated mucin-type O-glycan compositions are made by parasites, therefore cancers and parasites have common antigens. In this report anticancer activities of some parasites have been reviewed and the possible mechanisms of these actions have also been discussed.

  13. Ecological host fitting of Trypanosoma cruzi TcI in Bolivia: mosaic population structure, hybridization and a role for humans in Andean parasite dispersal.

    PubMed

    Messenger, Louisa A; Garcia, Lineth; Vanhove, Mathieu; Huaranca, Carlos; Bustamante, Marinely; Torrico, Marycruz; Torrico, Faustino; Miles, Michael A; Llewellyn, Martin S

    2015-05-01

    An improved understanding of how a parasite species exploits its genetic repertoire to colonize novel hosts and environmental niches is crucial to establish the epidemiological risk associated with emergent pathogenic genotypes. Trypanosoma cruzi, a genetically heterogeneous, multi-host zoonosis, provides an ideal system to examine the sylvatic diversification of parasitic protozoa. In Bolivia, T. cruzi I, the oldest and most widespread genetic lineage, is pervasive across a range of ecological clines. High-resolution nuclear (26 loci) and mitochondrial (10 loci) genotyping of 199 contemporaneous sylvatic TcI clones was undertaken to provide insights into the biogeographical basis of T. cruzi evolution. Three distinct sylvatic parasite transmission cycles were identified: one highland population among terrestrial rodent and triatomine species, composed of genetically homogenous strains (Ar = 2.95; PA/L = 0.61; DAS = 0.151), and two highly diverse, parasite assemblages circulating among predominantly arboreal mammals and vectors in the lowlands (Ar = 3.40 and 3.93; PA/L = 1.12 and 0.60; DAS = 0.425 and 0.311, respectively). Very limited gene flow between neighbouring terrestrial highland and arboreal lowland areas (distance ~220 km; FST = 0.42 and 0.35) but strong connectivity between ecologically similar but geographically disparate terrestrial highland ecotopes (distance >465 km; FST = 0.016-0.084) strongly supports ecological host fitting as the predominant mechanism of parasite diversification. Dissimilar heterozygosity estimates (excess in highlands, deficit in lowlands) and mitochondrial introgression among lowland strains may indicate fundamental differences in mating strategies between populations. Finally, accelerated parasite dissemination between densely populated, highland areas, compared to uninhabited lowland foci, likely reflects passive, long-range anthroponotic dispersal. The impact of humans on the risk of epizootic Chagas disease transmission in

  14. Plasmodium falciparum msp1 and msp2 genetic diversity and allele frequencies in parasites isolated from symptomatic malaria patients in Bobo-Dioulasso, Burkina Faso.

    PubMed

    Somé, Anyirékun Fabrice; Bazié, Thomas; Zongo, Issaka; Yerbanga, R Serge; Nikiéma, Frédéric; Neya, Cathérine; Taho, Liz Karen; Ouédraogo, Jean-Bosco

    2018-05-30

    In Burkina Faso, malaria remains the overall leading cause of morbidity and mortality accounting for 35.12% of consultations, 40.83% of hospitalizations and 37.5% of deaths. Genotyping of malaria parasite populations remains an important tool to determine the types and number of parasite clones in an infection. The present study aimed to evaluate the merozoite surface protein 1 (msp1) and merozoite surface protein 2 (msp2) genetic diversity and allele frequencies in Bobo-Dioulasso, Burkina Faso. Dried blood spots (DBS) were collected at baseline from patients with uncomplicated malaria in urban health centers in Bobo-Dioulasso. Parasite DNA was extracted using chelex-100 and species were identified using nested PCR. Plamodium falciparum msp1 and msp2 genes were amplified by nested polymerase chain reaction (PCR) and PCR products were analyzed by electrophoresis on a 2.5% agarose gel. Alleles were categorized according to their molecular weight. A total of 228 blood samples were analyzed out of which 227 (99.9%) were confirmed as P. falciparum-positive and one sample classified as mixed infection for P. malaria and P. falciparum. In msp1, the K1 allelic family was predominant with 77.4% (162/209) followed respectively by the MAD20 allelic family with 41.3% and R033 allelic family with 36%. In msp2, the 3D7 allelic family was the most frequently detected with 93.1 % compared to FC27 with 41.3%. Twenty-one different alleles were observed in msp1 with 9 alleles for K1, 8 alleles for MAD20 and 4 alleles for R033. In msp2, 25 individual alleles were detected with 10 alleles for FC27 and 15 alleles for 3D7. The mean multiplicity of falciparum infection was 1.95 with respectively 1.8 (1.76-1.83) and 2.1 (2.03-2.16) for msp1 and msp2 (P = 0.01). Our study showed high genetic diversity and allelic frequencies of msp1 and msp2 in Plasmodium falciparum isolates from symptomatic malaria patients in Bobo-Dioulasso.

  15. Cloning of the unculturable parasite Pasteuria ramosa and its Daphnia host reveals extreme genotype-genotype interactions.

    PubMed

    Luijckx, Pepijn; Ben-Ami, Frida; Mouton, Laurence; Du Pasquier, Louis; Ebert, Dieter

    2011-02-01

    The degree of specificity in host-parasite interactions has important implications for ecology and evolution. Unfortunately, specificity can be difficult to determine when parasites cannot be cultured. In such cases, studies often use isolates of unknown genetic composition, which may lead to an underestimation of specificity. We obtained the first clones of the unculturable bacterium Pasteuria ramosa, a parasite of Daphnia magna. Clonal genotypes of the parasite exhibited much more specific interactions with host genotypes than previous studies using isolates. Clones of P. ramosa infected fewer D. magna genotypes than isolates and host clones were either fully susceptible or fully resistant to the parasite. Our finding enhances our understanding of the evolution of virulence and coevolutionary dynamics in this system. We recommend caution when using P. ramosa isolates as the presence of multiple genotypes may influence the outcome and interpretation of some experiments. © 2010 Blackwell Publishing Ltd/CNRS.

  16. Spread of an introduced parasite across the Hawaiian archipelago independent of its introduced host

    DOE PAGES

    Gagne, Roderick B.; Hogan, J. Derek; McIntyre, Peter B.; ...

    2014-11-11

    1. Co-introductions of non-native parasites with non-native hosts can be a major driver of disease emergence in native species, but the conditions that promote the establishment and spread of nonnative parasites remain poorly understood. Here, we characterise the infection of a native host species by a non-native parasite relative to the distribution and density of the original non-native host species and a suite of organismal and environmental factors that have been associated with parasitism, but not commonly considered within a single system. 2. We examined the native Hawaiian goby Awaous stamineus across 23 catchments on five islands for infection bymore » the non-native nematode parasite Camallanus cotti. We used model selection to test whether parasite infection was associated with the genetic diversity, size and population density of native hosts, the distribution and density of non-native hosts, land use and water quality. 3. We found that the distribution of non-native C. cotti parasites has become decoupled from the non-native hosts that were primary vectors of introduction to the Hawaiian Islands. Although no single intrinsic or extrinsic factor was identified that best explains parasitism of A. stamineus by C. cotti, native host size, population density and water quality were consistently identified as influencing parasite intensity and prevalence. 4. The introduction of non-native species can indirectly influence native species through infection of co-introduced parasites. Here, we show that the effects of enemy addition can extend beyond the range of non-native hosts through the independent spread of non-native parasites. This suggests that control of non-native hosts is not sufficient to halt the spread of introduced parasites. Furthermore, designing importation regulations to prevent host parasite co-introductions can promote native species conservation, even in remote areas that may not seem susceptible to human influence.« less

  17. The past, present and future of fluorescent protein tags in anaerobic protozoan parasites.

    PubMed

    Morin-Adeline, Victoria; Šlapeta, Jan

    2016-03-01

    The world health organization currently recognizes diarrhoeal diseases as a significant cause of death in children globally. Protozoan parasites such as Giardia and Entamoeba that thrive in the oxygen-deprived environment of the human gut are common etiological agents of diarrhoea. In the urogenital tract of humans, the anaerobic protozoan parasite Trichomonas vaginalis is notorious as the most common non-viral, sexually transmitted pathogen. Even with high medical impact, our understanding of anaerobic parasite physiology is scarce and as a result, treatment choices are limited. Fluorescent proteins (FPs) are invaluable tools as genetically encoded protein tags for advancing knowledge of cellular function. These FP tags emit fluorescent colours and once attached to a protein of interest, allow tracking of parasite proteins in the dynamic cellular space. Application of green FPs-like FPs in anaerobic protozoans is hindered by their oxygen dependency. In this review, we examine aspects of anaerobic parasite biology that clash with physio-chemical properties of FPs and limit their use as live-parasite protein tags. We expose novel FPs, such as miniSOG that do not require oxygen for signal production. The potential use of novel FPs has the opportunity to leverage the anaerobe parasitologist toolkit to that of aerobe parasitologist.

  18. Impact of the post-weaning parasitism history on an experimental Haemonchus contortus infection in Creole goat kids.

    PubMed

    Ceï, W; Mahieu, M; Philibert, L; Arquet, R; Alexandre, G; Mandonnet, N; Bambou, J C

    2015-01-15

    Gastrointestinal nematode (GIN) infections have an important negative impact on small ruminant production. The selection of genotypes resistant to these parasitic infections is a promising alternative control strategy. Thus, resistance against GIN is an important component of small ruminant breeding schemes, based on phenotypic measurements of resistance in immune mature infected animals. In this study we evaluated both the impact of the post-weaning parasitism history on the response to an experimental Haemonchus contortus infection of resistant and susceptible Creole kids chosen on the basis of their estimated breeding value, and the interaction with the kid's genetic status. During the post-weaning period (from 3 months until 7 months of age) Creole kids were reared at pasture according to four different levels of a mixed rotational stocking system with Creole cattle: 100% (control), 75% (GG75), 50% (GG50), and 25% (GG25) of the total stocking rate of the pasture. The level of infection of the kids decreased significantly at 50% and 25% of the total stocking rate. After the post-weaning period at pasture, at 11 months of age kids were experimentally infected with H. contortus. The faecal egg counts (FEC) were significantly lower in the groups showing the highest FEC at pasture. This result suggests that a degree of protection against an experimental H. contortus infection occurred during the post-weaning period and was dependant on the level of parasitism. Interestingly, no interaction was observed between this level of protection and the genetic status. In conclusion, the level of post-weaning natural parasitism history at pasture would not influence the genetic status evaluation. More generally our results suggest that it would be better to expose kids to a high level of gastrointestinal parasitism during the post-weaning period in order to increase the basal level of resistance thereafter. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Eimeria species occurrence varies between geographic regions and poultry production systems and may influence parasite genetic diversity.

    PubMed

    Chengat Prakashbabu, B; Thenmozhi, V; Limon, G; Kundu, K; Kumar, S; Garg, R; Clark, E L; Srinivasa Rao, A S R; Raj, D G; Raman, M; Banerjee, P S; Tomley, F M; Guitian, J; Blake, D P

    2017-01-15

    system-specific distribution may contribute to the different levels of genetic diversity observed previously in India and may influence parasite population structure across much of Asia and Africa. The findings of the study can be used to prioritise target farms to launch and optimise appropriate anticoccidial strategies for long-term control. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  20. Emergence of new genotype and diversity of Theileria orientalis parasites from bovines in India.

    PubMed

    George, Neena; Bhandari, Vasundhra; Reddy, D Peddi; Sharma, Paresh

    2015-12-01

    Bovine theileriosis is a serious threat to livestock worldwide. Uncertainty around species prevalence, antigenic diversity and genotypes of strains make it difficult to assess the impact of this parasite and to provide necessary treatment. We aimed to characterize genotypic diversity, phylogeny and prevalence of Theileria orientalis parasites from the states of Telangana and Andhra Pradesh, India by collecting bovine blood samples from the major districts of the two states. Bioinformatic analysis identified antigenic diversity among the prevalent parasite strains using major piroplasm surface protein (MPSP) gene. Our study revealed a prevalence rate of 4.8% (n=41/862) of T. orientalis parasites in bovine animals and a new genotype of T. orientalis parasite which was not previously reported in India. The emergence of these new genotypes could be an explanation for the frequent outbreaks of bovine theileriosis. Further, whole genome sequencing of T. orientalis strains will help to elucidate the genetic factors relevant for transmissibility and virulence as well as vaccine and new drug development. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Dual RNA-seq reveals no plastic transcriptional response of the coccidian parasite Eimeria falciformis to host immune defenses.

    PubMed

    Ehret, Totta; Spork, Simone; Dieterich, Christoph; Lucius, Richard; Heitlinger, Emanuel

    2017-09-05

    Parasites can either respond to differences in immune defenses that exist between individual hosts plastically or, alternatively, follow a genetically canalized ("hard wired") program of infection. Assuming that large-scale functional plasticity would be discernible in the parasite transcriptome we have performed a dual RNA-seq study of the lifecycle of Eimeria falciformis using infected mice with different immune status as models for coccidian infections. We compared parasite and host transcriptomes (dual transcriptome) between naïve and challenge infected mice, as well as between immune competent and immune deficient ones. Mice with different immune competence show transcriptional differences as well as differences in parasite reproduction (oocyst shedding). Broad gene categories represented by differently abundant host genes indicate enrichments for immune reaction and tissue repair functions. More specifically, TGF-beta, EGF, TNF and IL-1 and IL-6 are examples of functional annotations represented differently depending on host immune status. Much in contrast, parasite transcriptomes were neither different between Coccidia isolated from immune competent and immune deficient mice, nor between those harvested from naïve and challenge infected mice. Instead, parasite transcriptomes have distinct profiles early and late in infection, characterized largely by biosynthesis or motility associated functional gene groups, respectively. Extracellular sporozoite and oocyst stages showed distinct transcriptional profiles and sporozoite transcriptomes were found enriched for species specific genes and likely pathogenicity factors. We propose that the niche and host-specific parasite E. falciformis uses a genetically canalized program of infection. This program is likely fixed in an evolutionary process rather than employing phenotypic plasticity to interact with its host. This in turn might limit the potential of the parasite to adapt to new host species or niches, forcing

  2. Genomic signatures of parasite-driven natural selection in north European Atlantic salmon (Salmo salar).

    PubMed

    Zueva, Ksenia J; Lumme, Jaakko; Veselov, Alexey E; Kent, Matthew P; Primmer, Craig R

    2018-06-01

    Understanding the genomic basis of host-parasite adaptation is important for predicting the long-term viability of species and developing successful management practices. However, in wild populations, identifying specific signatures of parasite-driven selection often presents a challenge, as it is difficult to unravel the molecular signatures of selection driven by different, but correlated, environmental factors. Furthermore, separating parasite-mediated selection from similar signatures due to genetic drift and population history can also be difficult. Populations of Atlantic salmon (Salmo salar L.) from northern Europe have pronounced differences in their reactions to the parasitic flatworm Gyrodactylus salaris Malmberg 1957 and are therefore a good model to search for specific genomic regions underlying inter-population differences in pathogen response. We used a dense Atlantic salmon SNP array, along with extensive sampling of 43 salmon populations representing the two G. salaris response extremes (extreme susceptibility vs resistant), to screen the salmon genome for signatures of directional selection while attempting to separate the parasite effect from other factors. After combining the results from two independent genome scan analyses, 57 candidate genes potentially under positive selection were identified, out of which 50 were functionally annotated. This candidate gene set was shown to be functionally enriched for lymph node development, focal adhesion genes and anti-viral response, which suggests that the regulation of both innate and acquired immunity might be an important mechanism for salmon response to G. salaris. Overall, our results offer insights into the apparently complex genetic basis of pathogen susceptibility in salmon and highlight methodological challenges for separating the effects of various environmental factors. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Medea selfish genetic elements as tools for altering traits of wild populations: a theoretical analysis.

    PubMed

    Ward, Catherine M; Su, Jessica T; Huang, Yunxin; Lloyd, Alun L; Gould, Fred; Hay, Bruce A

    2011-04-01

    One strategy for controlling transmission of insect-borne disease involves replacing the native insect population with transgenic animals unable to transmit disease. Population replacement requires a drive mechanism to ensure the rapid spread of linked transgenes, the presence of which may result in a fitness cost to carriers. Medea selfish genetic elements have the feature that when present in a female, only offspring that inherit the element survive, a behavior that can lead to spread. Here, we derive equations that describe the conditions under which Medea elements with a fitness cost will spread, and the equilibrium allele frequencies are achieved. Of particular importance, we show that whenever Medea spreads, the non-Medea genotype is driven out of the population, and we estimate the number of generations required to achieve this goal for Medea elements with different fitness costs and male-only introduction frequencies. Finally, we characterize two contexts in which Medea elements with fitness costs drive the non-Medea allele from the population: an autosomal element in which not all Medea-bearing progeny of a Medea-bearing mother survive, and an X-linked element in species in which X/Y individuals are male. Our results suggest that Medea elements can drive population replacement under a wide range of conditions. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  4. Patterns of co-speciation and host switching in primate malaria parasites.

    PubMed

    Garamszegi, László Zsolt

    2009-05-22

    The evolutionary history of many parasites is dependent on the evolution of their hosts, leading to an association between host and parasite phylogenies. However, frequent host switches across broad phylogenetic distances may weaken this close evolutionary link, especially when vectors are involved in parasites transmission, as is the case for malaria pathogens. Several studies suggested that the evolution of the primate-infective malaria lineages may be constrained by the phylogenetic relationships of their hosts, and that lateral switches between distantly related hosts may have been occurred. However, no systematic analysis has been quantified the degree of phylogenetic association between primates and their malaria parasites. Here phylogenetic approaches have been used to discriminate statistically between events due to co-divergence, duplication, extinction and host switches that can potentially cause historical association between Plasmodium parasites and their primate hosts. A Bayesian reconstruction of parasite phylogeny based on genetic information for six genes served as basis for the analyses, which could account for uncertainties about the evolutionary hypotheses of malaria parasites. Related lineages of primate-infective Plasmodium tend to infect hosts within the same taxonomic family. Different analyses testing for congruence between host and parasite phylogenies unanimously revealed a significant association between the corresponding evolutionary trees. The most important factor that resulted in this association was host switching, but depending on the parasite phylogeny considered, co-speciation and duplication may have also played some additional role. Sorting seemed to be a relatively infrequent event, and can occur only under extreme co-evolutionary scenarios. The concordance between host and parasite phylogenies is heterogeneous: while the evolution of some malaria pathogens is strongly dependent on the phylogenetic history of their primate

  5. Paradigms for parasite conservation.

    PubMed

    Dougherty, Eric R; Carlson, Colin J; Bueno, Veronica M; Burgio, Kevin R; Cizauskas, Carrie A; Clements, Christopher F; Seidel, Dana P; Harris, Nyeema C

    2016-08-01

    Parasitic species, which depend directly on host species for their survival, represent a major regulatory force in ecosystems and a significant component of Earth's biodiversity. Yet the negative impacts of parasites observed at the host level have motivated a conservation paradigm of eradication, moving us farther from attainment of taxonomically unbiased conservation goals. Despite a growing body of literature highlighting the importance of parasite-inclusive conservation, most parasite species remain understudied, underfunded, and underappreciated. We argue the protection of parasitic biodiversity requires a paradigm shift in the perception and valuation of their role as consumer species, similar to that of apex predators in the mid-20th century. Beyond recognizing parasites as vital trophic regulators, existing tools available to conservation practitioners should explicitly account for the unique threats facing dependent species. We built upon concepts from epidemiology and economics (e.g., host-density threshold and cost-benefit analysis) to devise novel metrics of margin of error and minimum investment for parasite conservation. We define margin of error as the risk of accidental host extinction from misestimating equilibrium population sizes and predicted oscillations, while minimum investment represents the cost associated with conserving the additional hosts required to maintain viable parasite populations. This framework will aid in the identification of readily conserved parasites that present minimal health risks. To establish parasite conservation, we propose an extension of population viability analysis for host-parasite assemblages to assess extinction risk. In the direst cases, ex situ breeding programs for parasites should be evaluated to maximize success without undermining host protection. Though parasitic species pose a considerable conservation challenge, adaptations to conservation tools will help protect parasite biodiversity in the face of

  6. Prevalence and genetic diversity of haematozoa in South American waterfowl and evidence for intercontinental redistribution of parasites by migratory birds

    USGS Publications Warehouse

    Smith, Matthew M.; Ramey, Andy M.

    2015-01-01

    To understand the role of migratory birds in the movement and transmission of haematozoa within and between continental regions, we examined 804 blood samples collected from eleven endemic species of South American waterfowl in Peru and Argentina for infection by Haemoproteus, Plasmodium, and/or Leucocytozono blood parasites. Infections were detected in 25 individuals of six species for an overall apparent prevalence rate of 3.1%. Analysis of haematozoa mitochondrial DNA revealed twelve distinct parasite haplotypes infecting South American waterfowl, four of which were identical to lineages previously observed infecting ducks and swans sampled in North America. Analysis of parasite mitochondrial DNA sequences revealed close phylogenetic relationships between lineages originating from waterfowl samples regardless of continental affiliation. In contrast, more distant phylogenetic relationships were observed between parasite lineages from waterfowl and passerines sampled in South America for Haemoproteus and Leucocytozoon, suggesting some level of host specificity for parasites of these genera. The detection of identical parasite lineages in endemic, South American waterfowl and North American ducks and swans, paired with the close phylogenetic relationships of haematozoa infecting waterfowl on both continents, provides evidence for parasite redistribution between these regions by migratory birds.

  7. Fishing drives declines in fish parasite diversity and has variable effects on parasite abundance.

    PubMed

    Wood, Chelsea L; Sandin, Stuart A; Zgliczynski, Brian; Guerra, Ana Sofía; Micheli, Fiorenza

    2014-07-01

    Despite the ubiquity and ecological importance of parasites, relatively few studies have assessed their response to anthropogenic environmental change. Heuristic models have predicted both increases and decreases in parasite abundance in response to human disturbance, with empirical support for both. However, most studies focus on one or a few selected parasite species. Here, we assess the abundance of parasites of seven species of coral reef fishes collected from three fished and three unfished islands of the Line Islands archipelago in the central equatorial Pacific. Because we chose fish hosts that spanned different trophic levels, taxonomic groups, and body sizes, we were able to compare parasite responses across a broad cross section of the total parasite community in the presence and absence of fishing, a major human impact on marine ecosystems. We found that overall parasite species richness was substantially depressed on fished islands, but that the response of parasite abundance varied among parasite taxa: directly transmitted parasites were significantly more abundant on fished than on unfished islands, while the reverse was true for trophically transmitted parasites. This probably arises because trophically transmitted parasites require multiple host species, some of which are the top predators most sensitive to fishing impacts. The increase in directly transmitted parasites appeared to be due to fishing-driven compensatory increases in the abundance of their hosts. Together, these results provide support for the predictions of both heuristic models, and indicate that the direction of fishing's impact on parasite abundance is mediated by parasite traits, notably parasite transmission strategies.

  8. Ancient DNA from latrines in Northern Europe and the Middle East (500 BC-1700 AD) reveals past parasites and diet.

    PubMed

    Søe, Martin Jensen; Nejsum, Peter; Seersholm, Frederik Valeur; Fredensborg, Brian Lund; Habraken, Ruben; Haase, Kirstine; Hald, Mette Marie; Simonsen, Rikke; Højlund, Flemming; Blanke, Louise; Merkyte, Inga; Willerslev, Eske; Kapel, Christian Moliin Outzen

    2018-01-01

    High-resolution insight into parasitic infections and diet of past populations in Northern Europe and the Middle East (500 BC- 1700 AD) was obtained by pre-concentration of parasite eggs from ancient latrines and deposits followed by shotgun sequencing of DNA. Complementary profiling of parasite, vertebrate and plant DNA proved highly informative in the study of ancient health, human-animal interactions as well as animal and plant dietary components. Most prominent were finding of soil-borne parasites transmitted directly between humans, but also meat-borne parasites that require consumption of raw or undercooked fish and pork. The detection of parasites for which sheep, horse, dog, pig, and rodents serves as definitive hosts are clear markers of domestic and synanthropic animals living in closer proximity of the respective sites. Finally, the reconstruction of full mitochondrial parasite genomes from whipworm (Ascaris lumbricoides) and roundworm species (Trichuris trichiura and Trichuris muris) and estimates of haplotype frequencies elucidates the genetic diversity and provides insights into epidemiology and parasite biology.

  9. Ancient DNA from latrines in Northern Europe and the Middle East (500 BC–1700 AD) reveals past parasites and diet

    PubMed Central

    Nejsum, Peter; Seersholm, Frederik Valeur; Fredensborg, Brian Lund; Habraken, Ruben; Haase, Kirstine; Hald, Mette Marie; Simonsen, Rikke; Højlund, Flemming; Blanke, Louise; Merkyte, Inga; Willerslev, Eske; Kapel, Christian Moliin Outzen

    2018-01-01

    High-resolution insight into parasitic infections and diet of past populations in Northern Europe and the Middle East (500 BC- 1700 AD) was obtained by pre-concentration of parasite eggs from ancient latrines and deposits followed by shotgun sequencing of DNA. Complementary profiling of parasite, vertebrate and plant DNA proved highly informative in the study of ancient health, human-animal interactions as well as animal and plant dietary components. Most prominent were finding of soil-borne parasites transmitted directly between humans, but also meat-borne parasites that require consumption of raw or undercooked fish and pork. The detection of parasites for which sheep, horse, dog, pig, and rodents serves as definitive hosts are clear markers of domestic and synanthropic animals living in closer proximity of the respective sites. Finally, the reconstruction of full mitochondrial parasite genomes from whipworm (Ascaris lumbricoides) and roundworm species (Trichuris trichiura and Trichuris muris) and estimates of haplotype frequencies elucidates the genetic diversity and provides insights into epidemiology and parasite biology. PMID:29694397

  10. Evolutionary rescue of a parasite population by mutation rate evolution.

    PubMed

    Greenspoon, Philip B; Mideo, Nicole

    2017-10-01

    The risk of antibiotic resistance evolution in parasites is a major problem for public health. Identifying factors which promote antibiotic resistance evolution is thus a priority in evolutionary medicine. The rate at which new mutations enter the parasite population is one important predictor; however, mutation rate is not necessarily a fixed quantity, as is often assumed, but can itself evolve. Here we explore the possible impacts of mutation rate evolution on the fate of a disease circulating in a host population, which is being treated with drugs, the use of which varies over time. Using an evolutionary rescue framework, we find that mutation rate evolution provides a dramatic increase in the probability that a parasite population survives treatment in only a limited region, while providing little or no advantage in other regions. Both epidemiological features, such as the virulence of infection, and population genetic parameters, such as recombination rate, play important roles in determining the probability of evolutionary rescue and whether mutation rate evolution enhances the probability of evolutionary rescue or not. While efforts to curtail mutation rate evolution in parasites may be worthwhile under some circumstances, our results suggest that this need not always be the case. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Miscellaneous parasitic diseases

    USGS Publications Warehouse

    Cole, Rebecca A.; Friend, M.

    1999-01-01

    Free-ranging wild birds are afflicted with numerous other parasites that occasionally cause illness and death. Some of these parasites, such as two of the trematodes or flukes highlighted below, can cause major die-offs. This section about parasitic diseases concludes with descriptions of some additional parasites that field biologists may encounter in wild birds. This listing is by no means complete and it is intended only to increase awareness of the diversity of types of parasites that might be encountered during examinations of wild birds. One should not assume that the parasites found during the examination of bird carcasses caused their death. Because parasites of birds vary greatly in size from a protozoa of a few microns in length to tapeworms of several inches in length and because they can be found in virtually all tissues, body cavities and other locations within the bird, the observation of the parasites will depend on their visibility and the thoroughness of the examination. Therefore, it is generally beneficial to submit bird carcasses to qualified disease diagnostic laboratories to obtain evaluations of the significance of endoparasites or of ectoparasites. The methods that are used to preserve the carcass, tissues, or other specimens can enhance or compromise the ability of specialists to identify the parasite to species, and even to genera, in some instances. Therefore, whenever possible, it is best to contact the diagnostic laboratory that will receive the specimens and obtain instructions for collecting, preserving, and shipping field samples (See Chapters 2 and 3).

  12. Evidence for extensive genetic diversity and substructuring of the Babesia bovis metapopulation.

    PubMed

    Flores, D A; Minichiello, Y; Araujo, F R; Shkap, V; Benítez, D; Echaide, I; Rolls, P; Mosqueda, J; Pacheco, G M; Petterson, M; Florin-Christensen, M; Schnittger, L

    2013-11-01

    Babesia bovis is a tick-transmitted haemoprotozoan and a causative agent of bovine babesiosis, a cattle disease that causes significant economic loss in tropical and subtropical regions. A panel of nineteen micro- and minisatellite markers was used to estimate population genetic parameters of eighteen parasite isolates originating from different continents, countries and geographic regions including North America (Mexico, USA), South America (Argentina, Brazil), the Middle East (Israel) and Australia. For eleven of the eighteen isolates, a unique haplotype was inferred suggesting selection of a single genotype by either in vitro cultivation or amplification in splenectomized calves. Furthermore, a high genetic diversity (H = 0.780) over all marker loci was estimated. Linkage disequilibrium was observed in the total study group but also in sample subgroups from the Americas, Brazil, and Israel and Australia. In contrast, corresponding to their more confined geographic origin, samples from Israel and Argentina were each found to be in equilibrium suggestive of random mating and frequent genetic exchange. The genetic differentiation (F(ST)) of the total study group over all nineteen loci was estimated by analysis of variance (Θ) and Nei's estimation of heterozygosity (G(ST')) as 0.296 and 0.312, respectively. Thus, about 30% of the genetic diversity of the parasite population is associated with genetic differences between parasite isolates sampled from the different geographic regions. The pairwise similarity of multilocus genotypes (MLGs) was assessed and a neighbour-joining dendrogram generated. MLGs were found to cluster according to the country/continent of origin of isolates, but did not distinguish the attenuated from the pathogenic parasite state. The distant geographic origin of the isolates studied allows an initial glimpse into the large extent of genetic diversity and differentiation of the B. bovis population on a global scale. © 2013 Blackwell Verlag

  13. Blastocystis, an unrecognized parasite: an overview of pathogenesis and diagnosis.

    PubMed

    Wawrzyniak, Ivan; Poirier, Philippe; Viscogliosi, Eric; Dionigia, Meloni; Texier, Catherine; Delbac, Frédéric; Alaoui, Hicham El

    2013-10-01

    Blastocystis sp. is among the few enteric parasites with a prevalence that often exceeds 5% in the general population of industrialized countries and can reach 30-60% in developing countries. This parasite is frequently found in people who are immunocompromised (patients with human immunodeficiency virus/acquired immunodeficiency syndrome or cancer) and a higher risk of Blastocystis sp. infection has been found in people with close animal contact. Such prevalence in the human population and the zoonotic potential naturally raise questions about the impact of these parasites on public health and has increased interest in this area. Recent in vitro and in vivo studies have shed new light on the pathogenic power of this parasite, suggesting that Blastocystis sp. infection is associated with a variety of gastrointestinal disorders, may play a significant role in irritable bowel syndrome, and may be linked with cutaneous lesions (urticaria). Despite recent significant advances in the knowledge of the extensive genetic diversity of this species, the identification of extracellular proteases as virulence factors and the publication of one isolate genome, many aspects of the biology of Blastocystis sp. remain poorly investigated. In this review, we investigate several biological aspects of Blastocystis sp. (diversity and epidemiology, diagnosis tools and pathophysiology). These data pave the way for the following challenges concerning Blastocystis sp. research: deciphering key biological mechanisms and pathways of this parasite and clarification of its clinical impact in humans.

  14. Modelling Parasite Transmission in a Grazing System: The Importance of Host Behaviour and Immunity

    PubMed Central

    Fox, Naomi J.; Marion, Glenn; Davidson, Ross S.; White, Piran C. L.; Hutchings, Michael R.

    2013-01-01

    Parasitic helminths present one of the most pervasive challenges to grazing herbivores. Many macro-parasite transmission models focus on host physiological defence strategies, omitting more complex interactions between hosts and their environments. This work represents the first model that integrates both the behavioural and physiological elements of gastro-intestinal nematode transmission dynamics in a managed grazing system. A spatially explicit, individual-based, stochastic model is developed, that incorporates both the hosts’ immunological responses to parasitism, and key grazing behaviours including faecal avoidance. The results demonstrate that grazing behaviour affects both the timing and intensity of parasite outbreaks, through generating spatial heterogeneity in parasite risk and nutritional resources, and changing the timing of exposure to the parasites’ free-living stages. The influence of grazing behaviour varies with the host-parasite combination, dependent on the development times of different parasite species and variations in host immune response. Our outputs include the counterintuitive finding that under certain conditions perceived parasite avoidance behaviours (faecal avoidance) can increase parasite risk, for certain host-parasite combinations. Through incorporating the two-way interaction between infection dynamics and grazing behaviour, the potential benefits of parasite-induced anorexia are also demonstrated. Hosts with phenotypic plasticity in grazing behaviour, that make grazing decisions dependent on current parasite burden, can reduce infection with minimal loss of intake over the grazing season. This paper explores how both host behaviours and immunity influence macro-parasite transmission in a spatially and temporally heterogeneous environment. The magnitude and timing of parasite outbreaks is influenced by host immunity and behaviour, and the interactions between them; the incorporation of both regulatory processes is required to

  15. Ancient host specificity within a single species of brood parasitic bird

    PubMed Central

    Spottiswoode, Claire N.; Stryjewski, Katherine Faust; Quader, Suhel; Colebrook-Robjent, John F. R.; Sorenson, Michael D.

    2011-01-01

    Parasites that exploit multiple hosts often experience diversifying selection for host-specific adaptations. This can result in multiple strains of host specialists coexisting within a single parasitic species. A long-standing conundrum is how such sympatric host races can be maintained within a single parasitic species in the face of interbreeding among conspecifics specializing on different hosts. Striking examples are seen in certain avian brood parasites such as cuckoos, many of which show host-specific differentiation in traits such as host egg mimicry. Exploiting a Zambian egg collection amassed over several decades and supplemented by recent fieldwork, we show that the brood parasitic Greater Honeyguide Indicator indicator exhibits host-specific differentiation in both egg size and egg shape. Genetic analysis of honeyguide eggs and chicks show that two highly divergent mitochondrial DNA lineages are associated with ground- and tree-nesting hosts, respectively, indicating perfect fidelity to two mutually exclusive sets of host species for millions of years. Despite their age and apparent adaptive diversification, however, these ancient lineages are not cryptic species; a complete lack of differentiation in nuclear genes shows that mating between individuals reared by different hosts is sufficiently frequent to prevent speciation. These results indicate that host specificity is maternally inherited, that host-specific adaptation among conspecifics can be maintained without reproductive isolation, and that host specificity can be remarkably ancient in evolutionary terms. PMID:21949391

  16. Cryptosporidium within-host genetic diversity: systematic bibliographical search and narrative overview.

    PubMed

    Grinberg, Alex; Widmer, Giovanni

    2016-07-01

    Knowledge of the within-host genetic diversity of a pathogen often has broad implications for disease management. Cryptosporidium protozoan parasites are among the most common causative agents of infectious diarrhoea. Current limitations of in vitro culture impose the use of uncultured isolates obtained directly from the hosts as operational units of Cryptosporidium genotyping. The validity of this practice is centred on the assumption of genetic homogeneity of the parasite within the host, and genetic studies often take little account of the within-host genetic diversity of Cryptosporidium. Yet, theory and experimental evidence contemplate genetic diversity of Cryptosporidium at the within-host scale, but this diversity is not easily identified by genotyping methods ill-suited for the resolution of DNA mixtures. We performed a systematic bibliographical search of the occurrence of within-host genetic diversity of Cryptosporidium parasites in epidemiological samples, between 2005 and 2015. Our results indicate that genetic diversity at the within-host scale, in the form of mixed species or intra-species diversity, has been identified in a large number (n=55) of epidemiological surveys of cryptosporidiosis in variable proportions, but has often been treated as a secondary finding and not analysed. As in malaria, there are indications that the scale of this diversity varies between geographical regions, perhaps depending on the prevailing transmission pathways. These results provide a significant knowledge base from which to draw alternative population genetic structure models, some of which are discussed in this paper. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  17. Single cell elemental analysis using nuclear microscopy

    NASA Astrophysics Data System (ADS)

    Ren, M. Q.; Thong, P. S. P.; Kara, U.; Watt, F.

    1999-04-01

    The use of Particle Induced X-ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS) and Scanning Transmission Ion Microscopy (STIM) to provide quantitative elemental analysis of single cells is an area which has high potential, particularly when the trace elements such as Ca, Fe, Zn and Cu can be monitored. We describe the methodology of sample preparation for two cell types, the procedures of cell imaging using STIM, and the quantitative elemental analysis of single cells using RBS and PIXE. Recent work on single cells at the Nuclear Microscopy Research Centre,National University of Singapore has centred around two research areas: (a) Apoptosis (programmed cell death), which has been recently implicated in a wide range of pathological conditions such as cancer, Parkinson's disease etc, and (b) Malaria (infection of red blood cells by the malaria parasite). Firstly we present results on the elemental analysis of human Chang liver cells (ATTCC CCL 13) where vanadium ions were used to trigger apoptosis, and demonstrate that nuclear microscopy has the capability of monitoring vanadium loading within individual cells. Secondly we present the results of elemental changes taking place in individual mouse red blood cells which have been infected with the malaria parasite and treated with the anti-malaria drug Qinghaosu (QHS).

  18. Diversity, Loss, and Gain of Malaria Parasites in a Globally Invasive Bird

    PubMed Central

    Marzal, Alfonso; Ricklefs, Robert E.; Valkiūnas, Gediminas; Albayrak, Tamer; Arriero, Elena; Bonneaud, Camille; Czirják, Gábor A.; Ewen, John; Hellgren, Olof; Hořáková, Dita; Iezhova, Tatjana A.; Jensen, Henrik; Križanauskienė, Asta; Lima, Marcos R.; de Lope, Florentino; Magnussen, Eyðfinn; Martin, Lynn B.; Møller, Anders P.; Palinauskas, Vaidas; Pap, Péter L.; Pérez-Tris, Javier; Sehgal, Ravinder N. M.; Soler, Manuel; Szöllősi, Eszter; Westerdahl, Helena; Zetindjiev, Pavel; Bensch, Staffan

    2011-01-01

    Invasive species can displace natives, and thus identifying the traits that make aliens successful is crucial for predicting and preventing biodiversity loss. Pathogens may play an important role in the invasive process, facilitating colonization of their hosts in new continents and islands. According to the Novel Weapon Hypothesis, colonizers may out-compete local native species by bringing with them novel pathogens to which native species are not adapted. In contrast, the Enemy Release Hypothesis suggests that flourishing colonizers are successful because they have left their pathogens behind. To assess the role of avian malaria and related haemosporidian parasites in the global spread of a common invasive bird, we examined the prevalence and genetic diversity of haemosporidian parasites (order Haemosporida, genera Plasmodium and Haemoproteus) infecting house sparrows (Passer domesticus). We sampled house sparrows (N = 1820) from 58 locations on 6 continents. All the samples were tested using PCR-based methods; blood films from the PCR-positive birds were examined microscopically to identify parasite species. The results show that haemosporidian parasites in the house sparrows' native range are replaced by species from local host-generalist parasite fauna in the alien environments of North and South America. Furthermore, sparrows in colonized regions displayed a lower diversity and prevalence of parasite infections. Because the house sparrow lost its native parasites when colonizing the American continents, the release from these natural enemies may have facilitated its invasion in the last two centuries. Our findings therefore reject the Novel Weapon Hypothesis and are concordant with the Enemy Release Hypothesis. PMID:21779353

  19. Diversity, loss, and gain of malaria parasites in a globally invasive bird.

    PubMed

    Marzal, Alfonso; Ricklefs, Robert E; Valkiūnas, Gediminas; Albayrak, Tamer; Arriero, Elena; Bonneaud, Camille; Czirják, Gábor A; Ewen, John; Hellgren, Olof; Hořáková, Dita; Iezhova, Tatjana A; Jensen, Henrik; Križanauskienė, Asta; Lima, Marcos R; de Lope, Florentino; Magnussen, Eyðfinn; Martin, Lynn B; Møller, Anders P; Palinauskas, Vaidas; Pap, Péter L; Pérez-Tris, Javier; Sehgal, Ravinder N M; Soler, Manuel; Szöllosi, Eszter; Westerdahl, Helena; Zetindjiev, Pavel; Bensch, Staffan

    2011-01-01

    Invasive species can displace natives, and thus identifying the traits that make aliens successful is crucial for predicting and preventing biodiversity loss. Pathogens may play an important role in the invasive process, facilitating colonization of their hosts in new continents and islands. According to the Novel Weapon Hypothesis, colonizers may out-compete local native species by bringing with them novel pathogens to which native species are not adapted. In contrast, the Enemy Release Hypothesis suggests that flourishing colonizers are successful because they have left their pathogens behind. To assess the role of avian malaria and related haemosporidian parasites in the global spread of a common invasive bird, we examined the prevalence and genetic diversity of haemosporidian parasites (order Haemosporida, genera Plasmodium and Haemoproteus) infecting house sparrows (Passer domesticus). We sampled house sparrows (N = 1820) from 58 locations on 6 continents. All the samples were tested using PCR-based methods; blood films from the PCR-positive birds were examined microscopically to identify parasite species. The results show that haemosporidian parasites in the house sparrows' native range are replaced by species from local host-generalist parasite fauna in the alien environments of North and South America. Furthermore, sparrows in colonized regions displayed a lower diversity and prevalence of parasite infections. Because the house sparrow lost its native parasites when colonizing the American continents, the release from these natural enemies may have facilitated its invasion in the last two centuries. Our findings therefore reject the Novel Weapon Hypothesis and are concordant with the Enemy Release Hypothesis.

  20. Recent advances in molecular biology of parasitic viruses.

    PubMed

    Banik, Gouri Rani; Stark, Damien; Rashid, Harunor; Ellis, John T

    2014-01-01

    The numerous protozoa that can inhabit the human gastro-intestinal tract are known, yet little is understood of the viruses which infect these protozoa. The discovery, morphologic details, purification methods of virus-like particles, genome and proteome of the parasitic viruses, Entamoeba histolytica, Giardia lamblia, Trichomonas vaginalis, and the Eimeria sp. are described in this review. The protozoan viruses share many common features: most of them are RNA or double-stranded RNA viruses, ranging between 5 and 8 kilobases, and are spherical or icosahedral in shape with an average diameter of 30-40 nm. These viruses may influence the function and pathogenicity of the protozoa which they infect, and may be important to investigate from a clinical perspective. The viruses may be used as specific genetic transfection vectors for the parasites and may represent a research tool. This review provides an overview on recent advances in the field of protozoan viruses.

  1. Parasite epidemiology in a changing world: can molecular phylogeography help us tell the wood from the trees?

    PubMed

    Morgan, E R; Clare, E L; Jefferies, R; Stevens, J R

    2012-12-01

    SUMMARY Molecular phylogeography has revolutionised our ability to infer past biogeographic events from cross-sectional data on current parasite populations. In ecological parasitology, this approach has been used to address fundamental questions concerning host-parasite co-evolution and geographic patterns of spread, and has raised many technical issues and problems of interpretation. For applied parasitologists, the added complexity inherent in adding population genetic structure to perceived parasite distributions can sometimes seem to cloud rather than clarify approaches to control. In this paper, we use case studies firstly to illustrate the potential extent of cryptic diversity in parasite and parasitoid populations, secondly to consider how anthropogenic influences including movement of domestic animals affect the geographic distribution and host associations of parasite genotypes, and thirdly to explore the applied relevance of these processes to parasites of socio-economic importance. The contribution of phylogeographic approaches to deeper understanding of parasite biology in these cases is assessed. Thus, molecular data on the emerging parasites Angiostrongylus vasorum in dogs and wild canids, and the myiasis-causing flies Lucilia spp. in sheep and Cochliomyia hominovorax in humans, lead to clear implications for control efforts to limit global spread. Broader applications of molecular phylogeography to understanding parasite distributions in an era of rapid global change are also discussed.

  2. Seasonal and biogeographical patterns of gastrointestinal parasites in large carnivores: wolves in a coastal archipelago.

    PubMed

    Bryan, Heather M; Darimont, Chris T; Hill, Janet E; Paquet, Paul C; Thompson, R C Andrew; Wagner, Brent; Smits, Judit E G

    2012-05-01

    Parasites are increasingly recognized for their profound influences on individual, population and ecosystem health. We provide the first report of gastrointestinal parasites in gray wolves from the central and north coasts of British Columbia, Canada. Across 60 000 km(2), wolf feces were collected from 34 packs in 2005-2008. At a smaller spatial scale (3300 km(2)), 8 packs were sampled in spring and autumn. Parasite eggs, larvae, and cysts were identified using standard flotation techniques and morphology. A subset of samples was analysed by PCR and sequencing to identify tapeworm eggs (n=9) and Giardia cysts (n=14). We detected ≥14 parasite taxa in 1558 fecal samples. Sarcocystis sporocysts occurred most frequently in feces (43·7%), followed by taeniid eggs (23·9%), Diphyllobothrium eggs (9·1%), Giardia cysts (6·8%), Toxocara canis eggs (2·1%), and Cryptosporidium oocysts (1·7%). Other parasites occurred in ≤1% of feces. Genetic analyses revealed Echinococcus canadensis strains G8 and G10, Taenia ovis krabbei, Diphyllobothrium nehonkaiense, and Giardia duodenalis assemblages A and B. Parasite prevalence differed between seasons and island/mainland sites. Patterns in parasite prevalence reflect seasonal and spatial resource use by wolves and wolf-salmon associations. These data provide a unique, extensive and solid baseline for monitoring parasite community structure in relation to environmental change.

  3. Parasites as prey in aquatic food webs: implications for predator infection and parasite transmission

    USGS Publications Warehouse

    Thieltges, David W.; Amundsen, Per-Arne; Hechinger, Ryan F.; Johnson, Pieter T.J.; Lafferty, Levin D.; Mouritsen, Kim N.; Preston, Daniel L.; Reise, Karsten; Zander, C. Dieter; Poulin, Robert

    2013-01-01

    While the recent inclusion of parasites into food-web studies has highlighted the role of parasites as consumers, there is accumulating evidence that parasites can also serve as prey for predators. Here we investigated empirical patterns of predation on parasites and their relationships with parasite transmission in eight topological food webs representing marine and freshwater ecosystems. Within each food web, we examined links in the typical predator–prey sub web as well as the predator–parasite sub web, i.e. the quadrant of the food web indicating which predators eat parasites. Most predator– parasite links represented ‘concomitant predation’ (consumption and death of a parasite along with the prey/host; 58–72%), followed by ‘trophic transmission’ (predator feeds on infected prey and becomes infected; 8–32%) and predation on free-living parasite life-cycle stages (4–30%). Parasite life-cycle stages had, on average, between 4.2 and 14.2 predators. Among the food webs, as predator richness increased, the number of links exploited by trophically transmitted parasites increased at about the same rate as did the number of links where these stages serve as prey. On the whole, our analyses suggest that predation on parasites has important consequences for both predators and parasites, and food web structure. Because our analysis is solely based on topological webs, determining the strength of these interactions is a promising avenue for future research.

  4. Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations.

    PubMed

    Tobler, M; Plath, M; Riesch, R; Schlupp, I; Grasse, A; Munimanda, G K; Setzer, C; Penn, D J; Moodley, Y

    2014-05-01

    The unprecedented polymorphism in the major histocompatibility complex (MHC) genes is thought to be maintained by balancing selection from parasites. However, do parasites also drive divergence at MHC loci between host populations, or do the effects of balancing selection maintain similarities among populations? We examined MHC variation in populations of the livebearing fish Poecilia mexicana and characterized their parasite communities. Poecilia mexicana populations in the Cueva del Azufre system are locally adapted to darkness and the presence of toxic hydrogen sulphide, representing highly divergent ecotypes or incipient species. Parasite communities differed significantly across populations, and populations with higher parasite loads had higher levels of diversity at class II MHC genes. However, despite different parasite communities, marked divergence in adaptive traits and in neutral genetic markers, we found MHC alleles to be remarkably similar among host populations. Our findings indicate that balancing selection from parasites maintains immunogenetic diversity of hosts, but this process does not promote MHC divergence in this system. On the contrary, we suggest that balancing selection on immunogenetic loci may outweigh divergent selection causing divergence, thereby hindering host divergence and speciation. Our findings support the hypothesis that balancing selection maintains MHC similarities among lineages during and after speciation (trans-species evolution). © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  5. Food plant derived disease tolerance and resistance in a natural butterfly-plant-parasite interactions.

    PubMed

    Sternberg, Eleanore D; Lefèvre, Thierry; Li, James; de Castillejo, Carlos Lopez Fernandez; Li, Hui; Hunter, Mark D; de Roode, Jacobus C

    2012-11-01

    Organisms can protect themselves against parasite-induced fitness costs through resistance or tolerance. Resistance includes mechanisms that prevent infection or limit parasite growth while tolerance alleviates the fitness costs from parasitism without limiting infection. Although tolerance and resistance affect host-parasite coevolution in fundamentally different ways, tolerance has often been ignored in animal-parasite systems. Where it has been studied, tolerance has been assumed to be a genetic mechanism, unaffected by the host environment. Here we studied the effects of host ecology on tolerance and resistance to infection by rearing monarch butterflies on 12 different species of milkweed food plants and infecting them with a naturally occurring protozoan parasite. Our results show that monarch butterflies experience different levels of tolerance to parasitism depending on the species of milkweed that they feed on, with some species providing over twofold greater tolerance than other milkweed species. Resistance was also affected by milkweed species, but there was no relationship between milkweed-conferred resistance and tolerance. Chemical analysis suggests that infected monarchs obtain highest fitness when reared on milkweeds with an intermediate concentration, diversity, and polarity of toxic secondary plant chemicals known as cardenolides. Our results demonstrate that environmental factors-such as interacting species in ecological food webs-are important drivers of disease tolerance. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  6. Fossils of parasites: what can the fossil record tell us about the evolution of parasitism?

    PubMed

    Leung, Tommy L F

    2017-02-01

    Parasites are common in many ecosystems, yet because of their nature, they do not fossilise readily and are very rare in the geological record. This makes it challenging to study the evolutionary transition that led to the evolution of parasitism in different taxa. Most studies on the evolution of parasites are based on phylogenies of extant species that were constructed based on morphological and molecular data, but they give us an incomplete picture and offer little information on many important details of parasite-host interactions. The lack of fossil parasites also means we know very little about the roles that parasites played in ecosystems of the past even though it is known that parasites have significant influences on many ecosystems. The goal of this review is to bring attention to known fossils of parasites and parasitism, and provide a conceptual framework for how research on fossil parasites can develop in the future. Despite their rarity, there are some fossil parasites which have been described from different geological eras. These fossils include the free-living stage of parasites, parasites which became fossilised with their hosts, parasite eggs and propagules in coprolites, and traces of pathology inflicted by parasites on the host's body. Judging from the fossil record, while there were some parasite-host relationships which no longer exist in the present day, many parasite taxa which are known from the fossil record seem to have remained relatively unchanged in their general morphology and their patterns of host association over tens or even hundreds of millions of years. It also appears that major evolutionary and ecological transitions throughout the history of life on Earth coincided with the appearance of certain parasite taxa, as the appearance of new host groups also provided new niches for potential parasites. As such, fossil parasites can provide additional data regarding the ecology of their extinct hosts, since many parasites have

  7. Ecosystem consequences of fish parasites

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2008-01-01

    In most aquatic ecosystems, fishes are hosts to parasites and, sometimes, these parasites can affect fish biology. Some of the most dramatic cases occur when fishes are intermediate hosts for larval parasites. For example, fishes in southern California estuaries are host to many parasites. The most common of these parasites, Euhaplorchis californiensis, infects the brain of the killifish Fundulus parvipinnis and alters its behaviour, making the fish 10–30 times more susceptible to predation by the birds that serve as its definitive host. Parasites like E. californiensis are embedded in food webs because they require trophic transmission. In the Carpinteria Salt Marsh estuarine food web, parasites dominate the links and comprise substantial amount of biomass. Adding parasites to food webs alters important network statistics such as connectance and nestedness. Furthermore, some free-living stages of parasites are food items for free-living species. For instance, fishes feed on trematode cercariae. Being embedded in food webs makes parasites sensitive to changes in the environment. In particular, fishing and environmental disturbance, by reducing fish populations, may reduce parasite populations. Indirect evidence suggests a decrease in parasites in commercially fished species over the past three decades. In addition, environmental degradation can affect fish parasites. For these reasons, parasites in fishes may serve as indicators of environmental impacts.

  8. The role of egg-nest contrast in the rejection of brood parasitic eggs.

    PubMed

    Aidala, Zachary; Croston, Rebecca; Schwartz, Jessica; Tong, Lainga; Hauber, Mark E

    2015-04-15

    Hosts of avian brood parasites can avoid the reproductive costs of raising genetically unrelated offspring by rejecting parasitic eggs. The perceptual cues and controls mediating parasitic egg discrimination and ejection are well studied: hosts are thought to use differences in egg color, brightness, maculation, size and shape to discriminate between their own and foreign eggs. Most theories of brood parasitism implicitly assume that the primary criteria to which hosts attend when discriminating eggs are differences between the eggs themselves. However, this assumption is confounded by the degree to which chromatic and achromatic characteristics of the nest lining co-vary with egg coloration, so that egg-nest contrast per se might be the recognition cue driving parasitic egg detection. Here, we systematically tested whether and how egg-nest contrast itself contributes to foreign egg discrimination. In an artificial parasitism experiment, we independently manipulated egg color and nest lining color of the egg-ejector American robin (Turdus migratorius), a host of the obligate brood parasitic brown-headed cowbird (Molothrus ater). We hypothesized that the degree of contrast between foreign eggs and the nest background would affect host egg rejection behavior. We predicted that experimentally decreasing egg-nest chromatic and achromatic contrast (i.e. rendering parasitic eggs more cryptic against the nest lining) would decrease rejection rates, while increasing egg-nest contrast would increase rejection rates. In contrast to our predictions, egg-nest contrast was not a significant predictor of egg ejection patterns. Instead, egg color significantly predicted responses to parasitism. We conclude that egg-egg differences are the primary drivers of egg rejection in this system. Future studies should test for the effects of egg-nest contrast per se in predicting parasitic egg recognition in other host-parasite systems, including those hosts building enclosed nests and

  9. Different genetic elements carrying the tet(W) gene in two human clinical isolates of Streptococcus suis.

    PubMed

    Palmieri, Claudio; Princivalli, Maria Stella; Brenciani, Andrea; Varaldo, Pietro E; Facinelli, Bruna

    2011-02-01

    The genetic support for tet(W), an emerging tetracycline resistance determinant, was studied in two strains of Streptococcus suis, SsCA and SsUD, both isolated in Italy from patients with meningitis. Two completely different tet(W)-carrying genetic elements, sharing only a tet(W)-containing segment barely larger than the gene, were found in the two strains. The one from strain SsCA was nontransferable, and aside from an erm(B)-containing insertion, it closely resembled a genomic island recently described in an S. suis Chinese human isolate in sequence, organization, and chromosomal location. The tet(W)-carrying genetic element from strain SsUD was transferable (at a low frequency) and, though apparently noninducible following mitomycin C treatment, displayed a typical phage organization and was named ΦSsUD.1. Its full sequence was determined (60,711 bp), the highest BLASTN score being Streptococcus pyogenes Φm46.1. ΦSsUD.1 exhibited a unique combination of antibiotic and heavy metal resistance genes. Besides tet(W), it contained a MAS (macrolide-aminoglycoside-streptothricin) fragment with an erm(B) gene having a deleted leader peptide and a cadC/cadA cadmium efflux cassette. The MAS fragment closely resembled the one recently described in pneumococcal transposons Tn6003 and Tn1545. These resistance genes found in the ΦSsUD.1 phage scaffold differed from, but were in the same position as, cargo genes carried by other streptococcal phages. The chromosome integration site of ΦSsUD.1 was at the 3' end of a conserved tRNA uracil methyltransferase (rum) gene. This site, known to be an insertional hot spot for mobile elements in S. pyogenes, might play a similar role in S. suis.

  10. Genetic architecture of artemisinin-resistant Plasmodium falciparum

    PubMed Central

    Miotto, Olivo; Amato, Roberto; Ashley, Elizabeth A; MacInnis, Bronwyn; Almagro-Garcia, Jacob; Amaratunga, Chanaki; Lim, Pharath; Mead, Daniel; Oyola, Samuel O; Dhorda, Mehul; Imwong, Mallika; Woodrow, Charles; Manske, Magnus; Stalker, Jim; Drury, Eleanor; Campino, Susana; Amenga-Etego, Lucas; Thanh, Thuy-Nhien Nguyen; Tran, Hien Tinh; Ringwald, Pascal; Bethell, Delia; Nosten, Francois; Phyo, Aung Pyae; Pukrittayakamee, Sasithon; Chotivanich, Kesinee; Chuor, Char Meng; Nguon, Chea; Suon, Seila; Sreng, Sokunthea; Newton, Paul N; Mayxay, Mayfong; Khanthavong, Maniphone; Hongvanthong, Bouasy; Htut, Ye; Han, Kay Thwe; Kyaw, Myat Phone; Faiz, Md Abul; Fanello, Caterina I; Onyamboko, Marie; Mokuolu, Olugbenga A; Jacob, Christopher G; Takala-Harrison, Shannon; Plowe, Christopher V; Day, Nicholas P; Dondorp, Arjen M; Spencer, Chris C A; McVean, Gilean; Fairhurst, Rick M; White, Nicholas J; Kwiatkowski, Dominic P

    2015-01-01

    We report a large multicenter genome-wide association study of Plasmodium falciparum resistance to artemisinin, the frontline antimalarial drug. Across 15 locations in Southeast Asia, we identified at least 20 mutations in kelch13 (PF3D7_1343700) affecting the encoded propeller and BTB/POZ domains, which were associated with a slow parasite clearance rate after treatment with artemisinin derivatives. Nonsynonymous polymorphisms in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2) and crt (chloroquine resistance transporter) also showed strong associations with artemisinin resistance. Analysis of the fine structure of the parasite population showed that the fd, arps10, mdr2 and crt polymorphisms are markers of a genetic background on which kelch13 mutations are particularly likely to arise and that they correlate with the contemporary geographical boundaries and population frequencies of artemisinin resistance. These findings indicate that the risk of new resistance-causing mutations emerging is determined by specific predisposing genetic factors in the underlying parasite population. PMID:25599401

  11. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens

    PubMed Central

    Runyon, Justin B; Mescher, Mark C

    2010-01-01

    Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling and response to herbivores and pathogens has expanded rapidly in recent years, but information is generally lacking for parasitic species. In a recent paper we reported that some of the same defense responses induced by herbivores and pathogens—notably increases in jasmonic acid (JA), salicylic acid (SA), and a hypersensitive-like response (HLR)—also occur in tomato plants upon attack by the parasitic plant Cuscuta pentagona (field dodder). Parasitism induced a distinct pattern of JA and SA accumulation, and growth trials using genetically-altered tomato hosts suggested that both JA and SA govern effective defenses against the parasite, though the extent of the response varied with host plant age. Here we discuss similarities between the induced responses we observed in response to Cuscuta parasitism to those previously described for herbivores and pathogens and present new data showing that trichomes should be added to the list of plant defenses that act against multiple enemies and across kingdoms. PMID:20495380

  12. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens.

    PubMed

    Runyon, Justin B; Mescher, Mark C; De Moraes, Consuelo M

    2010-08-01

    Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling, and response to herbivores and pathogens has expanded rapidly in recent years, but information is generally lacking for parasitic species. In a recent paper we reported that some of the same defense responses induced by herbivores and pathogens--notably increases in jasmonic acid (JA), salicylic acid (SA), and a hypersensitive-like response (HLR)--also occur in tomato plants upon attack by the parasitic plant Cuscuta pentagona (field dodder). Parasitism induced a distinct pattern of JA and SA accumulation, and growth trials using genetically-altered tomato hosts suggested that both JA and SA govern effective defenses against the parasite, though the extent of the response varied with host plant age. Here we discuss similarities between the induced responses we observed in response to Cuscuta parasitism to those previously described for herbivores and pathogens and present new data showing that trichomes should be added to the list of plant defenses that act against multiple enemies and across Kingdoms.

  13. Displaced phylogeographic signals from Gyrodactylus arcuatus, a parasite of the three-spined stickleback Gasterosteus aculeatus, suggest freshwater glacial refugia in Europe

    USGS Publications Warehouse

    Lumme, Jaakko; Mäkinen, Hannu; Ermolenko, Alexey V.; Gregg, Jacob L.; Ziętara, Marek S.

    2016-01-01

    We examined the global mitochondrial phylogeography of Gyrodactylus arcuatus, a flatworm ectoparasite of three-spined stickleback Gasterosteus aculeatus. In accordance with the suggested high divergence rate of 13%/million years, the genetic variation of the parasite was high: haplotype diversity h = 0.985 and nucleotide diversity π = 0.0161. The differentiation among the parasite populations was substantial (Φst = 0.759), with two main allopatric clades (here termed Euro and North) accounting for 54% of the total genetic variation. The diversity center of the Euro clade was in the Baltic Sea, while the North clade was spread across the Barents and White Seas. A single haplotype within the North clade was found in the western and eastern Pacific Ocean. Divergence of main clades was estimated to be circa 200 thousand years ago. Each main clade was further divided into six distinct subclades, estimated to have diverged in isolation since 135 thousand years ago. This second division corresponds approximately to the Eemian interglacial predating the last glacial maximum. A demographic expansion of the subclades is associated with colonisation of northern Europe since the last glacial maximum, circa 15–40 thousand years ago. The parasite phylogeny is most likely explained by sequential isolated bottlenecks and expansions in numerous allopatric refugia. The postglacial intermingling and high variation in the marine parasite populations, separately in the Baltic and Barents Seas, suggest low competition of divergent parasite matrilines, coupled with a large population size and high rate of dispersal of hosts. The genetic contribution of the assumed refugial fish populations maintaining the parasite during the last glacial maximum was not detected among the marine sticklebacks, which perhaps were infected after range expansion.

  14. Displaced phylogeographic signals from Gyrodactylus arcuatus, a parasite of the three-spined stickleback Gasterosteus aculeatus, suggest freshwater glacial refugia in Europe.

    PubMed

    Lumme, Jaakko; Mäkinen, Hannu; Ermolenko, Alexey V; Gregg, Jacob L; Ziętara, Marek S

    2016-08-01

    We examined the global mitochondrial phylogeography of Gyrodactylus arcuatus, a flatworm ectoparasite of three-spined stickleback Gasterosteus aculeatus. In accordance with the suggested high divergence rate of 13%/million years, the genetic variation of the parasite was high: haplotype diversity h=0.985 and nucleotide diversity π=0.0161. The differentiation among the parasite populations was substantial (Φst=0.759), with two main allopatric clades (here termed Euro and North) accounting for 54% of the total genetic variation. The diversity center of the Euro clade was in the Baltic Sea, while the North clade was spread across the Barents and White Seas. A single haplotype within the North clade was found in the western and eastern Pacific Ocean. Divergence of main clades was estimated to be circa 200 thousand years ago. Each main clade was further divided into six distinct subclades, estimated to have diverged in isolation since 135 thousand years ago. This second division corresponds approximately to the Eemian interglacial predating the last glacial maximum. A demographic expansion of the subclades is associated with colonisation of northern Europe since the last glacial maximum, circa 15-40 thousand years ago. The parasite phylogeny is most likely explained by sequential isolated bottlenecks and expansions in numerous allopatric refugia. The postglacial intermingling and high variation in the marine parasite populations, separately in the Baltic and Barents Seas, suggest low competition of divergent parasite matrilines, coupled with a large population size and high rate of dispersal of hosts. The genetic contribution of the assumed refugial fish populations maintaining the parasite during the last glacial maximum was not detected among the marine sticklebacks, which perhaps were infected after range expansion. Copyright © 2016 Australian Society for Parasitology. All rights reserved.

  15. Mutualism, parasitism and competition in the evolution of coviruses.

    PubMed Central

    Nee, S

    2000-01-01

    Coviruses are viruses with the property that their genetic information is divided up among two or more different viral particles. I model the evolution of coviruses using information on both viral virulence and the interactions between viruses and molecules that parasitize them: satellite viruses, satellite RNAs and defective interfering viruses. The model ultimately, and inevitably contains within it single-species dynamics as well as mutualistic, parasitic, cooperative and competitive relationships. The model shows that coexistence between coviruses and the self-sufficient viruses that spawned them is unlikely, in the sense that the quantitative conditions for coexistence are not easy to satisfy I also describe an abrupt transition from mutualistic two-species to single-species dynamics, showing a new sense in which questions such as 'Is a lichen one species or two?' can be given a definite answer. PMID:11127906

  16. Comparative reproductive biology of the social parasite Acromyrmex ameliae de Souza, Soares & Della Lucia and of its host Acromyrmex subterraneus subterraneus Forel (Hymenoptera: Formicidae).

    PubMed

    Soares, Ilka M F; Della Lucia, Terezinha M C; Pereira, Alice S; Serrão, José E; Ribeiro, Myriam M R; De Souza, Danival J

    2010-01-01

    Social parasites exhibit several characteristics that allow them to exploit their host species efficiently. The smaller size of parasite species is a trait commonly found in ants. In this work, we investigated several aspects of the reproductive biology of Acromyrmex ameliae De Souza, Soares & Della Lucia, a recently discovered parasite of Acromyrmex subterraneus subterraneus Forel. Sexuals of A. ameliae are substantially smaller than those from host species. Parasite queens laid significantly less worker eggs than host queens and inhibit sexual production of the host. The sex ratio of parasite species is highly female biased. Interestingly, we have observed parasite coupling on the laboratory, inside the nests and in the ground, opening the possibility to use controlled mating to study genetic approaches of parasitism in the ants.

  17. New insights into the molecular epidemiology and population genetics of Schistosoma mansoni in Ugandan pre-school children and mothers.

    PubMed

    Betson, Martha; Sousa-Figueiredo, Jose C; Kabatereine, Narcis B; Stothard, J Russell

    2013-01-01

    Significant numbers of pre-school children are infected with Schistosoma mansoni in sub-Saharan Africa and are likely to play a role in parasite transmission. However, they are currently excluded from control programmes. Molecular phylogenetic studies have provided insights into the evolutionary origins and transmission dynamics of S. mansoni, but there has been no research into schistosome molecular epidemiology in pre-school children. Here, we investigated the genetic diversity and population structure of S. mansoni in pre-school children and mothers living in lakeshore communities in Uganda and monitored for changes over time after praziquantel treatment. Parasites were sampled from children (<6 years) and mothers enrolled in the longitudinal Schistosomiasis Mothers and Infants Study at baseline and at 6-, 12- and 18-month follow-up surveys. 1347 parasites from 35 mothers and 45 children were genotyped by direct sequencing of the cytochrome c oxidase (cox1) gene. The cox1 region was highly diverse with over 230 unique sequences identified. Parasite populations were genetically differentiated between lakes and non-synonymous mutations were more diverse at Lake Victoria than Lake Albert. Surprisingly, parasite populations sampled from children showed a similar genetic diversity to those sampled from mothers, pointing towards a non-linear relationship between duration of exposure and accumulation of parasite diversity. The genetic diversity six months after praziquantel treatment was similar to pre-treatment diversity. Our results confirm the substantial genetic diversity of S. mansoni in East Africa and provide significant insights into transmission dynamics within young children and mothers, important information for schistosomiasis control programmes.

  18. Establishment of a stable transfection system for genetic manipulation of Babesia gibsoni.

    PubMed

    Liu, Mingming; Adjou Moumouni, Paul Franck; Asada, Masahito; Hakimi, Hassan; Masatani, Tatsunori; Vudriko, Patrick; Lee, Seung-Hun; Kawazu, Shin-Ichiro; Yamagishi, Junya; Xuan, Xuenan

    2018-04-23

    Genetic manipulation techniques, such as transfection, have been previously reported in many protozoan parasites. In Babesia, stable transfection systems have only been established for bovine Babesia parasites. We recently reported a transient transfection system and the selection of promoter candidates for Babesia gibsoni. The establishment of a stable transfection system for B. gibsoni is considered to be urgent to improve our understanding of the basic biology of canine Babesia parasites for a better control of babesiosis. GFP-expressing parasites were observed by fluorescence microscopy as early as two weeks after drug selection, and consistently expressed GFP for more than 3 months without drug pressure. Genome integration was confirmed by PCR, sequencing and Southern blot analysis. We present the first successful establishment of a stable transfection system for B. gibsoni. This finding will facilitate functional analysis of Babesia genomes using genetic manipulation and will serve as a foundation for the development of tick-Babesia and host-Babesia infection models.

  19. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches.

    PubMed

    Ai, Lin; Chen, Mu-Xin; Alasaad, Samer; Elsheikha, Hany M; Li, Juan; Li, Hai-Long; Lin, Rui-Qing; Zou, Feng-Cai; Zhu, Xing-Quan; Chen, Jia-Xu

    2011-06-10

    Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp..

  20. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches

    PubMed Central

    2011-01-01

    Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp.. PMID:21658284

  1. Parasites in marine food webs

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2013-01-01

    Most species interactions probably involve parasites. This review considers the extent to which marine ecologists should consider parasites to fully understand marine communities. Parasites are influential parts of food webs in estuaries, temperate reefs, and coral reefs, but their ecological importance is seldom recognized. Though difficult to observe, parasites can have substantial biomass, and they can be just as common as free-living consumers after controlling for body mass and trophic level. Parasites have direct impacts on the energetics of their hosts and some affect host behaviors, with ecosystem-level consequences. Although they cause disease, parasites are sensitive components of ecosystems. In particular, they suffer secondary extinctions due to biodiversity loss. Some parasites can also return to a system after habitat restoration. For these reasons, parasites can make good indicators of ecosystem integrity. Fishing can indirectly increase or decrease parasite populations and the effects of climate change on parasites are likely to be equally as complex.

  2. Long-Distance Travellers: Phylogeography of a Generalist Parasite, Pholeter gastrophilus, from Cetaceans

    PubMed Central

    Lehnert, Kristina; Raga, Juan Antonio; Siebert, Ursula

    2017-01-01

    We studied the phylogeography and historical demography of the most generalist digenean from cetaceans, Pholeter gastrophilus, exploring the effects of isolation by distance, ecological barriers and hosts’ dispersal ability on the population structure of this parasite. The ITS2 rDNA, and the mitochondrial COI and ND1 from 68 individual parasites were analysed. Worms were collected from seven oceanic and coastal cetacean species from the south western Atlantic (SWA), central eastern Atlantic, north eastern Atlantic (NEA), and Mediterranean Sea. Pholeter gastrophilus was considered a single lineage because reciprocal monophyly was not detected in the ML cladogram of all individuals, and sequence variability was <1% for mtDNA and 0% for ITS2. These results rule out a recent suggestion that P. gastrophilus would actually be a cryptic-species complex. The genetic cohesion of P. gastrophilus could rely on the extensive exploitation of wide-ranging and highly mobile cetaceans, with a putative secondary role, if any, of intermediate hosts. Unique haplotypes were detected in SWA and NEA, and an AMOVA revealed significant population structure associated to the genetic variation in these regions. The Equator possibly acts as a significant geographical barrier for cetacean movements, possibly limiting gene flow between northern and southern populations of P. gastrophilus. A partial Mantel tests revealed that the significant isolation of NEA populations resulted from geographic clustering. Apparently, the limited mobility of cetaceans used by P. gastrophilus as definitive hosts in this region, coupled with oceanographic barriers and a patchy distribution of potential intermediate hosts could contribute to significant ecological isolation of P. gastrophilus in NEA. Rather unexpectedly, no genetic differentiation was found in the Mediterranean samples of this parasite. Historical demographic analyses suggested a recent population expansion of P. gastrophilus in the Atlantic

  3. Evaluation of functional degeneration of the amazon-ant Polyergus rufescens Latr. under an influence of socially parasitic way of life.

    PubMed

    Dobrzańska, J

    1978-01-01

    In certain, infrequently occurring, favorable circumstances the ants P. rufescens can display patterns of behavior which seem to be disappearing as a result of their parasitic way of life: the ability to food themselves, independently though ineffectively, elements of the offspring-protection behavior, transporting of nestmates, escape reaction. Similar events reinforce the infrequently used, latent reflexes, preventing their complete extinction. It is supposed that the characteristic in conventional parasitism disappearance of certain elements of behavior is inhibited by a social way of life. It may also be true of other, non-insect communities.

  4. Detection of thiol-based redox switch processes in parasites - facts and future.

    PubMed

    Rahbari, Mahsa; Diederich, Kathrin; Becker, Katja; Krauth-Siegel, R Luise; Jortzik, Esther

    2015-05-01

    Malaria and African trypanosomiasis are tropical diseases caused by the protozoa Plasmodium and Trypanosoma, respectively. The parasites undergo complex life cycles in the mammalian host and insect vector, during which they are exposed to oxidative and nitrosative challenges induced by the host immune system and endogenous processes. Attacking the parasite's redox metabolism is a target mechanism of several known antiparasitic drugs and a promising approach to novel drug development. Apart from this aspect, oxidation of cysteine residues plays a key role in protein-protein interaction, metabolic responses to redox events, and signaling. Understanding the role and dynamics of reactive oxygen species and thiol switches in regulating cellular redox homeostasis is crucial for both basic and applied biomedical approaches. Numerous techniques have therefore been established to detect redox changes in parasites including biochemical methods, fluorescent dyes, and genetically encoded probes. In this review, we aim to give an insight into the characteristics of redox networks in the pathogens Plasmodium and Trypanosoma, including a comprehensive overview of the consequences of specific deletions of redox-associated genes. Furthermore, we summarize mechanisms and detection methods of thiol switches in both parasites and discuss their specificity and sensitivity.

  5. Molecular detection and genetic diversity of Babesia gibsoni in dogs in Bangladesh.

    PubMed

    Terao, Masashi; Akter, Shirin; Yasin, Md Golam; Nakao, Ryo; Kato, Hirotomo; Alam, Mohammad Zahangir; Katakura, Ken

    2015-04-01

    Babesia gibsoni is a tick-borne hemoprotozoan parasite of dogs that often causes fever and hemolytic illness. Detection of B. gibsoni has been predominantly reported in Asian countries, including Japan, Korea, Taiwan, Malaysia, Bangladesh and India. The present study shows the first molecular characterization of B. gibsoni detected from dogs in Bangladesh. Blood samples were collected on FTA® Elute cards from 50 stray dogs in Mymensingh District in Bangladesh. DNA eluted from the cards was subjected to nested PCR for the 18S rRNA gene of Babesia species. Approximately 800bp PCR products were detected in 15 of 50 dogs (30%). Based on restriction fragment length polymorphism (RFLP) and direct sequencing of the PCR products, all parasite isolates were identified as B. gibsoni. Furthermore, the BgTRAP (B. gibsoni thrombospondin-related adhesive protein) gene fragments were detected in 13 of 15 18S rRNA gene PCR positive blood samples. Phylogenetic analysis of the BgTRAP gene revealed that B. gibsoni parasites in Bangladesh formed a cluster, which was genetically different from other Asian B. gibsoni isolates. In addition, tandem repeat analysis of the BgTRAP gene clearly showed considerable genetic variation among Bangladeshi isolates. These results suggested that B. gibsoni parasites in a different genetic clade are endemic in dogs in Bangladesh. Further studies are required to elucidate the origin, distribution, vector and pathogenesis of B. gibsoni parasites circulating in dogs in Bangladesh. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Developmental plasticity and the evolution of parasitism in an unusual nematode, Parastrongyloides trichosuri.

    PubMed

    Stasiuk, Susan J; Scott, Maxwell J; Grant, Warwick N

    2012-01-03

    Parasitism is an important life history strategy in many metazoan taxa. This is particularly true of the Phylum Nematoda, in which parasitism has evolved independently at least nine times. The apparent ease with which parasitism has evolved amongst nematodes may, in part, be due to a feature of nematode development acting as a pre-adaptation for the transition from a free-living to a parasitic life history. One candidate pre-adaptive feature for evolution in terrestrial nematodes is the dauer larva, a developmentally arrested morph formed in response to environmental signals. We investigated the role of dauer development in the nematode, Parastrongyloides trichosuri, which has retained a complete free-living life cycle in addition to a life cycle as a mammalian gastrointestinal parasite. We show that the developmental switch between these life histories is sensitive to the same environmental cues as dauer arrest in free-living nematodes, including sensitivity to a chemical cue produced by the free-living stages. Furthermore, we show that genetic variation for the sensitivity of the cue(s) exists in natural populations of P. trichosuri, such that we derived inbred lines that were largely insensitive to the cue and other lines that were supersensitive to the cue. For this parasitic clade, and perhaps more widely in the phylum, the evolution of parasitism co-opted the dauer switch of a free-living ancestor. This lends direct support to the hypothesis that the switch to developmental arrest in the dauer larva acted as a pre-adaptation for the evolution of parasitism, and suggests that the sensory transduction machinery downstream of the cue may have been similarly co-opted and modified.

  7. Developmental plasticity and the evolution of parasitism in an unusual nematode, Parastrongyloides trichosuri

    PubMed Central

    2012-01-01

    Background Parasitism is an important life history strategy in many metazoan taxa. This is particularly true of the Phylum Nematoda, in which parasitism has evolved independently at least nine times. The apparent ease with which parasitism has evolved amongst nematodes may, in part, be due to a feature of nematode development acting as a pre-adaptation for the transition from a free-living to a parasitic life history. One candidate pre-adaptive feature for evolution in terrestrial nematodes is the dauer larva, a developmentally arrested morph formed in response to environmental signals. Results We investigated the role of dauer development in the nematode, Parastrongyloides trichosuri, which has retained a complete free-living life cycle in addition to a life cycle as a mammalian gastrointestinal parasite. We show that the developmental switch between these life histories is sensitive to the same environmental cues as dauer arrest in free-living nematodes, including sensitivity to a chemical cue produced by the free-living stages. Furthermore, we show that genetic variation for the sensitivity of the cue(s) exists in natural populations of P. trichosuri, such that we derived inbred lines that were largely insensitive to the cue and other lines that were supersensitive to the cue. Conclusions For this parasitic clade, and perhaps more widely in the phylum, the evolution of parasitism co-opted the dauer switch of a free-living ancestor. This lends direct support to the hypothesis that the switch to developmental arrest in the dauer larva acted as a pre-adaptation for the evolution of parasitism, and suggests that the sensory transduction machinery downstream of the cue may have been similarly co-opted and modified. PMID:22214222

  8. Apicoplast and Endoplasmic Reticulum Cooperate in Fatty Acid Biosynthesis in Apicomplexan Parasite Toxoplasma gondii*

    PubMed Central

    Ramakrishnan, Srinivasan; Docampo, Melissa D.; MacRae, James I.; Pujol, François M.; Brooks, Carrie F.; van Dooren, Giel G.; Hiltunen, J. Kalervo; Kastaniotis, Alexander J.; McConville, Malcolm J.; Striepen, Boris

    2012-01-01

    Apicomplexan parasites are responsible for high impact human diseases such as malaria, toxoplasmosis, and cryptosporidiosis. These obligate intracellular pathogens are dependent on both de novo lipid biosynthesis as well as the uptake of host lipids for biogenesis of parasite membranes. Genome annotations and biochemical studies indicate that apicomplexan parasites can synthesize fatty acids via a number of different biosynthetic pathways that are differentially compartmentalized. However, the relative contribution of each of these biosynthetic pathways to total fatty acid composition of intracellular parasite stages remains poorly defined. Here, we use a combination of genetic, biochemical, and metabolomic approaches to delineate the contribution of fatty acid biosynthetic pathways in Toxoplasma gondii. Metabolic labeling studies with [13C]glucose showed that intracellular tachyzoites synthesized a range of long and very long chain fatty acids (C14:0–26:1). Genetic disruption of the apicoplast-localized type II fatty-acid synthase resulted in greatly reduced synthesis of saturated fatty acids up to 18 carbons long. Ablation of type II fatty-acid synthase activity resulted in reduced intracellular growth that was partially restored by addition of long chain fatty acids. In contrast, synthesis of very long chain fatty acids was primarily dependent on a fatty acid elongation system comprising three elongases, two reductases, and a dehydratase that were localized to the endoplasmic reticulum. The function of these enzymes was confirmed by heterologous expression in yeast. This elongase pathway appears to have a unique role in generating very long unsaturated fatty acids (C26:1) that cannot be salvaged from the host. PMID:22179608

  9. High-throughput olfactory conditioning and memory retention test show variation in Nasonia parasitic wasps

    PubMed Central

    Hoedjes, K M; Steidle, J L M; Werren, J H; Vet, L E M; Smid, H M

    2012-01-01

    Most of our knowledge on learning and memory formation results from extensive studies on a small number of animal species. Although features and cellular pathways of learning and memory are highly similar in this diverse group of species, there are also subtle differences. Closely related species of parasitic wasps display substantial variation in memory dynamics and can be instrumental to understanding both the adaptive benefit of and mechanisms underlying this variation. Parasitic wasps of the genus Nasonia offer excellent opportunities for multidisciplinary research on this topic. Genetic and genomic resources available for Nasonia are unrivaled among parasitic wasps, providing tools for genetic dissection of mechanisms that cause differences in learning. This study presents a robust, high-throughput method for olfactory conditioning of Nasonia using a host encounter as reward. A T-maze olfactometer facilitates high-throughput memory retention testing and employs standardized odors of equal detectability, as quantified by electroantennogram recordings. Using this setup, differences in memory retention between Nasonia species were shown. In both Nasonia vitripennis and Nasonia longicornis, memory was observed up to at least 5 days after a single conditioning trial, whereas Nasonia giraulti lost its memory after 2 days. This difference in learning may be an adaptation to species-specific differences in ecological factors, for example, host preference. The high-throughput methods for conditioning and memory retention testing are essential tools to study both ultimate and proximate factors that cause variation in learning and memory formation in Nasonia and other parasitic wasp species. PMID:22804968

  10. Reduction of parasitic lasing

    NASA Technical Reports Server (NTRS)

    Storm, Mark E. (Inventor)

    1994-01-01

    A technique was developed which carefully retro-reflects precisely controlled amounts of light back into a laser system thereby intentionally forcing the laser system components to oscillate in a new resonator called the parasitic oscillator. The parasitic oscillator uses the laser system to provide the gain and an external mirror is used to provide the output coupling of the new resonator. Any change of gain or loss inside the new resonator will directly change the lasing threshold of the parasitic oscillator. This change in threshold can be experimentally measured as a change in the absolute value of reflectivity, provided by the external mirror, necessary to achieve lasing in the parasitic oscillator. Discrepancies between experimental data and a parasitic oscillator model are direct evidence of optical misalignment or component performance problems. Any changes in the optical system can instantly be measured as a change in threshold for the parasitic oscillator. This technique also enables aligning the system for maximum parasitic suppression with the system fully operational.

  11. Parasites as valuable stock markers for fisheries in Australasia, East Asia and the Pacific Islands.

    PubMed

    Lester, R J G; Moore, B R

    2015-01-01

    Over 30 studies in Australasia, East Asia and the Pacific Islands region have collected and analysed parasite data to determine the ranges of individual fish, many leading to conclusions about stock delineation. Parasites used as biological tags have included both those known to have long residence times in the fish and those thought to be relatively transient. In many cases the parasitological conclusions have been supported by other methods especially analysis of the chemical constituents of otoliths, and to a lesser extent, genetic data. In analysing parasite data, authors have applied multiple different statistical methodologies, including summary statistics, and univariate and multivariate approaches. Recently, a growing number of researchers have found non-parametric methods, such as analysis of similarities and cluster analysis, to be valuable. Future studies into the residence times, life cycles and geographical distributions of parasites together with more robust analytical methods will yield much important information to clarify stock structures in the area.

  12. How have fisheries affected parasite communities?

    USGS Publications Warehouse

    Wood, Chelsea L.; Lafferty, Kevin D.

    2015-01-01

    To understand how fisheries affect parasites, we conducted a meta-analysis of studies that contrasted parasite assemblages in fished and unfished areas. Parasite diversity was lower in hosts from fished areas. Larger hosts had a greater abundance of parasites, suggesting that fishing might reduce the abundance of parasites by selectively removing the largest, most heavily parasitized individuals. After controlling for size, the effect of fishing on parasite abundance varied according to whether the host was fished and the parasite's life cycle. Parasites of unfished hosts were more likely to increase in abundance in response to fishing than were parasites of fished hosts, possibly due to compensatory increases in the abundance of unfished hosts. While complex life cycle parasites tended to decline in abundance in response to fishing, directly transmitted parasites tended to increase. Among complex life cycle parasites, those with fished hosts tended to decline in abundance in response to fishing, while those with unfished hosts tended to increase. However, among directly transmitted parasites, responses did not differ between parasites with and without fished hosts. This work suggests that parasite assemblages are likely to change substantially in composition in increasingly fished ecosystems, and that parasite life history and fishing status of the host are important in predicting the response of individual parasite species or groups to fishing.

  13. Parasite Carbohydrate Vaccines.

    PubMed

    Jaurigue, Jonnel A; Seeberger, Peter H

    2017-01-01

    Vaccination is an efficient means of combating infectious disease burden globally. However, routine vaccines for the world's major human parasitic diseases do not yet exist. Vaccines based on carbohydrate antigens are a viable option for parasite vaccine development, given the proven success of carbohydrate vaccines to combat bacterial infections. We will review the key components of carbohydrate vaccines that have remained largely consistent since their inception, and the success of bacterial carbohydrate vaccines. We will then explore the latest developments for both traditional and non-traditional carbohydrate vaccine approaches for three of the world's major protozoan parasitic diseases-malaria, toxoplasmosis, and leishmaniasis. The traditional prophylactic carbohydrate vaccine strategy is being explored for malaria. However, given that parasite disease biology is complex and often arises from host immune responses to parasite antigens, carbohydrate vaccines against deleterious immune responses in host-parasite interactions are also being explored. In particular, the highly abundant glycosylphosphatidylinositol molecules specific for Plasmodium, Toxoplasma , and Leishmania spp. are considered exploitable antigens for this non-traditional vaccine approach. Discussion will revolve around the application of these protozoan carbohydrate antigens for vaccines currently in preclinical development.

  14. Parasite Carbohydrate Vaccines

    PubMed Central

    Jaurigue, Jonnel A.; Seeberger, Peter H.

    2017-01-01

    Vaccination is an efficient means of combating infectious disease burden globally. However, routine vaccines for the world's major human parasitic diseases do not yet exist. Vaccines based on carbohydrate antigens are a viable option for parasite vaccine development, given the proven success of carbohydrate vaccines to combat bacterial infections. We will review the key components of carbohydrate vaccines that have remained largely consistent since their inception, and the success of bacterial carbohydrate vaccines. We will then explore the latest developments for both traditional and non-traditional carbohydrate vaccine approaches for three of the world's major protozoan parasitic diseases—malaria, toxoplasmosis, and leishmaniasis. The traditional prophylactic carbohydrate vaccine strategy is being explored for malaria. However, given that parasite disease biology is complex and often arises from host immune responses to parasite antigens, carbohydrate vaccines against deleterious immune responses in host-parasite interactions are also being explored. In particular, the highly abundant glycosylphosphatidylinositol molecules specific for Plasmodium, Toxoplasma, and Leishmania spp. are considered exploitable antigens for this non-traditional vaccine approach. Discussion will revolve around the application of these protozoan carbohydrate antigens for vaccines currently in preclinical development. PMID:28660174

  15. Genetic characterization of the partial mitochondrial cytochrome oxidase c subunit I (cox 1) gene of the zoonotic parasitic nematode, Ancylostoma ceylanicum from humans, dogs and cats.

    PubMed

    Ngui, Romano; Mahdy, Mohammed A K; Chua, Kek Heng; Traub, Rebecca; Lim, Yvonne A L

    2013-10-01

    Ancylostoma ceylanicum is the only zoonotic hookworm species that is able to produce patent infections in humans with the majority of cases reported in South East Asia. Over the past few years, there have been an increasing number of studies investigating the prevalence of this parasitic zoonosis using molecular diagnostic tools and a single genetic locus as marker for species identification. As there can be limitations in using a single genetic locus for epidemiological studies and genetic discrimination, the complementary use of a more variable locus will provide additional evidence to support the zoonotic exchange of hookworm species between humans and animals. In the present study, the cytochrome c oxidase subunit 1 (cox 1) sequence of A. ceylanicum from positive human and animal fecal samples were determined and compared with published reference sequences. Phylogenetic analysis demonstrated that isolates of A. ceylanicum were divided into two clusters, one consisting 3 human isolates and the other comprising 19 isolates of human and animal origin from different geographical locations within Malaysia. The two groups of A. ceylanicum could be distinguished from one another through five fixed nucleotide differences at locations 891, 966, 1008, 1077 and 1083. The detection of genetically distinct groups and considerable level of genetic variation within the cox 1 sequence of A. ceylanicum might suggest potential haplotype-linked differences in zoonotic, epidemiological and pathobiological characteristics, a hypothesis that still needs further investigation. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Genetic selection of low fertile Onchocerca volvulus by ivermectin treatment.

    PubMed

    Bourguinat, Catherine; Pion, Sébastien D S; Kamgno, Joseph; Gardon, Jacques; Duke, Brian O L; Boussinesq, Michel; Prichard, Roger K

    2007-08-30

    Onchocerca volvulus is the causative agent of onchocerciasis, or "river blindness". Ivermectin has been used for mass treatment of onchocerciasis for up to 18 years, and recently there have been reports of poor parasitological responses to the drug. Should ivermectin resistance be developing, it would have a genetic basis. We monitored genetic changes in parasites obtained from the same patients before use of ivermectin and following different levels of ivermectin exposure. O. volvulus adult worms were obtained from 73 patients before exposure to ivermectin and in the same patients following three years of annual or three-monthly treatment at 150 microg/kg or 800 microg/kg. Genotype frequencies were determined in beta-tubulin, a gene previously found to be linked to ivermectin selection and resistance in parasitic nematodes. Such frequencies were also determined in two other genes, heat shock protein 60 and acidic ribosomal protein, not known to be linked to ivermectin effects. In addition, we investigated the relationship between beta-tubulin genotype and female parasite fertility. We found a significant selection for beta-tubulin heterozygotes in female worms. There was no significant selection for the two other genes. Quarterly ivermectin treatment over three years reduced the frequency of the beta-tubulin "aa" homozygotes from 68.6% to 25.6%, while the "ab" heterozygotes increased from 20.9% to 69.2% in the female parasites. The female worms that were homozygous at the beta-tubulin locus were more fertile than the heterozygous female worms before treatment (67% versus 37%; p = 0.003) and twelve months after the last dose of ivermectin in the groups treated annually (60% versus 17%; p<0.001). Differences in fertility between heterozygous and homozygous worms were less apparent three months after the last treatment in the groups treated three-monthly. The results indicate that ivermectin is causing genetic selection on O. volvulus. This genetic selection is

  17. Genetic Selection of Low Fertile Onchocerca volvulus by Ivermectin Treatment

    PubMed Central

    Bourguinat, Catherine; Pion, Sébastien D. S.; Kamgno, Joseph; Gardon, Jacques

    2007-01-01

    Background Onchocerca volvulus is the causative agent of onchocerciasis, or “river blindness”. Ivermectin has been used for mass treatment of onchocerciasis for up to 18 years, and recently there have been reports of poor parasitological responses to the drug. Should ivermectin resistance be developing, it would have a genetic basis. We monitored genetic changes in parasites obtained from the same patients before use of ivermectin and following different levels of ivermectin exposure. Methods and Findings O. volvulus adult worms were obtained from 73 patients before exposure to ivermectin and in the same patients following three years of annual or three-monthly treatment at 150 µg/kg or 800 µg/kg. Genotype frequencies were determined in β-tubulin, a gene previously found to be linked to ivermectin selection and resistance in parasitic nematodes. Such frequencies were also determined in two other genes, heat shock protein 60 and acidic ribosomal protein, not known to be linked to ivermectin effects. In addition, we investigated the relationship between β-tubulin genotype and female parasite fertility. We found a significant selection for β-tubulin heterozygotes in female worms. There was no significant selection for the two other genes. Quarterly ivermectin treatment over three years reduced the frequency of the β-tubulin “aa” homozygotes from 68.6% to 25.6%, while the “ab” heterozygotes increased from 20.9% to 69.2% in the female parasites. The female worms that were homozygous at the β-tubulin locus were more fertile than the heterozygous female worms before treatment (67% versus 37%; p = 0.003) and twelve months after the last dose of ivermectin in the groups treated annually (60% versus 17%; p<0.001). Differences in fertility between heterozygous and homozygous worms were less apparent three months after the last treatment in the groups treated three-monthly. Conclusions The results indicate that ivermectin is causing genetic selection on

  18. Viruses of parasites as actors in the parasite-host relationship: A "ménage à trois".

    PubMed

    Gómez-Arreaza, Amaranta; Haenni, Anne-Lise; Dunia, Irene; Avilán, Luisana

    2017-02-01

    The complex parasite-host relationship involves multiple mechanisms. Moreover, parasites infected by viruses modify this relationship adding more complexity to the system that now comprises three partners. Viruses infecting parasites were described several decades ago. However, until recently little was known about the viruses involved and their impact on the resulting disease caused to the hosts. To clarify this situation, we have concentrated on parasitic diseases caused to humans and on how virus-infected parasites could alter the symptoms inflicted on the human host. It is clear that the effect caused to the human host depends on the virus and on the parasite it has infected. Consequently, the review is divided as follows: Viruses with a possible effect on the virulence of the parasite. This section reviews pertinent articles showing that infection of parasites by viruses might increase the detrimental effect of the tandem virus-parasite on the human host (hypervirulence) or decrease virulence of the parasite (hypovirulence). Parasites as vectors affecting the transmission of viruses. In some cases, the virus-infected parasite might facilitate the transfer of the virus to the human host. Parasites harboring viruses with unidentified effects on their host. In spite of recently renewed interest in parasites in connection with their viruses, there still remains a number of cases in which the effect of the virus of a given parasite on the human host remains ambiguous. The triangular relationship between the virus, the parasite and the host, and the modulation of the pathogenicity and virulence of the parasites by viruses should be taken into account in the rationale of fighting against parasites. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Predation on transmission stages reduces parasitism: sea anemones consume transmission stages of a barnacle parasite.

    PubMed

    Fong, Caitlin R; Kuris, Armand M

    2017-06-01

    While parasites serve as prey, it is unclear how the spatial distribution of parasite predators provides transmission control and influences patterns of parasitism. Because many of its organisms are sessile, the rocky intertidal zone is a valuable but little used system to understand spatial patterns of parasitism and elucidate the underlying mechanisms driving these patterns. Sea anemones and barnacles are important space competitors in the rocky intertidal zone along the Pacific coast of North America. Anemones are voracious, indiscriminate predators; thus, they may intercept infectious stages of parasites before they reach a host. We investigate whether a sea anemone protects an associated barnacle from parasitism by Hemioniscus balani, an isopod parasitic castrator. At Coal Oil Point, Santa Barbara, California USA, 29% of barnacles were within 1 cm from an anemone at the surveyed tidal height. Barnacles associated with anemones had reduced parasite prevalence and higher reproductive productivity than those remote from sea anemones. In the laboratory, anemones readily consumed the transmission stage of the parasite. Hence, anemone consumption of parasite transmission stages may provide a mechanism by which community context regulates parasite prevalence at a local scale. Our results suggest predation may be an important process providing parasite transmission control.

  20. Genetic Indicators of Drug Resistance in the Highly Repetitive Genome of Trichomonas vaginalis

    PubMed Central

    Bradic, Martina; Warring, Sally D.; Tooley, Grace E.; Scheid, Paul; Secor, William E.; Land, Kirkwood M.; Huang, Po-Jung; Chen, Ting-Wen; Lee, Chi-Ching; Tang, Petrus; Sullivan, Steven A.

    2017-01-01

    Abstract Trichomonas vaginalis, the most common nonviral sexually transmitted parasite, causes ∼283 million trichomoniasis infections annually and is associated with pregnancy complications and increased risk of HIV-1 acquisition. The antimicrobial drug metronidazole is used for treatment, but in a fraction of clinical cases, the parasites can become resistant to this drug. We undertook sequencing of multiple clinical isolates and lab derived lines to identify genetic markers and mechanisms of metronidazole resistance. Reduced representation genome sequencing of ∼100 T. vaginalis clinical isolates identified 3,923 SNP markers and presence of a bipartite population structure. Linkage disequilibrium was found to decay rapidly, suggesting genome-wide recombination and the feasibility of genetic association studies in the parasite. We identified 72 SNPs associated with metronidazole resistance, and a comparison of SNPs within several lab-derived resistant lines revealed an overlap with the clinically resistant isolates. We identified SNPs in genes for which no function has yet been assigned, as well as in functionally-characterized genes relevant to drug resistance (e.g., pyruvate:ferredoxin oxidoreductase). Transcription profiles of resistant strains showed common changes in genes involved in drug activation (e.g., flavin reductase), accumulation (e.g., multidrug resistance pump), and detoxification (e.g., nitroreductase). Finally, we identified convergent genetic changes in lab-derived resistant lines of Tritrichomonas foetus, a distantly related species that causes venereal disease in cattle. Shared genetic changes within and between T. vaginalis and Tr. foetus parasites suggest conservation of the pathways through which adaptation has occurred. These findings extend our knowledge of drug resistance in the parasite, providing a panel of markers that can be used as a diagnostic tool. PMID:28633446

  1. Host and parasite morphology influence congruence between host and parasite phylogenies.

    PubMed

    Sweet, Andrew D; Bush, Sarah E; Gustafsson, Daniel R; Allen, Julie M; DiBlasi, Emily; Skeen, Heather R; Weckstein, Jason D; Johnson, Kevin P

    2018-03-23

    Comparisons of host and parasite phylogenies often show varying degrees of phylogenetic congruence. However, few studies have rigorously explored the factors driving this variation. Multiple factors such as host or parasite morphology may govern the degree of phylogenetic congruence. An ideal analysis for understanding the factors correlated with congruence would focus on a diverse host-parasite system for increased variation and statistical power. In this study, we focused on the Brueelia-complex, a diverse and widespread group of feather lice that primarily parasitise songbirds. We generated a molecular phylogeny of the lice and compared this tree with a phylogeny of their avian hosts. We also tested for the contribution of each host-parasite association to the overall congruence. The two trees overall were significantly congruent, but the contribution of individual associations to this congruence varied. To understand this variation, we developed a novel approach to test whether host, parasite or biogeographic factors were statistically associated with patterns of congruence. Both host plumage dimorphism and parasite ecomorphology were associated with patterns of congruence, whereas host body size, other plumage traits and biogeography were not. Our results lay the framework for future studies to further elucidate how these factors influence the process of host-parasite coevolution. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  2. Molecular testing for clinical diagnosis and epidemiological investigations of intestinal parasitic infections.

    PubMed

    Verweij, Jaco J; Stensvold, C Rune

    2014-04-01

    Over the past few decades, nucleic acid-based methods have been developed for the diagnosis of intestinal parasitic infections. Advantages of nucleic acid-based methods are numerous; typically, these include increased sensitivity and specificity and simpler standardization of diagnostic procedures. DNA samples can also be stored and used for genetic characterization and molecular typing, providing a valuable tool for surveys and surveillance studies. A variety of technologies have been applied, and some specific and general pitfalls and limitations have been identified. This review provides an overview of the multitude of methods that have been reported for the detection of intestinal parasites and offers some guidance in applying these methods in the clinical laboratory and in epidemiological studies.

  3. Pathogenicity Determinants of the Human Malaria Parasite Plasmodium falciparum Have Ancient Origins

    PubMed Central

    Brazier, Andrew J.; Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell

    2017-01-01

    ABSTRACT Plasmodium falciparum, the most deadly of the human malaria parasites, is a member of the Laverania subgenus that also infects African Great Apes. The virulence of P. falciparum is related to cytoadhesion of infected erythrocytes in microvasculature, but the origin of dangerous parasite adhesion traits is poorly understood. To investigate the evolutionary history of the P. falciparum cytoadhesion pathogenicity determinant, we studied adhesion domains from the chimpanzee malaria parasite P. reichenowi. We demonstrate that the P. reichenowi var gene repertoire encodes cysteine-rich interdomain region (CIDR) domains which bind human CD36 and endothelial protein C receptor (EPCR) with the same levels of affinity and at binding sites similar to those bound by P. falciparum. Moreover, P. reichenowi domains interfere with the protective function of the activated protein C-EPCR pathway on endothelial cells, a presumptive virulence trait in humans. These findings provide evidence for ancient evolutionary origins of two key cytoadhesion properties of P. falciparum that contribute to human infection and pathogenicity. IMPORTANCE Cytoadhesion of P. falciparum-infected erythrocytes in the microcirculation is a major virulence determinant. P. falciparum is descended from a subgenus of parasites that also infect chimpanzees and gorillas and exhibits strict host species specificity. Despite their high genetic similarity to P. falciparum, it is unknown whether ape parasites encode adhesion properties similar to those of P. falciparum or are as virulent in their natural hosts. Consequently, it has been unclear when virulent adhesion traits arose in P. falciparum and how long they have been present in the parasite population. It is also unknown whether cytoadhesive interactions pose a barrier to cross-species transmission. We show that parasite domains from the chimpanzee malaria parasite P. reichenowi bind human receptors with specificity similar to that of P

  4. Pathogenicity Determinants of the Human Malaria Parasite Plasmodium falciparum Have Ancient Origins.

    PubMed

    Brazier, Andrew J; Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell; Smith, Joseph D

    2017-01-01

    Plasmodium falciparum , the most deadly of the human malaria parasites, is a member of the Laverania subgenus that also infects African Great Apes. The virulence of P. falciparum is related to cytoadhesion of infected erythrocytes in microvasculature, but the origin of dangerous parasite adhesion traits is poorly understood. To investigate the evolutionary history of the P. falciparum cytoadhesion pathogenicity determinant, we studied adhesion domains from the chimpanzee malaria parasite P. reichenowi . We demonstrate that the P. reichenowi var gene repertoire encodes cysteine-rich interdomain region (CIDR) domains which bind human CD36 and endothelial protein C receptor (EPCR) with the same levels of affinity and at binding sites similar to those bound by P. falciparum . Moreover, P. reichenowi domains interfere with the protective function of the activated protein C-EPCR pathway on endothelial cells, a presumptive virulence trait in humans. These findings provide evidence for ancient evolutionary origins of two key cytoadhesion properties of P. falciparum that contribute to human infection and pathogenicity. IMPORTANCE Cytoadhesion of P. falciparum -infected erythrocytes in the microcirculation is a major virulence determinant. P. falciparum is descended from a subgenus of parasites that also infect chimpanzees and gorillas and exhibits strict host species specificity. Despite their high genetic similarity to P. falciparum , it is unknown whether ape parasites encode adhesion properties similar to those of P. falciparum or are as virulent in their natural hosts. Consequently, it has been unclear when virulent adhesion traits arose in P. falciparum and how long they have been present in the parasite population. It is also unknown whether cytoadhesive interactions pose a barrier to cross-species transmission. We show that parasite domains from the chimpanzee malaria parasite P. reichenowi bind human receptors with specificity similar to that of P

  5. Prevalence of intestinal parasites in companion dogs with diarrhea in Beijing, China, and genetic characteristics of Giardia and Cryptosporidium species.

    PubMed

    Yu, Zhongjia; Ruan, Yang; Zhou, Mengjie; Chen, Siyuan; Zhang, Yinxin; Wang, Liya; Zhu, Guan; Yu, Yonglan

    2018-01-01

    Companion animals including dogs are one of the important components in One Health. Parasites may cause not only diseases in pet animals but also many zoonotic diseases infecting humans. In this study, we performed a survey of intestinal parasites in fecal specimens (n = 485) collected from outpatient pet dogs with diarrhea in Beijing, China, for the entire year of 2015 by microscopic examination (all parasites) and SSU rRNA-based nested PCR detection (Giardia and Cryptosporidium). We observed a total of 124 (25.6%) parasite-positive specimens that contained one or more parasites, including Giardia duodenalis (12.8%), Cryptosporidium spp. (4.9%), Cystoisospora spp. (4.3%), trichomonads (4.3%), Toxocara canis (3.5%), Trichuris vulpis (0.6%), and Dipylidium caninum (0.2%). Among the 55 dog breeds, infection rates were significantly higher in border collies and bulldogs, but lower in poodles (p < 0.05). Risk factor analysis suggested that age was negatively correlated with the infection rate (p < 0.00001), while vaccination and deworming in the past 12 months could significantly reduce the parasite infections (p < 0.01). Among the 62 Giardia-positive specimens, 21 were successfully assigned into assemblages using glutamate dehydrogenase (gdh) and/or beta-giardin (bg) genes, including assemblage D (n = 15), C (n = 5), and F (n = 1). Among the 24 Cryptosporidium-positive specimens by SSU rRNA PCR, 20 PCR amplicons could be sequenced and identified as Cryptosporidium canis (n = 20). Collectively, this study indicates that parasites are a significant group of pathogens in companion dogs in Beijing, and companion dogs may potentially transmit certain zoonotic parasites to humans, particularly those with weak or weakened immunity.

  6. Profiling mRNAs of Two Cuscuta Species Reveals Possible Candidate Transcripts Shared by Parasitic Plants

    PubMed Central

    Wijeratne, Saranga; Fraga, Martina; Meulia, Tea; Doohan, Doug; Li, Zhaohu; Qu, Feng

    2013-01-01

    Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs) for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions. PMID:24312295

  7. Profiling mRNAs of two Cuscuta species reveals possible candidate transcripts shared by parasitic plants.

    PubMed

    Jiang, Linjian; Wijeratne, Asela J; Wijeratne, Saranga; Fraga, Martina; Meulia, Tea; Doohan, Doug; Li, Zhaohu; Qu, Feng

    2013-01-01

    Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs) for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions.

  8. Niche metabolism in parasitic protozoa

    PubMed Central

    Ginger, Michael L

    2005-01-01

    Complete or partial genome sequences have recently become available for several medically and evolutionarily important parasitic protozoa. Through the application of bioinformatics complete metabolic repertoires for these parasites can be predicted. For experimentally intractable parasites insight provided by metabolic maps generated in silico has been startling. At its more extreme end, such bioinformatics reckoning facilitated the discovery in some parasites of mitochondria remodelled beyond previous recognition, and the identification of a non-photosynthetic chloroplast relic in malarial parasites. However, for experimentally tractable parasites, mapping of the general metabolic terrain is only a first step in understanding how the parasite modulates its streamlined, yet still often puzzlingly complex, metabolism in order to complete life cycles within host, vector, or environment. This review provides a comparative overview and discussion of metabolic strategies used by several different parasitic protozoa in order to subvert and survive host defences, and illustrates how genomic data contribute to the elucidation of parasite metabolism. PMID:16553311

  9. Retaliatory mafia behavior by a parasitic cowbird favors host acceptance of parasitic eggs.

    PubMed

    Hoover, Jeffrey P; Robinson, Scott K

    2007-03-13

    Why do many hosts accept costly avian brood parasitism even when parasitic eggs and nestlings differ dramatically in appearance from their own? Scientists argue that evolutionary lag or equilibrium can explain this evolutionary enigma. Few, however, consider the potential of parasitic birds to enforce acceptance by destroying eggs or nestlings of hosts that eject parasitic eggs and thereby reject parasitism. This retaliatory "mafia" behavior has been reported in one species of parasitic cuckoo but never in parasitic cowbirds. Here we present experimental evidence of mafia behavior in the brown-headed cowbird (Molothrus ater), a widely distributed North American brood parasite. We manipulated ejection of cowbird eggs and cowbird access to predator-proof nests in a common host to test experimentally for mafia behavior. When cowbird access was allowed, 56% of "ejector" nests were depredated compared with only 6% of "accepter" nests. No nests were destroyed when cowbird access was always denied or when access was denied after we removed cowbird eggs, indicating that cowbirds were responsible. Nonparasitized nests were depredated at an intermediate rate (20%) when cowbirds were allowed access, suggesting that cowbirds may occasionally "farm" hosts to create additional opportunities for parasitism. Cowbirds parasitized most (85%) renests of the hosts whose nests were depredated. Ejector nests produced 60% fewer host offspring than accepter nests because of the predatory behavior attributed to cowbirds. Widespread predatory behaviors in cowbirds could slow the evolution of rejection behaviors and further threaten populations of some of the >100 species of regular cowbird hosts.

  10. Retaliatory mafia behavior by a parasitic cowbird favors host acceptance of parasitic eggs

    PubMed Central

    Hoover, Jeffrey P.; Robinson, Scott K.

    2007-01-01

    Why do many hosts accept costly avian brood parasitism even when parasitic eggs and nestlings differ dramatically in appearance from their own? Scientists argue that evolutionary lag or equilibrium can explain this evolutionary enigma. Few, however, consider the potential of parasitic birds to enforce acceptance by destroying eggs or nestlings of hosts that eject parasitic eggs and thereby reject parasitism. This retaliatory “mafia” behavior has been reported in one species of parasitic cuckoo but never in parasitic cowbirds. Here we present experimental evidence of mafia behavior in the brown-headed cowbird (Molothrus ater), a widely distributed North American brood parasite. We manipulated ejection of cowbird eggs and cowbird access to predator-proof nests in a common host to test experimentally for mafia behavior. When cowbird access was allowed, 56% of “ejector” nests were depredated compared with only 6% of “accepter” nests. No nests were destroyed when cowbird access was always denied or when access was denied after we removed cowbird eggs, indicating that cowbirds were responsible. Nonparasitized nests were depredated at an intermediate rate (20%) when cowbirds were allowed access, suggesting that cowbirds may occasionally “farm” hosts to create additional opportunities for parasitism. Cowbirds parasitized most (85%) renests of the hosts whose nests were depredated. Ejector nests produced 60% fewer host offspring than accepter nests because of the predatory behavior attributed to cowbirds. Widespread predatory behaviors in cowbirds could slow the evolution of rejection behaviors and further threaten populations of some of the >100 species of regular cowbird hosts. PMID:17360549

  11. Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation.

    PubMed

    Yang, Zhenzhen; Zhang, Yeting; Wafula, Eric K; Honaas, Loren A; Ralph, Paula E; Jones, Sam; Clarke, Christopher R; Liu, Siming; Su, Chun; Zhang, Huiting; Altman, Naomi S; Schuster, Stephan C; Timko, Michael P; Yoder, John I; Westwood, James H; dePamphilis, Claude W

    2016-10-24

    Horizontal gene transfer (HGT) is the transfer of genetic material across species boundaries and has been a driving force in prokaryotic evolution. HGT involving eukaryotes appears to be much less frequent, and the functional implications of HGT in eukaryotes are poorly understood. We test the hypothesis that parasitic plants, because of their intimate feeding contacts with host plant tissues, are especially prone to horizontal gene acquisition. We sought evidence of HGTs in transcriptomes of three parasitic members of Orobanchaceae, a plant family containing species spanning the full spectrum of parasitic capabilities, plus the free-living Lindenbergia Following initial phylogenetic detection and an extensive validation procedure, 52 high-confidence horizontal transfer events were detected, often from lineages of known host plants and with an increasing number of HGT events in species with the greatest parasitic dependence. Analyses of intron sequences in putative donor and recipient lineages provide evidence for integration of genomic fragments far more often than retro-processed RNA sequences. Purifying selection predominates in functionally transferred sequences, with a small fraction of adaptively evolving sites. HGT-acquired genes are preferentially expressed in the haustorium-the organ of parasitic plants-and are strongly biased in predicted gene functions, suggesting that expression products of horizontally acquired genes are contributing to the unique adaptive feeding structure of parasitic plants.

  12. Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation

    PubMed Central

    Yang, Zhenzhen; Zhang, Yeting; Wafula, Eric K.; Honaas, Loren A.; Ralph, Paula E.; Jones, Sam; Clarke, Christopher R.; Liu, Siming; Su, Chun; Zhang, Huiting; Altman, Naomi S.; Schuster, Stephan C.; Timko, Michael P.; Yoder, John I.; dePamphilis, Claude W.

    2016-01-01

    Horizontal gene transfer (HGT) is the transfer of genetic material across species boundaries and has been a driving force in prokaryotic evolution. HGT involving eukaryotes appears to be much less frequent, and the functional implications of HGT in eukaryotes are poorly understood. We test the hypothesis that parasitic plants, because of their intimate feeding contacts with host plant tissues, are especially prone to horizontal gene acquisition. We sought evidence of HGTs in transcriptomes of three parasitic members of Orobanchaceae, a plant family containing species spanning the full spectrum of parasitic capabilities, plus the free-living Lindenbergia. Following initial phylogenetic detection and an extensive validation procedure, 52 high-confidence horizontal transfer events were detected, often from lineages of known host plants and with an increasing number of HGT events in species with the greatest parasitic dependence. Analyses of intron sequences in putative donor and recipient lineages provide evidence for integration of genomic fragments far more often than retro-processed RNA sequences. Purifying selection predominates in functionally transferred sequences, with a small fraction of adaptively evolving sites. HGT-acquired genes are preferentially expressed in the haustorium—the organ of parasitic plants—and are strongly biased in predicted gene functions, suggesting that expression products of horizontally acquired genes are contributing to the unique adaptive feeding structure of parasitic plants. PMID:27791104

  13. Human behaviour and the epidemiology of parasitic zoonoses.

    PubMed

    Macpherson, Calum N L

    2005-10-01

    most zoonoses makes advice requiring behavioural change for their control a difficult task. Our clearer understanding of the heterogeneity of susceptibility to infection, the complex genetic variations of people and parasite species and the development of molecular epidemiological tools is shedding more light on transmission routes and the spectrum of disease that is observed. Improved and new serological, molecular and imaging diagnostic tests and the development of broad spectrum chemotherapeutic agents has led to the attenuation of morbidity and mortality due to parasitic zoonoses in economically advantaged regions. Such advancements, in partnership with supportive behavioural change, has the potential for a sustainable global reduction in the burden of ill health due to parasitic zoonoses. Whether this will materialise is a challenge for us all.

  14. Genomic evidence for plant-parasitic nematodes as the earliest Wolbachia hosts

    PubMed Central

    Brown, Amanda M. V.; Wasala, Sulochana K.; Howe, Dana K.; Peetz, Amy B.; Zasada, Inga A.; Denver, Dee R.

    2016-01-01

    Wolbachia, one of the most widespread endosymbionts, is a target for biological control of mosquito-borne diseases (malaria and dengue virus), and antibiotic elimination of infectious filarial nematodes. We sequenced and analyzed the genome of a new Wolbachia strain (wPpe) in the plant-parasitic nematode Pratylenchus penetrans. Phylogenomic analyses placed wPpe as the earliest diverging Wolbachia, suggesting two evolutionary invasions into nematodes. The next branches comprised strains in sap-feeding insects, suggesting Wolbachia may have first evolved as a nutritional mutualist. Genome size, protein content, %GC, and repetitive DNA allied wPpe with mutualistic Wolbachia, whereas gene repertoire analyses placed it between parasite (A, B) and mutualist (C, D, F) groups. Conservation of iron metabolism genes across Wolbachia suggests iron homeostasis as a potential factor in its success. This study enhances our understanding of this globally pandemic endosymbiont, highlighting genetic patterns associated with host changes. Combined with future work on this strain, these genomic data could help provide potential new targets for plant-parasitic nematode control. PMID:27734894

  15. Parasites and marine invasions

    USGS Publications Warehouse

    Torchin, M.E.; Lafferty, K.D.; Kuris, A.M.

    2002-01-01

    Introduced marine species are a major environmental and economic problem. The rate of these biological invasions has substantially increased in recent years due to the globalization of the world's economies. The damage caused by invasive species is often a result of the higher densities and larger sizes they attain compared to where they are native. A prominent hypothesis explaining the success of introduced species is that they are relatively free of the effects of natural enemies. Most notably, they may encounter fewer parasites in their introduced range compared to their native range. Parasites are ubiquitous and pervasive in marine systems, yet their role in marine invasions is relatively unexplored. Although data on parasites of marine organisms exist, the extent to which parasites can mediate marine invasions, or the extent to which invasive parasites and pathogens are responsible for infecting or potentially decimating native marine species have not been examined. In this review, we present a theoretical framework to model invasion success and examine the evidence for a relationship between parasite presence and the success of introduced marine species. For this, we compare the prevalence and species richness of parasites in several introduced populations of marine species with populations where they are native. We also discuss the potential impacts of introduced marine parasites on native ecosystems.

  16. Transposable genetic elements in Spirulina and potential applications for genetic engineering

    NASA Astrophysics Data System (ADS)

    Hiroyuki, Kojima; Qin, Song; Thankappan, Ajith Kumar; Yoshikazu, Kawata; Shin-Ichi, Yano

    1998-03-01

    Transposable elements in cyanobacteria are briefly reviewed. Evidence is presented to show that transposable elements in Spirulina platensis is actually reflected on the phenotype change, i e., helical to straight filaments. Transposition intermediates of DNA were isolated from the extrachromosome and the transposition was related to helical variations in Spirulina. Uses of transposable elements for microalgal recombination are discussed based on the transposition mechanism.

  17. Parasite Microbiome Project: Systematic Investigation of Microbiome Dynamics within and across Parasite-Host Interactions.

    PubMed

    Dheilly, Nolwenn M; Bolnick, Daniel; Bordenstein, Seth; Brindley, Paul J; Figuères, Cédric; Holmes, Edward C; Martínez Martínez, Joaquín; Phillips, Anna J; Poulin, Robert; Rosario, Karyna

    2017-01-01

    Understanding how microbiomes affect host resistance, parasite virulence, and parasite-associated diseases requires a collaborative effort between parasitologists, microbial ecologists, virologists, and immunologists. We hereby propose the Parasite Microbiome Project to bring together researchers with complementary expertise and to study the role of microbes in host-parasite interactions. Data from the Parasite Microbiome Project will help identify the mechanisms driving microbiome variation in parasites and infected hosts and how that variation is associated with the ecology and evolution of parasites and their disease outcomes. This is a call to arms to prevent fragmented research endeavors, encourage best practices in experimental approaches, and allow reliable comparative analyses across model systems. It is also an invitation to foundations and national funding agencies to propel the field of parasitology into the microbiome/metagenomic era.

  18. Discordant genetic diversity and geographic patterns between Crassicutis cichlasomae (Digenea: Apocreadiidae) and its cichlid host, "Cichlasoma" urophthalmus (Osteichthyes: Cichlidae), in Middle-America.

    PubMed

    Razo-Mendivil, Ulises; Vázquez-Domínguez, Ella; de León, Gerardo Pérez-Ponce

    2013-12-01

    Genetic analyses of hosts and their parasites are key to understand the evolutionary patterns and processes that have shaped host-parasite associations. We evaluated the genetic structure of the digenean Crassicutis cichlasomae and its most common host, the Mayan cichlid "Cichlasoma" urophthalmus, encompassing most of their geographical range in Middle-America (river basins in southeastern Mexico, Belize, and Guatemala together with the Yucatan Peninsula). Genetic diversity and structure analyses were done based on 167 cytochrome c oxidase subunit 1 sequences (330 bp) for C. cichlasomae from 21 populations and 161 cytochrome b sequences (599 bp) for "C." urophthalmus from 26 populations. Analyses performed included phylogenetic tree estimation under Bayesian inference and maximum likelihood analysis, genetic diversity, distance and structure estimates, haplotype networks, and demographic evaluations. Crassicutis cichlasomae showed high genetic diversity values and genetic structuring, corresponding with 4 groups clearly differentiated and highly divergent. Conversely, "C." urophthalmus showed low levels of genetic diversity and genetic differentiation, defined as 2 groups with low divergence and with no correspondence with geographical distribution. Our results show that species of cichlids parasitized by C. cichlasomae other than "C." urophthalmus, along with multiple colonization events and subsequent isolation in different basins, are likely factors that shaped the genetic structure of the parasite. Meanwhile, historical long-distance dispersal and drought periods during the Holocene, with significant population size reductions and fragmentations, are factors that could have shaped the genetic structure of the Mayan cichlid.

  19. Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression

    PubMed Central

    2013-01-01

    Background Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts. Results The interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor β-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface. Conclusions Laser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor’s generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor β-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the

  20. Transposable elements and polyploid evolution in animals.

    PubMed

    Rodriguez, Fernando; Arkhipova, Irina R

    2018-04-28

    Polyploidy in animals is much less common than in plants, where it is thought to be pervasive in all higher plant lineages. Recent studies have highlighted the impact of polyploidization and the associated process of diploidy restoration on the evolution and speciation of selected taxonomic groups in the animal kingdom: from vertebrates represented by salmonid fishes and African clawed frogs to invertebrates represented by parasitic root-knot nematodes and bdelloid rotifers. In this review, we focus on the unique and diverse roles that transposable elements may play in these processes, from marking and diversifying subgenome-specific chromosome sets before hybridization, to influencing genome restructuring during rediploidization, to affecting subgenome-specific regulatory evolution, and occasionally providing opportunities for domestication and gene amplification to restore and improve functionality. There is still much to be learned from the future comparative genomic studies of chromosome-sized and haplotype-aware assemblies, and from postgenomic studies elucidating genetic and epigenetic regulatory phenomena across short and long evolutionary distances in the metazoan tree of life. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Different Genetic Elements Carrying the tet(W) Gene in Two Human Clinical Isolates of Streptococcus suis▿ †

    PubMed Central

    Palmieri, Claudio; Princivalli, Maria Stella; Brenciani, Andrea; Varaldo, Pietro E.; Facinelli, Bruna

    2011-01-01

    The genetic support for tet(W), an emerging tetracycline resistance determinant, was studied in two strains of Streptococcus suis, SsCA and SsUD, both isolated in Italy from patients with meningitis. Two completely different tet(W)-carrying genetic elements, sharing only a tet(W)-containing segment barely larger than the gene, were found in the two strains. The one from strain SsCA was nontransferable, and aside from an erm(B)-containing insertion, it closely resembled a genomic island recently described in an S. suis Chinese human isolate in sequence, organization, and chromosomal location. The tet(W)-carrying genetic element from strain SsUD was transferable (at a low frequency) and, though apparently noninducible following mitomycin C treatment, displayed a typical phage organization and was named ΦSsUD.1. Its full sequence was determined (60,711 bp), the highest BLASTN score being Streptococcus pyogenes Φm46.1. ΦSsUD.1 exhibited a unique combination of antibiotic and heavy metal resistance genes. Besides tet(W), it contained a MAS (macrolide-aminoglycoside-streptothricin) fragment with an erm(B) gene having a deleted leader peptide and a cadC/cadA cadmium efflux cassette. The MAS fragment closely resembled the one recently described in pneumococcal transposons Tn6003 and Tn1545. These resistance genes found in the ΦSsUD.1 phage scaffold differed from, but were in the same position as, cargo genes carried by other streptococcal phages. The chromosome integration site of ΦSsUD.1 was at the 3′ end of a conserved tRNA uracil methyltransferase (rum) gene. This site, known to be an insertional hot spot for mobile elements in S. pyogenes, might play a similar role in S. suis. PMID:21115784

  2. ACLAME: a CLAssification of Mobile genetic Elements, update 2010.

    PubMed

    Leplae, Raphaël; Lima-Mendez, Gipsi; Toussaint, Ariane

    2010-01-01

    The ACLAME database is dedicated to the collection, analysis and classification of sequenced mobile genetic elements (MGEs, in particular phages and plasmids). In addition to providing information on the MGEs content, classifications are available at various levels of organization. At the gene/protein level, families group similar sequences that are expected to share the same function. Families of four or more proteins are manually assigned with a functional annotation using the GeneOntology and the locally developed ontology MeGO dedicated to MGEs. At the genome level, evolutionary cohesive modules group sets of protein families shared among MGEs. At the population level, networks display the reticulate evolutionary relationships among MGEs. To increase the coverage of the phage sequence space, ACLAME version 0.4 incorporates 760 high-quality predicted prophages selected from the Prophinder database. Most of the data can be downloaded from the freely accessible ACLAME web site (http://aclame.ulb.ac.be). The BLAST interface for querying the database has been extended and numerous tools for in-depth analysis of the results have been added.

  3. Prevalence and differential host-specificity of two avian blood parasite genera in the Australo-Papuan region

    USGS Publications Warehouse

    Beadell, J.S.; Gering, E.; Austin, J.; Dumbacher, J.P.; Peirce, M.A.; Pratt, T.K.; Atkinson, C.T.; Fleischer, R.C.

    2004-01-01

    The degree to which widespread avian blood parasites in the genera Plasmodium and Haemoproteus pose a threat to novel hosts depends in part on the degree to which they are constrained to a particular host or host family. We examined the host distribution and host-specificity of these parasites in birds from two relatively understudied and isolated locations: Australia and Papua New Guinea. Using polymerase chain reaction (PCR), we detected infection in 69 of 105 species, representing 44% of individuals surveyed (n = 428). Across host families, prevalence of Haemoproteus ranged from 13% (Acanthizidae) to 56% (Petroicidae) while prevalence of Plasmodium ranged from 3% (Petroicidae) to 47% (Ptilonorhynchidae). We recovered 78 unique mitochondrial lineages from 155 sequences. Related lineages of Haemoproteus were more likely to derive from the same host family than predicted by chance at shallow (average LogDet genetic distance = 0, n = 12, P = 0.001) and greater depths (average distance = 0.014, n = 11, P < 0.001) within the parasite phylogeny. Within two major Haemoproteus subclades identified in a maximum likelihood phylogeny, host-specificity was evident up to parasite genetic distances of 0.029 and 0.007 based on logistic regression. We found no significant host relationship among lineages of Plasmodium by any method of analysis. These results support previous evidence of strong host-family specificity in Haemoproteus and suggest that lineages of Plasmodium are more likely to form evolutionarily-stable associations with novel hosts.

  4. The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence.

    PubMed

    Eves-van den Akker, Sebastian; Laetsch, Dominik R; Thorpe, Peter; Lilley, Catherine J; Danchin, Etienne G J; Da Rocha, Martine; Rancurel, Corinne; Holroyd, Nancy E; Cotton, James A; Szitenberg, Amir; Grenier, Eric; Montarry, Josselin; Mimee, Benjamin; Duceppe, Marc-Olivier; Boyes, Ian; Marvin, Jessica M C; Jones, Laura M; Yusup, Hazijah B; Lafond-Lapalme, Joël; Esquibet, Magali; Sabeh, Michael; Rott, Michael; Overmars, Hein; Finkers-Tomczak, Anna; Smant, Geert; Koutsovoulos, Georgios; Blok, Vivian; Mantelin, Sophie; Cock, Peter J A; Phillips, Wendy; Henrissat, Bernard; Urwin, Peter E; Blaxter, Mark; Jones, John T

    2016-06-10

    The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative 'effector islands' in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.

  5. SXT/R391 integrative and conjugative elements in Proteus species reveal abundant genetic diversity and multidrug resistance

    PubMed Central

    Li, Xinyue; Du, Yu; Du, Pengcheng; Dai, Hang; Fang, Yujie; Li, Zhenpeng; Lv, Na; Zhu, Baoli; Kan, Biao; Wang, Duochun

    2016-01-01

    SXT/R391 integrative and conjugative elements (ICEs) are self-transmissible mobile genetic elements that are found in most members of Enterobacteriaceae. Here, we determined fifteen SXT/R391 ICEs carried by Proteus isolates from food (4.2%) and diarrhoea patients (17.3%). BLASTn searches against GenBank showed that the fifteen SXT/R391 ICEs were closely related to that from different Enterobacteriaceae species, including Proteus mirabilis. Using core gene phylogenetic analysis, the fifteen SXT/R391 ICEs were grouped into six distinct clusters, including a dominant cluster and three clusters that have not been previously reported in Proteus isolates. The SXT/R391 ICEs shared a common structure with a set of conserved genes, five hotspots and two variable regions, which contained more foreign genes, including drug-resistance genes. Notably, a class A β-lactamase gene was identified in nine SXT/R391 ICEs. Collectively, the ICE-carrying isolates carried resistance genes for 20 tested drugs. Six isolates were resistant to chloramphenicol, kanamycin, streptomycin, trimethoprim-sulfamethoxazole, sulfisoxazole and tetracycline, which are drug resistances commonly encoded by ICEs. Our results demonstrate abundant genetic diversity and multidrug resistance of the SXT/R391 ICEs carried by Proteus isolates, which may have significance for public health. It is therefore necessary to continuously monitor the antimicrobial resistance and related mobile elements among Proteus isolates. PMID:27892525

  6. Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite.

    PubMed

    Mikheyev, Alexander S; Tin, Mandy M Y; Arora, Jatin; Seeley, Thomas D

    2015-08-06

    Understanding genetic changes caused by novel pathogens and parasites can reveal mechanisms of adaptation and genetic robustness. Using whole-genome sequencing of museum and modern specimens, we describe the genomic changes in a wild population of honey bees in North America following the introduction of the ectoparasitic mite, Varroa destructor. Even though colony density in the study population is the same today as in the past, a major loss of haplotypic diversity occurred, indicative of a drastic mitochondrial bottleneck, caused by massive colony mortality. In contrast, nuclear genetic diversity did not change, though hundreds of genes show signs of selection. The genetic diversity within each bee colony, particularly as a consequence of polyandry by queens, may enable preservation of genetic diversity even during population bottlenecks. These findings suggest that genetically diverse honey bee populations can recover from introduced diseases by evolving rapid tolerance, while maintaining much of the standing genetic variation.

  7. Northeast India Helminth Parasite Information Database (NEIHPID): Knowledge Base for Helminth Parasites

    PubMed Central

    Debnath, Manish; Kharumnuid, Graciously; Thongnibah, Welfrank; Tandon, Veena

    2016-01-01

    Most metazoan parasites that invade vertebrate hosts belong to three phyla: Platyhelminthes, Nematoda and Acanthocephala. Many of the parasitic members of these phyla are collectively known as helminths and are causative agents of many debilitating, deforming and lethal diseases of humans and animals. The North-East India Helminth Parasite Information Database (NEIHPID) project aimed to document and characterise the spectrum of helminth parasites in the north-eastern region of India, providing host, geographical distribution, diagnostic characters and image data. The morphology-based taxonomic data are supplemented with information on DNA sequences of nuclear, ribosomal and mitochondrial gene marker regions that aid in parasite identification. In addition, the database contains raw next generation sequencing (NGS) data for 3 foodborne trematode parasites, with more to follow. The database will also provide study material for students interested in parasite biology. Users can search the database at various taxonomic levels (phylum, class, order, superfamily, family, genus, and species), or by host, habitat and geographical location. Specimen collection locations are noted as co-ordinates in a MySQL database and can be viewed on Google maps, using Google Maps JavaScript API v3. The NEIHPID database has been made freely available at http://nepiac.nehu.ac.in/index.php PMID:27285615

  8. Northeast India Helminth Parasite Information Database (NEIHPID): Knowledge Base for Helminth Parasites.

    PubMed

    Biswal, Devendra Kumar; Debnath, Manish; Kharumnuid, Graciously; Thongnibah, Welfrank; Tandon, Veena

    2016-01-01

    Most metazoan parasites that invade vertebrate hosts belong to three phyla: Platyhelminthes, Nematoda and Acanthocephala. Many of the parasitic members of these phyla are collectively known as helminths and are causative agents of many debilitating, deforming and lethal diseases of humans and animals. The North-East India Helminth Parasite Information Database (NEIHPID) project aimed to document and characterise the spectrum of helminth parasites in the north-eastern region of India, providing host, geographical distribution, diagnostic characters and image data. The morphology-based taxonomic data are supplemented with information on DNA sequences of nuclear, ribosomal and mitochondrial gene marker regions that aid in parasite identification. In addition, the database contains raw next generation sequencing (NGS) data for 3 foodborne trematode parasites, with more to follow. The database will also provide study material for students interested in parasite biology. Users can search the database at various taxonomic levels (phylum, class, order, superfamily, family, genus, and species), or by host, habitat and geographical location. Specimen collection locations are noted as co-ordinates in a MySQL database and can be viewed on Google maps, using Google Maps JavaScript API v3. The NEIHPID database has been made freely available at http://nepiac.nehu.ac.in/index.php.

  9. Peroxiredoxins in Parasites

    PubMed Central

    Gretes, Michael C.; Poole, Leslie B.

    2012-01-01

    Abstract Significance: Parasite survival and virulence relies on effective defenses against reactive oxygen and nitrogen species produced by the host immune system. Peroxiredoxins (Prxs) are ubiquitous enzymes now thought to be central to such defenses and, as such, have potential value as drug targets and vaccine antigens. Recent Advances: Plasmodial and kinetoplastid Prx systems are the most extensively studied, yet remain inadequately understood. For many other parasites our knowledge is even less well developed. Through parasite genome sequencing efforts, however, the key players are being discovered and characterized. Here we describe what is known about the biochemistry, regulation, and cell biology of Prxs in parasitic protozoa, helminths, and fungi. At least one Prx is found in each parasite with a sequenced genome, and a notable theme is the common patterns of expression, localization, and functionality among sequence-similar Prxs in related species. Critical Issues: The nomenclature of Prxs from parasites is in a state of disarray, causing confusion and making comparative inferences difficult. Here we introduce a systematic Prx naming convention that is consistent between organisms and informative about structural and evolutionary relationships. Future Directions: The new nomenclature should stimulate the crossfertilization of ideas among parasitologists and with the broader redox research community. The diverse parasite developmental stages and host environments present complex systems in which to explore the variety of roles played by Prxs, with a view toward parlaying what is learned into novel therapies and vaccines that are urgently needed. Antioxid. Redox Signal. 17, 608–633. PMID:22098136

  10. Analysis of Pvama1 genes from China-Myanmar border reveals little regional genetic differentiation of Plasmodium vivax populations.

    PubMed

    Zhu, Xiaotong; Zhao, Pan; Wang, Si; Liu, Fei; Liu, Jun; Wang, Jian; Yang, Zhaoqing; Yan, Guiyun; Fan, Qi; Cao, Yaming; Cui, Liwang

    2016-11-29

    With the premise of diminishing parasite genetic diversity following the reduction of malaria incidence, the analysis of polymorphic antigenic markers may provide important information about the impact of malaria control on local parasite populations. Here we evaluated the genetic diversity of Plasmodium vivax apical membrane antigen 1 (Pvama1) gene in a parasite population from the China-Myanmar border and compared it with global P. vivax populations. We performed evolutionary analysis to examine the genetic diversity, natural selection, and population differentiation of 73 Pvama1 sequences acquired from the China-Myanmar border as well as 615 publically available Pvama1 sequences from seven global P. vivax populations. A total of 308 Pvama1 haplotypes were identified among the global P. vivax isolates. The overall nucleotide diversity of Pvama1 gene among the 73 China-Myanmar border parasite isolates was 0.008 with 41 haplotypes being identified (Hd = 0.958). Domain I (DI) harbored the majority (26/33) of the polymorphic sites. The McDonald Kreitman test showed a significant positive selection across the ectodomain and the DI of Pvama1. The fixation index (F ST ) estimation between the China-Myanmar border, Thailand (0.01) and Myanmar (0.10) showed only slight geographical genetic differentiation. Notably, the Sal-I haplotype was not detected in any of the analyzed global isolates, whereas the Belem strain was restricted to the Thai population. The detected mutations are mapped outside the overlapped region of the predicted B-cell epitopes and intrinsically unstructured/disordered regions. This study revealed high levels of genetic diversity of Pvama1 in the P. vivax parasite population from the China-Myanmar border with DI displaying stronger diversifying selection than other domains. There were low levels of population subdivision among parasite populations from the Greater Mekong Subregion.

  11. Molecular evidence for host-parasite co-speciation between lizards and Schellackia parasites.

    PubMed

    Megía-Palma, Rodrigo; Martínez, Javier; Cuervo, José J; Belliure, Josabel; Jiménez-Robles, Octavio; Gomes, Verónica; Cabido, Carlos; Pausas, Juli G; Fitze, Patrick S; Martín, José; Merino, Santiago

    2018-05-05

    Current and past parasite transmission may depend on the overlap of host distributions, potentially affecting parasite specificity and co-evolutionary processes. Nonetheless, parasite diversification may take place in sympatry when parasites are transmitted by vectors with low mobility. Here, we test the co-speciation hypothesis between lizard final hosts of the Family Lacertidae, and blood parasites of the genus Schellackia, which are potentially transmitted by haematophagous mites. The effects of current distributional overlap of host species on parasite specificity are also investigated. We sampled 27 localities on the Iberian Peninsula and three in northern Africa, and collected blood samples from 981 individual lizards of seven genera and 18 species. The overall prevalence of infection by parasites of the genus Schellackia was ∼35%. We detected 16 Schellackia haplotypes of the 18S rRNA gene, revealing that the genus Schellackia is more diverse than previously thought. Phylogenetic analyses showed that Schellackia haplotypes grouped into two main monophyletic clades, the first including those detected in host species endemic to the Mediterranean region and the second those detected in host genera Acanthodactylus, Zootoca and Takydromus. All but one of the Schellackia haplotypes exhibited a high degree of host specificity at the generic level and 78.5% of them exclusively infected single host species. Some host species within the genera Podarcis (six species) and Iberolacerta (two species) were infected by three non-specific haplotypes of Schellackia, suggesting that host switching might have positively influenced past diversification of the genus. However, the results supported the idea that current host switching is rare because there existed a significant positive correlation between the number of exclusive parasite haplotypes and the number of host species with current sympatric distribution. This result, together with significant support for host-parasite

  12. Major histocompatibility complex (MHC) heterozygote superiority to natural multi-parasite infections in the water vole (Arvicola terrestris)

    PubMed Central

    Oliver, M.K.; Telfer, S.; Piertney, S.B.

    2008-01-01

    The fundamental role of the major histocompatibility complex (MHC) in immune recognition has led to a general consensus that the characteristically high levels of functional polymorphism at MHC genes is maintained by balancing selection operating through host–parasite coevolution. However, the actual mechanism by which selection operates is unclear. Two hypotheses have been proposed: overdominance (or heterozygote superiority) and negative frequency-dependent selection. Evidence for these hypotheses was evaluated by examining MHC–parasite relationships in an island population of water voles (Arvicola terrestris). Generalized linear mixed models were used to examine whether individual variation at an MHC class II DRB locus explained variation in the individual burdens of five different parasites. MHC genotype explained a significant amount of variation in the burden of gamasid mites, fleas (Megabothris walkeri) and nymphs of sheep ticks (Ixodes ricinus). Additionally, MHC heterozygotes were simultaneously co-infected by fewer parasite types than homozygotes. In each case where an MHC-dependent effect on parasite burden was resolved, the heterozygote genotype was associated with fewer parasites, and the heterozygote outperformed each homozygote in two of three cases, suggesting an overall superiority against parasitism for MHC heterozygote genotypes. This is the first demonstration of MHC heterozygote superiority against multiple parasites in a natural population, a mechanism that could help maintain high levels of functional MHC genetic diversity in natural populations. PMID:19129114

  13. Genetic characterization of an epidemic of Plasmodium falciparum malaria among Yanomami Amerindians.

    PubMed

    Laserson, K F; Petralanda, I; Almera, R; Barker, R H; Spielman, A; Maguire, J H; Wirth, D F

    1999-12-01

    Malaria parasites are genetically diverse at all levels of endemicity. In contrast, the merozoite surface protein (MSP) alleles in samples from 2 isolated populations of Yanomami Amerindians during an epidemic of Plasmodium falciparum were identical. The nonvariable restriction fragment length polymorphism patterns further suggested that the sequential outbreak comprised only a single P. falciparum genotype. By examination of serial samples from single human infections, the MSP characteristics were found to remain constant throughout the course of infection. An apparent clonal population structure of parasites seemed to cause outbreaks in small isolated villages. The use of standard molecular epidemiologic methods to measure genetic diversity in malaria revealed the occurrence of a genetically monomorphic population of P. falciparum within a human community.

  14. Epigenetics regulates transcription and pathogenesis in the parasite Trichomonas vaginalis.

    PubMed

    Pachano, Tomas; Nievas, Yesica R; Lizarraga, Ayelen; Johnson, Patricia J; Strobl-Mazzulla, Pablo H; de Miguel, Natalia

    2017-06-01

    Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogenital tract. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Different T. vaginalis strains vary greatly in their adherence and cytolytic capacities. These phenotypic differences might be attributed to differentially expressed genes as a consequence of extra-genetic variation, such as epigenetic modifications. In this study, we explored the role of histone acetylation in regulating gene transcription and pathogenesis in T. vaginalis. Here, we show that histone 3 lysine acetylation (H3KAc) is enriched in nucleosomes positioned around the transcription start site of active genes (BAP1 and BAP2) in a highly adherent parasite strain; compared with the low acetylation abundance in contrast to that observed in a less-adherent strain that expresses these genes at low levels. Additionally, exposition of less-adherent strain with a specific histone deacetylases inhibitor, trichostatin A, upregulated the transcription of BAP1 and BAP2 genes in concomitance with an increase in H3KAc abundance and chromatin accessibility around their transcription start sites. Moreover, we demonstrated that the binding of initiator binding protein, the transcription factor responsible for the initiation of transcription of ~75% of known T. vaginalis genes, depends on the histone acetylation state around the metazoan-like initiator to which initiator binding protein binds. Finally, we found that trichostatin A treatment increased parasite aggregation and adherence to host cells. Our data demonstrated for the first time that H3KAc is a permissive histone modification that functions to mediate both transcription and pathogenesis of the parasite T. vaginalis. © 2017 John Wiley & Sons Ltd.

  15. Transcontinental migratory connectivity predicts parasite prevalence in breeding populations of the European barn swallow.

    PubMed

    von Rönn, J A C; Harrod, C; Bensch, S; Wolf, J B W

    2015-03-01

    Parasites exert a major impact on the eco-evolutionary dynamics of their hosts and the associated biotic environment. Migration constitutes an effective means for long-distance invasions of vector-borne parasites and promotes their rapid spread. Yet, ecological and spatial information on population-specific host-parasite connectivity is essentially lacking. Here, we address this question in a system consisting of a transcontinental migrant species, the European barn swallow (Hirundo rustica) which serves as a vector for avian endoparasites in the genera Plasmodium, Haemoproteus and Leucocytozoon. Using feather stable isotope ratios as geographically informative markers, we first assessed migratory connectivity in the host: Northern European breeding populations predominantly overwintered in dry, savannah-like habitats in Southern Africa, whereas Southern European populations were associated with wetland habitats in Western Central Africa. Wintering areas of swallows breeding in Central Europe indicated a migratory divide with both migratory programmes occurring within the same breeding population. Subsequent genetic screens of parasites in the breeding populations revealed a link between the host's migratory programme and its parasitic repertoire: controlling for effects of local breeding location, prevalence of Africa-transmitted Plasmodium lineages was significantly higher in individuals overwintering in the moist habitats of Western Central Africa, even among sympatrically breeding individuals with different overwintering locations. For the rarer Haemoproteus parasites, prevalence was best explained by breeding location alone, whereas no clear pattern emerged for the least abundant parasite Leucocytozoon. These results have implications for our understanding of spatio-temporal host-parasite dynamics in migratory species and the spread of avian borne diseases. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European

  16. Possible Synergistic Effects of Thymol and Nicotine Against Crithidia bombi Parasitism in Bumble Bees.

    PubMed

    Biller, Olivia Masi; Adler, Lynn S; Irwin, Rebecca E; McAllister, Caitlin; Palmer-Young, Evan C

    2015-01-01

    Floral nectar contains secondary compounds with antimicrobial properties that can affect not only plant-pollinator interactions, but also interactions between pollinators and their parasites. Although recent work has shown that consumption of plant secondary compounds can reduce pollinator parasite loads, little is known about the effects of dosage or compound combinations. We used the generalist pollinator Bombus impatiens and its obligate gut parasite Crithidia bombi to study the effects of nectar chemistry on host-parasite interactions. In two experiments we tested (1) whether the secondary compounds thymol and nicotine act synergistically to reduce parasitism, and (2) whether dietary thymol concentration affects parasite resistance. In both experiments, uninfected Bombus impatiens were inoculated with Crithidia and then fed particular diet treatments for 7 days, after which infection levels were assessed. In the synergism experiment, thymol and nicotine alone and in combination did not significantly affect parasite load or host mortality. However, the thymol-nicotine combination treatment reduced log-transformed parasite counts by 30% relative to the control group (P = 0.08). For the experiment in which we manipulated thymol concentration, we found no significant effect of any thymol concentration on Crithidia load, but moderate (2 ppm) thymol concentrations incurred a near-significant increase in mortality (P = 0.054). Our results tentatively suggest the value of a mixed diet for host immunity, yet contrast with research on the antimicrobial activity of dietary thymol and nicotine in vertebrate and other invertebrate systems. We suggest that future research evaluate genetic variation in Crithidia virulence, multi-strain competition, and Crithidia interactions with the gut microbe community that may mediate antimicrobial activities of secondary compounds.

  17. Possible Synergistic Effects of Thymol and Nicotine against Crithidia bombi Parasitism in Bumble Bees

    PubMed Central

    Adler, Lynn S.; Irwin, Rebecca E.; McAllister, Caitlin

    2015-01-01

    Floral nectar contains secondary compounds with antimicrobial properties that can affect not only plant-pollinator interactions, but also interactions between pollinators and their parasites. Although recent work has shown that consumption of plant secondary compounds can reduce pollinator parasite loads, little is known about the effects of dosage or compound combinations. We used the generalist pollinator Bombus impatiens and its obligate gut parasite Crithidia bombi to study the effects of nectar chemistry on host-parasite interactions. In two experiments we tested (1) whether the secondary compounds thymol and nicotine act synergistically to reduce parasitism, and (2) whether dietary thymol concentration affects parasite resistance. In both experiments, uninfected Bombus impatiens were inoculated with Crithidia and then fed particular diet treatments for 7 days, after which infection levels were assessed. In the synergism experiment, thymol and nicotine alone and in combination did not significantly affect parasite load or host mortality. However, the thymol-nicotine combination treatment reduced log-transformed parasite counts by 30% relative to the control group (P = 0.08). For the experiment in which we manipulated thymol concentration, we found no significant effect of any thymol concentration on Crithidia load, but moderate (2 ppm) thymol concentrations incurred a near-significant increase in mortality (P = 0.054). Our results tentatively suggest the value of a mixed diet for host immunity, yet contrast with research on the antimicrobial activity of dietary thymol and nicotine in vertebrate and other invertebrate systems. We suggest that future research evaluate genetic variation in Crithidia virulence, multi-strain competition, and Crithidia interactions with the gut microbe community that may mediate antimicrobial activities of secondary compounds. PMID:26657643

  18. A De Novo-Assembly Based Data Analysis Pipeline for Plant Obligate Parasite Metatranscriptomic Studies.

    PubMed

    Guo, Li; Allen, Kelly S; Deiulio, Greg; Zhang, Yong; Madeiras, Angela M; Wick, Robert L; Ma, Li-Jun

    2016-01-01

    Current and emerging plant diseases caused by obligate parasitic microbes such as rusts, downy mildews, and powdery mildews threaten worldwide crop production and food safety. These obligate parasites are typically unculturable in the laboratory, posing technical challenges to characterize them at the genetic and genomic level. Here we have developed a data analysis pipeline integrating several bioinformatic software programs. This pipeline facilitates rapid gene discovery and expression analysis of a plant host and its obligate parasite simultaneously by next generation sequencing of mixed host and pathogen RNA (i.e., metatranscriptomics). We applied this pipeline to metatranscriptomic sequencing data of sweet basil (Ocimum basilicum) and its obligate downy mildew parasite Peronospora belbahrii, both lacking a sequenced genome. Even with a single data point, we were able to identify both candidate host defense genes and pathogen virulence genes that are highly expressed during infection. This demonstrates the power of this pipeline for identifying genes important in host-pathogen interactions without prior genomic information for either the plant host or the obligate biotrophic pathogen. The simplicity of this pipeline makes it accessible to researchers with limited computational skills and applicable to metatranscriptomic data analysis in a wide range of plant-obligate-parasite systems.

  19. A De Novo-Assembly Based Data Analysis Pipeline for Plant Obligate Parasite Metatranscriptomic Studies

    PubMed Central

    Guo, Li; Allen, Kelly S.; Deiulio, Greg; Zhang, Yong; Madeiras, Angela M.; Wick, Robert L.; Ma, Li-Jun

    2016-01-01

    Current and emerging plant diseases caused by obligate parasitic microbes such as rusts, downy mildews, and powdery mildews threaten worldwide crop production and food safety. These obligate parasites are typically unculturable in the laboratory, posing technical challenges to characterize them at the genetic and genomic level. Here we have developed a data analysis pipeline integrating several bioinformatic software programs. This pipeline facilitates rapid gene discovery and expression analysis of a plant host and its obligate parasite simultaneously by next generation sequencing of mixed host and pathogen RNA (i.e., metatranscriptomics). We applied this pipeline to metatranscriptomic sequencing data of sweet basil (Ocimum basilicum) and its obligate downy mildew parasite Peronospora belbahrii, both lacking a sequenced genome. Even with a single data point, we were able to identify both candidate host defense genes and pathogen virulence genes that are highly expressed during infection. This demonstrates the power of this pipeline for identifying genes important in host–pathogen interactions without prior genomic information for either the plant host or the obligate biotrophic pathogen. The simplicity of this pipeline makes it accessible to researchers with limited computational skills and applicable to metatranscriptomic data analysis in a wide range of plant-obligate-parasite systems. PMID:27462318

  20. Preferential inclusion of extrachromosomal genetic elements in yeast meiotic spores.

    PubMed

    Brewer, B J; Fangman, W L

    1980-09-01

    During meiosis and sporulation in the yeast Saccharomyces cerevisiae, extrachromosomal traits are efficiently transmitted to haploid spores. Although the pattern of inheritance of chromosomal traits reflects the mechanism of regular chromosomal segregation in meiosis, it is not known what processes are reflected by the efficient inheritance of extrachromosomal traits. Because extrachromosomal genetic elements in yeast are present in multiple copies, perpetuation of an extrachromosomal trait could occur by the passive envelopment of a subset of copies or by an active sequestering of all or a subset of copies within the four spores. We show that only subsets of the four extrachromosomal nucleic acids commonly found in yeast are transmitted through meiosis--55% of mitochondrial DNA copies, 82% of the 2-micron DNA plasmids, and about 70% of the L and M double-stranded RNAs. However, electron micrographs of serial sections through yeast asci indicate that the four spore enclose only 30% of the total ascus material. Thus these extrachromosomal elements are preferentially included within the spores, indicating that their inheritance is not a random process. Transmission of mitochondrial DNA can be accounted for by the observed enclosure of 52% of the mitochondrial volume within the spores. The high transmission frequencies of the double-stranded RNAs (which exist as virus-like particles in the cytoplasm) and 2-micron DNA must indicate that either these nucleic acids are actively recruited from the cytoplasm by some mechanism or they are associated in some way with the nucleus during meiosis.