Sample records for p-450 enzyme system

  1. Development of gold-immobilized P450 platform for exploring the effect of oligomer formation on P450-mediated metabolism for in vitro to in vivo drug metabolism predictions

    NASA Astrophysics Data System (ADS)

    Kabulski, Jarod L.

    The cytochrome P450 (P450) enzyme family is responsible for the biotransformation of a wide range of endogenous and xenobiotic compounds, as well as being the major metabolic enzyme in first pass drug metabolism. In vivo drug metabolism for P450 enzymes is predicted using in vitro data obtained from a reconstituted expressed P450 system, but these systems have not always been proven to accurately represent in vivo enzyme kinetics, due to interactions caused by oligomer formation. These in vitro systems use soluble P450 enzymes prone to oligomer formation and studies have shown that increased states of protein aggregation directly affect the P450 enzyme kinetics. We have developed an immobilized enzyme system that isolates the enzyme and can be used to elucidate the effect of P450 aggregation on metabolism kinetics. The long term goal of my research is to develop a tool that will help improve the assessment of pharmaceuticals by better predicting in vivo kinetics in an in vitro system. The central hypothesis of this research is that P450-mediated kinetics measured in vitro is dependent on oligomer formation and that the accurate prediction of in vivo P450-mediated kinetics requires elucidation of the effect of oligomer formation. The rationale is that the development of a P450 bound to a Au platform can be used to control the aggregation of enzymes and bonding to Au may also permit replacement of the natural redox partners with an electrode capable of supplying a constant flow of electrons. This dissertation explains the details of the enzyme attachment, monitoring substrate binding, and metabolism using physiological and electrochemical methods, determination of enzyme kinetics, and the development of an immobilized-P450 enzyme bioreactor. This work provides alternative approaches to studying P450-mediated kinetics, a platform for controlling enzyme aggregation, electrochemically-driven P450 metabolism, and for investigating the effect of protein-protein interactions on drug metabolism.

  2. Immobilized Cytochrome P450 2C9 (CYP2C9): Applications for Metabolite Generation, Monitoring Protein-Protein Interactions, and Improving In-vivo Predictions Using Enhanced In-vitro Models

    NASA Astrophysics Data System (ADS)

    Wollenberg, Lance A.

    Cytochrome P450 (P450) enzymes are a family of oxoferroreductase enzymes containing a heme moiety and are well known to be involved in the metabolism of a wide variety of endogenous and xenobiotic materials. It is estimated that roughly 75% of all pharmaceutical compounds are metabolized by these enzymes. Traditional reconstituted in-vitro incubation studies using recombinant P450 enzymes are often used to predict in-vivo kinetic parameters of a drug early in development. However, in many cases, these reconstituted incubations are prone to aggregation which has been shown to affect the catalytic activity of an enzyme. Moreover, the presence of other isoforms of P450 enzymes present in a metabolic incubation, as is the case with microsomal systems, may affect the catalytic activity of an enzyme through isoform-specific protein-protein interactions. Both of these effects may result in inaccurate prediction of in-vivo drug metabolism using in-vitro experiments. Here we described the development of immobilized P450 constructs designed to elucidate the effects of aggregation and protein-protein interactions between P450 isoforms on catalytic activities. The long term objective of this project is to develop a system to control the oligomeric state of Cytochrome P450 enzymes to accurately elucidate discrepancies between in vitro reconstituted systems and actual in vivo drug metabolism for the precise prediction of metabolic activity. This approach will serve as a system to better draw correlations between in-vivo and in-vitro drug metabolism data. The central hypothesis is that Cytochrome P450 enzymes catalytic activity can be altered by protein-protein interactions occurring between Cytochrome P450 enzymes involved in drug metabolism, and is dependent on varying states of protein aggregation. This dissertation explains the details of the construction and characterization of a nanostructure device designed to control the state of aggregation of a P450 enzyme. Moreover, applications of immobilized P450 enzyme constructs will also be used for monitoring protein-protein interaction and metabolite production with the use of immobilized-P450 bioreactor constructs. This work provides insight into the effect on catalytic activity caused by both P450 aggregation as well as isoform-specific protein-protein interactions and provides insight in the production of biosynthetically produced drug metabolites

  3. Isolation of the heme-thiolate enzyme cytochrome P-450TYR, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench.

    PubMed Central

    Sibbesen, O; Koch, B; Halkier, B A; Møller, B L

    1994-01-01

    The cytochrome P-450 enzyme (hemethiolate enzyme) that catalyzes the N-hydroxylation of L-tyrosine to N-hydroxytyrosine, the committed step in the biosynthesis of the cyanogenic glucoside dhurrin, has been isolated from microsomes prepared from etiolated seedlings of Sorghum bicolor (L.) Moench. The cytochrome P-450 enzyme was solubilized with the detergents Renex 690, reduced Triton X-100, and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate and isolated by ion-exchange (DEAE-Sepharose) and dye (Cibacron blue and reactive red 120) column chromatography. To prevent irreversible aggregation of the cytochrome P-450 enzyme, the isolation procedure was designed without any concentration step--i.e., with dilution of the ion-exchange gel with gel filtration material. The isolated enzyme, which we designate the cytochrome P-450TYR enzyme, gives rise to the specific formation of a type I substrate binding spectrum in the presence of L-tyrosine. The microsomal preparation contains 0.2 nmol of total cytochrome P-450/mg of protein. The cytochrome P-450TYR enzyme is estimated to constitute approximately 20% of the total cytochrome P-450 content of the microsomal membranes and about 0.2% of their total protein content. The apparent molecular mass of the cytochrome P-450TYR enzyme is 57 kDa, and the N-terminal amino acid sequence is ATMEVEAAAATVLAAP. A polyclonal antibody raised against the isolated cytochrome P-450TYR enzyme is specific as monitored by Western blot analysis and inhibits the in vitro conversion of L-tyrosine to p-hydroxymandelonitrile catalyzed by the microsomal system. The cytochrome P-450TYR enzyme exhibits high substrate specificity and acts as an N-hydroxylase on a single endogenous substrate. The reported isolation procedure based on dye columns constitutes a gentle isolation method for cytochrome P-450 enzymes and is of general use as indicated by its ability to separate cytochrome P-450TYR from the cytochrome P-450 enzyme catalyzing the C-hydroxylation of p-hydroxyphenylacetonitrile and from cinnamic acid 4-hydroxylase. Images PMID:7937883

  4. Why there is no cookbook approach to palliative care: implications of the P450 enzyme system.

    PubMed

    Kuebler, Kim K; Varga, James; Mihelic, Ronald A

    2003-01-01

    A plethora of literature describes the impact of the P450 enzyme system, but this information is limited regarding its relevancy to nursing practice. However, oncology nurses providing palliative symptom management must have a working knowledge of the P450 enzyme system to recognize the variability that exists among individual medication reactions or why a "cookbook approach" to symptom management is not always effective and appropriate. This article describes the variations associated with medication metabolism with reference to ethnic differences. Having a basic understanding of the P450 enzyme system and, more specifically, the CYP2D6 influence on the metabolism of common medications used in palliative symptom management can help to prevent medication toxicity or underdosing, which interferes with patients' quality of life.

  5. Defective Cytochrome P450-Catalysed Drug Metabolism in Niemann-Pick Type C Disease

    PubMed Central

    Wassif, Christopher A.; Gray, James; Burkert, Kathryn R.; Smith, David A.; Morris, Lauren; Cologna, Stephanie M.; Peer, Cody J.; Sissung, Tristan M.; Uscatu, Constantin-Daniel; Figg, William D.; Pavan, William J.; Vite, Charles H.; Porter, Forbes D.; Platt, Frances M.

    2016-01-01

    Niemann-Pick type C (NPC) disease is a neurodegenerative lysosomal storage disease caused by mutations in either the NPC1 or NPC2 gene. NPC is characterised by storage of multiple lipids in the late endosomal/lysosomal compartment, resulting in cellular and organ system dysfunction. The underlying molecular mechanisms that lead to the range of clinical presentations in NPC are not fully understood. While evaluating potential small molecule therapies in Npc1-/- mice, we observed a consistent pattern of toxicity associated with drugs metabolised by the cytochrome P450 system, suggesting a potential drug metabolism defect in NPC1 disease. Investigation of the P450 system in the context of NPC1 dysfunction revealed significant changes in the gene expression of many P450 associated genes across the full lifespan of Npc1-/- mice, decreased activity of cytochrome P450 reductase, and a global decrease of multiple cytochrome P450 catalysed dealkylation reactions. In vivo drug metabolism studies using a prototypic P450 metabolised drug, midazolam, confirmed dysfunction in drug clearance in the Npc1-/- mouse. Expression of the Phase II enzyme uridinediphosphate-glucuronosyltransferase (UGT) was also significantly reduced in Npc1-/- mice. Interestingly, reduced activity within the P450 system was also observed in heterozygous Npc1+/- mice. The reduced activity of P450 enzymes may be the result of bile acid deficiency/imbalance in Npc1-/- mice, as bile acid treatment significantly rescued P450 enzyme activity in Npc1-/- mice and has the potential to be an adjunctive therapy for NPC disease patients. The dysfunction in the cytochrome P450 system were recapitulated in the NPC1 feline model. Additionally, we present the first evidence that there are alterations in the P450 system in NPC1 patients. PMID:27019000

  6. Preparation of trout liver microsomes for iron speciation in P-450 enzymes by AE-FPLC with ICP-(ORS)MS detection.

    PubMed

    Rodríguez-Cea, Andrés; de la Campa, María Rosario Fernández; Sanz-Medel, Alfredo

    2005-01-01

    Cytochromes P-450 are members of a superfamily of hemoproteins involved in the oxidative metabolism of various physiological and xenobiotic compounds in eukaryotes and prokaryotes. The multiplicity of this group of enzymes has been widely studied by chromatographic techniques, mainly high-performance liquid chromatography (HPLC). Because these enzymes are membrane-bound proteins, sample preparation for chromatographic separation of P-450 enzymes requires a solubilization step. The sample-preparation procedures are critical, because detergents affect not only the efficiency of protein solubilization but also their further chromatographic resolution. Trout liver microsomes have been taken here as a model sample to investigate iron speciation in cytochrome P-450. Trouts were treated intraperitoneally with beta-naphthoflavone, a potent inducer of some P-450 enzymes, and a microsomal suspension containing 7.4+/-0.1 nmol mL(-1) P-450 enzymes was obtained by ultracentrifugation. Lubrol PX was selected as detergent for solubilization, resulting in about 90% solubilization recovery. The solubilized cytochromes P-450 were further separated by AE-FPLC, with UV detection, or coupled to ICP-MS with an octapole reaction system, ICP-(ORS)MS (monitoring Fe signals at masses 54, 56, and 57). A sampling procedure and chromatographic conditions are developed and were successfully applied to iron speciation in trout liver P-450 enzymes. ICP-(ORS)MS detection of P-450 enzymes is Fe-specific and so will give accurate information on the prosthetic group of the protein, which can constitute an advantageous alternative to classical methods for detection of these hemoproteins.

  7. Disparity in holoprotein/apoprotein ratios of different standards used for immunoquantification of hepatic cytochrome P450 enzymes.

    PubMed

    Perrett, H F; Barter, Z E; Jones, B C; Yamazaki, H; Tucker, G T; Rostami-Hodjegan, A

    2007-10-01

    An analysis of reported hepatic abundances of CYP3A4 and 3A5 indicated that values determined by immunoquantification using commercially available, unpurified recombinant enzymes as standards are significantly lower than those determined using purified enzymes or human liver microsomes characterized with lysosomal peptides (CYP3A4: mean 45 versus 121 pmol/mg protein, p < 0.01; CYP3A5: mean 28 versus 83 pmol/mg protein, p < 0.05). When immunoquantifying cytochromes P450 (P450s), it is assumed that the holoprotein (holo)/apoprotein ratio is the same in the samples and the standard. Estimates of holo/apoprotein ratios from data reported for a range of P450s purified from human liver and non-commercial recombinant systems indicated less than complete and variable heme coupling dependent on enzyme and system.

  8. Activation of amino-alpha-carboline, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and a copper phthalocyanine cellulose extract of cigarette smoke condensate by cytochrome P-450 enzymes in rat and human liver microsomes.

    PubMed

    Shimada, T; Guengerich, F P

    1991-10-01

    The ability of cigarette smoke condensate to induce a genotoxic response has been measured in liver microsomal and reconstituted monooxygenase systems containing rat and human cytochrome P-450 (P-450) enzymes, as determined by umu gene expression in Salmonella typhimurium TA1535/pSK1002. The reactivities of amino-alpha-carboline and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), two compounds known to be present at considerable levels in cigarette smoke condensate, were also determined and compared with regard to genotoxicity. Amino-alpha-carboline and PhIP are activated principally by P-450 1A2 enzymes in human and rat liver microsomes: (a) activation of both compounds was catalyzed efficiently by liver microsomes prepared from rats treated with 5,6-benzoflavone, isosafrole, or the commercial polychlorinated biphenyl mixture Aroclor 1254, and the activities could be considerably inhibited by antibodies raised against P-450 1A1 or 1A2; (b) the rates of activation of these compounds were correlated with the amount of human P-450 1A2 and of phenacetin O-deethylation activity in different human liver microsomal preparations, and these activities were inhibited by anti-P-450 1A2; (c) reconstituted enzyme systems containing P-450 1A enzymes isolated from rats and humans showed the highest rates of activation of amino-alpha-carboline and PhIP. In rat liver microsomes PhIP may also be activated by P-450 3A enzymes; activity was induced in rats treated with pregnenolone 16 alpha-carbonitrile and was inhibited by anti-human P-450 3A4. However, in humans the contribution of P-450 3A enzymes could be excluded as judged by the very low effects of anti-P-450 3A4 on the microsomal activities and poor correlation with P-450 3A4-catalyzed activities in various liver samples. Cigarette smoke condensate strongly inhibited the activation of several potent procarcinogens by human liver microsomes, particularly the reactions catalyzed by P-450 1A2, but was not so inhibitory of the activation reactions catalyzed by P-450 3A4 and of P-450 2D6-catalyzed bufuralol 1'-hydroxylation. Genotoxic components of the cigarette smoke condensate were extracted by using copper phthalocyanine cellulose (blue cotton). Genotoxicity of this extract was observed only after activation by P-450, and the inhibition of P-450 1A2 activities by these extracts was slight.(ABSTRACT TRUNCATED AT 400 WORDS)

  9. P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium.

    PubMed

    Syed, Khajamohiddin; Yadav, Jagjit S

    2012-11-01

    Phanerochaete chrysosporium, the model white rot fungus, has been the focus of research for the past about four decades for understanding the mechanisms and processes of biodegradation of the natural aromatic polymer lignin and a broad range of environmental toxic chemicals. The ability to degrade this vast array of xenobiotic compounds was originally attributed to its lignin-degrading enzyme system, mainly the extracellular peroxidases. However, subsequent physiological, biochemical, and/or genetic studies by us and others identified the involvement of a peroxidase-independent oxidoreductase system, the cytochrome P450 monooxygenase system. The whole genome sequence revealed an extraordinarily large P450 contingent (P450ome) with an estimated 149 P450s in this organism. This review focuses on the current status of understanding on the P450 monooxygenase system of P. chrysosproium in terms of pre-genomic and post-genomic identification, structural and evolutionary analysis, transcriptional regulation, redox partners, and functional characterization for its biodegradative potential. Future research on this catalytically diverse oxidoreductase enzyme system and its major role as a newly emerged player in xenobiotic metabolism/degradation is discussed.

  10. YouScript IMPACT Registry

    ClinicalTrials.gov

    2017-02-27

    Adverse Drug Events; Adverse Drug Reactions; Drug Interaction Potentiation; Drug Metabolism, Poor, CYP2D6-RELATED; Drug Metabolism, Poor, CYP2C19-RELATED; Cytochrome P450 Enzyme Deficiency; Cytochrome P450 CYP2D6 Enzyme Deficiency; Cytochrome P450 CYP2C9 Enzyme Deficiency; Cytochrome P450 CYP2C19 Enzyme Deficiency; Cytochrome P450 CYP3A Enzyme Deficiency; Poor Metabolizer Due to Cytochrome P450 CYP2C9 Variant; Poor Metabolizer Due to Cytochrome P450 CYP2C19 Variant; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  11. Pharmacogenetic Testing Among Home Health Patients

    ClinicalTrials.gov

    2016-09-20

    Adverse Drug Events; Adverse Drug Reactions; Drug Interaction Potentiation; Drug Metabolism, Poor, CYP2D6-RELATED; Drug Metabolism, Poor, CYP2C19-RELATED; Cytochrome P450 Enzyme Deficiency; Cytochrome P450 CYP2D6 Enzyme Deficiency; Cytochrome P450 CYP2C9 Enzyme Deficiency; Cytochrome P450 CYP2C19 Enzyme Deficiency; Cytochrome P450 CYP3A Enzyme Deficiency; Poor Metabolizer Due to Cytochrome P450 CYP2C9 Variant; Poor Metabolizer Due to Cytochrome p450 CYP2C19 Variant; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  12. Examination of Urinary Beta-Naphthol as a Biomarker Indicative of Jet Fuel Exposures

    DTIC Science & Technology

    2015-04-01

    NPQ) by cytochrome P450 has been shown to alter with age, diminishing at a rate of ~ 3% per year.22 Subject age effects on cytochrome P450 enzymes ...of Ageing on cytochrome P450 enzymes : Consequences for drug biotransformation in the elderly. Current Med Chem. (2007) 14:745-757. 24. Van Winkle...naphthalene 1,2-oxide by the cytochrome P450 monooxygenase system (Fig. 1). This reaction occurs primarily in the liver, although oxidation can also

  13. A Multiscale Approach to Modelling Drug Metabolism by Membrane-Bound Cytochrome P450 Enzymes

    PubMed Central

    Sansom, Mark S. P.; Mulholland, Adrian J.

    2014-01-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes. PMID:25033460

  14. A multiscale approach to modelling drug metabolism by membrane-bound cytochrome P450 enzymes.

    PubMed

    Lonsdale, Richard; Rouse, Sarah L; Sansom, Mark S P; Mulholland, Adrian J

    2014-07-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes.

  15. Enhanced hepatic and kidney cytochrome p-450 activities in nandrolone decanoate treated albino mice.

    PubMed

    Acharjee, B K; Mahanta, R

    2009-04-01

    Anabolic androgenic steroids are the xenobiotic substrates that are metabolized in the body by the protective enzyme systems. Mixed function oxygenase enzymes include a group of enzymes which play an essential role in the metabolism of a broad range of xenobiotics including endogenous and exogenous substrates. Cytochrome P-450, a member of mixed function oxygenase enzymes, plays an important role in oxidative metabolism of drugs and xenobiotics entering human body. Various anabolic steroids are found either to increase or decrease the activity of cytochrome P-450. However, effect of nandrolone decanoate, most commonly abused anabolic steroid, on cytochrome P-450 activity is still fragmentary. In the present study, albino mice were administered intramuscular 2.5 mg of nandrolone decanoate injection at 15 days interval. Cytochrome P-450 activity is determined by following the method of Omura and Sato (1964) in liver and kidney tissues of both normal and experimental groups upto 90 days. Investigation shows a significant (p <0.01) increase of cytochrome P-450 (nmol/mg) activity in liver tissue as compared to that of kidney tissues. A tissue specific and dose specific increase of cytochrome P-450 activity is observed. Mean cytochrome P-450 is found highest in liver tissue on 45(th) day whereas the activity in kidney tissue is noticed on 90(th) day of treatment. From the above observation, nandrolone decanoate can be suggested as a potent inducer of cytochrome P-450 activity like other anabolic steroids.

  16. Microbial P450 Enzymes in Bioremediation and Drug Discovery: Emerging Potentials and Challenges.

    PubMed

    Bhattacharya, Sukanta S; Yadav, Jagjit S

    2018-01-01

    Cytochrome P450 enzymes are a structurally conserved but functionally diverse group of heme-containing mixed function oxidases found across both prokaryotic and eukaryotic forms of the microbial world. Microbial P450s are known to perform diverse functions ranging from the synthesis of cell wall components to xenobiotic/drug metabolism to biodegradation of environmental chemicals. Conventionally, many microbial systems have been reported to mimic mammalian P450-like activation of drugs and were proposed as the in-vitro models of mammalian drug metabolism. Recent reports suggest that native or engineered forms of specific microbial P450s from these and other microbial systems could be employed for desired specific biotransformation reactions toward natural and synthetic (drug) compounds underscoring their emerging potential in drug improvement and discovery. On the other hand, microorganisms particularly fungi and actinomycetes have been shown to possess catabolic P450s with unusual potential to degrade toxic environmental chemicals including persistent organic pollutants (POPs). Wood-rotting basidiomycete fungi in particular have revealed the presence of exceptionally large P450 repertoire (P450ome) in their genomes, majority of which are however orphan (with no known function). Our pre- and post-genomic studies have led to functional characterization of several fungal P450s inducible in response to exposure to several environmental toxicants and demonstration of their potential in bioremediation of these chemicals. This review is an attempt to summarize the postgenomic unveiling of this versatile enzyme superfamily in microbial systems and investigation of their potential to synthesize new drugs and degrade persistent pollutants, among other biotechnological applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Marmoset Cytochrome P450 3A4 Ortholog Expressed in Liver and Small-Intestine Tissues Efficiently Metabolizes Midazolam, Alprazolam, Nifedipine, and Testosterone.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Nakanishi, Kazuyuki; Ishii, Sakura; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2017-05-01

    Common marmosets ( Callithrix jacchus ), small New World primates, are increasingly attracting attention as potentially useful animal models for drug development. However, characterization of cytochrome P450 (P450) 3A enzymes involved in the metabolism of a wide variety of drugs has not investigated in marmosets. In this study, sequence homology, tissue distribution, and enzymatic properties of marmoset P450 3A4 ortholog, 3A5 ortholog, and 3A90 were investigated. Marmoset P450 3A forms exhibited high amino acid sequence identities (88-90%) to the human and cynomolgus monkey P450 3A orthologs and evolutionary closeness to human and cynomolgus monkey P450 3A orthologs compared with other P450 3A enzymes. Among the five marmoset tissues examined, P450 3A4 ortholog mRNA was abundant in livers and small intestines where P450 3A4 ortholog proteins were immunologically detected. Three marmoset P450 3A proteins heterologously expressed in Escherichia coli membranes catalyzed midazolam 1'- and 4-hydroxylation, alprazolam 4-hydroxylation, nifedipine oxidation, and testosterone 6 β -hydroxylation, similar to cynomolgus monkey and human P450 3A enzymes. Among the marmoset P450 3A enzymes, P450 3A4 ortholog effectively catalyzed midazolam 1'-hydroxylation, comparable to microsomes from marmoset livers and small intestines. Correlation analyses with 23 individual marmoset liver microsomes suggested contributions of P450 3A enzymes to 1'-hydroxylation of both midazolam (human P450 3A probe) and bufuralol (human P450 2D6 probe), similar to cynomolgus monkey P450 3A enzymes. These results indicated that marmoset P450 3A forms had functional characteristics roughly similar to cynomolgus monkeys and humans in terms of tissue expression patterns and catalytic activities, suggesting marmosets as suitable animal models for P450 3A-dependent drug metabolism. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Functional Study of Cytochrome P450 Enzymes from the Brown Planthopper (Nilaparvata lugens Stål) to Analyze Its Adaptation to BPH-Resistant Rice

    PubMed Central

    Peng, Lei; Zhao, Yan; Wang, Huiying; Song, Chengpan; Shangguan, Xinxin; Ma, Yinhua; Zhu, Lili; He, Guangcun

    2017-01-01

    Plant-insect interactions constitute a complex of system, whereby plants synthesize toxic compounds as the main defense strategy to combat herbivore assault, and insects deploy detoxification systems to cope with toxic plant compounds. Cytochrom P450s are among the main detoxification enzymes employed by insects to combat the chemical defenses of host plants. In this study, we used Nilaparvata lugens (BPH) to constitute an ideal system for studying plant-insect interactions. By feeding BPHs with artificial diets containing ethanol extracts, we show that biotype Y BPHs have a greater ability to metabolize exogenous substrates than biotype 1 BPHs. NlCPR knockdown inhibited the ability of BPHs to feed on YHY15. qRT-PCR was used to screen genes in the P450 family, and upregulation of CYP4C61, CYP6AX1, and CYP6AY1 induced by YHY15 was investigated. When the three P450 genes were knocked down, only CYP4C61 dsRNA treatment was inhibited the ability of BPHs to feed on YHY15. These results indicate that BPH P450 enzymes are a key factor in the physiological functions of BPH when feeding on BPH-resistant rice. PMID:29249980

  19. Functional Study of Cytochrome P450 Enzymes from the Brown Planthopper (Nilaparvata lugens Stål) to Analyze Its Adaptation to BPH-Resistant Rice.

    PubMed

    Peng, Lei; Zhao, Yan; Wang, Huiying; Song, Chengpan; Shangguan, Xinxin; Ma, Yinhua; Zhu, Lili; He, Guangcun

    2017-01-01

    Plant-insect interactions constitute a complex of system, whereby plants synthesize toxic compounds as the main defense strategy to combat herbivore assault, and insects deploy detoxification systems to cope with toxic plant compounds. Cytochrom P450s are among the main detoxification enzymes employed by insects to combat the chemical defenses of host plants. In this study, we used Nilaparvata lugens (BPH) to constitute an ideal system for studying plant-insect interactions. By feeding BPHs with artificial diets containing ethanol extracts, we show that biotype Y BPHs have a greater ability to metabolize exogenous substrates than biotype 1 BPHs. NlCPR knockdown inhibited the ability of BPHs to feed on YHY15. qRT-PCR was used to screen genes in the P450 family, and upregulation of CYP4C61, CYP6AX1 , and CYP6AY1 induced by YHY15 was investigated. When the three P450 genes were knocked down, only CYP4C61 dsRNA treatment was inhibited the ability of BPHs to feed on YHY15. These results indicate that BPH P450 enzymes are a key factor in the physiological functions of BPH when feeding on BPH-resistant rice.

  20. Drug & Gene Interaction Risk Analysis With & Without Genetic Testing Among Patients Undergoing MTM

    ClinicalTrials.gov

    2017-02-22

    Cytochrome P450 CYP2D6 Enzyme Deficiency; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Extensive Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Cytochrome P450 CYP2C9 Enzyme Deficiency; Cytochrome P450 CYP2C19 Enzyme Deficiency; Drug Metabolism, Poor, CYP2D6-RELATED; Drug Metabolism, Poor, CYP2C19-RELATED; CYP2D6 Polymorphism

  1. Physical Studies of P450–P450 Interactions: Predicting Quaternary Structures of P450 Complexes in Membranes from Their X-ray Crystal Structures

    PubMed Central

    Reed, James R.; Backes, Wayne L.

    2017-01-01

    Cytochrome P450 enzymes, which catalyze oxygenation reactions of both exogenous and endogenous chemicals, are membrane bound proteins that require interaction with their redox partners in order to function. Those responsible for drug and foreign compound metabolism are localized primarily in the endoplasmic reticulum of liver, lung, intestine, and other tissues. More recently, the potential for P450 enzymes to exist as supramolecular complexes has been shown by the demonstration of both homomeric and heteromeric complexes. The P450 units in these complexes are heterogeneous with respect to their distribution and function, and the interaction of different P450s can influence P450-specific metabolism. The goal of this review is to examine the evidence supporting the existence of physical complexes among P450 enzymes. Additionally, the review examines the crystal lattices of different P450 enzymes derived from X-ray diffraction data to make assumptions regarding possible quaternary structures in membranes and in turn, to predict how the quaternary structures could influence metabolism and explain the functional effects of specific P450–P450 interactions. PMID:28194112

  2. In Situ Bioremediation of Energetic Compounds In Groundwater

    DTIC Science & Technology

    2012-03-01

    Figure 1.2; Fournier et al., 2002; Bhushan et al., 2003). The Cytochrome P450 isozyme CYP177A1, XplA (XplA) has been identified as the key enzyme system...e.g., chlorine dioxide, sodium hypochlorite, and hydrogen peroxide), acid treatment, enzyme addition, liquid carbon dioxide, intermittent pumping...P450 system XplA/B. Proceedings of the National Academy of Science 104:16822-16827. Kaplan, D. L., and A. M. Kaplan. 1992. Thermophilic

  3. Regio- and Stereo-Selective Oxidation of a Cardiovascular Drug, Metoprolol, Mediated by Cytochrome P450 2D and 3A Enzymes in Marmoset Livers.

    PubMed

    Uehara, Shotaro; Ishii, Sakura; Uno, Yasuhiro; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2017-08-01

    A β -blocker, metoprolol, is one of the in vivo probes for human cytochrome P450 (P450) 2D6. Investigation of nonhuman primate P450 enzymes helps to improve the accuracy of the extrapolation of pharmacokinetic data from animals into humans. Common marmosets ( Callithrix jacchus ) are a potential primate model for preclinical research, but the detailed roles of marmoset P450 enzymes in metoprolol oxidation remain unknown. In this study, regio- and stereo-selectivity of metoprolol oxidations by a variety of P450 enzymes in marmoset and human livers were investigated in vitro. Although liver microsomes from cynomolgus monkeys and rats preferentially mediated S -metoprolol O -demethylation and R -metoprolol α -hydroxylation, respectively, those from humans, marmosets, minipigs, and dogs preferentially mediated R -metoprolol O -demethylation, in contrast to the slow rates of R - and S -metoprolol oxidation in mouse liver microsomes. R - and S -metoprolol O -demethylation activities in marmoset livers were strongly inhibited by quinidine and ketoconazole, and were significantly correlated with bufuralol 1'-hydroxylation and midazolam 1'-hydroxylation activities and also with P450 2D and 3A4 contents, which is different from the case in human livers that did not have any correlations with P450 3A-mediated midazolam 1'-hydroxylation. Recombinant human P450 2D6 enzyme and marmoset P450 2D6/3A4 enzymes effectively catalyzed R -metoprolol O -demethylation, comparable to the activities of human and marmoset liver microsomes, respectively. These results indicated that the major roles of P450 2D enzymes for the regio- and stereo-selectivity of metoprolol oxidation were similar between human and marmoset livers, but the minor roles of P450 3A enzymes were unique to marmosets. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  4. HPLC Determination of Caffeine and Paraxanthine in Urine: An Assay for Cytochrome P450 1A2 Activity

    ERIC Educational Resources Information Center

    Furge, Laura Lowe; Fletke, Kyle J.

    2007-01-01

    Cytochrome P450 enzymes are a family of heme-containing proteins located throughout the body with roles in metabolism of endogenous and exogenous compounds. Among exogenous compounds, clinically relevant pharmaceutical agents are nearly all metabolized by P450 enzymes. However, the activity of the different cytochrome P450 enzymes varies among…

  5. Cytochrome p450 architecture and cysteine nucleophile placement impact raloxifene-mediated mechanism-based inactivation.

    PubMed

    VandenBrink, Brooke M; Davis, John A; Pearson, Josh T; Foti, Robert S; Wienkers, Larry C; Rock, Dan A

    2012-11-01

    The propensity for cytochrome P450 (P450) enzymes to bioactivate xenobiotics is governed by the inherent chemistry of the xenobiotic itself and the active site architecture of the P450 enzyme(s). Accessible nucleophiles in the active site or egress channels of the P450 enzyme have the potential of sequestering reactive metabolites through covalent modification, thereby limiting their exposure to other proteins. Raloxifene, a drug known to undergo CYP3A-mediated reactive metabolite formation and time-dependent inhibition in vitro, was used to explore the potential for bioactivation and enzyme inactivation of additional P450 enzymes (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A5). Every P450 tested except CYP2E1 was capable of raloxifene bioactivation, based on glutathione adduct formation. However, raloxifene-mediated time-dependent inhibition only occurred in CYP2C8 and CYP3A4. Comparable inactivation kinetics were achieved with K(I) and k(inact) values of 0.26 μM and 0.10 min(-1) and 0.81 μM and 0.20 min(-1) for CYP2C8 and CYP3A4, respectively. Proteolytic digests of CYP2C8 and CYP3A4 Supersomes revealed adducts to Cys225 and Cys239 for CYP2C8 and CYP3A4, respectively. For each P450 enzyme, proposed substrate/metabolite access channels were mapped and active site cysteines were identified, which revealed that only CYP2C8 and CYP3A4 possess accessible cysteine residues near the active site cavities, a result consistent with the observed kinetics. The combined data suggest that the extent of bioactivation across P450 enzymes does not correlate with P450 inactivation. In addition, multiple factors contribute to the ability of reactive metabolites to form apo-adducts with P450 enzymes.

  6. Engineering human cytochrome P450 enzymes into catalytically self-sufficient chimeras using molecular Lego.

    PubMed

    Dodhia, Vikash Rajnikant; Fantuzzi, Andrea; Gilardi, Gianfranco

    2006-10-01

    The membrane-bound human cytochrome P450s have essential roles in the metabolism of endogenous compounds and drugs. Presented here are the results on the construction and characterization of three fusion proteins containing the N-terminally modified human cytochrome P450s CYP2C9, CY2C19 and CYP3A4 fused to the soluble NADPH-dependent oxidoreductase domain of CYP102A1 from Bacillus megaterium. The constructs, CYP2C9/BMR, CYP2C19/BMR and CYP3A4/BMR are well expressed in Escherichia coli as holo proteins. The chimeras can be purified in the absence of detergent and the purified enzymes are both active and correctly folded in the absence of detergent, as demonstrated by circular dichroism and functional studies. Additionally, in comparison with the parent P450 enzyme, these chimeras have greatly improved solubility properties. The chimeras are catalytically self-sufficient and present turnover rates similar to those reported for the native enzymes in reconstituted systems, unlike previously reported mammalian cytochrome P450 fusion proteins. Furthermore the specific activities of these chimeras are not dependent on the enzyme concentration present in the reaction buffer and they do not require the addition of accessory proteins, detergents or phospholipids to be fully active. The solubility, catalytic self-sufficiency and wild-type like activities of these chimeras would greatly simplify the studies of cytochrome P450 mediated drug metabolism in solution.

  7. Comparison of the metabolism of parathion by a rat liver reconstituted mixed-function oxidase enzyme system and by a system containing cumene hydroperoxide and purified rat liver cytochrome P-450.

    PubMed

    Yoshihara, S; Neal, R A

    1977-01-01

    The metabolism of parathion by a reconstituted mixed-function oxidase enzyme system (rat liver cytochrome P-450, NADPH-cytochrome c reductase, dilauroyl phosphatidylcholine, deoxycholate, and NADPH) or a cumene hydroperoxide system (cytochrome P-450, dilauroyl phosphatidylcholine, and cumene hydroperoxide) have been compared. The products formed on incubation of parathion with both systems were paraoxon, diethyl phosphorothioic acid, diethyl phosphoric acid, p-nitrophenol, and atomic sulfur. The apparent KM values for parathion for formation of paraoxon and diethyl phosphorothioic acid with the cumene hydroperoxide system were 55 and 39 X 10(-6) M, respectively. These KM values are not significantly different. When the reconstituted system was used, apparent KM values of 2.8 x 10(-6) M for formation of paraoxon and 3.9 x 10(-6) M for The formation of diethyl phosphorothioic acid and diethyl phosphoric acid were determined. These KM values are also not significantly different. covalent binding of the sulfur atom, released in the metabolism of parathion to paraoxon, to the proteins of the reconstituted system and to cytochrome P-450 of the cumene hydroperoxide system was also examined. With both the reconstituted system and the cumene hydroperoxide system approximately 65% of the sulfur released became bound to the proteins of these enzyme systems. The binding of the sulfur atome resulted in a progressive inhibition of the metabolism of parathion by these two systems.

  8. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions.

    PubMed

    Ismail, Hanafy M; O'Neill, Paul M; Hong, David W; Finn, Robert D; Henderson, Colin J; Wright, Aaron T; Cravatt, Benjamin F; Hemingway, Janet; Paine, Mark J I

    2013-12-03

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or "pyrethrome." Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of unique tools for disease control.

  9. Functional characterisation of an engineered multidomain human P450 2E1 by molecular Lego.

    PubMed

    Fairhead, Michael; Giannini, Silva; Gillam, Elizabeth M J; Gilardi, Gianfranco

    2005-12-01

    The human cytochrome P450s constitute an important family of monooxygenase enzymes that carry out essential roles in the metabolism of endogenous compounds and foreign chemicals. We present here results of a fusion between a human P450 enzyme and a bacterial reductase that for the first time is shown does not require the addition of lipids or detergents to achieve wild-type-like activities. The fusion enzyme, P450 2E1-BMR, contains the N-terminally modified residues 22-493 of the human P450 2E1 fused at the C-terminus to residues 473-1049 of the P450 BM3 reductase (BMR). The P450 2E1-BMR enzyme is active, self-sufficient and presents the typical marker activities of the native human P450 2E1: the hydroxylation of p-nitrophenol (KM=1.84+/-0.09 mM and kcat of 2.98+/-0.04 nmol of p-nitrocatechol formed per minute per nanomole of P450) and chlorzoxazone (KM=0.65+/-0.08 mM and kcat of 0.95+/-0.10 nmol of 6-hydroxychlorzoxazone formed per minute per nanomole of P450). A 3D model of human P450 2E1 was generated to rationalise the functional data and to allow an analysis of the surface potentials. The distribution of charges on the model of P450 2E1 compared with that of the FMN domain of BMR provides the ground for the understanding of the interaction between the fused domains. The results point the way to successfully engineer a variety of catalytically self-sufficient human P450 enzymes for drug metabolism studies in solution.

  10. Microbial expression of alkaloid biosynthetic enzymes for characterization of their properties.

    PubMed

    Minami, Hiromichi; Ikezawa, Nobuhiro; Sato, Fumihiko

    2010-01-01

    A wide variety of secondary metabolites are produced in higher plants. These metabolites are synthesized in specific organs/cells at certain developmental stages and/or under specific environmental conditions. Since these biosynthetic activities are rather restricted and difficult to detect, the biochemical characterization of biosynthetic enzymes involved in secondary metabolism has been limited compared to those involved in primary metabolism. Recently, however, progress in tissue culture and molecular biology has made it easier to study biosynthetic enzymes. Here we describe protocols for expressing some biosynthetic enzymes in Escherichia coli expression systems, since this system is both efficient and cost-effective. First, we describe a standard system for expressing biosynthetic enzymes as a soluble protein under the T7 promoter of the pET expression system in E. coli. In addition, the successful expression of cytochrome P450 in E. coli in an active soluble form with N-terminal modification is discussed, since P450 is the critical enzyme in secondary metabolite biosynthesis.

  11. Pyranoflavones: a group of small-molecule probes for exploring the active site cavities of cytochrome P450 enzymes 1A1, 1A2, and 1B1.

    PubMed

    Liu, Jiawang; Taylor, Shannon F; Dupart, Patrick S; Arnold, Corey L; Sridhar, Jayalakshmi; Jiang, Quan; Wang, Yuji; Skripnikova, Elena V; Zhao, Ming; Foroozesh, Maryam

    2013-05-23

    Selective inhibition of P450 enzymes is the key to block the conversion of environmental procarcinogens to their carcinogenic metabolites in both animals and humans. To discover highly potent and selective inhibitors of P450s 1A1, 1A2, and 1B1, as well as to investigate active site cavities of these enzymes, 14 novel flavone derivatives were prepared as chemical probes. Fluorimetric enzyme inhibition assays were used to determine the inhibitory activities of these probes toward P450s 1A1, 1A2, 1B1, 2A6, and 2B1. A highly selective P450 1B1 inhibitor 5-hydroxy-4'-propargyloxyflavone (5H4'FPE) was discovered. Some tested compounds also showed selectivity between P450s 1A1 and 1A2. α-Naphthoflavone-like and 5-hydroxyflavone derivatives preferentially inhibited P450 1A2, while β-naphthoflavone-like flavone derivatives showed selective inhibition of P450 1A1. On the basis of structural analysis, the active site cavity models of P450 enzymes 1A1 and 1A2 were generated, demonstrating a planar long strip cavity and a planar triangular cavity, respectively.

  12. Cytochrome P450 monooxygenases: perspectives for synthetic application.

    PubMed

    Urlacher, Vlada B; Eiben, Sabine

    2006-07-01

    Cytochrome P450 monooxygenases are versatile biocatalysts that introduce oxygen into a vast range of molecules. These enzymes catalyze diverse reactions in a regio- and stereoselective manner, and their properties have been used for drug development, bioremediation and the synthesis of fine chemicals and other useful compounds. However, the potential of P450 monooxygenases has not been fully exploited; there are some drawbacks limiting the broader implementation of these catalysts for commercial needs. Protein engineering has produced P450 enzymes with widely altered substrate specificities, substantially increased activity and higher stability. Furthermore, electrochemical and enzymatic approaches for the replacement or regeneration of NAD(P)H have been developed, enabling the more cost-effective use of P450 enzymes. In this review, we focus on the aspects relevant to the synthetic applications of P450 enzymes and their optimization for commercial needs.

  13. Key Mutations Alter the Cytochrome P450 BM3 Conformational Landscape and Remove Inherent Substrate Bias*

    PubMed Central

    Butler, Christopher F.; Peet, Caroline; Mason, Amy E.; Voice, Michael W.; Leys, David; Munro, Andrew W.

    2013-01-01

    Cytochrome P450 monooxygenases (P450s) have enormous potential in the production of oxychemicals, due to their unparalleled regio- and stereoselectivity. The Bacillus megaterium P450 BM3 enzyme is a key model system, with several mutants (many distant from the active site) reported to alter substrate selectivity. It has the highest reported monooxygenase activity of the P450 enzymes, and this catalytic efficiency has inspired protein engineering to enable its exploitation for biotechnologically relevant oxidations with structurally diverse substrates. However, a structural rationale is lacking to explain how these mutations have such effects in the absence of direct change to the active site architecture. Here, we provide the first crystal structures of BM3 mutants in complex with a human drug substrate, the proton pump inhibitor omeprazole. Supported by solution data, these structures reveal how mutation alters the conformational landscape and decreases the free energy barrier for transition to the substrate-bound state. Our data point to the importance of such “gatekeeper” mutations in enabling major changes in substrate recognition. We further demonstrate that these mutants catalyze the same 5-hydroxylation reaction as performed by human CYP2C19, the major human omeprazole-metabolizing P450 enzyme. PMID:23828198

  14. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions

    PubMed Central

    Ismail, Hanafy M.; O’Neill, Paul M.; Hong, David W.; Finn, Robert D.; Henderson, Colin J.; Wright, Aaron T.; Cravatt, Benjamin F.; Hemingway, Janet; Paine, Mark J. I.

    2013-01-01

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or “pyrethrome.” Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450–insecticide interactions and aiding the development of unique tools for disease control. PMID:24248381

  15. Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by umu gene response in Salmonella typhimurium TA 1535/pSK1002.

    PubMed

    Shimada, T; Iwasaki, M; Martin, M V; Guengerich, F P

    1989-06-15

    A total of 57 procarcinogens was examined for induction of umu gene response in the chimeric plasmid pSK1002, carried in Salmonella typhimurium TA 1535, after incubation with a series of human liver microsomal preparations which had been selected on the basis of characteristic levels of individual cytochrome P-450 (P-450) enzymes. The 18 most active compounds were selected and further analyzed using the umu gene response and correlative studies with a larger number of microsomal preparations, enzyme reconstitution studies involving purified enzymes, immunochemical inhibition, and patterns of stimulation and inhibition of catalytic activity by 7,8-benzoflavone. The results collectively indicate that 16 of these 18 most potent genotoxins examined are activated primarily either by P-450NF (the nifedipine oxidase) or P-450PA (the phenacetin O-deethylase). P-450NF appears to be the major enzyme involved in the bioactivation of aflatoxin B1, aflatoxin G1, sterigmatocystin, trans-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, 6-aminochrysene, and tris-(2,3-dibromopropyl)phosphate in human liver. P-450PA appears to be the major enzyme involved in the bioactivation of 2-amino-3-methylimidazo[4,5-f]quinoline, 2-amino-3,5-dimethylimidazo[4, 5-f]quinoline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, 2-aminoanthracene, 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole, 2-aminofluorene, 2-acetylaminofluorene, 4-aminobiphenyl, 3-amino-1-methyl-5H-pyrido[4,3-b] indole, and 2-aminodipyrido[1,2-a:3',2'-d]imidazole. More than one enzyme appears to contribute significantly to the bioactivation of the other two compounds examined, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b] indole and 6-nitrochrysene. The literature suggests that the two human liver P-450s involved in activation of these 16 procarcinogens are highly inducible by barbiturates, macrolide antibodies, and certain steroids (P-450NF) and by smoking and ingestion of charcoal-containing food (P-450PA); noninvasive assays are available to monitor the function of both P-450NF and P-450PA.

  16. Survey of Human Oxidoreductases and Cytochrome P450 Enzymes Involved in the Metabolism of Xenobiotic and Natural Chemicals

    PubMed Central

    2015-01-01

    Analyzing the literature resources used in our previous reports, we calculated the fractions of the oxidoreductase enzymes FMO (microsomal flavin-containing monooxygenase), AKR (aldo-keto reductase), MAO (monoamine oxidase), and cytochrome P450 participating in metabolic reactions. The calculations show that the fractions of P450s involved in the metabolism of all chemicals (general chemicals, natural, and physiological compounds, and drugs) are rather consistent in the findings that >90% of enzymatic reactions are catalyzed by P450s. Regarding drug metabolism, three-fourths of the human P450 reactions can be accounted for by a set of five P450s: 1A2, 2C9, 2C19, 2D6, and 3A4, and the largest fraction of the P450 reactions is catalyzed by P450 3A enzymes. P450 3A4 participation in metabolic reactions of drugs varied from 13% for general chemicals to 27% for drugs. PMID:25485457

  17. P450 oxidoreductase deficiency: a disorder of steroidogenesis with multiple clinical manifestations.

    PubMed

    Miller, Walter L

    2012-10-23

    Cytochrome P450 enzymes catalyze the biosynthesis of steroid hormones and metabolize drugs. There are seven human type I P450 enzymes in mitochondria and 50 type II enzymes in endoplasmic reticulum. Type II enzymes, including both drug-metabolizing and some steroidogenic enzymes, require electron donation from a two-flavin protein, P450 oxidoreductase (POR). Although knockout of the POR gene causes embryonic lethality in mice, we discovered human POR deficiency as a disorder of steroidogenesis associated with the Antley-Bixler skeletal malformation syndrome and found mild POR mutations in phenotypically normal adults with infertility. Assay results of mutant forms of POR using the traditional but nonphysiologic assay (reduction of cytochrome c) did not correlate with patient phenotypes; assays based on the 17,20 lyase activity of P450c17 (CYP17) correlated with clinical phenotypes. The POR sequence in 842 normal individuals revealed many polymorphisms; amino acid sequence variant A503V is encoded by ~28% of human alleles. POR A503V has about 60% of wild-type activity in assays with CYP17, CYP2D6, and CYP3A4, but nearly wild-type activity with P450c21, CYP1A2, and CYP2C19. Activity of a particular POR variant with one P450 enzyme will not predict its activity with another P450 enzyme: Each POR-P450 combination must be studied individually. Human POR transcription, initiated from an untranslated exon, is regulated by Smad3/4, thyroid receptors, and the transcription factor AP-2. A promoter polymorphism reduces transcription to 60% in liver cells and to 35% in adrenal cells. POR deficiency is a newly described disorder of steroidogenesis, and POR variants may account for some genetic variation in drug metabolism.

  18. Effects of frying oil and Houttuynia cordata thunb on xenobiotic-metabolizing enzyme system of rodents

    PubMed Central

    Chen, Ya-Yen; Chen, Chiao-Ming; Chao, Pi-Yu; Chang, Tsan-Ju; Liu, Jen-Fang

    2005-01-01

    AIM: To evaluate the effects of frying oil and Houttuynia cordata Thunb (H. cordata), a vegetable traditionally consumed in Taiwan, on the xenobiotic-metabolizing enzyme system of rodents. METHODS: Forty-eight Sprague-Dawley rats were fed with a diet containing 0%, 2% or 5% H. cordata powder and 15% fresh soybean oil or 24-h oxidized frying oil (OFO) for 28 d respectively. The level of microsomal protein, total cytochrome 450 content (CYP450) and enzyme activities including NADPH reductase, ethoxyresorufin O-deethylase (EROD), pentoxyresorufin O-dealkylase (PROD), aniline hydroxylase (ANH), aminopyrine demethylase (AMD), and quinone reductase (QR) were determined. QR represented phase II enzymes, the rest of the enzymes tested represented phase I enzymes. RESULTS: The oxidized frying oil feeding produced a significant increase in phase I and II enzyme systems, including the content of CYP450 and microsomal protein, and the activities of NADPH reductase, EROD, PROD, ANH, AMD and QR in rats (P<0.05). In addition, the activities of EROD, ANH and AMD decreased and QR increased after feeding with H. cordata in OFO-fed group (P<0.05). The feeding with 2% H. cordata diet showed the most significant effect. CONCLUSION: The OFO diet induces phases I and II enzyme activity, and the 2% H. cordata diet resulted in a better regulation of the xenobiotic-metabolizing enzyme system. PMID:15637750

  19. Insect P450 inhibitors and insecticides: challenges and opportunities.

    PubMed

    Feyereisen, René

    2015-06-01

    P450 enzymes are encoded by a large number of genes in insects, often over a hundred. They play important roles in insecticide metabolism and resistance, and growing numbers of P450 enzymes are now known to catalyse important physiological reactions, such as hormone metabolism or cuticular hydrocarbon synthesis. Ways to inhibit P450 enzymes specifically or less specifically are well understood, as P450 inhibitors are found as drugs, as fungicides, as plant growth regulators and as insecticide synergists. Yet there are no P450 inhibitors as insecticides on the market. As new modes of action are constantly needed to support insecticide resistance management, P450 inhibitors should be considered because of their high potential for insect selectivity, their well-known mechanisms of action and the increasing ease of rational design and testing. © 2014 Society of Chemical Industry.

  20. Optimization of the Bacterial Cytochrome P450 BM3 System for the Production of Human Drug Metabolites

    PubMed Central

    Di Nardo, Giovanna; Gilardi, Gianfranco

    2012-01-01

    Drug metabolism in human liver is a process involving many different enzymes. Among them, a number of cytochromes P450 isoforms catalyze the oxidation of most of the drugs commercially available. Each P450 isoform acts on more than one drug, and one drug may be oxidized by more than one enzyme. As a result, multiple products may be obtained from the same drug, and as the metabolites can be biologically active and may cause adverse drug reactions (ADRs), the metabolic profile of a new drug has to be known before this can be commercialized. Therefore, the metabolites of a certain drug must be identified, synthesized and tested for toxicity. Their synthesis must be in sufficient quantities to be used for metabolic tests. This review focuses on the progresses done in the field of the optimization of a bacterial self-sufficient and efficient cytochrome P450, P450 BM3 from Bacillus megaterium, used for the production of metabolites of human enzymes. The progress made in the improvement of its catalytic performance towards drugs, the substitution of the costly NADPH cofactor and its immobilization and scale-up of the process for industrial application are reported. PMID:23443101

  1. Cytochrome P450-mediated metabolism of vitamin D

    PubMed Central

    Jones, Glenville; Prosser, David E.; Kaufmann, Martin

    2014-01-01

    The vitamin D signal transduction system involves a series of cytochrome P450-containing sterol hydroxylases to generate and degrade the active hormone, 1α,25-dihydroxyvitamin D3, which serves as a ligand for the vitamin D receptor-mediated transcriptional gene expression described in companion articles in this review series. This review updates our current knowledge of the specific anabolic cytochrome P450s involved in 25- and 1α-hydroxylation, as well as the catabolic cytochrome P450 involved in 24- and 23-hydroxylation steps, which are believed to initiate inactivation of the vitamin D molecule. We focus on the biochemical properties of these enzymes; key residues in their active sites derived from crystal structures and mutagenesis studies; the physiological roles of these enzymes as determined by animal knockout studies and human genetic diseases; and the regulation of these different cytochrome P450s by extracellular ions and peptide modulators. We highlight the importance of these cytochrome P450s in the pathogenesis of kidney disease, metabolic bone disease, and hyperproliferative diseases, such as psoriasis and cancer; as well as explore potential future developments in the field. PMID:23564710

  2. Cloning, functional characterization, and expression profiles of NADPH-cytochrome P450 reductase gene from the Asiatic rice striped stem borer, Chilo suppressalis (Lepidoptera: Pyralidae).

    PubMed

    Liu, Su; Liang, Qing-Mei; Huang, Yuan-Jie; Yuan, Xin; Zhou, Wen-Wu; Qiao, Fei; Cheng, Jiaan; Gurr, Geoff M; Zhu, Zeng-Rong

    2013-01-01

    NADPH-cytochrome P450 reductase (CPR) is one of the most important components of the cytochrome P450 enzyme system. It catalyzes electron transfer from NADPH to all known P450s, thus plays central roles not only in the metabolism of exogenous xenobiotics but also in the regulation of endogenous hormones in insects. In this study, a full-length cDNA encoding of a CPR (named CsCPR) was isolated from the Asiatic rice striped stem borer, Chilo suppressalis, by using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) methods. The cDNA contains a 2061 bp open reading frame, which encodes an enzyme of 686 amino acid residues, with a calculated molecular mass of 77.6 kDa. The deduced peptide has hallmarks of typical CPR, including an N-terminal membrane anchor and the FMN, FAD and NADPH binding domains. The N-terminal-truncated protein fused with a 6 × His·tag was heterologously expressed in Escherichia coli Rosetta (DE3) cells and purified, specific activity and the Km values of the recombinant enzyme were determined. Tissue- and developmental stage-dependent expression of CsCPR mRNA was investigated by real-time quantitative PCR. The CsCPR mRNA was noticeably expressed in the digestive, metabolic, and olfactory organs of the larvae and adults of C. suppressalis. Our initial results would provide valuable information for further study on the interactions between CPR and cytochrome P450 enzyme systems. © 2013.

  3. Frequency of CYP450 enzyme gene polymorphisms in the Greek population: review of the literature, original findings and clinical significance.

    PubMed

    Ragia, Georgia; Giannakopoulou, Efstathia; Karaglani, Makrina; Karantza, Ioanna-Maria; Tavridou, Anna; Manolopoulos, Vangelis G

    2014-01-01

    The cytochrome P450 (CYP450) enzyme family is involved in the oxidative metabolism of many therapeutic drugs and various endogenous substrates. These enzymes are highly polymorphic. Prevalence of CYP450 enzyme gene polymorphisms vary among different populations and substantial inter- and intra-ethnic variability in frequency of CYP450 enzyme gene polymorphisms has been reported. This paper provides an overview and investigation of CYP450 genotypic and phenotypic reports published in the Greek population.

  4. Cytochrome P450 (CYP450) Tests

    MedlinePlus

    ... P450 (CYP450) tests Overview Your doctor may use cytochrome P450 (CYP450) tests to help determine how your body processes (metabolizes) a drug. The human body contains P450 enzymes to process medications. Because of inherited (genetic) traits ...

  5. Pyrethroid Activity-Based Probes for Profiling Cytochrome P450 Activities Associated with Insecticide Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Hanafy M.; O'Neill, Paul M.; Hong, David

    2014-01-18

    Pyrethroid insecticides are used to control a diverse spectrum of diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid metabolizing and non-metabolizing mosquito P450s, as well as rodent microsomes to measure labeling specificity, plus CPR and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using a deltamethrin mimetic PyABP we were able to profile active enzymes in rat liver microsomes and identify pyrethroid metabolizing enzymes in the targetmore » tissue. The most reactive enzyme was a P450, CYP2C11, which is known to metabolize deltamethrin. Furthermore, several other pyrethroid metabolizers were identified (CYPs 2C6, 3A4, 2C13 and 2D1) along with related detoxification enzymes, notably UDP-g’s 2B1 - 5, suggesting a network of associated pyrethroid metabolizing enzymes, or ‘pyrethrome’. Considering the central role that P450s play in metabolizing insecticides, we anticipate that PyABPs will aid the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of new tools for disease control.« less

  6. CYP2J2 and CYP2C19 Are the Major Enzymes Responsible for Metabolism of Albendazole and Fenbendazole in Human Liver Microsomes and Recombinant P450 Assay Systems

    PubMed Central

    Wu, Zhexue; Lee, Doohyun; Joo, Jeongmin; Shin, Jung-Hoon; Kang, Wonku; Oh, Sangtaek; Lee, Do Yup; Lee, Su-Jun; Yea, Sung Su; Lee, Hye Suk

    2013-01-01

    Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo. PMID:23959307

  7. CYP2J2 and CYP2C19 are the major enzymes responsible for metabolism of albendazole and fenbendazole in human liver microsomes and recombinant P450 assay systems.

    PubMed

    Wu, Zhexue; Lee, Doohyun; Joo, Jeongmin; Shin, Jung-Hoon; Kang, Wonku; Oh, Sangtaek; Lee, Do Yup; Lee, Su-Jun; Yea, Sung Su; Lee, Hye Suk; Lee, Taeho; Liu, Kwang-Hyeon

    2013-11-01

    Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo.

  8. Purification, Reconstitution, and Inhibition of Cytochrome P-450 Sterol Δ22-Desaturase from the Pathogenic Fungus Candida glabrata

    PubMed Central

    Lamb, David C.; Maspahy, Segula; Kelly, Diane E.; Manning, Nigel J.; Geber, Antonia; Bennett, John E.; Kelly, Steven L.

    1999-01-01

    Sterol Δ22-desaturase has been purified from a strain of Candida glabrata with a disruption in the gene encoding sterol 14α-demethylase (cytochrome P-45051; CYP51). The purified cytochrome P-450 exhibited sterol Δ22-desaturase activity in a reconstituted system with NADPH–cytochrome P-450 reductase in dilaurylphosphatidylcholine, with the enzyme kinetic studies revealing a Km for ergosta-5,7-dienol of 12.5 μM and a Vmax of 0.59 nmol of this substrate metabolized/min/nmol of P-450. This enzyme is encoded by CYP61 (ERG5) in Saccharomyces cerevisiae, and homologues have been shown in the Candida albicans and Schizosaccharomyces pombe genome projects. Ketoconazole, itraconazole, and fluconazole formed low-spin complexes with the ferric cytochrome and exhibited type II spectra, which are indicative of an interaction between the azole moiety and the cytochrome heme. The azole antifungal compounds inhibited reconstituted sterol Δ22-desaturase activity by binding to the cytochrome with a one-to-one stoichiometry, with total inhibition of enzyme activity occurring when equimolar amounts of azole and cytochrome P-450 were added. These results reveal the potential for sterol Δ22-desaturase to be an antifungal target and to contribute to the binding of drugs within the fungal cell. PMID:10390230

  9. Gene engineering in yeast for biodegradation: Immunological cross-reactivity among cytochrome p-450 system proteins of saccharomyces cerevisiae and candida tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loper, J.C.; Chen, C.; Dey, C.R.

    1993-01-01

    Yeasts are eukaryotic microorganisms whose cytochrome P-450 monooxygenase systems may be amenable to genetic engineering for the hydroxylation and detoxication of polychlorinated aromatic hydrocarbons. The molecular genetic properties of strains of bakers yeast, Saccharomyces cerevisiae, and an n-alkane utilizing yeast, Candida tropicalis ATCC750 are examined. Standard methods were used to purify cytochrome P-450 and NADPH-cytochrome c (P-450) reductase proteins from cells cultured by semi-anaerobic glucose fermentation (S. cerevisiae, C. tropicalis) and by growth on tetradecane (C. tropicalis). Polyvalent antisera prepared in rabbits to some of these proteins were used in tests of immunological relatedness among the purified proteins using sodiummore » dodecyl sulfate-polyacrylamide gel electrophoresis and nitrocellulose filter immunoblots. The results provide evidence for gene relationships which should prove useful in gene isolation and subsequent engineering of P-450 enzyme systems in yeast.« less

  10. Comparison of intrinsic dynamics of cytochrome p450 proteins using normal mode analysis

    PubMed Central

    Dorner, Mariah E; McMunn, Ryan D; Bartholow, Thomas G; Calhoon, Brecken E; Conlon, Michelle R; Dulli, Jessica M; Fehling, Samuel C; Fisher, Cody R; Hodgson, Shane W; Keenan, Shawn W; Kruger, Alyssa N; Mabin, Justin W; Mazula, Daniel L; Monte, Christopher A; Olthafer, Augustus; Sexton, Ashley E; Soderholm, Beatrice R; Strom, Alexander M; Hati, Sanchita

    2015-01-01

    Cytochrome P450 enzymes are hemeproteins that catalyze the monooxygenation of a wide-range of structurally diverse substrates of endogenous and exogenous origin. These heme monooxygenases receive electrons from NADH/NADPH via electron transfer proteins. The cytochrome P450 enzymes, which constitute a diverse superfamily of more than 8,700 proteins, share a common tertiary fold but < 25% sequence identity. Based on their electron transfer protein partner, cytochrome P450 proteins are classified into six broad classes. Traditional methods of pro are based on the canonical paradigm that attributes proteins' function to their three-dimensional structure, which is determined by their primary structure that is the amino acid sequence. It is increasingly recognized that protein dynamics play an important role in molecular recognition and catalytic activity. As the mobility of a protein is an intrinsic property that is encrypted in its primary structure, we examined if different classes of cytochrome P450 enzymes display any unique patterns of intrinsic mobility. Normal mode analysis was performed to characterize the intrinsic dynamics of five classes of cytochrome P450 proteins. The present study revealed that cytochrome P450 enzymes share a strong dynamic similarity (root mean squared inner product > 55% and Bhattacharyya coefficient > 80%), despite the low sequence identity (< 25%) and sequence similarity (< 50%) across the cytochrome P450 superfamily. Noticeable differences in Cα atom fluctuations of structural elements responsible for substrate binding were noticed. These differences in residue fluctuations might be crucial for substrate selectivity in these enzymes. PMID:26130403

  11. Inhibitors of steroidal cytochrome p450 enzymes as targets for drug development.

    PubMed

    Baston, Eckhard; Leroux, Frédéric R

    2007-01-01

    Cytochrome P450's are enzymes which catalyze a large number of biological reactions, for example hydroxylation, N-, O-, S- dealkylation, epoxidation or desamination. Their substrates include fatty acids, steroids or prostaglandins. In addition, a high number of various xenobiotics are metabolized by these enzymes. The enzyme 17alpha-hydroxylase-C17,20-lyase (P450(17), CYP 17, androgen synthase), a cytochrome P450 monooxygenase, is the key enzyme for androgen biosynthesis. It catalyzes the last step of the androgen biosynthesis in the testes and adrenal glands and produces androstenedione and dehydroepiandrosterone from progesterone and pregnenolone. The microsomal enzyme aromatase (CYP19) transforms these androgens to estrone and estradiol. Estrogens stimulate tumor growth in hormone dependent breast cancer. In addition, about 80 percent of prostate cancers are androgen dependent. Selective inhibitors of these enzymes are thus important alternatives to treatment options like antiandrogens or antiestrogens. The present article deals with recent patents (focus on publications from 2000 - 2006) concerning P450 inhibitor design where steroidal substrates are involved. In this context a special focus is provided for CYP17 and CYP19. Mechanisms of action will also be discussed. Inhibitors of CYP11B2 (aldosterone synthase) will also be dealt with.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Stephen G.; Hoskins, Nicola; Xu Feng

    Four (CYP195A2, CYP199A2, CYP203A1, and CYP153A5) of the seven P450 enzymes, and palustrisredoxin A, a ferredoxin associated with CYP199A2, from the metabolically diverse bacterium Rhodopseudomonas palustris have been expressed and purified. A range of substituted benzenes, phenols, benzaldehydes, and benzoic acids was shown to bind to the four P450 enzymes. Monooxygenase activity of CYP199A2 was reconstituted with palustrisredoxin A and putidaredoxin reductase of the P450cam system from Pseudomonas putida. We found that 4-ethylbenzoate and 4-methoxybenzoate were oxidized to single products, and 4-methoxybenzoate was demethylated to form 4-hydroxybenzoate. Crystals of substrate-free CYP199A2 which diffracted to {approx}2.0 A have been obtained.

  13. Expression of paclitaxel-inactivating CYP3A activity in human colorectal cancer: implications for drug therapy

    PubMed Central

    Martínez, C; García-Martín, E; Pizarro, R M; García-Gamito, F J; Agúndez, J A G

    2002-01-01

    Cytochrome P450 3A is a drug-metabolising enzyme activity due to CYP3A4 and CYP3A5 gene products, that is involved in the inactivation of anticancer drugs. This study analyses the potential of cytochrome P450 3A enzyme in human colorectal cancer to impact anticancer therapy with drugs that are cytochrome P450 3A substrates. Enzyme activity, variability and properties, and the ability to inactivate paclitaxel (taxol) were analysed in human colorectal cancer and healthy colorectal epithelium. Cytochrome P450 3A enzyme activity is present in healthy and tumoral samples, with a nearly 10-fold interindividual variability. Nifedipine oxidation activity±s.d. for colorectal cancer microsomes was 67.8±36.6 pmol min−1 mg−1. The Km of the tumoral enzyme (42±8 μM) is similar to that in healthy colorectal epithelium (36±8 μM) and the human liver enzyme. Colorectal cancer microsomes metabolised the anticancer drug paclitaxel with a mean activity was 3.1±1.2 pmol min−1 mg−1. The main metabolic pathway is carried out by cytochrome P450 3A, and it is inhibited by the cytochrome P450 3A-specific inhibitor ketoconazole with a KI value of 31 nM. This study demonstrates the occurrence of cytochrome P450 3A-dependent metabolism in colorectal cancer tissue. The metabolic activity confers to cancer cells the ability to inactivate cytochrome P450 3A substrates and may modulate tumour sensitivity to anticancer drugs. British Journal of Cancer (2002) 87, 681–686. doi:10.1038/sj.bjc.6600494 www.bjcancer.com © 2002 Cancer Research UK PMID:12237780

  14. Role of cytochrome P450 IA2 in acetanilide 4-hydroxylation as determined with cDNA expression and monoclonal antibodies.

    PubMed

    Liu, G; Gelboin, H V; Myers, M J

    1991-02-01

    The role of P450 IA2 in the hydroxylation of acetanilide was examined using an inhibitory monoclonal antibody (MAb) 1-7-1 and vaccinia cDNA expression producing murine P450 IA1 (mIA1), murine P450 IA2 (mIA2), or human P450 IA2 (hIA2). Acetanilide hydroxylase (AcOH) activity was measured using an HPLC method with more than 500-fold greater sensitivity than previously described procedures. This method, which does not require the use of radioactive acetanilide, was achieved by optimizing both the gradient system and the amount of enzyme needed to achieve detection by uv light. MAb 1-7-1 inhibits up to 80% of the AcOH activity in both rat liver microsomes and cDNA expressed mouse and human P450 IA2. MAb 1-7-1, which recognizes both P450 IA1 and P450 IA2, completely inhibits the aryl hydrocarbon hydroxylase (AHH) activity of cDNA expressed in IA1. The inhibition of only 80% of the AHH activity present in MC liver microsomes by MAb 1-7-1 suggests that additional P450 forms are contributing to the overall AHH activity present in methylcholanthrene (MC)-liver microsomes as MAb 1-7-1 almost completely inhibits the AHH activity of expressed mIA1. Maximal inhibition of IA2 by 1-7-1 results in an 80% decrease in acetanilide hydroxylase activity in both liver microsomes and expressed mouse and human IA2. The capacity of MAb 1-7-1 to produce identical levels of inhibition of acetanilide hydroxylase activity in rat MC microsomes (80%) and in expressed mouse (81%) and human P450 IA2 (80%) strongly suggests that P450 IA2 is the major and perhaps the only enzyme responsible for the metabolism of acetanilide. These results demonstrate the complementary utility of monoclonal antibodies and cDNA expression for defining the contribution of specific P450 enzymes to the metabolism of a given substrate. This complementary approach allows for a more precise determination of the inhibitory capacity of MAb with respect to the metabolic capacity of the target P450.

  15. Monkey liver cytochrome P450 2C9 is involved in caffeine 7-N-demethylation to form theophylline.

    PubMed

    Utoh, Masahiro; Murayama, Norie; Uno, Yasuhiro; Onose, Yui; Hosaka, Shinya; Fujino, Hideki; Shimizu, Makiko; Iwasaki, Kazuhide; Yamazaki, Hiroshi

    2013-12-01

    Caffeine (1,3,7-trimethylxanthine) is a phenotyping substrate for human cytochrome P450 1A2. 3-N-Demethylation of caffeine is the main human metabolic pathway, whereas monkeys extensively mediate the 7-N-demethylation of caffeine to form pharmacological active theophylline. Roles of monkey P450 enzymes in theophylline formation from caffeine were investigated using individual monkey liver microsomes and 14 recombinantly expressed monkey P450 enzymes, and the results were compared with those for human P450 enzymes. Caffeine 7-N-demethylation activity in microsomes from 20 monkey livers was not strongly inhibited by α-naphthoflavone, quinidine or ketoconazole, and was roughly correlated with diclofenac 4'-hydroxylation activities. Monkey P450 2C9 had the highest activity for caffeine 7-N-demethylation. Kinetic analysis revealed that monkey P450 2C9 had a high Vmax/Km value for caffeine 7-N-demethylation, comparable to low Km value for monkey liver microsomes. Caffeine could dock favorably with monkey P450 2C9 modeled for 7-N-demethylation and with human P450 1A2 for 3-N-demethylation. The primary metabolite theophylline was oxidized to 8-hydroxytheophylline in similar ways by liver microsomes and by recombinant P450s in both humans and monkeys. These results collectively suggest a high activity for monkey liver P450 2C9 toward caffeine 7-N-demethylation, whereas, in humans, P450 1A2-mediated caffeine 3-N-demethylation is dominant.

  16. Effect of coexposure to asbestos and kerosene soot on pulmonary drug-metabolizing enzyme system.

    PubMed Central

    Arif, J M; Khan, S G; Mahmood, N; Aslam, M; Rahman, Q

    1994-01-01

    This article reports the effect of coexposure to Indian chrysotile asbestos (5 mg/rat) and kerosene soot (5 mg/rat) on the pulmonary phase I and phase II drug-metabolizing enzymes 1, 4, 8, 16, 30, 90, and 150 days after a single intratracheal inoculation. Exposure to soot resulted in a significant induction of the pulmonary microsomal cytochrome P450 and the activity of dependent monooxygenase, benzo(a)pyrene (B[a]P) hydroxylase, and epoxide hydrase at all time intervals. On the other hand, the cytosolic glutathione S-transferase (GST) activity was induced at days 1, 4, 8, 16, and 30 after exposure, followed by inhibition in the enzyme activity. In contrast, chrysotile exposure depleted cytochrome P450, B[a]P hydroxylase, epoxide hydrase, and GST at initial stages, while all these parameters except GST were induced at later stages. However, coexposure to chrysotile and soot led to a significant inhibition in the cytochrome P450 levels, activities of B[a]P hydroxylase, epoxide hydrase, and GST at initial stages of exposure. At advanced stages, however, an additional increase in cytochrome P450, B[a]P hydroxylase, and epoxide hydrase but a decrease in GST was observed. These results clearly show that the intratracheal coexposure to high levels of asbestos and kerosene soot alters the metabolic activity of the lung, which is turn may retain toxins in the system for a longer period, resulting in adverse pathological disorders. PMID:7882926

  17. The crystal structure of P450-TT heme-domain provides the first structural insights into the versatile class VII P450s.

    PubMed

    Tavanti, Michele; Porter, Joanne L; Levy, Colin W; Gómez Castellanos, J Rubén; Flitsch, Sabine L; Turner, Nicholas J

    2018-07-02

    The first crystal structure of a class VII P450, CYP116B46 from Tepidiphilus thermophilus, has been solved at 1.9 Å resolution. The structure reveals overall conservation of the P450-fold and a water conduit around the I-helix. Active site residues have been identified and sequence comparisons have been made with other class VII enzymes. A structure similarity search demonstrated that the P450-TT structure is similar to enzymes capable of oxy-functionalization of fatty acids, terpenes, macrolides, steroids and statins. The insight gained from solving this structure will provide a guideline for future engineering and modelling studies on this catalytically promiscuous class of enzymes. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. From the Cover: AstrocytesAre Protective Against Chlorpyrifos Developmental Neurotoxicity in Human Pluripotent Stem Cell-Derived Astrocyte-Neuron Cocultures.

    PubMed

    Wu, Xian; Yang, Xiangkun; Majumder, Anirban; Swetenburg, Raymond; Goodfellow, Forrest T; Bartlett, Michael G; Stice, Steven L

    2017-06-01

    Human neural progenitor cells are capable of independent, directed differentiation into astrocytes, oligodendrocytes and neurons and thus offer a potential cell source for developmental neurotoxicity (DNT) systems. Human neural progenitor-derived astrocyte-neuron cocultured at defined ratios mimic cellular heterogeneity and interaction in the central nervous system. Cytochrome P450 enzymes are expressed at a relatively high level in astrocytes and may play a critical role in the biotransformation of endogenous or exogenous compounds, including chlorpyrifos, an organophosphate insecticide that affects the central nervous system. P450 enzymes metabolize chlorpyrifos to chlorpyrifos-oxon, which is then metabolized primarily to 3, 5, 6-trichloropyridinol in addition to diethylphosphate and diethylthiophosphate. These end metabolites are less neurotoxic than chlorpyrifos and chlorpyrifos-oxon. Our objective was to identify the interactive role of astrocytes and neurons in chlorpyrifos-induced human DNT. In neuron-only cultures, chlorpyrifos inhibited neurite length, neurite number and branch points per neuron in a dose-dependent manner during a 48 h exposure, starting at 10 μM. However, in astrocyte-neuron cocultures, astrocytes protected neurons from the effects of chlorpyrifos at higher concentrations, up to and including 30 μM chlorpyrifos and endogenous astrocyte P450 enzymes effectively metabolized chlorpyrifos. The P450 inhibitor SKF525A partly negated the protective effect of astrocytes, allowing reduction in branch points with chlorpyrifos (10 μM). Thus, the scalable and defined astrocyte-neuron cocultures model that we established here has potentially identified a role for P450 enzymes in astrocytic neuroprotection against chlorpyrifos and provides a novel model for addressing DNT in a more accurate multicellular environment. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Molecular modeling of cytochrome P450 3A4

    NASA Astrophysics Data System (ADS)

    Szklarz, Grazyna D.; Halpert, James R.

    1997-05-01

    The three-dimensional structure of human cytochrome P450 3A4 was modeled based on crystallographic coordinates of four bacterial P450s: P450 BM-3, P450cam, P450terp, and P450eryF. The P450 3A4 sequence was aligned to those of the known proteins using a structure-based alignment of P450 BM-3, P450cam, P450terp, and P450eryF. The coordinates of the model were then calculated using a consensus strategy, and the final structure was optimized in the presence of water. The P450 3A4 model resembles P450 BM-3 the most, but the B' helix is similar to that of P450eryF, which leads to an enlarged active site when compared with P450 BM-3, P450cam, and P450terp. The 3A4 residues equivalent to known substrate contact residues of the bacterial proteins and key residues of rat P450 2B1 are located in the active site or the substrate access channel. Docking of progesterone into the P450 3A4 model demonstrated that the substrate bound in a 6β-orientation can interact with a number of active site residues, such as 114, 119, 301, 304, 305, 309, 370, 373, and 479, through hydrophobic interactions. The active site of the enzyme can also accommodate erythromycin, which, in addition to the residues listed for progesterone, also contacts residues 101, 104, 105, 214, 215, 217, 218, 374, and 478. The majority of 3A4 residues which interact with progesterone and/or erythromycin possess their equivalents in key residues of P450 2B enzymes, except for residues 297, 480 and 482, which do not contact either substrate in P450 3A4. The results from docking of progesterone and erythromycin into the enzyme model make it possible to pinpoint residues which may be important for 3A4 function and to target them for site-directed mutagenesis.

  20. Exploring the Role of CYP3A4 Mediated Drug Metabolism in the Pharmacological Modulation of Nitric Oxide Production

    PubMed Central

    Pérez-del Palacio, José; Díaz, Caridad; Vergara, Noemí; Algieri, Francesca; Rodríguez-Nogales, Alba; de Pedro, Nuria; Rodríguez-Cabezas, M. Elena; Genilloud, Olga; Gálvez, Julio; Vicente, Francisca

    2017-01-01

    Nitric-oxide synthase, the enzyme responsible for mammalian nitric oxide generation, and cytochrome P450, the major enzymes involved in drug metabolism, share striking similarities. Therefore, it makes sense that cytochrome P450 drug mediated biotransformations might play an important role in the pharmacological modulation of nitric oxide synthase. In this work, we have undertaken an integrated in vitro assessment of the hepatic metabolism and nitric oxide modulation of previously described dual inhibitors (imidazoles and macrolides) of these enzymes in order assess the implication of CYP450 activities over production of nitric oxide. In vitro systems based in human liver microsomes and activated mouse macrophages were developed for these purposes. Additionally in vitro production the hepatic metabolites of dual inhibitor, roxithromycin, was investigated achieving the identification and isolation of main hepatic biotransformation products. Our results suggested that for some macrolide compounds, the cytochrome P450 3A4 derived drug metabolites have an important effect on nitric oxide production and might critically contribute to the pharmacological immunomodulatory activity observed. PMID:28446877

  1. Binding of Diverse Environmental Chemicals with Human Cytochromes P450 2A13, 2A6, and 1B1 and Enzyme Inhibition

    PubMed Central

    Shimada, Tsutomu; Kim, Donghak; Murayama, Norie; Tanaka, Katsuhiro; Takenaka, Shigeo; Nagy, Leslie D.; Folkman, Lindsay M.; Foroozesh, Maryam K.; Komori, Masayuki; Yamazaki, Hiroshi; Guengerich, F. Peter

    2014-01-01

    A total of 68 chemicals including derivatives of naphthalene, phenanthrene, fluoranthene, pyrene, biphenyl, and flavone were examined for their abilities to interact with human P450s 2A13 and 2A6. Fifty-one of these 68 chemicals induced stronger Type I binding spectra (iron low- to high-spin state shift) with P450 2A13 than those seen with P450 2A6, i.e. the spectral binding intensities (ΔAmax/Ks ratio) determined with these chemicals were always higher for P450 2A13. In addition, benzo[c]phenanthrene, fluoranthene, 2,3-dihydroxy-2,3-dihydrofluoranthene, pyrene, 1-hydroxypyrene, 1-nitropyrene, 1-acetylpyrene, 2-acetylpyrene, 2,5,2’,5’-tetrachlorobiphenyl, 7-hydroxyflavone, chrysin, and galangin were found to induce a Type I spectral change only with P450 2A13. Coumarin 7-hydroxylation, catalyzed by P450 2A13, was strongly inhibited by 2’-methoxy-5,7-dihydroxyflavone, 2-ethynylnaphthalene, 2’-methoxyflavone, 2-naphththalene propargyl ether, acenaphthene, acenaphthylene, naphthalene, 1-acetylpyrene, flavanone, chrysin, 3-ethynylphenanthrene, flavone, and 7-hydroxyflavone; these chemicals induced Type I spectral changes with low Ks values. On the basis of the intensities of the spectral changes and inhibition of P450 2A13, we classified the 68 chemicals into eight groups based on the order of affinities for these chemicals and inhibition of P450 2A13. The metabolism of chemicals by P450 2A13 during the assays explained why some of the chemicals that bound well were poor inhibitors of P450 2A13. Finally, we compared the 68 chemicals for their abilities to induce Type I spectral changes of P450 2A13 with the Reverse Type I binding spectra observed with P450 1B1: 45 chemicals interacted with both P450s 2A13 and 1B1, indicating that the two enzymes have some similarty of structural features regarding these chemicals. Molecular docking analyses suggest similarities at the active sites of these P450 enzymes. These results indicate that P450 2A13, as well as Family 1 P450 enzymes, is able to catalyze many detoxication and activation reactions with chemicals of environmental interest. PMID:23432429

  2. Conformational change of cytochrome P450 1A2 induced by phospholipids and detergents.

    PubMed

    Yun, C H; Song, M; Kim, H

    1997-08-08

    Recently, it was reported that the activity of rabbit P450 1A2 is markedly increased at elevated salt concentration (Yun, C-H., Song, M., Ahn, T., and Kim, H. (1996) J. Biol. Chem. 271, 31312-31316). The activity increase of P450 1A2 coincides with the raised alpha-helix content and decreased beta-sheet content. The presence of phospholipid magnified this effect. Here, possible structural change of rabbit P450 1A2 accompanying the phospholipid-induced increase in its enzyme activity was investigated by circular dichroism, fluorescence spectroscopy, and absorption spectroscopy. Studies with the reconstituted system supported by cumene hydroperoxide or NADPH showed that the P450 1A2 activities were found to be dependent on the head group and hydrocarbon chain length of phospholipid. Phosphatidylcholines having short hydrocarbon chains with a carbon number of 8-12 were very efficient for reconstitution of the P450-catalyzed reactions supported by both cumene hydroperoxide and NADPH. It was found that the phospholipid increased the alpha-helix content and lowered the beta-sheet content of P450. Intrinsic fluorescence intensity is also increased in the presence of phospholipid. The low spin iron configuration of P450 1A2 shifted toward the high spin configuration by most of the phospholipids in the endoplasmic reticulum. Some synthetic phospholipids having short hydrocarbon chains with a carbon number of 10-12 caused a shift in the spin equilibrium of P450 1A2 toward low spin. The effect of detergents on the activity and conformation of P450 1A2 was also studied. It was found that the addition of detergents to P450 1A2 solution increased the enzyme activity of P450 1A2. Detergents also increased the alpha-helix content and lowered the beta-sheet content of P450 1A2. Intrinsic fluorescence emissions also increased with the presence of detergents. Octyl glucoside and deoxycholate caused a shift toward high spin. On the other hand, cholate caused a shift toward low spin. It was found that the activity increase of rabbit P450 1A2 coincides with the conformational change including raised alpha-helix content. It is proposed that the interaction with the phospholipid molecules surrounding P450 1A2 in the endoplasmic reticulum is important for a functional conformation of P450 1A2 in a monooxygenase system including NADPH-P450 reductase.

  3. Immunolocalization of steroidogenic enzymes in the vaginal mucous of Galea spixii during the estrous cycle.

    PubMed

    Dos Santos, Amilton Cesar; Conley, Alan James; de Oliveira, Moacir Franco; Oliveira, Gleidson Benevides; Viana, Diego Carvalho; Assis Neto, Antônio Chaves de

    2017-04-24

    The synthesis of sex steroids is controlled by several enzymes such as17α-hydroxylase cytochrome P450 (P450c17) catalyzing androgen synthesis and aromatase cytochrome P450 (P450arom) catalyzing estrogen synthesis, both of which must complex with the redox partner NADPH-cytochrome P450 oxidoreductase (CPR) for activity. Previous studies have identified expression of steroidogenic enzymes in vaginal tissue, suggesting local sex steroid synthesis. The current studies investigate P450c17, P450aromatase and CPR expression in vaginal mucosa of Galea spixii (Spix cavy) by immuno-histochemical and western immunoblot analyses. Stages of estrous cyclicity were monitored by vaginal exfoliative cytology. After euthanasia, vaginal tissues were retrieved, fixed and frozen at diestrus, proestrus, estrus and metestrus. The ovaries and testis were used as positive control tissues for immunohistochemistry. Data from cytological study allowed identification of different estrous cycle phases. Immunohistochemical analysis showed different sites of expression of steroidogenic enzymes along with tissue response throughout different phases of the estrous cycle. However, further studies are needed to characterize the derived hormones synthesized by, and the enzymes activities associated with, vaginal tissues. Current results not only support the expression of enzymes involved in sex steroid synthesis in the wall of the vagina, they also indicate that expression changes with the stage of the cycle, both the levels and types of cells exhibiting expression. Thus, changes in proliferation of vaginal epithelial cells and the differentiation of the mucosa may be influenced by local steroid synthesis as well as circulating androgens and estrogens.

  4. Toxicology: Bee P450s Take the Sting out of Cyanoamidine Neonicotinoids.

    PubMed

    Feyereisen, René

    2018-05-07

    The neonicotinoid insecticides have raised concerns regarding the health of bee pollinators. New research has identified a P450 enzyme that protects honey bees and bumble bees from the toxicity of two neonicotinoids, thiacloprid and acetamiprid. This P450 enzyme provides a margin of safety to bees. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Fasting-Induced Changes in Hepatic P450 Mediated Drug Metabolism Are Largely Independent of the Constitutive Androstane Receptor CAR.

    PubMed

    de Vries, E M; Lammers, L A; Achterbergh, R; Klümpen, H-J; Mathot, R A A; Boelen, A; Romijn, J A

    2016-01-01

    Hepatic drug metabolism by cytochrome P450 enzymes is altered by the nutritional status of patients. The expression of P450 enzymes is partly regulated by the constitutive androstane receptor (CAR). Fasting regulates the expression of both P450 enzymes and CAR and affects hepatic drug clearance. We hypothesized that the fasting-induced alterations in P450 mediated drug clearance are mediated by CAR. To investigate this we used a drug cocktail validated in humans consisting of five widely prescribed drugs as probes for specific P450 enzymes: caffeine (CYP1A2), metoprolol (CYP2D6), omeprazole (CYP2C19), midazolam (CYP3A4) and s-warfarin (CYP2C9). This cocktail was administered to wild type (WT, C57Bl/6) mice or mice deficient for CAR (CAR-/-) that were either fed ad libitum or fasted for 24 hours. Blood was sampled at predefined intervals and drug concentrations were measured as well as hepatic mRNA expression of homologous/orthologous P450 enzymes (Cyp1a2, Cyp2d22, Cyp3a11, Cyp2c37, Cyp2c38 and Cyp2c65). Fasting decreased Cyp1a2 and Cyp2d22 expression and increased Cyp3a11 and Cyp2c38 expression in both WT and CAR-/- mice. The decrease in Cyp1a2 was diminished in CAR-/- in comparison with WT mice. Basal Cyp2c37 expression was lower in CAR-/- compared to WT mice. Fasting decreased the clearance of all drugs tested in both WT and CAR-/- mice. The absence of CAR was associated with an decrease in the clearance of omeprazole, metoprolol and midazolam in fed mice. The fasting-induced reduction in clearance of s-warfarin was greater in WT than in CAR-/-. The changes in drug clearance correlated with the expression pattern of the specific P450 enzymes in case of Cyp1a2-caffeine and Cyp2c37-omeprazole. We conclude that CAR is important for hepatic clearance of several widely prescribed drugs metabolized by P450 enzymes. However the fasting-induced alterations in P450 mediated drug clearance are largely independent of CAR.

  6. Expanding P450 catalytic reaction space through evolution and engineering

    PubMed Central

    McIntosh, John A.; Farwell, Christopher C.; Arnold, Frances H.

    2014-01-01

    Advances in protein and metabolic engineering have led to wider use of enzymes to synthesize important molecules. However, many desirable transformations are not catalyzed by any known enzyme, driving interest in understanding how new enzymes can be created. The cytochrome P450 enzyme family, whose members participate in xenobiotic metabolism and natural products biosynthesis, catalyzes an impressive range of difficult chemical reactions that continues to grow as new enzymes are characterized. Recent work has revealed that P450-derived enzymes can also catalyze useful reactions previously accessible only to synthetic chemistry. The evolution and engineering of these enzymes provides an excellent case study for how to genetically encode new chemistry and expand biology’s reaction space. PMID:24658056

  7. CYP101J2, CYP101J3, and CYP101J4, 1,8-Cineole-Hydroxylating Cytochrome P450 Monooxygenases from Sphingobium yanoikuyae Strain B2

    PubMed Central

    Unterweger, Birgit; Bulach, Dieter M.; Scoble, Judith; Midgley, David J.; Greenfield, Paul; Lyras, Dena; Johanesen, Priscilla

    2016-01-01

    ABSTRACT We report the isolation and characterization of three new cytochrome P450 monooxygenases: CYP101J2, CYP101J3, and CYP101J4. These P450s were derived from Sphingobium yanoikuyae B2, a strain that was isolated from activated sludge based on its ability to fully mineralize 1,8-cineole. Genome sequencing of this strain in combination with purification of native 1,8-cineole-binding proteins enabled identification of 1,8-cineole-binding P450s. The P450 enzymes were cloned, heterologously expressed (N-terminally His6 tagged) in Escherichia coli BL21(DE3), purified, and spectroscopically characterized. Recombinant whole-cell biotransformation in E. coli demonstrated that all three P450s hydroxylate 1,8-cineole using electron transport partners from E. coli to yield a product putatively identified as (1S)-2α-hydroxy-1,8-cineole or (1R)-6α-hydroxy-1,8-cineole. The new P450s belong to the CYP101 family and share 47% and 44% identity with other 1,8-cineole-hydroxylating members found in Novosphingobium aromaticivorans and Pseudomonas putida. Compared to P450cin (CYP176A1), a 1,8-cineole-hydroxylating P450 from Citrobacter braakii, these enzymes share less than 30% amino acid sequence identity and hydroxylate 1,8-cineole in a different orientation. Expansion of the enzyme toolbox for modification of 1,8-cineole creates a starting point for use of hydroxylated derivatives in a range of industrial applications. IMPORTANCE CYP101J2, CYP101J3, and CYP101J4 are cytochrome P450 monooxygenases from S. yanoikuyae B2 that hydroxylate the monoterpenoid 1,8-cineole. These enzymes not only play an important role in microbial degradation of this plant-based chemical but also provide an interesting route to synthesize oxygenated 1,8-cineole derivatives for applications as natural flavor and fragrance precursors or incorporation into polymers. The P450 cytochromes also provide an interesting basis from which to compare other enzymes with a similar function and expand the CYP101 family. This could eventually provide enough bacterial parental enzymes with similar amino acid sequences to enable in vitro evolution via DNA shuffling. PMID:27590809

  8. Cancer Activation and Polymorphisms of Human Cytochrome P450 1B1

    PubMed Central

    Chun, Young-Jin; Kim, Donghak

    2016-01-01

    Human cytochrome P450 enzymes (P450s, CYPs) are major oxidative catalysts that metabolize various xenobiotic and endogenous compounds. Many carcinogens induce cancer only after metabolic activation and P450 enzymes play an important role in this phenomenon. P450 1B1 mediates bioactivation of many procarcinogenic chemicals and carcinogenic estrogen. It catalyzes the oxidation reaction of polycyclic aromatic carbons, heterocyclic and aromatic amines, and the 4-hydroxylation reaction of 17β-estradiol. Enhanced expression of P450 1B1 promotes cancer cell proliferation and metastasis. There are at least 25 polymorphic variants of P450 1B1 and some of these have been reported to be associated with eye diseases. In addition, P450 1B1 polymorphisms can greatly affect the metabolic activation of many procarcinogenic compounds. It is necessary to understand the relationship between metabolic activation of such substances and P450 1B1 polymorphisms in order to develop rational strategies for the prevention of its toxic effect on human health. PMID:27123158

  9. Importance of multi-P450 inhibition in drug-drug interactions: evaluation of incidence, inhibition magnitude and prediction from in vitro data

    PubMed Central

    Isoherranen, Nina; Lutz, Justin D; Chung, Sophie P; Hachad, Houda; Levy, Rene H; Ragueneau-Majlessi, Isabelle

    2012-01-01

    Drugs that are mainly cleared by a single enzyme are considered more sensitive to drug-drug interactions (DDIs) than drugs cleared by multiple pathways. However, whether this is true when a drug cleared by multiple pathways is co-administered with an inhibitor of multiple P450 enzymes (multi-P450 inhibition) is not known. Mathematically, simultaneous equipotent inhibition of two elimination pathways that each contributes half of the drug clearance is equal to equipotent inhibition of a single pathway that clears the drug. However, simultaneous strong or moderate inhibition of two pathways by a single inhibitor is perceived as an unlikely scenario. The aim of this study was (i) to identify P450 inhibitors currently in clinical use that can inhibit more than one clearance pathway of an object drug in vivo, and (ii) to evaluate the magnitude and predictability of DDIs caused by these multi-P450 inhibitors. Multi-P450 inhibitors were identified using the Metabolism and Transport Drug Interaction Database™. A total of 38 multi-P450 inhibitors, defined as inhibitors that increased the AUC or decreased the clearance of probes of two or more P450’s, were identified. Seventeen (45 %) multi-P450 inhibitors were strong inhibitors of at least one P450 and an additional 12 (32 %) were moderate inhibitors of one or more P450s. Only one inhibitor (fluvoxamine) was a strong inhibitor of more than one enzyme. Fifteen of the multi-P450 inhibitors also inhibit drug transporters in vivo, but such data are lacking on many of the inhibitors. Inhibition of multiple P450 enzymes by a single inhibitor resulted in significant (>2-fold) clinical DDIs with drugs that are cleared by multiple pathways such as imipramine and diazepam while strong P450 inhibitors resulted in only weak DDIs with these object drugs. The magnitude of the DDIs between multi-P450 inhibitors and diazepam, imipramine and omeprazole could be predicted using in vitro data with similar accuracy as probe substrate studies with the same inhibitors. The results of this study suggest that inhibition of multiple clearance pathways in vivo is clinically relevant and the risk of DDIs with object drugs may be best evaluated in studies using multi-P450 inhibitors. PMID:22823924

  10. Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane.

    PubMed

    Kharasch, E D; Thummel, K E

    1993-10-01

    Renal and hepatic toxicity of the fluorinated ether volatile anesthetics is caused by biotransformation to toxic metabolites. Metabolism also contributes significantly to the elimination pharmacokinetics of some volatile agents. Although innumerable studies have explored anesthetic metabolism in animals, there is little information on human volatile anesthetic metabolism with respect to comparative rates or the identity of the enzymes responsible for defluorination. The first purpose of this investigation was to compare the metabolism of the fluorinated ether anesthetics by human liver microsomes. The second purpose was to test the hypothesis that cytochrome P450 2E1 is the specific P450 isoform responsible for volatile anesthetic defluorination in humans. Microsomes were prepared from human livers. Anesthetic metabolism in microsomal incubations was measured by fluoride production. The strategy for evaluating the role of P450 2E1 in anesthetic defluorination involved three approaches: for a series of 12 human livers, correlation of microsomal defluorination rate with microsomal P450 2E1 content (measured by Western blot analysis), correlation of defluorination rate with microsomal P450 2E1 catalytic activity using marker substrates (para-nitrophenol hydroxylation and chlorzoxazone 6-hydroxylation), and chemical inhibition by P450 isoform-selective inhibitors. The rank order of anesthetic metabolism, assessed by fluoride production at saturating substrate concentrations, was methoxyflurane > sevoflurane > enflurane > isoflurane > desflurane > 0. There was a significant linear correlation of sevoflurane and methoxyflurane defluorination with antigenic P450 2E1 content (r = 0.98 and r = 0.72, respectively), but not with either P450 1A2 or P450 3A3/4. Comparison of anesthetic defluorination with either para-nitrophenol or chlorzoxazone hydroxylation showed a significant correlation for sevoflurane (r = 0.93, r = 0.95) and methoxyflurane (r = 0.78, r = 0.66). Sevoflurane defluorination was also highly correlated with that of enflurane (r = 0.93), which is known to be metabolized by human P450 2E1. Diethyldithiocarbamate, a selective inhibitor of P450 2E1, produced a concentration-dependent inhibition of sevoflurane, methoxyflurane, and isoflurane defluorination. No other isoform-selective inhibitor diminished the defluorination of sevoflurane, whereas methoxyflurane defluorination was inhibited by the selective P450 inhibitors furafylline (P450 1A2), sulfaphenazole (P450 2C9/10), and quinidine (P450 2D6) but to a much lesser extent than by diethyldithiocarbamate. These results demonstrate that cytochrome P450 2E1 is the principal, if not sole human liver microsomal enzyme catalyzing the defluorination of sevoflurane. P450 2E1 is the principal, but not exclusive enzyme responsible for the metabolism of methoxyflurane, which also appears to be catalyzed by P450s 1A2, 2C9/10, and 2D6. The data also suggest that P450 2E1 is responsible for a significant fraction of isoflurane metabolism. Identification of P450 2E1 as the major anesthetic metabolizing enzyme in humans provides a mechanistic understanding of clinical fluorinated ether anesthetic metabolism and toxicity.

  11. Contributions of Human Enzymes in Carcinogen Metabolism

    PubMed Central

    Rendic, Slobodan; Guengerich, F. Peter

    2012-01-01

    Considerable support exists for roles of metabolism in modulating the carcinogenic properties of chemicals. In particular, many of these compounds are procarcinogens that require activation to electrophilic forms to exert genotoxic effects. We systematically analyzed the existing literature on metabolism of carcinogens by human enzymes, which has been developed largely in the past 25 years. The metabolism and especially bioactivation of carcinogens are dominated by cytochrome P450 enzymes (66% of bioactivations). Within this group, six P450s—1A1, 1A2, 1B1, 2A6, 2E1, and 3A4—accounted for 77% of the P450 activation reactions. The roles of these P450s can be compared with those estimated for drug metabolism and should be considered in issues involving enzyme induction, chemoprevention, molecular epidemiology, inter-individual variations, and risk assessment. PMID:22531028

  12. Cytochrome P450-Mediated Phytoremediation using Transgenic Plants: A Need for Engineered Cytochrome P450 Enzymes

    PubMed Central

    Kumar, Santosh; Jin, Mengyao; Weemhoff, James L

    2013-01-01

    There is an increasing demand for versatile and ubiquitous Cytochrome P450 (CYP) biocatalysts for biotechnology, medicine, and bioremediation. In the last decade there has been an increase in realization of the power of CYP biocatalysts for detoxification of soil and water contaminants using transgenic plants. However, the major limitations of mammalian CYP enzymes are that they require CYP reductase (CPR) for their activity, and they show relatively low activity, stability, and expression. On the other hand, bacterial CYP enzymes show limited substrate diversity and usually do not metabolize herbicides and industrial contaminants. Therefore, there has been a considerable interest for biotechnological industries and the scientific community to design CYP enzymes to improve their catalytic efficiency, stability, expression, substrate diversity, and the suitability of P450-CPR fusion enzymes. Engineered CYP enzymes have potential for transgenic plants-mediated phytoremediation of herbicides and environmental contaminants. In this review we discuss: 1) the role of CYP enzymes in phytoremediation using transgenic plants, 2) problems associated with wild-type CYP enzymes in phytoremediation, and 3) examples of engineered CYP enzymes and their potential role in transgenic plant-mediated phytoremediation. PMID:25298920

  13. XenoSite server: a web-available site of metabolism prediction tool.

    PubMed

    Matlock, Matthew K; Hughes, Tyler B; Swamidass, S Joshua

    2015-04-01

    Cytochrome P450 enzymes (P450s) are metabolic enzymes that process the majority of FDA-approved, small-molecule drugs. Understanding how these enzymes modify molecule structure is key to the development of safe, effective drugs. XenoSite server is an online implementation of the XenoSite, a recently published computational model for P450 metabolism. XenoSite predicts which atomic sites of a molecule--sites of metabolism (SOMs)--are modified by P450s. XenoSite server accepts input in common chemical file formats including SDF and SMILES and provides tools for visualizing the likelihood that each atomic site is a site of metabolism for a variety of important P450s, as well as a flat file download of SOM predictions. XenoSite server is available at http://swami.wustl.edu/xenosite. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Inhibition of human P450 enzymes by natural extracts used in traditional medicine.

    PubMed

    Rodeiro, Idania; Donato, María T; Jimenez, Nuria; Garrido, Gabino; Molina-Torres, Jorge; Menendez, Roberto; Castell, José V; Gómez-Lechón, María J

    2009-02-01

    Different medicinal plants are widely used in Cuba and Mexico to treat several disorders. This paper reports in vitro inhibitory effects on the P450 system of herbal products commonly used by people in Cuba and Mexico in traditional medicine for decades. Experiments were conducted in human liver microsomes. The catalytic activities of CYP1A1/2, 2D6, and 3A4 were measured using specific probe substrates. The Heliopsis longipes extract exhibited a concentration-dependent inhibition of the three enzymes, and similar effects were produced by affinin (an alkamide isolated from the H. longipes extract) and two catalytically reduced alkamides. Mangifera indica L. and Thalassia testudinum extracts, two natural polyphenol-rich extracts, diminished CYP1A1/2 and 3A4 activities, but not the CYP2D6 activity. These results suggest that these herbs inhibit the major human P450 enzymes involved in drug metabolism and could induce potential herbal-drug interactions. Copyright (c) 2008 John Wiley & Sons, Ltd.

  15. In vitro hCG and human recombinant FSH actions on testicular steroidogenesis in the toad Bufo arenarum.

    PubMed

    Canosa, L F; Ceballos, N R

    2002-05-01

    In order to study the regulation of testicular steroidogenesis in the toad Bufo arenarum, the effect of gonadotropins (hCG and hrFSH) on steroidogenic enzymes was determined using an in vitro system. 3beta-Hydroxysteroid dehydrogenase/isomerase activity was not affected by any of the gonadotropins, at any of the concentrations used. In contrast, 5alpha-reductase activity was strongly reduced by both hCG and hrFSH. Human chorionic gonadotropin inhibited the activity of cytochrome P450 17alpha-hydroxylase-C(17-20) lyase (P450(c17)), only at the highest concentration used, while hrFSH strongly reduced P450(c17) activity at all the doses assayed. In conclusion, these data suggest that LH (hCG) and FSH regulate steroidogenic enzymes such as 5alphaRed and P450(c17). The results also suggest that FSH could be involved in the regulation of the change in steroidogenesis undergone by the testis during the breeding season. In turn, the inhibition of P450(c17) activity could result in a reduction of androgen production and an increment of C21 steroids. (c) 2002 Elsevier Science (USA).

  16. Can ferric-superoxide act as a potential oxidant in P450(cam)? QM/MM investigation of hydroxylation, epoxidation, and sulfoxidation.

    PubMed

    Lai, Wenzhen; Shaik, Sason

    2011-04-13

    In view of recent reports of high reactivity of ferric-superoxide species in heme and nonheme systems (Morokuma et al. J. Am. Chem. Soc. 2010, 132, 11993-12005; Que et al. Inorg. Chem. 2010, 49, 3618-3628; Nam et al. J. Am. Chem. Soc. 2010, 132, 5958-5959; J. Am. Chem. Soc. 2010, 132, 10668-10670), we use herein combined quantum mechanics/molecular mechanics (QM/MM) methods to explore the potential reactivity of P450(cam) ferric-superoxide toward hydroxylation, epoxidation, and sulfoxidation. The calculations demonstrate that P450 ferric-superoxide is a sluggish oxidant compared with the high-valent oxoiron porphyrin cation-radical species. As such, unlike heme enzymes with a histidine axial ligand, the P450 superoxo species does not function as an oxidant in P450(cam). The origin of this different behavior of the superoxo species of P450 vis-à-vis other heme enzymes like tryptophan 2, 3-dioxygenase (TDO) is traced to the ability of the latter superoxo species to make a stronger FeOO-X (X = H,C) bond and to stabilize the corresponding bond-activation transition states by resonance with charge-transfer configurations. By contrast, the negatively charged thiolate ligand in the P450 superoxo species minimizes the mixing of charge transfer configurations in the transition state and raises the reaction barrier. However, as we demonstrate, an external electric field oriented along the Fe-O axis with a direction pointing from Fe toward O will quench Cpd I formation by slowing the reduction of ferric-superoxide and will simultaneously lower the barriers for oxidation by the latter species, thereby enabling observation of superoxo chemistry in P450. Other options for nascent superoxo reactivity in P450 are discussed. © 2011 American Chemical Society

  17. Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase.

    PubMed

    Henderson, Colin J; Otto, Diana M E; Carrie, Dianne; Magnuson, Mark A; McLaren, Aileen W; Rosewell, Ian; Wolf, C Roland

    2003-04-11

    Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of a large number of endogenous compounds and the majority of ingested environmental chemicals, leading to their elimination and often to their metabolic activation to toxic products. This enzyme system therefore provides our primary defense against xenobiotics and is a major determinant in the therapeutic efficacy of pharmacological agents. To evaluate the importance of hepatic P450s in normal homeostasis, drug pharmacology, and chemical toxicity, we have conditionally deleted the essential electron transfer protein, NADH:ferrihemoprotein reductase (EC, cytochrome P450 reductase, CPR) in the liver, resulting in essentially complete ablation of hepatic microsomal P450 activity. Hepatic CPR-null mice could no longer break down cholesterol because of their inability to produce bile acids, and whereas hepatic lipid levels were significantly increased, circulating levels of cholesterol and triglycerides were severely reduced. Loss of hepatic P450 activity resulted in a 5-fold increase in P450 protein, indicating the existence of a negative feedback pathway regulating P450 expression. Profound changes in the in vivo metabolism of pentobarbital and acetaminophen indicated that extrahepatic metabolism does not play a major role in the disposition of these compounds. Hepatic CPR-null mice developed normally and were able to breed, indicating that hepatic microsomal P450-mediated steroid hormone metabolism is not essential for fertility, demonstrating that a major evolutionary role for hepatic P450s is to protect mammals from their environment.

  18. Expansion of chemical space for natural products by uncommon P450 reactions.

    PubMed

    Zhang, Xingwang; Li, Shengying

    2017-08-30

    Covering: 2000 to 2017Cytochrome P450 enzymes (P450s) are the most versatile biocatalysts in nature. The catalytic competence of these extraordinary hemoproteins is broadly harnessed by numerous chemical defenders such as bacteria, fungi, and plants for the generation of diverse and complex natural products. Rather than the common tailoring reactions (e.g. hydroxylation and epoxidation) mediated by the majority of biosynthetic P450s, in this review, we will focus on the unusual P450 enzymes in relation to new chemistry, skeleton construction, and structure re-shaping via their own unique catalytic power or the intriguing protein-protein interactions between P450s and other proteins. These uncommon P450 reactions lead to a higher level of chemical space expansion for natural products, through which a broader spectrum of bioactivities can be gained by the host organisms.

  19. Photosystem I from plants as a bacterial cytochrome P450 surrogate electron donor: terminal hydroxylation of branched hydrocarbon chains.

    PubMed

    Jensen, Kenneth; Johnston, Jonathan B; de Montellano, Paul R Ortiz; Møller, Birger Lindberg

    2012-02-01

    The ability of cytochrome P450 enzymes to catalyze highly regio- and stereospecific hydroxylations makes them attractive alternatives to approaches based on chemical synthesis but they require expensive cofactors, e.g. NAD(P)H, which limits their commercial potential. Ferredoxin (Fdx) is a multifunctional electron carrier that in plants accepts electrons from photosystem I (PSI) and facilitates photoreduction of NADP(+) to NADPH mediated by ferredoxin-NAD(P)H oxidoreductase (FdR). In bacteria, the electron flow is reversed and Fdx accepts electrons from NADPH via FdR and serves as the direct electron donor to bacterial P450s. By combining the two systems, we demonstrate that irradiation of PSI can drive the activity of a bacterial P450, CYP124 from Mycobacterium tuberculosis. The substitution of the costly cofactor NADPH with sunlight illustrates the potential of the light-driven hydroxylation system for biotechnology applications.

  20. Pathophysiological implications of neurovascular P450 in brain disorders

    PubMed Central

    Ghosh, Chaitali; Hossain, Mohammed; Solanki, Jesal; Dadas, Aaron; Marchi, Nicola; Janigro, Damir

    2016-01-01

    Over the past decades, the significance of cytochrome P450 (CYP) enzymes has expanded beyond their role as peripheral drug metabolizers in the liver and gut. CYP enzymes are also functionally active at the neurovascular interface. CYP expression is modulated by disease states, impacting cellular functions, detoxification, and reactivity to toxic stimuli and brain drug biotransformation. Unveiling the physiological and molecular complexity of brain P450 enzymes will improve our understanding of the mechanisms underlying brain drug availability, pharmacological efficacy, and neurotoxic adverse effects from pharmacotherapy targeting brain disorders. PMID:27312874

  1. Mechanisms of olfactory toxicity of the herbicide 2,6-dichlorobenzonitrile: Essential roles of CYP2A5 and target-tissue metabolic activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Fang; Zhou Xin; Behr, Melissa

    The herbicide 2,6-dichlorobenzonitril (DCBN) is a potent and tissue-specific toxicant to the olfactory mucosa (OM). The toxicity of DCBN is mediated by cytochrome P450 (P450)-catalyzed bioactivation; however, it is not known whether target-tissue metabolic activation is essential for toxicity. CYP2A5, expressed abundantly in both liver and OM, was previously found to be one of the P450 enzymes active in DCBN bioactivation in vitro. The aims of this study were to determine the role of CYP2A5 in DCBN toxicity in vivo, by comparing the extents of DCBN toxicity between Cyp2a5-null and wild-type (WT) mice, and to determine whether hepatic microsomal P450more » enzymes (including CYP2A5) are essential for the DCBN toxicity, by comparing the extents of DCBN toxicity between liver-Cpr-null (LCN) mice, which have little P450 activity in hepatocytes, and WT mice. We show that the loss of CYP2A5 expression did not alter systemic clearance of DCBN (at 25 mg/kg); but it did inhibit DCBN-induced non-protein thiol depletion and cytotoxicity in the OM. Thus, CYP2A5 plays an essential role in mediating DCBN toxicity in the OM. In contrast to the results seen in the Cyp2a5-null mice, the rates of systemic DCBN clearance were substantially reduced, while the extents of DCBN-induced nasal toxicity were increased, rather than decreased, in the LCN mice, compared to WT mice. Therefore, hepatic P450 enzymes, although essential for DCBN clearance, are not necessary for DCBN-induced OM toxicity. Our findings form the basis for a mechanism-based approach to assessing the potential risks of DCBN nasal toxicity in humans.« less

  2. Exploring the Electrical Conductivity of Cytochrome P450 by Nano-Electrode and Conductive Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Li, Debin; Gu, Jianhua; Chye, Yewhee; Lederman, David; Kabulski, Jarod; Gannett, Peter; Tracy, Timothy

    2006-03-01

    There is a growing interest in measuring the conductivity of electron-transfer proteins. The cytochrome P450 (CP450) enzymes represent an important class of heme-containing enzymes. Immobilizing CP450 enzymes on a surface can be used for studying a single enzyme with respect to electron transfer. The spin state of the heme iron can change upon binding of a substrate. In our experiment, CP450 (diameter ˜ 5 nm) has been bonded to a metal surface. Nano-electrodes (gap < 10 nm) were fabricated by defining a bridge via e-beam lithography and then breaking the junction by electromigration at low temperatures. We have examined the electronic properties of CP450 by itself and after binding CP450 with flurbiprofen. The room temperature I-V conductivity is reminiscent to cyclic voltammetry measurements, indicating the presence of strong ionic transfer. At lower temperatures (100 K) the I-V characteristics indicate electronic transport dominated by tunneling processes. The conductive AFM is an additional method used to examine the enzyme's electronic properties. The results from two methods will be discussed..

  3. An in vitro evaluation of cytochrome P450 inhibition and P-glycoprotein interaction with goldenseal, Ginkgo biloba, grape seed, milk thistle, and ginseng extracts and their constituents.

    PubMed

    Etheridge, Amy S; Black, Sherry R; Patel, Purvi R; So, James; Mathews, James M

    2007-07-01

    Drug-herb interactions can result from the modulation of the activities of cytochrome P450 (P450) and/or drug transporters. The effect of extracts and individual constituents of goldenseal, Ginkgo biloba (and its hydrolyzate), grape seed, milk thistle, and ginseng on the activities of cytochrome P450 enzymes CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 in human liver microsomes were determined using enzyme-selective probe substrates, and their effect on human P-glycoprotein (Pgp) was determined using a baculovirus expression system by measuring the verapamil-stimulated, vanadate-sensitive ATPase activity. Extracts were analyzed by HPLC to standardize their concentration(s) of constituents associated with the pharmacological activity, and to allow comparison of their effects on P450 and Pgp with literature values. Many of the extracts/constituents exerted > or = 50 % inhibition of P450 activity. These include those from goldenseal (normalized to alkaloid content) inhibiting CYP2C8, CYP2D6, and CYP3A4 at 20 microM, ginkgo inhibiting CYP2C8 at 10 microM, grape seed inhibiting CYP2C9 and CYP3A4 at 10 microM, milk thistle inhibiting CYP2C8 at 10 microM, and ginsenosides F1 and Rh1 (but not ginseng extract) inhibiting CYP3A4 at 10 microM. Goldenseal extracts/constituents (20 microM, particularly hydrastine) and ginsenoside Rh1 stimulated ATPase at about half of the activity of the model substrate, verapamil (20 microM). The data suggest that the clearance of a variety of drugs may be diminished by concomitant use of these herbs via inhibition of P450 enzymes, but less so by Pgp-mediated effects.

  4. The Use of Immobilized Cytochrome P4502C9 in PMMA-Based Plug-Flow Bioreactors for the Production of Drug Metabolites

    PubMed Central

    Wollenberg, Lance A.; Kabulski, Jarod L.; Powell, Matthew J.; Chen, Jifeng; Flora, Darcy R.; Tracy, Timothy S.; Gannett, Peter M.

    2013-01-01

    Cytochrome P450 enzymes play a key role in the metabolism of pharmaceutical agents. To determine metabolite toxicity, it is necessary to obtain P450 metabolites from various pharmaceutical agents. Here, we describe a bioreactor that is made by immobilizing cytochrome P450 2C9 (CYP2C9) to a poly (methyl methacrylate) surface and, as an alternative to traditional chemical synthesis, can be used to biosynthesize P450 metabolites in a plug-flow bioreactor. As part of the development of the CYP2C9 bioreactor, we have studied two different methods of attachment: 1) coupling via the N-terminus using N-hydroxysulfosuccinimide 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and 2) using the Ni(II) chelator 1-acetato-4-benzyl-triazacyclononane to coordinate the enzyme to the surface using a C-terminal histidine tag. Additionally, the propensity for metabolite production of the CYP2C9 proof-of-concept bioreactors as a function of enzyme attachment conditions (e.g., time and enzyme concentration) was examined. Our results show that the immobilization of CYP2C9 enzymes to a PMMA surface represents a viable and alternative approach to the preparation of CYP2C9 metabolites for toxicity testing. Furthermore, the basic approach can be adapted to any cytochrome P450 enzyme and in a high-throughput, automated process. PMID:24166101

  5. New reactions and products resulting from alternative interactions between the P450 enzyme and redox partners.

    PubMed

    Zhang, Wei; Liu, Yi; Yan, Jinyong; Cao, Shaona; Bai, Fali; Yang, Ying; Huang, Shaohua; Yao, Lishan; Anzai, Yojiro; Kato, Fumio; Podust, Larissa M; Sherman, David H; Li, Shengying

    2014-03-05

    Cytochrome P450 enzymes are capable of catalyzing a great variety of synthetically useful reactions such as selective C-H functionalization. Surrogate redox partners are widely used for reconstitution of P450 activity based on the assumption that the choice of these auxiliary proteins or their mode of action does not affect the type and selectivity of reactions catalyzed by P450s. Herein, we present an exceptional example to challenge this postulate. MycG, a multifunctional biosynthetic P450 monooxygenase responsible for hydroxylation and epoxidation of 16-membered ring macrolide mycinamicins, is shown to catalyze the unnatural N-demethylation(s) of a range of mycinamicin substrates when partnered with the free Rhodococcus reductase domain RhFRED or the engineered Rhodococcus-spinach hybrid reductase RhFRED-Fdx. By contrast, MycG fused with the RhFRED or RhFRED-Fdx reductase domain mediates only physiological oxidations. This finding highlights the larger potential role of variant redox partner protein-protein interactions in modulating the catalytic activity of P450 enzymes.

  6. Mining of the Uncharacterized Cytochrome P450 Genes Involved in Alkaloid Biosynthesis in California Poppy Using a Draft Genome Sequence

    PubMed Central

    Hori, Kentaro; Yamada, Yasuyuki; Purwanto, Ratmoyo; Minakuchi, Yohei; Toyoda, Atsushi; Hirakawa, Hideki

    2018-01-01

    Abstract Land plants produce specialized low molecular weight metabolites to adapt to various environmental stressors, such as UV radiation, pathogen infection, wounding and animal feeding damage. Due to the large variety of stresses, plants produce various chemicals, particularly plant species-specific alkaloids, through specialized biosynthetic pathways. In this study, using a draft genome sequence and querying known biosynthetic cytochrome P450 (P450) enzyme-encoding genes, we characterized the P450 genes involved in benzylisoquinoline alkaloid (BIA) biosynthesis in California poppy (Eschscholzia californica), as P450s are key enzymes involved in the diversification of specialized metabolism. Our in silico studies showed that all identified enzyme-encoding genes involved in BIA biosynthesis were found in the draft genome sequence of approximately 489 Mb, which covered approximately 97% of the whole genome (502 Mb). Further analyses showed that some P450 families involved in BIA biosynthesis, i.e. the CYP80, CYP82 and CYP719 families, were more enriched in the genome of E. californica than in the genome of Arabidopsis thaliana, a plant that does not produce BIAs. CYP82 family genes were highly abundant, so we measured the expression of CYP82 genes with respect to alkaloid accumulation in different plant tissues and two cell lines whose BIA production differs to estimate the functions of the genes. Further characterization revealed two highly homologous P450s (CYP82P2 and CYP82P3) that exhibited 10-hydroxylase activities with different substrate specificities. Here, we discuss the evolution of the P450 genes and the potential for further genome mining of the genes encoding the enzymes involved in BIA biosynthesis. PMID:29301019

  7. Studies on the interactions between drugs and estrogen: analytical method for prediction system of gynecomastia induced by drugs on the inhibitory metabolism of estradiol using Escherichia coli coexpressing human CYP3A4 with human NADPH-cytochrome P450 reductase.

    PubMed

    Satoh, T; Fujita, K I; Munakata, H; Itoh, S; Nakamura, K; Kamataki, T; Itoh, S; Yoshizawa, I

    2000-11-15

    To establish a prediction system for drug-induced gynecomastia in clinical fields, a model reaction system was developed to explain numerically this side effect. The principle is based on the assumption that 50% inhibition concentration (IC(50)) of drugs on the in vitro metabolism of estradiol (E2) to its major product 2-hydroxyestradiol (2-OH-E2) can be regarded as the index for achieving this purpose. By using human cytochrome P450s coexpressed with human NADPH-cytochrome P450 reductase in Escherichia coli as the enzyme, the reaction was examined. Among the nine enzymes (CYP1A1, 1A2, 2A6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4) tested, CYP3A4 having a V(max)/K(m) (ml/min/nmol P450) value of 0.32 for production of 2-OH-E2 was shown to be the most suitable enzyme as the reagent. The inhibitory effects of ketoconazole, cyclosporin A, and cimetidine toward the 2-hydroxylation of E2 catalyzed by CYP3A4 were obtained, and their IC(50) values were 7 nM, 64 nM, and 290 microM, respectively. The present results suggest that IC(50) values thus obtained can be substituted as the prediction index for gynecomastia induced by drugs, considering the patients' individual information. Copyright 2000 Academic Press.

  8. Status of Resistance of Bemisia tabaci (Hemiptera: Aleyrodidae) to Neonicotinoids in Iran and Detoxification by Cytochrome P450-Dependent Monooxygenases.

    PubMed

    Basij, M; Talebi, K; Ghadamyari, M; Hosseininaveh, V; Salami, S A

    2017-02-01

    Nine Bemisia tabaci (Gennadius) populations were collected from different regions of Iran. In all nine populations, only one biotype (B biotype) was detected. Susceptibilities of these populations to imidacloprid and acetamiprid were assayed. The lethal concentration 50 values (LC 50 ) for different populations showed a significant discrepancy in the susceptibility of B. tabaci to imidacloprid (3.76 to 772.06 mg l -1 ) and acetamiprid (4.96 to 865 mg l -1 ). The resistance ratio of the populations ranged from 9.72 to 205.20 for imidacloprid and 6.38 to 174.57 for acetamiprid. The synergistic effects of piperonylbutoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) were evaluated for the susceptible (RF) and resistant (JR) populations for the determination of the involvement of cytochrome P450-dependent monooxygenase and carboxylesterase, respectively, in their resistance mechanisms. The results showed that PBO overcame the resistance of the JR population to both imidacloprid and acetamiprid, with synergistic ratios of 72.7 and 106.9, respectively. Carboxylesterase, glutathione S-transferase and cytochrome P450-dependent monooxygenase were studied biochemically, for the purpose of measuring the activity of the metabolizing enzymes in order to determine which enzymes are directly involved in neonicotinoid resistance. There was an increase in the activity of cytochrome P450-dependent monooxygenase up to 17-fold in the resistant JR population (RR = 205.20). The most plausible activity of cytochrome P450-dependent monooxygenase correlated with the resistances of imidacloprid and acetamiprid, and this suggests that cytochrome P450-dependent monooxygenase is the only enzyme system responsible for neonicotinoid resistance in the nine populations of B. tabaci.

  9. Rat oesophageal cytochrome P450 (CYP) monooxygenase system: comparison to the liver and relevance in N-nitrosodiethylamine carcinogenesis.

    PubMed

    Pinto, L F; Moraes, E; Albano, R M; Silva, M C; Godoy, W; Glisovic, T; Lang, M A

    2001-11-01

    N-nitrosodiethylamine (NDEA) is able to induce tumours in the rat oesophagus. It has been suggested that this could be due to tissue specific expression of NDEA activating cytochrome P450 enzymes. We investigated this by characterizing the oesophageal monooxygenase complex of male Wistar rats and comparing it with that of the liver. Total amount of cytochrome P450, NADPH P450 reductase, cytochrome b5 and cytochrome b5 reductase of the oesophageal mucosa was approximately 7% of what was found in the liver. In addition, major differences were found in the cytochrome P450 isoenzyme composition between these organs: CYP 2B1/2B2 and CYP3A were found only in the liver, whereas CYP1A1 was constitutively expressed only in the oesophagus. Of the two well-known nitrosamine metabolizing enzymes, CYP2A3 was found only in the oesophagus whereas CYP2E1 was exclusively expressed in the liver. Catalytic studies, western blotting and RT-PCR analyses confirmed the expression of CYP2A3 in the oesophagus. CYP2A enzymes are known to be good catalysts of NDEA metabolism. Oesophageal microsomes had a K(m) for NDEA metabolism, which was about one-third of that of hepatic microsomes, but they showed similar activities when compared per nmol of total P450. NDEA activity in the oesophagus was significantly increased by coumarin (CO), which also induced oesophageal CYP2A3. Immunoinhibition of the microsomal NDEA activity showed that up to 70% of this reaction is catalysed by CYP2A3 in the oesophagus, whereas no inhibition of the hepatic NDEA activity could be achieved by the anti-CYP2A5 antibody. NDEA, but not N-nitrosodimethylamine (NDMA) inhibited the oesophageal metabolism of CO. The results of the present investigation show major differences in the enzyme composition of the oesophageal and hepatic monooxygenase complexes, and are in accordance with the hypothesis that the NDEA organotropism could, to a large extent, be due to the tissue specific expression of the activating enzymes.

  10. Limitations of in silico predictability of specificity of co-immobilised cytochromes P450 and mimics in food-bioprocessing.

    PubMed

    Wiseman, Alan

    2003-04-01

    Cytochromes P450 (EC 1.14.14.1) are mixed function oxidases (oxygenases) that can catalyse redox bioconversions of food components. Also, efficacious removal of undesirable components can be achieved using solid-support immobilised enzyme (IME) of a selection from 2700 isoforms of cytochromes P450 (CYP). Cytochromes P450 co-immobilised with other enzymes, or protein receptors, may be used to confer a secondary order of regio- or stereo-specificity of chiral bioconversion: these can be predictable in silico by utilisation of QSARs (quantitative structure/activity relationships).

  11. Monkey liver cytochrome P450 2C19 is involved in R- and S-warfarin 7-hydroxylation.

    PubMed

    Hosoi, Yoshio; Uno, Yasuhiro; Murayama, Norie; Fujino, Hideki; Shukuya, Mitsunori; Iwasaki, Kazuhide; Shimizu, Makiko; Utoh, Masahiro; Yamazaki, Hiroshi

    2012-12-15

    Cynomolgus monkeys are widely used as primate models in preclinical studies. However, some differences are occasionally seen between monkeys and humans in the activities of cytochrome P450 enzymes. R- and S-warfarin are model substrates for stereoselective oxidation in humans. In this current research, the activities of monkey liver microsomes and 14 recombinantly expressed monkey cytochrome P450 enzymes were analyzed with respect to R- and S-warfarin 6- and 7-hydroxylation. Monkey liver microsomes efficiently mediated both R- and S-warfarin 7-hydroxylation, in contrast to human liver microsomes, which preferentially catalyzed S-warfarin 7-hydroxylation. R-Warfarin 7-hydroxylation activities in monkey liver microsomes were not inhibited by α-naphthoflavone or ketoconazole, and were roughly correlated with P450 2C19 levels and flurbiprofen 4-hydroxylation activities in microsomes from 20 monkey livers. In contrast, S-warfarin 7-hydroxylation activities were not correlated with the four marker drug oxidation activities used. Among the 14 recombinantly expressed monkey P450 enzymes tested, P450 2C19 had the highest activities for R- and S-warfarin 7-hydroxylations. Monkey P450 3A4 and 3A5 slowly mediated R- and S-warfarin 6-hydroxylations. Kinetic analysis revealed that monkey P450 2C19 had high V(max) and low K(m) values for R-warfarin 7-hydroxylation, comparable to those for monkey liver microsomes. Monkey P450 2C19 also mediated S-warfarin 7-hydroxylation with V(max) and V(max)/K(m) values comparable to those for recombinant human P450 2C9. R-warfarin could dock favorably into monkey P450 2C19 modeled. These results collectively suggest high activities for monkey liver P450 2C19 toward R- and S-warfarin 6- and 7-hydroxylation in contrast to the saturation kinetics of human P450 2C9-mediated S-warfarin 7-hydroxylation. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Hepatic cytochrome P450 activity, abundance, and expression throughout human development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo M.

    Cytochrome P450s are Phase I metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes can vary considerably throughout human development, especially when comparing fetal development to neonates, children, and adults. In an effort to develop a more comprehensive understanding of the ontogeny of P450 expression and activity we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. To quantify the functional activity of individual P450s we employ activity-based protein profiling, which uses modified mechanism-based inhibitors of P450s as chemical probes, in tandem with proteomicmore » analyses to quantify activity. Our results reveal life-stage-dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. The results were used to distribute P450s into three general classes based upon developmental stage of expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that our ontogeny results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics.« less

  13. Access channels to the buried active site control substrate specificity in CYP1A P450 enzymes.

    PubMed

    Urban, Philippe; Truan, Gilles; Pompon, Denis

    2015-04-01

    A cytochrome P450 active site is buried within the protein molecule and several channels connect the catalytic cavity to the protein surface. Their role in P450 catalysis is still matter of debate. The aim of this study was to understand the possible relations existing between channels and substrate specificity. Time course studies were carried out with a collection of polycyclic substrates of increasing sizes assayed with a library of wild-type and chimeric CYP1A enzymes. This resulted in a matrix of activities sufficiently large to allow statistical analysis. Multivariate statistical tools were used to decipher the correlation between observed activity shifts and sequence segment swaps. The global kinetic behavior of CYP1A enzymes toward polycyclic substrates is significantly different depending on the size of the substrate. Mutations which are close or lining the P450 channels significantly affect this discrimination, whereas mutations distant from the P450 channels do not. Size discrimination is taking place for polycyclic substrates at the entrance of the different P450 access channels. It is thus hypothesized that channels differentiate small from large substrates in CYP1A enzymes, implying that residues located at the surface of the protein may be implied in this differential recognition. Catalysis thus occurs after a two-step recognition process, one at the surface of the protein and the second within the catalytic cavity in enzymes with a buried active site. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Expression, function and regulation of mouse cytochrome P450 enzymes: comparison with human P450 enzymes.

    PubMed

    Hrycay, E G; Bandiera, S M

    2009-12-01

    The present review focuses on the expression, function and regulation of mouse cytochrome P450 (Cyp) enzymes. Information compiled for mouse Cyp enzymes is compared with data collected for human CYP enzymes. To date, approximately 40 pairs of orthologous mouse-human CYP genes have been identified that encode enzymes performing similar metabolic functions. Recent knowledge concerning the tissue expression of mouse Cyp enzymes from families 1 to 51 is summarized. The catalytic activities of microsomal, mitochondrial and recombinant mouse Cyp enzymes are discussed and their involvement in the metabolism of exogenous and endogenous compounds is highlighted. The role of nuclear receptors, such as the aryl hydrocarbon receptor, constitutive androstane receptor and pregnane X receptor, in regulating the expression of mouse Cyp enzymes is examined. Targeted disruption of selected Cyp genes has generated numerous Cyp null mouse lines used to decipher the role of Cyp enzymes in metabolic, toxicological and biological processes. In conclusion, the laboratory mouse is an indispensable model for exploring human CYP-mediated activities.

  15. CYP450s analysis across spiny lobster metamorphosis identifies a long sought missing link in crustacean development.

    PubMed

    Ventura, Tomer; Bose, Utpal; Fitzgibbon, Quinn P; Smith, Gregory G; Shaw, P Nicholas; Cummins, Scott F; Elizur, Abigail

    2017-07-01

    Cytochrome P450s (CYP450s) are a rapidly evolving family of enzymes, making it difficult to identify bona fide orthologs with notable lineage-specific exceptions. In ecdysozoans, a small number of the most conserved orthologs include enzymes which metabolize ecdysteroids. Ecdysone pathway components were recently shown in a decapod crustacean but with a notable absence of shade, which is important for converting ecdysone to its active form, 20-hydroxyecdysone (20HE), suggesting that another CYP450 performs a similar function in crustaceans. A CYPome temporal expression analysis throughout metamorphosis performed in this research highlights several un-annotated CYP450s displaying differential expression and provides information into expression patterns of annotated CYP450s. Using the expression patterns in the Eastern spiny lobster Sagmariasus verreauxi, followed by 3D modelling and finally activity assays in vitro, we were able to conclude that a group of CYP450s, conserved across decapod crustaceans, function as the insect shade. To emphasize the fact that these genes share the function with shade but are phylogenetically distinct, we name this enzyme system Shed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  16. Albendazole sulfonation by rat liver cytochrome P-450c.

    PubMed

    Souhaili-El Amri, H; Mothe, O; Totis, M; Masson, C; Batt, A M; Delatour, P; Siest, G

    1988-08-01

    The metabolism of albendazole (ABZ) was studied in perfused livers from control and ABZ-treated rats (10.6 mg/kg, per os, each day for 10 days). In the perfusion fluid, the concentration of ABZ-sulfoxide (SO-ABZ) remained unchanged in treated, as compared to control animals, whereas ABZ-sulfone (SO2-ABZ) was increased in treated animals. In bile, only SO-ABZ was present. The transformation kinetics of SO-ABZ to SO2-ABZ in microsomes from rats treated with ABZ, 3-methylcholanthrene, Aroclor and isosafrole were biphasic. This suggests that enzyme activity was a consequence of two enzyme systems, one characterized by low affinity and high capacity, the other by high affinity and low capacity, the latter could be induced by 3-methylcholanthrene, ABZ, Aroclor and isosafrole. Cytochrome P-450c was induced potently in vivo by ABZ as proven by increased monooxygenase (7-ethoxyresorufin and 7-ethoxycoumarin-O-deethylase) activities and by Elisa test (a 5-fold increase in hemoprotein concentration was observed). Purified and reconstituted cytochrome P-450c from 3-methylcholanthrene or ABZ-treated rat liver were able to produce SO2-ABZ (2.01 and 1.70 nmol/mg/15 min, respectively, whereas cytochrome P-450b produced 10 times less SO2-ABZ). Immunological assays, as well as activity measurements showed a relationship between cytochrome P-450c-3-methylcholanthrene and cytochrome P-450c-ABZ. We conclude that induction of cytochrome P-450c by ABZ is the probable explanation for the enhanced formation of SO2-ABZ in vivo.

  17. Functional analysis of human cytochrome P450 21A2 variants involved in congenital adrenal hyperplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chunxue; Pallan, Pradeep S.; Zhang, Wei

    Cytochrome P450 (P450, CYP) 21A2 is the major steroid 21-hydroxylase, converting progesterone to 11-deoxycorticosterone and 17α-hydroxyprogesterone (17α-OH-progesterone) to 11-deoxycortisol. More than 100 CYP21A2 variants give rise to congenital adrenal hyperplasia (CAH). We previously reported a structure of WT human P450 21A2 with bound progesterone and now present a structure bound to the other substrate (17α-OH-progesterone). We found that the 17α-OH-progesterone- and progesterone-bound complex structures are highly similar, with only some minor differences in surface loop regions. Twelve P450 21A2 variants associated with either salt-wasting or nonclassical forms of CAH were expressed, purified, and analyzed. The catalytic activities of these 12more » variants ranged from 0.00009% to 30% of WT P450 21A2 and the extent of heme incorporation from 10% to 95% of the WT. Substrate dissociation constants (Ks) for four variants were 37–13,000-fold higher than for WT P450 21A2. Cytochrome b5, which augments several P450 activities, inhibited P450 21A2 activity. Similar to the WT enzyme, high noncompetitive intermolecular kinetic deuterium isotope effects (≥ 5.5) were observed for all six P450 21A2 variants examined for 21-hydroxylation of 21-d3-progesterone, indicating that C–H bond breaking is a rate-limiting step over a 104-fold range of catalytic efficiency. Using UV-visible and CD spectroscopy, we found that P450 21A2 thermal stability assessed in bacterial cells and with purified enzymes differed among salt-wasting- and nonclassical-associated variants, but these differences did not correlate with catalytic activity. Our in-depth investigation of CAH-associated P450 21A2 variants reveals critical insight into the effects of disease-causing mutations on this important enzyme.« less

  18. Multi-step oxidations catalyzed by cytochrome P450 enzymes: Processive vs. distributive kinetics and the issue of carbonyl oxidation in chemical mechanisms

    PubMed Central

    Guengerich, F. Peter; Sohl, Christal D.; Chowdhury, Goutam

    2010-01-01

    Catalysis of sequential oxidation reactions is not unusual in cytochrome P450 (P450) reactions, not only in steroid metabolism but also with many xenobiotics. One issue is how processive/distributive these reactions are, i.e. how much do the “intermediate” products dissociate. Our work with human P450s 2E1, 2A6, and 19A1 on this subject has revealed a mixture of systems, surprisingly with a more distributive mechanism with an endogenous substrate (P450 19A1) than for some xenobiotics (P450s 2E1, 2A6). One aspect of this research involves carbonyl intermediates, and the choice of catalytic mechanism is linked to the hydration state of the aldehyde. The non-enzymatic rates of hydration and dehydration of carbonyls are not rapid and whether P450s catalyze the reversible hydration is unknown. If carbonyl hydration and dehydration are slow, the mechanism may be set by the carbonyl hydration status. PMID:20804723

  19. Electrochemistry of cytochrome P450 17α-hydroxylase/17,20-lyase (P450c17).

    PubMed

    Martin, Lisandra L; Kubeil, Clemens; Simonov, Alexandr N; Kuznetsov, Vladimir L; Corbin, C Jo; Auchus, Richard J; Conley, Alan J; Bond, Alan M; Rodgers, Raymond J

    2017-02-05

    Within the superfamily of cytochrome P450 enzymes (P450s), there is a small class which is functionally employed for steroid biosynthesis. The enzymes in this class appear to have a small active site to accommodate the steroid substrates specifically and snuggly, prior to the redox transformation or hydroxylation to form a product. Cytochrome P450c17 is one of these and is also a multi-functional P450, with two activities, the first 17α-hydroxylation of pregnenolone is followed by a subsequent 17,20-lyase transformation to dehydroepiandrosterone (DHEA) as the dominant pathways to cortisol precursors or androgens in humans, respectively. How P450c17 regulates these two redox reactions is of special interest. There is a paucity of direct electrochemical studies on steroidogenic P450s, and in this mini-review we provide an overview of these studies with P450c17. Historical consideration as to the difficulties in obtaining reliable electrochemistry due to issues of handling proteins on an electrode, together with advances in the electrochemical techniques are addressed. Recent work using Fourier transformed alternating current voltammetry is highlighted as this technique can provide both catalytic information simultaneously with the underlying redox transfer with the P450 haem. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Intracellular Enzymes Contribution to the Biocatalytic Removal of Pharmaceuticals by Trametes hirsuta.

    PubMed

    Haroune, Lounès; Saibi, Sabrina; Cabana, Hubert; Bellenger, Jean-Philippe

    2017-01-17

    The use of white rot fungi (WRF) for bioremediation of recalcitrant trace organic contaminants (TrOCs) is becoming greatly popular. Biosorption and lignin modifying enzymes (LMEs) are the most often reported mechanisms of action. Intracellular enzymes, such as cytochrome P450 (CYP450), have also been suggested to contribute. However, direct evidence of TrOCs uptake and intracellular transformation is lacking. The aim of this study was to evaluate the relative contribution of biosorption, extracellular LMEs activity, TrOCs uptake, and intracellular CYP450 on the removal of six nonsteroidal anti-inflammatories (NSAIs) by Trametes hirsuta. Results show that for most tested NSAIs, LMEs activity and biosorption failed to explain the observed removal. Most tested TrOCs are quickly taken up and intracellularly transformed. Fine characterization of intracellular transformation using ketoprofen showed that CYP450 is not the sole intracellular enzyme responsible for intracellular transformation. The contribution of CYP450 in further transformation of ketoprofen byproducts is also reported. These results illustrate that TrOCs transformation by WRF is a more complex process than previously reported. Rapid uptake of TrOCs and intracellular transformation through diverse enzymatic systems appears to be important components of WRF efficiency toward TrOCs.

  1. Metabolite formation kinetics and intrinsic clearance of phenacetin, tolbutamide, alprazolam, and midazolam in adenoviral cytochrome P450-transfected HepG2 cells and comparison with hepatocytes and in vivo.

    PubMed

    Donato, M Teresa; Hallifax, David; Picazo, Laura; Castell, José V; Houston, J Brian; Gomez-Lechón, M José; Lahoz, Agustin

    2010-09-01

    Cryopreserved human hepatocytes and other in vitro systems often underpredict in vivo intrinsic clearance (CL(int)). The aim of this study was to explore the potential utility of HepG2 cells transduced with adenovirus vectors expressing a single cytochrome P450 enzyme (Ad-CYP1A2, Ad-CYP2C9, or Ad-CYP3A4) for metabolic clearance predictions. The kinetics of metabolite formation from phenacetin, tolbutamide, and alprazolam and midazolam, selected as substrates probes for CYP1A2, CYP2C9, and CYP3A4, respectively, were characterized in this in vitro system. The magnitude of the K(m) or S(50) values observed in Ad-P450 cells was similar to those found in the literature for other human liver-derived systems. For each substrate, CL(int) (or CL(max)), values from Ad-P450 systems were scaled to human hepatocytes in primary culture using the relative activity factor (RAF) approach. Scaled Ad-P450 CL(int) values were approximately 3- to 6-fold higher (for phenacetin O-deethylation, tolbutamide 4-hydroxylation, and alprazolam 4-hydroxyaltion) or lower (midazolam 1'-hydroxylation) than those reported for human cryopreserved hepatocytes in suspension. Comparison with the in vivo data reveals that Ad-P450 cells provide a favorable prediction of CL(int) for the substrates studied (in a range of 20-200% in vivo observed CL(int)). This is an improvement compared with the consistent underpredictions (<10-50% in in vivo observed CL(int)) found in cryopreserved hepatocyte studies with the same substrates. These results suggest that the Ad-P450 cell is a promising in vitro system for clearance predictions of P450-metabolized drugs.

  2. Characterisation of the cytochrome P450 enzymes involved in the in vitro metabolism of granisetron.

    PubMed Central

    Bloomer, J C; Baldwin, S J; Smith, G J; Ayrton, A D; Clarke, S E; Chenery, R J

    1994-01-01

    1. The metabolism of granisetron was investigated in human liver microsomes to identify the specific forms of cytochrome P450 responsible. 2. 7-hydroxy and 9'-desmethyl granisetron were identified as the major products of metabolism following incubation of granisetron with human liver microsomes. At low, clinically relevant, concentrations of granisetron the 7-hydroxy metabolite predominated. Rates of granisetron 7-hydroxylation varied over 100-fold in the human livers investigated. 3. Enzyme kinetics demonstrated the involvement of at least two enzymes contributing to the 7-hydroxylation of granisetron, one of which was a high affinity component with a Km of 4 microM. A single, low affinity, enzyme was responsible for the 9'-desmethylation of granisetron. 4. Granisetron caused no inhibition of any of the cytochrome P450 activities investigated (CYP1A2, CYP2A6, CYP2B6, CYP2C9/8, CYP2C19, CYP2D6, CYP2E1 and CYP3A), at concentrations up to 250 microM. 5. Studies using chemical inhibitors selective for individual P450 enzymes indicated the involvement of cytochrome P450 3A (CYP3A), both pathways of granisetron metabolism being very sensitive to ketoconazole inhibition. Correlation data were consistent with the role of CYP3A3/4 in granisetron 9'-desmethylation but indicated that a different enzyme was involved in the 7-hydroxylation. PMID:7888294

  3. Simultaneous quantification of the abundance of several cytochrome P450 and uridine 5'-diphospho-glucuronosyltransferase enzymes in human liver microsomes using multiplexed targeted proteomics.

    PubMed

    Achour, Brahim; Russell, Matthew R; Barber, Jill; Rostami-Hodjegan, Amin

    2014-04-01

    Cytochrome P450 (P450) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes mediate a major proportion of phase I and phase II metabolism of xenobiotics. In vitro-in vivo extrapolation (IVIVE) of hepatic clearance in conjunction with physiologically-based pharmacokinetics (PBPK) has become common practice in drug development. However, prediction of xenobiotic kinetics in virtual populations requires knowledge of both enzyme abundances and the extent to which these correlate. A multiplexed quantification concatemer (QconCAT) strategy was used in this study to quantify the expression of several P450 and UGT enzymes simultaneously and to establish correlations between various enzyme abundances in 24 individual liver samples (ages 27-66, 14 male). Abundances were comparable to previously reported values, including CYP2C9 (40.0 ± 26.0 pmol mg(-1)), CYP2D6 (11.9 ± 13.2 pmol mg(-1)), CYP3A4 (68.1 ± 52.3 pmol mg(-1)), UGT1A1 (33.6 ± 34.0 pmol mg(-1)), and UGT2B7 (82.9 ± 36.1 pmol mg(-1)), expressed as mean ± S.D. Previous reports of correlations in expression of various P450 (CYP3A4/CYP3A5*1/*3, CYP2C8/CYP2C9, and CYP3A4/CYP2B6) were confirmed. New correlations were demonstrated between UGTs [including UGT1A6/UGT1A9 (r(s) = 0.82, P < 0.0001) and UGT2B4/UGT2B15 (r(s) = 0.71, P < 0.0001)]. Expression of some P450 and UGT enzymes were shown to be correlated [including CYP1A2/UGT2B4 (r(s) = 0.67, P = 0.0002)]. The expression of CYP3A5 in individuals with *1/*3 genotype (n = 11) was higher than those with *3/*3 genotype (n = 10) (P < 0.0001). No significant effect of gender or history of smoking or alcohol use on enzyme expression was observed; however, expression of several enzymes declined with age. The correlation matrix produced for the first time by this study can be used to generate more realistic virtual populations with respect to abundance of various enzymes.

  4. Phenobarbital induction of cytochromes P-450. High-level long-term responsiveness of primary rat hepatocyte cultures to drug induction, and glucocorticoid dependence of the phenobarbital response.

    PubMed Central

    Waxman, D J; Morrissey, J J; Naik, S; Jauregui, H O

    1990-01-01

    The induction of hepatic cytochromes P-450 by phenobarbital (PB) was studied in rat hepatocytes cultured for up to 5 weeks on Vitrogen-coated plates in serum-free modified Chee's medium then exposed to PB (0.75 mM) for an additional 4 days. Immunoblotting analysis indicated that P-450 forms PB4 (IIB1) and PB5 (IIB2) were induced dramatically (greater than 50-fold increase), up to levels nearly as high as those achieved in PB-induced rat liver in vivo. The newly synthesized cytochrome P-450 was enzymically active, as shown by the major induction of the P-450 PB4-dependent steroid 16 beta-hydroxylase and pentoxyresorufin O-dealkylase activities in the PB-induced hepatocyte microsomes (up to 90-fold increase). PB induction of these P-450s was markedly enhanced by the presence of dexamethasone (50 nM-1 microM), which alone was not an affective inducing agent, and was inhibited by greater than 90% by 10% fetal bovine serum. The PB response was also inhibited (greater than 85%) by growth hormone (250 ng/ml), indicating that this hormone probably acts directly on the hepatocyte when it antagonizes the induction of P-450 PB4 in intact rats. In untreated hepatocytes, P-450 RLM2 (IIA2), P-450 3 (IIA1) and NADPH P-450 reductase levels were substantially maintained in the cultures for 10-20 days. The latter two enzymes were also inducible by PB to an extent (3-4 fold elevation) that is comparable with that observed in the liver in vivo. Moreover, P-450c (IA1) and P-450 3 (IIA1) were highly inducible by 3-methylcholanthrene (5 microM; 48 h exposure) even after 3 weeks in culture. In contrast, the male-specific pituitary-regulated P-450 form 2c (IIC11) was rapidly lost upon culturing the hepatocytes, suggesting that supplementation of appropriate hormonal factors may be necessary for its expression. The present hepatocyte culture system exhibits a responsiveness to drug inducers that is qualitatively and quantitatively comparable with that observed in vivo, and should prove valuable for more detailed investigations of the molecular and mechanistic basis of the response to PB and its modulation by endogenous hormones. Images Fig. 3. Fig. 5. PMID:2222405

  5. Influence of amino acid residues near the active site of cytochrome P450 from Bacillus megaterium on the selectivity of n-octane oxidation to octanol regioisomers

    NASA Astrophysics Data System (ADS)

    Miyaji, Akimitsu; Baba, Toshihide

    2017-09-01

    A mutant of cytochrome P450 from Bacillus megaterium (CYP450BM-3) was prepared by replacing two alanine residues around active site of the enzyme, alanine 328 and alanine 82, with leucine and tryptophan, respectively. The CYP450BM-3 mutant produced 2-octanol selectively from n-octane under atmospheric temperature and pressure; its selectivity was 74%. Furthermore, the mutant produced 1-octanol, which is not produced by wild-type enzyme.

  6. A Novel Semi-biosynthetic Route for Artemisinin Production Using Engineered Substrate-Promiscuous P450BM3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, Jeffrey; Yoshikuni, Yasuo; Fisher, Karl

    2009-11-30

    Production of fine heterologus pathways in microbial hosts is frequently hindered by insufficient knowledge of the native metabolic pathway and its cognate enzymes; often the pathway is unresolved and enzymes lack detailed characterization. An alternative paradigm to using native pathways is de novo pathway design using well-characterized, substrate-promiscuous enzymes. We demonstrate this concept using P450BM3 from Bacillus megaterium. Using a computer model, we illustrate how key P450BM3 activ site mutations enable binding of non-native substrate amorphadiene, incorporating these mutations into P450BM3 enabled the selective oxidation of amorphadiene arteminsinic-11s,12-epoxide, at titers of 250 mg L"1 in E. coli. We also demonstratemore » high-yeilding, selective transformations to dihydroartemisinic acid, the immediate precursor to the high value anti-malarial drug artemisinin.« less

  7. Engineering of a functional human NADH-dependent cytochrome P450 system

    PubMed Central

    Döhr, Olaf; Paine, Mark J. I.; Friedberg, Thomas; Roberts, Gordon C. K.; Wolf, C. Roland

    2001-01-01

    A functional human NADH-dependent cytochrome P450 system has been developed by altering the cofactor preference of human NADPH cytochrome P450 reductase (CPR), the redox partner for P450s. This has been achieved by a single amino acid change of the conserved aromatic amino acid Trp-676, which covers the re-side of the FAD isoalloxazine ring in the nicotinamide-binding site. Of the mutations made, the substitution of Trp-676 with alanine (W676A) resulted in a functional NADH-dependent enzyme, which catalyzed the reduction of cytochrome c and ferricyanide as well as facilitated the metabolism of 7-ethoxyresorufin by CYP1A2. Kinetic analysis measuring cytochrome c activity revealed that the NADH-dependent kcat of W676A is equivalent (90%) to the NADPH-dependent kcat of the wild-type enzyme, with W676A having an approximately 1,000-fold higher specificity for NADH. The apparent KMNADPH and KMNADH values of W676A are 80- and 150-fold decreased, respectively. In accordance with structural data, which show a bipartite binding mode of NADPH, substitution of Trp-676 does not affect 2′-AMP binding as seen by the inhibition of both wild-type CPR and the W676A mutant. Furthermore, NADPH was a potent inhibitor of the W676A NADH-dependent cytochrome c reduction and CYP1A2 activity. Overall, the results show that Trp-676 of human CPR plays a major role in cofactor discrimination, and substitution of this conserved aromatic residue with alanine results in an efficient NADH-dependent cytochrome P450 system. PMID:11136248

  8. Humanized mouse lines and their application for prediction of human drug metabolism and toxicological risk assessment

    PubMed Central

    Cheung, Connie; Gonzalez, Frank J

    2008-01-01

    Cytochrome P450s (P450s) are important enzymes involved in the metabolism of xenobiotics, particularly clinically used drugs, and are also responsible for metabolic activation of chemical carcinogens and toxins. Many xenobiotics can activate nuclear receptors that in turn induce the expression of genes encoding xenobiotic metabolizing enzymes and drug transporters. Marked species differences in the expression and regulation of cytochromes P450 and xenobiotic nuclear receptors exist. Thus obtaining reliable rodent models to accurately reflect human drug and carcinogen metabolism is severely limited. Humanized transgenic mice were developed in an effort to create more reliable in vivo systems to study and predict human responses to xenobiotics. Human P450s or human xenobiotic-activated nuclear receptors were introduced directly or replaced the corresponding mouse gene, thus creating “humanized” transgenic mice. Mice expressing human CYP1A1/CYP1A2, CYP2E1, CYP2D6, CYP3A4, CY3A7, PXR, PPARα were generated and characterized. These humanized mouse models offers a broad utility in the evaluation and prediction of toxicological risk that may aid in the development of safer drugs. PMID:18682571

  9. Cytochrome P450 Initiates Degradation of cis-Dichloroethene by Polaromonas sp. Strain JS666

    PubMed Central

    Nishino, Shirley F.; Shin, Kwanghee A.; Gossett, James M.

    2013-01-01

    Polaromonas sp. strain JS666 grows on cis-1,2-dichoroethene (cDCE) as the sole carbon and energy source under aerobic conditions, but the degradation mechanism and the enzymes involved are unknown. In this study, we established the complete pathway for cDCE degradation through heterologous gene expression, inhibition studies, enzyme assays, and analysis of intermediates. Several lines of evidence indicate that a cytochrome P450 monooxygenase catalyzes the initial step of cDCE degradation. Both the transient accumulation of dichloroacetaldehyde in cDCE-degrading cultures and dichloroacetaldehyde dehydrogenase activities in cell extracts of JS666 support a pathway for degradation of cDCE through dichloroacetaldehyde. The mechanism minimizes the formation of cDCE epoxide. The molecular phylogeny of the cytochrome P450 gene and the organization of neighboring genes suggest that the cDCE degradation pathway recently evolved in a progenitor capable of degrading 1,2-dichloroethane either by the recruitment of the cytochrome P450 monooxygenase gene from an alkane catabolic pathway or by selection for variants of the P450 in a preexisting 1,2-dichloroethane catabolic pathway. The results presented here add yet another role to the broad array of productive reactions catalyzed by cytochrome P450 enzymes. PMID:23354711

  10. Plant Expression of a Bacterial Cytochrome P450 That Catalyzes Activation of a Sulfonylurea Pro-Herbicide.

    PubMed Central

    O'Keefe, D. P.; Tepperman, J. M.; Dean, C.; Leto, K. J.; Erbes, D. L.; Odell, J. T.

    1994-01-01

    The Streptomyces griseolus gene encoding herbicide-metabolizing cytochrome P450SU1 (CYP105A1) was expressed in transgenic tobacco (Nicotiana tabacum). Because this P450 can be reduced by plant chloroplast ferredoxin in vitro, chloroplast-targeted and nontargeted expression were compared. Whereas P450SU1 antigen was found in the transgenic plants regardless of the targeting, only those with chloroplast-directed enzyme performed P450SU1-mediated N-dealkylation of the sulfonylurea 2-methylethyl-2,3-dihydro-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]-1, 2-benzoisothiazole- 7-sulfonamide-1,1-dioxide (R7402). Chloroplast targeting appears to be essential for the bacterial P450 to function in the plant. Because the R7402 metabolite has greater phytotoxicity than R7402 itself, plants bearing active P450SU1 are susceptible to injury from R7402 treatment that is harmless to plants without P450SU1. Thus, P450SU1 expression and R7402 treatment can be used as a negative selection system in plants. Furthermore, expression of P450SU1 from a tissue-specific promoter can sequester production of the phytotoxic R7402 metabolite to a single plant tissue. In tobacco expressing P450SU1 from a tapetum-specific promoter, treatment of immature flower buds with R7402 caused dramatically lowered pollen viability. Such treatment could be the basis for a chemical hybridizing agent. PMID:12232216

  11. Preparation and characterization of monoclonal antibodies recognizing unique epitopes on sexually differentiated rat liver cytochrome P-450 isozymes.

    PubMed

    Morgan, E T; Rönnholm, M; Gustafsson, J A

    1987-07-14

    Cytochrome P-450 isozymes P-450(16 alpha), P-450(15 beta), and P-450DEa are immunochemically related, as indicated by mutual cross-reactivity with polyclonal antibody preparations. We have isolated five monoclonal antibodies to P-450(15 beta) and one antibody to P-450(16 alpha) that show selectivity for the respective antigens. High frequencies of cross-reactivity were observed, indicating a high degree of homology among P-450(16 alpha), P-450(15 beta), and P-450DEa. All of the P-450(15 beta-specific antibodies bound to the same epitope, or closely grouped epitopes, supporting this conclusion. The specificity of each monoclonal antibody was characterized by enzyme-linked immunosorbent assay. Western immunoblotting, and antibody-Sepharose immunoadsorption of solubilized rat liver microsomes. Antibodies F22 and F23, which were apparently identical, were specific for P-450(15 beta) by these criteria. However, the apparent specificities of antibodies F3 and F20 for P-450(15 beta), and of M16 for P-450(16 alpha), were highly dependent on the analytical technique used. The five anti-P-450(15 beta) antibodies all inhibited the catalytic activity of microsomal P-450(15 beta), by a maximum of 70%. However, they also produced a similar inhibition of microsomal P-450(16 alpha-specific antibody M16 and F23 have a low-affinity interaction with an epitope on P-450(16 alpha). The P-450(16 alpha)-specific antibody M16 was not inhibitory. The results indicate that the apparent specificity of a monoclonal antibody for an antigen determined by, e.g., Western blotting does not allow the conclusive identification of a protein in another system, e.g., immunoprecipitation of in vitro translation reaction products.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli

    PubMed Central

    Biggs, Bradley Walters; Lim, Chin Giaw; Sagliani, Kristen; Shankar, Smriti; Stephanopoulos, Gregory; Ajikumar, Parayil Kumaran

    2016-01-01

    Recent advances in metabolic engineering have demonstrated the potential to exploit biological chemistry for the synthesis of complex molecules. Much of the progress to date has leveraged increasingly precise genetic tools to control the transcription and translation of enzymes for superior biosynthetic pathway performance. However, applying these approaches and principles to the synthesis of more complex natural products will require a new set of tools for enabling various classes of metabolic chemistries (i.e., cyclization, oxygenation, glycosylation, and halogenation) in vivo. Of these diverse chemistries, oxygenation is one of the most challenging and pivotal for the synthesis of complex natural products. Here, using Taxol as a model system, we use nature’s favored oxygenase, the cytochrome P450, to perform high-level oxygenation chemistry in Escherichia coli. An unexpected coupling of P450 expression and the expression of upstream pathway enzymes was discovered and identified as a key obstacle for functional oxidative chemistry. By optimizing P450 expression, reductase partner interactions, and N-terminal modifications, we achieved the highest reported titer of oxygenated taxanes (∼570 ± 45 mg/L) in E. coli. Altogether, this study establishes E. coli as a tractable host for P450 chemistry, highlights the potential magnitude of protein interdependency in the context of synthetic biology and metabolic engineering, and points to a promising future for the microbial synthesis of complex chemical entities. PMID:26951651

  13. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli.

    PubMed

    Biggs, Bradley Walters; Lim, Chin Giaw; Sagliani, Kristen; Shankar, Smriti; Stephanopoulos, Gregory; De Mey, Marjan; Ajikumar, Parayil Kumaran

    2016-03-22

    Recent advances in metabolic engineering have demonstrated the potential to exploit biological chemistry for the synthesis of complex molecules. Much of the progress to date has leveraged increasingly precise genetic tools to control the transcription and translation of enzymes for superior biosynthetic pathway performance. However, applying these approaches and principles to the synthesis of more complex natural products will require a new set of tools for enabling various classes of metabolic chemistries (i.e., cyclization, oxygenation, glycosylation, and halogenation) in vivo. Of these diverse chemistries, oxygenation is one of the most challenging and pivotal for the synthesis of complex natural products. Here, using Taxol as a model system, we use nature's favored oxygenase, the cytochrome P450, to perform high-level oxygenation chemistry in Escherichia coli. An unexpected coupling of P450 expression and the expression of upstream pathway enzymes was discovered and identified as a key obstacle for functional oxidative chemistry. By optimizing P450 expression, reductase partner interactions, and N-terminal modifications, we achieved the highest reported titer of oxygenated taxanes (∼570 ± 45 mg/L) in E. coli. Altogether, this study establishes E. coli as a tractable host for P450 chemistry, highlights the potential magnitude of protein interdependency in the context of synthetic biology and metabolic engineering, and points to a promising future for the microbial synthesis of complex chemical entities.

  14. Exploring the role of drug-metabolising enzymes in antidepressant side effects.

    PubMed

    Hodgson, Karen; Tansey, Katherine E; Uher, Rudolf; Dernovšek, Mojca Zvezdana; Mors, Ole; Hauser, Joanna; Souery, Daniel; Maier, Wolfgang; Henigsberg, Neven; Rietschel, Marcella; Placentino, Anna; Craig, Ian W; Aitchison, Katherine J; Farmer, Anne E; Dobson, Richard J B; McGuffin, Peter

    2015-07-01

    Cytochrome P450 enzymes are important in the metabolism of antidepressants. The highly polymorphic nature of these enzymes has been linked to variability in antidepressant metabolism rates, leading to hope regarding the use of P450 genotyping to guide treatment. However, evidence that P450 genotypic differences underlie the variation in treatment outcomes is inconclusive. We explored the links between both P450 genotype and serum concentrations of antidepressant with antidepressant side effects, using data from the Genome-Based Therapeutic Drugs for Depression Project (GENDEP), which is a large (n = 868), pharmacogenetic study of depressed individuals treated with escitalopram or nortriptyline. Patients were genotyped for the enzymes CYP2C19 and CYP2D6, and serum concentrations of both antidepressant and primary metabolite were measured after 8 weeks of treatment. Side effects were assessed weekly. We investigated associations between P450 genotypes, serum concentrations of antidepressants and side effects, as well as the relationship between P450 genotype and study discontinuation. P450 genotype did not predict total side effect burden (nortriptyline: n = 251, p = 0.5638, β = -0.133, standard error (SE) = 0.229; escitalopram: n = 340, p = 0.9627, β = -0.004, SE = 0.085), study discontinuation (nortriptyline n = 284, hazard ratio (HR) = 1.300, p = 0.174; escitalopram n = 376, HR = 0.870, p = 0.118) or specific side effects. Serum concentrations of antidepressant were only related to a minority of the specific side effects measured: dry mouth, dizziness and diarrhoea. In this sample where antidepressant dosage is titrated using clinical judgement, P450 genotypes do not explain differences between patients in side effects with antidepressants. Serum drug concentrations appear to only explain variability in the occurrence of a minority of specific side effects.

  15. Cytochrome P450s and molecular epidemiology

    NASA Astrophysics Data System (ADS)

    Gonzalez, Frank J.; Gelboin, Harry V.

    1993-03-01

    Cytochrome P450 (P450) represent a superfamily of heme-containing monooxygenases that are found throughout the animal and plant kingdoms and in many microorganisms. A number of these enzymes are involved in biosynthetic pathways of steroid synthesis but in mammals the vast majority of P450s function to metabolize foreign chemicals or xenobiotics. In the classical phase I reactions on the latter, a membrane-bound P450 will hydroxylate a compound, usually hydrophobic in nature, and the hydroxyl group will serve as a substrate for the various transferases or phase II enzymes that attach hydrophilic substituents such as glutathione, sulfate or glucuronic acid. Some chemicals, however, are metabolically-activated by P450s to electrophiles capable of reacting with cellular macromolecules. The cellular concentrations of the chemical and P450, reactivity of the active metabolite with nucleic acid and the repairability of the resultant adducts, in addition to the nature of the cell type, likely determines whether a chemical will be toxic and kill the cell or will transform the cell. Immunocorrelative and cDNA-directed expression have been used to define the substrate specificities of numerous human P450s. Levels of expression of different human P450 forms have been measured by both in vivo and in vitro methodologies leading to the realization that a large degree of interindividual differences occur in P450 expression. Reliable procedures for measuring P450 expression in healthy and diseased subjects will lead to prospective and case- cohort studies to determine whether interindividual differences in levels of P450 are associated with susceptibility or resistance to environmentally-based disease.

  16. ISOLATION OF A CYTOCHROME P-450 STRUCTURAL GENE FROM SACCHAROMYCES CEREVISIAE

    EPA Science Inventory

    We have transformed a Saccharomyces cerevisiae host with an S. cerevisiae genomic library contained in the shuttle vector YEp24 and screened the resultant transformants for resistance to ketoconazole (Kc), an inhibitor of the cytochrome P-450 (P-450) enzyme lanosterol 14-demethyl...

  17. Isolation and expression of cytochrome P450 genes in the antennae and gut of pine beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae) following exposure to host monoterpenes

    Treesearch

    Claudia Cano-Ramirez; Maria Fernanda Lopez; Ana K. Cesar-Ayala; Veronica Pineda-Martinez; Brian T. Sullivan; Gerardo and Zuniga

    2013-01-01

    Bark beetles oxidize the defensive monoterpenes of their host trees both to detoxify them and convert them into components of their pheromone system. This oxidation is catalyzed by cytochrome P450 enzymes and occurs in different tissues of the insect, including the gut (i.e., the site where the beetle's pheromones are produced and accumulated) and the antennae (i....

  18. Pathways of Metabolite-related Damage to A Synthetic p53 Gene Exon 7 Oligonucleotide using Magnetic Enzyme Bioreactor Beads and LC-MS/MS Sequencing.

    PubMed

    Malla, Spundana; Kadimisetty, Karteek; Jiang, Di; Choudhary, Dharamainder; Rusling, James F

    2018-05-11

    Reactive metabolites of environmental chemicals and drugs can cause site-specific damage to p53 tumor suppressor gene in a major pathway for genotoxicity. We report here a high throughput, cell-free, 96-well plate magnetic bead-enzyme system interfaced with LC-MS/MS sequencing to bioactivate test chemicals and identify resulting adduction sites on genes. Bioactivated aflatoxin B1 was reacted with a 32 bp exon 7 fragment of the p53 gene using 8 microsomal cyt P450 enzymes from different organs coated on magnetic beads. All cyt P450s converted aflatoxin B1 to aflatoxin B1-8,9-epoxide that adducts guanine (G) in codon 249, with subsequent depurination to give abasic sites, then strand breaks. This is the first demonstration in a cell-free medium that aflatoxin B1 metabolite selectively causes abasic site formation and strand breaks at codon 249 of the p53 probe, corresponding to the chemical pathway and mutations of p53 in human liver cells and tumors. Molecular modeling supports the view that binding of aflatoxin B1-8,9-epoxide to G in codon 249 precedes the SN2 adduction reaction. Among a range of metabolic enzymes characteristic of different organs, human liver microsomes and cyt P450 3A5 supersomes showed the highest bioactivation rate for p53 exon 7 damage. This method to identify metabolite-related gene damage sites may facilitate predictions of organ-specific cancers for test chemicals via correlations with mutation sites.

  19. Autoantibodies against Cytochrome P450 Side-Chain Cleavage Enzyme in Dogs (Canis lupus familiaris) Affected with Hypoadrenocorticism (Addison’s Disease)

    PubMed Central

    Boag, Alisdair M.; Christie, Michael R.; McLaughlin, Kerry A.; Syme, Harriet M.; Graham, Peter; Catchpole, Brian

    2015-01-01

    Canine hypoadrenocorticism likely arises from immune-mediated destruction of adrenocortical tissue, leading to glucocorticoid and mineralocorticoid deficiency. In humans with autoimmune Addison’s disease (AAD) or autoimmune polyendocrine syndrome (APS), circulating autoantibodies have been demonstrated against enzymes associated with adrenal steroid synthesis. The current study investigates autoantibodies against steroid synthesis enzymes in dogs with spontaneous hypoadrenocorticism. Coding regions of canine CYP21A2 (21-hydroxylase; 21-OH), CYP17A1 (17-hydroxylase; 17-OH), CYP11A1 (P450 side-chain cleavage enzyme; P450scc) and HSD3B2 (3β hydroxysteroid dehydrogenase; 3βHSD) were amplified, cloned and expressed as 35S-methionine radiolabelled recombinant protein. In a pilot study, serum samples from 20 dogs with hypoadrenocorticism and four unaffected control dogs were screened by radio-immunoprecipitation assay. There was no evidence of reactivity against 21-OH, 17-OH or 3βHSD, but five dogs with hypoadrenocorticism showed immunoreactivity to P450scc compared with controls. Serum samples were subsequently obtained from 213 dogs diagnosed with hypoadrenocorticism and 110 dogs from a hospital control population. Thirty control dogs were randomly selected to establish a threshold for antibody positivity (mean + 3 × standard deviation). Dogs with hypoadrenocorticism were more likely to be P450scc autoantibody positive than hospital controls (24% vs. 1.2%, respectively; p = 0.0016). Sex was significantly associated with the presence of P450scc autoantibodies in the case population, with 30% of females testing positive compared with 17% of males (p = 0.037). Significant associations with breed (p = 0.015) and DLA-type (DQA1*006:01 allele; p = 0.017) were also found. This cross-sectional study indicates that P450scc autoantibodies are present in a proportion of dogs affected with hypoadrenocorticism. PMID:26618927

  20. Autoantibodies against Cytochrome P450 Side-Chain Cleavage Enzyme in Dogs (Canis lupus familiaris) Affected with Hypoadrenocorticism (Addison's Disease).

    PubMed

    Boag, Alisdair M; Christie, Michael R; McLaughlin, Kerry A; Syme, Harriet M; Graham, Peter; Catchpole, Brian

    2015-01-01

    Canine hypoadrenocorticism likely arises from immune-mediated destruction of adrenocortical tissue, leading to glucocorticoid and mineralocorticoid deficiency. In humans with autoimmune Addison's disease (AAD) or autoimmune polyendocrine syndrome (APS), circulating autoantibodies have been demonstrated against enzymes associated with adrenal steroid synthesis. The current study investigates autoantibodies against steroid synthesis enzymes in dogs with spontaneous hypoadrenocorticism. Coding regions of canine CYP21A2 (21-hydroxylase; 21-OH), CYP17A1 (17-hydroxylase; 17-OH), CYP11A1 (P450 side-chain cleavage enzyme; P450scc) and HSD3B2 (3β hydroxysteroid dehydrogenase; 3βHSD) were amplified, cloned and expressed as 35S-methionine radiolabelled recombinant protein. In a pilot study, serum samples from 20 dogs with hypoadrenocorticism and four unaffected control dogs were screened by radio-immunoprecipitation assay. There was no evidence of reactivity against 21-OH, 17-OH or 3βHSD, but five dogs with hypoadrenocorticism showed immunoreactivity to P450scc compared with controls. Serum samples were subsequently obtained from 213 dogs diagnosed with hypoadrenocorticism and 110 dogs from a hospital control population. Thirty control dogs were randomly selected to establish a threshold for antibody positivity (mean + 3 × standard deviation). Dogs with hypoadrenocorticism were more likely to be P450scc autoantibody positive than hospital controls (24% vs. 1.2%, respectively; p = 0.0016). Sex was significantly associated with the presence of P450scc autoantibodies in the case population, with 30% of females testing positive compared with 17% of males (p = 0.037). Significant associations with breed (p = 0.015) and DLA-type (DQA1*006:01 allele; p = 0.017) were also found. This cross-sectional study indicates that P450scc autoantibodies are present in a proportion of dogs affected with hypoadrenocorticism.

  1. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Senyan; Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, NY 12201; Yao, Yunyi

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity withmore » the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity.« less

  2. Regulation of N-nitrosodimethylamine demethylase in rat liver and kidney.

    PubMed

    Hong, J Y; Pan, J M; Dong, Z G; Ning, S M; Yang, C S

    1987-11-15

    In previous work, the low Km form of N-nitrosodimethylamine (NDMA) demethylase has been demonstrated to be due to a specific form of cytochrome P-450 (designated as P-450ac) and to be the enzyme required for the metabolic activation of NDMA. The present work deals with the regulation of P-450ac in rat liver during development as well as the mechanism of induction of P-450ac in rat liver and kidney by inducers. NDMA demethylase activity was almost undetectable in the liver of newborn rats, increased after day 4, and remained elevated throughout the first 17 days of the neonatal period. The enhancement of NDMA demethylase activity during development was accompanied by corresponding increases of P-450ac content and P-450ac mRNA levels as determined by Western and slot blot analyses, respectively. No sex differences with respect to this enzyme were observed in the developing rats. Acetone treatment on late-term pregnant rats for 2 days resulted in transplacental inductions of P-450ac and P-450ac mRNA in the newborn rats. Pretreatment of young male rats and adult female rats with acetone or isopropyl alcohol caused increases of NDMA demethylase activity and P-450ac content in the liver but no significant change in the P-450ac mRNA level. These facts suggest the possible existence of a posttranscription regulatory mechanism under these induction conditions. The presence of P-450ac in rat kidney was demonstrated by Western and Northern blot analyses. The renal form of P-450ac seemed to be regulated in a fashion similar to the hepatic P-450ac regarding its response to inducing factors such as fasting and acetone treatment.

  3. An Overview of P450 Enzymes: Opportunity and Challenges in Industrial Applications

    DOE PAGES

    Notonier, Sandra; Alexander, Meyers; Jayakody, Lahiru N.

    2016-10-23

    Cytochrome P450 enzymes (P450s) containing a heme-iron center, are biocatalysts from all kingdoms, involvedin a large variety of reactions. Their potential in catalyzing a broad range of substrates makes perfect candidates for biotechnology applications and the production of high-value compounds. Biocatalytic reactions performed by P450s have a great interest in the pharmaceutical industry, fine chemicals, cosmetics, and for bioremediation procedures. However, the complex nature of this protein is still a major hurdle in the prospect of using their promising ability for expanding the number of industrial applications. Multiple approaches of protein engineering are currently conducted to improve activity, stability and/ormore » substrate specificity for a given reaction. Furthermore, in combination with the appropriate biocatalyst, a suitable bioengineering process is a key step in the implementation of P450s at the industrial scale.« less

  4. An Overview of P450 Enzymes: Opportunity and Challenges in Industrial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notonier, Sandra; Alexander, Meyers; Jayakody, Lahiru N.

    Cytochrome P450 enzymes (P450s) containing a heme-iron center, are biocatalysts from all kingdoms, involvedin a large variety of reactions. Their potential in catalyzing a broad range of substrates makes perfect candidates for biotechnology applications and the production of high-value compounds. Biocatalytic reactions performed by P450s have a great interest in the pharmaceutical industry, fine chemicals, cosmetics, and for bioremediation procedures. However, the complex nature of this protein is still a major hurdle in the prospect of using their promising ability for expanding the number of industrial applications. Multiple approaches of protein engineering are currently conducted to improve activity, stability and/ormore » substrate specificity for a given reaction. Furthermore, in combination with the appropriate biocatalyst, a suitable bioengineering process is a key step in the implementation of P450s at the industrial scale.« less

  5. Pungent ginger components modulates human cytochrome P450 enzymes in vitro

    PubMed Central

    Li, Mian; Chen, Pei-zhan; Yue, Qing-xi; Li, Jing-quan; Chu, Rui-ai; Zhang, Wei; Wang, Hui

    2013-01-01

    Aim: Ginger rhizome is used worldwide as a spicy flavor agent. This study was designed to explore the potential effects of pungent ginger components, 6-, 8-, and 10-gingerol, on human cytochrome P450 (CYP450) enzymes that are responsible for the metabolism of many prescription drugs. Methods: The activities of human CYP2C9, CYP2C19, CYP2D6, and CYP3A4 were analyzed using Vivid P450 assay kits. The mRNA expression of CYP3A4 in human hepatocellular carcinoma cell line HepG2 was measured using quantitative real-time PCR assay. Results: All three gingerols potently inhibited CYP2C9 activity, exerted moderate inhibition on CYP2C19 and CYP3A4, and weak inhibion on CYP2D6. 8-Gingerol was the most potent in inhibition of P450 enzymes with IC50 values of 6.8, 12.5, 8.7, and 42.7 μmol/L for CYP2C9, CYP2C19, CYP3A4, and CYP2D6, respectively. By comparing the effects of gingerols on CYP3A4 with three different fluorescent substrate probes, it was demonstrated that the inhibition of gingerols on CYP3A4 had no substrate-dependence. In HepG2 cells, 8-gingerol and 10-gingerol inhibited, but 6-gingerol induced mRNA expression of CYP3A4. Conclusion: 6-, 8-, and 10-gingerol suppress human cytochrome P450 activity, while 8- and 10-gingerol inhibit CYP3A4 expression. The results may have an implication for the use of ginger or ginger products when combined with therapeutic drugs that are metabolized by cytochrome P450 enzymes. PMID:23770984

  6. Cytochrome P450-derived eicosanoids: the neglected pathway in cancer

    PubMed Central

    Kaipainen, Arja; Greene, Emily R.; Huang, Sui

    2010-01-01

    Endogenously produced lipid autacoids are locally acting small molecule mediators that play a central role in the regulation of inflammation and tissue homeostasis. A well-studied group of autacoids are the products of arachidonic acid metabolism, among which the prostaglandins and leukotrienes are the best known. They are generated by two pathways controlled by the enzyme systems cyclooxygenase and lipoxygenase, respectively. However, arachidonic acid is also substrate for a third enzymatic pathway, the cytochrome P450 (CYP) system. This third eicosanoid pathway consists of two main branches: ω-hydroxylases convert arachidonic acid to hydroxyeicosatetraenoic acids (HETEs) and epoxygenases convert it to epoxyeicosatrienoic acids (EETs). This third CYP pathway was originally studied in conjunction with inflammatory and cardiovascular disease. Arachidonic acid and its metabolites have recently stimulated great interest in cancer biology; but, unlike prostaglandins and leukotrienes the link between cytochome P450 metabolites and cancer has received little attention. In this review, the emerging role in cancer of cytochrome P450 metabolites, notably 20-HETE and EETs, are discussed. PMID:20941528

  7. Determination of a Degradation Constant for CYP3A4 by Direct Suppression of mRNA in a Novel Human Hepatocyte Model, HepatoPac.

    PubMed

    Ramsden, Diane; Zhou, Jin; Tweedie, Donald J

    2015-09-01

    Accurate determination of rates of de novo synthesis and degradation of cytochrome P450s (P450s) has been challenging. There is a high degree of variability in the multiple published values of turnover for specific P450s that is likely exacerbated by differences in methodologies. For CYP3A4, reported half-life values range from 10 to 140 hours. An accurate value for kdeg has been identified as a major limitation for prediction of drug interactions involving mechanism-based inhibition and/or induction. Estimation of P450 half-life from in vitro test systems, such as human hepatocytes, is complicated by differential decreased enzyme function over culture time, attenuation of the impact of enzyme loss through inclusion of glucocorticoids in media, and viability limitations over long-term culture times. HepatoPac overcomes some of these challenges by providing extended stability of enzymes (2.5 weeks in our hands). As such it is a unique tool for studying rates of enzyme degradation achieved through modulation of enzyme levels. CYP3A4 mRNA levels were rapidly depleted by >90% using either small interfering RNA or addition of interleukin-6, which allowed an estimation of the degradation rate constant for CYP3A protein over an incubation time of 96 hours. The degradation rate constant of 0.0240 ± 0.005 hour(-1) was reproducible in hepatocytes from five different human donors. These donors also reflected the overall population with respect to CYP3A5 genotype. This methodology can be applied to additional enzymes and may provide a more accurate in vitro derived kdeg value for predicting clinical drug-drug interaction outcomes. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Immunohistochemical localization of steroidogenic enzymes in the testis of the sika deer (Cervus nippon) during developmental and seasonal changes.

    PubMed

    Hayakawa, Daisuke; Sasaki, Motoki; Suzuki, Masatsugu; Tsubota, Toshio; Igota, Hiromasa; Kaji, Koichi; Kitamura, Nobuo

    2010-02-01

    Testicular steroidogenesis and spermatogenesis during developmental and seasonal changes were investigated in male sika deer (Cervus nippon), a short-day seasonal breeder, to clarify the physiological mechanisms for reproductive function. The immunohistochemical localization of steroidogenic enzymes (P450scc, P450c17, 3betaHSD and P450arom), spermatogenesis and cell proliferation were analyzed in the testes of fetal (164 to 218 days of fetal age), fawn (0 years old), yearling (1 year old) and adult (more than 2 years old) male sika deer. Three kinds of steroidogenic enzymes, P450scc, P450c17 and 3betaHSD, essential for the synthesis of testosterone were located only in the Leydig cells of the testes from the fetal period, and these localizations did not change during developmental or seasonal stages. Immunoreactivity for P450arom, a key enzyme converting testosterone to estradiol, was also localized only in the Leydig cells of testes but was also further limited to the testes of yearlings and adults. Seminiferous tubules had already formed in the fetal testes examined in the present study. Spermatogenesis started in yearlings and was more active in the breeding season. In the adult sika deer testes, the Leydig cells, which displayed immunoreactivities for steroidogenic enzymes, changed to have more cytoplasm in the breeding season than in the non-breeding season. Cell proliferation of Leydig cells was hardly observed in adult testes during seasonal changes. The present results suggested that sika deer testes start to synthesize testosterone from the fetal period, that seasonal changes in testosterone and estradiol syntheses are dependent on the quantitative variation of steroidogenic enzymes synchronized with the size of Leydig cells and that estradiol synthesized in yearling and adult testes makes a contribution to the initiation and recrudescence of spermatogenesis and spermiogenesis in the sika deer.

  9. Ecologically Appropriate Xenobiotics Induce Cytochrome P450s in Apis mellifera

    PubMed Central

    Johnson, Reed M.; Mao, Wenfu; Pollock, Henry S.; Niu, Guodong; Schuler, Mary A.; Berenbaum, May R.

    2012-01-01

    Background Honey bees are exposed to phytochemicals through the nectar, pollen and propolis consumed to sustain the colony. They may also encounter mycotoxins produced by Aspergillus fungi infesting pollen in beebread. Moreover, bees are exposed to agricultural pesticides, particularly in-hive acaricides used against the parasite Varroa destructor. They cope with these and other xenobiotics primarily through enzymatic detoxificative processes, but the regulation of detoxificative enzymes in honey bees remains largely unexplored. Methodology/Principal Findings We used several approaches to ascertain effects of dietary toxins on bee susceptibility to synthetic and natural xenobiotics, including the acaricide tau-fluvalinate, the agricultural pesticide imidacloprid, and the naturally occurring mycotoxin aflatoxin. We administered potential inducers of cytochrome P450 enzymes, the principal biochemical system for Phase 1 detoxification in insects, to investigate how detoxification is regulated. The drug phenobarbital induces P450s in many insects, yet feeding bees with phenobarbital had no effect on the toxicity of tau-fluvalinate, a pesticide known to be detoxified by bee P450s. Similarly, no P450 induction, as measured by tau-fluvalinate tolerance, occurred in bees fed xanthotoxin, salicylic acid, or indole-3-carbinol, all of which induce P450s in other insects. Only quercetin, a common pollen and honey constituent, reduced tau-fluvalinate toxicity. In microarray comparisons no change in detoxificative gene expression was detected in phenobarbital-treated bees. However, northern blot analyses of guts of bees fed extracts of honey, pollen and propolis showed elevated expression of three CYP6AS P450 genes. Diet did not influence tau-fluvalinate or imidacloprid toxicity in bioassays; however, aflatoxin toxicity was higher in bees consuming sucrose or high-fructose corn syrup than in bees consuming honey. Conclusions/Significance These results suggest that regulation of honey bee P450s is tuned to chemicals occurring naturally in the hive environment and that, in terms of toxicological capacity, a diet of sugar is not equivalent to a diet of honey. PMID:22319603

  10. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1992-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  11. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1993-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  12. Molecular characterization and expression analysis of a suite of cytochrome P450 enzymes implicated in insect hydrocarbon degradation in the entomopathogenic fungus Beauveria bassiana.

    PubMed

    Pedrini, Nicolás; Zhang, Shizhu; Juárez, M Patricia; Keyhani, Nemat O

    2010-08-01

    The insect epicuticle or waxy layer comprises a heterogeneous mixture of lipids that include abundant levels of long-chain alkanes, alkenes, wax esters and fatty acids. This structure represents the first barrier against microbial attack and for broad-host-range insect pathogens, such as Beauveria bassiana, it is the initial interface mediating the host-pathogen interaction, since these organisms do not require any specialized mode of entry and infect target hosts via the cuticle. B. bassiana is able to grow on straight chain alkanes up to n-C(33) as a sole source of carbon and energy. The cDNA and genomic sequences, including putative regulatory elements, for eight cytochrome P450 enzymes, postulated to be involved in alkane and insect epicuticle degradation, were isolated and characterized. Expression studies using a range of alkanes as well as an insect-derived epicuticular extract from the blood-sucking bug Triatomas infestans revealed a differential expression pattern for the P450 genes examined, and suggest that B. bassiana contains a series of hydrocarbon-assimilating enzymes with overlapping specificity in order to target the surface lipids of insect hosts. Phylogenetic analysis of the translated ORFs of the sequences revealed that the enzyme which displayed the highest levels of induction on both alkanes and the insect epicuticular extract represents the founding member of a new cytochrome P450 family, with three of the other sequences assigned as the first members of new P450 subfamilies. The remaining four proteins clustered with known P450 families whose members include alkane monooxygenases.

  13. Cytochromes P450 Catalyze the Reduction of α,β-Unsaturated Aldehydes

    PubMed Central

    Amunom, Immaculate; Dieter, Laura J.; Tamasi, Viola; Cai, Jan; Conklin, Daniel J.; Srivastava, Sanjay; Martin, Martha V.; Guengerich, F. Peter; Prough, Russell A.

    2011-01-01

    The metabolism of α,β-unsaturated aldehydes, e.g. 4-hydroxynonenal, involves oxidation to carboxylic acids, reduction to alcohols, and glutathionylation to eventually form mercapturide conjugates. Recently we demonstrated that P450s can oxidize aldehydes to carboxylic acids, a reaction previously thought to involve aldehyde dehydrogenase. When recombinant cytochrome P450 3A4 was incubated with 4-hydroxynonenal, O2, and NADPH, several products were produced, including 1,4-dihydroxynonene (DHN), 4-hydroxy-2-nonenoic acid (HNA), and an unknown metabolite. Several P450s catalyzed the reduction reaction in the order (human) P450 2B6 ≅ P450 3A4 > P450 1A2 > P450 2J2 > (mouse) P450 2c29. Other P450s did not catalyze the reduction reaction (human P450 2E1 & rabbit P450 2B4). Metabolism by isolated rat hepatocytes showed that HNA formation was inhibited by cyanamide, while DHN formation was not affected. Troleandomycin increased HNA production 1.6-fold while inhibiting DHN formation, suggesting that P450 3A11 is a major enzyme involved in rat hepatic clearance of 4-HNE. A fluorescent assay was developed using 9-anthracenealdehyde to measure both reactions. Feeding mice diet containing t-butylated hydroxyanisole increased the level of both activities with hepatic microsomal fractions, but not proportionally. Miconazole (0.5 mM) was a potent inhibitor of these microsomal reduction reactions, while phenytoin and α-naphthoflavone (both at 0.5 mM) were partial inhibitors, suggesting the role of multiple P450 enzymes. The oxidative metabolism of these aldehydes was inhibited >90% in an Ar or CO atmosphere, while the reductive reactions were not greatly affected. These results suggest that P450s are significant catalysts of reduction of α,β-unsaturated aldehydes in liver. PMID:21766881

  14. Expression and characterization of truncated human heme oxygenase (hHO-1) and a fusion protein of hHO-1 with human cytochrome P450 reductase.

    PubMed

    Wilks, A; Black, S M; Miller, W L; Ortiz de Montellano, P R

    1995-04-04

    A human heme oxygenase (hHO-1) gene without the sequence coding for the last 23 amino acids has been expressed in Escherichia coli behind the pho A promoter. The truncated enzyme is obtained in high yields as a soluble, catalytically-active protein, making it available for the first time for detailed mechanistic studies. The purified, truncated hHO-1/heme complex is spectroscopically indistinguishable from that of the rat enzyme and converts heme to biliverdin when reconstituted with rat liver cytochrome P450 reductase. A self-sufficient heme oxygenase system has been obtained by fusing the truncated hHO-1 gene to the gene for human cytochrome P450 reductase without the sequence coding for the 20 amino acid membrane binding domain. Expression of the fusion protein in pCWori+ yields a protein that only requires NADPH for catalytic turnover. The failure of exogenous cytochrome P450 reductase to stimulate turnover and the insensitivity of the catalytic rate toward changes in ionic strength establish that electrons are transferred intramolecularly between the reductase and heme oxygenase domains of the fusion protein. The Vmax for the fusion protein is 2.5 times higher than that for the reconstituted system. Therefore, either the covalent tether does not interfere with normal docking and electron transfer between the flavin and heme domains or alternative but equally efficient electron transfer pathways are available that do not require specific docking.

  15. Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in Arabidopsis Flowers[W][OPEN

    PubMed Central

    Ginglinger, Jean-François; Boachon, Benoit; Höfer, René; Paetz, Christian; Köllner, Tobias G.; Miesch, Laurence; Lugan, Raphael; Baltenweck, Raymonde; Mutterer, Jérôme; Ullmann, Pascaline; Beran, Franziska; Claudel, Patricia; Verstappen, Francel; Fischer, Marc J.C.; Karst, Francis; Bouwmeester, Harro; Miesch, Michel; Schneider, Bernd; Gershenzon, Jonathan; Ehlting, Jürgen; Werck-Reichhart, Danièle

    2013-01-01

    The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simultaneously expressed at anthesis, mainly in upper anther filaments and in petals. Upon transient expression in Nicotiana benthamiana, the TPS enzymes colocalize in vesicular structures associated with the plastid surface, whereas the P450 proteins were detected in the endoplasmic reticulum. Whether they were expressed in Saccharomyces cerevisiae or in N. benthamiana, the TPS enzymes formed two different enantiomers of linalool: (−)-(R)-linalool for TPS10 and (+)-(S)-linalool for TPS14. Both P450 enzymes metabolize the two linalool enantiomers to form different but overlapping sets of hydroxylated or epoxidized products. These oxygenated products are not emitted into the floral headspace, but accumulate in floral tissues as further converted or conjugated metabolites. This work reveals complex linalool metabolism in Arabidopsis flowers, the ecological role of which remains to be determined. PMID:24285789

  16. Engineering Macaca fascicularis cytochrome P450 2C20 to reduce animal testing for new drugs.

    PubMed

    Rua, Francesco; Sadeghi, Sheila J; Castrignanò, Silvia; Di Nardo, Giovanna; Gilardi, Gianfranco

    2012-12-01

    In order to develop in vitro methods as an alternative to P450 animal testing in the drug discovery process, two main requisites are necessary: 1) gathering of data on animal homologues of the human P450 enzymes, currently very limited, and 2) bypassing the requirement for both the P450 reductase and the expensive cofactor NADPH. In this work, P450 2C20 from Macaca fascicularis, homologue of the human P450 2C8 has been taken as a model system to develop such an alternative in vitro method by two different approaches. In the first approach called "molecular Lego", a soluble self-sufficient chimera was generated by fusing the P450 2C20 domain with the reductase domain of cytochrome P450 BM3 from Bacillus megaterium (P450 2C20/BMR). In the second approach, the need for the redox partner and also NADPH were both obviated by the direct immobilization of the P450 2C20 on glassy carbon and gold electrodes. Both systems were then compared to those obtained from the reconstituted P450 2C20 monooxygenase in presence of the human P450 reductase and NADPH using paclitaxel and amodiaquine, two typical drug substrates of the human P450 2C8. The K(M) values calculated for the 2C20 and 2C20/BMR in solution and for 2C20 immobilized on electrodes modified with gold nanoparticles were 1.9 ± 0.2, 5.9 ± 2.3, 3.0 ± 0.5 μM for paclitaxel and 1.2 ± 0.2, 1.6±0.2 and 1.4 ± 0.2 μM for amodiaquine, respectively. The data obtained not only show that the engineering of M. fascicularis did not affect its catalytic properties but also are consistent with K(M) values measured for the microsomal human P450 2C8 and therefore show the feasibility of developing alternative in vitro animal tests. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. High-Throughput Cytochrome P450 Cocktail Inhibition Assay for Assessing Drug-Drug and Drug-Botanical Interactions

    PubMed Central

    Li, Guannan; Huang, Ke; Nikolic, Dejan

    2015-01-01

    Detection of drug-drug interactions is essential during the early stages of drug discovery and development, and the understanding of drug-botanical interactions is important for the safe use of botanical dietary supplements. Among the different forms of drug interactions that are known, inhibition of cytochrome P450 (P450) enzymes is the most common cause of drug-drug or drug-botanical interactions. Therefore, a rapid and comprehensive mass spectrometry–based in vitro high-throughput P450 cocktail inhibition assay was developed that uses 10 substrates simultaneously against nine CYP isoforms. Including probe substrates for CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and two probes targeting different binding sites of CYP3A4/5, this cocktail simultaneously assesses at least as many P450 enzymes as previous assays while remaining among the fastest due to short incubation times and rapid analysis using ultrahigh pressure liquid chromatography–tandem mass spectrometry. The method was validated using known inhibitors of each P450 enzyme and then shown to be useful not only for single-compound testing but also for the evaluation of potential drug-botanical interactions using the botanical dietary supplement licorice (Glycyrrhiza glabra) as an example. PMID:26285764

  18. Oxidation of the endogenous cannabinoid arachidonoyl ethanolamide by the cytochrome P450 monooxygenases: physiological and pharmacological implications.

    PubMed

    Snider, Natasha T; Walker, Vyvyca J; Hollenberg, Paul F

    2010-03-01

    Arachidonoyl ethanolamide (anandamide) is an endogenous amide of arachidonic acid and an important signaling mediator of the endocannabinoid system. Given its numerous roles in maintaining normal physiological function and modulating pathophysiological responses throughout the body, the endocannabinoid system is an important pharmacological target amenable to manipulation directly by cannabinoid receptor ligands or indirectly by drugs that alter endocannabinoid synthesis and inactivation. The latter approach has the possible advantage of more selectivity, thus there is the potential for fewer untoward effects like those that are traditionally associated with cannabinoid receptor ligands. In that regard, inhibitors of the principal inactivating enzyme for anandamide, fatty acid amide hydrolase (FAAH), are currently in development for the treatment of pain and inflammation. However, several pathways involved in anandamide synthesis, metabolism, and inactivation all need to be taken into account when evaluating the effects of FAAH inhibitors and similar agents in preclinical models and assessing their clinical potential. Anandamide undergoes oxidation by several human cytochrome P450 (P450) enzymes, including CYP3A4, CYP4F2, CYP4X1, and the highly polymorphic CYP2D6, forming numerous structurally diverse lipids, which are likely to have important physiological roles, as evidenced by the demonstration that a P450-derived epoxide of anandamide is a potent agonist for the cannabinoid receptor 2. The focus of this review is to emphasize the need for a better understanding of the P450-mediated pathways of the metabolism of anandamide, because these are likely to be important in mediating endocannabinoid signaling as well as the pharmacological responses to endocannabinoid-targeting drugs.

  19. Structural and Kinetic Basis of Steroid 17α,20-Lyase Activity in Teleost Fish Cytochrome P450 17A1 and Its Absence in Cytochrome P450 17A2*

    PubMed Central

    Pallan, Pradeep S.; Nagy, Leslie D.; Lei, Li; Gonzalez, Eric; Kramlinger, Valerie M.; Azumaya, Caleigh M.; Wawrzak, Zdzislaw; Waterman, Michael R.; Guengerich, F. Peter; Egli, Martin

    2015-01-01

    Cytochrome P450 (P450) 17A enzymes play a critical role in the oxidation of the steroids progesterone (Prog) and pregnenolone (Preg) to glucocorticoids and androgens. In mammals, a single enzyme, P450 17A1, catalyzes both 17α-hydroxylation and a subsequent 17α,20-lyase reaction with both Prog and Preg. Teleost fish contain two 17A P450s; zebrafish P450 17A1 catalyzes both 17α-hydroxylation and lyase reactions with Prog and Preg, and P450 17A2 is more efficient in pregnenolone 17α-hydroxylation but does not catalyze the lyase reaction, even in the presence of cytochrome b5. P450 17A2 binds all substrates and products, although more loosely than P450 17A1. Pulse-chase and kinetic spectral experiments and modeling established that the two-step P450 17A1 Prog oxidation is more distributive than the Preg reaction, i.e. 17α-OH product dissociates more prior to the lyase step. The drug orteronel selectively blocked the lyase reaction of P450 17A1 but only in the case of Prog. X-ray crystal structures of zebrafish P450 17A1 and 17A2 were obtained with the ligand abiraterone and with Prog for P450 17A2. Comparison of the two fish P450 17A-abiraterone structures with human P450 17A1 (DeVore, N. M., and Scott, E. E. (2013) Nature 482, 116–119) showed only a few differences near the active site, despite only ∼50% identity among the three proteins. The P450 17A2 structure differed in four residues near the heme periphery. These residues may allow the proposed alternative ferric peroxide mechanism for the lyase reaction, or residues removed from the active site may allow conformations that lead to the lyase activity. PMID:25533464

  20. Changes in the immunolocalization of steroidogenic enzymes and the androgen receptor in raccoon (Procyon lotor) testes in association with the seasons and spermatogenesis.

    PubMed

    Okuyama, Minami W; Shimozuru, Michito; Yanagawa, Yojiro; Tsubota, Toshio

    2014-04-24

    The raccoon is a seasonal breeder with a mating season in the winter. In a previous study, adult male raccoons exhibited active spermatogenesis with high plasma testosterone concentrations, in the winter mating season. Maintenance of spermatogenesis generally requires high testosterone, which is produced by steroidogenic enzymes. However, even in the summer non-mating season, some males produce spermatozoa actively despite low plasma testosterone concentrations. To identify the factors that regulate testosterone production and contribute to differences in spermatogenetic activity in the summer non-mating season, morphological, histological and endocrinological changes in the testes of wild male raccoons should be known. In this study, to assess changes in the biosynthesis, metabolism and reactivity of testosterone, the localization and immunohistochemical staining intensity of four steroidogenic enzymes (P450scc, P450c17, 3βHSD, P450arom) and the androgen receptor (AR) were investigated using immunohistochemical methods. P450scc and P450c17 were detected in testicular tissue throughout the year. Seasonal changes in testosterone concentration were correlated with 3βHSD expression, suggesting that 3βHSD may be important in regulating the seasonality of testosterone production in raccoon testes. Immunostaining of P450arom and AR was detected in testicular tissues that exhibited active spermatogenesis in the summer, while staining was scarce in aspermatogenic testes. This suggests that spermatogenesis in the raccoon testis might be maintained by some mechanism that regulates P450arom expression in synthesizing estradiol and AR expression in controlling reactivity to testosterone.

  1. The role of metabolic activation of analgesics and non-steroidal anti-inflammatory drugs in the development of renal papillary necrosis and upper urothelial carcinoma.

    PubMed

    Bach, P H; Bridges, J W

    1984-08-01

    There has been no cogent hypothesis to explain the molecular basis of analgesic and non-steroidal anti-inflammatory drug (NSAID) associated renal papillary necrosis (RPN) and upper urothelial carcinoma (UUC). The microsomal cytochrome P-450 enzyme system may generate reactive intermediates which promote pathophysiological effects in the lung, liver and renal cortex, but the absence of P-450 activity in the medulla suggests that it is unlikely that similar events lead to RPN and UUC. Other enzymes (eg. peroxidases) convert substituted aromatics into benzoquinoneimines (an intermediate that has previously been defined in P-450-mediated toxicity). The medulla is rich in fatty acid peroxidases involved in the metabolism of arachidonic acid. NSAID and analgesics interact with key enzymes in this pathway, which could lead to the co-oxygenation of exogenous and endogenous compounds via the peroxidase, lipoxygenase, or prostaglandin hydroperoxidase enzymes. The generation of reactive molecules in the medulla could explain both RPN and UUC via the alkylation of macromolecules. The formation of free radicals would give rise to extensive lipid peroxidation, (there are large quantities of free polyunsaturated fatty acids in the medullary interstitial cells), an event of major potential importance to local cell destruction and genotoxic effects. At present this proposed mechanism of co-oxygenation offers the most attractive working hypothesis to explain the molecular pathogenesis of both RPN and UUC.

  2. Spectroscopic characterization of the iron-oxo intermediate in cytochrome P450.

    PubMed

    Jung, Christiane; Schünemann, Volker; Lendzian, Friedhelm; Trautwein, Alfred X; Contzen, Jörg; Galander, Marcus; Böttger, Lars H; Richter, Matthias; Barra, Anne-Laure

    2005-10-01

    From analogy to chloroperoxidase from Caldariomyces fumago, it is believed that the electronic structure of the intermediate iron-oxo species in the catalytic cycle of cytochrome P450 corresponds to an iron(IV) porphyrin-pi-cation radical (compound I). However, our recent studies on P450cam revealed that after 8 ms a tyrosine radical and iron(IV) were formed in the reaction of ferric P450 with external oxidants in the shunt pathway. The present study on the heme domain of P450BM3 (P450BMP) shows a similar result. In addition to a tyrosine radical, a contribution from a tryptophan radical was found in the electron paramagnetic resonance (EPR) spectra of P450BMP. Here we present comparative multi-frequency EPR (9.6, 94 and 285 GHz) and Mössbauer spectroscopic studies on freeze-quenched intermediates produced using peroxy acetic acid as oxidant for both P450 cytochromes. After 8 ms in both systems, amino acid radicals occurred instead of the proposed iron(IV) porphyrin-pi-cation radical, which may be transiently formed on a much faster time scale. These findings are discussed with respect to other heme thiolate proteins. Our studies demonstrate that intramolecular electron transfer from aromatic amino acids is a common feature in these enzymes. The electron transfer quenches the presumably transiently formed porphyrin-pi-cation radical, which makes it extremely difficult to trap compound I.

  3. Role of P450 monooxygenases in the degradation of the endocrine-disrupting chemical nonylphenol by the white rot fungus Phanerochaete chrysosporium.

    PubMed

    Subramanian, Venkataramanan; Yadav, Jagjit S

    2009-09-01

    The white rot fungus Phanerochaete chrysosporium extensively degraded the endocrine disruptor chemical nonylphenol (NP; 100% of 100 ppm) in both nutrient-limited cultures and nutrient-sufficient cultures. The P450 enzyme inhibitor piperonyl butoxide caused significant inhibition (approximately 75%) of the degradation activity in nutrient-rich malt extract (ME) cultures but no inhibition in defined low-nitrogen (LN) cultures, indicating an essential role of P450 monooxygenase(s) in NP degradation under nutrient-rich conditions. A genome-wide analysis using our custom-designed P450 microarray revealed significant induction of multiple P450 monooxygenase genes by NP: 18 genes were induced (2- to 195-fold) under nutrient-rich conditions, 17 genes were induced (2- to 6-fold) in LN cultures, and 3 were induced under both nutrient-rich and LN conditions. The P450 genes Pff 311b (corresponding to protein identification number [ID] 5852) and Pff 4a (protein ID 5001) showed extraordinarily high levels of induction (195- and 167-fold, respectively) in ME cultures. The P450 oxidoreductase (POR), glutathione S-transferase (gst), and cellulose metabolism genes were also induced in ME cultures. In contrast, certain metabolic genes, such as five of the peroxidase genes, showed partial downregulation by NP. This study provides the first evidence for the involvement of P450 enzymes in NP degradation by a white rot fungus and the first genome-wide identification of specific P450 genes responsive to an environmentally significant toxicant.

  4. Role of P450 Monooxygenases in the Degradation of the Endocrine-Disrupting Chemical Nonylphenol by the White Rot Fungus Phanerochaete chrysosporium▿

    PubMed Central

    Subramanian, Venkataramanan; Yadav, Jagjit S.

    2009-01-01

    The white rot fungus Phanerochaete chrysosporium extensively degraded the endocrine disruptor chemical nonylphenol (NP; 100% of 100 ppm) in both nutrient-limited cultures and nutrient-sufficient cultures. The P450 enzyme inhibitor piperonyl butoxide caused significant inhibition (∼75%) of the degradation activity in nutrient-rich malt extract (ME) cultures but no inhibition in defined low-nitrogen (LN) cultures, indicating an essential role of P450 monooxygenase(s) in NP degradation under nutrient-rich conditions. A genome-wide analysis using our custom-designed P450 microarray revealed significant induction of multiple P450 monooxygenase genes by NP: 18 genes were induced (2- to 195-fold) under nutrient-rich conditions, 17 genes were induced (2- to 6-fold) in LN cultures, and 3 were induced under both nutrient-rich and LN conditions. The P450 genes Pff 311b (corresponding to protein identification number [ID] 5852) and Pff 4a (protein ID 5001) showed extraordinarily high levels of induction (195- and 167-fold, respectively) in ME cultures. The P450 oxidoreductase (POR), glutathione S-transferase (gst), and cellulose metabolism genes were also induced in ME cultures. In contrast, certain metabolic genes, such as five of the peroxidase genes, showed partial downregulation by NP. This study provides the first evidence for the involvement of P450 enzymes in NP degradation by a white rot fungus and the first genome-wide identification of specific P450 genes responsive to an environmentally significant toxicant. PMID:19542331

  5. Engineering and improvement of the efficiency of a chimeric [P450cam-RhFRed reductase domain] enzyme.

    PubMed

    Robin, Aélig; Roberts, Gareth A; Kisch, Johannes; Sabbadin, Federico; Grogan, Gideon; Bruce, Neil; Turner, Nicholas J; Flitsch, Sabine L

    2009-05-14

    A chimeric oxygenase, in which the P450cam domain was fused to the reductase host domains of a P450RhF from Rhodococcus sp. strain NCIMB 9784 was optimised to allow for a biotransformation at 30 mM substrate in 80% overall yield, with the linker region between P450 and FMN domain proving to be important for the effective biotransformation of (+)-camphor to 5-exo-hydroxycamphor.

  6. Computational Elucidation of Selectivities and Mechanisms Performed by Organometallic and Bioinorganic Catalysts

    NASA Astrophysics Data System (ADS)

    Grandner, Jessica Marie

    Computational methods were used to determine the mechanisms and selectivities of organometallic-catalyzed reactions. The first half of the dissertation focuses on the study of metathesis catalysts in collaboration with the Grubbs group at CalTech. Chapter 1 describes the studies of the decomposition modes of several ruthenium-based metathesis catalysts. These studies were performed to better understand the decomposition of such catalysts in order to prevent decomposition (Chapter 1.2) or utilize decomposed catalysts for alternative reactions (Chapter 1.1). Chapter 2.1 describes the computational investigation of the origins of stereoretentive metathesis with ruthenium-based metathesis catalysts. These findings were then used to computationally design E-selective metathesis catalysts (Chapter 2.2). While the first half of the dissertation was centered around ruthenium catalysts, the second half of the dissertation pertains to iron-catalyzed reaction, in particular, iron-catalyzed reactions by P450 enzymes. The elements of Chapter 3 concentrate on the stereo- and chemo-selectivity of P450-catalyzed C-H hydroxylations. By combining multiple computational methods, the inherent activity of the iron-oxo catalyst and the influence of the active site on such reactions were illuminated. These discoveries allow for the engineering of new substrates and mutant enzymes for tailored C-H hydroxylation. While the mechanism of C-H hydroxylations catalyzed by P450 enzymes has been well studied, there are several P450-catalyzed transformations for which the mechanism is unknown. The components of Chapter 4 describe the use of computations to determine the mechanisms of complex, multi-step reactions catalyzed by P450s. The determination of these mechanisms elucidates how these enzymes react with various functional groups and substrate architectures and allows for a better understanding of how drug-like compounds may be broken down by human P450s.

  7. Toxic effects of Tripterygium wilfordii Hook F on the reproductive system of adolescent male rats.

    PubMed

    Jing, Xiaoping; Cheng, Weiwei; Guo, Sheng; Zou, Ya; Zhang, Ting; He, Li

    2017-11-01

    Tripterygium wilfordii Hook F. (TWHF) is a compound extracted from Lei Gong Teng (Thunder God Vine) that has been used to treat a variety of immune-related diseases in clinical practice, particularly in pediatrics. Nevertheless, clinical data indicated that glycosides from Tripterygium wilfordii Hook F (GTW) are toxic to the male reproductive system, but the mechanism is unknown. Here, the administration of a high dose of GTW for 4 weeks and a low dose for 12 weeks can reduce the body weights and testes weights in adolescent male rats. This effect is accompanied by a significantly reduction in the serum testosterone levels. Notably, short-term use of high-dose GTW or long-term use of low-dose GTW leads to testicular damage in adolescent male rats. Furthermore, the expression of the steroidogenic acute regulatory protein (StAR), P450 side chain cleavage enzyme (P450scc), cytochrome P450 17-hydroxylase (P450c17), 3β-hydroxysteroid dehydrogenase (3β-HSD), and 17β-hydroxysteroid dehydrogenase (17β-HSD) mRNAs and proteins in the testes was down-regulated by a short-term treatment with high-dose GTW and a long-term treatment with low-dose GTW. Therefore, GTW exhibit male reproductive toxicity in a concentration-and time-dependent manner by inhibiting the expression of the key enzymes and total cholesterol level involved in testosterone synthesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Inkjet-printed selective microfluidic biosensor using CNTs functionalized by cytochrome P450 enzyme

    NASA Astrophysics Data System (ADS)

    Krivec, Matic; Leitner, Raimund; Überall, Florian; Hochleitner, Johannes

    2017-05-01

    An additive manufacturing concept, consisting of 3D photopolymer printing and Ag nanoparticle printing, was investigated for the construction of a microfluidic biosensor based on immobilized cytochrome P450 enzyme. An acylate-type microfluidic chamber composed of two parts, i.e. chamber-housing and chamber-lid was printed with a polyjet 3D printer. A 3-electrode sensor structure was inkjet-printed on the lid using a combination of Ag and graphene printing. The working electrode was covered with carbon nanotubes by drop-casting and immobilized with cytochrome P450 2D6 enzyme. The microfluidic sensor shows a significant response to a test xenobiotic, i.e. dextromethorphan; the cyclic voltammetrical measurements show a corresponding oxidation peak at 0.4 V with around 5 μM detection limit.

  9. Pharmacokinetic drug interactions of morphine, codeine, and their derivatives: theory and clinical reality, Part II.

    PubMed

    Armstrong, Scott C; Cozza, Kelly L

    2003-01-01

    Pharmacokinetic drug-drug interactions with codeine, dihydrocodeine, hydrocodone, oxycodone, and buprenorphine are reviewed in this column. These compounds have a very similar chemical structure to morphine. Unlike morphine, which is metabolized chiefly through conjugation reactions with uridine diphosphate glucuronosyl transferase (UGT) enzymes, these five drugs are metabolized both through oxidative reactions by the cytochrome P450 (CYP450) enzyme and conjugation by UGT enzymes. There is controversy as to whether codeine, dihydrocodeine, and hydrocodone are actually prodrugs requiring activation by the CYP450 2D6 enzyme or UGT enzymes. Oxycodone and buprenorphine, however, are clearly not prodrugs and are metabolized by the CYP450 2D6 and 3A4 enzymes, respectively. Knowledge of this metabolism assists in the understanding for the potential of drug-drug interactions with these drugs. This understanding is important so that clinicians can choose the proper dosages for analgesia and anticipate potential drug-drug interactions.

  10. Functional expression and characterization of recombinant NADPH-P450 reductase from Malassezia globosa.

    PubMed

    Lee, Hwayoun; Park, Hyoung-Goo; Lim, Young-Ran; Lee, Im-Soon; Kim, Beom Joon; Seong, Cheul-Hun; Chun, Young-Jin; Kim, Donghak

    2012-01-01

    Malassezia globosa is a common pathogenic fungus that causes skin diseases including dandruff and seborrheic dermatitis in humans. Analysis of its genome identified a gene (MGL_1677) coding for a putative NADPH-P450 reductase (NPR) to support the fungal cytochrome P450 enzymes. The heterologously expressed recombinant M. globosa NPR protein was purified, and its functional features were characterized. The purified protein generated a single band on SDS-PAGE at 80.74 kDa and had an absorption maximum at 452 nm, indicating its possible function as an oxidized flavin cofactor. It evidenced NADPH-dependent reducing activity for cytochrome c or nitroblue tetrazolium. Human P450 1A2 and 2A6 were able to successfully catalyze the O-deethylation of 7- ethoxyresorufin and the 7-hydroxylation of coumarin, respectively, with the support of the purified NPR. These results demonstrate that purified NPR is an orthologous reductase protein that supports cytochrome P450 enzymes in M. globosa.

  11. Stereoselective metabolism of endosulfan by human liver microsomes and human cytochrome P450 isoforms.

    PubMed

    Lee, Hwa-Kyung; Moon, Joon-Kwan; Chang, Chul-Hee; Choi, Hoon; Park, Hee-Won; Park, Byeoung-Soo; Lee, Hye-Suk; Hwang, Eul-Chul; Lee, Young-Deuk; Liu, Kwang-Hyeon; Kim, Jeong-Han

    2006-07-01

    Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,3,4-benzo(e)dioxathiepin-3-oxide) is a broad-spectrum chlorinated cyclodiene insecticide. This study was performed to elucidate the stereoselective metabolism of endosulfan in human liver microsomes and to characterize the cytochrome P450 (P450) enzymes that are involved in the metabolism of endosulfan. Human liver microsomal incubation of endosulfan in the presence of NADPH resulted in the formation of the toxic metabolite, endosulfan sulfate. The intrinsic clearances (CL(int)) of endosulfan sulfate from beta-endosulfan were 3.5-fold higher than those from alpha-endosulfan, suggesting that beta-endosulfan would be cleared more rapidly than alpha-endosulfan. Correlation analysis between the known P450 enzyme activities and the rate of the formation of endosulfan sulfate in the 14 human liver microsomes showed that alpha-endosulfan metabolism is significantly correlated with CYP2B6-mediated bupropion hydroxylation and CYP3A-mediated midazolam hydroxylation, and that beta-endosulfan metabolism is correlated with CYP3A activity. The P450 isoform-selective inhibition study in human liver microsomes and the incubation study of cDNA-expressed enzymes also demonstrated that the stereoselective sulfonation of alpha-endosulfan is mediated by CYP2B6, CYP3A4, and CYP3A5, and that that of beta-endosulfan is transformed by CYP3A4 and CYP3A5. The total CL(int) values of endosulfan sulfate formation catalyzed by CYP3A4 and CYP3A5 were consistently higher for beta-endosulfan than for the alpha-form (CL(int) of 0.67 versus 10.46 microl/min/pmol P450, respectively). CYP2B6 enantioselectively metabolizes alpha-endosulfan, but not beta-endosulfan. These findings suggest that the CYP2B6 and CYP3A enzymes are major enzymes contributing to the stereoselective disposition of endosulfan.

  12. Re-engineering Cytochrome P450 2B11dH for Enhanced Metabolism of Several Substrates Including the Anti-cancer Prodrugs Cyclophosphamide and Ifosfamide

    PubMed Central

    Sun, Ling; Chen, Chong S.; Waxman, David J.; Liu, Hong; Halpert, James R.; Kumar, Santosh

    2007-01-01

    Based on recent directed evolution of P450 2B1, six P450 2B11 mutants at three positions were created in an N-terminal modified construct termed P450 2B11dH and characterized for enzyme catalysis using five substrates. Mutant I209A demonstrated a 3.2-fold enhanced kcat/Km for 7-ethoxy-4-trifluoromethylcourmarin O-deethylation, largely due to a dramatic decrease in Km (0.72 vs. 18 μM). I209A also demonstrated enhanced selectivity for testosterone 16β-hydroxylation over 16α-hydroxylation. In contrast, V183L showed a 4-fold increased kcat for 7-benzyloxyresorufin debenzylation and a 4.7-fold increased kcat/Km for testosterone 16α-hydroxylation. V183L also displayed a 1.7-fold higher kcat/Km than P450 2B11dH with the anti-cancer prodrugs cyclophosphamide and ifosfamide, resulting from a ~4-fold decrease in Km. Introduction of the V183L mutation into full-length P450 2B11 did not enhance the kcat/Km. Overall, the re-engineered P450 2B11dH enzymes exhibited enhanced catalytic efficiency with several substrates including the anti-cancer prodrugs. PMID:17254539

  13. Structures of Prostacyclin Synthase and Its Complexes with Substrate Analog and Inhibitor Reveal a Ligand-specific Heme Conformation Change*s

    PubMed Central

    Li, Yi-Ching; Chiang, Chia-Wang; Yeh, Hui-Chun; Hsu, Pei-Yung; Whitby, Frank G.; Wang, Lee-Ho; Chan, Nei-Li

    2008-01-01

    Prostacyclin synthase (PGIS) is a cytochrome P450 (P450) enzyme that catalyzes production of prostacyclin from prostaglandin H2. PGIS is unusual in that it catalyzes an isomerization rather than a monooxygenation, which is typical of P450 enzymes. To understand the structural basis for prostacyclin biosynthesis in greater detail, we have determined the crystal structures of ligand-free, inhibitor (minoxidil)-bound and substrate analog U51605-bound PGIS. These structures demonstrate a stereo-specific substrate binding and suggest features of the enzyme that facilitate isomerization. Unlike most microsomal P450s, where large substrate-induced conformational changes take place at the distal side of the heme, conformational changes in PGIS are observed at the proximal side and in the heme itself. The conserved and extensive heme propionate-protein interactions seen in all other P450s, which are largely absent in the ligand-free PGIS, are recovered upon U51605 binding accompanied by water exclusion from the active site. In contrast, when minoxidil binds, the propionate-protein interactions are not recovered and water molecules are largely retained. These findings suggest that PGIS represents a divergent evolution of the P450 family, in which a heme barrier has evolved to ensure strict binding specificity for prostaglandin H2, leading to a radical-mediated isomerization with high product fidelity. The U51605-bound structure also provides a view of the substrate entrance and product exit channels. PMID:18032380

  14. Relationship between CYP1A2 Localization and Lipid Microdomain Formation as a Function of Lipid Composition

    PubMed Central

    Brignac-Huber, Lauren M.; Reed, James R.; Eyer, Marilyn K.

    2013-01-01

    Cytochrome P450 (P450) function requires the interaction of P450 and NADPH-cytochrome P450 reductase (CPR) in membranes, and is frequently studied using reconstituted systems composed solely of phosphatidylcholine. There is increasing evidence that other endoplasmic reticulum (ER) lipids can affect P450 structure, activity, and interactions with CPR. Some of these lipid effects have been attributed to the formation of organized liquid-ordered (lo) domains. The goal of this study was to determine if lo domains were formed in P450 reconstituted systems mimicking the ER membrane. CYP1A2, when incorporated in “ER-like” lipid vesicles, displayed detergent insolubility after treatment with Brij 98 and centrifugation in a sucrose gradient. Lipid probes were employed to identify domain formation in both ER-like vesicles and model membranes known to form lo domains. Changes in fluorescence resonance energy transfer (FRET) using an established donor/acceptor FRET pair in both ER-like and model lo-forming systems demonstrated the coexistence of lo- and liquid-disordered domains as a function of cholesterol and sphingomyelin content. Similarly, 6-dodecanoyl-2-dimethylaminonaphthalene (laurdan), a probe that reports on membrane organization, showed that cholesterol and sphingomyelin increased membrane order. Finally, brominated-phosphatidylcholine allowed for monitoring of the location of both CPR and CYP1A2 within the lo regions of ER-like systems. Taken together, the results demonstrate that ER-like vesicles generate microdomains, and both CYP1A2 and CPR predominantly localize into lo membrane regions. Probe fluorescent responses suggest that lipid microdomains form in these vesicles whether or not enzymes are included in the reconstituted systems. Thus, it does not appear that the proteins are critical for stabilizing lo domains. PMID:23963955

  15. Insecticide resistance and cytochrome-P450 activation in unfed and blood-fed laboratory and field populations of Culex pipiens pallens.

    PubMed

    Chang, Kyu-Sik; Kim, Heung-Chul; Klein, Terry A; Ju, Young Ran

    2017-01-01

    Understanding the mechanisms of insecticide resistance to vector mosquitoes is critical for the implementation of effective control measures. A nulliparous susceptible Culex pipiens pallens (KSCP) laboratory colony and two field strains from Paju (PAJ) and Jeonju (JEO) Korea were evaluated for susceptibility to five pesticides by microapplication techniques. Unfed PAJ and JEO females demonstrated increased resistance compared to unfed KSCP females, respectively. While blood-fed KSCP females demonstrated <10-fold decreased susceptibility to pesticides compared to unfed KSCP females, blood-fed PAJ and JEO females demonstrated 25.0-50.0- and 16.0-38.6-fold increased resistance compared to unfed PAJ and JEO females, respectively. Unfed and blood-fed groups were assayed for α- and β-esterase, glutathione S -transferases, and cytochrome P-450 (P450) enzyme activity assays. P450 activity was 58.8- and 72.8-fold higher for unfed PAJ and JEO females, respectively, than unfed KSCP females. P450 enzyme activity of KSCP females assayed 1 and 7 days after a blood meal increased by 14.5- and 11.8-fold, respectively, compared to unfed KSCP females, while PAJ and JEO females demonstrated 164.9- and 148.5- and 170.7- and 160.4-fold increased activity, respectively, compared to unfed females of each population. However, other three resistance-related metabolic enzymes showed low activation at <10-fold after a blood meal. The data demonstrate that P450 acts on elevated insecticide resistance after blood meals in resistant field populations. Our findings might reveal that suppressing of the P450 protein by artificial gene mutation increases insecticidal susceptibility of Cx . pipiens and will promise effective vector mosquito control.

  16. In Silico Prediction of Cytochrome P450-Mediated Biotransformations of Xenobiotics: A Case Study of Epoxidation.

    PubMed

    Zhang, Jing; Ji, Li; Liu, Weiping

    2015-08-17

    Predicting the biotransformation of xenobiotics is important in toxicology; however, as more compounds are synthesized than can be investigated experimentally, powerful computational methods are urgently needed to prescreen potentially useful candidates. Cytochrome P450 enzymes (P450s) are the major enzymes involved in xenobiotic metabolism, and many substances are bioactivated by P450s to form active compounds. An example is the conversion of olefinic substrates to epoxides, which are intermediates in the metabolic activation of many known or suspected carcinogens. We have calculated the activation energies for epoxidation by the active species of P450 enzymes (an iron-oxo porphyrin cation radical oxidant, compound I) for a diverse set of 36 olefinic substrates with state-of-the-art density functional theory (DFT) methods. Activation energies can be estimated by the computationally less demanding method of calculating the ionization potentials of the substrates, which provides a useful and simple predictive model based on the reaction mechanism; however, the preclassification of these diverse substrates into weakly polar and strongly polar groups is a prerequisite for the construction of specific predictive models with good predictability for P450 epoxidation. This approach has been supported by both internal and external validations. Furthermore, the relation between the activation energies for the regioselective epoxidation and hydroxylation reactions of P450s and experimental data has been investigated. The results show that the computational method used in this work, single-point energy calculations with the B3LYP functional including zero-point energy and solvation and dispersion corrections based on B3LYP-optimized geometries, performs well in reproducing the experimental trends of the epoxidation and hydroxylation reactions.

  17. Prediction of Cytochrome P450 Profiles of Environmental Chemicals with QSAR Models Built from Drug-like Molecules

    EPA Science Inventory

    The human cytochrome P450 (CYP450) enzyme family is involved in the biotransformation of many environmental chemicals. As part of the U.S. Tox21 effort, we profiled the CYP450 activity of ~2800 chemicals predominantly of environmental concern against CYP1A2, CYP2C19, CYP2C9, CYP2...

  18. INTERINDIVIDUAL VARIANCE OF CYTOCHROME P450 FORMS IN HUMAN HEPATIC MICROSOMES: CORRELATION OF INDIVIDUAL FORMS WITH XENOBIOTIC METABOLISM AND IMPLICATIONS IN RISK ASSESSMENT

    EPA Science Inventory

    Differences in biotransformation activities may alter the bioavailability or efficacy of drugs, provide protection from certain xenobiotic and environmental agents, or increase toxicity of others. Cytochrome P450 (CYP450) enzymes are responsible for the majority of oxidation reac...

  19. Toxicologic study of carboxyatractyloside (active principle in cocklebur--Xanthium strumarium) in rats treated with enzyme inducers and inhibitors and glutathione precursor and depletor.

    PubMed

    Hatch, R C; Jain, A V; Weiss, R; Clark, J D

    1982-01-01

    Male rats (10 rats/group) were treated with phenobarbital (PB), phenylbutazone (PBZ), stanozolol (3 inducers of cytochrome P450-dependent enzymes), piperonyl butoxide (PBO; a P450 inhibitor), cobaltous chloride (CoCl2; an inhibitor of hemoprotein synthesis), 5,6-benzoflavone (BNF; an inducer of cytochrome P448 dependent enzymes), cysteine [CYS; a glutathione (GSH) precursor], or ethyl maleate (EM; a GSH depletor). The rats were then given a calculated LD50 dosage (13.5 mg/kg of body weight) of carboxyatractyloside (CAT) intraperitoneally. Clinical signs of toxicosis, duration of illness, lethality, gross lesions, and hepatic and renal histopathologic lesions were recorded. Seemingly, (i) CAT toxicosis has independent lethal and cytotoxic components (PBZ decreased lethality and cytotoxicity; CoCl2 decreased cytotoxicity but not lethality; BNF decreased duration of illness, and perhaps lethality, but not cytotoxicity); (ii) CAT cytotoxicity could be partly due to an active metabolite formed by de novo-synthesized, P450-/P448-independent hemoprotein (PBZ and CoCl2 had anticytotoxic effects, but PB, stanozolol, PBO, and BNF did not); (iii) CAT detoxification may occur partly through a hemoprotein-independent, PBZ-inducible enzyme, and partly through a P448-dependent (BNF-inducible) enzyme; and (iv) CAT detoxification apparently is not P450 or GSH-dependent because PB, stanozolol, and CYS had no beneficial effects, and PBO, CoCl2, and EM did not enhance toxicosis. Metabolism of CAT may have a role in its cytotoxic and lethal effects.

  20. Varied clinical presentations of seven patients with mutations in CYP11A1 encoding the cholesterol side-chain cleavage enzyme, P450scc.

    PubMed

    Tee, Meng Kian; Abramsohn, Michal; Loewenthal, Neta; Harris, Mark; Siwach, Sudeep; Kaplinsky, Ana; Markus, Barak; Birk, Ohad; Sheffield, Val C; Parvari, Ruti; Pavari, Ruti; Hershkovitz, Eli; Miller, Walter L

    2013-02-01

    The cholesterol side-chain cleavage enzyme P450scc, encoded by CYP11A1, converts cholesterol to pregnenolone to initiate steroidogenesis. P450scc deficiency can disrupt adrenal and gonadal steroidogenesis, resembling congenital lipoid adrenal hyperplasia clinically and hormonally; only 12 such patients have been reported previously. We sought to expand clinical and genetic experience with P450scc deficiency. We sequenced candidate genes in 7 children with adrenal insufficiency who lacked disordered sexual development. P450scc missense mutations were recreated in the F2 vector, which expresses the fusion protein P450scc-Ferredoxin Reductase-Ferredoxin. COS-1 cells were transfected, production of pregnenolone was assayed, and apparent kinetic parameters were calculated. Previously described P450scc mutants were assayed in parallel. Four of five Bedouin children in one kindred were compound heterozygotes for mutations c.694C>T (Arg232Stop) and c.644T>C (Phe215Ser). Single-nucleotide polymorphism analysis confirmed segregation of these mutations. The fifth kindred member and another Bedouin patient presented in infancy and were homozygous for Arg232Stop. A patient from Fiji presenting in infancy was homozygous for c.358T>C (Arg120Stop). All mutations are novel. As assayed in the F2 fusion protein, P450scc Phe215Ser retained 2.5% of wild-type activity; previously described mutants Leu141Trp and Ala269Val had 2.6% and 12% of wild-type activity, respectively, and Val415Glu and c.835delA lacked detectable activity. Although P450scc is required to produce placental progesterone required to maintain pregnancy, severe mutations in P450scc are compatible with term gestation; milder P450scc mutations may present later without disordered sexual development. Enlarged adrenals usually distinguish steroidogenic acute regulatory protein deficiency from P450scc deficiency, but only DNA sequencing is definitive.

  1. Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases

    PubMed Central

    2010-01-01

    Background Cytochrome P450 monooxygenases (P450s) catalyze oxidation of various substrates using oxygen and NAD(P)H. Plant P450s are involved in the biosynthesis of primary and secondary metabolites performing diverse biological functions. The recent availability of the soybean genome sequence allows us to identify and analyze soybean putative P450s at a genome scale. Co-expression analysis using an available soybean microarray and Illumina sequencing data provides clues for functional annotation of these enzymes. This approach is based on the assumption that genes that have similar expression patterns across a set of conditions may have a functional relationship. Results We have identified a total number of 332 full-length P450 genes and 378 pseudogenes from the soybean genome. From the full-length sequences, 195 genes belong to A-type, which could be further divided into 20 families. The remaining 137 genes belong to non-A type P450s and are classified into 28 families. A total of 178 probe sets were found to correspond to P450 genes on the Affymetrix soybean array. Out of these probe sets, 108 represented single genes. Using the 28 publicly available microarray libraries that contain organ-specific information, some tissue-specific P450s were identified. Similarly, stress responsive soybean P450s were retrieved from 99 microarray soybean libraries. We also utilized Illumina transcriptome sequencing technology to analyze the expressions of all 332 soybean P450 genes. This dataset contains total RNAs isolated from nodules, roots, root tips, leaves, flowers, green pods, apical meristem, mock-inoculated and Bradyrhizobium japonicum-infected root hair cells. The tissue-specific expression patterns of these P450 genes were analyzed and the expression of a representative set of genes were confirmed by qRT-PCR. We performed the co-expression analysis on many of the 108 P450 genes on the Affymetrix arrays. First we confirmed that CYP93C5 (an isoflavone synthase gene) is co-expressed with several genes encoding isoflavonoid-related metabolic enzymes. We then focused on nodulation-induced P450s and found that CYP728H1 was co-expressed with the genes involved in phenylpropanoid metabolism. Similarly, CYP736A34 was highly co-expressed with lipoxygenase, lectin and CYP83D1, all of which are involved in root and nodule development. Conclusions The genome scale analysis of P450s in soybean reveals many unique features of these important enzymes in this crop although the functions of most of them are largely unknown. Gene co-expression analysis proves to be a useful tool to infer the function of uncharacterized genes. Our work presented here could provide important leads toward functional genomics studies of soybean P450s and their regulatory network through the integration of reverse genetics, biochemistry, and metabolic profiling tools. The identification of nodule-specific P450s and their further exploitation may help us to better understand the intriguing process of soybean and rhizobium interaction. PMID:21062474

  2. Electrochemistry of Canis familiaris cytochrome P450 2D15 with gold nanoparticles: An alternative to animal testing in drug discovery.

    PubMed

    Rua, Francesco; Sadeghi, Sheila J; Castrignanò, Silvia; Valetti, Francesca; Gilardi, Gianfranco

    2015-10-01

    This work reports for the first time the direct electron transfer of the Canis familiaris cytochrome P450 2D15 on glassy carbon electrodes to provide an analytical tool as an alternative to P450 animal testing in the drug discovery process. Cytochrome P450 2D15, that corresponds to the human homologue P450 2D6, was recombinantly expressed in Escherichia coli and entrapped on glassy carbon electrodes (GC) either with the cationic polymer polydiallyldimethylammonium chloride (PDDA) or in the presence of gold nanoparticles (AuNPs). Reversible electrochemical signals of P450 2D15 were observed with calculated midpoint potentials (E1/2) of −191 ± 5 and −233 ± 4 mV vs. Ag/AgCl for GC/PDDA/2D15 and GC/AuNPs/2D15, respectively. These experiments were then followed by the electro-catalytic activity of the immobilized enzyme in the presence of metoprolol. The latter drug is a beta-blocker used for the treatment of hypertension and is a specific marker of the human P450 2D6 activity. Electrocatalysis data showed that only in the presence of AuNps the expected α-hydroxy-metoprolol product was present as shown by HPLC. The successful immobilization of the electroactive C. familiaris cytochrome P450 2D15 on electrode surfaces addresses the ever increasing demand of developing alternative in vitromethods for amore detailed study of animal P450 enzymes' metabolism, reducing the number of animals sacrificed in preclinical tests.

  3. Identification of the rat liver cytochrome P450 enzymes involved in the metabolism of the calcium channel blocker dipfluzine hydrochloride.

    PubMed

    Guo, Wei; Shi, Xiaowei; Wang, Wei; Zhang, Weili; Li, Junxia

    2014-11-01

    This study aimed to identify the specific cytochrome P450 (CYP450) enzymes involved in the metabolism of dipfluzine hydrochloride using the combination of a chemical inhibition study, a correlation analysis and a panel of recombinant rat CYP450 enzymes. The incubation of Dip with rat liver microsomes yielded four metabolites, which were identified by liquid chromatography-coupled tandem mass spectrometry (LC/MS/MS). The results from the assays involving eight selective inhibitors indicated that CYP3A and CYP2A1 contributed most to the metabolism of Dip, followed by CYP2C11, CYP2E1 and CYP1A2; however, CYP2B1, CYP2C6 and CYP2D1 did not contribute to the formation of the metabolites. The results of the correlation analysis and the assays involving the recombinant CYP450 enzymes further confirmed the above results and concluded that CYP3A2 contributed more than CYP3A1. The results will be valuable in understanding drug-drug interactions when Dip is coadministered with other drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. CYP2B6, CYP2D6, and CYP3A4 catalyze the primary oxidative metabolism of perhexiline enantiomers by human liver microsomes.

    PubMed

    Davies, Benjamin J; Coller, Janet K; Somogyi, Andrew A; Milne, Robert W; Sallustio, Benedetta C

    2007-01-01

    The cytochrome P450 (P450)-mediated 4-monohydroxylations of the individual enantiomers of the racemic antianginal agent perhexiline (PHX) were investigated in human liver microsomes (HLMs) to identify stereoselective differences in metabolism and to determine the contribution of the polymorphic enzyme CYP2D6 and other P450s to the intrinsic clearance of each enantiomer. The cis-, trans1-, and trans2-4-monohydroxylation rates of (+)- and (-)-PHX by human liver microsomes from three extensive metabolizers (EMs), two intermediate metabolizers (IMs), and two poor metabolizers (PMs) of CYP2D6 were measured with a high-performance liquid chromatography assay. P450 isoform-specific inhibitors, monoclonal antibodies directed against P450 isoforms, and recombinantly expressed human P450 enzymes were used to define the P450 isoform profile of PHX 4-monohydroxylations. The total in vitro intrinsic clearance values (mean +/- S.D.) of (+)- and (-)-PHX were 1376 +/- 330 and 2475 +/- 321, 230 +/- 225 and 482 +/- 437, and 63.4 +/- 1.6 and 54.6 +/- 1.2 microl/min/mg for the EM, IM, and PM HLMs, respectively. CYP2D6 catalyzes the formation of cis-OH-(+)-PHX and trans1-OH-(+)-PHX from (+)-PHX and cis-OH-(-)-PHX from (-)-PHX with high affinity. CYP2B6 and CYP3A4 each catalyze the trans1- and trans2-4-monohydroxylation of both (+)- and (-)-PHX with low affinity. Both enantiomers of PHX are subject to significant polymorphic metabolism by CYP2D6, although this enzyme exhibits distinct stereoselectivity with respect to the conformation of metabolites and the rate at which they are formed. CYP2B6 and CYP3A4 are minor contributors to the intrinsic P450-mediated hepatic clearance of both enantiomers of PHX, except in CYP2D6 PMs.

  5. The use of electrochemistry for the synthesis of 17 alpha-hydroxyprogesterone by a fusion protein containing P450c17.

    PubMed

    Estabrook, R W; Shet, M S; Faulkner, K; Fisher, C W

    1996-11-01

    A method has been developed for the commercial application of the unique oxygen chemistry catalyzed by various cytochrome P450s. This is illustrated here for the synthesis of hydroxylated steroids. This method requires the preparation of large amounts of enzymatically functional P450 proteins that can serve as catalysts and a technique for providing electrons at an economically acceptable cost. To generate large amounts of enzymatically active recombinant P450s we have engineered the cDNAs for various P450s, including bovine adrenal P450c17, by linking them to a modified cDNA for rat NADPH-P450 reductase and placing them in the plasmid pCWori+. Transformation of E. coli results in the high level expression of an enzymatically active protein that can be easily purified by affinity chromatography. Incubation of the purified enzyme with steroid in a reaction vessel containing a platinum electrode and a Ag/AgCl electrode couple poised at -650 mV, together with the electromotively active redox mediator, cobalt sepulchrate, results in the 17 alpha-hydroxylation of progesterone at rates as high as 25 nmoles of progesterone hydroxylated/min/nmole of P450. Thus, high concentrations of hydroxylated steroids can be produced with incubation conditions of hours duration without the use of costly NADPH. Similar experiments have been carried out for the generation of the 6 beta-hydroxylation product of testosterone (using a fusion protein containing human P450 3A4). It is apparent that this method is applicable to many other P450 catalyzed reactions for the synthesis of large amounts of hydroxylated steroid metabolites. The electrochemical system is also applicable to drug discovery studies for the characterization of drug metabolites.

  6. High throughput assay for cytochrome P450 BM3 for screening libraries of substrates and combinatorial mutants.

    PubMed

    Tsotsou, Georgia Eleni; Cass, Anthony Edward George; Gilardi, Gianfranco

    2002-01-01

    A rapid method for identifying compounds that are potential substrates for the drug metabolising enzyme cytochrome P450 is described. The strategy is based on the detection of a degradation product of NAD(P)H oxidation during substrate turnover by the enzyme expressed in Escherichia coli cells spontaneously lysed under the experimental conditions. The performance of the method has been tested on two known substrates of the wild-type cytochrome P450 BM3, arachidonic (AA) and lauric (LA) acids, and two substrates with environmental significance, the anionic surfactant sodium dodecyl sulfate (SDS), and the solvent 1,1,2,2-tetrachloroethane (TCE). The minimal background signal given from cells expressing cytochrome P450 BM3 in the absence of added substrate is only 3% of the signal in the presence of saturating substrate. Control experiments have proven that this method is specifically detecting NADPH oxidation by catalytic turnover of P450 BM3. The assay has been adapted to a microtitre plate format and used to screen a series of furazan derivatives as potential substrates. Three derivatives were identified as substrates. The method gave a significant different signal for two isomeric furazan derivatives. All results found on the cell lysate were verified and confirmed with the purified enzyme. This strategy opens the way to automated high throughput screening of NAD(P)H-linked enzymatic activity of molecules of pharmacological and biotechnological interest and libraries of random mutants of NAD(P)H-dependent biocatalysts.

  7. Discovery of a regioselectivity switch in nitrating P450s guided by molecular dynamics simulations and Markov models

    NASA Astrophysics Data System (ADS)

    Dodani, Sheel C.; Kiss, Gert; Cahn, Jackson K. B.; Su, Ye; Pande, Vijay S.; Arnold, Frances H.

    2016-05-01

    The dynamic motions of protein structural elements, particularly flexible loops, are intimately linked with diverse aspects of enzyme catalysis. Engineering of these loop regions can alter protein stability, substrate binding and even dramatically impact enzyme function. When these flexible regions are unresolvable structurally, computational reconstruction in combination with large-scale molecular dynamics simulations can be used to guide the engineering strategy. Here we present a collaborative approach that consists of both experiment and computation and led to the discovery of a single mutation in the F/G loop of the nitrating cytochrome P450 TxtE that simultaneously controls loop dynamics and completely shifts the enzyme's regioselectivity from the C4 to the C5 position of L-tryptophan. Furthermore, we find that this loop mutation is naturally present in a subset of homologous nitrating P450s and confirm that these uncharacterized enzymes exclusively produce 5-nitro-L-tryptophan, a previously unknown biosynthetic intermediate.

  8. Adult granulosa cell tumors of the ovary: a retrospective study of 30 cases with respect to the expression of steroid synthesis enzymes.

    PubMed

    Kitamura, Sachiko; Abiko, Kaoru; Matsumura, Noriomi; Nakai, Hidekatsu; Akimoto, Yumiko; Tanimoto, Hirotoshi; Konishi, Ikuo

    2017-07-01

    Some, but not all, granulosa cell tumors are characterized by estrogen production. This study was designed to determine whether there are clinical or pathological variations in granulosa cell tumors in relation to the expression of sex steroid synthesis enzymes. Clinical symptoms, serum hormonal values, and histology of 30 granulosa cell tumor patients who underwent surgery between 2002 and 2014 were retrospectively reviewed. Most patients presented with abnormal genital bleeding including abnormal menstrual cycles. Eight of 16 patients older than 50 years had endometrial hyperplasia and one had endometrial cancer. Serum 17β-estradiol (E₂) levels tended to be higher in patients over 50 years of age (p=0.081). Serum follicle-stimulating hormone (FSH) levels were low in all patients irrespective of serum E₂ levels. Magnetic resonance imaging revealed a thicker endometrium in older as compared to younger patients (p<0.05). Tumor cells in the majority of cases were positive for inhibin α and P450 aromatase, irrespective of age and serum E₂ levels. P450 17α-hydroxylase (P450c17) expression varied among cases. P450c17 was strongly positive in luteinized tumor cells and weakly positive in theca cells and fibroblasts. High E₂ levels were associated with P450c17-positive cells in the tumor (p<0.05). The expression of hormone-synthesizing enzymes divides granulosa cell tumors into 2 distinct types; tumors with P450c17-positive cells show elevated serum E₂ and related clinical symptoms, while tumors without these cells show symptoms related to FSH suppression by inhibin. Copyright © 2017. Asian Society of Gynecologic Oncology, Korean Society of Gynecologic Oncology

  9. The Role of Human Cytochrome P450 Enzymes in the Formation of 2-Hydroxymetronidazole: CYP2A6 is the High Affinity (Low Km) Catalyst

    PubMed Central

    Cohen-Wolkowiez, Michael; Sampson, Mario R.; Kearns, Gregory L.

    2013-01-01

    Despite metronidazole’s widespread clinical use since the 1960s, the specific enzymes involved in its biotransformation have not been previously identified. Hence, in vitro studies were conducted to identify and characterize the cytochrome P450 enzymes involved in the formation of the major metabolite, 2-hydroxymetronidazole. Formation of 2-hydroxymetronidazole in human liver microsomes was consistent with biphasic, Michaelis-Menten kinetics. Although several cDNA-expressed P450 enzymes catalyzed 2-hydroxymetronidazole formation at a supratherapeutic concentration of metronidazole (2000 μM), at a “therapeutic concentration” of 100 μM only CYPs 2A6, 3A4, 3A5, and 3A7 catalyzed metronidazole 2-hydroxylation at rates substantially greater than control vector, and CYP2A6 catalyzed 2-hydroxymetronidazole formation at rates 6-fold higher than the next most active enzyme. Kinetic studies with these recombinant enzymes revealed that CYP2A6 has a Km = 289 μM which is comparable to the Km for the high-affinity (low-Km) enzyme in human liver microsomes, whereas the Km values for the CYP3A enzymes corresponded with the low-affinity (high-Km) component. The sample-to-sample variation in 2-hydroxymetronidazole formation correlated significantly with CYP2A6 activity (r ≥ 0.970, P < 0.001) at substrate concentrations of 100 and 300 μM. Selective chemical inhibitors of CYP2A6 inhibited metronidazole 2-hydroxylation in a concentration-dependent manner and inhibitory antibodies against CYP2A6 virtually eliminated metronidazole 2-hydroxylation (>99%). Chemical and antibody inhibitors of other P450 enzymes had little or no effect on metronidazole 2-hydroxylation. These results suggest that CYP2A6 is the primary catalyst responsible for the 2-hydroxylation of metronidazole, a reaction that may function as a marker of CYP2A6 activity both in vitro and in vivo. PMID:23813797

  10. Human Hepatic Cytochrome P450-Specific Metabolism of the Organophosphorus Pesticides Methyl Parathion and Diazinon

    PubMed Central

    Tian, Yuan; Knaak, James B.; Kostyniak, Paul J.; Olson, James R.

    2012-01-01

    Organophosphorus pesticides (OPs) are a public health concern due to their worldwide use and documented human exposures. Phosphorothioate OPs are metabolized by cytochrome P450s (P450s) through either a dearylation reaction to form an inactive metabolite, or through a desulfuration reaction to form an active oxon metabolite, which is a potent cholinesterase inhibitor. This study investigated the rate of desulfuration (activation) and dearylation (detoxification) of methyl parathion and diazinon in human liver microsomes. In addition, recombinant human P450s were used to determine the P450-specific kinetic parameters (Km and Vmax) for each compound for future use in refining human physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models of OP exposure. The primary enzymes involved in bioactivation of methyl parathion were CYP2B6 (Km = 1.25 μM; Vmax = 9.78 nmol · min−1 · nmol P450−1), CYP2C19 (Km = 1.03 μM; Vmax = 4.67 nmol · min−1 · nmol P450−1), and CYP1A2 (Km = 1.96 μM; Vmax = 5.14 nmol · min−1 · nmol P450−1), and the bioactivation of diazinon was mediated primarily by CYP1A1 (Km = 3.05 μM; Vmax = 2.35 nmol · min−1 · nmol P450−1), CYP2C19 (Km = 7.74 μM; Vmax = 4.14 nmol · min−1 · nmol P450−1), and CYP2B6 (Km = 14.83 μM; Vmax = 5.44 nmol · min−1 · nmol P450−1). P450-mediated detoxification of methyl parathion only occurred to a limited extent with CYP1A2 (Km = 16.8 μM; Vmax = 1.38 nmol · min−1 · nmol P450−1) and 3A4 (Km = 104 μM; Vmax = 5.15 nmol · min−1 · nmol P450−1), whereas the major enzyme involved in diazinon detoxification was CYP2C19 (Km = 5.04 μM; Vmax = 5.58 nmol · min−1 · nmol P450−1). The OP- and P450-specific kinetic values will be helpful for future use in refining human PBPK/PD models of OP exposure. PMID:21969518

  11. The regulation of cytochrome P450 2E1 during LPS-induced inflammation in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulla, Dalya; Goralski, Kerry B.; College of Pharmacy, Burbidge Building, Dalhousie University, Halifax, Nova Scotia, B3H 3J5

    2006-10-01

    It is well known that inflammatory and infectious conditions differentially regulate cytochrome P450 (P450)-mediated drug metabolism in the liver. We have previously outlined a potential pathway for the downregulation in hepatic cytochrome P450 following LPS-mediated inflammation in the CNS (Abdulla, D., Goralski, K.B., Garcia Del Busto Cano, E., Renton, K.W., 2005. The signal transduction pathways involved in hepatic cytochrome P450 regulation in the rat during an LPS-induced model of CNS inflammation. Drug Metab. Dispos). The purpose of this study was to outline the effects of LPS-induced peripheral and central nervous system inflammation on hepatic cytochrome P450 2E1 (CYP2E1) in vivo,more » an enzyme that plays an important role in various physiological and pathological states. We report an increase in hepatic mRNA expression of CYP2E1 that occurred as early as 2-3 h following either the intraperitoneal (i.p.) injection of 5 mg/kg LPS or i.c.v. administration of 25 {mu}g of LPS. This increase in CYP2E1 mRNA expression was sustained for 24 h. In sharp contrast to the increase in hepatic CYP2E1 mRNA, we observed a significant reduction in the catalytic activity of this enzyme 24 h following either the i.c.v. or i.p. administration of LPS. Cycloheximide or actinomycin-D did not change the LPS-mediated downregulation in hepatic CYP2E1 catalytic activity. Our results support the idea that LPS acts at two different levels to regulate hepatic CYP2E1: a transcriptional level to increase CYP2E1 mRNA expression and a post-transcriptional level to regulate CYP2E1 protein and activity.« less

  12. [Progress on studies of impact on CYP450 enzymes activity of traditional Chinese medicine by Cocktail probe substrates approach].

    PubMed

    Du, Xi; He, Xin; Huang, Yu-Hong; Li, Zi-Qiang

    2016-12-01

    Cocktail probe substrates approach is a fast, sensitive and high through put method to determine cytochrome P450 enzymes activity. It has been widely used to screen early drug development, analyze drug metabolism types and confirm the metabolism pathways, study drug-drug interactions, optimize clinical regimen, evaluate post marketing drugs and help liver/kidney pathological studies. This article reviewed characteristics of Cocktail probe substrates, focused on the application to traditional Chinese medicine to CYP450 system as follows: the metabolic pathway research of Chinese herb active ingredients; processing way and compatibility of medical herbs affect CYP450; find out the metabolic characteristic of Chinese patent medicine, study in pharmacy of national minority; do research in liver protective effect of traditional Chinese medicine and evaluate traditional Chinese medicine syndromes in animal models. This article make a summary of existing research results and also make a comparison of cocktail probe substrates approach application to western medicine and Chinese medicine. Copyright© by the Chinese Pharmaceutical Association.

  13. Methoxyflurane acts at the substrate binding site of cytochrome P450 LM2 to induce a dependence on cytochrome b5.

    PubMed

    Lipka, J J; Waskell, L A

    1989-01-01

    Rabbit cytochrome P450 isozyme 2 requires cytochrome b5 to metabolize the volatile anesthetic methoxyflurane but not the substrate benzphetamine [E. Canova-Davis and L. Waskell (1984) J. Biol. Chem. 259, 2541-2546]. To determine whether the requirement for cytochrome b5 for methoxyflurane oxidation is mediated by an allosteric effect on cytochrome P450 LM2 or cytochrome P450 reductase, we have investigated whether this anesthetic can induce a role for cytochrome b5 in benzphetamine metabolism. Using rabbit liver microsomes and antibodies raised in guinea pigs against rabbit cytochrome b5, we found that methoxyflurane did not create a cytochrome b5 requirement for benzphetamine metabolism. Methoxyflurane also failed to induce a role for cytochrome b5 in benzphetamine metabolism in the purified, reconstituted mixed function oxidase system. Studies of the reaction kinetics established that in the absence of cytochrome b5, methoxyflurane and benzphetamine are competitive inhibitors, and that in the presence of cytochrome b5, benzphetamine and methoxyflurane are two alternate substrates in competition for a single site on the same enzyme. These results all indicate that the methoxyflurane-induced cytochrome b5 dependence of the mixed function oxidase cytochrome P450 LM2 system is a direct result of the interaction between methoxyflurane and the substrate binding site of cytochrome P450 LM2 and suggest the focus of future studies of this question.

  14. Cytochrome P450 humanised mice

    PubMed Central

    2004-01-01

    Humans are exposed to countless foreign compounds, typically referred to as xenobiotics. These can include clinically used drugs, environmental pollutants, food additives, pesticides, herbicides and even natural plant compounds. Xenobiotics are metabolised primarily in the liver, but also in the gut and other organs, to derivatives that are more easily eliminated from the body. In some cases, however, a compound is converted to an electrophile that can cause cell toxicity and transformation leading to cancer. Among the most important xenobiotic-metabolising enzymes are the cytochromes P450 (P450s). These enzymes represent a superfamily of multiple forms that exhibit marked species differences in their expression and catalytic activities. To predict how humans will metabolise xenobiotics, including drugs, human liver extracts and recombinant P450s have been used. New humanised mouse models are being developed which will be of great value in the study of drug metabolism, pharmacokinetics and pharmacodynamics in vivo, and in carrying out human risk assessment of xenobiotics. Humanised mice expressing CYP2D6 and CYP3A4, two major drug-metabolising P450s, have revealed the feasibility of this approach. PMID:15588489

  15. Radiometric assay for cytochrome P-450-catalyzed progesterone 16 alpha-hydroxylation and determination of an apparent isotope effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osawa, Y.; Coon, M.J.

    1987-08-01

    In the course of studies on the oxygenation of steroids by purified P-450 cytochromes, particularly rabbit liver microsomal cytochrome P-450 form 3b, a rapid and reliable radiometric assay has been devised for progesterone 16 alpha-hydroxylation. In view of the lack of a commercially available, suitably tritiated substrate, (1,2,6,7,16,17-3H)progesterone was treated with alkali to remove the label from potential hydroxylation sites other than the 16 alpha position. The resulting (1,7,16-3H)progesterone was added to a reconstituted enzyme system containing cytochrome P-450 form 3b, NADPH-cytochrome P-450 reductase, and NADPH, and the rate of 16 alpha-hydroxylation was measured by the formation of /sup 3/H/submore » 2/O. This reaction was shown to be linear with respect to time and to the cytochrome P-450 concentration. An apparent tritium isotope effect of 2.1 was observed by comparison of the rates of formation of tritium oxide and 16 alpha-hydroxyprogesterone, and the magnitude of the isotope effect was confirmed by an isotope competition assay in which a mixture of (1,7,16-/sup 3/H)progesterone and (4-14C)progesterone was employed.« less

  16. Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Hitoshi; MacDonald, Jacqueline; Syed, Khajamohiddin

    Background Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reportedmore » P. chrysosporium genome. Results P. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood. Conclusions The P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species.« less

  17. Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize

    PubMed Central

    2012-01-01

    Background Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reported P. chrysosporium genome. Results P. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood. Conclusions The P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species. PMID:22937793

  18. Disparate Vitamin D Activity in the Prostate of Men with African Ancestry

    DTIC Science & Technology

    2015-10-01

    the vitamin D receptor (VDR) and determined by several cytochrome P450 metabolism enzymes that bioactivate/inactivate the active form of the hormone...activity of vitamin D3 is mediated by the vitamin D receptor (VDR) and determined by several cytochrome P450 metabolism enzymes that bioactivate...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT African American (AA) men are disproportionally affected by prostate cancer (PCa). AA men are not only at

  19. Deoxysarpagine hydroxylase--a novel enzyme closing a short side pathway of alkaloid biosynthesis in Rauvolfia.

    PubMed

    Yu, Bingwu; Ruppert, Martin; Stöckigt, Joachim

    2002-08-01

    Microsomal preparations from cell suspension cultures of the Indian plant Rauvolfia serpentina catalyze the hydroxylation of deoxysarpagine under formation of sarpagine. The newly discovered enzyme is dependent on NADPH and oxygen. It can be inhibited by typical cytochrome P450 inhibitors such as cytochrome c, ketoconazole, metyrapone, tetcyclacis and carbon monoxide. The CO-effect is reversible with light (450 nm). The data indicate that deoxysarpagine hydroxylase is a novel cytochrome P450-dependent monooxygenase. A pH optimum of 8.0 and a temperature optimum of 35 degrees C were determined. K(m) values were 25 microM for NADPH and 7.4 microM for deoxysarpagine. Deoxysarpagine hydroxylase activity was stable in presence of 20% sucrose at -25 degrees C for >3 months. The analysis of presence of the hydroxylase in nine cell cultures of seven different families indicates a very limited taxonomic distribution of this enzyme.

  20. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver

    PubMed Central

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao

    2015-01-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (<100 mg/kg) does not change expression and enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult mouse liver, whereas phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. PMID:26400395

  1. CHARACTERIZATION OF THE IN VITRO METABOLISM OF SELECTIVE ANDROGEN RECEPTOR MODULATOR USING HUMAN, RAT, AND DOG LIVER ENZYME PREPARATIONS

    PubMed Central

    Gao, Wenqing; Wu, Zengru; Bohl, Casey E.; Yang, Jun; Miller, Duane D.; Dalton, James T.

    2007-01-01

    Compound S4 [S-3-(4-acetylamino-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide] is a novel nonsteroidal selective androgen receptor modulator that demonstrates tissue-selective androgenic and anabolic effects. The purpose of this in vitro study was to identify the phase I metabolites, potential species differences in metabolism, and the cytochromes P450 (P450s) involved in the phase I metabolism of S4 using 14C-S4, recombinant P450s, and other liver enzyme preparations from human, rat, and dog. The major phase I metabolism pathways of S4 in humans were identified as deacetylation of the B-ring acetamide group, hydrolysis of the amide bond, reduction of the A-ring nitro group, and oxidation of the aromatic rings, with deacetylation being the predominant pathway observed with most of the enzyme preparations tested. Among the major human P450 enzymes tested, CYP3A4 appeared to be one of the major phase I enzymes that could be responsible for the phase I metabolism of S4 [Km = 16.1 μM, Vmax = 1.6 pmol/(pmol · min)] in humans and mainly catalyzed the deacetylation, hydrolysis, and oxidation of S4. In humans, the cytosolic enzymes mainly catalyzed the hydrolysis reaction, whereas the microsomal enzymes primarily catalyzed the deacetylation reactions. Similar phase I metabolic profiles were observed in rats and dogs as well, except that the amide bond hydrolysis seemed to occur more rapidly in rats. In summary, these results showed that the major phase I reaction of S4 in human, rat, and dog is acetamide group deacetylation. PMID:16272404

  2. Characterization of the cytochrome P450 enzymes and enzyme kinetic parameters for metabolism of BVT.2938 using different in vitro systems.

    PubMed

    Baranczewski, Pawel; Edlund, Per Olof; Postlind, Hans

    2006-03-18

    An important step in the drug development process is identification of enzymes responsible for metabolism of drug candidates and determination of enzyme kinetic parameters. These data are used to increase understanding of the pharmacokinetics and possible metabolic-based drug interactions of drug candidates. The aim of the present study was to characterize the cytochrome P450 enzymes and enzyme kinetic parameters for metabolism of BVT.2938 [1-(3-{2-[(2-ethoxy-3-pyridinyl)oxy]ethoxy}-2-pyrazinyl)-2(R)-methylpiperazine], a potent and selective 5HT2c-receptor agonist. The enzyme kinetic parameters were determined for formation of three main metabolites of BVT.2938 using human liver microsomes and expressed cytochrome P450 (CYP) isoforms. The major metabolite was formed by hydroxylation of the pyridine ring (CL(int)=27 microl/mgmin), and was catalysed by both CYP2D6*1 and CYP1A1, with K(m) values corresponding to 1.4 and 2.7 microM, respectively. The results from enzyme kinetic studies were confirmed by incubation of BVT.2938 in the presence of the chemical inhibitor of CYP2D6*1, quinidine. Quinidine inhibited the formation of the major metabolite by approximately 90%. Additionally, studies with recombinant expressed CYP isoforms from rat indicated that formation of the major metabolite of BVT.2938 was catalysed by CYP2D2. This result was further confirmed by experiments with liver slices from different rat strains, where the formation of the metabolite correlated with phenotype of CYP2D2 isoform (Sprague-Dawley male, extensive; Dark Agouti male, intermediate; Dark Agouti female, poor metabolizer). The present study showed that the major metabolite of BVT.2938 is formed by hydroxylation of the pyridine ring and catalysed by CYP2D6*1. CYP1A1 is also involved in this reaction and its role in extra-hepatic metabolism of BVT.2938 might be significant.

  3. In vitro characterization of sarizotan metabolism: hepatic clearance, identification and characterization of metabolites, drug-metabolizing enzyme identification, and evaluation of cytochrome p450 inhibition.

    PubMed

    Gallemann, Dieter; Wimmer, Elmar; Höfer, Constance C; Freisleben, Achim; Fluck, Markus; Ladstetter, Bernhard; Dolgos, Hugues

    2010-06-01

    In vitro biotransformation studies of sarizotan using human liver microsomes (HLM) showed aromatic and aliphatic monohydroxylation and dealkylation. Recombinant cytochromes P450 (P450) together with P450-selective inhibitors in HLM/hepatocyte cultures were used to evaluate the relative contribution of different P450s and revealed major involvement of CYP3A4, CYP2C9, CYP2C8, and CYP1A2 in sarizotan metabolism. The apparent K(m, u) and V(max) of sarizotan clearance, as investigated in HLM, were 9 microM and 3280 pmol/mg/min, predicting in vivo hepatic clearance of 0.94 l/h, which indicates that sarizotan is a low-clearance compound in humans and suggests nonsaturable metabolism at the targeted plasma concentration (< or =1 microM). This finding is confirmed by the reported human clearance (CL/F of 3.6-4.4 l/h) and by the dose-linear area under the curve increase observed with doses up to 25 mg. The inhibitory effect of sarizotan toward six major P450s was evaluated using P450-specific marker reactions in pooled HLM. K(i, u) values of sarizotan against CYP2C8, CYP2C19, and CYP3A4 were >10 microM, whereas those against CYP2D6 and CYP1A2 were 0.43 and 8.7 microM, respectively. Based on the estimates of sarizotan concentrations at the enzyme active sites, no clinically significant drug-drug interactions (DDIs) due to P450 inhibition are expected. This result has been confirmed in human DDI studies in which no inhibition of five major P450s was observed in terms of marker metabolite formation.

  4. Effects of atrazine on cytochrome P450 enzymes of zebrafish (Danio rerio).

    PubMed

    Dong, Xiaoli; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Xie, Hui; Hou, Xinxin; Jia, Wentao

    2009-10-01

    In this study, the effects of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) in males and females of adult zebrafish (Danio rerio) were studied. The liver microsomal cytochrome P450 content, NADPH-P450 reductase, aminopyrine N-demethylase (APND), and erythromycin N-demethylase (ERND) activity were measured. Zebrafish were exposed to control and 3 treatments (0.01, 0.1, and 1 mg L(-1)) of atrazine for 5, 10, 15, 20, and 25 days. The results indicated that, within the range of test atrazine concentrations, either P450 content or P450 isozyme activities could be induced by atrazine. Compared to controls, P450 content was significantly increased at all atrazine concentrations at days 10, 15, and 20; thereafter, at day 25, all concentrations decreased to approximately the control levels, both in males and females. In addition, the strongest induction of P450 content was observed on day 15 in males and day 10 in females at treatment concentrations of 1 mg L(-1). NADPH-P450 reductase activities showed mild increase in males; however, the females exhibited significant induction on days 15, 20, and 25; especially, at concentrations of 0.01 mg L(-1), the induction level was consistently increased during the experiment. The inducements of APND and ERND in males were mainly observed on the days 5, 10, and 15, which showed less distinct induction, while significant induction was observed in cases of treatments during all days in females. In conclusion, atrazine induces P450 enzymes in zebrafish, and the effects may function as significant toxicity mechanisms in zebrafish. Additionally, it also confirms the importance of using a combined multi-time and multi-index diagnostic method to enhance the sensitivity and effectiveness of the indices adopted.

  5. Beyond Iron: Iridium-Containing P450 Enzymes for Selective Cyclopropanations of Structurally Diverse Alkenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, Hanna M.; Dydio, Paweł; Liu, Zhennan

    Enzymes catalyze organic transformations with exquisite levels of selectivity, including chemoselectivity, stereoselectivity, and substrate selectivity, but the types of reactions catalyzed by enzymes are more limited than those of chemical catalysts. Thus, the convergence of chemical catalysis and biocatalysis can enable enzymatic systems to catalyze abiological reactions with high selectivity. Recently, we disclosed artificial enzymes constructed from the apo form of heme proteins and iridium porphyrins that catalyze the insertion of carbenes into a C-H bond. Here, we postulated that the same type of Ir(Me)-PIX enzymes could catalyze the cyclopropanation of a broad range of alkenes with control of multiplemore » modes of selectivity. Here, we report the evolution of artificial enzymes that are highly active and highly stereoselective for the addition of carbenes to a wide range of alkenes. These enzymes catalyze the cyclopropanation of terminal and internal, activated and unactivated, electron-rich and electron-deficient, conjugated and nonconjugated alkenes. In particular, Ir(Me)-PIX enzymes derived from CYP119 catalyze highly enantio- and diastereoselective cyclopropanations of styrene with ±98% ee, > 70:1 dr, > 75% yield, and ~10,000 turnovers (TON), as well as 1,2-disubstituted styrenes with up to 99% ee, 35:1 dr, and 54% yield. Moreover, Ir(Me)-PIX enzymes catalyze cyclopropanation of internal, unactivated alkenes with up to 99% stereoselectivity, 76% yield, and 1300 TON. They also catalyze cyclopropanation of natural products with diastereoselectivities that are complementary to those attained with standard transition metal catalysts. Finally, Ir(Me)-PIX P450 variants react with substrate selectivity that is reminiscent of natural enzymes; they react preferentially with less reactive internal alkenes in the presence of more reactive terminal alkenes. Altogether, the studies reveal the suitability of Ir-containing P450s to combine the broad reactivity and substrate scope of transition metal catalysts with the exquisite selectivity of enzymes, generating catalysts that enable reactions to occur with levels and modes of activity and selectivity previously unattainable with natural enzymes or transition metal complexes alone.« less

  6. Beyond Iron: Iridium-Containing P450 Enzymes for Selective Cyclopropanations of Structurally Diverse Alkenes

    DOE PAGES

    Key, Hanna M.; Dydio, Paweł; Liu, Zhennan; ...

    2017-04-01

    Enzymes catalyze organic transformations with exquisite levels of selectivity, including chemoselectivity, stereoselectivity, and substrate selectivity, but the types of reactions catalyzed by enzymes are more limited than those of chemical catalysts. Thus, the convergence of chemical catalysis and biocatalysis can enable enzymatic systems to catalyze abiological reactions with high selectivity. Recently, we disclosed artificial enzymes constructed from the apo form of heme proteins and iridium porphyrins that catalyze the insertion of carbenes into a C-H bond. Here, we postulated that the same type of Ir(Me)-PIX enzymes could catalyze the cyclopropanation of a broad range of alkenes with control of multiplemore » modes of selectivity. Here, we report the evolution of artificial enzymes that are highly active and highly stereoselective for the addition of carbenes to a wide range of alkenes. These enzymes catalyze the cyclopropanation of terminal and internal, activated and unactivated, electron-rich and electron-deficient, conjugated and nonconjugated alkenes. In particular, Ir(Me)-PIX enzymes derived from CYP119 catalyze highly enantio- and diastereoselective cyclopropanations of styrene with ±98% ee, > 70:1 dr, > 75% yield, and ~10,000 turnovers (TON), as well as 1,2-disubstituted styrenes with up to 99% ee, 35:1 dr, and 54% yield. Moreover, Ir(Me)-PIX enzymes catalyze cyclopropanation of internal, unactivated alkenes with up to 99% stereoselectivity, 76% yield, and 1300 TON. They also catalyze cyclopropanation of natural products with diastereoselectivities that are complementary to those attained with standard transition metal catalysts. Finally, Ir(Me)-PIX P450 variants react with substrate selectivity that is reminiscent of natural enzymes; they react preferentially with less reactive internal alkenes in the presence of more reactive terminal alkenes. Altogether, the studies reveal the suitability of Ir-containing P450s to combine the broad reactivity and substrate scope of transition metal catalysts with the exquisite selectivity of enzymes, generating catalysts that enable reactions to occur with levels and modes of activity and selectivity previously unattainable with natural enzymes or transition metal complexes alone.« less

  7. Mangifera indica L. extract and mangiferin modulate cytochrome P450 and UDP-glucuronosyltransferase enzymes in primary cultures of human hepatocytes.

    PubMed

    Rodeiro, Idania; José Gómez-Lechón, M; Perez, Gabriela; Hernandez, Ivones; Herrera, José Alfredo; Delgado, Rene; Castell, José V; Teresa Donato, M

    2013-05-01

    The aqueous stem bark extract of Mangifera indica L. (MSBE) has been reported to have antioxidant, anti-inflammatory and analgesic properties. In previous studies, we showed that MSBE and mangiferin, its main component, lower the activity of some cytochrome P-450 (P450) enzymes in rat hepatocytes and human liver microsomes. In the present study, the effects of MSBE and mangiferin on several P450 enzymes and UDP-glucuronosyltransferases (UGTs) in human-cultured hepatocytes have been examined. After hepatocytes underwent a 48-h treatment with sub-cytotoxic concentrations of the products (50-250 µg/mL), a concentration-dependent decrease of the activity of the five P450 enzymes measured (CYP1A2, 2A6, 2C9, 2D6 and 3A4) was observed. For all the activities, a reduction of at least 50% at the highest concentration (250 µg/mL) was observed. In addition, UGT activities diminished. MSBE considerably reduced UGT1A9 activity (about 60% at 250 µg/mL) and lesser effects on the other UGTs. In contrast, 250 µg/mL mangiferin had greater effects on UGT1A1 and 2B7 than on UGT1A9 (about 55% vs. 35% reduction, respectively). Quantification of specific mRNAs revealed reduced CYP3A4 and 3A5 mRNAs content, and an increase in CYP1A1, CYP1A2, UGT1A1 and UGT1A9 mRNAs. No remarkable effects on the CYP2A6, 2B6, 2C9, 2C19, 2D6 and 2E1 levels were observed. Our results suggest that the activity and/or expression of major P450 and UGT enzymes is modulated by MSBE and that potential herb-drugs interactions could arise after a combined intake of this extract with conventional medicines. Therefore, the potential safety risks of this natural product derived by altering the ADMET properties of co-administered drugs should be examined. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Iron(IV)hydroxide pK(a) and the role of thiolate ligation in C-H bond activation by cytochrome P450.

    PubMed

    Yosca, Timothy H; Rittle, Jonathan; Krest, Courtney M; Onderko, Elizabeth L; Silakov, Alexey; Calixto, Julio C; Behan, Rachel K; Green, Michael T

    2013-11-15

    Cytochrome P450 enzymes activate oxygen at heme iron centers to oxidize relatively inert substrate carbon-hydrogen bonds. Cysteine thiolate coordination to iron is posited to increase the pK(a) (where K(a) is the acid dissociation constant) of compound II, an iron(IV)hydroxide complex, correspondingly lowering the one-electron reduction potential of compound I, the active catalytic intermediate, and decreasing the driving force for deleterious auto-oxidation of tyrosine and tryptophan residues in the enzyme's framework. Here, we report on the preparation of an iron(IV)hydroxide complex in a P450 enzyme (CYP158) in ≥90% yield. Using rapid mixing technologies in conjunction with Mössbauer, ultraviolet/visible, and x-ray absorption spectroscopies, we determine a pK(a) value for this compound of 11.9. Marcus theory analysis indicates that this elevated pK(a) results in a >10,000-fold reduction in the rate constant for oxidations of the protein framework, making these processes noncompetitive with substrate oxidation.

  9. Influence of nutrition on liver oxidative metabolism.

    PubMed

    Jorquera, F; Culebras, J M; González-Gallego, J

    1996-06-01

    The liver plays a major role in the disposition of the majority of drugs. This is due to the presence of several drug-metabolizing enzyme systems, including a group of membrane-bound mixed-function oxidative enzymes, mainly the cytochrome P450 system. Hepatic oxidative capacity can be assessed by changes in antipyrine metabolism. Different drugs and other factors may induce or inhibit the cytochrome P450-dependent system. This effect is important in terms of the efficacy or toxicity of drugs that are substrates for the system. Microsomal oxidation in animals fed with protein-deficient diets is depressed. The mixed-function oxidase activity recovers after a hyperproteic diet or the addition of lipids. Similar findings have been reported in patients with protein-calorie malnutrition, although results in the elderly are conflicting. Different studies have revealed that microsomal oxidation is impaired by total parenteral nutrition and that this effect is absent when changing the caloric source from carbohydrates to a conventional amino acid solution or after lipid addition, especially when administered as medium-chain/long-chain triglyceride mixtures. Peripheral parenteral nutrition appears to increase antipyrine clearance.

  10. The effect of varying halogen substituent patterns on the cytochrome P450 catalysed dehalogenation of 4-halogenated anilines to 4-aminophenol metabolites.

    PubMed

    Cnubben, N H; Vervoort, J; Boersma, M G; Rietjens, I M

    1995-05-11

    The cytochrome P450 catalysed biotransformation of 4-halogenated anilines was studied in vitro with special emphasis on the dehalogenation to 4-aminophenol metabolites. The results demonstrated that a fluorine substituent at the C4 position was more easily eliminated from the aromatic ring than a chloro-, bromo- or iodo-substituent. HPLC analysis of in vitro biotransformation patterns revealed that the dehalogenation of the C4-position was accompanied by formation of non-halogenated 4-aminophenol, without formation of NIH-shifted metabolites. Changes in the apparent Vmax for the microsomal oxidative dehalogenation appeared to correlate with the electronegativity of the halogen substituent at C4, the fluorine substituent being the one most easily eliminated. A similar decrease in the rate of dehalogenation from a fluoro- to a chloro- to a bromo- to an iodo-substituent was observed in a system with purified reconstituted cytochrome P450 IIB1, in a tertiair butyl hydroperoxide supported microsomal cytochrome P450 system as well as in a system with microperoxidase 8. This microperoxidase 8 is a haem-based mini-enzyme without a substrate binding site, capable of catalysing cytochrome P450-like reaction chemistry. Together, these results excluded the possibility that the difference in the rate of dehalogenation with a varying C4-halogen substituent arose from a change in the contribution of cytochrome P450 enzymes involved in oxidative dehalogenation with a change in the halogen substituent. Rather, they strongly suggested that the difference was indeed due to an intrinsic electronic parameter of the various C4 halogenated anilines dependent on the type of halogen substituent. Additional in vitro experiments with polyfluorinated anilines demonstrated that elimination of the C4-fluorine substituent became more difficult upon the introduction of additional electron withdrawing fluorine substituents in the aniline-ring. 19F-NMR analysis of the metabolite patterns showed that the observed decrease in 4-aminophenol formation was accompanied by a metabolic switch to 2-aminophenols and N-hydroxyanilines, while products resulting from NIH-type mechanisms were not observed. For a C4-chloro-, bromo-, or iodo-substituted 2-fluoroaniline the Vmax for the oxidative dehalogenation was reduced by the additional electron withdrawing fluorine substituent at the C2 position in a similar way.(ABSTRACT TRUNCATED AT 400 WORDS)

  11. Disparate Vitamin D Activity in the Prostate of Men with African Ancestry

    DTIC Science & Technology

    2014-10-01

    activity of vitamin D3 is mediated by the vitamin D receptor (VDR) and determined by several cytochrome P450 metabolism enzymes that bioactivate...vitamin D receptor (VDR) and determined by several cytochrome P450 metabolism enzymes that bioactivate/inactivate the active form of the hormone... cancer (PCa). AA men are not only at increased risk of PCa compared to American men of European descent (EA), but also are at the highest risk of

  12. Effects of aging and rifampicin pretreatment on the pharmacokinetics of human cytochrome P450 probes caffeine, warfarin, omeprazole, metoprolol and midazolam in common marmosets genotyped for cytochrome P450 2C19.

    PubMed

    Toda, Akiko; Uehara, Shotaro; Inoue, Takashi; Utoh, Masahiro; Kusama, Takashi; Shimizu, Makiko; Uno, Yasuhiro; Mogi, Masayuki; Sasaki, Erika; Yamazaki, Hiroshi

    2018-07-01

    1. The pharmacokinetics were investigated for human cytochrome P450 probes after single intravenous and oral administrations of 0.20 and 1.0 mg/kg, respectively, of caffeine, warfarin, omeprazole, metoprolol and midazolam to aged (10-14 years old, n = 4) or rifampicin-treated/young (3 years old, n = 3) male common marmosets all genotyped as heterozygous for a cytochrome P450 2C19 variant. 2. Slopes of the plasma concentration-time curves after intravenous administration of warfarin and midazolam were slightly, but significantly (two-way analysis of variance), decreased in aged marmosets compared with young marmosets. The mean hepatic clearances determined by in silico fitting for individual pharmacokinetic models of warfarin and midazolam in the aged group were, respectively, 23% and 56% smaller than those for the young group. 3. Significantly enhanced plasma clearances of caffeine, warfarin, omeprazole and midazolam were evident in young marmosets pretreated with rifampicin (25 mg/kg daily for 4 days). Two- to three-fold increases in hepatic intrinsic clearance values were observed in the individual pharmacokinetic models. 4. The in vivo dispositions of multiple simultaneously administered drugs in old, young and P450-enzyme-induced marmosets were elucidated. The results suggest that common marmosets could be experimental models for aged, induced or polymorphic P450 enzymes in P450-dependent drug metabolism studies.

  13. In Vitro and in Vivo Inhibitory Effects of Glycyrrhetinic Acid in Mice and Human Cytochrome P450 3A4

    PubMed Central

    Lv, Qiao-Li; Wang, Gui-Hua; Chen, Shu-Hui; Hu, Lei; Zhang, Xue; Ying, Guo; Qin, Chong-Zhen; Zhou, Hong-Hao

    2015-01-01

    Glycyrrhetinic acid (GA) has been used clinically in the treatment of patients with chronic hepatitis. This study evaluated the effect of GA on the activity of five P450(CYP450) cytochrome enzymes: CYP2A6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, in human liver microsomes (HLMs) and recombinant cDNA-expressed enzyme systems using a HPLC-MS/MS CYP-specific probe substrate assay. With midazolam as the probe substrate, GA greatly decreased CYP3A4 activity with IC50 values of 8.195 μM in HLMs and 7.498 μM in the recombinant cDNA-expressed CYP3A4 enzyme system, respectively. It significantly decreased CYP3A4 activity in a dose- but not time-dependent manner. Results from Lineweaver–Burk plots showed that GA could inhibit CYP3A4 activity competitively, with a Ki value of 1.57 μM in HLMs. Moreover, CYP2C9 and CYP2C19 could also be inhibited significantly by GA with IC50 of 42.89 and 40.26 μM in HLMs, respectively. Other CYP450 isoforms were not markedly affected by GA. The inhibition was also confirmed by an in vivo study of mice. In addition, it was observed that mRNA expressions of the Cyps2c and 3a family decreased significantly in the livers of mice treated with GA. In conclusion, this study indicates that GA may exert herb-drug interactions by competitively inhibiting CYP3A4. PMID:26712778

  14. In Vitro and in Vivo Inhibitory Effects of Glycyrrhetinic Acid in Mice and Human Cytochrome P450 3A4.

    PubMed

    Lv, Qiao-Li; Wang, Gui-Hua; Chen, Shu-Hui; Hu, Lei; Zhang, Xue; Ying, Guo; Qin, Chong-Zhen; Zhou, Hong-Hao

    2015-12-25

    Glycyrrhetinic acid (GA) has been used clinically in the treatment of patients with chronic hepatitis. This study evaluated the effect of GA on the activity of five P450(CYP450) cytochrome enzymes: CYP2A6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, in human liver microsomes (HLMs) and recombinant cDNA-expressed enzyme systems using a HPLC-MS/MS CYP-specific probe substrate assay. With midazolam as the probe substrate, GA greatly decreased CYP3A4 activity with IC50 values of 8.195 μM in HLMs and 7.498 μM in the recombinant cDNA-expressed CYP3A4 enzyme system, respectively. It significantly decreased CYP3A4 activity in a dose- but not time-dependent manner. Results from Lineweaver-Burk plots showed that GA could inhibit CYP3A4 activity competitively, with a Ki value of 1.57 μM in HLMs. Moreover, CYP2C9 and CYP2C19 could also be inhibited significantly by GA with IC50 of 42.89 and 40.26 μM in HLMs, respectively. Other CYP450 isoforms were not markedly affected by GA. The inhibition was also confirmed by an in vivo study of mice. In addition, it was observed that mRNA expressions of the Cyps2c and 3a family decreased significantly in the livers of mice treated with GA. In conclusion, this study indicates that GA may exert herb-drug interactions by competitively inhibiting CYP3A4.

  15. Structural basis for androgen specificity and oestrogen synthesis in human aromatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Debashis; Griswold, Jennifer; Erman, Mary

    2009-03-06

    Aromatase cytochrome P450 is the only enzyme in vertebrates known to catalyse the biosynthesis of all oestrogens from androgens. Aromatase inhibitors therefore constitute a frontline therapy for oestrogen-dependent breast cancer. In a three-step process, each step requiring 1 mol of O{sub 2}, 1 mol of NADPH, and coupling with its redox partner cytochrome P450 reductase, aromatase converts androstenedione, testosterone and 16{alpha}-hydroxytestosterone to oestrone, 17{beta}-oestradiol and 17{beta},16{alpha}-oestriol, respectively. The first two steps are C19-methyl hydroxylation steps, and the third involves the aromatization of the steroid A-ring, unique to aromatase. Whereas most P450s are not highly substrate selective, it is the hallmarkmore » androgenic specificity that sets aromatase apart. The structure of this enzyme of the endoplasmic reticulum membrane has remained unknown for decades, hindering elucidation of the biochemical mechanism. Here we present the crystal structure of human placental aromatase, the only natural mammalian, full-length P450 and P450 in hormone biosynthetic pathways to be crystallized so far. Unlike the active sites of many microsomal P450s that metabolize drugs and xenobiotics, aromatase has an androgen-specific cleft that binds the androstenedione molecule snugly. Hydrophobic and polar residues exquisitely complement the steroid backbone. The locations of catalytically important residues shed light on the reaction mechanism. The relative juxtaposition of the hydrophobic amino-terminal region and the opening to the catalytic cleft shows why membrane anchoring is necessary for the lipophilic substrates to gain access to the active site. The molecular basis for the enzyme's androgenic specificity and unique catalytic mechanism can be used for developing next-generation aromatase inhibitors.« less

  16. Identification of human cytochrome P450s as autoantigens.

    PubMed

    Manns, M P; Johnson, E F

    1991-01-01

    Antimicrosomal antibodies in inflammatory liver diseases all seem to be directed against members of the cytochrome P450 family of proteins. These autoantigens seem to be genetically polymorphic, the autoantibodies are inhibitory, and the autoepitopes are generally conserved among species. Anti-P450 autoantibodies share these characteristics with other autoantibodies, for example, antinuclear antibodies in systemic lupus erythematosus. The identification of P450s as human autoantigens is clinically important. Diagnostic tests will be developed on the basis of cloned antigen, facilitating a better diagnosis of drug-induced and idiopathic autoimmune hepatitis. It is unknown what triggers autoantibody production against cytochrome P450 proteins. Furthermore, their pathogenetic role and thus their involvement in tissue destruction is unclear. In this context LKM1 autoantibodies may serve as a model. Although LKM1 antibodies are inhibitory, all LKM1 antibody-positive patients tested so far are extensive metabolizers for drug metabolism mediated by P450IID6 and express this protein in their livers. Thus, the inhibitory LKM1 autoantibody does not sufficiently penetrate through the intact liver cell membrane to inhibit enzyme function in vivo. Presumably, tissue destruction in autoimmune hepatitis is mediated by liver-infiltrating T lymphocytes. T lymphocytes have been cloned from liver tissue that specifically proliferate in the presence of recombinant cytochrome P450IID6. The construction of overlapping cDNA subclones is also valuable to identify immunodominant B cell as well as relevant T cell epitopes.

  17. A possible role of NADPH-dependent cytochrome P450nor isozyme in glycolysis under denitrifying conditions.

    PubMed

    Watsuji, Tomo-o; Takaya, Naoki; Nakamura, Akira; Shoun, Hirofumi

    2003-05-01

    The denitrifying fungus Cylindrocarpon tonkinense contains two isozymes of cytochrome P450nor. One isozyme, P450nor1, uses NADH specifically as its electron donor whereas the other isozyme P450nor2 prefers NADPH to NADH. Here we show that P450nor1 is localized in both cytosol and mitochondria, like P450nor of Fusarium oxysporum, while P450nor2 is exclusively in cytosol. We also found that the addition of glucose as a carbon source to the culture media leads to the production of much more P450nor2 in the fungal cells than a non-fermentable substrate (glycerol or acetate) does. These results suggest that the NADP-dependent pentose phosphate cycle acts predominantly in C. tonkinense as the glycolysis pathway under the denitrifying conditions, which was confirmed by the observation that glucose induced enzyme activities involved in the cycle. These results showed that P450nor2 should act as the electron sink under anaerobic, denitrifying conditions to regenerate NADP+ for the pentose phosphate cycle.

  18. Efficient functional analysis system for cyanobacterial or plant cytochromes P450 involved in sesquiterpene biosynthesis.

    PubMed

    Harada, Hisashi; Shindo, Kazutoshi; Iki, Kanoko; Teraoka, Ayuko; Okamoto, Sho; Yu, Fengnian; Hattan, Jun-ichiro; Utsumi, Ryutaro; Misawa, Norihiko

    2011-04-01

    Tractable plasmids (pAC-Mv-based plasmids) for Escherichia coli were constructed, which carried a mevalonate-utilizing gene cluster, towards an efficient functional analysis of cytochromes P450 involved in sesquiterpene biosynthesis. They included genes coding for a series of redox partners that transfer the electrons from NAD(P)H to a P450 protein. The redox partners used were ferredoxin reductases (CamA and NsRED) and ferredoxins (CamB and NsFER), which are derived from Pseudomonas putida and cyanobacterium Nostoc sp. strain PCC 7120, respectively, as well as three higher-plant NADPH-P450 reductases, the Arabidopsis thaliana ATR2 and two corresponding enzymes derived from ginger (Zingiber officinale), named ZoRED1 and ZoRED2. We also constructed plasmids for functional analysis of two P450s, α-humulene-8-hydroxylase (CYP71BA1) from shampoo ginger (Zingiber zerumbet) and germacrene A hydroxylase (P450NS; CYP110C1) from Nostoc sp. PCC 7120, and co-transformed E. coli with each of the pAC-Mv-based plasmids. Production levels of 8-hydroxy-α-humulene with recombinant E. coli cells (for CYP71BA1) were 1.5- to 2.3-fold higher than that of a control strain without the mevalonate-pathway genes. Level of the P450NS product with the combination of NsRED and NsFER was 2.9-fold higher than that of the CamA and CamB. The predominant product of P450NS was identified as 1,2,3,5,6,7,8,8a-octahydro-6-isopropenyl-4,8a-dimethylnaphth-1-ol with NMR analyses. © Springer-Verlag 2011

  19. The Ontogeny of Cytochrome P450 Enzyme Activity and Protein Abundance in Conventional Pigs in Support of Preclinical Pediatric Drug Research.

    PubMed

    Millecam, Joske; De Clerck, Laura; Govaert, Elisabeth; Devreese, Mathias; Gasthuys, Elke; Schelstraete, Wim; Deforce, Dieter; De Bock, Lies; Van Bocxlaer, Jan; Sys, Stanislas; Croubels, Siska

    2018-01-01

    Since the implementation of several legislations to improve pediatric drug research, more pediatric clinical trials are being performed. In order to optimize these pediatric trials, adequate preclinical data are necessary, which are usually obtained by juvenile animal models. The growing piglet has been increasingly suggested as a potential animal model due to a high degree of anatomical and physiological similarities with humans. However, physiological data in pigs on the ontogeny of major organs involved in absorption, distribution, metabolism, and excretion of drugs are largely lacking. The aim of this study was to unravel the ontogeny of porcine hepatic drug metabolizing cytochrome P450 enzyme (CYP450) activities as well as protein abundances. Liver microsomes from 16 conventional pigs (8 males and 8 females) per age group: 2 days, 4 weeks, 8 weeks, and 6-7 months were prepared. Activity measurements were performed with substrates of major human CYP450 enzymes: midazolam (CYP3A), tolbutamide (CYP2C), and chlorzoxazone (CYP2E). Next, the hepatic scaling factor, microsomal protein per gram liver (MPPGL), was determined to correct for enzyme losses during the fractionation process. Finally, protein abundance was determined using proteomics and correlated with enzyme activity. No significant sex differences within each age category were observed in enzyme activity or MPPGL. The biotransformation rate of all three substrates increased with age, comparable with human maturation of CYP450 enzymes. The MPPGL decreased from birth till 8 weeks of age followed by an increase till 6-7 months of age. Significant sex differences in protein abundance were observed for CYP1A2, CYP2A19, CYP3A22, CYP4V2, CYP2C36, CYP2E_1, and CYP2E_2. Midazolam and tolbutamide are considered good substrates to evaluate porcine CYP3A/2C enzymes, respectively. However, chlorzoxazone is not advised to evaluate porcine CYP2E enzyme activity. The increase in biotransformation rate with age can be attributed to an increase in absolute amount of CYP450 proteins. Finally, developmental changes were observed regarding the involvement of specific CYP450 enzymes in the biotransformation of the different substrates.

  20. A Novel Multifunctional C-23 Oxidase, CYP714E19, is Involved in Asiaticoside Biosynthesis.

    PubMed

    Kim, Ok Tae; Um, Yurry; Jin, Mei Lan; Kim, Jang Uk; Hegebarth, Daniela; Busta, Lucas; Racovita, Radu C; Jetter, Reinhard

    2018-06-01

    Centella asiatica is widely used as a medicinal plant due to accumulation of the ursane-type triterpene saponins asiaticoside and madecassoside. The molecular structure of both compounds suggests that they are biosynthesized from α-amyrin via three hydroxylations, and the respective Cyt P450-dependent monooxygenases (P450 enzymes) oxidizing the C-28 and C-2α positions have been reported. However, a third enzyme hydroxylating C-23 remained elusive. We previously identified 40,064 unique sequences in the transcriptome of C. asiatica elicited by methyl jasmonate, and among them we have now found 149 unigenes encoding putative P450 enzymes. In this set, 23 full-length cDNAs were recognized, 13 of which belonged to P450 subfamilies previously implicated in secondary metabolism. Four of these genes were highly expressed in response to jasmonate treatment, especially in leaves, in accordance with the accumulation patterns of asiaticoside. The functions of these candidate genes were tested using heterologous expression in yeast cells. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that yeast expressing only the oxidosqualene synthase CaDDS produced the asiaticoside precursor α-amyrin (along with its isomer β-amyrin), while yeast co-expressing CaDDS and CYP716A83 also contained ursolic acid along with oleanolic acid. This P450 enzyme thus acts as a multifunctional triterpenoid C-28 oxidase converting amyrins into corresponding triterpenoid acids. Finally, yeast strains co-expressing CaDDS, CYP716A83 and CYP714E19 produced hederagenin and 23-hydroxyursolic acid, showing that CYP714E19 is a multifunctional triterpenoid oxidase catalyzing the C-23 hydroxylation of oleanolic acid and ursolic acid. Overall, our results demonstrate that CaDDS, CYP716A83 and CYP714E19 are C. asiatica enzymes catalyzing consecutive steps in asiaticoside biosynthesis.

  1. Cytochrome P450 Activity in Ex Vivo Cornea Models and a Human Cornea Construct.

    PubMed

    Kölln, Christian; Reichl, Stephan

    2016-07-01

    The pharmacokinetic behaviors of novel ophthalmic drugs are often preliminarily investigated in preclinical studies using ex vivo animal cornea or corneal cell culture models. During transcorneal passage, topically applied drugs may be affected by drug metabolizing enzymes. The knowledge regarding the functional expression of metabolic enzymes in corneal tissue is marginal; thus, the aim of this study was to investigate cytochrome P450 activity in an organotypic three-dimensional human cornea construct and to compare it with porcine and rabbit corneas, which are commonly used ex vivo cornea models. The total cytochrome P450 activity was determined by measuring the transformation of 7-ethoxycoumarin. Furthermore, the expression of the cytochrome P450 enzyme 2D6 (CYP2D6) was investigated at the protein level using immunohistochemistry and western blotting. CYP2D6 activity measurements were performed using a d-luciferin-based assay. In summary, similar levels of the total cytochrome P450 activity were identified in all 3 cornea models. The protein expression of CYP2D6 was confirmed in the human cornea construct and porcine cornea, whereas the signals in the rabbit cornea were weak. The analysis of the CYP2D6 activity indicated similar values for the human cornea construct and porcine cornea; however, a distinctly lower activity was observed in the rabbit cornea. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. P450 GENETIC VARIATION: IMPLICATIONS FOR ENVIRONMENTAL AND WORKPLACE EXPOSURE

    EPA Science Inventory

    The Cytochrome P450 array detoxifies many chemicals by catalyzing the conversion of mostly hydrophobic chemicals into more hydrophilic forms that can subsequently be excreted by the body. Human genetic variation in the genes for these enzymes produces wide variations in the abili...

  3. Different structure of the complexes of two cytochrome P-450 isozymes with acetanilide by 1H-NMR relaxation and spectrophotometry.

    PubMed

    Woldman YaYu; Weiner, L M; Lyakhovich, V V

    1993-05-28

    The functional and spectral characteristics of the interaction of acetanilide with phenobarbital- and methylcholanthrene- induced rat liver microsomes, as well as with corresponding major isozymes (cytochromes P-450b and P-450c) have been compared. The magnitude of the reverse 1st type binding spectra proved to be negatively correlated with the acetanilide oxidation on isozymes under study. The data on paramagnetic relaxation of acetanilide protons in the presence of P-450 have shown the structure of the enzyme-substrate complex to be different for two isozymes, acetanilide molecule being closer to Fe ion in the active site in the case of P-450c, which is active towards acetanilide oxidation. For the P-450c-acetanilide complex the group oxidized (phenyl) is the closest to Fe ion.

  4. Application of homology modeling to generate CYP1A1 mutants with enhanced activation of the cancer chemotherapeutic prodrug dacarbazine.

    PubMed

    Lewis, Benjamin C; Mackenzie, Peter I; Miners, John O

    2011-11-01

    The chemotherapeutic prodrug dacarbazine (DTIC) has limited efficacy in human malignancies and exhibits numerous adverse effects that arise from systemic exposure to the cytotoxic metabolite. DTIC is activated by CYP1A1 and CYP1A2 catalyzed N-demethylation. However, structural features of these enzymes that confer DTIC N-demethylation have not been characterized. A validated homology model of CYP1A1 was employed to elucidate structure-activity relationships and to engineer CYP1A1 enzymes with altered DTIC activation. In silico docking demonstrated that DTIC orientates proximally to Ser122, Phe123, Asp313, Ala317, Ile386, Tyr259, and Leu496 of human CYP1A1. The site of metabolism is positioned 5.6 Å from the heme iron at an angle of 105.3°. Binding in the active site is stabilized by H-bonding between Tyr259 and the N(2) position of the imidazole ring. Twenty-seven CYP1A1 mutants were generated and expressed in Escherichia coli in yields ranging from 9 to 225 pmol P450/mg. DTIC N-demethylation by the E161K, E256K, and I458V mutants exhibited Michaelis-Menten kinetics, with decreases in K(m) (183-249 μM) that doubled the catalytic efficiency (p < 0.05) relative to wild-type CYP1A1 (K(m), 408 ± 43 μM; V(max), 28 ± 4 pmol · min(-1) · pmol of P450(-1)). The generation of enzymes with catalytically enhanced DTIC activation highlights the potential use of mutant CYP1A1 proteins in P450-based gene-directed enzyme prodrug therapy for the treatment of metastatic malignant melanoma.

  5. Electrochemistry of Cytochrome P450 BM3 in Sodium Dodecyl Sulfate Films

    PubMed Central

    Udit, Andrew K.; Hill, Michael G.; Gray, Harry B.

    2008-01-01

    Direct electrochemistry of the cytochrome P450 BM3 heme domain (BM3) was achieved by confining the protein within sodium dodecyl sulfate (SDS) films on the surface of basal-plane graphite (BPG) electrodes. Cyclic voltammetry revealed the heme FeIII/II redox couple at −330 mV (vs. Ag/AgCl, pH 7.4). Up to 10 V/s, the peak current was linear with scan rate, allowing us to treat the system as surface-confined within this regime. The standard heterogeneous rate constant determined at 10 V/s was estimated to be 10 s−1. Voltammograms obtained for the BM3-SDS-BPG system in the presence of dioxygen exhibited catalytic waves at the onset of FeIII reduction. The altered heme reduction potential of the BM3-SDS-graphite system indicates that SDS is likely bound in the enzyme active-site region. Compared to other P450-surfactant systems, we find redox potentials and electron transfer rates that differ by ~ 100 mV and > 10-fold, respectively, indicating that the nature of the surfactant environment has a significant effect on the observed heme redox properties. PMID:17129070

  6. Case Report: Ursodeoxycholic acid treatment in Niemann-Pick disease type C; clinical experience in four cases

    PubMed Central

    Movsesyan, Nina; Platt, Frances M.

    2017-01-01

    In this case series, we demonstrate that Ursodeoxycholic acid (UDCA) improves liver dysfunction in Niemann-Pick type C (NPC) and may restore a suppressed cytochrome p450 system. NPC disease is a progressive neurodegenerative lysosomal storage disease caused by mutations in either the NPC1 or NPC2 genes. Liver disease is a common feature presenting either acutely as cholestatic jaundice in the neonatal period, or in later life as elevated liver enzymes indicative of liver dysfunction. Recently, an imbalance in bile acid synthesis in a mouse model of NPC disease was linked to suppression of the P450 detoxification system and was corrected by UDCA treatment. UDCA (3α, 7β-dihydroxy-5β-cholanic acid), a hydrophilic bile acid, is used to treat various cholestatic disorders. In this report we summarise the findings from four independent cases of NPC, three with abnormal liver enzyme levels at baseline, that were subsequently treated with UDCA. The patients differed in age and clinical features, they all tolerated the drug well, and in those with abnormal liver function, there were significant improvements in their liver enzyme parameters. PMID:29119141

  7. Heartwood-specific transcriptome and metabolite signatures of tropical sandalwood (Santalum album) reveal the final step of (Z)-santalol fragrance biosynthesis.

    PubMed

    Celedon, Jose M; Chiang, Angela; Yuen, Macaire M S; Diaz-Chavez, Maria L; Madilao, Lufiani L; Finnegan, Patrick M; Barbour, Elizabeth L; Bohlmann, Jörg

    2016-05-01

    Tropical sandalwood (Santalum album) produces one of the world's most highly prized fragrances, which is extracted from mature heartwood. However, in some places such as southern India, natural populations of this slow-growing tree are threatened by over-exploitation. Sandalwood oil contains four major and fragrance-defining sesquiterpenols: (Z)-α-santalol, (Z)-β-santalol, (Z)-epi-β-santalol and (Z)-α-exo-bergamotol. The first committed step in their biosynthesis is catalyzed by a multi-product santalene/bergamotene synthase. Sandalwood cytochromes P450 of the CYP76F sub-family were recently shown to hydroxylate santalenes and bergamotene; however, these enzymes produced mostly (E)-santalols and (E)-α-exo-bergamotol. We hypothesized that different santalene/bergamotene hydroxylases evolved in S. album to stereo-selectively produce (E)- or (Z)-sesquiterpenols, and that genes encoding (Z)-specific P450s contribute to sandalwood oil formation if co-expressed in the heartwood with upstream genes of sesquiterpene biosynthesis. This hypothesis was validated by the discovery of a heartwood-specific transcriptome signature for sesquiterpenoid biosynthesis, including highly expressed SaCYP736A167 transcripts. We characterized SaCYP736A167 as a multi-substrate P450, which stereo-selectively produces (Z)-α-santalol, (Z)-β-santalol, (Z)-epi-β-santalol and (Z)-α-exo-bergamotol, matching authentic sandalwood oil. This work completes the discovery of the biosynthetic enzymes of key components of sandalwood fragrance, and highlights the evolutionary diversification of stereo-selective P450s in sesquiterpenoid biosynthesis. Bioengineering of microbial systems using SaCYP736A167, combined with santalene/bergamotene synthase, has potential for development of alternative industrial production systems for sandalwood oil fragrances. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  8. Estrogen-DNA Adducts as Novel Biomarkers for Ovarian Cancer Risk and for Use in Prevention

    DTIC Science & Technology

    2013-03-01

    genes for four selected estrogen-metabolizing enzymes : cytochrome P450 (CYP)1A1 (I462V), CYP1B1 (V432L),catechol-O-methyltransferase (COMT) (V158M...homozygous for the catechol-O-methyltransferase allele and the cytochrome P450 1B1 high activity allele had significantly increased DNA adduct ratios and... enzyme polymorphisms to serve as biomarkers to screen for ovarian cancer . Task 1. Obtain approval of the protocol from the OCRP Human Research

  9. Overexpression of the Steroidogenic Enzyme Cytochrome P450 Side Chain Cleavage in the Ventral Tegmental Area Increases 3α,5α-THP and Reduces Long-Term Operant Ethanol Self-Administration

    PubMed Central

    Cook, Jason B.; Werner, David F.; Maldonado-Devincci, Antoniette M.; Leonard, Maggie N.; Fisher, Kristen R.; O'Buckley, Todd K.; Porcu, Patrizia; McCown, Thomas J.; Besheer, Joyce; Hodge, Clyde W.

    2014-01-01

    Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology. PMID:24760842

  10. Overexpression of the steroidogenic enzyme cytochrome P450 side chain cleavage in the ventral tegmental area increases 3α,5α-THP and reduces long-term operant ethanol self-administration.

    PubMed

    Cook, Jason B; Werner, David F; Maldonado-Devincci, Antoniette M; Leonard, Maggie N; Fisher, Kristen R; O'Buckley, Todd K; Porcu, Patrizia; McCown, Thomas J; Besheer, Joyce; Hodge, Clyde W; Morrow, A Leslie

    2014-04-23

    Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology.

  11. Metabolic imidacloprid resistance in the brown planthopper, Nilaparvata lugens, relies on multiple P450 enzymes.

    PubMed

    Zhang, Yixi; Yang, Yuanxue; Sun, Huahua; Liu, Zewen

    2016-12-01

    Target insensitivity contributing to imidacloprid resistance in Nilaparvata lugens has been reported to occur either through point mutations or quantitative change in nicotinic acetylcholine receptors (nAChRs). However, the metabolic resistance, especially the enhanced detoxification by P450 enzymes, is the major mechanism in fields. From one field-originated N. lugens population, an imidacloprid resistant strain G25 and a susceptible counterpart S25 were obtained to analyze putative roles of P450s in imidacloprid resistance. Compared to S25, over-expression of twelve P450 genes was observed in G25, with ratios above 5.0-fold for CYP6AY1, CYP6ER1, CYP6CS1, CYP6CW1, CYP4CE1 and CYP425B1. RNAi against these genes in vivo and recombinant tests on the corresponding proteins in vitro revealed that four P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, played important roles in imidacloprid resistance. The importance of the four P450s was not equal at different stages of resistance development based on their over-expression levels, among which CYP6ER1 was important at all stages, and that the others might only contribute at certain stages. The results indicated that, to completely reflect roles of P450s in insecticide resistances, their over-expression in resistant individuals, expression changes at the stages of resistance development, and catalytic activities against insecticides should be considered. In this study, multiple P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, have proven to be important in imidacloprid resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes

    PubMed Central

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2014-01-01

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 (CYP) enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e. styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. Dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes, relative to that in the wild-type mouse lung microsomes. However, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knock–out and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed similar susceptibility to lung toxicity of styrene as the wild-type animals. However, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene. PMID:24320693

  13. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes.

    PubMed

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2014-01-21

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e., styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. A dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes relative to that in the wild-type mouse lung microsomes; however, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knockout and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed a susceptibility to lung toxicity of styrene similar to that of the wild-type animals; however, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene.

  14. Summary of Information on the Effects of Ionizing and Non-ionizing Radiation on Cytochrome P450 and Other Drug Metabolizing Enzymes and Transporters

    PubMed Central

    Rendic, Slobodan; Guengerich, F. Peter

    2014-01-01

    The present paper is an update of data on the effects of ionizing radiation (γ-rays, X-rays, high energy UV, fast neutron) caused by environmental pollution or clinical treatments and the effects of non-ionizing radiation (low energy UV) on the expression and/or activity of drug metabolism (e.g., cytochrome P450,, glutathione transferase), enzymes involved in oxidative stress (e.g., peroxidases, catalase,, aconitase, superoxide dismutase), and transporters. The data are presented in tabular form (Tables 1–3) and are a continuation of previously published summaries on the effects of drugs and other chemicals on cytochrome P450 enzymes (Rendic, S.; Di Carlo, F. Drug Metab. Rev., 1997, 29 (1–2), 413–580, Rendic, S. Drug Metab. Rev., 2002, 34 (1–2), 83–448) and of the data on the effects of diseases and environmental factors on the expression and/or activity of human cytochrome P450 enzymes and transporters (Guengerich, F.P.; Rendic, S. Curr. Drug Metab., 2010, 11(1), 1–3, Rendic, S.; Guengerich, F.P. Curr. Drug Metab., 2010, 11 (1), 4–84). The collective information is as presented by the cited author(s) in cases where several references are cited the latest published information is included. Remarks and conclusions suggesting clinically important impacts are highlighted, followed by discussion of the major findings. The searchable database is available as an Excel file (for information about file availability contact the corresponding author). PMID:22571481

  15. Enhanced Purification of Recombinant Rat NADPH-P450 Reductase by Using a Hexahistidine-Tag.

    PubMed

    Park, Hyoung-Goo; Lim, Young-Ran; Han, Songhee; Jeong, Dabin; Kim, Donghak

    2017-05-28

    NADPH-P450 reductase (NPR) transfers electrons from NADPH to cytochrome P450 and heme oxygenase enzymes to support their catalytic activities. This protein is localized within the endoplasmic reticulum membrane and utilizes FMN, FAD, and NADPH as cofactors. Although NPR is essential toward enabling the biochemical and pharmacological analyses of P450 enzymes, its production as a recombinant purified protein requires a series of tedious efforts and a high cost due to the use of NADP + in the affinity chromatography process. In the present study, the rat NPR clone containing a 6× Histidine-tag (NPR-His) was constructed and heterologously expressed. The NPR-His protein was purified using Ni 2+ -affinity chromatography, and its functional features were characterized. A single band at 78 kDa was observed from SDS-PAGE and the purified protein displayed a maximum absorbance at 455 nm, indicating the presence of an oxidized flavin cofactor. Cytochrome c and nitroblue tetrazolium were reduced by purified NPR-His in an NADPH-dependent manner. The purified NPR-His successfully supported the catalytic activities of human P450 1A2 and 2A6 and fungal CYP52A21, yielding results similar to those obtained using conventional purified rat reductase. This study will facilitate the use of recombinant NPR-His protein in the various fields of P450 research.

  16. A Transcriptional Regulatory Network Containing Nuclear Receptors and Long Noncoding RNAs Controls Basal and Drug-Induced Expression of Cytochrome P450s in HepaRG Cells.

    PubMed

    Chen, Liming; Bao, Yifan; Piekos, Stephanie C; Zhu, Kexin; Zhang, Lirong; Zhong, Xiao-Bo

    2018-07-01

    Cytochrome P450 (P450) enzymes are responsible for metabolizing drugs. Expression of P450s can directly affect drug metabolism, resulting in various outcomes in therapeutic efficacy and adverse effects. Several nuclear receptors are transcription factors that can regulate expression of P450s at both basal and drug-induced levels. Some long noncoding RNAs (lncRNAs) near a transcription factor are found to participate in the regulatory functions of the transcription factors. The aim of this study is to determine whether there is a transcriptional regulatory network containing nuclear receptors and lncRNAs controlling both basal and drug-induced expression of P450s in HepaRG cells. Small interfering RNAs or small hairpin RNAs were applied to knock down four nuclear receptors [hepatocyte nuclear factor 1 α (HNF1 α ), hepatocyte nuclear factor 4 α (HNF4 α ), pregnane X receptor (PXR), and constitutive androstane receptor (CAR)] as well as two lncRNAs [HNF1 α antisense RNA 1 (HNF1 α -AS1) and HNF4 α antisense RNA 1 (HNF4 α -AS1)] in HepaRG cells with or without treatment of phenobarbital or rifampicin. Expression of eight P450 enzymes was examined in both basal and drug-induced levels. CAR and PXR mainly regulated expression of specific P450s. HNF1 α and HNF4 α affected expression of a wide range of P450s as well as other transcription factors. HNF1 α and HNF4 α controlled the expression of their neighborhood lncRNAs, HNF1 α -AS1 and HNF4 α -AS1, respectively. HNF1 α -AS1 and HNF4 α -AS1 was also involved in the regulation of P450s and transcription factors in diverse manners. Altogether, our study concludes that a transcription regulatory network containing the nuclear receptors and lncRNAs controls both basal and drug-induced expression of P450s in HepaRG cells. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Seasonal changes in the activity of cytochrome P450(C17) from the testis of Bufo arenarum.

    PubMed

    Solari, J J F; Pozzi, A G; Ceballos, N R

    2002-12-01

    In Bufo arenarum, the biosynthesis of testosterone and 5alpha-dihydrotestosterone takes place through a complete 5-ene pathway, 5-androsten-3beta,17beta-diol being the immediate precursor of testosterone. Besides androgens, testes are able to synthesise 5alpha-pregnan-3,20-dione and several 3alpha and 20alpha reduced derivatives. During the breeding season, steroid biosynthesis turns from androgen to C21-steroid production. As a consequence, the cytochrome P450 17-hydroxylase, C17,20-lyase (CypP450(c17)) could be a key enzyme in that metabolic shift. The present study demonstrates that in testes of B. arenarum, CypP450(c17) co-localises with glucose-6-phosphatase in the microsomal fraction. CypP450(c17) possesses more affinity for pregnenolone than for progesterone in both non-reproductive (Km = 43.76 +/- 4.63 nM and 2,170 +/- 630 nM, respectively) and reproductive (Km = 37.46 +/- 4.19 nM and 3,060 +/- 190 nM, respectively) seasons. These results could explain the predominance of the 5-ene pathway for testosterone biosynthesis. Toad CypP450(c17) activity is higher in the non-reproductive period than the reproductive period, suggesting that this enzyme is an important factor in toad steroidogenic changes. Animals in reproductive conditions showed a significant reduction in circulating androgens. This is in agreement with the decrease in Vmax of cytochrome P450 17-hydroxylase activity, enhancing the physiological relevance of these in vitro results.

  18. Identification of novel cytochrome P450s in the Acari

    USDA-ARS?s Scientific Manuscript database

    Cytochrome P450s are the major phase I drug metabolising enzymes found in most organisms, including arthropods. Much of the work within the area of xenobiotic metabolism in this group of animals has centered around mosquito species, e.g. Anopheles gambiae and Culex quinquefasciatus, due to their rol...

  19. METABOLISM OF MYCLOBUTANIL AND TRIADIMEFON BY HUMAN AND RAT CYTOCHROME P450 ENZYMES AND LIVER MICROSOMES.

    EPA Science Inventory

    Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil wa...

  20. Biosynthesis of Costunolide, Dihydrocostunolide, and Leucodin. Demonstration of Cytochrome P450-Catalyzed Formation of the Lactone Ring Present in Sesquiterpene Lactones of Chicory

    PubMed Central

    de Kraker, Jan-Willem; Franssen, Maurice C.R.; Joerink, Maaike; de Groot, Aede; Bouwmeester, Harro J.

    2002-01-01

    Chicory (Cichorium intybus) is known to contain guaianolides, eudesmanolides, and germacranolides. These sesquiterpene lactones are postulated to originate from a common germacranolide, namely (+)-costunolide. Whereas a pathway for the formation of germacra-1(10),4,11(13)-trien-12-oic acid from farnesyl diphosphate had previously been established, we now report the isolation of an enzyme activity from chicory roots that converts the germacrene acid into (+)-costunolide. This (+)-costunolide synthase catalyzes the last step in the formation of the lactone ring present in sesquiterpene lactones and is dependent on NADPH and molecular oxygen. Incubation of the germacrene acid in the presence of 18O2 resulted in the incorporation of one atom of 18O into (+)-costunolide. The label was situated at the ring oxygen atom. Hence, formation of the lactone ring most likely occurs via C6-hydroxylation of the germacrene acid and subsequent attack of this hydroxyl group at the C12-atom of the carboxyl group. Blue light-reversible CO inhibition and experiments with cytochrome P450 inhibitors demonstrated that the (+)-costunolide synthase is a cytochrome P450 enzyme. In addition, enzymatic conversion of (+)-costunolide into 11(S),13-dihydrocostunolide and leucodin, a guaianolide, was detected. The first-mentioned reaction involves an enoate reductase, whereas the formation of leucodin from (+)-costunolide probably involves more than one enzyme, including a cytochrome P450 enzyme. PMID:12011356

  1. Biosynthesis of costunolide, dihydrocostunolide, and leucodin. Demonstration of cytochrome p450-catalyzed formation of the lactone ring present in sesquiterpene lactones of chicory.

    PubMed

    de Kraker, Jan-Willem; Franssen, Maurice C R; Joerink, Maaike; de Groot, Aede; Bouwmeester, Harro J

    2002-05-01

    Chicory (Cichorium intybus) is known to contain guaianolides, eudesmanolides, and germacranolides. These sesquiterpene lactones are postulated to originate from a common germacranolide, namely (+)-costunolide. Whereas a pathway for the formation of germacra-1(10),4,11(13)-trien-12-oic acid from farnesyl diphosphate had previously been established, we now report the isolation of an enzyme activity from chicory roots that converts the germacrene acid into (+)-costunolide. This (+)-costunolide synthase catalyzes the last step in the formation of the lactone ring present in sesquiterpene lactones and is dependent on NADPH and molecular oxygen. Incubation of the germacrene acid in the presence of 18O2 resulted in the incorporation of one atom of 18O into (+)-costunolide. The label was situated at the ring oxygen atom. Hence, formation of the lactone ring most likely occurs via C6-hydroxylation of the germacrene acid and subsequent attack of this hydroxyl group at the C12-atom of the carboxyl group. Blue light-reversible CO inhibition and experiments with cytochrome P450 inhibitors demonstrated that the (+)-costunolide synthase is a cytochrome P450 enzyme. In addition, enzymatic conversion of (+)-costunolide into 11(S),13-dihydrocostunolide and leucodin, a guaianolide, was detected. The first-mentioned reaction involves an enoate reductase, whereas the formation of leucodin from (+)-costunolide probably involves more than one enzyme, including a cytochrome P450 enzyme.

  2. Aromatic hydroxylation by cytochrome P450: model calculations of mechanism and substituent effects.

    PubMed

    Bathelt, Christine M; Ridder, Lars; Mulholland, Adrian J; Harvey, Jeremy N

    2003-12-10

    The mechanism and selectivity of aromatic hydroxylation by cytochrome P450 enzymes is explored using new B3LYP density functional theory computations. The calculations, using a realistic porphyrin model system, show that rate-determining addition of compound I to an aromatic carbon atom proceeds via a transition state with partial radical and cationic character. Reactivity is shown to depend strongly on ring substituents, with both electron-withdrawing and -donating groups strongly decreasing the addition barrier in the para position, and it is shown that the calculated barrier heights can be reproduced by a new dual-parameter equation based on radical and cationic Hammett sigma parameters.

  3. 1-Ethynylpyrene, a suicide inhibitor of cytochrome P-450 dependent benzo(a)pyrene hydroxylase activity in liver microsomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, L.S.L.; Acebo, A.L.; Alworth, W.L.

    The preparation of 1-ethynylpyrene (EP) by incubation of EP with liver microsomes in the presence of NADPH yields fluorescent products briefly. Addition of microsomes restores the original rate. The metabolism of EP is initially more rapid in microsomes from 5,6-benzoflavone- (BF) pretreated rats than in those from phenobarbital (PB) pretreated rats or controls. Ep inhibits the hydroxylation of benzo(a)pyrene (BP) by liver microsomes. Ep more effectively inhibits the oxidation of BP in liver microsomes from BF rats than from PB rats or from controls. The inhibition of BP hydroxylation activity due to EP is dependent upon NADPH and is apparentlymore » irreversible. Kinetic analyses show that the inhibition of BP hydroxylation is due to loss of the activity by a process that is first order in EP and that reaches a limiting value at infinite EP concentrations. A self-catalyzed inhibition of the cytochrome P-450 dependent BP hydroxylation may occur in the presence of EP. Incubation with EP under conditions that result in loss of BP hydroxylase activity in microsomes from BF rats and 66% of the activity from PB rats causes the loss of 6 and 12% of the cytochrome P-450, respectively. Thus the loss of P-450 content is an insensitive measure of the effect of this inhibitor upon this cytochrome P-450 dependent enzyme activity. Selectivity of the loss of P-450 due to the incubation of the different microsomal preparations with EP is observed to be different than the selectivity for loss of BP hydroxylase activity. It is proposed that the inhibition of cytochrome P-450 dependent enzymes by alkynes need not involve heme alkylation and a resulting loss of P-450 content. In vivo EP does not cause a significant change in the cytochrome P-450 content in the microsomes isolated, or result in the change in BP hydroxylation.« less

  4. DrugMetZ DB: an anthology of human drug metabolizing Chytochrome P450 enzymes.

    PubMed

    Antony, Tresa Remya Thomas; Nagarajan, Shanthi

    2006-11-14

    Understandings the basics of Cytochrome P450 (P450 or CYP) will help to discern drug metabolism. CYP, a super-family of heme-thiolate proteins, are found in almost all living organisms and is involved in the biotransformation of a diverse range of xenobiotics, therapeutic drugs and toxins. Here, we describe DrugMetZ DB, a database for CYP metabolizing drugs. The DB is implemented in MySQL, PHP and HTML. www.bicpu.edu.in/DrugMetZDB/

  5. Molecular basis of P450 OleTJE: an investigation of substrate binding mechanism and major pathways

    NASA Astrophysics Data System (ADS)

    Du, Juan; Liu, Lin; Guo, Li Zhong; Yao, Xiao Jun; Yang, Jian Ming

    2017-05-01

    Cytochrome P450 OleTJE has attracted much attention for its ability to catalyze the decarboxylation of long chain fatty acids to generate alkenes, which are not only biofuel molecule, but also can be used broadly for making lubricants, polymers and detergents. In this study, the molecular basis of the binding mechanism of P450 OleTJE for arachidic acid, myristic acid, and caprylic acid was investigated by utilizing conventional molecular dynamics simulation and binding free energy calculations. Moreover, random acceleration molecular dynamics (RAMD) simulations were performed to uncover the most probable access/egress channels for different fatty acids. The predicted binding free energy shows an order of arachidic acid < myristic acid < caprylic acid. Key residues interacting with three substrates and residues specifically binding to one of them were identified. The RAMD results suggest the most likely channel for arachidic acid, myristic acid, and caprylic acid are 2e/2b, 2a and 2f/2a, respectively. It is suggested that the reaction is easier to carry out in myristic acid bound system than those in arachidic acid and caprylic acid bound system based on the distance of Hβ atom of substrate relative to P450 OleTJE Compound I states. This study provided novel insight to understand the substrate preference mechanism of P450 OleTJE and valuable information for rational enzyme design for short chain fatty acid decarboxylation.

  6. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver.

    PubMed

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao; Zhong, Xiao-bo

    2015-12-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (<100 mg/kg) does not change expression and enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult mouse liver, whereas phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Identification of human cytochrome P450 2D6 as major enzyme involved in the O-demethylation of the designer drug p-methoxymethamphetamine.

    PubMed

    Staack, Roland F; Theobald, Denis S; Paul, Liane D; Springer, Dietmar; Kraemer, Thomas; Maurer, Hans H

    2004-04-01

    p-Methoxymethamphetamine (PMMA) is a new designer drug, listed in many countries as a controlled substance. Several fatalities have been attributed to the abuse of this designer drug. Previous in vivo studies using Wistar rats had shown that PMMA was metabolized mainly by O-demethylation. The aim of the study presented here was to identify the human hepatic cytochrome P450 (P450) enzymes involved in the biotransformation of PMMA to p-hydroxymethamphetamine. Baculovirus-infected insect cell microsomes, pooled human liver microsomes (pHLMs), and CYP2D6 poor-metabolizer genotype human liver microsomes (PM HLMs) were used for this purpose. Only CYP2D6 catalyzed O-demethylation. The apparent K(m) and V(max) values in baculovirus-infected insect cell microsomes were 4.6 +/- 1.0 microM and 92.0 +/- 3.7 pmol/min/pmol P450, respectively, and 42.0 +/- 4.0 microM and 412.5 +/- 10.8 pmol/min/mg protein in pHLMs. Inhibition studies with 1 microM quinidine showed significant inhibition of the metabolite formation (67.2 +/- 0.6%; p < 0.0001), and comparison of the metabolite formation between pHLMs and PM HLMs revealed significantly lower metabolite formation in the incubations with PM HLMs (87.3 +/- 1.1%; p < 0.0001). According to these studies, CYP2D6 is the major P450 involved in O-demethylation of PMMA.

  8. Homology modelling of Drosophila cytochrome P450 enzymes associated with insecticide resistance.

    PubMed

    Jones, Robert T; Bakker, Saskia E; Stone, Deborah; Shuttleworth, Sally N; Boundy, Sam; McCart, Caroline; Daborn, Phillip J; ffrench-Constant, Richard H; van den Elsen, Jean M H

    2010-10-01

    Overexpression of the cytochrome P450 gene Cyp6g1 confers resistance against DDT and a broad range of other insecticides in Drosophila melanogaster Meig. In the absence of crystal structures of CYP6G1 or complexes with its substrates, structural studies rely on homology modelling and ligand docking to understand P450-substrate interactions. Homology models are presented for CYP6G1, a P450 associated with resistance to DDT and neonicotinoids, and two other enzymes associated with insecticide resistance in D. melanogaster, CYP12D1 and CYP6A2. The models are based on a template of the X-ray structure of the phylogenetically related human CYP3A4, which is known for its broad substrate specificity. The model of CYP6G1 has a much smaller active site cavity than the template. The cavity is also 'V'-shaped and is lined with hydrophobic residues, showing high shape and chemical complementarity with the molecular characteristics of DDT. Comparison of the DDT-CYP6G1 complex and a non-resistant CYP6A2 homology model implies that tight-fit recognition of this insecticide is important in CYP6G1. The active site can accommodate differently shaped substrates ranging from imidacloprid to malathion but not the pyrethroids permethrin and cyfluthrin. The CYP6G1, CYP12D1 and CYP6A2 homology models can provide a structural insight into insecticide resistance in flies overexpressing P450 enzymes with broad substrate specificities.

  9. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities.

    PubMed

    Li, Xue-Qing; Andersson, Tommy B; Ahlström, Marie; Weidolf, Lars

    2004-08-01

    The human clearance of proton pump inhibitors (PPIs) of the substituted benzimidazole class is conducted primarily by the hepatic cytochrome P450 (P450) system. To compare the potency and specificity of the currently used PPIs (i.e., omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole) as inhibitors of four cytochrome P450 enzymes (CYP2C9, 2C19, 2D6, and 3A4), we performed in vitro studies using human liver microsomal preparations and recombinant CYP2C19. Sample analysis was done using selected reaction monitoring liquid chromatography/tandem mass spectometry. With several systems for CYP2C19 activity (two marker reactions, S-mephenytoin 4'-hydroxylation and R-omeprazole 5-hydroxylation, tested in either human liver microsomes or recombinant CYP2C19), the five PPIs showed competitive inhibition of CYP2C19 activity with K(i) of 0.4 to 1.5 microM for lansoprazole, 2 to 6 microM for omeprazole, approximately 8 microM for esomeprazole, 14 to 69 microM for pantoprazole, and 17 to 21 microM for rabeprazole. Pantoprazole was a competitive inhibitor of both CYP2C9-catalyzed diclofenac 4'-hydroxylation and CYP3A4-catalyzed midazolam 1'-hydroxylation (K(i) of 6 and 22 microM, respectively), which were at least 2 times more potent than the other PPIs. All PPIs were poor inhibitors of CYP2D6-mediated bufuralol 1'-hydroxylation with IC(50) > 200 microM. The inhibitory potency of a nonenzymatically formed product of rabeprazole, rabeprazole thioether, was also investigated and showed potent, competitive inhibition with K(i) values of 6 microM for CYP2C9, 2 to 8 microM for CYP2C19, 12 microM for CYP2D6, and 15 microM for CYP3A4. The inhibitory potency of R-omeprazole on the four studied P450 enzymes was also studied and showed higher inhibitory potency than its S-isomer on CYP2C9 and 2C19 activities. Our data suggest that, although the inhibitory profiles of the five studied PPIs were similar, lansoprazole and pantoprazole are the most potent in vitro inhibitors of CYP2C19 and CYP2C9, respectively. Esomeprazole showed less inhibitory potency compared with omeprazole and its R-enantiomer. The inhibitory potency of rabeprazole was relatively lower than the other PPIs, but its thioether analog showed potent inhibition on the P450 enzymes investigated, which may be clinically significant.

  10. Levetiracetam-induced transaminitis in a young male with traumatic brain injury.

    PubMed

    Rachamallu, Vivekananda; Song, Michael M; Reed, Jace M; Aligeti, Manish

    2017-11-01

    Levetiracetam is a commonly prescribed antiepileptic drug for seizure prophylaxis in patients with traumatic brain injury (TBI). Levetiracetam metabolism has been reported to be non-dependent on hepatic cytochrome P450 (CYP450) isoenzyme system. Furthermore, levetiracetam and its metabolites are reported to be eliminated from systemic circulation via renal excretion. Therefore, due to its well-known renal clearance mechanism with no dosage adjustments recommended for hepatic impairment, levetiracetam is often chosen as the drug of choice in patients with suspected or ongoing hepatic dysfunction. Furthermore, monitoring of liver enzymes is often not considered to be critical in levetiracetam therapy. However, hepatotoxicity is still possible with levetiracetam. Here, we report on an 18-year-old male with TBI who developed transaminitis with levetiracetam therapy which resolved following the discontinuation of levetiracetam. A close monitoring of liver enzymes and early recognition of hepatotoxicity is still necessary and critical to preventing major sequelae stemming from levetiracetam-induced hepatotoxicity.

  11. Metabolism of aflatoxin B{sub 1} in Turkey liver microsomes: The relative roles of cytochromes P450 1A5 and 3A37

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawal, Sumit; Coulombe, Roger A., E-mail: roger@usu.edu

    The extreme sensitivity of turkeys to aflatoxin B{sub 1} (AFB{sub 1}) is associated with efficient epoxidation by hepatic cytochromes P450 (P450) 1A5 and 3A37 to exo-aflatoxin B{sub 1}-8,9-epoxide (exo-AFBO). The combined presence of 1A5 and 3A37, which obey different kinetic models, both of which metabolize AFB{sub 1} to the exo-AFBO and to detoxification products aflatoxin M{sub 1} (AFM{sub 1}) and aflatoxin Q{sub 1} (AFQ{sub 1}), respectively, complicates the kinetic analysis of AFB{sub 1} in turkey liver microsomes (TLMs). Antisera directed against 1A5 and 3A37, thereby individually removing the catalytic contribution of these enzymes, were used to identify the P450 responsiblemore » for epoxidating AFB{sub 1} in TLMs. In control TLMs, AFB{sub 1} was converted to exo-AFBO in addition to AFM{sub 1} and AFQ{sub 1} confirming the presence of functional 1A5 and 3A37. Pretreatment with anti-1A5 inhibited exo-AFBO formation, especially at low, submicromolar ({approx} 0.1 {mu}M), while anti-3A37, resulted in inhibition of exo-AFBO formation, but at higher (> 50 {mu}M) AFB{sub 1} concentrations. Metabolism in immunoinhibited TLMs resembled that of individual enzymes: 1A5 produced exo-AFBO and AFM{sub 1}, conforming to Michaelis-Menten, while 3A37 produced exo-AFBO and AFQ{sub 1} following the kinetic Hill equation. At 0.1 {mu}M AFB{sub 1}, close to concentrations in livers of exposed animals, 1A5 contributed to 98% of the total exo-AFBO formation. At this concentration, 1A5 accounted for a higher activation:detoxification (50:1, exo-AFBO: AFM{sub 1}) compared to 3A37 (0.15: 1, exo-AFBO: AFQ{sub 1}), suggesting that 1A5 is high, while 3A4 is the low affinity enzyme in turkey liver. The data support the conclusion that P450 1A5 is the dominant enzyme responsible for AFB{sub 1} bioactivation and metabolism at environmentally-relevant AFB{sub 1} concentrations in turkey liver. - Graphical abstract: Display Omitted Highlights: > Efficient bioactivation by P450s 1A5 and 3A4 associated with extreme aflatoxin B{sub 1} sensitivity in turkeys. > These P450s exhibit different metabolite profiles and enzyme kinetic models toward AFB{sub 1}. > Study conducted to determine which P450 is primary bioactivator in turkey liver. > Immunoinhibition studies show 1A5 predominates at low, environmentally-relevant AFB{sub 1} concentrations. > 3A37 predominates at only at very high AFB{sub 1} concentrations, not relevant to liver in vivo.« less

  12. Complementary DNA cloning, functional expression and characterization of a novel cytochrome P450, CYP2D50, from equine liver.

    PubMed

    DiMaio Knych, H K; Stanley, S D

    2008-10-01

    Members of the CYP2D family constitute only about 2-4% of total hepatic CYP450s, however, they are responsible for the metabolism of 20-25% of commonly prescribed therapeutic compounds. CYP2D enzymes have been identified in a number of different species. However, vast differences in the metabolic activity of these enzymes have been well documented. In the horse, the presence of a member of the CYP2D family has been suggested from studies with equine liver microsomes, however its presence has not been definitively proven. In this study a cDNA encoding a novel CYP2D enzyme (CYP2D50) was cloned from equine liver and expressed in a baculovirus expression system. The nucleotide sequence of CYP2D50 was highly homologous to that of human CYP2D6 and therefore the activity of the enzyme was characterized using dextromethorphan and debrisoquine, two isoform selective substrates for the human orthologue. CYP2D50 displayed optimal catalytic activity with dextromethorphan using molar ratios of CYP2D50 to NADPH CYP450 reductase of 1:15. Although CYP2D50 and CYP2D6 shared significant sequence homology, there were striking differences in the catalytic activity between the two enzymes. CYP2D50 dextromethorphan-O-demethylase activity was nearly 180-fold slower than the human counterpart, CYP2D6. Similarly, rates of formation of 4-hydroxydebrisoquine activity were 50-fold slower for CYP2D50 compared to CYP2D6. The results of this study demonstrate substantial interspecies variability in metabolism of substrates by CYP2D orthologues in the horse and human and support the need to fully characterize this enzyme system in equids.

  13. Structure–function relationships of inhibition of mosquito cytochrome P450 enzymes by flavonoids of Andrographis paniculata.

    PubMed

    Kotewong, Rattanawadee; Duangkaew, Panida; Srisook, Ekaruth; Sarapusit, Songklod; Rongnoparut, Pornpimol

    2014-09-01

    The cytochrome P450 monooxygenases are known to play a major role in pyrethroid resistance, by means of increased rate of insecticide detoxification as a result of their overexpression. Inhibition of detoxification enzymes may help disrupting insect detoxifying defense system. The Anopheles minimus CYP6AA3 and CYP6P7 have shown pyrethroid degradation activity and been implicated in pyrethroid resistance. In this study inhibition of the extracts and constituents of Andrographis paniculata Nees. leaves and roots was examined against benzyloxyresorufin O-debenzylation (BROD) of CYP6AA3 and CYP6P7. Four purified flavones (5,7,4′-trihydroxyflavone, 5-hydroxy-7,8-dimethoxyflavone, 5-hydroxy-7,8,2′,3′-tetramethoxyflavone, and 5,4′-dihydroxy-7,8,2′,3′-tetramethoxyflavone), one flavanone (5-hydroxy-7,8-dimethoxyflavanone) and a diterpenoid (14-deoxy-11,12-didehydroandrographolide) containing inhibitory effects toward both enzymes were isolated from A. paniculata. Structure–function relationships were observed for modes and kinetics of inhibition among flavones, while diterpenoid and flavanone were inferior to flavones. Docking of flavones onto enzyme homology models reinforced relationships on flavone structures and inhibition modes. Cell-based inhibition assays employing 3-(4,5-dimethylthiazol-2-y-l)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assays revealed that these flavonoids efficiently increased susceptibility of CYP6AA3- and CYP6P7-expressing Spodoptera frugiperda (Sf9) cells to cypermethrin toxicity, due to inhibition effects on mosquito enzymes. Thus synergistic effects on cypermethrin toxicity of A. paniculata compounds as a result of enzyme inhibition could be useful for mosquito vector control and insecticide resistance management in the future.

  14. Hepatic microsomal metabolism of indole to indoxyl, a precursor of indoxyl sulfate

    PubMed Central

    BANOGLU, Erden; JHA, Gautam G.; KING, Roberta S.

    2008-01-01

    SUMMARY The aim of our study was to determine which microsomal cytochrome P450 isozyme(s) were responsible for the microsomal oxidation of indole to indoxyl, an important intermediate in the formation of the uremic toxin indoxyl sulfate. Indole was incubated together with an NADPH-generating system and rat liver microsomes. Formation of indigo, an auto-oxidation product of indoxyl, was used to determine the indole-3-hydroxylation activity. Apparent Km and Vmax values of 0.85 mM and 1152 pmol min−1 mg−1 were calculated for the formation of indoxyl from indole using rat liver microsomes. The effects of various potential inducers and inhibitors on the metabolism of indole to indoxyl by rat liver microsomes were studied to elucidate the enzymes responsible for metabolism. Studies with general and isozyme-specific P450 inhibitors demonstrated that P450 enzymes and not FMO are responsible for the formation of indoxyl. In the induction studies, rate of indoxyl formation in the microsomes from untreated vs induced rats correlated nearly exactly with the CYP2E1 activity (4-nitrophenol 2-hydroxylation). These results suggest that CYP2E1 is the major isoform responsible for the rat microsomal oxidation of indole to indoxyl. PMID:11808865

  15. Development and evaluation of adverse outcome pathways predicting adverse effects of conazole fungicides on avian species

    EPA Science Inventory

    Conazoles are a class of fungicides commonly used in agriculture and as pharmaceuticals to prevent the spread of fungus through inhibition of cytochrome P450 14á-demethylase (CYP51). However these fungicides are known to act promiscuously on other cytochrome P450 enzymes (...

  16. FLUCONAZOLE-INDUCED HEPATIC CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RATS AND MICE

    EPA Science Inventory

    This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods w...

  17. INDUCTION OF CYTOCHROME P450 ISOFORMS IN RAT LIVER BY TWO CONAZOLES, TRIADIMEFON AND MYCLOBUTANIL

    EPA Science Inventory

    1. This study was undertaken to examine the inductive effects of two triazole antifungal agents, myclobutanil and triadimefon on the expression of hepatic cytochrome P450 (CYP) genes and on the activities of CYP enzymes in male Sprague-Dawley rats. Rats were dosed by gavage for 1...

  18. Steroid hormone profiling in obese and nonobese women with polycystic ovary syndrome.

    PubMed

    Deng, Yuying; Zhang, Yifei; Li, Shengxian; Zhou, Wenzhong; Ye, Lei; Wang, Lihua; Tao, Tao; Gu, Junjie; Yang, Zuwei; Zhao, Dandan; Gu, Weiqiong; Hong, Jie; Ning, Guang; Liu, Wei; Wang, Weiqing

    2017-10-26

    The study explored differences in the steroidogenic pathway between obese and nonobese women with polycystic ovary syndrome (PCOS) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). 1044 women with PCOS (including 350 lean, 312 overweight and 382 obese) and 366 control women without PCOS (including 203 lean, 32 overweight and 131 obese) were enrolled. The differences in steroid hormones were amplified in lean PCOS versus lean controls compared with obese PCOS versus obese controls. Compared with obese PCOS, lean PCOS demonstrated increased dehydroepiandrosterone sulfate (P = 0.015), 17-hydropregnenolone (P = 0.003), 17-hydroprogesterone (17-OHP) (P < 0.001), progesterone (P < 0.001) and estrone (P < 0.001) levels. Enzyme activity evaluation showed that lean PCOS had increased activity of P450c17 (17-hydropregnenolone/pregnenolone, P < 0.001), P450aro (P < 0.001), 3βHSD2 (progesterone/ pregnenolone and 17-OHP/17-hydropregnenolone, both P < 0.001) and decreased activity of P450c21(11-deoxycorticorsterone/progesterone and 11-deoxycortisol/17-OHP, P < 0.001). Moreover, we found higher frequencies of CYP21A2- (encoding P450c21) c.552 C > G (p. D184E) in lean PCOS compared with obese PCOS patients (P = 0.006). In conclusion, this study demonstrated for the first time that the adrenal-specific enzyme P450c21 showed decreased activity in lean PCOS patients, and that the adrenal androgen excess may play different roles in lean and obese PCOS patients, which represents as different enzyme activity in the steroidogenic pathway.

  19. Differential effects of traumatic brain injury on the cytochrome p450 system: a perspective into hepatic and renal drug metabolism.

    PubMed

    Kalsotra, Auinash; Turman, Cheri M; Dash, Pramod K; Strobel, Henry W

    2003-12-01

    Traumatic brain injury is known to cause several secondary effects, one of which is altered drug clearance. Given the fact that patients who sustain TBI are subsequently treated with a variety of pharmacological agents for the purpose of either neuroprotection or physiological support, it is imperative to clarify changes in expression and/or activities of enzymes involved in clearing drugs. The mixed function oxidase system, which consists of cytochrome P450 and cytochrome P450 reductase, plays a vital role in phase I drug metabolism. This paper addresses the issue as to what extent TBI affects the levels and activity of various rat CYP450 subfamilies. Our results show that TBI induces tissue-specific and time-dependent alterations. Total hepatic CYP450 content showed a biphasic response with a decrease seen at 24 h followed by an increase at 2 weeks. CYP450 reductase, in contrast, showed an opposite temporal profile. Immunoblot analyses and marker substrate metabolism demonstrated a clear decrease in hepatic CYP1A levels while a significant increase in kidney was seen at both 24 h and 2 weeks. A dramatic induction of CYP3A was evident at 2 weeks in liver, while no changes were noticed in CYP2B or CYP2D subfamilies. CYP4F subfamily showed induction in kidney only. Collectively, the data reveal the differential effects of TBI on hepatic and renal drug metabolism.

  20. Identification of human cytochrome P450 and flavin-containing monooxygenase enzymes involved in the metabolism of lorcaserin, a novel selective human 5-hydroxytryptamine 2C agonist.

    PubMed

    Usmani, Khawja A; Chen, Weichao G; Sadeque, Abu J M

    2012-04-01

    Lorcaserin, a selective serotonin 5-hydroxytryptamine 2C receptor agonist, is being developed for weight management. The oxidative metabolism of lorcaserin, mediated by recombinant human cytochrome P450 (P450) and flavin-containing monooxygenase (FMO) enzymes, was examined in vitro to identify the enzymes involved in the generation of its primary oxidative metabolites, N-hydroxylorcaserin, 7-hydroxylorcaserin, 5-hydroxylorcaserin, and 1-hydroxylorcaserin. Human CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP3A4, and FMO1 are major enzymes involved in N-hydroxylorcaserin; CYP2D6 and CYP3A4 are enzymes involved in 7-hydroxylorcaserin; CYP1A1, CYP1A2, CYP2D6, and CYP3A4 are enzymes involved in 5-hydroxylorcaserin; and CYP3A4 is an enzyme involved in 1-hydroxylorcaserin formation. In 16 individual human liver microsomal preparations (HLM), formation of N-hydroxylorcaserin was correlated with CYP2B6, 7-hydroxylorcaserin was correlated with CYP2D6, 5-hydroxylorcaserin was correlated with CYP1A2 and CYP3A4, and 1-hydroxylorcaserin was correlated with CYP3A4 activity at 10.0 μM lorcaserin. No correlation was observed for N-hydroxylorcaserin with any P450 marker substrate activity at 1.0 μM lorcaserin. N-Hydroxylorcaserin formation was not inhibited by CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, and CYP3A4 inhibitors at the highest concentration tested. Furafylline, quinidine, and ketoconazole, selective inhibitors of CYP1A2, CYP2D6, and CYP3A4, respectively, inhibited 5-hydroxylorcaserin (IC(50) = 1.914 μM), 7-hydroxylorcaserin (IC(50) = 0.213 μM), and 1-hydroxylorcaserin formation (IC(50) = 0.281 μM), respectively. N-Hydroxylorcaserin showed low and high K(m) components in HLM and 7-hydroxylorcaserin showed lower K(m) than 5-hydroxylorcaserin and 1-hydroxylorcaserin in HLM. The highest intrinsic clearance was observed for N-hydroxylorcaserin, followed by 7-hydroxylorcaserin, 5-hydroxylorcaserin, and 1-hydroxylorcaserin in HLM. Multiple human P450 and FMO enzymes catalyze the formation of four primary oxidative metabolites of lorcaserin, suggesting that lorcaserin has a low probability of drug-drug interactions by concomitant medications.

  1. NADPH-cytochrome P450 reductase-mediated denitration reaction of 2,4,6-trinitrotoluene to yield nitrite in mammals.

    PubMed

    Shinkai, Yasuhiro; Nishihara, Yuya; Amamiya, Masahiro; Wakayama, Toshihiko; Li, Song; Kikuchi, Tomohiro; Nakai, Yumi; Shimojo, Nobuhiro; Kumagai, Yoshito

    2016-02-01

    While the biodegradation of 2,4,6-trinitrotoluene (TNT) via the release of nitrite is well established, mechanistic details of the reaction in mammals are unknown. To address this issue, we attempted to identify the enzyme from rat liver responsible for the production of nitrite from TNT. A NADPH-cytochrome P450 reductase (P450R) was isolated and identified from rat liver microsomes as the enzyme responsible for not only the release of nitrite from TNT but also formation of superoxide and 4-hydroxyamino-2,6-dinitrotoluene (4-HADNT) under aerobic conditions. In this context, reactive oxygen species generated during P450R-catalyzed TNT reduction were found to be, at least in part, a mediator for the production of 4-HADNT from TNT via formation of 4-nitroso-2,6-dinitrotoluene. P450R did not catalyze the formation of the hydride-Meisenheimer complex (H(-)-TNT) that is thought to be an intermediate for nitrite release from TNT. Furthermore, in a time-course experiment, 4-HADNT formation reached a plateau level and then declined during the reaction between TNT and P450R with NADPH, while the release of nitrite was subjected to a lag period. Notably, the produced 4-HADNT can react with the parent compound TNT to produce nitrite and dimerized products via formation of a Janovsky complex. Our results demonstrate for the first time that P450R-mediated release of nitrite from TNT results from the process of chemical interaction of TNT and its 4-electron reduction metabolite 4-HADNT. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. How is a metabolic intermediate formed in the mechanism-based inactivation of cytochrome P450 by using 1,1-dimethylhydrazine: hydrogen abstraction or nitrogen oxidation?

    PubMed

    Hirao, Hajime; Chuanprasit, Pratanphorn; Cheong, Ying Yi; Wang, Xiaoqing

    2013-06-03

    A precise understanding of the mechanism-based inactivation of cytochrome P450 enzymes (P450s) at the quantum mechanical level should allow more reliable predictions of drug-drug interactions than those currently available. Hydrazines are among the molecules that act as mechanism-based inactivators to terminate the function of P450s, which are essential heme enzymes responsible for drug metabolism in the human body. Despite its importance, the mechanism explaining how a metabolic intermediate (MI) is formed from hydrazine is not fully understood. We used density functional theory (DFT) calculations to compare four possible mechanisms underlying the reaction between 1,1-dimethylhydrazine (or unsymmetrical dimethylhydrazine, UDMH) and the reactive compound I (Cpd I) intermediate of P450. Our DFT calculations provided a clear view on how an aminonitrene-type MI is formed from UDMH. In the most favorable pathway, hydrogen is spontaneously abstracted from the N2 atom of UDMH by Cpd I, followed by a second hydrogen abstraction from the N2 atom by Cpd II. Nitrogen oxidation of nitrogen atoms and hydrogen abstraction from the C-H bond of the methyl group were found to be less favorable than the hydrogen abstraction from the N-H bond. We also found that the reaction of protonated UDMH with Cpd I is rather sluggish. The aminonitrene-type MI binds to the ferric heme more strongly than a water molecule. This is consistent with the notion that the catalytic cycle of P450 is impeded when such an MI is produced through the P450-catalyzed reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An artificial self-sufficient cytochrome P450 directly nitrates fluorinated tryptophan analogs with a different regio-selectivity.

    PubMed

    Zuo, Ran; Zhang, Yi; Huguet-Tapia, Jose C; Mehta, Mishal; Dedic, Evelina; Bruner, Steven D; Loria, Rosemary; Ding, Yousong

    2016-05-01

    Aromatic nitration is an immensely important industrial process to produce chemicals for a variety of applications, but it often suffers from multiple unsolved challenges. Enzymes as biocatalysts have been increasingly used for organic chemistry synthesis due to their high selectivity and environmental friendliness, but nitration has benefited minimally from the development of biocatalysis. In this work, we aimed to develop TxtE as practical biocatalysts for aromatic nitration. TxtE is a unique class I cytochrome P450 enzyme that nitrates the indole of l-tryptophan. To develop cost-efficient nitration processes, we fused TxtE with the reductase domains of CYP102A1 (P450BM3) and of P450RhF to create class III self-sufficient biocatalysts. The best engineered fusion protein was comparable with wild type TxtE in terms of nitration performance and other key biochemical properties. To demonstrate the application potential of the fusion enzyme, we nitrated 4-F-dl-tryptophan and 5-F-l-tryptophan in large scale enzymatic reactions. Tandem MS/MS and NMR analyses of isolated products revealed altered nitration sites. To our knowledge, these studies represent the first practice in developing biological nitration approaches and lay a solid basis to the use of TxtE-based biocatalysts for the production of valuable nitroaromatics. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cytochrome P450 in the central nervous system as a therapeutic target in neurodegenerative diseases.

    PubMed

    Navarro-Mabarak, Cynthia; Camacho-Carranza, Rafael; Espinosa-Aguirre, Jesús Javier

    2018-05-01

    Cytochromes P450 (CYPs) constitute a family of enzymes that can be found in the endoplasmic reticulum (ER), mitochondria or the cell surface of the cells. CYPs are characterized by carrying out the oxidation of organic compounds and they are mainly recognized as mediators of the biotransformation of xenobiotics to polar hydrophilic metabolites that can be eliminated from the organism. However, these enzymes play a key role in many other physiological processes, being involved in diverse indispensable metabolic pathways since they metabolize many endogenous substrates. Various CYP isoforms are expressed in the brain, and it is believed that this could be in part due to the particular function of brain CYPs. In the brain, CYPs are involved in the cholesterol turnover, the biosynthesis of dopamine, serotonin, morphine, hormones, and protective lipid mediators (epoxyeicosatrienoic acids), in addition to their already recognized role in xenobiotics detoxification and psychotropic drug metabolism. Increasing evidence suggests that this group of enzymes is fundamental for the normal functioning and maintenance of brain homeostasis. This review is focused on highlighting the importance of CYP-mediated endogenous metabolism in the central nervous system (CNS) and its relationship with recent findings regarding CYP involvement in neurodegenerative diseases. Some therapeutic approaches focused on CYP regulation are also discussed.

  5. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway

    PubMed Central

    Helliwell, Chris A.; Chandler, Peter M.; Poole, Andrew; Dennis, Elizabeth S.; Peacock, W. James

    2001-01-01

    We have shown that ent-kaurenoic acid oxidase, a member of the CYP88A subfamily of cytochrome P450 enzymes, catalyzes the three steps of the gibberellin biosynthetic pathway from ent-kaurenoic acid to GA12. A gibberellin-responsive barley mutant, grd5, accumulates ent-kaurenoic acid in developing grains. Three independent grd5 mutants contain mutations in a gene encoding a member of the CYP88A subfamily of cytochrome P450 enzymes, defined by the maize Dwarf3 protein. Mutation of the Dwarf3 gene gives rise to a gibberellin-responsive dwarf phenotype, but the lesion in the gibberellin biosynthesis pathway has not been identified. Arabidopsis thaliana has two CYP88A genes, both of which are expressed. Yeast strains expressing cDNAs encoding each of the two Arabidopsis and the barley CYP88A enzymes catalyze the three steps of the GA biosynthesis pathway from ent-kaurenoic acid to GA12. Sequence comparison suggests that the maize Dwarf3 locus also encodes ent-kaurenoic acid oxidase. PMID:11172076

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, Joshua P.; Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ; Mishin, Vladimir

    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and {beta}-naphthoflavone-treated rats, and cytochromemore » P450 reductase from type II lung epithelial cells. Using rat liver microsomes from {beta}-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury.« less

  7. Control by substrate of the cytochrome p450-dependent redox machinery: mechanistic insights.

    PubMed

    Hlavica, Peter

    2007-08-01

    Based on initial studies with bacterial CYP101A1, a popular concept emerged predicting that substrate-induced low-to-high spin conversion of P450s is universally associated with shifts of the midpoint potential to a more positive value to maximize rates of electron transfer and metabolic turnover. However, evaluation of the plethora of observations with pro- and eukaryotic hemoproteins suggests a caveat as to generalization of this principle. Thus, some P450s are inherently high-spin, so that there is no need for a supportive substrate-triggered impulse to electron flow. With other enzymes, high-spin content is not consonant with reductive activity, and spin transition as such is not essential to sustaining substrate oxidation. Also, with certain proteins the low-spin conformer is reduced as swift as the high-spin entity. Moreover, there is not regularly a linear relationship between high-spin level and anodic shift of the reduction potential. Similarly, in given cases turnover may proceed despite insignificant or even lacking substrate-provoked alterations in the redox behaviour. Thus, folding of the disparate and sometimes conflicting data into a harmonized overall picture is a lingering problem. Apart from direct perturbation of the electrochemical properties, substrate docking may entail changes in enzyme conformation such as to favour productive complexation with redox partners or modulate electron transfer conduits within preformed donor/acceptor adducts, resulting in elevated ease of flow of reducing equivalents. Substrate-steered ordering of the oligomeric aggregation state of P450s is likely to impose steric constraints on heterodimers, causing one component to more readily align with electron carriers. Careful uncovering of electrochemical mechanisms in these systems will be fruitful to tailoring of novel bioenergetic machines and redox chains via redox-inspired protein engineering or molecular Lego, capable of generating products of interest or degrading toxic pollutants. Finally, availability of P450 nanobiochips for high-throughput screening of substrate libraries might expedite drug development.

  8. The effects of iron deficiency on rat liver enzymes.

    PubMed Central

    Bailey-Wood, R.; Blayney, L. M.; Muir, J. R.; Jacobs, A.

    1975-01-01

    The effect of iron deficiency on a number or iron containing enzymes in rat liver has been examined. In addition, 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase have been assayed. Of the mitochondrial electron transport reactions only succinate-cytochrome C reductase activity was decreased in iron deficient animals. Microsomal reductase enzymes associated with the NADPH-oxidase system were also markedly decreased although cytochrome P450 concentrations were unaffected. Both 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase were reduced in young iron deficient rats but the former had returned to control levels at the age of 14 weeks. PMID:172099

  9. Effect of atrazine and chlorpyrifos exposure on cytochrome P450 contents and enzyme activities in common carp gills.

    PubMed

    Fu, Yao; Li, Ming; Liu, Ci; Qu, Jian-Ping; Zhu, Wen-Jun; Xing, Hou-Juan; Xu, Shi-Wen; Li, Shu

    2013-08-01

    Chlorpyrifos (CPF) and atrazine (ATR) are the most widely used organophosphate insecticides and triazine herbicides, respectively, worldwide. This study aimed at investigating the effects of ATR, CPF and mixture on common carp gills following 40-d exposure and 40-d recovery experiments. Cytochrome P450 content, activities of aminopyrine N-demethylase (APND) and erythromycin N-demethylase (ERND) and the mRNA levels of the CYP1 family (CYP1A, CYP1B, and CYP1C) were determined. In total, 220 common carps were divided into eleven groups, and each group was treated with a specific concentration of ATR (4.28, 42.8 and 428 μg/L), CPF (1.16, 11.6 and 116 μg/L) or ATR-CPF mixture (1.13, 11.3 and 113 μg/L). The results showed that P450 content and activities of APND and ERND in fish exposed to ATR and mixture were significantly higher than those in the control group. After the 40-d recovery treatment (i.e., depuration), the P450 content and the activities of APND and ERND in fish decreased to the background levels. A similar tendency was also found in the mRNA levels of the CYP1 family (CYP1A, CYP1B, and CYP1C) in common carp gills. The CPF-treated fish showed no significant difference from the control groups, except for a significant CYP1C induction. These results indicated that CYP enzyme levels are induced by ATR but were only slightly affected by CPF in common carp gills. In addition, the ATR and CPF exposure showed an antagonistic effect on P450 enzymes in common carp gills. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Crystallization and Preliminary X-ray Analysis of Allene Oxide Synthase, Cytochrome P450 CYP74A2, from Parthenium argentatum

    USDA-ARS?s Scientific Manuscript database

    Oxylipins are oxygenated derivatives of fatty acids and pivotal signaling molecules in plants and animals. Allene oxide synthase (AOS) is a key cytochrome P450 CYP74 enzyme involved in the biosynthesis of plant oxylipin jasmonates to convert 13(S)-hydroperoxide to allene oxide. Guayule (Parthenium a...

  11. In planta functions of cytochrome P450 monooxygenase genes in the phytocassane biosynthetic gene cluster on rice chromosome 2.

    PubMed

    Ye, Zhongfeng; Yamazaki, Kohei; Minoda, Hiromi; Miyamoto, Koji; Miyazaki, Sho; Kawaide, Hiroshi; Yajima, Arata; Nojiri, Hideaki; Yamane, Hisakazu; Okada, Kazunori

    2018-06-01

    In response to environmental stressors such as blast fungal infections, rice produces phytoalexins, an antimicrobial diterpenoid compound. Together with momilactones, phytocassanes are among the major diterpenoid phytoalexins. The biosynthetic genes of diterpenoid phytoalexin are organized on the chromosome in functional gene clusters, comprising diterpene cyclase, dehydrogenase, and cytochrome P450 monooxygenase genes. Their functions have been studied extensively using in vitro enzyme assay systems. Specifically, P450 genes (CYP71Z6, Z7; CYP76M5, M6, M7, M8) on rice chromosome 2 have multifunctional activities associated with ent-copalyl diphosphate-related diterpene hydrocarbons, but the in planta contribution of these genes to diterpenoid phytoalexin production remains unknown. Here, we characterized cyp71z7 T-DNA mutant and CYP76M7/M8 RNAi lines to find that potential phytoalexin intermediates accumulated in these P450-suppressed rice plants. The results suggested that in planta, CYP71Z7 is responsible for C2-hydroxylation of phytocassanes and that CYP76M7/M8 is involved in C11α-hydroxylation of 3-hydroxy-cassadiene. Based on these results, we proposed potential routes of phytocassane biosynthesis in planta.

  12. Differentially regulated NADPH:cytochrome P450 oxidoreductases in parsley

    PubMed Central

    Koopmann, Edda; Hahlbrock, Klaus

    1997-01-01

    Two NADPH:cytochrome P450 oxidoreductases (CPRs) from parsley (Petroselinum crispum) were cloned, and the complete proteins were expressed and functionally identified in yeast. The two enzymes, designated CPR1 and CPR2, are 80% identical in amino acid sequence with one another and about 75% identical with CPRs from several other plant species. The mRNA accumulation patterns for CPR1 and CPR2 in fungal elicitor-treated or UV-irradiated cultured parsley cells and in developing or infected parsley plants were compared with those for cinnamate 4-hydroxylase (C4H), one of the most abundant CPR-dependent P450 enzymes in plants. All treatments strongly induced the mRNAs for C4H and CPR1 but not for CPR2, suggesting distinct metabolic roles of CPR1 and CPR2 and a functional relationship between CPR1 and C4H. PMID:9405720

  13. The metabolism of aflatoxin B1 by hepatocytes isolated from rats following the in vivo administration of some xenobiotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metcalfe, S.A.; Neal, G.E.

    Isolated rat hepatocytes, an intact cellular system capable of performing phase I and phase II metabolism, have been used to investigate metabolism of aflatoxin B1. These cells were found to metabolise (/sup 14/C)aflatoxin B1 to aflatoxins M1 and Q1, and to radiolabelled polar material, presumably conjugates, as analysed by h.p.l.c., t.l.c. and radioactive determination. In vivo administration of the mixed function oxidase inducers, phenobarbitone and 3-methylcholanthrene, resulted in enhanced hepatocyte phase I (microsomal) metabolism of aflatoxin B1. In contrast to metabolism of AFB1 by in vitro subcellular systems increased production of polar material (conjugated metabolites) derived from (/sup 14/C)aflatoxin B1more » was also detected in hepatocytes isolated from these pretreated animals. Formation of aflatoxin Q1 by isolated hepatocytes appeared to be mediated by cytochrome P450-linked enzymes whereas cytochrome P448-linked enzymes were apparently involved in aflatoxin M1 production. Chronic feeding of aflatoxin B1 to rats enhanced hepatocyte production of conjugated material only and did not elevate cellular cytochrome P450 levels, thus suggesting that aflatoxin B1 is not an inducer of its own primary metabolism.« less

  14. The roles of carboxylesterase and CYP isozymes on the in vitro metabolism of T-2 toxin.

    PubMed

    Lin, Ni-Ni; Chen, Jia; Xu, Bin; Wei, Xia; Guo, Lei; Xie, Jian-Wei

    2015-01-01

    T-2 toxin poses a great threat to human health because it has the highest toxicity of the currently known trichothecene mycotoxins. To understand the in vivo toxicity and transformation mechanism of T-2 toxin, we investigated the role of one kind of principal phase I drug-metabolizing enzymes (cytochrome P450 [CYP450] enzymes) on the metabolism of T-2 toxin, which are crucial to the metabolism of endogenous substances and xenobiotics. We also investigated carboxylesterase, which also plays an important role in the metabolism of toxic substances. A chemical inhibition method and a recombinant method were employed to investigate the metabolism of the T-2 toxin by the CYP450 enzymes, and a chemical inhibition method was used to study carboxylesterase metabolism. Samples incubated with human liver microsomes were analyzed by high performance liquid chromatography-triple quadrupole mass spectrometry (HPLC- QqQ MS) after a simple pretreatment. In the presence of a carboxylesterase inhibitor, only 20 % T-2 toxin was metabolized. When CYP enzyme inhibitors and a carboxylesterase inhibitor were both present, only 3 % of the T-2 toxin was metabolized. The contributions of the CYP450 enzyme family to T-2 toxin metabolism followed the descending order CYP3A4, CYP2E1, CYP1A2, CYP2B6 or CYP2D6 or CYP2C19. Carboxylesterase and CYP450 enzymes are of great importance in T-2 toxin metabolism, in which carboxylesterase is predominant and CYP450 has a subordinate role. CYP3A4 is the principal member of the CYP450 enzyme family responsible for T-2 toxin metabolism. The primary metabolite produced by carboxylesterase is HT-2, and the main metabolite produced by CYP 3A4 is 3'-OH T-2. The different metabolites show different toxicities. Our results will provide useful data concerning the toxic mechanism, the safety evaluation, and the health risk assessment of T-2 toxin.

  15. Ethosuximide: liver enzyme induction and D-glucaric acid excretion.

    PubMed

    Gilbert, J C; Scott, A K; Galloway, D B; Petrie, J C

    1974-06-01

    1 A study has been carried out to determine if ethosuximide induces liver enzymes. 2 Ethosuximide did not affect the urinary excretion of D-glucaric acid by healthy adult subjects nor was the mean daily D-glucaric acid excretion of three epileptic children on long term ethosuximide therapy different from that of three matched controls. 3 Ethosuximide (10 mg/kg or 50 mg/kg daily) did not influence D-glucaric acid excretion or liver microsomal protein and cytochrome P450 contents of guinea pigs but at a dose of 100 mg/kg daily in rats it increased liver microsomal protein and cytochrome P450 without altering D-glucaric acid excretion. 4 These results suggest that at anticonvulsant doses ethosuximide is unlikely to induce liver enzymes. The precise relationship between D-glucaric acid excretion and liver enzyme induction remains in doubt.

  16. Genetic determinants of drug responsiveness and drug interactions.

    PubMed

    Caraco, Y

    1998-10-01

    Six cytochrome P450 enzymes mediate the oxidative metabolism of most drugs in common use: CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4. These enzymes have selective substrate specificity, and their activity is characterized by marked interindividual variation. Some of these systems (CYP2C19, CYP2D6) are polymorphically distributed; thus, a subset of the population may be genetically deficient in enzyme activity. Phenotyping procedures designed to identify subjects with impaired metabolism who may be at increased risk for drug toxicity have been developed and validated. This has been supplemented in recent years by the availability of genetic analysis and the identification of specific alleles that are associated with altered (i.e., reduced, deficient, or increased) enzyme activity. The potential of genotyping to predict pharmacodynamics holds great promise for the future because it does not involve the administration of exogenous compound and is not confounded by drug therapy. Drug interactions caused by the inhibition or induction of oxidative drug metabolism may be of great clinical importance because they may result in drug toxicity or therapeutic failure. Further understanding of cytochrome P450 complexity may allow, through a combined in vitro-in vivo approach, the reliable prediction and possible prevention of deleterious drug interactions.

  17. Biocatalytic Conversion of Avermectin to 4″-Oxo-Avermectin: Improvement of Cytochrome P450 Monooxygenase Specificity by Directed Evolution▿ †

    PubMed Central

    Trefzer, Axel; Jungmann, Volker; Molnár, István; Botejue, Ajit; Buckel, Dagmar; Frey, Gerhard; Hill, D. Steven; Jörg, Mario; Ligon, James M.; Mason, Dylan; Moore, David; Pachlatko, J. Paul; Richardson, Toby H.; Spangenberg, Petra; Wall, Mark A.; Zirkle, Ross; Stege, Justin T.

    2007-01-01

    Discovery of the CYP107Z subfamily of cytochrome P450 oxidases (CYPs) led to an alternative biocatalytic synthesis of 4″-oxo-avermectin, a key intermediate for the commercial production of the semisynthetic insecticide emamectin. However, under industrial process conditions, these wild-type CYPs showed lower yields due to side product formation. Molecular evolution employing GeneReassembly was used to improve the regiospecificity of these enzymes by a combination of random mutagenesis, protein structure-guided site-directed mutagenesis, and recombination of multiple natural and synthetic CYP107Z gene fragments. To assess the specificity of CYP mutants, a miniaturized, whole-cell biocatalytic reaction system that allowed high-throughput screening of large numbers of variants was developed. In an iterative process consisting of four successive rounds of GeneReassembly evolution, enzyme variants with significantly improved specificity for the production of 4″-oxo-avermectin were identified; these variants could be employed for a more economical industrial biocatalytic process to manufacture emamectin. PMID:17483257

  18. Exposure to benzo[a]pyrene of Hepatic Cytochrome P450 Reductase Null (HRN) and P450 Reductase Conditional Null (RCN) mice: Detection of benzo[a]pyrene diol epoxide-DNA adducts by immunohistochemistry and 32P-postlabelling.

    PubMed

    Arlt, Volker M; Poirier, Miriam C; Sykes, Sarah E; John, Kaarthik; Moserova, Michaela; Stiborova, Marie; Wolf, C Roland; Henderson, Colin J; Phillips, David H

    2012-09-03

    Benzo[a]pyrene (BaP) is a widespread environmental carcinogen activated by cytochrome P450 (P450) enzymes. In Hepatic P450 Reductase Null (HRN) and Reductase Conditional Null (RCN) mice, P450 oxidoreductase (Por) is deleted specifically in hepatocytes, resulting in the loss of essentially all hepatic P450 function. Treatment of HRN mice with a single i.p. or oral dose of BaP (12.5 or 125mg/kg body weight) resulted in higher DNA adduct levels in liver (up to 10-fold) than in wild-type (WT) mice, indicating that hepatic P450s appear to be more important for BaP detoxification in vivo. Similar results were obtained in RCN mice. We tested whether differences between hepatocytes and non-hepatocytes in P450 activity may underlie the increased liver BaP-DNA binding in HRN mice. Cellular localisation by immunohistochemistry of BaP-DNA adducts showed that HRN mice have ample capacity for formation of BaP-DNA adducts in liver, indicating that the metabolic process does not result in the generation of a reactive species different from that formed in WT mice. However, increased protein expression of cytochrome b(5) in hepatic microsomes of HRN relative to WT mice suggests that cytochrome b(5) may modulate the P450-mediated bioactivation of BaP in HRN mice, partially substituting the function of Por. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Functional characterization of cytochromes P450 2B from the desert woodrat Neotoma lepida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilderman, P. Ross, E-mail: pwilderman@ucsd.edu; Jang, Hyun-Hee; Malenke, Jael R.

    Mammalian detoxification processes have been the focus of intense research, but little is known about how wild herbivores process plant secondary compounds, many of which have medicinal value or are drugs. cDNA sequences that code for three enzymes of the cytochrome P450 (CYP) 2B subfamily, here termed 2B35, 2B36, and 2B37 have been recently identified from a wild rodent, the desert woodrat (Malenke et al., 2012). Two variant clones of each enzyme were engineered to increase protein solubility and to facilitate purification, as reported for CYP2B enzymes from multiple species. When expressed in Escherichia coli each of the woodrat proteinsmore » gave the characteristic maximum at 450 nm in a reduced carbon monoxide difference spectrum but generally expressed at lower levels than rat CYP2B1. Two enzymes, 2B36 and 2B37, showed dealkylation activity with the model substrates 7-ethoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin, whereas 2B35 was inactive. Binding of the monoterpene (+)-α-pinene produced a Type I shift in the absorbance spectrum of each enzyme. Mutation of 2B37 at residues 114, 262, or 480, key residues governing ligand interactions with other CYP2B enzymes, did not significantly change expression levels or produce the expected functional changes. In summary, two catalytic and one ligand-binding assay are sufficient to distinguish among CYP2B35, 2B36, and 2B37. Differences in functional profiles between 2B36 and 2B37 are partially explained by changes in substrate recognition site residue 114, but not 480. The results advance our understanding of the mechanisms of detoxification in wild mammalian herbivores and highlight the complexity of this system. - Highlights: • Three CYP2B enzymes from Neotoma lepida were cloned, engineered, and expressed. • A mix of catalytic and binding assays yields unique results for each enzyme. • Mutational analysis indicates CYP{sub 2}B substrate recognition remains to be clarified. • Reported N. lepida gene sequences allow for larger scale analyses of CYP{sub 2}B enzymes.« less

  20. Effect of zolpidem on human cytochrome P450 activity, and on transport mediated by P-glycoprotein.

    PubMed

    von Moltke, Lisa L; Weemhoff, James L; Perloff, Michael D; Hesse, Leah M; Harmatz, Jerold S; Roth-Schechter, Barbara F; Greenblatt, David J

    2002-12-01

    The influence of high concentrations of zolpidem (100 microM, corresponding to approximately 200 times maximum therapeutic concentrations) on the activity of six human Cytochrome P450 (CYP) enzymes was evaluated in a model system using human liver microsomes. Zolpidem produced negligible or weak inhibition of human CYP1A2, 2B6, 2C9, 2C19, 2D6, and 3A. Transport of rhodamine 123, presumed to be mediated mainly by the energy-dependent efflux transport protein P-glycoprotein, was studied in a cell culture system using a human intestinal cell line. High concentrations of zolpidem (100 microM), exceeding the usual therapeutic range by more than 100-fold, produced only modest impairment of rhodamine 123 transport. The findings indicate that zolpidem is very unlikely to cause clinical drug interactions attributable to impairment of CYP activity or P-gp mediated transport. Copyright 2002 John Wiley & Sons, Ltd.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, Xiaoyun; Xu, Feng, E-mail: xuf@xtal.tsinghua.edu.cn; Bell, Stephen G.

    The cytochrome P450 enzyme CYP203A1 from Rhodopseudomonas palustris binds a wide range of highly substituted aromatic compounds and may play an important role in the astonishing metabolic diversity of this organism. Crystals of CYP203A1 that diffract to 2.0 Å resolution have been obtained. Cytochrome P450 enzymes constitute a large family of haemoproteins that catalyze the monooxygenation of a great variety of endogenous and exogenous organic compounds. Cytochrome P450 203A1 (CYP203A1, RPA1009) from the metabolically versatile organism Rhodopseudomonas palustris binds a broad range of substrates, in particular substituted aromatic compounds. Crystals of CYP203A1 suitable for X-ray crystallography have been obtained andmore » diffraction data were collected in-house to 2.0 Å resolution from a single crystal. The crystals belong to space group P222, with unit-cell parameters a = 40.1, b = 95.1, c = 99.0 Å, α = β = γ = 90°. There is one protein molecule per asymmetric unit.« less

  2. The cytochrome P450 genes of channel catfish: their involvement in disease defense responses as revealed by meta-analysis of RNA-Seq datasets

    USDA-ARS?s Scientific Manuscript database

    Cytochrome P450s (CYPs) encode one of the most diverse enzyme superfamily in nature. They catalyze oxidative reactions of endogenous molecules and exogenous chemicals. Methods: We identifiedCYPs genes through in silico analysis using EST, RNA-Seq and genome databases of channel catfish.Phylogenetic ...

  3. Selective aliphatic carbon-hydrogen bond activation of protected alcohol substrates by cytochrome P450 enzymes.

    PubMed

    Bell, Stephen G; Spence, Justin T J; Liu, Shenglan; George, Jonathan H; Wong, Luet-Lok

    2014-04-21

    Protected cyclohexanol and cyclohex-2-enol substrates, containing benzyl ether and benzoate ester moieties, were designed to fit into the active site of the Tyr96Ala mutant of cytochrome P450cam. The protected cyclohexanol substrates were efficiently and selectively hydroxylated by the mutant enzyme at the trans C-H bond of C-4 on the cyclohexyl ring. The selectivity of oxidation of the benzoate ester protected cyclohexanol could be altered by making alternative amino acid substitutions in the P450cam active site. The addition of the double bond in the cyclohexyl ring of the benzoate ester protected cyclohex-2-enol has a debilitative effect on the activity of the Tyr96Ala mutant with this substrate. However, the Phe87Ala/Tyr96Phe double mutant, which introduces space at a different location in the active site than the Tyr96Ala mutant, was able to efficiently hydroxylate the C-H bonds of 1-cyclohex-2-enyl benzoate at the allylic C-4 position. Mutations at Phe87 improved the selectivity of the oxidation of 1-phenyl-1-cyclohexylethylene to trans-4-phenyl-ethenylcyclohexanol (92%) when compared to single mutants at Tyr96 of P450cam.

  4. The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders

    PubMed Central

    Auchus, Richard J.

    2011-01-01

    Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis. PMID:21051590

  5. ABC transporters and cytochromes P450 in the human central nervous system: influence on brain pharmacokinetics and contribution to neurodegenerative disorders.

    PubMed

    Dutheil, Fabien; Jacob, Aude; Dauchy, Sandrine; Beaune, Philippe; Scherrmann, Jean-Michel; Declèves, Xavier; Loriot, Marie-Anne

    2010-10-01

    The identification of xenobiotic metabolizing enzymes (i.e., CYP) and transporters (i.e., ABC transporters) (XMET) in the human brain, including the BBB, raises the question whether these transporters and enzymes have specific functions in brain physiology, neuropharmacology and toxicology. Relevant literature was identified using PubMed search articles published up to March 2010. Search terms included 'ABC transporters and P450 or CYP', 'drug metabolism, effect and toxicity' and 'neurodegenerative disease (Alzheimer and Parkinson diseases)' restricted to the field of 'brain or human brain'. This review aims to provide a better understanding of XMET functions in the human brain and show their pharmacological importance for improving drug delivery and efficacy and also for managing their side effects. Finally, the impact of brain XMET activity during neurodegenerative processes is discussed, giving an opportunity to identify new markers of human brain diseases. During the last 2 decades, much evidence concerning the specific distribution patterns of XMET, their induction by xenobiotics and endobiotics and their genetic variations have made cerebral ABC transporters and CYP enzymes key elements in the way individual patients respond to centrally acting drugs.

  6. Unravelling the Molecular Determinants of Bee Sensitivity to Neonicotinoid Insecticides.

    PubMed

    Manjon, Cristina; Troczka, Bartlomiej J; Zaworra, Marion; Beadle, Katherine; Randall, Emma; Hertlein, Gillian; Singh, Kumar Saurabh; Zimmer, Christoph T; Homem, Rafael A; Lueke, Bettina; Reid, Rebecca; Kor, Laura; Kohler, Maxie; Benting, Jürgen; Williamson, Martin S; Davies, T G Emyr; Field, Linda M; Bass, Chris; Nauen, Ralf

    2018-04-02

    The impact of neonicotinoid insecticides on the health of bee pollinators is a topic of intensive research and considerable current debate [1]. As insecticides, certain neonicotinoids, i.e., N-nitroguanidine compounds such as imidacloprid and thiamethoxam, are as intrinsically toxic to bees as to the insect pests they target. However, this is not the case for all neonicotinoids, with honeybees orders of magnitude less sensitive to N-cyanoamidine compounds such as thiacloprid [2]. Although previous work has suggested that this is due to rapid metabolism of these compounds [2-5], the specific gene(s) or enzyme(s) involved remain unknown. Here, we show that the sensitivity of the two most economically important bee species to neonicotinoids is determined by cytochrome P450s of the CYP9Q subfamily. Radioligand binding and inhibitor assays showed that variation in honeybee sensitivity to N-nitroguanidine and N-cyanoamidine neonicotinoids does not reside in differences in their affinity for the receptor but rather in divergent metabolism by P450s. Functional expression of the entire CYP3 clade of P450s from honeybees identified a single P450, CYP9Q3, that metabolizes thiacloprid with high efficiency but has little activity against imidacloprid. We demonstrate that bumble bees also exhibit profound differences in their sensitivity to different neonicotinoids, and we identify CYP9Q4 as a functional ortholog of honeybee CYP9Q3 and a key metabolic determinant of neonicotinoid sensitivity in this species. Our results demonstrate that bee pollinators are equipped with biochemical defense systems that define their sensitivity to insecticides and this knowledge can be leveraged to safeguard bee health. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. Biotransformation of 2,2',5,5'-tetrachlorobiphenyl (PCB 52) and 3,3',4,4'-tetrachlorobiphenyl (PCB 77) by liver microsomes from four species of sea turtles.

    PubMed

    Richardson, Kristine L; Schlenk, Daniel

    2011-05-16

    The rates of oxidative metabolism of two tetrachlorobiphenyl congeners were determined in hepatic microsomes from four species of sea turtles, green (Chelonia mydas), olive ridley (Lepidochelys olivacea), loggerhead (Caretta caretta), and hawksbill (Eretmochelys imbricata). Hydroxylation of 3,3',4,4'-tetrachlorobiphenyl (PCB 77), an ortho-meta unsubstituted rodent cytochrome P450 (P450) 1A substrate PCB, was not observed in sea turtle microsomes. Sea turtle microsomes hydroxylated 2,2',5,5'-tetrachlorobiphenyl (PCB 52), a meta-para unsubstituted rodent P450 family 2 substrate PCB, at rates ranging from less than 0.5 to 53 pmol/min/mg protein. The P450 inhibitor ketoconazole inhibited hydroxylation of PCB 52, supporting the role of P450 catalysis. Sea turtle PCB 52 hydroxlyation rates strongly correlated with immunodetected P450 family 2-like and less so with P450 family 3-like hepatic proteins. Testosterone 6β-, 16α-, 16β-hydroxylase activities were also significantly correlated with the expression of these enzymes, indicating that P450 family 2 or P450 family 3 proteins are responsible for PCB hydroxylation in sea turtles. This study indicated species-specific PCB biotransformation in sea turtles and preferential elimination of meta-para unsubstituted PCB congeners over ortho-meta unsubstituted PCB congeners consistent with PCB accumulation patterns observed in tissues of sea turtles.

  8. Novel approaches to mitigating parathion toxicity: targeting cytochrome P450-mediated metabolism with menadione.

    PubMed

    Jan, Yi-Hua; Richardson, Jason R; Baker, Angela A; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2016-08-01

    Accidental or intentional exposures to parathion, an organophosphorus (OP) pesticide, can cause severe poisoning in humans. Parathion toxicity is dependent on its metabolism by the cytochrome P450 (CYP) system to paraoxon (diethyl 4-nitrophenyl phosphate), a highly poisonous nerve agent and potent inhibitor of acetylcholinesterase. We have been investigating inhibitors of CYP-mediated bioactivation of OPs as a method of preventing or reversing progressive parathion toxicity. It is well recognized that NADPH-cytochrome P450 reductase, an enzyme required for the transfer of electrons to CYPs, mediates chemical redox cycling. In this process, the enzyme diverts electrons from CYPs to support chemical redox cycling, which results in inhibition of CYP-mediated biotransformation. Using menadione as the redox-cycling chemical, we discovered that this enzymatic reaction blocks metabolic activation of parathion in rat and human liver microsomes and in recombinant CYPs important to parathion metabolism, including CYP1A2, CYP2B6, and CYP3A4. Administration of menadione to rats reduces metabolism of parathion, as well as parathion-induced inhibition of brain cholinesterase activity. This resulted in inhibition of parathion neurotoxicity. Menadione has relatively low toxicity and is approved by the Food and Drug Administration for other indications. Its ability to block parathion metabolism makes it an attractive therapeutic candidate to mitigate parathion-induced neurotoxicity. © 2016 New York Academy of Sciences.

  9. Novel approaches to mitigating parathion toxicity: targeting cytochrome P450–mediated metabolism with menadione

    PubMed Central

    Jan, Yi-Hua; Richardson, Jason R.; Baker, Angela A.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2016-01-01

    Accidental or intentional exposures to parathion, an organophosphorus (OP) pesticide, can cause severe poisoning in humans. Parathion toxicity is dependent on its metabolism by the cytochrome P450 (CYP) system to paraoxon (diethyl 4-nitrophenyl phosphate), a highly poisonous nerve agent and potent inhibitor of acetylcholinesterase (AChE). We have been investigating inhibitors of CYP-mediated bioactivation of OPs as a method of preventing or reversing progressive parathion toxicity. It is well recognized that NADPH–cytochrome P450 reductase, an enzyme required for the transfer of electrons to CYPs, mediates chemical redox cycling. In this process, the enzyme diverts electrons from CYPs to support chemical redox cycling, which results in inhibition of CYP-mediated biotransformation. Using menadione as the redox-cycling chemical, we discovered that this enzymatic reaction blocks metabolic activation of parathion in rat and human liver microsomes and in recombinant CYPs important to parathion metabolism, including CYP1A2, CYP2B6, and CYP3A4. Administration of menadione to rats reduces metabolism of parathion, as well as parathion-induced inhibition of brain cholinesterase activity. This resulted in inhibition of parathion neurotoxicity. Menadione has relatively low toxicity and is approved by the FDA for other indications. Its ability to block parathion metabolism makes it an attractive therapeutic candidate to mitigate parathion-induced neurotoxicity. PMID:27441453

  10. Assaying Oxidative Coupling Activity of CYP450 Enzymes.

    PubMed

    Agarwal, Vinayak

    2018-01-01

    Cytochrome P450 (CYP450) enzymes are ubiquitous catalysts in natural product biosynthetic schemes where they catalyze numerous different transformations using radical intermediates. In this protocol, we describe procedures to assay the activity of a marine bacterial CYP450 enzyme Bmp7 which catalyzes the oxidative radical coupling of polyhalogenated aromatic substrates. The broad substrate tolerance of Bmp7, together with rearrangements of the aryl radical intermediates leads to a large number of products to be generated by the enzymatic action of Bmp7. The complexity of the product pool generated by Bmp7 thus presents an analytical challenge for structural elucidation. To address this challenge, we describe mass spectrometry-based procedures to provide structural insights into aryl crosslinked products generated by Bmp7, which can complement subsequent spectroscopic experiments. Using the procedures described here, for the first time, we show that Bmp7 can efficiently accept polychlorinated aryl substrates, in addition to the physiological polybrominated substrates for the biosynthesis of polyhalogenated marine natural products. © 2018 Elsevier Inc. All rights reserved.

  11. Human Cytochrome P450 21A2, the Major Steroid 21-Hydroxylase

    PubMed Central

    Pallan, Pradeep S.; Wang, Chunxue; Lei, Li; Yoshimoto, Francis K.; Auchus, Richard J.; Waterman, Michael R.; Guengerich, F. Peter; Egli, Martin

    2015-01-01

    Cytochrome P450 (P450) 21A2 is the major steroid 21-hydroxylase, and deficiency of this enzyme is involved in ∼95% of cases of human congenital adrenal hyperplasia, a disorder of adrenal steroidogenesis. A structure of the bovine enzyme that we published previously (Zhao, B., Lei, L., Kagawa, N., Sundaramoorthy, M., Banerjee, S., Nagy, L. D., Guengerich, F. P., and Waterman, M. R. (2012) Three-dimensional structure of steroid 21-hydroxylase (cytochrome P450 21A2) with two substrates reveals locations of disease-associated variants. J. Biol. Chem. 287, 10613–10622), containing two molecules of the substrate 17α-hydroxyprogesterone, has been used as a template for understanding genetic deficiencies. We have now obtained a crystal structure of human P450 21A2 in complex with progesterone, a substrate in adrenal 21-hydroxylation. Substrate binding and release were fast for human P450 21A2 with both substrates, and pre-steady-state kinetics showed a partial burst but only with progesterone as substrate and not 17α-hydroxyprogesterone. High intermolecular non-competitive kinetic deuterium isotope effects on both kcat and kcat/Km, from 5 to 11, were observed with both substrates, indicative of rate-limiting C–H bond cleavage and suggesting that the juxtaposition of the C21 carbon in the active site is critical for efficient oxidation. The estimated rate of binding of the substrate progesterone (kon 2.4 × 107 m−1 s−1) is only ∼2-fold greater than the catalytic efficiency (kcat/Km = 1.3 × 107 m−1 s−1) with this substrate, suggesting that the rate of substrate binding may also be partially rate-limiting. The structure of the human P450 21A2-substrate complex provides direct insight into mechanistic effects of genetic variants. PMID:25855791

  12. An enlarged, adaptable active site in CYP164 family P450 enzymes, the sole P450 in Mycobacterium leprae.

    PubMed

    Agnew, Christopher R J; Warrilow, Andrew G S; Burton, Nicholas M; Lamb, David C; Kelly, Steven L; Brady, R Leo

    2012-01-01

    CYP164 family P450 enzymes are found in only a subset of mycobacteria and include CYP164A1, which is the sole P450 found in Mycobacterium leprae, the causative agent of leprosy. This has previously led to interest in this enzyme as a potential drug target. Here we describe the first crystal structure of a CYP164 enzyme, CYP164A2 from Mycobacterium smegmatis. CYP164A2 has a distinctive, enlarged hydrophobic active site that extends above the porphyrin ring toward the access channels. Unusually, we find that CYP164A2 can simultaneously bind two econazole molecules in different regions of the enlarged active site and is accompanied by the rearrangement and ordering of the BC loop. The primary location is through a classic interaction of the azole group with the porphyrin iron. The second econazole molecule is bound to a unique site and is linked to a tetracoordinated metal ion complexed to one of the heme carboxylates and to the side chains of His 105 and His 364. All of these features are preserved in the closely homologous M. leprae CYP164A1. The computational docking of azole compounds to a homology model of CYP164A1 suggests that these compounds will form effective inhibitors and is supported by the correlation of parallel docking with experimental binding studies of CYP164A2. The binding of econazole to CYP164A2 occurs primarily through the high-spin "open" conformation of the enzyme (K(d) [dissociation constant] of 0.1 μM), with binding to the low-spin "closed" form being significantly hindered (K(d) of 338 μM). These studies support previous suggestions that azole derivatives may provide an effective strategy to improve the treatment of leprosy.

  13. Altered metabolism of synthetic cannabinoid JWH-018 by human cytochrome P450 2C9 and variants.

    PubMed

    Patton, Amy L; Seely, Kathryn A; Yarbrough, Azure L; Fantegrossi, William; James, Laura P; McCain, Keith R; Fujiwara, Ryoichi; Prather, Paul L; Moran, Jeffery H; Radominska-Pandya, Anna

    2018-04-06

    Synthetic cannabinoids (SCBs), synonymous with 'K2', 'Spice' or 'synthetic marijuana', are psychoactive drugs of abuse that frequently result in clinical effects and toxicity more severe than those classically associated with Δ 9 -tetrahydrocannabinol such as extreme agitation, hallucinations, supraventricular tachycardia, syncope, and seizures. JWH-018 is one of the earliest compounds identified in various SCB products, and our laboratory previously demonstrated that JWH-018 undergoes extensive metabolism by cytochromes P450 (P450), binds to, and activates cannabinoid receptors (CBRs). The major enzyme involved in the metabolism of JWH-018 is CYP2C9, a highly polymorphic enzyme found largely in the intestines and liver, with *1 being designated as the wild type, and *2 and *3 as the two most common variants. Three different major products have been identified in human urine and plasma: JWH-018 (ω)-OH, JWH-018 (ω-1)-OH(R), and JWH-018 (ω-1)-OH(S). The (ω-1)-OH metabolite of JWH-018 is a chiral molecule, and is thus designated as either (ω-1)-OH(R) or (ω-1)-OH(S). Here, in vitro enzyme kinetic assays performed with human recombinant CYP2C9 variants (*1, *2, and *3) revealed that oxidative metabolism by CYP2C9*3 resulted in significantly less formation of (ω)-OH and (ω-1)-OH metabolites. Surprisingly, CYP2C9*2 was roughly 3.6-fold more efficient as the CYP2C9*1 enzyme based on V max /K m , increasing the rate of JWH-018 metabolism and allowed for a much more rapid elimination. These results suggest that genetic polymorphisms of P450 enzymes result in the production of varying levels of biologically active JWH-018 metabolites in some individuals, offering a mechanistic explanation for the diverse clinical toxicity often observed following JWH-018 abuse. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. An Enlarged, Adaptable Active Site in CYP164 Family P450 Enzymes, the Sole P450 in Mycobacterium leprae

    PubMed Central

    Agnew, Christopher R. J.; Warrilow, Andrew G. S.; Burton, Nicholas M.; Lamb, David C.; Kelly, Steven L.

    2012-01-01

    CYP164 family P450 enzymes are found in only a subset of mycobacteria and include CYP164A1, which is the sole P450 found in Mycobacterium leprae, the causative agent of leprosy. This has previously led to interest in this enzyme as a potential drug target. Here we describe the first crystal structure of a CYP164 enzyme, CYP164A2 from Mycobacterium smegmatis. CYP164A2 has a distinctive, enlarged hydrophobic active site that extends above the porphyrin ring toward the access channels. Unusually, we find that CYP164A2 can simultaneously bind two econazole molecules in different regions of the enlarged active site and is accompanied by the rearrangement and ordering of the BC loop. The primary location is through a classic interaction of the azole group with the porphyrin iron. The second econazole molecule is bound to a unique site and is linked to a tetracoordinated metal ion complexed to one of the heme carboxylates and to the side chains of His 105 and His 364. All of these features are preserved in the closely homologous M. leprae CYP164A1. The computational docking of azole compounds to a homology model of CYP164A1 suggests that these compounds will form effective inhibitors and is supported by the correlation of parallel docking with experimental binding studies of CYP164A2. The binding of econazole to CYP164A2 occurs primarily through the high-spin “open” conformation of the enzyme (Kd [dissociation constant] of 0.1 μM), with binding to the low-spin “closed” form being significantly hindered (Kd of 338 μM). These studies support previous suggestions that azole derivatives may provide an effective strategy to improve the treatment of leprosy. PMID:22037849

  15. N-Hydroxylation of dapsone by multiple enzymes of cytochrome P450: implications for inhibition of haemotoxicity.

    PubMed Central

    Gill, H J; Tingle, M D; Park, B K

    1995-01-01

    1. The adverse reactions associated with the administration of dapsone are believed to be caused by metabolism to its hydroxylamine. Previous reports suggest that CYP3A4 is responsible for this biotransformation [1]. 2. Data presented in this paper illustrate the involvement of more than one cytochrome P450 enzyme in dapsone hydroxylamine formation using human liver microsomes. Eadie-Hofstee plots demonstrated bi-phasic kinetics in several livers. No correlation could be established between hydroxylamine formation and CYP3A concentrations in six human livers (r = -0.47; P = 0.34). 3. Studies with low molecular weight inhibitors illustrate the importance of CYP2C9 and CYP3A in dapsone N-hydroxylation. 4. Differential sensitivity of dapsone N-hydroxylation to selective CYP inhibitors indicated that the contribution of individual CYP enzymes varies between livers. Selective inhibition ranged from 6.8 to 44.1% by 5 microM ketoconazole, and from 24.0 to 68.4% by 100 microM sulphaphenazole. The extent of inhibition, by either ketoconazole or sulphaphenazole was dependent on the CYP3A content of the liver. 5. The levels of expression of these cytochrome P450 enzymes may be an important determinant of individual susceptibility to the toxic effects of dapsone, and may influence the ability of an enzyme inhibitor to block dapsone toxicity in vivo. Because of the inability to produce complete inhibition, selective CYP inhibitors are unlikely to offer any clinical advantage over cimetidine in decreasing dapsone hydroxylamine formation in vivo. PMID:8703658

  16. Modulation of P450 enzymes by Cuban natural products rich in polyphenolic compounds in rat hepatocytes.

    PubMed

    Rodeiro, I; Donato, M T; Lahoz, A; González-Lavaut, J A; Laguna, A; Castell, J V; Delgado, R; Gómez-Lechón, M J

    2008-03-10

    This paper reports cytotoxic effects and changes in the P450 system after exposing rat hepatocytes to four polyphenol-rich products widely used in Cuban traditional medicine (Mangifera indica L. (MSBE), Thalassia testudinum (Tt), Erythroxylum minutifolium and confusum extracts). Effects of mangiferin, the main polyphenol in MSBE, were also evaluated. Cytotoxicity was assayed by the MTT test after exposure of cells to the products (50-1000 microg/mL) for 24 or 72 h. The results showed that 500 microg/mL MSBE was moderately cytotoxic after 72 h, while mangiferin was not. Marked reductions in cell viability were produced by Erythroxylum extracts at concentrations > or = 200 microg/mL, whereas only moderate effects were induced by 1000 microg/mL Tt. Seven specific P450 activities were evaluated after 48 h exposure of cells to the products. MSBE reduced phenacetin O-deethylation (POD; CYP1A2) activity in a concentration-dependent manner (IC(50)=190 microg/mL). No decreases were observed in other activities. In contrast, mangiferin produced reductions in five P450 activities: IC(50) values of 132, 194, >200, 151 and 137 microg/ml for POD (CYP1A2), midazolam 1'-hydroxylation (M1OH; CYP3A1), diclofenac 4'-hydroxylation (D4OH; CYP2C6), S-mephenytoin 4'-hydroxylation (SM4OH), and chlorzoxazone 6-hydroxyaltion (C6OH; CYP2E1), respectively. E. minutifolium, E. confusum and Tt extracts produced small reductions in SM4OH and C6OH activities, but no significant changes were noted in the other P450 activities. On the other hand, all the products increased the benzyloxyresorufin O-debenzylation (BROD; CYP2B1) activity, with MSBE, mangiferin or E. minutifolium showing the highest effects (about 2-fold over control). Our results showed in vitro effects of these natural products on P450 systems, possibly leading to potential metabolic-based interactions.

  17. Mechanism of chloroform-induced renal toxicity: Non-involvement of hepatic cytochrome P450-dependent metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang Cheng; Behr, Melissa; Xie Fang

    2008-02-15

    Chloroform causes hepatic and renal toxicity in a number of species. In vitro studies have indicated that chloroform can be metabolized by P450 enzymes in the kidney to nephrotoxic intermediate, although direct in vivo evidence for the role of renal P450 in the nephrotoxicity has not been reported. This study was to determine whether chloroform renal toxicity persists in a mouse model with a liver-specific deletion of the P450 reductase (Cpr) gene (liver-Cpr-null). Chloroform-induced renal toxicity and chloroform tissue levels were compared between the liver-Cpr-null and wild-type mice at 24 h following differing doses of chloroform. At a chloroform dosemore » of 150 mg/kg, the levels of blood urea nitrogen (BUN) were five times higher in the exposed group than in the vehicle-treated one for the liver-Cpr-null mice, but they were only slightly higher in the exposed group than in the vehicle-treated group for the wild-type mice. Severe lesions were found in the kidney of the liver-Cpr-null mice, while only mild lesions were found in the wild-type mice. At a chloroform dose of 300 mg/kg, severe kidney lesions were observed in both strains, yet the BUN levels were still higher in the liver-Cpr-null than in the wild-type mice. Higher chloroform levels were found in the tissues of the liver-Cpr-null mice. These findings indicated that loss of hepatic P450-dependent chloroform metabolism does not protect against chloroform-induced renal toxicity, suggesting that renal P450 enzymes play an essential role in chloroform renal toxicity.« less

  18. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes.

    PubMed

    Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Grimmett, Paul E; Yadav, Jagjit S

    2013-04-01

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons, albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was found to possess a broad oxidizing capability toward structurally diverse hydrocarbons belonging to mutagenic/carcinogenic fused-ring higher-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), endocrine-disrupting long-chain alkylphenols (APs), and crude oil aliphatic hydrocarbon n-alkanes. A homology-based three-dimensional (3D) model revealed the presence of an extraordinarily large active-site cavity in CYP63A2 compared to the mammalian PAH-oxidizing (CYP3A4, CYP1A2, and CYP1B1) and bacterial aliphatic-hydrocarbon-oxidizing (CYP101D and CYP102A1) P450s. This structural feature in conjunction with ligand docking simulations suggested potential versatility of the enzyme. Experimental characterization using recombinantly expressed CYP63A2 revealed its ability to oxidize HMW-PAHs of various ring sizes, including 4 rings (pyrene and fluoranthene), 5 rings [benzo(a)pyrene], and 6 rings [benzo(ghi)perylene], with the highest enzymatic activity being toward the 5-ring PAH followed by the 4-ring and 6-ring PAHs, in that order. Recombinant CYP63A2 activity yielded monohydroxylated PAH metabolites. The enzyme was found to also act as an alkane ω-hydroxylase that oxidized n-alkanes with various chain lengths (C9 to C12 and C15 to C19), as well as alkyl side chains (C3 to C9) in alkylphenols (APs). CYP63A2 showed preferential oxidation of long-chain APs and alkanes. To our knowledge, this is the first P450 identified from any of the biological kingdoms that possesses such broad substrate specificity toward structurally diverse xenobiotics (PAHs, APs, and alkanes), making it a potent enzyme biocatalyst candidate to handle mixed pollution (e.g., crude oil spills).

  19. CYP63A2, a Catalytically Versatile Fungal P450 Monooxygenase Capable of Oxidizing Higher-Molecular-Weight Polycyclic Aromatic Hydrocarbons, Alkylphenols, and Alkanes

    PubMed Central

    Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Grimmett, Paul E.

    2013-01-01

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons, albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was found to possess a broad oxidizing capability toward structurally diverse hydrocarbons belonging to mutagenic/carcinogenic fused-ring higher-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), endocrine-disrupting long-chain alkylphenols (APs), and crude oil aliphatic hydrocarbon n-alkanes. A homology-based three-dimensional (3D) model revealed the presence of an extraordinarily large active-site cavity in CYP63A2 compared to the mammalian PAH-oxidizing (CYP3A4, CYP1A2, and CYP1B1) and bacterial aliphatic-hydrocarbon-oxidizing (CYP101D and CYP102A1) P450s. This structural feature in conjunction with ligand docking simulations suggested potential versatility of the enzyme. Experimental characterization using recombinantly expressed CYP63A2 revealed its ability to oxidize HMW-PAHs of various ring sizes, including 4 rings (pyrene and fluoranthene), 5 rings [benzo(a)pyrene], and 6 rings [benzo(ghi)perylene], with the highest enzymatic activity being toward the 5-ring PAH followed by the 4-ring and 6-ring PAHs, in that order. Recombinant CYP63A2 activity yielded monohydroxylated PAH metabolites. The enzyme was found to also act as an alkane ω-hydroxylase that oxidized n-alkanes with various chain lengths (C9 to C12 and C15 to C19), as well as alkyl side chains (C3 to C9) in alkylphenols (APs). CYP63A2 showed preferential oxidation of long-chain APs and alkanes. To our knowledge, this is the first P450 identified from any of the biological kingdoms that possesses such broad substrate specificity toward structurally diverse xenobiotics (PAHs, APs, and alkanes), making it a potent enzyme biocatalyst candidate to handle mixed pollution (e.g., crude oil spills). PMID:23416995

  20. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity.

    PubMed

    Sata, F; Sapone, A; Elizondo, G; Stocker, P; Miller, V P; Zheng, W; Raunio, H; Crespi, C L; Gonzalez, F J

    2000-01-01

    To determine the existence of mutant and variant CgammaP3A4 alleles in three racial groups and to assess functions of the variant alleles by complementary deoxyribonucleic acid (cDNA) expression. A bacterial artificial chromosome that contains the complete CgammaP3A4 gene was isolated and the exons and surrounding introns were directly sequenced to develop primers to polymerase chain reaction (PCR) amplify and sequence the gene from lymphocyte DNA. DNA samples from Chinese, black, and white subjects were screened. Mutating the affected amino acid in the wild-type cDNA and expressing the variant enzyme with use of the baculovirus system was used to functionally evaluate the variant allele having a missense mutation. To investigate the existence of mutant and variant CgammaP3A4 alleles in humans, all 13 exons and the 5'-flanking region of the human CgammaP3A4 gene in three racial groups were sequenced and four alleles were identified. An A-->G point mutation in the 5'-flanking region of the human CgammaP3A4 gene, designated CgammaP3A4*1B, was found in the three different racial groups. The frequency of this allele in a white population was 4.2%, whereas it was 66.7% in black subjects. The CgammaP3A4*1B allele was not found in Chinese subjects. A second variant allele, designated CgammaP3A4*2, having a Ser222Pro change, was found at a frequency of 2.7% in the white population and was absent in the black subjects and Chinese subjects analyzed. Baculovirus-directed cDNA expression revealed that the CYP3A4*2 P450 had a lower intrinsic clearance for the CYP3A4 substrate nifedipine compared with the wild-type enzyme but was not significantly different from the wild-type enzyme for testosterone 6beta-hydroxylation. Another rare allele, designated CgammaP3A4*3, was found in a single Chinese subject who had a Met445Thr change in the conserved heme-binding region of the P450. These are the first examples of potential function polymorphisms resulting from missense mutations in the CgammaP3A4 gene. The CgammaP3A4*2 allele was found to encode a P450 with substrate-dependent altered kinetics compared with the wild-type P450.

  1. Pre-systemic metabolism of orally administered drugs and strategies to overcome it.

    PubMed

    Pereira de Sousa, Irene; Bernkop-Schnürch, Andreas

    2014-10-28

    The oral bioavailability of numerous drugs is not only limited by poor solubility and/or poor membrane permeability as addressed by the biopharmaceutical classification system (BCS) but also by a pre-systemic metabolism taking place to a high extent in the intestine. Enzymes responsible for metabolic reactions in the intestine include cytochromes P450 (CYP450), transferases, peptidases and proteases. Furthermore, in the gut nucleases, lipases as well as glycosidases influence the metabolic pathway of drugs and nutrients. A crucial role is also played by the intestinal microflora able to metabolize a wide broad of pharmaceutical compounds. Strategies to provide a protective effect towards an intestinal pre-systemic metabolism are based on the co-administration of enzyme inhibitor being optimally immobilized on unabsorbable and undegradable polymeric excipients in order to keep them concentrated there where an inhibitory effect is needed. Furthermore, certain polymeric excipients such as polyacrylates exhibit per se enzyme inhibitory properties. In addition, by incorporating drugs in cyclodextrines, in self-emulsifying drug delivery systems (SEDDS) or liposomes a protective effect towards an intestinal enzymatic attack can be achieved. Being aware of the important role of this pre-systemic metabolism by integrating it in the BCS as third dimension and keeping strategies to overcome this enzymatic barrier in mind, the therapeutic efficacy of many orally given drugs can certainly be substantially improved. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A comparison of 2-phenyl-2-(1-piperidinyl)propane (ppp), 1,1',1''-phosphinothioylidynetrisaziridine (thioTEPA), clopidogrel, and ticlopidine as selective inactivators of human cytochrome P450 2B6.

    PubMed

    Walsky, Robert L; Obach, R Scott

    2007-11-01

    The use of selective chemical inhibitors of human cytochrome P450 (P450) enzymes represents a powerful method by which the relative contributions of various human P450 enzymes to the metabolism of drugs can be determined. However, the identification of CYP2B6 in the metabolism of drugs has been more challenging because of the lack of a well established inhibitor of this enzyme. In this report, we describe the selectivity of 2-phenyl-2-(1-piperidinyl)propane (PPP) as an inactivator of CYP2B6 and compare this selectivity versus other CYP2B6 inactivators: 1,1',1''-phosphinothioylidynetrisaziridine (thioTEPA), clopidogrel, and ticlopidine. Values of K(I) and k(inact) for PPP were 5.6 microM and 0.13/min for bupropion hydroxylase catalyzed by pooled human liver microsomes, and values for thioTEPA were similar (4.8 microM and 0.20/min, respectively). Intrinsic inactivation capability was considerably greater for clopidogrel because of a greater k(inact) value (1.9/min). Ticlopidine was potent with K(I) and k(inact) values of 0.32 microM and 0.43/min, respectively. The selectivity of these four agents for CYP2B6 was determined by testing their effects on other human P450 enzyme activities using conditions that yield approximately 90% inactivation of CYP2B6 activity. The results showed that preincubation of human liver microsomes with PPP at 30 microM for 30 min provided more selective inhibition for CYP2B6 than thioTEPA, clopidogrel, and ticlopidine. Furthermore, the use of clopidogrel is complicated by the observation that this agent is not stable in the presence of human liver microsomes, even without addition of NADPH. Therefore, PPP can serve as a selective chemical inactivator of CYP2B6 and be used to define the role of CYP2B6 in the metabolism of drugs.

  3. Modulation of gonadotrophin induced steroidogenic enzymes in granulosa cells by d-chiroinositol.

    PubMed

    Sacchi, Sandro; Marinaro, Federica; Tondelli, Debora; Lui, Jessica; Xella, Susanna; Marsella, Tiziana; Tagliasacchi, Daniela; Argento, Cindy; Tirelli, Alessandra; Giulini, Simone; La Marca, Antonio

    2016-08-31

    d-chiroinositol (DCI) is a inositolphosphoglycan (IPG) involved in several cellular functions that control the glucose metabolism. DCI functions as second messenger in the insulin signaling pathway and it is considered an insulin sensitizer since deficiency in tissue availability of DCI were shown to cause insulin resistance (IR). Polycystic ovary syndrome (PCOS) is a pathological condition that is often accompanied with insulin resistance. DCI can positively affects several aspect of PCOS etiology decreasing the total and free testosterone, lowering blood pressure, improving the glucose metabolism and increasing the ovulation frequency. The purpose of this study was to evaluate the effects of DCI and insulin combined with gonadotrophins namely follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on key steroidogenic enzymes genes regulation, cytochrome P450 family 19 subfamily A member 1 (CYP19A1) and cytochrome P450 side-chain cleavage (P450scc) in primary cultures of human granulosa cells (hGCs). We also investigated whether DCI, being an insulin-sensitizer would be able to counteract the expected stimulator activity of insulin on human granulosa cells (hGCs). The study was conducted on primary cultures of hGCs. Gene expression was evaluated by RT-qPCR method. Statistical analysis was performed applying student t-test, as appropriate (P < 0.05) set for statistical significance. DCI is able to reduce the gene expression of CYP19A1, P450scc and insulin-like growth factor 1 receptor (IGF-1R) in dose-response manner. The presence of DCI impaired the increased expression of steroidogenic enzyme genes generated by the insulin treatment in gonadotrophin-stimulated hGCs. Insulin acts as co-gonadotrophin increasing the expression of steroidogenic enzymes genes in gonadotrophin-stimulated granulosa cells. DCI is an insulin-sensitizer that counteracts this action by reducing the expression of the genes CYP19A1, P450scc and IGF-1R. The ability of DCI to modulate in vitro ovarian activity of insulin could in part explain its beneficial effect when used as treatment for conditions associated to insulin resistance.

  4. Structural Characterization and Ligand/Inhibitor Identification Provide Functional Insights into the Mycobacterium tuberculosis Cytochrome P450 CYP126A1*

    PubMed Central

    Chenge, Jude T.; Duyet, Le Van; Swami, Shalini; McLean, Kirsty J.; Kavanagh, Madeline E.; Coyne, Anthony G.; Rigby, Stephen E. J.; Cheesman, Myles R.; Girvan, Hazel M.; Levy, Colin W.; Rupp, Bernd; von Kries, Jens P.; Abell, Chris; Leys, David; Munro, Andrew W.

    2017-01-01

    The Mycobacterium tuberculosis H37Rv genome encodes 20 cytochromes P450, including P450s crucial to infection and bacterial viability. Many M. tuberculosis P450s remain uncharacterized, suggesting that their further analysis may provide new insights into M. tuberculosis metabolic processes and new targets for drug discovery. CYP126A1 is representative of a P450 family widely distributed in mycobacteria and other bacteria. Here we explore the biochemical and structural properties of CYP126A1, including its interactions with new chemical ligands. A survey of azole antifungal drugs showed that CYP126A1 is inhibited strongly by azoles containing an imidazole ring but not by those tested containing a triazole ring. To further explore the molecular preferences of CYP126A1 and search for probes of enzyme function, we conducted a high throughput screen. Compounds containing three or more ring structures dominated the screening hits, including nitroaromatic compounds that induce substrate-like shifts in the heme spectrum of CYP126A1. Spectroelectrochemical measurements revealed a 155-mV increase in heme iron potential when bound to one of the newly identified nitroaromatic drugs. CYP126A1 dimers were observed in crystal structures of ligand-free CYP126A1 and for CYP126A1 bound to compounds discovered in the screen. However, ketoconazole binds in an orientation that disrupts the BC-loop regions at the P450 dimer interface and results in a CYP126A1 monomeric crystal form. Structural data also reveal that nitroaromatic ligands “moonlight” as substrates by displacing the CYP126A1 distal water but inhibit enzyme activity. The relatively polar active site of CYP126A1 distinguishes it from its most closely related sterol-binding P450s in M. tuberculosis, suggesting that further investigations will reveal its diverse substrate selectivity. PMID:27932461

  5. Upregulation of CYP 450s expression of immortalized hepatocyte-like cells derived from mesenchymal stem cells by enzyme inducers

    PubMed Central

    2011-01-01

    Background The strenuous procurement of cultured human hepatocytes and their short lives have constrained the cell culture model of cytochrome P450 (CYP450) induction, xenobiotic biotransformation, and hepatotoxicity. The development of continuous non-tumorous cell line steadily containing hepatocyte phenotypes would substitute the primary hepatocytes for these studies. Results The hepatocyte-like cells have been developed from hTERT plus Bmi-1-immortalized human mesenchymal stem cells to substitute the primary hepatocytes. The hepatocyte-like cells had polygonal morphology and steadily produced albumin, glycogen, urea and UGT1A1 beyond 6 months while maintaining proliferative capacity. Although these hepatocyte-like cells had low basal expression of CYP450 isotypes, their expressions could be extensively up regulated to 80 folds upon the exposure to enzyme inducers. Their inducibility outperformed the classical HepG2 cells. Conclusion The hepatocyte-like cells contained the markers of hepatocytes including CYP450 isotypes. The high inducibility of CYP450 transcripts could serve as a sensitive model for profiling xenobiotic-induced expression of CYP450. PMID:21961524

  6. Occupation of the cytochrome P450 substrate pocket by diverse compounds at general anesthesia concentrations.

    PubMed

    LaBella, F S; Stein, D; Queen, G

    1998-10-02

    Each of a diverse array of compounds, at concentrations reported to effect general anesthesia, when added to liver microsomes, forms a complex with cytochromes P450 to generate, with reference to a cuvette containing microsomes only, a characteristic absorbance-difference spectrum. This spectrum results from a change in the electron-spin state of the heme iron atom induced upon entry by the anesthetic molecule into the enzyme catalytic pocket. The difference spectrum, representing the anesthetic-P450 complex, is characteristic of substances that are substrates for the enzyme. For the group of compounds as a whole, the magnitudes of the absorbance-difference spectra vary only about twofold, although the anesthetic potencies vary by several orders of magnitude. The dissociation constants (Ks), calculated from absorbance data and representing affinities of the anesthetics for P450, agree closely with the respective EC50 (concentration that effects anesthesia in 50% of individuals) values, and with the respective Ki (concentration that inhibits P450 catalytic activities half-maximally) values reported by us previously. The absorbance complex resulting from the occupation of the catalytic pocket by endogenous substrates, androstenedione and arachidonic acid, is inhibited, competitively, by anesthetics. Occupation of and perturbation of the heme catalytic pocket by anesthetic, as monitored by the absorbance-difference spectrum, is rapidly reversible. The presumed in vivo consequences of perturbation by general anesthetics of heme proteins is suppression of the generation of chemical signals that determine cell sensitivity and response.

  7. N-Heterocyclic Carbene Capture by Cytochrome P450 3A4

    PubMed Central

    Jennings, Gareth K.; Ritchie, Caroline M.; Shock, Lisa S.; Lyons, Charles E.

    2016-01-01

    Cytochrome P450 3A4 (CYP3A4) is the dominant P450 enzyme involved in human drug metabolism, and its inhibition may result in adverse interactions or, conversely, favorably reduce the systemic elimination rates of poorly bioavailable drugs. Herein we describe a spectroscopic investigation of the interaction of CYP3A4 with N-methylritonavir, an analog of ritonavir, widely used as a pharmacoenhancer. In contrast to ritonavir, the binding affinity of N-methylritonavir for CYP3A4 is pH-dependent. At pH <7.4, the spectra are definitively type I, whereas at pH ≥7.4 the spectra have split Soret bands, including a red-shifted component characteristic of a P450-carbene complex. Variable-pH UV-visible spectroscopy binding studies with molecular fragments narrows the source of this pH dependence to its N-methylthiazolium fragment. The C2 proton of this group is acidic, and variable-pH resonance Raman spectroscopy tentatively assigns it a pKa of 7.4. Hence, this fragment of N-methylritonavir is expected to be readily deprotonated under physiologic conditions to yield a thiazol-2-ylidene, which is an N-heterocyclic carbene that has high-affinity for and is presumed to be subsequently captured by the heme iron. This mechanism is supported by time-dependent density functional theory with an active site model that accurately reproduces distinguishing features of the experimental UV-visible spectra of N-methylritonavir bound to CYP3A4. Finally, density functional theory calculations support that this novel interaction is as strong as the tightest-binding azaheterocycles found in P450 inhibitors and could offer new avenues for inhibitor development. PMID:27126611

  8. Regulation of Porcine Hepatic Cytochrome P450 — Implication for Boar Taint

    PubMed Central

    Rasmussen, Martin Krøyer; Zamaratskaia, Galia

    2014-01-01

    Cytochrome P450 (CYP450) is the major family of enzymes involved in the metabolism of several xenobiotic and endogenous compounds. Among substrates for CYP450 is the tryptophan metabolite skatole (3-methylindole), one of the major contributors to the off-odour associated with boar-tainted meat. The accumulation of skatole in pigs is highly dependent on the hepatic clearance by CYP450s. In recent years, the porcine CYP450 has attracted attention both in relation to meat quality and as a potential model for human CYP450. The molecular regulation of CYP450 mRNA expression is controlled by several nuclear receptors and transcription factors that are targets for numerous endogenously and exogenously produced agonists and antagonists. Moreover, CYP450 expression and activity are affected by factors such as age, gender and feeding. The regulation of porcine CYP450 has been suggested to have more similarities with human CYP450 than other animal models, including rodents. This article reviews the available data on porcine hepatic CYP450s and its implications for boar taint. PMID:25408844

  9. Involvement of adenosine monophosphate activated kinase in interleukin-6 regulation of steroidogenic acute regulatory protein and cholesterol side chain cleavage enzyme in the bovine zona fasciculata and zona reticularis.

    PubMed

    De Silva, Matharage S I; Dayton, Adam W; Rhoten, Lance R; Mallett, John W; Reese, Jared C; Squires, Mathieu D; Dalley, Andrew P; Porter, James P; Judd, Allan M

    2018-06-01

    In bovine adrenal zona fasciculata (ZF) and NCI-H295R cells, interleukin-6 (IL-6) increases cortisol release, increases expression of steroidogenic acute regulatory protein (StAR), cholesterol side chain cleavage enzyme (P450scc), and steroidogenic factor 1 (SF-1) (increases steroidogenic proteins), and decreases the expression of adrenal hypoplasia congenita-like protein (DAX-1) (inhibits steroidogenic proteins). In contrast, IL-6 decreases bovine adrenal zona reticularis (ZR) androgen release, StAR, P450scc, and SF-1 expression, and increases DAX-1 expression. Adenosine monophosphate (AMP) activated kinase (AMPK) regulates steroidogenesis, but its role in IL-6 regulation of adrenal steroidogenesis is unknown. In the present study, an AMPK activator (AICAR) increased (P < 0.01) NCI-H295R StAR promoter activity, StAR and P450scc expression, and the phosphorylation of AMPK (PAMPK) and acetyl-CoA carboxylase (PACC) (indexes of AMPK activity). In ZR (decreased StAR, P450scc, SF-1, increased DAX-1) (P < 0.01) and ZF tissues (increased StAR, P450scc, SF-1, decreased DAX-1) (P < 0.01), AICAR modified StAR, P450scc, SF-1 and DAX-1 mRNAs/proteins similar to the effects of IL-6. The activity (increased PAMPK and PACC) (P < 0.01) of AMPK in the ZF and ZR was increased by AICAR and IL-6. In support of an AMPK role in IL-6 ZF and ZR effects, the AMPK inhibitor compound C blocked (P < 0.01) the effects of IL-6 on the expression of StAR, P450scc, SF-1, and DAX-1. Therefore, IL-6 modification of the expression of StAR and P450scc in the ZF and ZR may involve activation of AMPK and these changes may be related to changes in the expression of SF-1 and DAX-1. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Thermodynamics of camphor migration in cytochrome P450cam by atomistic simulations.

    PubMed

    Rydzewski, J; Nowak, W

    2017-08-10

    Understanding the mechanisms of ligand binding to enzymes is of paramount importance for the design of new drugs. Here, we report on the use of a novel biased molecular dynamics (MD) methodology to study the mechanism of camphor binding to cytochrome P450cam. Microsecond-long MD simulations allowed us to observe reaction coordinates characterizing ligand diffusion from the active site of cytochrome P450cam to solvent via three egress routes. These atomistic simulations were used to estimate thermodynamic quantities along the reaction coordinates and indicate diverse binding configurations. The results suggest that the diffusion of camphor along the pathway near the substrate recognition site (SRS) is thermodynamically preferred. In addition, we show that the diffusion near the SRS is triggered by a transition from a heterogeneous collection of closed ligand-bound conformers to the basin comprising the open conformations of cytochrome P450cam. The conformational change accompanying this switch is characterized by the retraction of the F and G helices and the disorder of the B' helix. These results are corroborated by experimental studies and provide detailed insight into ligand binding and conformational behavior of the cytochrome family. The presented methodology is general and can be applied to other ligand-protein systems.

  11. Construction and engineering of a thermostable self-sufficient cytochrome P450

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandai, Takao; Fujiwara, Shinsuke; Imaoka, Susumu, E-mail: imaoka@kwansei.ac.jp

    2009-06-19

    CYP175A1 is a thermophilic cytochrome P450 and hydroxylates {beta}-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP{sup +} reductase (FNR): H{sub 2}N-CYP175A1-Fdx-FNR-COOH (175FR) and H{sub 2}N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The V{sub max} value for {beta}-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the k{sub m} values of these enzymes were similar. 175RF retained 50% residual activity even at 80 {sup o}C.more » Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.« less

  12. Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution

    NASA Astrophysics Data System (ADS)

    Kille, Sabrina; Zilly, Felipe E.; Acevedo, Juan P.; Reetz, Manfred T.

    2011-09-01

    A current challenge in synthetic organic chemistry is the development of methods that allow the regio- and stereoselective oxidative C-H activation of natural or synthetic compounds with formation of the corresponding alcohols. Cytochrome P450 enzymes enable C-H activation at non-activated positions, but the simultaneous control of both regio- and stereoselectivity is problematic. Here, we demonstrate that directed evolution using iterative saturation mutagenesis provides a means to solve synthetic problems of this kind. Using P450 BM3(F87A) as the starting enzyme and testosterone as the substrate, which results in a 1:1 mixture of the 2β- and 15β-alcohols, mutants were obtained that are 96-97% selective for either of the two regioisomers, each with complete diastereoselectivity. The mutants can be used for selective oxidative hydroxylation of other steroids without performing additional mutagenesis experiments. Molecular dynamics simulations and docking experiments shed light on the origin of regio- and stereoselectivity.

  13. A redox-mediated Kemp eliminase

    NASA Astrophysics Data System (ADS)

    Li, Aitao; Wang, Binju; Ilie, Adriana; Dubey, Kshatresh D.; Bange, Gert; Korendovych, Ivan V.; Shaik, Sason; Reetz, Manfred T.

    2017-03-01

    The acid/base-catalysed Kemp elimination of 5-nitro-benzisoxazole forming 2-cyano-4-nitrophenol has long served as a design platform of enzymes with non-natural reactions, providing new mechanistic insights in protein science. Here we describe an alternative concept based on redox catalysis by P450-BM3, leading to the same Kemp product via a fundamentally different mechanism. QM/MM computations show that it involves coordination of the substrate's N-atom to haem-Fe(II) with electron transfer and concomitant N-O heterolysis liberating an intermediate having a nitrogen radical moiety Fe(III)-N. and a phenoxyl anion. Product formation occurs by bond rotation and H-transfer. Two rationally chosen point mutations cause a notable increase in activity. The results shed light on the prevailing mechanistic uncertainties in human P450-catalysed metabolism of the immunomodulatory drug leflunomide, which likewise undergoes redox-mediated Kemp elimination by P450-BM3. Other isoxazole-based pharmaceuticals are probably also metabolized by a redox mechanism. Our work provides a basis for designing future artificial enzymes.

  14. Luminogenic cytochrome P450 assays.

    PubMed

    Cali, James J; Ma, Dongping; Sobol, Mary; Simpson, Daniel J; Frackman, Susan; Good, Troy D; Daily, William J; Liu, David

    2006-08-01

    Luminogenic cytochrome P450 (CYP) assays couple CYP enzyme activity to firefly luciferase luminescence in a technology called P450-Glo(TM) (Promega). Luminogenic substrates are used in assays of human CYP1A1, -1A2, -1B1, -2C8, -2C9, -2C19, -2D6, -2J2, -3A4, -3A7, -4A11, -4F3B, -4F12 and -19. The assays detect dose-dependent CYP inhibition by test compounds against recombinant CYP enzymes or liver microsomes. Induction or inhibition of CYP activities in cultured hepatocytes is measured in a nonlytic approach that leaves cells intact for additional analysis. Luminogenic CYP assays offer advantages of speed and safety over HPLC and radiochemical-based methods. Compared with fluorogenic methods the approach offers advantages of improved sensitivity and decreased interference between optical properties of test compound and CYP substrate. These homogenous assays are sensitive and robust tools for high-throughput CYP screening in early drug discovery.

  15. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    PubMed

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  16. Engineering strategies for the fermentative production of plant alkaloids in yeast

    PubMed Central

    Trenchard, Isis J.; Smolke, Christina D.

    2015-01-01

    Microbial hosts engineered for the biosynthesis of plant natural products offer enormous potential as powerful discovery and production platforms. However, the reconstruction of these complex biosynthetic schemes faces numerous challenges due to the number of enzymatic steps and challenging enzyme classes associated with these pathways, which can lead to issues in metabolic load, pathway specificity, and maintaining flux to desired products. Cytochrome P450 enzymes are prevalent in plant specialized metabolism and are particularly difficult to express heterologously. Here, we describe the reconstruction of the sanguinarine branch of the benzylisoquinoline alkaloid pathway in Saccharomyces cerevisiae, resulting in microbial biosynthesis of protoberberine, protopine, and benzophenanthridine alkaloids through to the end-product sanguinarine, which we demonstrate can be efficiently produced in yeast in the absence of the associated biosynthetic enzyme. We achieved titers of 676 µg/L stylopine, 548 µg/L cis-N-methylstylopine, 252 µg/L protopine, and 80 µg/L sanguinarine from the engineered yeast strains. Through our optimization efforts, we describe genetic and culture strategies supporting the functional expression of multiple plant cytochrome P450 enzymes in the context of a large multi-step pathway. Our results also provided insight into relationships between cytochrome P450 activity and yeast ER physiology. We were able to improve the production of critical intermediates by 32-fold through genetic techniques and an additional 45-fold through culture optimization. PMID:25981946

  17. Expression and localization of aromatase P450AROM, estrogen receptor-α, and estrogen receptor-β in the developing fetal bovine frontal cortex.

    PubMed

    Peruffo, A; Giacomello, M; Montelli, S; Corain, L; Cozzi, B

    2011-06-01

    The enzyme aromatase (P450(AROM)) converts testosterone (T) into 17-β estradiol (E(2)) and is crucial for the control of development of the central nervous system during ontogenesis. The effects of E(2) in various brain areas are mediated by the estrogen receptor alpha (ER-α) and the estrogen receptor beta (ER-β). During fetal development, steroids are responsible for the sexual differentiation of the hypothalamus. Estrogens are also able to exert effects in other brain areas of the fetus including the frontal cortex, where they act through estrogen receptors (ERs) modulating cognitive function and affective behaviors. In this study we have determined the expression profiles of P450(AROM) and ERs in the fetal bovine frontal cortex by quantitative Real-Time PCR (qRT-PCR) throughout the prenatal development. The data show that the patterns of expression of both ERs are strongly correlated during pregnancy and increase in the last stage of gestation. On the contrary, the expression of P450(AROM) has no correlation with ERs expression and is not developmentally regulated. Moreover, we performed immunochemical studies showing that fetal neurons express P450(AROM) and the ERs. P450(AROM) is localized in the cytoplasm and only seldom present in the fine extensions of the cells; ER-α is detected predominantly in the soma whereas ER-β is only present in the nucleus of a few cells. This study provides new data on the development of the frontal cortex in a long gestation mammal with a large convoluted brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth.

    PubMed

    David, Jean-Philippe; Ismail, Hanafy Mahmoud; Chandor-Proust, Alexia; Paine, Mark John Ingraham

    2013-02-19

    The fight against diseases spread by mosquitoes and other insects has enormous environmental, economic and social consequences. Chemical insecticides remain the first line of defence but the control of diseases, especially malaria and dengue fever, is being increasingly undermined by insecticide resistance. Mosquitoes have a large repertoire of P450s (over 100 genes). By pinpointing the key enzymes associated with insecticide resistance we can begin to develop new tools to aid the implementation of control interventions and reduce their environmental impact on Earth. Recent technological advances are helping us to build a functional profile of the P450 determinants of insecticide metabolic resistance in mosquitoes. Alongside, the cross-responses of mosquito P450s to insecticides and pollutants are also being investigated. Such research will provide the means to produce diagnostic tools for early detection of P450s linked to resistance. It will also enable the design of new insecticides with optimized efficacy in different environments.

  19. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth

    PubMed Central

    David, Jean-Philippe; Ismail, Hanafy Mahmoud; Chandor-Proust, Alexia; Paine, Mark John Ingraham

    2013-01-01

    The fight against diseases spread by mosquitoes and other insects has enormous environmental, economic and social consequences. Chemical insecticides remain the first line of defence but the control of diseases, especially malaria and dengue fever, is being increasingly undermined by insecticide resistance. Mosquitoes have a large repertoire of P450s (over 100 genes). By pinpointing the key enzymes associated with insecticide resistance we can begin to develop new tools to aid the implementation of control interventions and reduce their environmental impact on Earth. Recent technological advances are helping us to build a functional profile of the P450 determinants of insecticide metabolic resistance in mosquitoes. Alongside, the cross-responses of mosquito P450s to insecticides and pollutants are also being investigated. Such research will provide the means to produce diagnostic tools for early detection of P450s linked to resistance. It will also enable the design of new insecticides with optimized efficacy in different environments. PMID:23297352

  20. Dependence of microsomal methoxyflurane O-demethylation on cytochrome P-450 reductase and the stoichiometry of fluoride ion and formaldehyde release.

    PubMed

    Waskell, L; Gonzales, J

    1982-07-01

    In order to characterize further the in vitro liver microsomal O-demethylation and defluorination of the volatile anesthetic methoxyflurane, and obtain additional information regarding the participation of cytochrome P-450 in the oxidation, the stoichiometry of the reaction was determined and the effect of antibody to cytochrome P-450 reductase on this unique biotransformation was examined. Liver microsomes were isolated from rabbits and rats in which enzyme induction had previously been produced by phenobarbital. The O-demethylation of methoxyflurane by phenobarbital-induced microsomes results in the production of 1 mol of formaldehyde for every 2 mol of fluoride ion produced. Dichloroacetic acid is also a product of methoxyflurane O-demethylation. Antibody to cytochrome P-450 reductase inhibits by 85% the amount of fluoride ion produced by the microsomal metabolism of methoxyflurane. Thus critical indirect supportive data are contributed to the hypothesis that at least one, but perhaps more, cytochrome P-450 is indeed responsible for methoxyflurane O-demethylation and defluorination.

  1. Impact of Fusarium mycotoxins on hepatic and intestinal mRNA expression of cytochrome P450 enzymes and drug transporters, and on the pharmacokinetics of oral enrofloxacin in broiler chickens.

    PubMed

    Antonissen, Gunther; Devreese, Mathias; De Baere, Siegrid; Martel, An; Van Immerseel, Filip; Croubels, Siska

    2017-03-01

    Cytochrome P450 (CYP450) drug biotransformation enzymes and multidrug resistance (MDR) proteins may influence drug disposition processes. The first part of the study aimed to evaluate the effect of mycotoxins deoxynivalenol (DON) and/or fumonisins (FBs), at contamination levels approaching European Union guidance levels, on intestinal and hepatic CYP450 enzymes and MDR proteins gene expression in broiler chickens. mRNA expression of genes encoding CYP450 enzymes (CYP3A37, CYP1A4 and CYP1A5) and drug transporters (MDR1/ABCB1 and MRP2/ABCC2) was determined using qRT-PCR. A significant up-regulation of CYP1A4 (P = 0.037) and MDR1 (P = 0.036) was observed in the jejunum of chickens fed a diet contaminated with FBs. The second part of this study aimed to investigate the impact of feeding a FBs contaminated diet on the oral absorption of enrofloxacin (10 mg/kg BW), a MDR1 substrate. A significant (P = 0.045), however small, decreased area under the plasma concentration-time curve (AUC 0-48  h, mean ± SD) was observed for enrofloxacin in chickens fed the FBs contaminated diet compared to the control group, 16.28 ± 1.82 h μg/mL versus 18.27 ± 1.79 h μg/mL. These findings suggest that concurrent administration of drugs with FBs contaminated feed might alter the pharmacokinetic characteristics of CYP1A4 substrate drugs and MDR1 substrates, such as enrofloxacin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Electronic and structural aspects of p450-mediated drug metabolism.

    PubMed

    Lewis, David F V; Ito, Yuko; Lake, Brian G

    2009-04-01

    From a consideration of first principles for enzymes kinetics, we have employed theoretical methods which enable one to analyse the kinetics of cytochrome P450-mediated reactions which have been based on the known physicochemical principles underlying the majority of chemical or enzymatic reactions. A comparison is made between the correlation equations produced from the QSAR analysis of experimental P450 reaction rate data and those obtained from first principles, where there appears to be a generally satisfactory concordance between the two procedures. In this respect, we have developed expressions based on standard reaction kinetics theory which incorporate the Eyring and Marcus relationships. The analysis of P450-catalyzed reaction rates is elaborated to encompass a treatment of metabolic clearance, and satisfactory correlations are obtained with literature values for both intrinsic clearance and whole body clearance in terms of compound lipophilicity derived from log P data, where P is the octanol/water partition coefficient. The importance of ionization potential as a factor in the overall catalytic turnover of P450-mediated reactions is noted, especially in combination with the lipophilicity parameter, log P.

  3. Drug Metabolism in Human Brain: High Levels of Cytochrome P4503A43 in Brain and Metabolism of Anti-Anxiety Drug Alprazolam to Its Active Metabolite

    PubMed Central

    Agarwal, Varsha; Kommaddi, Reddy P.; Valli, Khader; Ryder, Daniel; Hyde, Thomas M.; Kleinman, Joel E.; Strobel, Henry W.; Ravindranath, Vijayalakshmi

    2008-01-01

    Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more α-hydroxy alprazolam (α-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both α-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of α-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of α-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action. PMID:18545703

  4. Modeling of Anopheles minimus Mosquito NADPH-Cytochrome P450 Oxidoreductase (CYPOR) and Mutagenesis Analysis

    PubMed Central

    Sarapusit, Songklod; Lertkiatmongkol, Panida; Duangkaew, Panida; Rongnoparut, Pornpimol

    2013-01-01

    Malaria is one of the most dangerous mosquito-borne diseases in many tropical countries, including Thailand. Studies in a deltamethrin resistant strain of Anopheles minimus mosquito, suggest cytochrome P450 enzymes contribute to the detoxification of pyrethroid insecticides. Purified A. minimus CYPOR enzyme (AnCYPOR), which is the redox partner of cytochrome P450s, loses flavin-adenosine di-nucleotide (FAD) and FLAVIN mono-nucleotide (FMN) cofactors that affect its enzyme activity. Replacement of leucine residues at positions 86 and 219 with phenylalanines in FMN binding domain increases FMN binding, enzyme stability, and cytochrome c reduction activity. Membrane-Bound L86F/L219F-AnCYPOR increases A. minimus P450-mediated pyrethroid metabolism in vitro. In this study, we constructed a comparative model structure of AnCYPOR using a rat CYPOR structure as a template. Overall model structure is similar to rat CYPOR, with some prominent differences. Based on primary sequence and structural analysis of rat and A. minimus CYPOR, C427R, W678A, and W678H mutations were generated together with L86F/L219F resulting in three soluble Δ55 triple mutants. The C427R triple AnCYPOR mutant retained a higher amount of FAD binding and increased cytochrome c reduction activity compared to wild-type and L86F/L219F-Δ55AnCYPOR double mutant. However W678A and W678H mutations did not increase FAD and NAD(P)H bindings. The L86F/L219F double and C427R triple membrane-bound AnCYPOR mutants supported benzyloxyresorufin O-deakylation (BROD) mediated by mosquito CYP6AA3 with a two-to three-fold increase in efficiency over wild-type AnCYPOR. The use of rat CYPOR in place of AnCYPOR most efficiently supported CYP6AA3-mediated BROD compared to all AnCYPORs. PMID:23325047

  5. Insights into Hydrocarbon Assimilation by Eurotialean and Hypocrealean Fungi: Roles for CYP52 and CYP53 Clans of Cytochrome P450 Genes.

    PubMed

    Huarte-Bonnet, Carla; Kumar, Suresh; Saparrat, Mario C N; Girotti, Juan R; Santana, Marianela; Hallsworth, John E; Pedrini, Nicolás

    2018-03-01

    Several filamentous fungi are able to concomitantly assimilate both aliphatic and polycyclic aromatic hydrocarbons that are the biogenic by-products of some industrial processes. Cytochrome P450 monooxygenases catalyze the first oxidation reaction for both types of substrate. Among the cytochrome P450 (CYP) genes, the family CYP52 is implicated in the first hydroxylation step in alkane-assimilation processes, while genes belonging to the family CYP53 have been linked with oxidation of aromatic hydrocarbons. Here, we perform a comparative analysis of CYP genes belonging to clans CYP52 and CYP53 in Aspergillus niger, Beauveria bassiana, Metarhizium robertsii (formerly M. anisopliae var. anisopliae), and Penicillium chrysogenum. These species were able to assimilate n-hexadecane, n-octacosane, and phenanthrene, exhibiting a species-dependent modification in pH of the nutrient medium during this process. Modeling of the molecular docking of the hydrocarbons to the cytochrome P450 active site revealed that both phenanthrene and n-octacosane are energetically favored as substrates for the enzymes codified by genes belonging to both CYP52 and CYP53 clans, and thus appear to be involved in this oxidation step. Analyses of gene expression revealed that CYP53 members were significantly induced by phenanthrene in all species studied, but only CYP52X1 and CYP53A11 from B. bassiana were highly induced with n-alkanes. These findings suggest that the set of P450 enzymes involved in hydrocarbon assimilation by fungi is dependent on phylogeny and reveal distinct substrate and expression specificities.

  6. Three-dimensional structure of NADPH–cytochrome P450 reductase: Prototype for FMN- and FAD-containing enzymes

    PubMed Central

    Wang, Ming; Roberts, David L.; Paschke, Rosemary; Shea, Thomas M.; Masters, Bettie Sue Siler; Kim, Jung-Ja P.

    1997-01-01

    Microsomal NADPH–cytochrome P450 reductase (CPR) is one of only two mammalian enzymes known to contain both FAD and FMN, the other being nitric-oxide synthase. CPR is a membrane-bound protein and catalyzes electron transfer from NADPH to all known microsomal cytochromes P450. The structure of rat liver CPR, expressed in Escherichia coli and solubilized by limited trypsinolysis, has been determined by x-ray crystallography at 2.6 Å resolution. The molecule is composed of four structural domains: (from the N- to C- termini) the FMN-binding domain, the connecting domain, and the FAD- and NADPH-binding domains. The FMN-binding domain is similar to the structure of flavodoxin, whereas the two C-terminal dinucleotide-binding domains are similar to those of ferredoxin–NADP+ reductase (FNR). The connecting domain, situated between the FMN-binding and FNR-like domains, is responsible for the relative orientation of the other domains, ensuring the proper alignment of the two flavins necessary for efficient electron transfer. The two flavin isoalloxazine rings are juxtaposed, with the closest distance between them being about 4 Å. The bowl-shaped surface near the FMN-binding site is likely the docking site of cytochrome c and the physiological redox partners, including cytochromes P450 and b5 and heme oxygenase. PMID:9237990

  7. Molecular cloning and functional characterization of multiple NADPH-cytochrome P450 reductases from Andrographis paniculata.

    PubMed

    Lin, Huixin; Wang, Jian; Qi, Mengdie; Guo, Juan; Rong, Qixian; Tang, Jinfu; Wu, Yisheng; Ma, Xiaojing; Huang, Luqi

    2017-09-01

    Andrographis paniculata (Burm.f.) Wall. ex Nees is widely used as medicinal herb in Southern and Southeastern Asia and andrographolide is its main medicinal constituent. Based on the structure of andrographolide, it has been proposed that cytochrome P450 enzymes play vital roles on its biosynthesis. NADPH:cytochrome P450 reductase (CPR) is the most important redox partner of multiple P450s. In this study, three CPRs were identified in the genomic data of A. paniculata (namely ApCPR1, ApCPR2, and ApCPR3), and their coding regions were cloned. They varied from 62% to 70% identities to each other at the amino acid sequence level. ApCPR1 belongs to Class I of dicotyledonous CPR while both ApCPR2 and ApCPR3 are grouped to Class II. The recombinant enzymes ApCPR1 and ApCPR2 reduced cytochrome c and ferricyanide in an NADPH-dependent manner. In yeast, they supported the activity of CYP76AH1, a ferruginol-forming enzyme. However, ApCPR3 did not show any enzymatic activities either in vitro or in vivo. Quantitative real-time PCR analysis showed that both ApCPR1 and ApCPR2 expressed in all tissues examined, but ApCPR2 showed higher expression in leaves. Expression of ApCPR2 was inducible by MeJA and its pattern matched with andrographolide accumulation. Present investigation suggested ApCPR2 involves in the biosynthesis of secondary metabolites including andrographolide. Copyright © 2017. Published by Elsevier B.V.

  8. The enzyme toxicity and genotoxicity of chlorpyrifos and its toxic metabolite TCP to zebrafish Danio rerio.

    PubMed

    Wang, Jun; Wang, Jinhua; Zhu, Lusheng; Xie, Hui; Shao, Bo; Hou, Xinxin

    2014-12-01

    Chlorpyrifos is a broad-spectrum organophosphorus insecticide (O,O-diethyl -O-3,5,6-trichloro-2-pyridyl phosphorothioate) that is used in numerous agricultural and urban pest controls. The primary metabolite of chlorpyrifos is 3,5,6-trichloro pyridine-2-phenol (TCP). Because of its strong water solubility and mobility, this harmful metabolite exists in the environment in a large amount. Although TCP has potentially harmful effects on organisms in the environment, few studies have addressed TCP pollution. Therefore, this study was undertaken to investigate the effect of chlorpyrifos and TCP on the microsomal cytochrome P450 content in the liver, on the activity of NADPH-P450 reductase and antioxidative enzymes [catalase (CAT) and superoxide dismutase (SOD)], and on reactive oxygen species (ROS) generation and DNA damage in zebrafish. Male and female zebrafish were separated and exposed to a control solution and three concentrations of chlorpyrifos (0.01, 0.1, 1 mg L(-1)) and TCP (0.01, 0.1, 0.5 mg L(-1)), respectively, sampled after 5, 10, 15, 20 and 25 days. The results indicated that the P450 content and the NADPH-P450 reductase and antioxidative enzyme (CAT and SOD) activities could be induced by chlorpyrifos and TCP. DNA damage of zebrafish was enhanced with increasing chlorpyrifos and TCP concentrations. Meanwhile, chlorpyrifos and TCP induced a significant increase of ROS generation in the zebrafish hepatopancreas. In conclusion, this study proved that chlorpyrifos (0.01-1 mg L(-1)) and TCP (0.01-0.5 mg L(-1)) are both highly toxic to zebrafish.

  9. Metabolism of ethylbenzene by human liver microsomes and recombinant human cytochrome P450s (CYP).

    PubMed

    Sams, Craig; Loizou, George D; Cocker, John; Lennard, Martin S

    2004-03-07

    The enzyme kinetics of the initial hydroxylation of ethylbenzene to form 1-phenylethanol were determined in human liver microsomes. The individual cytochrome P450 (CYP) forms catalysing this reaction were identified using selective inhibitors and recombinant preparations of hepatic CYPs. Production of 1-phenylethanol in hepatic microsomes exhibited biphasic kinetics with a high affinity, low Km, component (mean Km = 8 microM; V(max) = 689 pmol/min/mg protein; n = 6 livers) and a low affinity, high Km, component (Km = 391 microM; V(max) = 3039 pmol/min/mg protein; n = 6). The high-affinity component was inhibited 79%-95% (mean 86%) by diethyldithiocarbamate, and recombinant CYP2E1 was shown to metabolise ethylbenzene with low Km (35 microM), but also low (max) (7 pmol/min/pmol P450), indicating that this isoform catalysed the high-affinity component. Recombinant CYP1A2 and CYP2B6 exhibited high V(max) (88 and 71 pmol/min/pmol P450, respectively) and high Km (502 and 219 microM, respectively), suggesting their involvement in catalysing the low-affinity component. This study has demonstrated that CYP2E1 is the major enzyme responsible for high-affinity side chain hydroxylation of ethylbenzene in human liver microsomes. Activity of this enzyme in the population is highly variable due to induction or inhibition by physiological factors, chemicals in the diet or some pharmaceuticals. This variability can be incorporated into the risk assessment process to improve the setting of occupational exposure limits and guidance values for biological monitoring.

  10. Stable expression of rat cytochrome P-450IIB1 cDNA in Chinese hamster cells (V79) and metabolic activation of aflatoxin B1.

    PubMed Central

    Doehmer, J; Dogra, S; Friedberg, T; Monier, S; Adesnik, M; Glatt, H; Oesch, F

    1988-01-01

    V79 Chinese hamster fibroblasts are widely used for mutagenicity testing but have the serious limitation that they do not express cytochromes P-450, which are needed for the activation of many promutagens to mutagenic metabolites. A full-length cDNA clone encoding the monooxygenase cytochrome P-450IIB1 under control of the simian virus 40 early promoter was constructed and cointroduced with the selection marker neomycin phosphotransferase (conferring resistance to G418) into V79 Chinese hamster cells. G418-resistant cells were selected, established as cell lines, and tested for cytochrome P-450IIB1 expression and enzymatic activity. Two cell lines (SD1 and SD3) were found that stably produce cytochrome P-450IIB1. Although purified cytochromes P-450 possess monooxygenase activity only after reconstitution with cytochrome P-450 reductase and phospholipid, the gene product of the construct exhibited this activity. This implies that the gene product is intracellularly localized in a way that allows access to the required components. If compared with V79 cells, the mutation rate for the hypoxanthine phosphoribosyltransferase (HPRT) locus in SD1 cells is markedly increased when exposed to aflatoxin B1, which is activated by this enzyme. Images PMID:3137560

  11. Plant P450s as versatile drivers for evolution of species-specific chemical diversity

    PubMed Central

    Hamberger, Björn; Bak, Søren

    2013-01-01

    The irreversible nature of reactions catalysed by P450s makes these enzymes landmarks in the evolution of plant metabolic pathways. Founding members of P450 families are often associated with general (i.e. primary) metabolic pathways, restricted to single copy or very few representatives, indicative of purifying selection. Recruitment of those and subsequent blooms into multi-member gene families generates genetic raw material for functional diversification, which is an inherent characteristic of specialized (i.e. secondary) metabolism. However, a growing number of highly specialized P450s from not only the CYP71 clan indicate substantial contribution of convergent and divergent evolution to the observed general and specialized metabolite diversity. We will discuss examples of how the genetic and functional diversification of plant P450s drives chemical diversity in light of plant evolution. Even though it is difficult to predict the function or substrate of a P450 based on sequence similarity, grouping with a family or subfamily in phylogenetic trees can indicate association with metabolism of particular classes of compounds. Examples will be given that focus on multi-member gene families of P450s involved in the metabolic routes of four classes of specialized metabolites: cyanogenic glucosides, glucosinolates, mono- to triterpenoids and phenylpropanoids. PMID:23297350

  12. Genomic and transcriptomic insights into the cytochrome P450 monooxygenase gene repertoire in the rice pest brown planthopper, Nilaparvata lugens.

    PubMed

    Lao, Shu-Hua; Huang, Xiao-Hui; Huang, Hai-Jian; Liu, Cheng-Wen; Zhang, Chuan-Xi; Bao, Yan-Yuan

    2015-11-01

    The cytochrome P450 monooxygenase (P450) gene family is one of the most abundant eukaryotic gene families that encode detoxification enzymes. In this study, we identified an abundance of P450 gene repertoire through genome- and transcriptome-wide analysis in the brown planthopper (Nilaparvata lugens), the most destructive rice pest in Asia. Detailed gene information including the exon-intron organization, size, transcription orientation and distribution in the genome revealed that many P450 loci were closely situated on the same scaffold, indicating frequent occurrence of gene duplications. Insecticide-response expression profiling revealed that imidacloprid significantly increased NlCYP6CS1v2, NLCYP4CE1v2, NlCYP4DE1, NlCYP417A1v2 and NlCYP439A1 expression; while triazophos and deltamethrin notably enhanced NlCYP303A1 expression. Expression analysis at the developmental stage showed the egg-, nymph-, male- and female-specific expression patterns of N. lugens P450 genes. These novel findings will be helpful for clarifying the P450 functions in physiological processes including development, reproduction and insecticide resistance in this insect species. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Biotransformation enzymes in the rodent nasal mucosa: the value of a histochemical approach.

    PubMed Central

    Bogdanffy, M S

    1990-01-01

    An increasing number of chemicals have been identified as being toxic to the nasal mucosa of rats. While many chemicals exert their effects only after inhalation exposure, others are toxic following systemic administration, suggesting that factors other than direct deposition on the nasal mucosa may be important in mechanisms of nasal toxicity. The mucosal lining of the nasal cavity consists of a heterogeneous population of ciliated and nonciliated cells, secretory cells, sensory cells, and glandular and other cell types. For chemicals that are metabolized in the nasal mucosa, the balance between metabolic activation and detoxication within a cell type may be a key factor in determining whether that cell type will be a target for toxicity. Recent research in the area of xenobiotic metabolism in nasal mucosa has demonstrated the presence of many enzymes previously described in other tissues. In particular, carboxylesterase, aldehyde dehydrogenase, cytochromes P-450, epoxide hydrolase, and glutathione S-transferases have been localized by histochemical techniques. The distribution of these enzymes appears to be cell-type-specific and the presence of the enzyme may predispose particular cell types to enhanced susceptibility or resistance to chemical-induced injury. This paper reviews the distribution of these enzymes within the nasal mucosa in the context of their contribution to xenobiotic metabolism. The localization of the enzymes by histochemical techniques has provided important information on the potential mechanism of action of esters, aldehydes, and cytochrome P-450 substrates known to injure the nasal mucosa. Images PLATE 1. PLATE 2. PLATE 3. PMID:2200661

  14. Characterization of moclobemide N-oxidation in human liver microsomes.

    PubMed

    Hoskins, J; Shenfield, G; Murray, M; Gross, A

    2001-07-01

    1. Moclobemide underdergoes morpholine ring N-oxidation to form a major metabolite in plasma Rol2-5637. 2. The kinetics of moclobemide N-oxidation in human liver microsomes (HLM) (n = 6) have been investigated and the mixed-function oxidase enzymes catalysing this reaction have been identified using inhibition, enzyme correlation, altered pH and heat pretreatment experiments. 3. N-oxidation followed single enzyme Michealis-Menten kinetics (0.02-4.0 mm). Km app and Vmax ranged from 0.48 to 1.35 mM (mean +/- SD) 0.77 +/- 0.34 mM) and 0.22 to 2.15 nmol mg(-1) min(-1) (1.39 +/- 0.80 nmol mg(-1) respectively. 4. The N-oxidation of moclobemide strongly correlated with benzydamine N-oxidation a probe reaction for flavin-containing monoxygenase (FMO) activity (0.1 mM moclobemide, rs = 0.81, p < 0.005; 4 mM moclobemide, rs = 0.94, p = 0.0001). Correlations were observed between moclobemide N-oxidation and specific cytochromre P450 (CYP) activities at both moclobemide concentrations (0.1 mM moclobemide, CYP2C19 0.66, p < 0.05; 4 mM moclobemide, CYP2E1 rs = 0.56, p < 0.05). 5. The general P450 inhibitor, N-benzylimidazole, did not affect the rate of Rol2-5637 formation (0% inhibition versus control) (at 1.3 mM moclobemide. Furthermore, the rate of Ro12-5637 formation in HLM was unaffected by inhibitors Or substrates of specific P450s (< 10% inhibition versus control). 6. Heat pretreatment of HLM in the absence of NADPH (inactivating FMOs) resulted in 97% inhibition of Ro12-5637 formation. N-oxidation activity was greatest when incubated at pH 8.5. These results ilre consistent with the reaction being FMO medialtetd . 7. In conclusion, moclobemide N-oxidation activity has been observed in HLM in vitro and the reaction is predominantly catalysed by FMOs with a potentially small contribution from cytochrome P450 isoforms.

  15. Co-expression of human cytochrome P4501A1 (CYP1A1) variants and human NADPH-cytochrome P450 reductase in the baculovirus/insect cell system.

    PubMed

    Schwarz, D; Kisselev, P; Honeck, H; Cascorbi, I; Schunck, W H; Roots, I

    2001-06-01

    1. Three human cytochrome P4501A1 (CYP1A1) variants, wild-type (CYP1A1.1), CYP1A1.2 (1462V) and CYP1A1.4 (T461N), were co-expressed with human NADPH-P450 reductase (OR) in Spodoptera frugiperda (Sf9) insect cells by baculovirus co-infection to elaborate a suitable system for studying the role of CYPA1 polymorphism in the metabolism of exogenous and endogenous substrates. 2. A wide range of conditions was examined to optimize co-expression with regard to such parameters as relative multiplicity of infection (MOI), time of harvest, haem precursor supplementation and post-translational stabilization. tinder optimized conditions, almost identical expression levels and molar OR/CYP1A1 ratios (20:1) were attained for all CYP1A1 variants. 3. Microsomes isolated from co-infected cells demonstrated ethoxyresorufin deethlylase activities (nmol/min(-1) nmol(-1) CYP1A1) of 16.0 (CYP1A1.1), 20.5 (CYP1A1.2) and 22.5 (CYP1A1.4). Pentoxyresorufin was dealkylated approximately 10-20 times slower with all enzyme variants. 4. All three CYP1A1 variants were active in metabolizing the precarcinogen benzo[a]pyrene (B[a]P), with wild-type enzyme showing the highest activity, followed by CYP1A1.4 (60%) and CYP1A1.2 (40%). Each variant produced all major metabolites including B[a]P-7,8-dihydrodiol, the precursor of the ultimate carcinogenic species. 5. These studies demonstrate that the baculovirus-mediated co-expression-by-co-infection approach all CYP1A1 variants yields functionally active enzyme systems with similar molar OR/CYP1A1 ratios, thus providing suitable preconditions to examine the metabolism of and environmental chemicals by the different CY1A1 variants.

  16. Olfactory cytochrome P-450. Studies with suicide substrates of the haemoprotein.

    PubMed Central

    Reed, C J; Lock, E A; De Matteis, F

    1988-01-01

    1. The olfactory epithelium of male hamsters has been found to be extremely active in the cumene hydroperoxide-supported oxidation of tetramethylphenylenediamine, and this peroxidase activity has been shown to be cytochrome P-450-dependent. 2. The interaction of a series of suicide substrates of cytochrome P-450 with the hepatic and olfactory mono-oxygenase systems has been assessed by determination of peroxidase, 7-ethoxycoumarin O-de-ethylase (ECOD) and 7-ethoxyresorufin O-de-ethylase (EROD) activities after treatment in vivo with these compounds. Chloramphenicol, OOS-trimethylphosphorothiolate and two dihydropyridines [DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) and 4-ethyl DDC (3,5-diethoxycarbonyl-4-ethyl-1,4-dihydro-2,6-dimethylpyridine)] all caused similar percentage inhibitions of hepatic and olfactory activities, but the absolute amounts of enzymic activity lost were considerably greater in the latter tissue. In contrast, halothane had little effect upon hepatic cytochrome P-450-dependent reactions, whereas it severely inhibited those of the olfactory epithelium. 3. The time course of loss and recovery of hepatic and olfactory peroxidase, ECOD and EROD activities after a single dose of 4-ethyl DDC was studied. The rates of loss of activity observed were very similar, irrespective of tissue or reaction examined. In the olfactory epithelium, all three activities recovered concurrently and at a rate similar to that of the hepatic peroxidase activity. In contrast, the hepatic de-ethylation of 7-ethoxycoumarin and 7-ethoxy-resorufin recovered significantly more rapidly. 4. It is suggested that this behaviour is due to 4-ethyl DDC acting not only as a suicidal inhibitor but also as an inducer of certain forms of cytochrome P-450 in the liver; in the olfactory epithelium, however, inactivation, but not induction, occurs. Classical inducing agents were reported to have no effect upon olfactory cytochrome P-450, and in the present study neither phenobarbitone nor beta-naphthoflavone treatment had any effect upon olfactory cytochrome P-450-dependent reactions, although it induced those of the liver. PMID:3263118

  17. Active sites of two orthologous cytochromes P450 2E1: Differences revealed by spectroscopic methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anzenbacherova, Eva; Hudecek, Jiri; Murgida, Daniel

    2005-12-09

    Cytochromes P450 2E1 of human and minipig origin were examined by absorption spectroscopy under high hydrostatic pressure and by resonance Raman spectroscopy. Human enzyme tends to denature to the P420 form more easily than the minipig form; moreover, the apparent compressibility of the heme active site (as judged from a redshift of the absorption maximum with pressure) is greater than that of the minipig counterpart. Relative compactness of the minipig enzyme is also seen in the Raman spectra, where the presence of planar heme conformation was inferred from band positions characteristic of the low-spin heme with high degree of symmetry.more » In this respect, the CYP2E1 seems to be another example of P450 conformational heterogeneity as shown, e.g., by Davydov et al. for CYP3A4 [Biochem. Biophys. Res. Commun. 312 (2003) 121-130]. The results indicate that the flexibility of the CYP active site is likely one of its basic structural characteristics.« less

  18. Storage stability study of porcine hepatic and intestinal cytochrome P450 isoenzymes by use of a newly developed and fully validated highly sensitive HPLC-MS/MS method.

    PubMed

    Schelstraete, Wim; Devreese, Mathias; Croubels, Siska

    2018-02-01

    Microsomes are an ideal medium to investigate cytochrome P450 (CYP450) enzyme-mediated drug metabolism. However, before microsomes are prepared, tissues can be stored for a long time. Studies about the stability of these enzymes in porcine hepatic and intestinal tissues upon storage are lacking. To be able to investigate CYP450 stability in microsomes prepared from these tissues, a highly sensitive and rapid HPLC-MS/MS method for the simultaneous determination of six CYP450 metabolites in incubation medium was developed and validated. The metabolites, paracetamol (CYP1A), 7-hydroxy-coumarin (CYP2A), 1-hydroxy-midazolam (CYP3A), 4-hydroxy-tolbutamide (CYP2C), dextrorphan (CYP2D), and 6-hydroxy-chlorzoxazone (CYP2E) were extracted with ethyl acetate at pH 1.0, followed by evaporation and separation on an Agilent Zorbax Eclipse Plus C18 column. The method was fully validated in a GLP-compliant laboratory according to European guidelines and was highly sensitive (LOQ = 0.25-2.5 ng/mL), selective, had good precision (RSD-within, 1.0-9.1%; RSD-between, 1.0-18.4%) and accuracy (within-run, 83.3-102%; between-run, 78.5-102%), and showed no relative signal suppression and enhancement. Consequently, this method was applied to study the stability of porcine hepatic and intestinal CYP450 isoenzymes when tissues were stored at - 80 °C. The results indicate that porcine CYP450 isoenzymes are stable in tissues at least up to 4 months when snap frozen and stored at - 80 °C. Moreover, the results indicate differences in porcine CYP450 stability compared to rat, rabbit, and fish CYP450, as observed by other research groups, hence stressing the importance to investigate the CYP450 stability of a specific species.

  19. Effects of 17alpha-methyltestosterone exposure on steroidogenesis and cyclin-B mRNA expression in previtellogenic oocytes of Atlantic cod (Gadus morhua).

    PubMed

    Kortner, Trond M; Arukwe, Augustine

    2007-11-01

    Steroid hormone (estrogens and androgens) synthesis and regulation involve a large number of enzymes and potential biochemical pathways. In the context of these biochemical pathways, it is believed that the true rate-limiting step in acute steroid production is the movement of cholesterol across the mitochondrial membrane by the steroidogenic acute regulatory (StAR) protein and the subsequent conversion to pregnenolone by cytochrome P450-mediated side-chain cleavage (P450scc) enzyme. Oocyte development is a complex process that is triggered by the maturation-promoting factor (MPF) involving cyclin-B as a regulatory factor. In the present study, we evaluated the endocrine effects of 17alpha-methyltestosterone (MT) on steroidogenic pathways of Atlantic cod (Gadus morhua), using an in vitro previtellogenic oocyte culture technique that is based on an agarose floating method. Tissue was cultured in a humidified incubator at 10 degrees C for 1, 5, 10 and 20 days with different concentrations of the synthetic androgen MT (0 (control), 1, 10, 100 and 1000 microM) dissolved in ethanol (0.3%). Gene expressions for StAR, P450scc, aromatase-alpha (P450aromA) and cyclin-B were detected using validated real-time PCR with specific primer pairs. Cellular localization of the StAR protein and P450scc were performed using the immunohistochemical technique with antisera prepared against synthetic peptide for both proteins. Steroid hormones (estradiol-17beta: E2 and testosterone: T) levels were estimated using enzyme immunoassay. Our data showed significant concentration-specific increase (at day 1 and 5) and decrease (at day 10 and 20) of the StAR mRNA expression after exposure to MT. P450scc expression showed a MT concentration-specific decrease during the exposure periods and cyclin-B mRNA expression was decreased in MT concentration-dependent manner at days 10 and 20 (reaching almost total inhibition after exposure to 1000 microM MT). MT exposure produced variable effects on the P450aromA mRNA expression that can be described as concentration-specific increase (day 1) and decrease (days 5 and 10). Cellular localization of the StAR protein and P450scc demonstrated their expression mainly in ovarian follicular cells. MT produced an apparent concentration-and time-dependent increase of E2 and T levels. Thus, the present study reveals some novel effects of pharmaceutical endocrine disruptor on the development of previtellogenic oocytes in cod. The impaired steroidogenesis and hormonal imbalance reported in the present study may have potential consequences for the vitellogenic process and overt fecundity in teleosts.

  20. Reduction of aromatic and heterocyclic aromatic N-hydroxylamines by human cytochrome P450 2S1.

    PubMed

    Wang, Kai; Guengerich, F Peter

    2013-06-17

    Many aromatic amines and heterocyclic aromatic amines (HAAs) are known carcinogens for animals, and there is also strong evidence of some in human cancer. The activation of these compounds, including some arylamine drugs, involves N-hydroxylation, usually by cytochrome P450 enzymes (P450) in Family 1 (1A2, 1A1, and 1B1). We previously demonstrated that the bioactivation product of the anticancer agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203), an N-hydroxylamine, can be reduced by P450 2S1 to its amine precursor under anaerobic conditions and, to a lesser extent, under aerobic conditions [Wang, K., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 1740-1751]. In the study presented here, we tested the hypothesis that P450 2S1 is involved in the reductive biotransformation of known carcinogenic aromatic amines and HAAs. The N-hydroxylamines of 4-aminobiphenyl (4-ABP), 2-naphthylamine (2-NA), and 2-aminofluorene (2-AF) were synthesized and found to be reduced by P450 2S1 under both anaerobic and aerobic conditions. The formation of amines due to P450 2S1 reduction also occurred under aerobic conditions but was less apparent because the competitive disproportionation reactions (of the N-hydroxylamines) also yielded amines. Further, some nitroso and nitro derivatives of the arylamines could also be reduced by P450 2S1. None of the amines tested were oxidized by P450 2S1. These results suggest that P450 2S1 may be involved in the reductive detoxication of several of the activated products of carcinogenic aromatic amines and HAAs.

  1. Reduction of Aromatic and Heterocyclic Aromatic N-Hydroxylamines by Human Cytochrome P450 2S1

    PubMed Central

    Wang, Kai; Guengerich, F. Peter

    2013-01-01

    Many aromatic amines and heterocyclic aromatic amines (HAAs) are known carcinogens for animals and there is also strong evidence for some in human cancer. The activation of these compounds, including some arylamine drugs, involves N-hydroxylation, usually by cytochrome P450 enzymes (P450) in Family 1 (1A2, 1A1, and 1B1). We previously demonstrated that the bioactivation product of the anti-cancer agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203), an N-hydroxylamine, can be reduced by P450 2S1 to its amine precursor under anaerobic conditions and, to a lesser extent, under aerobic conditions (Wang, K., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 1740–1751). In the present study, we tested the hypothesis that P450 2S1 is involved in the reductive biotransformation of known carcinogenic aromatic amines and HAAs. The N-hydroxylamines of 4-aminobiphenyl (4-ABP), 2-naphthylamine (2-NA), and 2-aminofluorene (2-AF) were synthesized and found to be reduced by P450 2S1 under both anaerobic and aerobic conditions. The formation of amines due to P450 2S1 reduction also occurred under aerobic conditions but was less apparent because the competitive disproportionation reactions (of the N-hydroxylamines) also yielded amines. Further, some nitroso and nitro derivatives of the arylamines could also be reduced by P450 2S1. None of the amines tested were oxidized by P450 2S1. These results suggest that P450 2S1 may be involved in the reductive detoxication of several of the activated products of carcinogenic aromatic amines and HAAs. PMID:23682735

  2. Deciphering the late steps of rifamycin biosynthesis.

    PubMed

    Qi, Feifei; Lei, Chao; Li, Fengwei; Zhang, Xingwang; Wang, Jin; Zhang, Wei; Fan, Zhen; Li, Weichao; Tang, Gong-Li; Xiao, Youli; Zhao, Guoping; Li, Shengying

    2018-06-14

    Rifamycin-derived drugs, including rifampin, rifabutin, rifapentine, and rifaximin, have long been used as first-line therapies for the treatment of tuberculosis and other deadly infections. However, the late steps leading to the biosynthesis of the industrially important rifamycin SV and B remain largely unknown. Here, we characterize a network of reactions underlying the biosynthesis of rifamycin SV, S, L, O, and B. The two-subunit transketolase Rif15 and the cytochrome P450 enzyme Rif16 are found to mediate, respectively, a unique C-O bond formation in rifamycin L and an atypical P450 ester-to-ether transformation from rifamycin L to B. Both reactions showcase interesting chemistries for these two widespread and well-studied enzyme families.

  3. Inactivation of Cytochrome P450 (P450) 3A4 but not P450 3A5 by OSI-930, a Thiophene-Containing Anticancer DrugS⃞

    PubMed Central

    Lin, Hsia-lien; Zhang, Haoming; Medower, Christine; Johnson, William W.

    2011-01-01

    An investigational anticancer agent that contains a thiophene moiety, 3-[(quinolin-4-ylmethyl)-amino]-N-[4-trifluoromethox)phenyl] thiophene-2-carboxamide (OSI-930), was tested to investigate its ability to modulate the activities of several cytochrome P450 enzymes. Results showed that OSI-930 inactivated purified, recombinant cytochrome P450 (P450) 3A4 in the reconstituted system in a mechanism-based manner. The inactivation was dependent on cytochrome b5 and required NADPH. Catalase did not protect against the inactivation. No inactivation was observed in studies with human 2B6, 2D6, or 3A5 either in the presence or in the absence of b5. The inactivation of 3A4 by OSI-930 was time- and concentration-dependent. The inactivation of the 7-benzyloxy-4-(trifluoromethyl)coumarin catalytic activity of 3A4 was characterized by a KI of 24 μM and a kinact of 0.04 min−1. This KI is significantly greater than the clinical OSI-930 Cmax of 1.7 μM at the maximum tolerated dose, indicating that clinical drug interactions of OSI-930 via this pathway are not likely. Spectral analysis of the inactivated protein indicated that the decrease in the reduced CO spectrum at 450 nm was comparable to the amount of inactivation, thereby suggesting that the inactivation was primarily due to modification of the heme. High-pressure liquid chromatography (HPLC) analysis with detection at 400 nm showed a loss of heme comparable to the activity loss, but a modified heme was not detected. This result suggests either that the heme must have been modified enough so as not to be observed in a HPLC chromatograph or, possibly, that it was destroyed. The partition ratio for the inactivation of P450 3A4 was approximately 23, suggesting that this P450 3A4-mediated pathway occurs with approximately 4% frequency during the metabolism of OSI-930. Modeling studies on the binding of OSI-930 to the active site of the P450 3A4 indicated that OSI-930 would be oriented properly in the active site for oxidation of the thiophene sulfur to give the sulfoxide, which has previously been shown to be a significant metabolite of OSI-930. Because OSI-930 is an inactivator of P450 3A4 but does not exhibit any effect on P450 3A5 activity under the same conditions, it may be an appropriate probe for exploring unique aspects of these two very similar P450s. PMID:21068193

  4. Hepatotoxicity of Herbal Supplements Mediated by Modulation of Cytochrome P450

    PubMed Central

    Chen, Taosheng

    2017-01-01

    Herbal supplements are a significant source of drug-drug interactions (DDIs), herb-drug interactions, and hepatotoxicity. Cytochrome P450 (CYP450) enzymes metabolize a large number of FDA-approved pharmaceuticals and herbal supplements. This metabolism of pharmaceuticals and supplements can be augmented by concomitant use of either pharmaceuticals or supplements. The xenobiotic receptors constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) can respond to xenobiotics by increasing the expression of a large number of genes that are involved in the metabolism of xenobiotics, including CYP450s. Conversely, but not exclusively, many xenobiotics can inhibit the activity of CYP450s. Induction of the expression or inhibition of the activity of CYP450s can result in DDIs and toxicity. Currently, the United States (US) Food and Drug Administration does not require the investigation of the interactions of herbal supplements and CYP450s. This review provides a summary of herbal supplements that inhibit CYP450s, induce the expression of CYP450s, and/or whose toxicity is mediated by CYP450s. PMID:29117101

  5. Characterization of the human cytochrome P450 enzymes involved in the metabolism of dihydrocodeine

    PubMed Central

    Kirkwood, L. C.; Nation, R. L.; Somogyi, A. A.

    1997-01-01

    Aims Using human liver microsomes from donors of the CYP2D6 poor and extensive metabolizer genotypes, the role of individual cytochromes P-450 in the oxidative metabolism of dihydrocodeine was investigated. Methods The kinetics of formation of N- and O-demethylated metabolites, nordihydrocodeine and dihydromorphine, were determined using microsomes from six extensive and one poor metabolizer and the effects of chemical inhibitors selective for individual P-450 enzymes of the 1A, 2A, 2C, 2D, 2E and 3A families and of LKM1 (anti-CYP2D6) antibodies were studied. Results Nordihydrocodeine was the major metabolite in both poor and extensive metabolizers. Kinetic constants for N-demethylation derived from the single enzyme Michaelis-Menten model did not differ between the two groups. Troleandomycin and erythromycin selectively inhibited N-demethylation in both extensive and poor metabolizers. The CYP3A inducer, α-naphthoflavone, increased N-demethylation rates. The kinetics of formation of dihydromorphine in both groups were best described by a single enzyme Michaelis-Menten model although inhibition studies in extensive metabolizers suggested involvement of two enzymes with similar Km values. The kinetic constants for O-demethylation were significantly different in extensive and poor metabolizers. The extensive metabolizers had a mean intrinsic clearance to dihydromorphine more than ten times greater than the poor metabolizer. The CYP2D6 chemical inhibitors, quinidine and quinine, and LKM1 antibodies inhibited O-demethylation in extensive metabolizers; no effect was observed in microsomes from a poor metabolizer. Conclusions CYP2D6 is the major enzyme mediating O-demethylation of dihydrocodeine to dihydromorphine. In contrast, nordihydrocodeine formation is predominantly catalysed by CYP3A. PMID:9431830

  6. Cytochrome p450 turnover: regulation of synthesis and degradation, methods for determining rates, and implications for the prediction of drug interactions.

    PubMed

    Yang, Jiansong; Liao, Mingxiang; Shou, Magang; Jamei, Masoud; Yeo, Karen Rowland; Tucker, Geoffrey T; Rostami-Hodjegan, Amin

    2008-06-01

    In vivo enzyme levels are governed by the rates of de novo enzyme synthesis and degradation. A current lack of consensus on values of the in vivo turnover half-lives of human cytochrome P450 (CYP) enzymes places a significant limitation on the accurate prediction of changes in drug concentration-time profiles associated with interactions involving enzyme induction and mechanism (time)-based inhibition (MBI). In the case of MBI, the full extent of inhibition is also sensitive to values of enzyme turnover half-life. We review current understanding of CYP regulation, discuss the pros and cons of various in vitro and in vivo approaches used to estimate the turnover of specific CYPs and, by simulation, consider the impact of variability in estimates of CYP turnover on the prediction of enzyme induction and MBI in vivo. In the absence of consensus on values for the in vivo turnover half-lives of key CYPs, a sensitivity analysis of predictions of the pharmacokinetic effects of enzyme induction and MBI to these values should be an integral part of the modelling exercise, and the selective use of values should be avoided.

  7. Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast.

    PubMed

    Jeon, Hyunwoo; Durairaj, Pradeepraj; Lee, Dowoo; Ahsan, Md Murshidul; Yun, Hyungdon

    2016-12-28

    Fungal cytochrome P450 (CYP) enzymes catalyze versatile monooxygenase reactions and play a major role in fungal adaptations owing to their essential roles in the production avoid metabolites critical for pathogenesis, detoxification of xenobiotics, and exploitation avoid substrates. Although fungal CYP-dependent biotransformation for the selective oxidation avoid organic compounds in yeast system is advantageous, it often suffers from a shortage avoid intracellular NADPH. In this study, we aimed to investigate the use of bacterial glucose dehydrogenase (GDH) for the intracellular electron regeneration of fungal CYP monooxygenase in a yeast reconstituted system. The benzoate hydroxylase FoCYP53A19 and its homologous redox partner FoCPR from Fusarium oxysporum were co-expressed with the BsGDH from Bacillus subtilis in Saccharomyces cerevisiae for heterologous expression and biotransformations. We attempted to optimize several bottlenecks concerning the efficiency of fungal CYP-mediated whole-cell-biotransformation to enhance the conversion. The catalytic performance of the intracellular NADPH regeneration system facilitated the hydroxylation of benzoic acid to 4-hydroxybenzoic acid with high conversion in the resting-cell reaction. The FoCYP53A19 +FoCPR+BsGDH reconstituted system produced 0.47 mM 4-hydroxybenzoic acid (94% conversion) in the resting-cell biotransformations performed in 50 mM phosphate buffer (pH 6.0) containing 0.5 mM benzoic acid and 0.25% glucose for 24 h at 30°C. The "coupled-enzyme" system can certainly improve the overall performance of NADPH-dependent whole-cell biotransformations in a yeast system.

  8. Effective use of heterologous hosts for characterization of biosynthetic enzymes allows production of natural products and promotes new natural product discovery.

    PubMed

    Watanabe, Kenji

    2014-01-01

    In the past few years, there has been impressive progress in elucidating the mechanism of biosynthesis of various natural products accomplished through the use of genetic, molecular biological and biochemical techniques. Here, we present a comprehensive overview of the current results from our studies on fungal natural product biosynthetic enzymes, including nonribosomal peptide synthetase and polyketide synthase-nonribosomal peptide synthetase hybrid synthetase, as well as auxiliary enzymes, such as methyltransferases and oxygenases. Specifically, biosynthesis of the following compounds is described in detail: (i) Sch210972, potentially involving a Diels-Alder reaction that may be catalyzed by CghA, a functionally unknown protein identified by targeted gene disruption in the wild type fungus; (ii) chaetoglobosin A, formed via multi-step oxidations catalyzed by three redox enzymes, one flavin-containing monooxygenase and two cytochrome P450 oxygenases as characterized by in vivo biotransformation of relevant intermediates in our engineered Saccharomyces cerevisiae; (iii) (-)-ditryptophenaline, formed by a cytochrome P450, revealing the dimerization mechanism for the biosynthesis of diketopiperazine alkaloids; (iv) pseurotins, whose variations in the C- and O-methylations and the degree of oxidation are introduced combinatorially by multiple redox enzymes; and (v) spirotryprostatins, whose spiro-carbon moiety is formed by a flavin-containing monooxygenase or a cytochrome P450 as determined by heterologous de novo production of the biosynthetic intermediates and final products in Aspergillus niger. We close our discussion by summarizing some of the key techniques that have facilitated the discovery of new natural products, production of their analogs and identification of biosynthetic mechanisms in our study.

  9. Identification of two new cytochrome P450 genes and RNA interference to evaluate their roles in detoxification of commonly used insecticides in Locusta migratoria.

    PubMed

    Guo, Yanqiong; Zhang, Jianzhen; Yu, Rongrong; Zhu, Kun Yan; Guo, Yaping; Ma, Enbo

    2012-05-01

    Cytochrome P450 monooxygenases (cytochrome P450s), found in virtually all living organisms, play an important role in the metabolism of xenobiotics such as drugs, pesticides, and plant toxins. We have previously evaluated the responses of the oriental migratory locust (Locusta migratoria) to the pyrethroid insecticide deltamethrin and revealed that increased cytochrome P450 enzyme activity was due to increased transcription of multiple cytochrome P450 genes. In this study, we identified for the first time two new cytochrome P450 genes, which belong to two novel cytochrome P450 gene families. CYP409A1 belongs to CYP409 family whereas CYP408B1 belongs to CYP408 family. Our molecular analysis indicated that CYP409A1 was mainly expressed in fatbodies, midgut, gastric caecum, foregut and Malpighian tubules of the third- and fourth-instar nymphs, whereas CYP408B1 was mainly expressed in foregut, hindgut and muscle of the insects at all developmental stages examined. The expression of these two cytochrome P450 genes were differentially affected by three representative insecticides, including carbaryl (carbamate), malathion (organophosphate) and deltamethrin (pyrethroid). The exposure of the locust to carbaryl, malathion and deltamethrin resulted in reduced, moderately increased and significantly increased transcript levels, respectively, of the two cytochrome P450 genes. Our further analysis of their detoxification roles by using RNA interference followed by deltamethrin bioassay showed increased nymph mortalities by 21.1% and 16.7%, respectively, after CYP409A1 and CYP408B1 were silenced. These results strongly support our notion that these two new cytochrome P450 genes play an important role in deltamethrin detoxification in the locust. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The genetic and functional basis of isolated 17,20-lyase deficiency.

    PubMed

    Geller, D H; Auchus, R J; Mendonça, B B; Miller, W L

    1997-10-01

    Human male sexual differentiation requires production of fetal testicular testosterone, whose biosynthesis requires steroid 17,20-lyase activity. Patients with putative isolated 17,20-lyase deficiency have been reported. The existence of true isolated 17,20-lyase deficiency, however, has been questioned because 17 alpha-hydroxylase and 17,20-lyase activities are catalyzed by a single enzyme, microsomal cytochrome P450c17, and because the index case of apparent isolated 17,20-lyase deficiency had combined deficiencies of both activities. We studied two patients with clinical and hormonal findings suggestive of isolated 17,20-lyase deficiency. We found two patients homozygous for substitution mutations in CYP17, the gene encoding P450c17. When expressed in COS-1 cells, the mutants retained 17 alpha-hydroxylase activity but had minimal 17,20-lyase activity. Substrate competition experiments suggested that the mutations did not alter the enzyme's substrate-binding capacity, but co-transfection of cells with P450 oxidoreductase, the electron donor used by P450c17, indicated that the mutants had a diminished ability to interact with redox partners. Computer-graphic modelling of P450c17 suggests that both mutations lie in or near the redox-partner binding site, on the opposite side of the haem from the substrate-binding pocket. These mutations alter electrostatic charge distribution in the redox-partner binding site, so that electron transfer for the 17,20-lyase reaction is selectively lost or diverted to uncoupling reactions. These are the first proven cases of isolated 17,20-lyase deficiency, and they demonstrate a novel mechanism for loss of enzymatic activity.

  11. Mobility of cytochrome P450 in the endoplasmic reticulum membrane.

    PubMed

    Szczesna-Skorupa, E; Chen, C D; Rogers, S; Kemper, B

    1998-12-08

    Cytochrome P450 2C2 is a resident endoplasmic reticulum (ER) membrane protein that is excluded from the recycling pathway and contains redundant retention functions in its N-terminal transmembrane signal/anchor sequence and its large, cytoplasmic domain. Unlike some ER resident proteins, cytochrome P450 2C2 does not contain any known retention/retrieval signals. One hypothesis to explain exclusion of resident ER proteins from the transport pathway is the formation of networks by interaction with other proteins that immobilize the proteins and are incompatible with packaging into the transport vesicles. To determine the mobility of cytochrome P450 in the ER membrane, chimeric proteins of either cytochrome P450 2C2, its catalytic domain, or the cytochrome P450 2C1 N-terminal signal/anchor sequence fused to green fluorescent protein (GFP) were expressed in transiently transfected COS1 cells. The laurate hydroxylase activities of cytochrome P450 2C2 or the catalytic domain with GFP fused to the C terminus were similar to the native enzyme. The mobilities of the proteins in the membrane were determined by recovery of fluorescence after photobleaching. Diffusion coefficients for all P450 chimeras were similar, ranging from 2.6 to 6.2 x 10(-10) cm2/s. A coefficient only slightly larger (7.1 x 10(-10) cm2/s) was determined for a GFP chimera that contained a C-terminal dilysine ER retention signal and entered the recycling pathway. These data indicate that exclusion of cytochrome P450 from the recycling pathway is not mediated by immobilization in large protein complexes.

  12. An RNAi construct of the P450 gene CYP82D109 leads to increased resistance to Fusarium oxysporum f. sp. vasinfectum (Fov11) and increased feeding by Helicoverpa Zea larvae

    USDA-ARS?s Scientific Manuscript database

    The P450 CYP82D109 gene codes for an early step enzyme in the gossypol pathway in Gossypium. The terminal leaves of RNAi plants had a 90% reduction in hemigossypolone and heliocides levels, and a 70% reduction in gossypol levels compared to wild-type (WT) plants. Previous studies comparing glanded...

  13. Fructose intake during gestation and lactation differentially affects the expression of hippocampal neurosteroidogenic enzymes in rat offspring.

    PubMed

    Mizuno, Genki; Munetsuna, Eiji; Yamada, Hiroya; Ando, Yoshitaka; Yamazaki, Mirai; Murase, Yuri; Kondo, Kanako; Ishikawa, Hiroaki; Teradaira, Ryoji; Suzuki, Koji; Ohashi, Koji

    2017-02-01

    Neurosteroids, steroidal hormones synthesized de novo from cholesterol within the brain, stimulate hippocampal functions such as neuron protection and synapse formation. Previously, we examined the effect of maternal fructose on the transcriptional regulation of neurosteroidogenic enzymes. We found that the mRNA expression level of the steroidogenic acute regulatory protein (StAR), peripheral benzodiazepine receptor (PBR), cytochrome P450(11β), 11β-hydroxysteroid dehydrogenase (HSD), and 17β-HSD was altered. However, we could not determine whether maternal fructose intake played a role in the gestation or lactation period because the dam rats were fed fructose solution during both periods. Thus, in this study, we analyzed the hippocampi of the offspring of dams fed fructose during the gestation or lactation period. Maternal fructose consumption during either the gestation or lactation period did not affect the mRNA levels of StAR, P450(17α), 11β-HSD-2, and 17β-HSD-1. PBR expression was down-regulated, even when rats consumed fructose during the lactation period only, while fructose consumption during gestation tended to activate the expression of P450(11β)-2. We found that maternal fructose intake during gestation and lactation differentially affected the expression of hippocampal neurosteroidogenic enzymes in the offspring.

  14. Dual Function of the Cytochrome P450 CYP76 Family from Arabidopsis thaliana in the Metabolism of Monoterpenols and Phenylurea Herbicides1[W][OPEN

    PubMed Central

    Höfer, René; Boachon, Benoît; Renault, Hugues; Gavira, Carole; Miesch, Laurence; Iglesias, Juliana; Ginglinger, Jean-François; Allouche, Lionel; Miesch, Michel; Grec, Sebastien; Larbat, Romain; Werck-Reichhart, Danièle

    2014-01-01

    Comparative genomics analysis unravels lineage-specific bursts of gene duplications related to the emergence of specialized pathways. The CYP76C subfamily of cytochrome P450 enzymes is specific to Brassicaceae. Two of its members were recently associated with monoterpenol metabolism. This prompted us to investigate the CYP76C subfamily genetic and functional diversification. Our study revealed high rates of CYP76C gene duplication and loss in Brassicaceae, suggesting the association of the CYP76C subfamily with species-specific adaptive functions. Gene differential expression and enzyme functional specialization in Arabidopsis thaliana, including metabolism of different monoterpenols and formation of different products, support this hypothesis. In addition to linalool metabolism, CYP76C1, CYP76C2, and CYP76C4 metabolized herbicides belonging to the class of phenylurea. Their ectopic expression in the whole plant conferred herbicide tolerance. CYP76Cs from A. thaliana. thus provide a first example of promiscuous cytochrome P450 enzymes endowing effective metabolism of both natural and xenobiotic compounds. Our data also suggest that the CYP76C gene family provides a suitable genetic background for a quick evolution of herbicide resistance. PMID:25082892

  15. The effects of endosulfan on cytochrome P450 enzymes and glutathione S-transferases in zebrafish (Danio rerio) livers.

    PubMed

    Dong, Miao; Zhu, Lusheng; Shao, Bo; Zhu, Shaoyuan; Wang, Jun; Xie, Hui; Wang, Jinhua; Wang, Fenghua

    2013-06-01

    Endosulfan, an organochlorine pesticide, has been used worldwide in the past decades. The present study was performed to investigate the effect of endosulfan on liver microsomal cytochrome P450 (CYP) enzymes and glutathione S-transferases (GST) in zebrafish. Male and female zebrafish were separated and exposed to a control and four concentrations of endosulfan (0.01, 0.1, 1, and 10μgL(-1)) and were sampled on days 7, 14, 21, and 28. After exposure to endosulfan, the content of CYP increased and later gradually fell back to control level in most sampling time intervals. A similar tendency was also found in the activities of NADPH-P450 reductase (NCR), aminopyrine N-demethylase (APND) and erythromycin N-demethylase (ERND). GST activities were generally higher in treatment groups than control groups. Regarding sex-based differences, the induction degree of the activity of NCR was generally higher in males than females. Similar differences were also found on the 28th day in the activities of APND and ERND, as well as GST activity on the 7th day. Overall, the present results demonstrate the toxicity at low doses of endosulfan and indicated marked induction of CYP and GST enzymes in zebrafish liver. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. [Cytochrome P-450 and the response to antimalarial drugs].

    PubMed

    Guzmán, Valentina; Carmona-Fonseca, Jaime

    2006-01-01

    To assess the relationship between the genetic and phenotypic factors linked to the cytochrome P-450 enzyme system and the response to the antimalarial drugs chloroquine, amodiaquine, mefloquine, and proguanil, as well as to determine how certain biological and social factors of the host influence the behavior of this enzymatic complex. We performed a systematic review of the medical bibliographic databases PubMed, Excerpta Medica, LILACS, and SciELO by using the following Spanish and English descriptors: "CYP-450" and "citocromo P-450" in combination with "proguanil" (and with "mefloquina," "cloroquina," and "amodiaquina"), "farmacocinética de proguanil" (and the same using "mefloquina," "cloroquina," and "amodiaquina"), "resistencia a proguanil" (and the same using "mefloquina," "cloroquina," and "amodiaquina"), "metabolismo," "farmacogenética," "enfermedad," "inflamación," "infección," "enfermedad hepática," "malaria," "nutrición," and "desnutrición." The same terms were used in English. The search included only articles published in Spanish, English, and Portuguese on or before 30 June 2005 that dealt with only four antimalarial drugs: amodiaquine, chloroquine, mefloquine, and proguanil. Some genetic factors linked to human cytochrome P-450 (mainly its polymorphism), as well as other biological and social factors (the presence of disease itself, or of inflammation and infection, the use of antimalarials in their various combinations, and the patient's nutritional status) influence the behavior of this complex enzymatic system. It has only been in the last decade that the genetics of the cytochromes has been explored and that the mechanisms underlying some therapeutic interactions and aspects of drug metabolism have been uncovered, making it possible to characterize the biotransformation pathway of amodiaquine and chloroquine. Hopefully new research will help answer the questions that still remain, some of which pertain to the metabolism of other antimalarial drugs, the distribution in the population of the genetic alleles linked to the enzymes involved in their metabolism, the contribution of these genetic mutations to therapeutic failure, and the possibility of predicting the response to antimalarial therapy. The therapeutic response to antimalarial drugs is a multifactorial process that is poorly understood, so that it is not possible to ascribe to a specific phenotype or genotype a role in the response to antimalarial therapy. Attention should be given to biological and social factors, such as diet, nutritional status, and inflammatory and infectious processes that are often present in areas where malaria is endemic.

  17. Effect of Chokeberry (Aronia melanocarpa) juice on the metabolic activation and detoxication of carcinogenic N-nitrosodiethylamine in rat liver.

    PubMed

    Krajka-Kuźniak, Violetta; Szaefer, Hanna; Ignatowicz, Ewa; Adamska, Teresa; Oszmiański, Jan; Baer-Dubowska, Wanda

    2009-06-10

    Chokeberry is a rich source of polyphenols, which may counteract the action of chemical carcinogens. The aim of this study was to examine the effect of chokeberry juice alone or in combination with N-nitrosodiethylamine (NDEA) on phase I and phase II enzymes and DNA damage in rat liver. The forced feeding with chokeberry juice alone decreased the activities of enzymatic markers of cytochrome P450, CYP1A1 and 1A2. NDEA treatment also decreased the activity of CYP2E1 but enhanced the activity of CYP2B. Pretreatment with chokeberry juice further reduced the activity of these enzymes. Modulation of P450 enzyme activities was accompanied by the changes in the relevant proteins levels. Phase II enzymes were increased in all groups of animals tested. Chokeberry juice augmented DNA damage and aggravated the effect of NDEA. These results indicate that chokeberry may protect against liver damage; however, in combination with chemical carcinogens it might enhance their effect.

  18. Comparison of aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase induction by polycyclic aromatic compounds in human and mouse cell lines.

    PubMed

    Jaiswal, A K; Nebert, D W; Eisen, H W

    1985-08-01

    The human MCF-7 and the mouse Hepa-1 cell culture lines were compared for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]anthracene (BA) and TCDD- and BA-specific binding in the cytosol and nucleus. The effective concentration of BA in the growth medium required to induce either enzyme to 50% of its maximally inducible activity (EC50) was the same (5-11 microM) in both MCF-7 and Hepa-1 cells. On the other hand, the EC50 for TCDD in MCF-7 cells (5-25 nM) was more than 40-fold greater than that in Hepa-1 cells (0.4 to 0.6 nM). P1-450- and P3-450-specific mouse cDNA probes were used to quantitate mRNA induction in the Hepa-1 cell line. P1-450 mRNA was induced markedly by TCDD and benzo[a] anthracene, whereas P3-450 mRNA was induced negligibly. A P1-450-specific human cDNA probe was used to quantitate P1-450 mRNA induction in the MCF-7 cell line. Aryl hydrocarbon hydroxylase inducibility by TCDD or BA always paralleled P1-450 mRNA inducibility in either the mouse or human line. Although the cytosolic Ah receptor in Hepa-1 cells was easily detected by sucrose density gradient centrifugation, gel permeation chromatography, and anion-exchange high-performance liquid chromatography, the cytosolic receptor cannot be detected in MCF-7 cells. Following in vivo exposure of cultures to radiolabeled TCDD, the intranuclear concentration of inducer-receptor complex was at least fifty times greater in Hepa-1 than MCF-7 cultures. The complete lack of measurable cytosolic receptor and almost totally absent inducer-receptor complex in the nucleus of MCF-7 cells was, therefore, out of proportion to its capacity for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility. This MCF-7 line should provide an interesting model for a better understanding of the mechanisms of drug-metabolizing enzyme induction by polycyclic aromatic compounds, including the Ah receptor-mediated mechanism.

  19. Contaminants in eggs of colonial waterbirds and hepatic cytochrome P450 enzyme levels in pipped tern embryos, Washington State.

    PubMed

    Blus, L J; Melancon, M J; Hoffman, D J; Henny, C J

    1998-10-01

    Eggs of Forster's terns (Sterna forsteri) collected in 1991 from nesting colonies on Crescent Island (Columbia River) and the Potholes Reservoir in south central Washington generally contained low residues of organochlorine pesticides and metabolites, 2,3,7, 8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and polychlorinated biphenyls (PCBs). Hepatic cytochrome P450 enzyme activity in pipped embryos of Forster's terns from the two colonies seemed unaffected by contaminants. At Crescent Island, examination of 23 Forster's tern eggs with large embryos (19 viable [10 pipped] and four dead [two pipped]) revealed developmental abnormalities in two viable pipped embryos (missing maxilla and deformed pelvic girdle) and a viable prepipping embryo (shortened beak). Our limited sample sizes and number of compounds analyzed preclude us from determining whether or not the abnormalities are related to contaminants. No abnormalities were noted in 10 pipped eggs (nine viable and one dead at collection) of Forster's terns collected from the Potholes Reservoir colony. Eggs of Caspian terns (Sterna caspia) collected from Crescent Island in 1991 also contained generally low residues of contaminants, only one developmental abnormality was noted, and limited data indicated that cytochrome P450 enzyme activity apparently was unaffected by contaminants. Organochlorine contaminants were generally low in addled eggs of American white pelicans (Pelecanus erythrorhynchos) collected from Crescent Island in 1994.

  20. Contaminants in eggs of colonial waterbirds and hepatic cytochrome P450 enzyme levels in pipped tern embryos, Washington State

    USGS Publications Warehouse

    Blus, L.J.; Melancon, M.J.; Hoffman, D.J.; Henny, C.J.

    1998-01-01

    Eggs of Forster's terns (Sterna forsteri) collected in 1991 from nesting colonies on Crescent Island (Columbia River) and the Potholes Reservoir in south central Washington generally contained low residues of organochlorine pesticides and metabolites, 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and polychlorinated biphenyls (PCBs). Hepatic cytochrome P450 enzyme activity in pipped embryos of Forster's terns from the two colonies seemed unaffected by contaminants. At Crescent Island, examination of 23 Forster's tern eggs with large embryos (19 viable [10 pipped] and four dead [two pipped]) revealed developmental abnormalities in two viable pipped embryos (missing maxilla and deformed pelvic girdle) and a viable prepipping embryo (shortened beak). Our limited sample sizes and number of compounds analyzed preclude us from determining whether or not the abnormalities are related to contaminants. No abnormalities were noted in 10 pipped eggs (nine viable and one dead at collection) of Forster's terns collected from the Potholes Reservoir colony. Eggs of Caspian terns (Sterna caspia) collected from Crescent Island in 1991 also contained generally low residues of contaminants, only one developmental abnormality was noted, and limited data indicated that cytochrome P450 enzyme activity apparently was unaffected by contaminants. Organochlorine contaminants were generally low in addled eggs of American white pelicans (Pelecanus erythrorhynchos) collected from Crescent Island in 1994.

  1. Purification and immunochemical detections of ?-naphthoflavone- and phenobarbital-induced avian cytochrome P450 enzymes

    USGS Publications Warehouse

    Brown, R.L.; Levi, P.E.; Hodgson, E.; Melancon, M.J.

    1996-01-01

    Livers from mallards (Anas platyrhynchos) were treated with either -naphthoflavone (50 mg/kg) or phenobarbital (70 mg/kg). Purification of induced hepatic cytochrome P450 was accomplished using both DEAE and hydroxyapatite columns, as well as sodium dodecyl sulfate polyacrylamide gel electrophoresis separation. Polyclonal antibodies to these proteins were then produced in young male New Zealand White rabbits. ?-naphthoflavone (?NF)- and phenobarbital(PB)-treated red-winged blackbird, screech owl, European starling and lesser scaup liver microsomes were analyzed in western blots for species cross-reactivity. Although all four of these avian species exhibited cross-reactivity with antibodies to ?NF-induced mallard P450, all but the lesser scaup revealed a protein of higher molecular weight than that of the ?NF-induced mallard. In addition, only the lesser scaup exhibited cross-reactivity with the anti-PB-induced mallard P450 antibodies.

  2. Repellents Inhibit P450 Enzymes in Stegomyia (Aedes) aegypti

    PubMed Central

    Jaramillo Ramirez, Gloria Isabel; Logan, James G.; Loza-Reyes, Elisa; Stashenko, Elena; Moores, Graham D.

    2012-01-01

    The primary defence against mosquitoes and other disease vectors is often the application of a repellent. Despite their common use, the mechanism(s) underlying the activity of repellents is not fully understood, with even the mode of action of DEET having been reported to be via different mechanisms; e.g. interference with olfactory receptor neurones or actively detected by olfactory receptor neurones on the antennae or maxillary palps. In this study, we discuss a novel mechanism for repellence, one of P450 inhibition. Thirteen essential oil extracts from Colombian plants were assayed for potency as P450 inhibitors, using a kinetic fluorometric assay, and for repellency using a modified World Health Organisation Pesticide Evaluations Scheme (WHOPES) arm-in cage assay with Stegomyia (Aedes) aegypti mosquitoes. Bootstrap analysis on the inhibition analysis revealed a significant correlation between P450-inhibition and repellent activity of the oils. PMID:23152795

  3. Recruitment and Regulation of the Non-ribosomal Peptide Synthetase Modifying Cytochrome P450 Involved in Nikkomycin Biosynthesis.

    PubMed

    Wise, Courtney E; Makris, Thomas M

    2017-05-19

    The β-hydroxylation of l-histidine is the first step in the biosynthesis of the imidazolone base of the antifungal drug nikkomycin. The cytochrome P450 (NikQ) hydroxylates the amino acid while it is appended via a phosphopantetheine linker to the non-ribosomal peptide synthetase (NRPS) NikP1. The latter enzyme is comprised of an MbtH and single adenylation and thiolation domains, a minimal composition that allows for detailed binding and kinetics studies using an intact and homogeneous NRPS substrate. Electron paramagnetic resonance studies confirm that a stable complex is formed with NikQ and NikP1 when the amino acid is tethered. Size exclusion chromatography is used to further refine the principal components that are required for this interaction. NikQ binds NikP1 in the fully charged state, but binding also occurs when NikP1 is lacking both the phosphopantetheine arm and appended amino acid. This demonstrates that the interaction is mainly guided by presentation of the thiolation domain interface, rather than the attached amino acid. Electrochemistry and transient kinetics have been used to probe the influence of l-His-NikP1 binding on catalysis by NikQ. Unlike many P450s, the binding of substrate fails to induce significant changes on the redox potential and autoxidation properties of NikQ and slows down the binding of dioxygen to the ferrous enzyme to initiate catalysis. Collectively, these studies demonstrate a complex interplay between the NRPS maturation process and the recruitment and regulation of an auxiliary tailoring enzyme required for natural product biosynthesis.

  4. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae.

    PubMed

    Balabanidou, Vasileia; Kampouraki, Anastasia; MacLean, Marina; Blomquist, Gary J; Tittiger, Claus; Juárez, M Patricia; Mijailovsky, Sergio J; Chalepakis, George; Anthousi, Amalia; Lynd, Amy; Antoine, Sanou; Hemingway, Janet; Ranson, Hilary; Lycett, Gareth J; Vontas, John

    2016-08-16

    The role of cuticle changes in insecticide resistance in the major malaria vector Anopheles gambiae was assessed. The rate of internalization of (14)C deltamethrin was significantly slower in a resistant strain than in a susceptible strain. Topical application of an acetone insecticide formulation to circumvent lipid-based uptake barriers decreased the resistance ratio by ∼50%. Cuticle analysis by electron microscopy and characterization of lipid extracts indicated that resistant mosquitoes had a thicker epicuticular layer and a significant increase in cuticular hydrocarbon (CHC) content (∼29%). However, the CHC profile and relative distribution were similar in resistant and susceptible insects. The cellular localization and in vitro activity of two P450 enzymes, CYP4G16 and CYP4G17, whose genes are frequently overexpressed in resistant Anopheles mosquitoes, were analyzed. These enzymes are potential orthologs of the CYP4G1/2 enzymes that catalyze the final step of CHC biosynthesis in Drosophila and Musca domestica, respectively. Immunostaining indicated that both CYP4G16 and CYP4G17 are highly abundant in oenocytes, the insect cell type thought to secrete hydrocarbons. However, an intriguing difference was indicated; CYP4G17 occurs throughout the cell, as expected for a microsomal P450, but CYP4G16 localizes to the periphery of the cell and lies on the cytoplasmic side of the cell membrane, a unique position for a P450 enzyme. CYP4G16 and CYP4G17 were functionally expressed in insect cells. CYP4G16 produced hydrocarbons from a C18 aldehyde substrate and thus has bona fide decarbonylase activity similar to that of dmCYP4G1/2. The data support the hypothesis that the coevolution of multiple mechanisms, including cuticular barriers, has occurred in highly pyrethroid-resistant An gambiae.

  5. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae

    PubMed Central

    Balabanidou, Vasileia; Kampouraki, Anastasia; MacLean, Marina; Blomquist, Gary J.; Tittiger, Claus; Juárez, M. Patricia; Mijailovsky, Sergio J.; Chalepakis, George; Anthousi, Amalia; Lynd, Amy; Antoine, Sanou; Hemingway, Janet; Ranson, Hilary; Lycett, Gareth J.; Vontas, John

    2016-01-01

    The role of cuticle changes in insecticide resistance in the major malaria vector Anopheles gambiae was assessed. The rate of internalization of 14C deltamethrin was significantly slower in a resistant strain than in a susceptible strain. Topical application of an acetone insecticide formulation to circumvent lipid-based uptake barriers decreased the resistance ratio by ∼50%. Cuticle analysis by electron microscopy and characterization of lipid extracts indicated that resistant mosquitoes had a thicker epicuticular layer and a significant increase in cuticular hydrocarbon (CHC) content (∼29%). However, the CHC profile and relative distribution were similar in resistant and susceptible insects. The cellular localization and in vitro activity of two P450 enzymes, CYP4G16 and CYP4G17, whose genes are frequently overexpressed in resistant Anopheles mosquitoes, were analyzed. These enzymes are potential orthologs of the CYP4G1/2 enzymes that catalyze the final step of CHC biosynthesis in Drosophila and Musca domestica, respectively. Immunostaining indicated that both CYP4G16 and CYP4G17 are highly abundant in oenocytes, the insect cell type thought to secrete hydrocarbons. However, an intriguing difference was indicated; CYP4G17 occurs throughout the cell, as expected for a microsomal P450, but CYP4G16 localizes to the periphery of the cell and lies on the cytoplasmic side of the cell membrane, a unique position for a P450 enzyme. CYP4G16 and CYP4G17 were functionally expressed in insect cells. CYP4G16 produced hydrocarbons from a C18 aldehyde substrate and thus has bona fide decarbonylase activity similar to that of dmCYP4G1/2. The data support the hypothesis that the coevolution of multiple mechanisms, including cuticular barriers, has occurred in highly pyrethroid-resistant An. gambiae. PMID:27439866

  6. Investigation of drug-drug interactions caused by human pregnane X receptor-mediated induction of CYP3A4 and CYP2C subfamilies in chimeric mice with a humanized liver.

    PubMed

    Hasegawa, Maki; Tahara, Harunobu; Inoue, Ryo; Kakuni, Masakazu; Tateno, Chise; Ushiki, Junko

    2012-03-01

    The induction of cytochrome P450 (P450) enzymes is one of the risk factors for drug-drug interactions (DDIs). To date, the human pregnane X receptor (PXR)-mediated CYP3A4 induction has been well studied. In addition to CYP3A4, the expression of CYP2C subfamily is also regulated by PXR, and the DDIs caused by the induction of CYP2C enzymes have been reported to have a major clinical impact. The purpose of the present study was to investigate whether chimeric mice with a humanized liver (PXB mice) can be a suitable animal model for investigating the PXR-mediated induction of CYP2C subfamily, together with CYP3A4. We evaluated the inductive effect of rifampicin (RIF), a typical human PXR ligand, on the plasma exposure to the four P450 substrate drugs (triazolam/CYP3A4, pioglitazone/CYP2C8, (S)-warfarin/CYP2C9, and (S)-(-)-mephenytoin/CYP2C19) by cassette dosing in PXB mice. The induction of several drug-metabolizing enzymes and transporters in the liver was also examined by measuring the enzyme activity and mRNA expression levels. Significant reductions in the exposure to triazolam, pioglitazone, and (S)-(-)-mephenytoin, but not to (S)-warfarin, were observed. In contrast to the in vivo results, all the four P450 isoforms, including CYP2C9, were elevated by RIF treatment. The discrepancy in the (S)-warfarin results between in vivo and in vitro studies may be attributed to the relatively small contribution of CYP2C9 to (S)-warfarin elimination in the PXB mice used in this study. In summary, PXB mice are a useful animal model to examine DDIs caused by PXR-mediated induction of CYP2C and CYP3A4.

  7. The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling.

    PubMed

    Chandor-Proust, Alexia; Bibby, Jaclyn; Régent-Kloeckner, Myriam; Roux, Jessica; Guittard-Crilat, Emilie; Poupardin, Rodolphe; Riaz, Muhammad Asam; Paine, Mark; Dauphin-Villemant, Chantal; Reynaud, Stéphane; David, Jean-Philippe

    2013-10-01

    The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450-CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate-enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies.

  8. The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling

    PubMed Central

    Chandor-Proust, Alexia; Bibby, Jaclyn; Régent-Kloeckner, Myriam; Roux, Jessica; Guittard-Crilat, Emilie; Poupardin, Rodolphe; Riaz, Muhammad Asam; Paine, Mark; Dauphin-Villemant, Chantal; Reynaud, Stéphane; David, Jean-Philippe

    2013-01-01

    The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450–CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate–enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies. PMID:23844938

  9. Estimation of bisphenol A-Human toxicity by 3D cell culture arrays, high throughput alternatives to animal tests.

    PubMed

    Lee, Dong Woo; Oh, Woo-Yeon; Yi, Sang Hyun; Ku, Bosung; Lee, Moo-Yeal; Cho, Yoon Hee; Yang, Mihi

    2016-09-30

    Bisphenol A (BPA) has been widely used for manufacturing polycarbonate plastics and epoxy resins and has been extensively tested in animals to predict human toxicity. In order to reduce the use of animals for toxicity assessment and provide further accurate information on BPA toxicity in humans, we encapsulated Hep3B human hepatoma cells in alginate and cultured them in three dimensions (3D) on a micropillar chip coupled to a panel of metabolic enzymes on a microwell chip. As a result, we were able to assess the toxicity of BPA under various metabolic enzyme conditions using a high-throughput and micro assay; sample volumes were nearly 2,000 times less than that required for a 96-well plate. We applied a total of 28 different enzymes to each chip, including 10 cytochrome P450s (CYP450s), 10 UDP-glycosyltransferases (UGTs), 3 sulfotransferases (SULTs), alcohol dehydrogenase (ADH), and aldehyde dehydrogenase 2 (ALDH2). Phase I enzyme mixtures, phase II enzyme mixtures, and a combination of phase I and phase II enzymes were also applied to the chip. BPA toxicity was higher in samples containing CYP2E1 than controls, which contained no enzymes (IC50, 184±16μM and 270±25.8μM, respectively, p<0.01). However, BPA-induced toxicity was alleviated in the presence of ADH (IC50, 337±17.9μM), ALDH2 (335±13.9μM), and SULT1E1 (318±17.7μM) (p<0.05). CYP2E1-mediated cytotoxicity was confirmed by quantifying unmetabolized BPA using HPLC/FD. Therefore, we suggest the present micropillar/microwell chip platform as an effective alternative to animal testing for estimating BPA toxicity via human metabolic systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. [Effect of clinical doses of Realgar-Indigo Naturalis formula and large-dose of realgar on CYP450s of rat liver].

    PubMed

    Xu, Huan-Hua; Wang, Mei-Xi; Tan, Hong-Ling; Wang, Yu-Guang; Tang, Xiang-Lin; Xiao, Cheng-Rong; Li, Hua; Gao, Yue; Ma, Zeng-Chun

    2017-02-01

    To investigate the effect of clinical dose of Realgar-Indigo Naturais formula (RIF) and large-dose of Realgar on main drug-metabolizing enzymes CYP450s of rat liver, as well as its regulatory effect on mRNA expression. Wistar rats were administrated orally with tested drugs for 14 days. A Cocktail method combined with HPLC-MS/MS was used in the determination of 4 cytochrome P450 isozymes (CYP1A2, CYP2B, CYP3A and CYP2C) in liver of the rats, and the mRNA expression levels of the above subtypes were detected by real-time fluorescent quantitative PCR. The results showed that RIF can significantly induce CYP1A2 and CYP2B enzyme activity, and inhibit CYP3A enzyme activity. This result was consistent with the mRNA expression. However, its single compound showed weaker or even contrary phenomenon. Different doses of Realgar also showed significant inconsistencies on CYP450 enzymes activity and mRNA expression. These phenomena may be relevant with RIF compatibility synergies or toxicity reduction. The results can also prompt drug interactions when RIF is combined with other medicines in application. Copyright© by the Chinese Pharmaceutical Association.

  11. Ethylbenzene induces microsomal oxygen free radical generation: antibody-directed characterization of the responsible cytochrome P450 enzymes.

    PubMed

    Serron, S C; Dwivedi, N; Backes, W L

    2000-05-01

    Small aromatic hydrocarbons cause changes in oxidative metabolism by modulating the levels of cytochrome P450 enzymes, with the changes in these enzymes being responsible for qualitative changes in aromatic hydrocarbon metabolism. The goal of this study was to determine if exposure to the small alkylbenzene ethylbenzene (EB) leads to an increase in hepatic free radical production. Male F344 rats were treated with ip injections of EB (10 mmol/kg) and compared to corn oil controls. Hepatic free radical production was examined by measuring the conversion of 2',7'-dichlorofluorescin diacetate (DCFH-DA) to its fluorescent product 2',7'-dichlorofluorescein (DCF). A significant elevation of fluorescent DCF production was observed after treatment with EB, despite the lack of effect on overall cytochrome P450 levels. This process was shown to be inhibitable by metyrapone, an inhibitor of P450. DCF production was also inhibited by catalase, suggesting that hydrogen peroxide (H(2)O(2)) is one of the reactive oxygen intermediates involved in EB-mediated reactive oxygen species (ROS) formation. Interestingly, superoxide dismutase (SOD) did not inhibit DCF production in corn oil-treated rats but was an effective inhibitor in the EB-treated groups. In an effort to determine if the increase in ROS production was related to changes in specific P450 enzymes, DCF production was measured in the presence of anti-CYP2B, anti-CYP2C11, anti-CYP2E1, and anti-CYP3A2 inhibitory antibodies. Anti-CYP2B antibodies inhibited DCF production in EB-treated, but not corn oil groups, which is consistent with the low constitutive levels of this enzyme and its induction by EB. The data also demonstrate that CYP2B contributes to ROS production. Anti-CYP2C11 did not influence DCF production in either group. ROS formation in corn oil-treated rats as well as in ethylbenzene-treated rats was also inhibited with antibodies to anti-CYP2E1 and anti-CYP3A2. These results suggest that CYP2C11 does not appear to influence free radical production and that the increase in free radical production in EB treated rats is consistent with the EB-mediated elevation of CYP2B, CYP 2E1, and CYP3A2. Such alterations in free radical generation in response to hydrocarbon treatment may contribute to the toxicity of these compounds. Copyright 2000 Academic Press.

  12. Structural organization and classification of cytochrome P450 genes in flax (Linum usitatissimum L.).

    PubMed

    Babu, Peram Ravindra; Rao, Khareedu Venkateswara; Reddy, Vudem Dashavantha

    2013-01-15

    Flax CYPome analysis resulted in the identification of 334 putative cytochrome P450 (CYP450) genes in the cultivated flax genome. Classification of flax CYP450 genes based on the sequence similarity with Arabidopsis orthologs and CYP450 nomenclature, revealed 10 clans representing 44 families and 98 subfamilies. CYP80, CYP83, CYP92, CYP702, CYP705, CYP708, CYP728, CYP729, CYP733 and CYP736 families are absent in the flax genome. The subfamily members exhibited conserved sequences, length of exons and phasing of introns. Similarity search of the genomic resources of wild flax species Linum bienne with CYP450 coding sequences of the cultivated flax, revealed the presence of 127 CYP450 gene orthologs, indicating amplification of novel CYP450 genes in the cultivated flax. Seven families CYP73, 74, 75, 76, 77, 84 and 709, coding for enzymes associated with phenylpropanoid/fatty acid metabolism, showed extensive gene amplification in the flax. About 59% of the flax CYP450 genes were present in the EST libraries. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Environmentally persistent free radical-containing particulate matter competitively inhibits metabolism by cytochrome P450 1A2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, James R., E-mail: rreed@lsuhsc.edu; Cruz, Albert Leo N. dela, E-mail: adelac2@tigers.lsu.edu; Lomnicki, Slawo M., E-mail: slomni1@lsu.edu

    Combustion processes generate different types of particulate matter (PM) that can have deleterious effects on the pulmonary and cardiovascular systems. Environmentally persistent free radicals (EPFRs) represent a type of particulate matter that is generated after combustion of environmental wastes in the presence of redox-active metals and aromatic hydrocarbons. Cytochromes P450 (P450/CYP) are membrane-bound enzymes that are essential for the phase I metabolism of most lipophilic xenobiotics. The EPFR formed by chemisorption of 2-monochlorophenol to silica containing 5% copper oxide (MCP230) has been shown to generally inhibit the activities of different forms of P450s without affecting those of cytochrome P450 reductasemore » and heme oxygenase-1. The mechanism of inhibition of rat liver microsomal CYP2D2 and purified rabbit CYP2B4 by MCP230 has been shown previously to be noncompetitive with respect to substrate. In this study, MCP230 was shown to competitively inhibit metabolism of 7-benzyl-4-trifluoromethylcoumarin and 7-ethoxyresorufin by the purified, reconstituted rabbit CYP1A2. MCP230 is at least 5- and 50-fold more potent as an inhibitor of CYP1A2 than silica containing 5% copper oxide and silica, respectively. Thus, even though PM generally inhibit multiple forms of P450, PM interacts differently with the forms of P450 resulting in different mechanisms of inhibition. P450s function as oligomeric complexes within the membrane. We also determined the mechanism by which PM inhibited metabolism by the mixed CYP1A2–CYP2B4 complex and found that the mechanism was purely competitive suggesting that the CYP2B4 is dramatically inhibited when bound to CYP1A2. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • Particulate matter (PM) competitively inhibited CYP1A2 activity. • EPFRs were much more potent CYP1A2 inhibitors than other types of PM. • PM interacts differently with different forms of P450. • PM competitively inhibited metabolism by the mixed CYP1A2–CYP2B4 complex.« less

  14. Engineering strategies for the fermentative production of plant alkaloids in yeast.

    PubMed

    Trenchard, Isis J; Smolke, Christina D

    2015-07-01

    Microbial hosts engineered for the biosynthesis of plant natural products offer enormous potential as powerful discovery and production platforms. However, the reconstruction of these complex biosynthetic schemes faces numerous challenges due to the number of enzymatic steps and challenging enzyme classes associated with these pathways, which can lead to issues in metabolic load, pathway specificity, and maintaining flux to desired products. Cytochrome P450 enzymes are prevalent in plant specialized metabolism and are particularly difficult to express heterologously. Here, we describe the reconstruction of the sanguinarine branch of the benzylisoquinoline alkaloid pathway in Saccharomyces cerevisiae, resulting in microbial biosynthesis of protoberberine, protopine, and benzophenanthridine alkaloids through to the end-product sanguinarine, which we demonstrate can be efficiently produced in yeast in the absence of the associated biosynthetic enzyme. We achieved titers of 676 μg/L stylopine, 548 μg/L cis-N-methylstylopine, 252 μg/L protopine, and 80 μg/L sanguinarine from the engineered yeast strains. Through our optimization efforts, we describe genetic and culture strategies supporting the functional expression of multiple plant cytochrome P450 enzymes in the context of a large multi-step pathway. Our results also provided insight into relationships between cytochrome P450 activity and yeast ER physiology. We were able to improve the production of critical intermediates by 32-fold through genetic techniques and an additional 45-fold through culture optimization. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Biocatalytic Conversion of Avermectin to 4"-Oxo-Avermectin: Characterization of Biocatalytically Active Bacterial Strains and of Cytochrome P450 Monooxygenase Enzymes and Their Genes

    PubMed Central

    Jungmann, Volker; Molnár, István; Hammer, Philip E.; Hill, D. Steven; Zirkle, Ross; Buckel, Thomas G.; Buckel, Dagmar; Ligon, James M.; Pachlatko, J. Paul

    2005-01-01

    4"-Oxo-avermectin is a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate from the natural product avermectin. Seventeen biocatalytically active Streptomyces strains with the ability to oxidize avermectin to 4"-oxo-avermectin in a regioselective manner have been discovered in a screen of 3,334 microorganisms. The enzymes responsible for this oxidation reaction in these biocatalytically active strains were found to be cytochrome P450 monooxygenases (CYPs) and were termed Ema1 to Ema17. The genes for Ema1 to Ema17 have been cloned, sequenced, and compared to reveal a new subfamily of CYPs. Ema1 to Ema16 have been overexpressed in Escherichia coli and purified as His-tagged recombinant proteins, and their basic enzyme kinetic parameters have been determined. PMID:16269732

  16. The nature of chemical innovation: new enzymes by evolution.

    PubMed

    Arnold, Frances H

    2015-11-01

    I describe how we direct the evolution of non-natural enzyme activities, using chemical intuition and information on structure and mechanism to guide us to the most promising reaction/enzyme systems. With synthetic reagents to generate new reactive intermediates and just a few amino acid substitutions to tune the active site, a cytochrome P450 can catalyze a variety of carbene and nitrene transfer reactions. The cyclopropanation, N-H insertion, C-H amination, sulfimidation, and aziridination reactions now demonstrated are all well known in chemical catalysis but have no counterparts in nature. The new enzymes are fully genetically encoded, assemble and function inside of cells, and can be optimized for different substrates, activities, and selectivities. We are learning how to use nature's innovation mechanisms to marry some of the synthetic chemists' favorite transformations with the exquisite selectivity and tunability of enzymes.

  17. Dominant role of cytochrome P-450 2E1 in human hepatic microsomal oxidation of the CFC-substitute 1,1,1,2-tetrafluoroethane.

    PubMed

    Surbrook, S E; Olson, M J

    1992-01-01

    The chlorofluorocarbon substitute 1,1,1,2-tetrafluoroethane (HFC-134a) is subject to metabolism by cytochrome P-450 in hepatic microsomes from rat, rabbit, and human. In rat and rabbit, the P-450 form 2E1 is a predominant low-KM, high-rate catalyst of HFC-134a biotransformation and is prominently involved in the metabolism of other tetrahaloalkanes of greater toxicity than HFC-134a [e.g. 1,2-dichloro-1,1-difluoroethane (HCFC-132b)]. In this study, we determined that the human ortholog of P-450 2E1 plays a role of similar importance in the metabolism of HFC-134a. In human hepatic microsomes from 12 individuals, preparations from subjects with relatively high P-450 2E1 levels were shown to metabolize HFC-134a at rates 5- to 10-fold greater than microsomes of individuals with lower levels of this enzyme; the increased rate of metabolism of HFC-134a was specifically linked to increased expression of P-450 2E1. The primary evidence for this conclusion is drawn from studies using mechanism-based inactivation of P-450 2E1 by diethyldithiocarbamate, competitive inhibition of HFC-134a oxidation by p-nitrophenol (a high-affinity substrate for P-450 2E1), strong positive correlation of rates of HFC-134a defluorination with p-nitrophenol hydroxylation in the study population, and correlation of P-450 2E1 levels with rates of halocarbon oxidation. Thus, our findings support the conclusion that human metabolism of HFC-134a is qualitatively similar to that of the species (rat and rabbit) used for toxicological assessment of this halocarbon.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Trapping of cis-2-butene-1,4-dial to measure furan metabolism in human liver microsomes by cytochrome P450 enzymes.

    PubMed

    Gates, Leah A; Lu, Ding; Peterson, Lisa A

    2012-03-01

    Furan is a liver toxicant and carcinogen in rodents. It is classified as a possible human carcinogen, but the human health effects of furan exposure remain unknown. The oxidation of furan by cytochrome P450 (P450) enzymes is necessary for furan toxicity. The product of this reaction is the reactive α,β-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA). To determine whether human liver microsomes metabolize furan to BDA, a liquid chromatography/tandem mass spectrometry method was developed to detect and quantify BDA by trapping this reactive metabolite with N-acetyl-l-cysteine (NAC) and N-acetyl-l-lysine (NAL). Reaction of NAC and NAL with BDA generates N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-l-cysteine (NAC-BDA-NAL). Formation of NAC-BDA-NAL was quantified in 21 different human liver microsomal preparations. The levels of metabolism were comparable to that observed in F-344 rat and B6C3F1 mouse liver microsomes, two species known to be sensitive to furan-induced toxicity. Studies with recombinant human liver P450s indicated that CYP2E1 is the most active human liver furan oxidase. The activity of CYP2E1 as measured by p-nitrophenol hydroxylase activity was correlated to the extent of NAC-BDA-NAL formation in human liver microsomes. The formation of NAC-BDA-NAL was blocked by CYP2E1 inhibitors but not other P450 inhibitors. These results suggest that humans are capable of oxidizing furan to its toxic metabolite, BDA, at rates comparable to those of species sensitive to furan exposure. Therefore, humans may be susceptible to furan's toxic effects.

  19. Trapping of cis-2-Butene-1,4-dial to Measure Furan Metabolism in Human Liver Microsomes by Cytochrome P450 Enzymes

    PubMed Central

    Gates, Leah A.; Lu, Ding

    2012-01-01

    Furan is a liver toxicant and carcinogen in rodents. It is classified as a possible human carcinogen, but the human health effects of furan exposure remain unknown. The oxidation of furan by cytochrome P450 (P450) enzymes is necessary for furan toxicity. The product of this reaction is the reactive α,β-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA). To determine whether human liver microsomes metabolize furan to BDA, a liquid chromatography/tandem mass spectrometry method was developed to detect and quantify BDA by trapping this reactive metabolite with N-acetyl-l-cysteine (NAC) and N-acetyl-l-lysine (NAL). Reaction of NAC and NAL with BDA generates N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-l-cysteine (NAC-BDA-NAL). Formation of NAC-BDA-NAL was quantified in 21 different human liver microsomal preparations. The levels of metabolism were comparable to that observed in F-344 rat and B6C3F1 mouse liver microsomes, two species known to be sensitive to furan-induced toxicity. Studies with recombinant human liver P450s indicated that CYP2E1 is the most active human liver furan oxidase. The activity of CYP2E1 as measured by p-nitrophenol hydroxylase activity was correlated to the extent of NAC-BDA-NAL formation in human liver microsomes. The formation of NAC-BDA-NAL was blocked by CYP2E1 inhibitors but not other P450 inhibitors. These results suggest that humans are capable of oxidizing furan to its toxic metabolite, BDA, at rates comparable to those of species sensitive to furan exposure. Therefore, humans may be susceptible to furan's toxic effects. PMID:22187484

  20. Effects of pharmaceuticals present in aquatic environment on Phase I metabolism in fish.

    PubMed

    Burkina, Viktoriia; Zlabek, Vladimir; Zamaratskaia, Galia

    2015-09-01

    The fate of pharmaceuticals in aquatic environments is an issue of concern. Current evidence indicates that the risks to fish greatly depend on the nature and concentrations of the pharmaceuticals and might be species-specific. Assessment of risks associated with the presence of pharmaceuticals in water is hindered by an incomplete understanding of the metabolism of these pharmaceuticals in aquatic species. In mammals and fish, pharmaceuticals are primarily metabolized by cytochrome P450 enzymes (CYP450). Thus, CYP450 activity is a crucial factor determining the detoxification abilities of organisms. Massive numbers of toxicological studies have investigated the interactions of human pharmaceuticals with detoxification systems in various fish species. In this paper, we review the effects of pharmaceuticals found in aquatic environments on fish hepatic CYP450. Moreover, we discuss the roles of nuclear receptors in cellular regulation and the effects of various groups of chemicals on fish, presented in the recent literature. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. VARIANCE OF MICROSOMAL PROTEIN AND CYTOCHROME P450 2E1 AND 3A FORMS IN ADULT HUMAN LIVER

    EPA Science Inventory

    Differences in the pharmacokinetics of xenobiotics among humans makes them differentially susceptible to risk. Differences in enzyme content can mediate pharmacokinetic differences. Microsomal protein is often isolated fromliver to characterize enzyme content and activity, but no...

  2. Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks

    NASA Astrophysics Data System (ADS)

    Bayburt, Timothy H.; Sligar, Stephen G.

    2002-05-01

    The architecture of membrane proteins in their native environment of the phospholipid bilayer is critical for understanding physiological function, but has been difficult to realize experimentally. In this communication we describe the incorporation of a membrane-anchored protein into a supported phospholipid bilayer. Cytochrome P450 2B4 solubilized and purified from the hepatic endoplasmic reticulum was incorporated into phospholipid bilayer nanostructures and oriented on a surface for visualization by atomic force microscopy. Individual P450 molecules were observed protruding from the bilayer surface. Problems associated with deformation of the protein by the atomic force microscopy probe were avoided by analyzing force-dependent height measurements to quantitate the height of the protein above the bilayer surface. Measurements of the atomic force microscopy cantilever deflection as a function of probe-sample separation reveal that the top of the P450 opposite the N-terminal membrane anchor region sits 3.5 nanometers above the phospholipid-water boundary. Models of the orientation of the enzyme are presented and discussed in relation to membrane interactions and interaction with cytochrome P450 reductase.

  3. The Chemically Inducible Plant Cytochrome P450 CYP76B1 Actively Metabolizes Phenylureas and Other Xenobiotics1

    PubMed Central

    Robineau, Tiburce; Batard, Yannick; Nedelkina, Svetlana; Cabello-Hurtado, Francisco; LeRet, Monique; Sorokine, Odile; Didierjean, Luc; Werck-Reichhart, Danièle

    1998-01-01

    Cytochrome P450s (P450s) constitute one of the major classes of enzymes that are responsible for detoxification of exogenous molecules both in animals and plants. On the basis of its inducibility by exogenous chemicals, we recently isolated a new plant P450, CYP76B1, from Jerusalem artichoke (Helianthus tuberosus) and showed that it was capable of dealkylating a model xenobiotic compound, 7-ethoxycoumarin. In the present paper we show that CYP76B1 is more strongly induced by foreign compounds than other P450s isolated from the same plant, and metabolizes with high efficiency a wide range of xenobiotics, including alkoxycoumarins, alkoxyresorufins, and several herbicides of the class of phenylureas. CYP76B1 catalyzes the double N-dealkylation of phenylureas with turnover rates comparable to those reported for physiological substrates and produces nonphytotoxic compounds. Potential uses for CYP76B1 thus include control of herbicide tolerance and selectivity, as well as soil and groundwater bioremediation. PMID:9808750

  4. 2,2',3,3',6,6'-Hexachlorobiphenyl (PCB 136) is Enantioselectively Oxidized to Hydroxylated Metabolites by Rat Liver Microsomes

    PubMed Central

    Wu, Xianai; Pramanik, Ananya; Duffel, Michael W.; Hrycay, Eugene G.; Bandiera, Stelvio M.; Lehmler, Hans-Joachim; Kania-Korwel, Izabela

    2011-01-01

    Developmental exposure to multiple-ortho substituted polychlorinated biphenyls (PCBs) causes adverse neurodevelopmental outcomes in laboratory animals and humans by mechanisms involving the sensitization of Ryanodine receptors (RyRs). In the case of PCB 136, the sensitization of RyR is enantiospecific, with only (-)-PCB 136 being active. However, the role of enantioselective metabolism in the developmental neurotoxicity of PCB 136 is poorly understood. The present study employed hepatic microsomes from phenobarbital (PB-), dexamethasone (DEX-) and corn oil (VEH-)treated male Sprague-Dawley rats to investigate the hypothesis that PCB 136 atropisomers are enantioselectively metabolized by P450 enzymes to potentially neurotoxic, hydroxylated PCB 136 metabolites. The results demonstrated the time- and isoform-dependent formation of three metabolites, with 5-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-5-ol) being the major metabolite. The formation of 5-OH-PCB 136 increased with the activity of P450 2B enzymes in the microsomal preparation, which is consistent with PCB 136 metabolism by rat P450 2B1. The minor metabolite 4-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-4-ol) was produced by a currently unidentified P450 enzymes. An enantiomeric enrichment of (-)-PCB 136 was observed in microsomal incubations due to the preferential metabolism of (+)-PCB 136 to the corresponding 5-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-5-ol) atropisomer. 4-OH-PCB 136 displayed an enrichment of the atropisomer formed from (-)-PCB 136; however, the enrichment of this metabolite atropisomer didn't affect the enantiomeric enrichment of the parent PCB because 4-OH-PCB 136 is only a minor metabolite. Although the formation of 5- and 4-OH-PCB 136 atropisomers increased with time, the enantioselective formation of the OH-PCB metabolites resulted in constant enantiomeric enrichment, especially at later incubation times. These observations not only demonstrate that the chiral signatures of PCBs and their metabolites in wildlife and humans are due to metabolism by P450 enzymes, but also suggest that the enantioselective formation of neurotoxic PCB 136 metabolites, such as 4-OH-PCB 136, may play a role in the developmental neurotoxicity of PCBs. PMID:22026639

  5. The inactivation of human CYP2E1 by phenethyl isothiocyanate, a naturally occurring chemopreventive agent, and its oxidative bioactivation.

    PubMed

    Yoshigae, Yasushi; Sridar, Chitra; Kent, Ute M; Hollenberg, Paul F

    2013-04-01

    Phenethylisothiocyanate (PEITC), a naturally occurring isothiocyanate and potent cancer chemopreventive agent, works by multiple mechanisms, including the inhibition of cytochrome P450 (P450) enzymes, such as CYP2E1, that are involved in the bioactivation of carcinogens. PEITC has been reported to be a mechanism-based inactivator of some P450s. We describe here the possible mechanism for the inactivation of human CYP2E1 by PEITC, as well as the putative intermediate that might be involved in the bioactivation of PEITC. PEITC inactivated recombinant CYP2E1 with a partition ratio of 12, and the inactivation was not inhibited in the presence of glutathione (GSH) and not fully recovered by dialysis. The inactivation of CYP2E1 by PEITC is due to both heme destruction and protein modification, with the latter being the major pathway for inactivation. GSH-adducts of phenethyl isocyanate (PIC) and phenethylamine were detected during the metabolism by CYP2E1, indicating formation of PIC as a reactive intermediate following P450-catalyzed desulfurization of PEITC. Surprisingly, PIC bound covalently to CYP2E1 to form protein adducts but did not inactivate the enzyme. Liquid chromatography mass spectroscopy analysis of the inactivated CYP2E1 apo-protein suggests that a reactive sulfur atom generated during desulfurization of PEITC is involved in the inactivation of CYP2E1. Our data suggest that the metabolism of PEITC by CYP2E1 that results in the inactivation of CYP2E1 may occur by a mechanism similar to that observed with other sulfur-containing compounds, such as parathion. Digestion of the inactivated enzyme and analysis by SEQUEST showed that Cys 268 may be the residue modified by PIC.

  6. Effect of estradiol on apoptosis, proliferation and steroidogenic enzymes in the testes of the toad Rhinella arenarum (Amphibia, Anura).

    PubMed

    Scaia, María Florencia; Volonteri, María Clara; Czuchlej, Silvia Cristina; Ceballos, Nora Raquel

    2015-09-15

    Estrogens inhibit androgen production and this negative action on amphibian steroidogenesis could be related to the regulation of steroidogenic enzymes. Estrogens are also involved in the regulation of amphibian spermatogenesis by controlling testicular apoptosis and spermatogonial proliferation. The Bidder's organ (BO) is a structure characteristic from the Bufonidae family and in adult males of Rhinella arenarum it is one of the main sources of plasma estradiol (E2). The purpose of this study is to analyze the effect of E2 on testicular steroidogenic enzymes, apoptosis and proliferation in the toad R. arenarum. For this purpose, testicular fragments were treated during 24h with or without 2 or 20nM of E2. After treatments, the activities of cytochrome P450 17α-hydroxylase-C17-20 lyase (CypP450c17) and 3β-hydroxysteroid dehydrogenase/isomerase (3β-HSD/I) were measured by the transformation of radioactive substrates into products, and CypP450c17 expression was determined by Western blot analysis. Apoptosis in testicular sections was detected with a commercial fluorescent kit based on TUNEL method, and proliferation was evaluated by BrdU incorporation. Results indicate that E2 has no effect on CypP450c17 protein levels or enzymatic activity, while it reduces 3β-HSD/I activity during the post reproductive season. Furthermore, although E2 has no effect on apoptosis during the pre and the post reproductive seasons, it stimulates testicular apoptosis during the reproductive season, mostly in spermatocytes. Finally, E2 has no effect on testicular proliferation all year long. Taken together, these results suggest that E2 is involved in the regulation of testicular steroidogenesis and spermatogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Relationship between hydrocarbon structure and induction of P450: effects on protein levels and enzyme activities.

    PubMed

    Backes, W L; Sequeira, D J; Cawley, G F; Eyer, C S

    1993-12-01

    1. Treatment of male rat with the small aromatic hydrocarbons, benzene, toluene, ethylbenzene, n-propylbenzene, m-xylene, and p-xylene increased several P450-dependent activities, with ethylbenzene, m-xylene, and n-propylbenzene producing the greatest response. Hydrocarbon treatment differentially affected toluene metabolism, producing a response dependent on the metabolite monitored. In untreated rats, benzyl alcohol was the major hydroxylation product of toluene metabolism, comprising > 99% of the total metabolites formed. Hydrocarbon treatment increased the overall rate of toluene metabolism by dramatically increasing the amount of aromatic hydroxylation. Ethylbenzene, n-propylbenzene and m-xylene were the most effective inducers of aromatic hydroxylation of toluene. In contrast, production of the major toluene metabolite benzyl alcohol was increased only after treatment with m-xylene. 2. P450 2B1/2B2 levels were induced by each of the hydrocarbons examined, with the magnitude of induction increasing with increasing hydrocarbon size. P450 1A1 was also induced after hydrocarbon exposure; however, the degree of induction was smaller than that observed for P450 2B1/2B2. P450 2C11 levels were suppressed after treatment with benzene, ethylbenzene and n-propylbenzene. 3. Taken together these results display two induction patterns. The first generally corresponds to changes in the P450 2B subfamily, where activities (e.g. the aromatic hydroxylations of toluene) were most effectively induced by ethylbenzene, n-propylbenzene and m-xylene. In the second, induction was observed only after m-xylene treatment, a pattern that was found when the metabolism of the substrate was catalysed by both the P450 2B subfamily and P450 2C11. Hydrocarbons that both induced P450 2B1/2B2 and suppressed P450 2C11 (such as ethylbenzene and n-propylbenzene) showed little change in activities catalysed by both isozymes (e.g. aliphatic hydroxylation of toluene, and aniline hydroxylation); however, m-xylene treatment led to elevated P450 2B1/2B2 levels without significantly suppressing P450 2C11. m-Xylene produced significant increases in activities efficiently catalysed by both isozymes. Therefore, the unique induction pattern observed after m-xylene treatment can be accounted for by induction of P450 2B1/2B2 without concomitant suppression of P450 2C11.

  8. Stimulation of estradiol biosynthesis by tributyltin in rat hippocampal slices.

    PubMed

    Munetsuna, Eiji; Hattori, Minoru; Yamazaki, Takeshi

    2014-01-01

    Hippocampal functions are influenced by steroid hormones, such as testosterone and estradiol. It has been demonstrated that hippocampus-derived steroid hormones play important roles in neuronal protection and synapse formation. Our research groups have demonstrated that estradiol is de novo synthesized in the rat hippocampus. However, the mechanism(s) regulating this synthesis remains unclear. It has been reported that tributyltin, an environmental pollutant, binds to the retinoid X receptor (RXR) and modifies estrogen synthesis in human granulosa-like tumor cells. This compound can penetrate the blood brain barrier, and tends to accumulate in the brain. Based on these facts, we hypothesized that tributyltin could influence the hippocampal estradiol synthesis. A concentration of 0.1 μM tributyltin induced an increase in the mRNA content of P450(17α) and P450arom in hippocampal slices, as determined using real-time PCR. The transcript levels of other steroidogenic enzymes and a steroidogenic acute regulatory protein were not affected. The estradiol level in rat hippocampal slices was subsequently determined using a radioimmunoassay. We found that the estradiol synthesis was stimulated by ∼2-fold following a 48-h treatment with 0.1 μM tributyltin, and this was accompanied by transcriptional activation of P450(17α) and P450arom. Tributyltin stimulated de novo hippocampal estradiol synthesis by modifying the transcription of specific steroidogenic enzymes.

  9. Effects of salinity acclimation on the expression and activity of Phase I enzymes (CYP450 and FMOs) in coho salmon (Oncorhynchus kisutch)

    PubMed Central

    Lavado, Ramon; Aparicio-Fabre, Rosaura; Schlenk, Daniel

    2013-01-01

    Phase I biotransformation enzymes are critically important in the disposition of xenobiotics within biota and are regulated by multiple environmental cues, particularly in anadromous fish species. Given the importance of these enzyme systems in xenobiotic/endogenous chemical bioactivation and detoxification, the current study was designed to better characterize the expression of Phase I biotransformation enzymes in coho salmon (Oncorhynchus kisutch) and the effects of salinity acclimation on those enzymes. Livers, gills and olfactory tissues were collected from coho salmon (Oncorhynchus kisutch) after they had undergone acclimation from freshwater to various salinity regimes of seawater (8, 16 and 32 g/L). Using immunoblot techniques coupled with testosterone hydroxylase catalytic activities, 4 orthologs of cytochrome P450 (CYP1A, CYP2K1, CYP2M1 and CYP3A27) were measured in each tissue. Also the expression of 2 transcripts of flavin-containing monooxygenases (FMO A and B) and associated activities were measured. With the exception of CYP1A, which was down-regulated in liver, protein expression of the other 3 enzymes was induced at higher salinity, with the greatest increase observed in CYP2M1 from olfactory tissues. In liver and gills, 6 - and 16 -hydroxylation of testosterone was also significantly increased after hypersaline acclimation. Similarly, FMO A was up-regulated in all 3 tissues in a salinity-dependent pattern, whereas FMO B mRNA was down-regulated. FMO-catalyzed benzydamine N-oxygenase and methyl p-tolyl sulfoxidation were significantly induced in liver and gills by hypersalinity, but was either unchanged or not detected in olfactory tissues. These data demonstrate thatenvironmental conditions may significantly alter the toxicity of environmental chemicals in salmon during freshwater/saltwater acclimation. PMID:23925894

  10. Differentiation of monkey embryonic stem cells to hepatocytes by feeder-free dispersion culture and expression analyses of cytochrome p450 enzymes responsible for drug metabolism.

    PubMed

    Maruyama, Junya; Matsunaga, Tamihide; Yamaori, Satoshi; Sakamoto, Sakae; Kamada, Noboru; Nakamura, Katsunori; Kikuchi, Shinji; Ohmori, Shigeru

    2013-01-01

    We reported previously that monkey embryonic stem cells (ESCs) were differentiated into hepatocytes by formation of embryoid bodies (EBs). However, this EB formation method is not always efficient for assays using a large number of samples simultaneously. A dispersion culture system, one of the differentiation methods without EB formation, is able to more efficiently provide a large number of feeder-free undifferentiated cells. A previous study demonstrated the effectiveness of the Rho-associated kinase inhibitor Y-27632 for feeder-free dispersion culture and induction of differentiation of monkey ESCs into neural cells. In the present study, the induction of differentiation of cynomolgus monkey ESCs (cmESCs) into hepatocytes was performed by the dispersion culture method, and the expression and drug inducibility of cytochrome P450 (CYP) enzymes in these hepatocytes were examined. The cmESCs were successfully differentiated into hepatocytes under feeder-free dispersion culture conditions supplemented with Y-27632. The hepatocytes differentiated from cmESCs expressed the mRNAs for three hepatocyte marker genes (α-fetoprotein, albumin, CYP7A1) and several CYP enzymes, as measured by real-time polymerase chain reaction. In particular, the basal expression of cmCYP3A4 (3A8) in these hepatocytes was detected at mRNA and enzyme activity (testosterone 6β-hydroxylation) levels. Furthermore, the expression and activity of cmCYP3A4 (3A8) were significantly upregulated by rifampicin. These results indicated the effectiveness of Y-27632 supplementation for feeder-free dispersed culture and induction of differentiation into hepatocytes, and the expression of functional CYP enzyme(s) in cmESC-derived hepatic cells.

  11. Clinical Confirmation that the Selective JAK1 Inhibitor Filgotinib (GLPG0634) has a Low Liability for Drug-drug Interactions.

    PubMed

    Namour, Florence; Desrivot, Julie; Van der Aa, Annegret; Harrison, Pille; Tasset, Chantal; van't Klooster, Gerben

    2016-01-01

    The selective Janus kinase 1 inhibitor filgotinib (GLPG0634), which is currently in clinical development for the treatment of rheumatoid arthritis (RA) and Crohn's disease, demonstrated encouraging safety and efficacy profiles in RA patients after 4 weeks of daily dosing. As RA patients might be treated with multiple medications simultaneously, possible drug-drug interactions of filgotinib with cytochrome P450 enzymes and with key drug transporters were evaluated in vitro and in clinical studies. The enzymes involved in filgotinib's metabolism and the potential interactions of the parent and its active major metabolite with drug-metabolizing enzymes and drug transporters, were identified using recombinant enzymes, human microsomes, and cell systems. Furthermore, filgotinib's interaction potential with CYP3A4 was examined in an open-label study in healthy volunteers, which evaluated the impact of filgotinib co-administration on the CYP3A4-sensitive substrate midazolam. The potential interaction with the common RA drug methotrexate was investigated in a clinical study in RA patients. In vitro, filgotinib and its active metabolite at clinically relevant concentrations did not interact with cytochrome P450 enzymes and uridine 5'-diphospho-glucuronosyltransferases, and did not inhibit key drug transporters. In the clinic, a lack of relevant pharmacokinetic drug interactions by filgotinib and its active metabolite with substrates of CYP3A4, as well as with organic anion transporters involved in methotrexate elimination were found. the collective in vivo and in vitro data on drug-metabolizing enzymes and on key drug transporters, support co-administration of filgotinib with commonly used RA drugs to patients without the need for dose adjustments.

  12. Enhancement of Vitamin D Action in Prostate Cancer through Silencing of CYP24

    DTIC Science & Technology

    2011-02-01

    suppressed the expression of CYP24, indicating that R1881 at physiological concentration protects Vitamin D3 from catabolism. In androgen-independent...other P450 enzymes, including the enzymes involved in the steroidogenic pathways for testosterone, cortisol and aldosterone biosynthesis and may lead

  13. Ecdysteroid biosynthesis in varroa mites: identification of halloween genes from the biosynthetic pathway and their regulation during reproduction

    USDA-ARS?s Scientific Manuscript database

    Biosynthesis of ecdysteroids involves sequential enzymatic hydroxylations by microsomal enzymes and mitochondrial cytochrome P450’s. Enzymes of the pathway are collectively known as Halloween genes. Complete sequences for three Halloween genes, spook (Vdspo), disembodied (Vddib) and shade (Vdshd), w...

  14. An improved microphotometry system for measurement of cytochrome P-450 in hepatocyte cytoplasm.

    PubMed

    Watanabe, J; Kanamura, S

    1991-05-01

    To measure cytochrome P-450 (P-450) content in hepatocyte cytoplasm, we developed a dual monochromator-equipped microphotometry system (KWSP-1). Simultaneous measurements of absorbance at 450 and 490 nm with narrow band width (0.5 nm) and small spot size (2 microns) were accomplished by this system. Corresponding fields in serial sections could be easily and rapidly identified under the Nomarski imaging mode of KWSP-1. Photometric accuracy and repeatability of wavelength setting of KWSP-1 were also satisfactory for measurement of P-450. With this system, it is thus possible to measure the extinction of P-450 from many small measuring areas and to precisely determine P-450 content in the cytoplasm of rat hepatocytes. A microphotometric method was developed using cuvette slides and two serial 10-microns thick sections (mapping method). The intracellular distribution of P-450 in individual hepatocytes could be visualized by the mapping method with KWSP-1. However, this method was not applicable to tissue sections containing hemoglobin larger than 4 microM.

  15. Molecular cloning and functional characterization of NADPH-dependent cytochrome P450 reductase from the green microalga Botryococcus braunii, B race.

    PubMed

    Tsou, Chung-Yau; Matsunaga, Shigeki; Okada, Shigeru

    2018-01-01

    The green microalga Botryococcus braunii of the B race accumulates various lipophilic compounds containing a 10,11-oxidosqualene epoxide moiety in addition to large amounts of triterpene hydrocarbons. While 2,3-squalene epoxidases have already been isolated and characterized from the alga, the enzyme that catalyzes the 10,11-epoxidation of squalene has remained elusive. In order to obtain a molecular tool to explore a 10,11-squalene epoxidase, cDNA cloning of an NADPH-dependent cytochrome P450 reductase (CPR) that is required by both squalene epoxidases and cytochrome P450 enzymes was carried out. The isolated cDNA contained an open reading frame (1998 bp) that encoded for a protein with 665 amino acid residues with a predicted molecular weight of 71.46 kDa and a theoretical pI of 5.49. Analysis of the deduced amino acid sequence revealed the presence of conserved motifs, including FMN, FAD, and NADPH binding domains, which are typical of other CPRs and necessary for enzyme activity. By truncation of the N-terminal transmembrane anchor and addition of a 6× His-tag, BbCPR was heterologously produced in Escherichia coli and purified by Ni-NTA affinity chromatography. The purified recombinant enzyme showed optimal reducing activity of cytochrome c at around a neutral pH at a temperature range of 30-37°C. For steady state kinetic parameters, the recombinant enzyme had a k m for cytochrome c and NADPH of 11.7±1.6 and 9.4±1.4 μM, and a k cat for cytochrome c and NADPH of 2.78±0.09 and 3.66±0.11 μmol/min/mg protein, respectively. This is the first study to perform the functional characterization of a CPR from eukaryotic microalgae. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Chemopreventive effects of Cuminum cyminum in chemically induced forestomach and uterine cervix tumors in murine model systems.

    PubMed

    Gagandeep; Dhanalakshmi, Sivanandhan; Méndiz, Ester; Rao, Agra Ramesha; Kale, Raosaheb Kathalupant

    2003-01-01

    Lately, a strong correlation has been established between diet and cancer. For ages, cumin has been a part of the diet. It is a popular spice regularly used as a flavoring agent in a number of ethnic cousins. In the present study, cancer chemopreventive potentials of different doses of a cumin seed-mixed diet were evaluated against benzo(a)pyrene [B(a)P]-induced forestomach tumorigenesis and 3-methylcholanthrene (MCA)-induced uterine cervix tumorigenesis. Results showed a significant inhibition of stomach tumor burden (tumors per mouse) by cumin. Tumor burden was 7.33 +/- 2.10 in the B(a)P-treated control group, whereas it reduced to 3.10 +/- 0.57 (P < 0.001) by a 2.5% dose and 3.11 +/- 0.60 (P <0.001) by a 5% dose of cumin seeds. Cervical carcinoma incidence, compared with the MCA-treated control group (66.67%), reduced to 27.27% (P < 0.05) by a diet of 5% cumin seeds and to 12.50% (P < 0.05) by a diet of 7.5% cumin seeds. The effect of 2.5 and 5% cumin seed-mixed diets was also examined on carcinogen/xenobiotic metabolizing phase I and phase II enzymes, antioxidant enzymes, glutathione content, lactate dehydrogenase (LDH), and lipid peroxidation in the liver of Swiss albino mice. Levels of cytochrome P-450 (cyt P-450) and cytochrome b5 (cyt b(5)) were significantly augmented (P < 0.05) by the 2.5% dose of cumin seed diet. The levels of cyt P-450 reductase and cyt b(5) reductase were increased (significance level being from P < 0.05 to P < 0.01) by both doses of cumin. Among the phase II enzymes, glutathione S-transferase specific activity increased (P < 0.005) by the 5% dose, whereas that of DT-diaphorase increased significantly (P < 0.05) by both doses used (2.5 and 5%). In the antioxidant system, significant elevation of the specific activities of superoxide dismutase (P < 0.01) and catalase (P < 0.05) was observed with the 5% dose of cumin. The activities of glutathione peroxidase and glutathione reductase remained unaltered by both doses of cumin. The level of reduced glutathione measured as nonprotein sulfhydryl content was elevated (significance level being from P < 0.05 to P < 0.01) by both doses of cumin. Lipid peroxidation measured as formation of MDA production showed significant inhibition (P < 0.05 to P < 0.01) by both doses of cumin. LDH activity remained unaltered by both doses of cumin. The results strongly suggest the cancer chemopreventive potentials of cumin seed and could be attributed to its ability to modulate carcinogen metabolism.

  17. NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) and cytochrome P450 oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells.

    PubMed

    Gray, Joshua P; Karandrea, Shpetim; Burgos, Delaine Zayasbazan; Jaiswal, Anil A; Heart, Emma A

    2016-11-16

    NQO1 (NAD(P)H-quinone oxidoreductase 1) reduces quinones and xenobiotics to less-reactive compounds via 2-electron reduction, one feature responsible for the role of NQO1 in antioxidant defense in several tissues. In contrast, NADPH cytochrome P450 oxidoreductase (CYP450OR), catalyzes the 1-electron reduction of quinones and xenobiotics, resulting in enhanced superoxide formation. However, to date, the roles of NQO1 and CYP450OR in pancreatic β-cell metabolism under basal conditions and oxidant challenge have not been characterized. Using NQO1 inhibition, over-expression and knock out, we have demonstrated that, in addition to protection of β-cells from toxic concentrations of the redox cycling quinone menadione, NQO1 also regulates the basal level of reduced-to-oxidized nucleotides, suggesting other role(s) beside that of an antioxidant enzyme. In contrast, over-expression of NADPH cytochrome P450 oxidoreductase (CYP450OR) resulted in enhanced redox cycling activity and decreased cellular viability, consistent with the enhanced generation of superoxide and H 2 O 2 . Basal expression of NQO1 and CYP450OR was comparable in isolated islets and liver. However, NQO1, but not CYP450OR, was strongly induced in β-cells exposed to menadione. NQO1 and CYP450OR exhibited a reciprocal preference for reducing equivalents in β-cells: while CYP450OR preferentially utilized NADPH, NQO1 primarily utilized NADH. Together, these results demonstrate that NQO1 and CYP450OR reciprocally regulate oxidant metabolism in pancreatic β-cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. NAD(P)H-dependent Quinone Oxidoreductase 1 (NQO1) and Cytochrome P450 Oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells

    PubMed Central

    Gray, Joshua P.; Karandrea, Shpetim; Burgos, Delaine Zayasbazan; Jaiswal, Anil A; Heart, Emma A.

    2017-01-01

    NQO1 (NAD(P)H-quinone oxidoreductase 1) reduces quinones and xenobiotics to less-reactive compounds via 2-electron reduction, one feature responsible for the role of NQO1 in antioxidant defense in several tissues. In contrast, NADPH cytochrome P450 oxidoreductase (CYP450OR), catalyzes the 1-electron reduction of quinones and xenobiotics, resulting in enhanced superoxide formation. However, to date, the roles of NQO1 and CYP450OR in pancreatic β-cell metabolism under basal conditions and oxidant challenge have not been characterized. Using NQO1 inhibition, over-expression and knock out, we have demonstrated that, in addition to protection of β-cells from toxic concentrations of the redox cycling quinone menadione, NQO1 also regulates the basal level of reduced-to-oxidized nucleotides, suggesting other role(s) beside that of an antioxidant enzyme. In contrast, over-expression of NADPH cytochrome P450 oxidoreductase (CYP450OR) resulted in enhanced redox cycling activity and decreased cellular viability, consistent with the enhanced generation of superoxide and H2O2. Basal expression of NQO1 and CYP450OR was comparable in isolated islets and liver. However, NQO1, but not CYP450OR, was strongly induced in β-cells exposed to menadione. NQO1 and CYP450OR exhibited a reciprocal preference for reducing equivalents in β-cells: while CYP450OR preferentially utilized NADPH, NQO1 primarily utilized NADH. Together, these results demonstrate that NQO1 and CYP450OR reciprocally regulate oxidant metabolism in pancreatic β-cells. PMID:27558805

  19. A Physiologically Based Pharmacokinetic Model for Pregnant Women to Predict the Pharmacokinetics of Drugs Metabolized Via Several Enzymatic Pathways.

    PubMed

    Dallmann, André; Ince, Ibrahim; Coboeken, Katrin; Eissing, Thomas; Hempel, Georg

    2017-09-18

    Physiologically based pharmacokinetic modeling is considered a valuable tool for predicting pharmacokinetic changes in pregnancy to subsequently guide in-vivo pharmacokinetic trials in pregnant women. The objective of this study was to extend and verify a previously developed physiologically based pharmacokinetic model for pregnant women for the prediction of pharmacokinetics of drugs metabolized via several cytochrome P450 enzymes. Quantitative information on gestation-specific changes in enzyme activity available in the literature was incorporated in a pregnancy physiologically based pharmacokinetic model and the pharmacokinetics of eight drugs metabolized via one or multiple cytochrome P450 enzymes was predicted. The tested drugs were caffeine, midazolam, nifedipine, metoprolol, ondansetron, granisetron, diazepam, and metronidazole. Pharmacokinetic predictions were evaluated by comparison with in-vivo pharmacokinetic data obtained from the literature. The pregnancy physiologically based pharmacokinetic model successfully predicted the pharmacokinetics of all tested drugs. The observed pregnancy-induced pharmacokinetic changes were qualitatively and quantitatively reasonably well predicted for all drugs. Ninety-seven percent of the mean plasma concentrations predicted in pregnant women fell within a twofold error range and 63% within a 1.25-fold error range. For all drugs, the predicted area under the concentration-time curve was within a 1.25-fold error range. The presented pregnancy physiologically based pharmacokinetic model can quantitatively predict the pharmacokinetics of drugs that are metabolized via one or multiple cytochrome P450 enzymes by integrating prior knowledge of the pregnancy-related effect on these enzymes. This pregnancy physiologically based pharmacokinetic model may thus be used to identify potential exposure changes in pregnant women a priori and to eventually support informed decision making when clinical trials are designed in this special population.

  20. The Syndrome of 17,20 Lyase Deficiency

    PubMed Central

    2012-01-01

    Context: Disorders of steroidogenesis have been instrumental in delineating human steroidogenic pathways. Each genetic disorder seemed to correspond to a different steroidogenic activity, helping to identify several enzymes. Beginning in 1972, several patients have been reported as having “17,20 lyase deficiency,” but there have been inconsistent genetic findings. Objective: This manuscript reviews the biochemistry, genetics, and clinical disorders of 17,20 lyase activity, which converts 21-carbon precursors of glucocorticoids to 19-carbon precursors of sex steroids. Findings: A single enzyme, cytochrome P450c17, catalyzes both 17α-hydroxylase activity and 17,20 lyase activity. The 17,20 lyase activity is especially sensitive to the activities of the accessory proteins P450 oxidoreductase and cytochrome b5. The first cases of genetically and biochemically proven 17,20 lyase deficiency were reported in 1997, in which specific P450c17 mutations were identified that lost 17,20 lyase activity but not 17α-hydroxylase activity when assayed in vitro. Subsequent work identified other P450c17 mutations and mutations in the genes encoding P450 oxidoreductase and cytochrome b5. Recently, the initially reported cases from 1972 were found to carry mutations in two aldo-keto reductases, AKR1C2 and AKR1C4. These AKR1C isozymes catalyze 3α-hydroxysteroid dehydrogenase activity in the so-called “backdoor pathway” by which the fetal testis produces dihydrotestosterone without the intermediacy of testosterone. Conclusions: 17,20 Lyase deficiency should be considered a syndrome with multiple causes, and not a single disease. Study of this very rare disorder has substantially advanced our understanding of the pathways, mechanisms, and control of androgen synthesis. Mutations in other, as-yet unidentified genes may also cause this phenotype. PMID:22072737

  1. Generation of a mouse model with a reversible hypomorphic cytochrome P450 reductase gene: utility for tissue-specific rescue of the reductase expression, and insights from a resultant mouse model with global suppression of P450 reductase expression in extrahepatic tissues.

    PubMed

    Wei, Yuan; Zhou, Xin; Fang, Cheng; Li, Lei; Kluetzman, Kerri; Yang, Weizhu; Zhang, Qing-Yu; Ding, Xinxin

    2010-07-01

    A mouse model termed Cpr-low (CL) was recently generated, in which the expression of the cytochrome P450 reductase (Cpr) gene was globally down-regulated. The decreased CPR expression was accompanied by phenotypical changes, including reduced embryonic survival, decreases in circulating cholesterol, increases in hepatic P450 expression, and female infertility (accompanied by elevated serum testosterone and progesterone levels). In the present study, a complementary mouse model [named reversible-CL (r-CL)] was generated, in which the reduced CPR expression can be reversed in an organ-specific fashion. The neo cassette, which was inserted into the last Cpr intron in r-CL mice, can be deleted by Cre recombinase, thus returning the structure of the Cpr gene (and hence CPR expression) to normal in Cre-expressing cells. All previously identified phenotypes of the CL mice were preserved in the r-CL mice. As a first application of the r-CL model, we have generated an extrahepatic-CL (xh-CL) mouse for testing of the functions of CPR-dependent enzymes in all extrahepatic tissues. The xh-CL mice, generated by mating of r-CL mice with albumin-Cre mice, had normal CPR expression in hepatocytes but down-regulated CPR expression elsewhere. They were indistinguishable from wild-type mice in body and liver weights, circulating cholesterol levels, and hepatic microsomal P450 expression and activities; however, they still showed elevated serum testosterone and progesterone levels and sterility in females. Embryonic lethality was prevented in males, but apparently not in females, indicating a critical role for fetal hepatic CPR-dependent enzymes in embryonic development, at least in males.

  2. VX-509 (Decernotinib)-Mediated CYP3A Time-Dependent Inhibition: An Aldehyde Oxidase Metabolite as a Perpetrator of Drug-Drug Interactions.

    PubMed

    Zetterberg, Craig; Maltais, Francois; Laitinen, Leena; Liao, Shengkai; Tsao, Hong; Chakilam, Ananthsrinivas; Hariparsad, Niresh

    2016-08-01

    (R)-2-((2-(1H-pyrrolo[2,3-b]pyridin-3-yl)pyrimidin-4-yl)amino)-2-methyl-N-(2,2,2-trifluoroethyl)butanamide (VX-509, decernotinib) is an oral Janus kinase 3 inhibitor that has been studied in patients with rheumatoid arthritis. Patients with rheumatoid arthritis often receive multiple medications, such as statins and steroids, to manage the signs and symptoms of comorbidities, which increases the chances of drug-drug interactions (DDIs). Mechanism-based inhibition is a subset of time-dependent inhibition (TDI) and occurs when a molecule forms a reactive metabolite which irreversibly binds and inactivates drug-metabolizing enzymes, potentially increasing the systemic load to toxic concentrations. Traditionally, perpetrating compounds are screened using human liver microsomes (HLMs); however, this system may be inadequate when the precipitant is activated by a non-cytochrome P450 (P450)-mediated pathway. Even though studies assessing competitive inhibition and TDI using HLM suggested a low risk for CYP3A4-mediated DDI in the clinic, VX-509 increased the area under the curve of midazolam, atorvastatin, and methyl-prednisolone by approximately 12.0-, 2.7-, and 4.3-fold, respectively. Metabolite identification studies using human liver cytosol indicated that VX-509 is converted to an oxidative metabolite, which is the perpetrator of the DDIs observed in the clinic. As opposed to HLM, hepatocytes contain the full complement of drug-metabolizing enzymes and transporters and can be used to assess TDI arising from non-P450-mediated metabolic pathways. In the current study, we highlight the role of aldehyde oxidase in the formation of the hydroxyl-metabolite of VX-509, which is involved in clinically significant TDI-based DDIs and represents an additional example in which a system-dependent prediction of TDI would be evident. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  3. A structural model of PpoA derived from SAXS-analysis-implications for substrate conversion.

    PubMed

    Koch, Christian; Tria, Giancarlo; Fielding, Alistair J; Brodhun, Florian; Valerius, Oliver; Feussner, Kirstin; Braus, Gerhard H; Svergun, Dmitri I; Bennati, Marina; Feussner, Ivo

    2013-09-01

    In plants and mammals, oxylipins may be synthesized via multi step processes that consist of dioxygenation and isomerization of the intermediately formed hydroperoxy fatty acid. These processes are typically catalyzed by two distinct enzyme classes: dioxygenases and cytochrome P450 enzymes. In ascomycetes biosynthesis of oxylipins may proceed by a similar two-step pathway. An important difference, however, is that both enzymatic activities may be combined in a single bifunctional enzyme. These types of enzymes are named Psi-factor producing oxygenases (Ppo). Here, the spatial organization of the two domains of PpoA from Aspergillus nidulans was analyzed by small-angle X-ray scattering and the obtained data show that the enzyme exhibits a relatively flat trimeric shape. Atomic structures of the single domains were obtained by template-based structure prediction and docked into the enzyme envelope of the low resolution structure obtained by SAXS. EPR-based distance measurements between the tyrosyl radicals formed in the activated dioxygenase domain of the enzyme supported the trimeric structure obtained from SAXS and the previous assignment of Tyr374 as radical-site in PpoA. Furthermore, two phenylalanine residues in the cytochrome P450 domain were shown to modulate the specificity of hydroperoxy fatty acid rearrangement. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Effect of triptolide on progesterone production from cultured rat granulosa cells.

    PubMed

    Zhang, J; Jiang, Z; Mu, X; Wen, J; Su, Y; Zhang, L

    2012-06-01

    Triptolide(CAS 38748-32-2), a major active component of Tripterygium wilfordii Hook F (TWHF), is known to have multiple pharmacological activities. However, studies have also shown that triptolide is highly disrupt to the reproductive system by disrupting normal steroid hormone signaling. In the present study, we investigated the effect of triptolide (5, 10, or 20 nM for 24 h) on progesterone production by rat granulosa cells. Triptolide inhibited both basal and human chorionic gonadotropin (HCG)- and 8-bromo-cAMP-stimulated progesterone production as revealed by RIA assay. Furthermore, the HCG-evoked increase in cellular cAMP content was also inhibited by triptolide, indicating that disruption of the cAMP/PKA signaling pathway may mediate the deleterious effects of triptolide on progesterone regulation. In addition, triptolide inhibited 25-OH-cholesterol-stimulated progesterone production, suggesting that activity of the P450 side chain cleavage (P450scc) enzyme was also be inhibited by triptolide. Western blot and quantitative real-time PCR (qRT-PCR) assays further revealed that triptolide decreased mRNA and protein expression of P450scc and the steroidogenic regulatory (StAR) protein in granulosa cells. In contrast, cell viability tests using 3-(4,5-dimethyl-thiazol-2-yl)-2,5- diphenyl-tetrazolium bromide (MTT) indicated that triptolide did not cause measurable cell death at doses that suppressed steroidogenesis. The reproductive toxicity of triptolide may be caused by disruption of cAMP/PKA-mediated expression of a number of progesterone synthesis enzymes or regulatory proteins, leading to reduced progesterone synthesis and reproductive dysfunction. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Cytochrome P450 drug interactions with statin therapy.

    PubMed

    Goh, Ivanna Xin Wei; How, Choon How; Tavintharan, Subramaniam

    2013-03-01

    Statins are commonly used in the treatment of hyperlipidaemia. Although the benefits of statins are well-documented, they have the potential to cause myopathy and rhabdomyolysis due to the complex interactions of drugs, comorbidities and genetics. The cytochrome P450 family consists of major enzymes involved in drug metabolism and bioactivation. This article aims to highlight drug interactions involving statins, as well as provide updated recommendations and approaches regarding the safe and appropriate use of statins in the primary care setting.

  6. Relationships among Ergot Alkaloids, Cytochrome P450 Activity, and Beef Steer Growth

    NASA Astrophysics Data System (ADS)

    Rosenkrans, Charles; Ezell, Nicholas

    2015-03-01

    Determining a grazing animal’s susceptibility to ergot alkaloids has been a research topic for decades. Our objective was to determine if the Promega™ P450-Glo assay could be used to indirectly detect ergot alkaloids or their metabolites in urine of steers. The first experiment validated the effects of ergot alkaloids [0, 20, and 40 μM of ergotamine (ET), dihydroergotamine (DHET), and ergonovine (EN)] on human CYP3A4 using the P450-Glo assay (Promega™ V9800). With this assay, luminescence is directly proportional to CYP450 activity. Relative inhibition of in vitro cytochrome P450 activity was affected (P < 0.001) by an interaction between alkaloids and concentration. That interaction resulted in no concentration effect of EN, but within ET and DHET 20 and 40 µM concentrations inhibited CYP450 activity when compared with controls. In experiment 2, urine was collected from Angus-sired crossbred steers (n = 39; 216 ± 2.6 d of age; 203 ± 1.7 kg) after grazing tall fescue pastures for 105 d. Non-diluted urine was added to the Promega™ P450-Glo assay, and observed inhibition (3.7 % ± 2.7 of control). Urine content of total ergot alkaloids (331.1 ng/mg of creatinine ± 325.7) was determined using enzyme linked immunosorbent assay. Urine inhibition of CYP450 activity and total alkaloids were correlated (r = -0.31; P < 0.05). Steers were genotyped at CYP450 single nucleotide polymorphism, C994G. Steer genotype affected (P < 0.03) inhibition of CYP450 activity by urine; heterozygous steers had the least amount of CYP450 inhibition suggesting that genotyping cattle may be a method of identifying animals that are susceptible to ergot alkaloids. Although, additional research is needed, we demonstrate that the Promega™ P450-Glo assay is sensitive to ergot alkaloids and urine from steers grazing tall fescue. With some refinement the P450-Glo assay has potential as a tool for screening cattle for their exposure to fescue toxins.

  7. Effects of fluoride and aluminum on expressions of StAR and P450scc of related steroidogenesis in guinea pigs' testis.

    PubMed

    Dong, Chunguang; Cao, Jinling; Cao, Chunfang; Han, Yichao; Wu, Shouyan; Wang, Shaolin; Wang, Jundong

    2016-03-01

    A lot of studies have shown that fluoride and aluminum have toxic effect on male reproductive system, but the mechanism of which and the interaction between fluoride and aluminum is still unknown. This study investigated the effects of fluoride (NaF) or/and aluminum (AlCl3) on serum testosterone level, gene and protein expression levels of Steroidogenic Acute Regulatory Protein (StAR) and Cytochrome P450 cholesterol side chain cleavage enzyme (P450scc) in the testes of guinea pigs. Fifty-two guinea pigs were divided randomly into four groups (Control, HiF, HiAl and HiF + HiAl). Fluoride (150 mg NaF/L) or/and aluminum (300 mg AlCl3/L) were orally administrated to male guinea pigs for 13 weeks. The results showed that F and Al reduced number and elevated abnormal ratio of sperm. Meanwhile, the concentrations of serum testosterone in all experimental groups were decreased. P450scc protein expression was significantly reduced in all treatment groups, and StAR expression was decreased remarkably in HiF group and HiF + HiAl group. The levels of StAR mRNA in three groups were reduced by 53.9%, 21.4% and 33.4%, respectively, while the expressions of P450scc mRNA were reduced by 67.8%, 17.0% and 47.8%. Therefore, we concluded that F induced the reduction in testosterone and sperm amount, and thus in lower fertility, which might occur as a consequence of depressed StAR and P450scc mRNA expression. There were no synergistic effects between F and Al, instead, Al weakened the toxicity of F to some extents. The results indicated that Al had antagonism effects on F. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Interactions between Cytochromes P450 2B4 (CYP2B4) and 1A2 (CYP1A2) Lead to Alterations in Toluene Disposition and P450 Uncoupling

    PubMed Central

    Reed, James R.; Cawley, George F.; Backes, Wayne L.

    2013-01-01

    The goal of this study was to characterize the effects of CYP1A2•CYP2B4 complex formation on the rates and efficiency of toluene metabolism by comparing the results from simple reconstituted systems containing P450 reductase (CPR) and a single P450 to those using a mixed system containing CPR and both P450s. In the mixed system, the rates of formation of CYP2B4-specific benzyl alcohol and p-cresol were inhibited, whereas that of CYP1A2-specific o-cresol was increased, results consistent with the formation of a CYP1A2•CYP2B4 complex where the CYP1A2 moiety has higher affinity for CPR binding. Comparison of the rates of NADPH oxidation and production of hydrogen peroxide and excess water by the simple and mixed systems indicated that excess water formed at a much lower rate in the mixed system. The commensurate increase in the rate of CYP1A2-specific product formation suggested the P450•P450 interaction increased the putative rate-limiting step of CYP1A2 catalysis, abstraction of a hydrogen radical from the substrate. Cumene hydroperoxide-supported metabolism was measured to determine whether the effects of the P450•P450 interaction required the presence of CPR. Peroxidative metabolism was not affected by the interaction of the two P450s, even with CPR present. However, CPR did stimulate peroxidative metabolism by the simple system containing CYP1A2. These results suggest the major functional effects of the P450•P450 interaction are mediated by changes in the relative abilities of the P450s to receive electrons from CPR. Furthermore, CPR may play an effector role by causing a conformation change in CYP1A2 that makes its metabolism more efficient. PMID:23675771

  9. Critical issues in benzene toxicity and metabolism: the effect of interactions with other organic chemicals on risk assessment.

    PubMed

    Medinsky, M A; Schlosser, P M; Bond, J A

    1994-11-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene are well documented and include aplastic anemia and pancytopenia. Some individuals exposed repeatedly to cytotoxic concentrations of benzene develop acute myeloblastic anemia. It has been hypothesized that metabolism of benzene is required for its toxicity, although administration of no single benzene metabolite duplicates the toxicity of benzene. Several investigators have demonstrated that a combination of metabolites (hydroquinone and phenol, for example) is necessary to duplicate the hematotoxic effect of benzene. Enzymes implicated in the metabolic activation of benzene and its metabolites include the cytochrome P450 monooxygenases and myeloperoxidase. Since benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. Other organic molecules that are substrates for cytochrome P450 can inhibit the metabolism of benzene. For example, toluene has been shown to inhibit the oxidation of benzene in a noncompetitive manner. Enzyme inducers, such as ethanol, can alter the target tissue dosimetry of benzene metabolites by inducing enzymes responsible for oxidation reactions involved in benzene metabolism. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes, such as enzymatic oxidation, and deactivation processes, like conjugation and excretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Experiment K-6-14. Hepatic function in rats after spaceflight

    NASA Technical Reports Server (NTRS)

    Merrill, A., Jr.; Hoel, M.; Wang, E.; Jones, D.; Hargrove, J.; Mullins, R.; Popova, I.

    1990-01-01

    To determine the possible biochemical consequences of prolonged weightlessness on liver function, tissue samples from rats that had flown aboard Cosmos 1887 were analyzed for hepatic protein, glycogen and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. Among the parameters measured, the major differences were elevations in the hepatic glycogen content and HMG-CoA reductase activities of the rats flown on Cosmos 1887, and a decrease in the amount of microsomal cytochrome P sub 450 and the activity of aniline hydroxylase, a cytochrome P sub 450-dependent enzyme. Decreases in these two indices of the microsomal mixed-function oxidase system indicated that spaceflight may compromise the ability of liver to metabolize drugs and toxins. The higher HMG-CoA reductase correlated with elevated levels of serum cholestrol. Other changes included somewhat higher blood glucose, creatinine, SGOT, and much greater alkaline phosphatase and BUN. These results generally support the earlier observation of changes in these parameters (Merrill et al., Am. J. Physiol. 252:R22-R226, 1987). The importance of these alterations in liver function is not known; however, they have the potential to complicate long-term spaceflight.

  11. A current review of cytochrome P450 interactions of psychotropic drugs.

    PubMed

    Madhusoodanan, Subramoniam; Velama, Umamaheswararao; Parmar, Jeniel; Goia, Diana; Brenner, Ronald

    2014-05-01

    The number of psychotropic drugs has expanded tremendously over the past few decades with a proportional increase in drug-drug interactions. The majority of psychotropic agents are biotransformed by hepatic enzymes, which can lead to significant drug-drug interactions. Most drug-drug interactions of psychotropics occur at metabolic level involving the hepatic cytochrome P450 enzyme system. We searched the National Library of Medicine, PsycINFO, and Cochrane reviews from 1981 to 2012 for original studies including clinical trials, double-blind, placebo-controlled studies, and randomized controlled trials. In addition, case reports, books, review articles, and hand-selected journals were utilized to supplement this review. Based on the clinical intensity of outcome, cytochrome interactions can be classified as severe, moderate, and mild. Severe interactions include effects that might be acutely life threatening. They are mainly inhibitory interactions with cardiovascular drugs. Moderate interactions include efficacy issues. Mild interactions include nonserious side effects, such as somnolence. Psychotropic drugs may interact with other prescribed medications used to treat concomitant medical illnesses. A thorough understanding of the most prescribed medications and patient education will help reduce the likelihood of potentially fatal drug-drug interactions.

  12. Simultaneous Assessment of Clearance, Metabolism, Induction, and Drug-Drug Interaction Potential Using a Long-Term In Vitro Liver Model for a Novel Hepatitis B Virus Inhibitor.

    PubMed

    Kratochwil, Nicole A; Triyatni, Miriam; Mueller, Martina B; Klammers, Florian; Leonard, Brian; Turley, Dan; Schmaler, Josephine; Ekiciler, Aynur; Molitor, Birgit; Walter, Isabelle; Gonsard, Pierre-Alexis; Tournillac, Charles A; Durrwell, Alexandre; Marschmann, Michaela; Jones, Russell; Ullah, Mohammed; Boess, Franziska; Ottaviani, Giorgio; Jin, Yuyan; Parrott, Neil J; Fowler, Stephen

    2018-05-01

    Long-term in vitro liver models are now widely explored for human hepatic metabolic clearance prediction, enzyme phenotyping, cross-species metabolism, comparison of low clearance drugs, and induction studies. Here, we present studies using a long-term liver model, which show how metabolism and active transport, drug-drug interactions, and enzyme induction in healthy and diseased states, such as hepatitis B virus (HBV) infection, may be assessed in a single test system to enable effective data integration for physiologically based pharmacokinetic (PBPK) modeling. The approach is exemplified in the case of (3S)-4-[[(4R)-4-(2-Chloro-4-fluorophenyl)-5-methoxycarbonyl-2-thiazol-2-yl-1,4-dihydropyrimidin-6-yl]methyl]morpholine-3-carboxylic acid RO6889678, a novel inhibitor of HBV with a complex absorption, distribution, metabolism, and excretion (ADME) profile. RO6889678 showed an intracellular enrichment of 78-fold in hepatocytes, with an apparent intrinsic clearance of 5.2 µ l/min per mg protein and uptake and biliary clearances of 2.6 and 1.6 µ l/min per mg protein, respectively. When apparent intrinsic clearance was incorporated into a PBPK model, the simulated oral human profiles were in good agreement with observed data at low doses but were underestimated at high doses due to unexpected overproportional increases in exposure with dose. In addition, the induction potential of RO6889678 on cytochrome P450 (P450) enzymes and transporters at steady state was assessed and cotreatment with ritonavir revealed a complex drug-drug interaction with concurrent P450 inhibition and moderate UDP-glucuronosyltransferase induction. Furthermore, we report on the first evaluation of in vitro pharmacokinetics studies using HBV-infected HepatoPac cocultures. Thus, long-term liver models have great potential as translational research tools exploring pharmacokinetics of novel drugs in vitro in health and disease. Copyright © 2018 The Author(s).

  13. Carbon monoxide inhibits omega-oxidation of leukotriene B4 by human polymorphonuclear leukocytes: evidence that catabolism of leukotriene B4 is mediated by a cytochrome P-450 enzyme.

    PubMed

    Shak, S; Goldstein, I M

    1984-09-17

    Carbon monoxide significantly inhibits omega-oxidation of exogenous leukotriene B4 to 20-OH-leukotriene B4 and 20-COOH-leukotriene B4 by unstimulated polymorphonuclear leukocytes as well as omega-oxidation of leukotriene B4 that is generated when cells are stimulated with the calcium ionophore, A23187. Inhibition of omega-oxidation by carbon monoxide is concentration-dependent, completely reversible, and specific. Carbon monoxide does not affect synthesis of leukotriene B4 by stimulated polymorphonuclear leukocytes or other cell functions (i.e., degranulation, superoxide anion generation). These findings suggest that a cytochrome P-450 enzyme in human polymorphonuclear leukocytes is responsible for catabolizing leukotriene B4 by omega-oxidation.

  14. Targeted Multiplex Imaging Mass Spectrometry with Single Chain Fragment Variable (scfv) Recombinant Antibodies

    NASA Astrophysics Data System (ADS)

    Thiery, Gwendoline; Mernaugh, Ray L.; Yan, Heping; Spraggins, Jeffrey M.; Yang, Junhai; Parl, Fritz F.; Caprioli, Richard M.

    2012-10-01

    Recombinant scfv antibodies specific for CYP1A1 and CYP1B1 P450 enzymes were combined with targeted imaging mass spectrometry to simultaneously detect the P450 enzymes present in archived, paraffin-embedded, human breast cancer tissue sections. By using CYP1A1 and CYP1B1 specific scfv, each coupled to a unique reporter molecule (i.e., a mass tag) it was possible to simultaneously detect multiple antigens within a single tissue sample with high sensitivity and specificity using mass spectrometry. The capability of imaging multiple antigens at the same time is a significant advance that overcomes technical barriers encountered when using present day approaches to develop assays that can simultaneously detect more than a single antigen in the same tissue sample.

  15. The Influence of Cytochrome P450 Pharmacogenetics on Disposition of Common Antidepressant and Antipsychotic Medications

    PubMed Central

    van der Weide, Jan; Hinrichs, John WJ

    2006-01-01

    Since the identification of all the major drug-metabolising cytochrome P450 (CYP) enzymes and their major gene variants, pharmacogenetics has had a major impact on psychotherapeutic drug therapy. CYP enzymes are responsible for the metabolism of most clinically used drugs. Individual variability in CYP activity is an important reason for drug therapy failure. Variability in CYP activity may be caused by various factors, including endogenous factors such as age, gender and morbidity as well as exogenous factors such as co-medication, food components and smoking habit. However, polymorphisms, present in most CYP genes, are responsible for a substantial part of this variability. Although CYP genotyping has been shown to predict the majority of aberrant phenotypes, it is currently rarely performed in clinical practice. PMID:16886044

  16. Effects of monoamine oxidase inhibitor and cytochrome P450 2D6 status on 5-Methoxy-N,N-dimethyltryptamine Metabolism and Pharmacokinetics

    PubMed Central

    Shen, Hong-Wu; Wu, Chao; Jiang, Xi-Ling; Yu, Ai-Ming

    2010-01-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural psychoactive indolealkylamine drug that has been used for recreational purpose. Our previous study revealed that polymorphic cytochrome P450 2D6 (CYP2D6) catalyzed 5-MeO-DMT O-demethylation to produce active metabolite bufotenine, while 5-MeO-DMT is mainly inactivated through deamination pathway mediated by monoamine oxidase (MAO). This study, therefore, aimed to investigate the impact of CYP2D6 genotype/phenotype status and MAO inhibitor (MAOI) on 5-MeO-DMT metabolism and pharmacokinetics. Enzyme kinetic studies using recombinant CYP2D6 allelic isozymes showed that CYP2D6.2 and CYP2D6.10 exhibited 2.6- and 40-fold lower catalytic efficiency (Vmax/Km), respectively, in producing bufotenine from 5-MeO-DMT, compared with wild-type CYP2D6.1. When co-incubated with MAOI pargyline, 5-MeO-DMT O-demethylation in 10 human liver microsomes showed significantly strong correlation with bufuralol 1’-hydroxylase activities (R² = 0.98; p < 0.0001) and CYP2D6 contents (R² = 0.77; p = 0.0007), whereas no appreciable correlations with enzymatic activities of other P450 enzymes. Furthermore, concurrent MAOI harmaline sharply reduced 5-MeO-DMT depletion and increased bufotenine formation in human CYP2D6 extensive metabolizer hepatocytes. In vivo studies in wild-type and CYP2D6-humanized (Tg-CYP2D6) mouse models showed that Tg-CYP2D6 mice receiving the same dose of 5-MeO-DMT (20 mg/kg, i.p.) had 60% higher systemic exposure to metabolite bufotenine. In addition, pre-treatment of harmaline (5 mg/kg, i.p.) led to 3.6- and 4.4-fold higher systemic exposure to 5-MeO-DMT (2 mg/kg, i.p.), and 9.9- and 6.1-fold higher systemic exposure to bufotenine in Tg-CYP2D6 and wild-type mice, respectively. These findings indicate that MAOI largely affects 5-MeO-DMT metabolism and pharmacokinetics, as well as bufotenine formation that is mediated by CYP2D6. PMID:20206139

  17. Effects of monoamine oxidase inhibitor and cytochrome P450 2D6 status on 5-methoxy-N,N-dimethyltryptamine metabolism and pharmacokinetics.

    PubMed

    Shen, Hong-Wu; Wu, Chao; Jiang, Xi-Ling; Yu, Ai-Ming

    2010-07-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural psychoactive indolealkylamine drug that has been used for recreational purpose. Our previous study revealed that polymorphic cytochrome P450 2D6 (CYP2D6) catalyzed 5-MeO-DMT O-demethylation to produce active metabolite bufotenine, while 5-MeO-DMT is mainly inactivated through deamination pathway mediated by monoamine oxidase (MAO). This study, therefore, aimed to investigate the impact of CYP2D6 genotype/phenotype status and MAO inhibitor (MAOI) on 5-MeO-DMT metabolism and pharmacokinetics. Enzyme kinetic studies using recombinant CYP2D6 allelic isozymes showed that CYP2D6.2 and CYP2D6.10 exhibited 2.6- and 40-fold lower catalytic efficiency (V(max)/K(m)), respectively, in producing bufotenine from 5-MeO-DMT, compared with wild-type CYP2D6.1. When co-incubated with MAOI pargyline, 5-MeO-DMT O-demethylation in 10 human liver microsomes showed significantly strong correlation with bufuralol 1'-hydroxylase activities (R(2)=0.98; P<0.0001) and CYP2D6 contents (R(2)=0.77; P=0.0007), whereas no appreciable correlations with enzymatic activities of other P450 enzymes. Furthermore, concurrent MAOI harmaline sharply reduced 5-MeO-DMT depletion and increased bufotenine formation in human CYP2D6 extensive metabolizer hepatocytes. In vivo studies in wild-type and CYP2D6-humanized (Tg-CYP2D6) mouse models showed that Tg-CYP2D6 mice receiving the same dose of 5-MeO-DMT (20mg/kg, i.p.) had 60% higher systemic exposure to metabolite bufotenine. In addition, pretreatment of harmaline (5mg/kg, i.p.) led to 3.6- and 4.4-fold higher systemic exposure to 5-MeO-DMT (2mg/kg, i.p.), and 9.9- and 6.1-fold higher systemic exposure to bufotenine in Tg-CYP2D6 and wild-type mice, respectively. These findings indicate that MAOI largely affects 5-MeO-DMT metabolism and pharmacokinetics, as well as bufotenine formation that is mediated by CYP2D6. (c) 2010 Elsevier Inc. All rights reserved.

  18. Valence tautomerism in synthetic models of cytochrome P450

    PubMed Central

    Das, Pradip Kumar; Samanta, Subhra; McQuarters, Ashley B.; Lehnert, Nicolai

    2016-01-01

    CytP450s have a cysteine-bound heme cofactor that, in its as-isolated resting (oxidized) form, can be conclusively described as a ferric thiolate species. Unlike the native enzyme, most synthetic thiolate-bound ferric porphyrins are unstable in air unless the axial thiolate ligand is sterically protected. Spectroscopic investigations on a series of synthetic mimics of cytP450 indicate that a thiolate-bound ferric porphyrin coexists in organic solutions at room temperature (RT) with a thiyl-radical bound ferrous porphyrin, i.e., its valence tautomer. The ferric thiolate state is favored by greater enthalpy and is air stable. The ferrous thiyl state is favored by entropy, populates at RT, and degrades in air. These ground states can be reversibly interchanged at RT by the addition or removal of water to the apolar medium. It is concluded that hydrogen bonding and local electrostatics protect the resting oxidized cytP450 active site from degradation in air by stabilizing the ferric thiolate ground state in contrast to its synthetic analogs. PMID:27302948

  19. Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pechurskaya, Tatiana A.; Harnastai, Ivan N.; Grabovec, Irina P.

    2007-02-16

    The interaction of adrenodoxin (Adx) and NADPH cytochrome P450 reductase (CPR) with human microsomal steroidogenic cytochrome P450s was studied. It is found that Adx, mitochondrial electron transfer protein, is able to support reactions catalyzed by human microsomal P450s: full length CYP17, truncated CYP17, and truncated CYP21. CPR, but not Adx, supports activity of truncated CYP19. Truncated and the full length CYP17s show distinct preference for electron donor proteins. Truncated CYP17 has higher activity with Adx compared to CPR. The alteration in preference to electron donor does not change product profile for truncated enzymes. The electrostatic contacts play a major rolemore » in the interaction of truncated CYP17 with either CPR or Adx. Similarly electrostatic contacts are predominant in the interaction of full length CYP17 with Adx. We speculate that Adx might serve as an alternative electron donor for CYP17 at the conditions of CPR deficiency in human.« less

  20. CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata.

    PubMed

    Luck, Katrin; Jia, Qidong; Huber, Meret; Handrick, Vinzenz; Wong, Gane Ka-Shu; Nelson, David R; Chen, Feng; Gershenzon, Jonathan; Köllner, Tobias G

    2017-09-01

    Conifers contain P450 enzymes from the CYP79 family that are involved in cyanogenic glycoside biosynthesis. Cyanogenic glycosides are secondary plant compounds that are widespread in the plant kingdom. Their biosynthesis starts with the conversion of aromatic or aliphatic amino acids into their respective aldoximes, catalysed by N-hydroxylating cytochrome P450 monooxygenases (CYP) of the CYP79 family. While CYP79s are well known in angiosperms, their occurrence in gymnosperms and other plant divisions containing cyanogenic glycoside-producing plants has not been reported so far. We screened the transcriptomes of 72 conifer species to identify putative CYP79 genes in this plant division. From the seven resulting full-length genes, CYP79A118 from European yew (Taxus baccata) was chosen for further characterization. Recombinant CYP79A118 produced in yeast was able to convert L-tyrosine, L-tryptophan, and L-phenylalanine into p-hydroxyphenylacetaldoxime, indole-3-acetaldoxime, and phenylacetaldoxime, respectively. However, the kinetic parameters of the enzyme and transient expression of CYP79A118 in Nicotiana benthamiana indicate that L-tyrosine is the preferred substrate in vivo. Consistent with these findings, taxiphyllin, which is derived from L-tyrosine, was the only cyanogenic glycoside found in the different organs of T. baccata. Taxiphyllin showed highest accumulation in leaves and twigs, moderate accumulation in roots, and only trace accumulation in seeds and the aril. Quantitative real-time PCR revealed that CYP79A118 was expressed in plant organs rich in taxiphyllin. Our data show that CYP79s represent an ancient family of plant P450s that evolved prior to the separation of gymnosperms and angiosperms. CYP79A118 from T. baccata has typical CYP79 properties and its substrate specificity and spatial gene expression pattern suggest that the enzyme contributes to the formation of taxiphyllin in this plant species.

  1. Characterization of arylalkylamine N-acetyltransferase (AANAT) activities and action spectrum for suppression in the band-legged cricket, Dianemobius nigrofasciatus (Orthoptera: Gryllidae).

    PubMed

    Izawa, Norimitsu; Suzuki, Takeshi; Watanabe, Masakatsu; Takeda, Makio

    2009-04-01

    Arylalkylamine N-acetyltransferase (AANAT), constituting a large family of enzymes, catalyzes the transacetylation from acetyl-CoA to monoamine substrates, although homology among species is not very high. AANAT in vertebrates is photosensitive and mediates circadian regulation. Here, we analyzed AANAT of the cricket, Dianemobius nigrofasciatus. The central nervous system contained AANAT activity. The optimum pHs were 6.0 (a minor peak) and 10.5 (a major peak) with crude enzyme solution. We analyzed the kinetics at pH 10.5 using the sample containing collective AANAT activities, which we term AANAT. Lineweaver-Burk plot and secondary plot yielded a K(m) for tryptamine as substrate of 0.42 microM, and a V(max) of 9.39 nmol/mg protein/min. The apparent K(m) for acetyl-CoA was 59.9 microM and the V(max) was 8.14 nmol/mg protein/min. AANAT of D. nigrofasciatus was light-sensitive. The activity was higher at night-time than at day-time as in vertebrates. To investigate most effective wavelengths on AANAT activity, a series of monochromatic lights was applied (350, 400, 450, 500, 550, 600 and 650 nm). AANAT showed the highest sensitivity to around 450 nm and 550 nm. 450 nm light was more effective than 550 nm light. Therefore, the most effective light affecting AANAT activity is blue light, which corresponds to the absorption spectrum of blue wave (BW)-opsin.

  2. From Cholesterogenesis to Steroidogenesis: Role of Riboflavin and Flavoenzymes in the Biosynthesis of Vitamin D12

    PubMed Central

    Pinto, John T.; Cooper, Arthur J. L.

    2014-01-01

    Flavin-dependent monooxygenases and oxidoreductases are located at critical branch points in the biosynthesis and metabolism of cholesterol and vitamin D. These flavoproteins function as obligatory intermediates that accept 2 electrons from NAD(P)H with subsequent 1-electron transfers to a variety of cytochrome P450 (CYP) heme proteins within the mitochondria matrix (type I) and the (microsomal) endoplasmic reticulum (type II). The mode of electron transfer in these systems differs slightly in the number and form of the flavin prosthetic moiety. In the type I mitochondrial system, FAD-adrenodoxin reductase interfaces with adrenodoxin before electron transfer to CYP heme proteins. In the microsomal type II system, a diflavin (FAD/FMN)-dependent cytochrome P450 oxidoreductase [NAD(P)H-cytochrome P450 reductase (CPR)] donates electrons to a multitude of heme oxygenases. Both flavoenzyme complexes exhibit a commonality of function with all CYP enzymes and are crucial for maintaining a balance of cholesterol and vitamin D metabolites. Deficits in riboflavin availability, imbalances in the intracellular ratio of FAD to FMN, and mutations that affect flavin binding domains and/or interactions with client proteins result in marked structural alterations within the skeletal and central nervous systems similar to those of disorders (inborn errors) in the biosynthetic pathways that lead to cholesterol, steroid hormones, and vitamin D and their metabolites. Studies of riboflavin deficiency during embryonic development demonstrate congenital malformations similar to those associated with genetic alterations of the flavoenzymes in these pathways. Overall, a deeper understanding of the role of riboflavin in these pathways may prove essential to targeted therapeutic designs aimed at cholesterol and vitamin D metabolism. PMID:24618756

  3. Defining the in Vivo Role for cytochrome b5 in cytochrome P450 function through the conditional hepatic deletion of microsomal cytochrome b5.

    PubMed

    Finn, Robert D; McLaughlin, Lesley A; Ronseaux, Sebastien; Rosewell, Ian; Houston, J Brian; Henderson, Colin J; Wolf, C Roland

    2008-11-14

    In vitro, cytochrome b5 modulates the rate of cytochrome P450-dependent mono-oxygenation reactions. However, the role of this enzyme in determining drug pharmacokinetics in vivo and the consequential effects on drug absorption distribution, metabolism, excretion, and toxicity are unclear. In order to resolve this issue, we have carried out the conditional deletion of microsomal cytochrome b5 in the liver to create the hepatic microsomal cytochrome b5 null mouse. These mice develop and breed normally and have no overt phenotype. In vitro studies using a range of substrates for different P450 enzymes showed that in hepatic microsomal cytochrome b5 null NADH-mediated metabolism was essentially abolished for most substrates, and the NADPH-dependent metabolism of many substrates was reduced by 50-90%. This reduction in metabolism was also reflected in the in vivo elimination profiles of several drugs, including midazolam, metoprolol, and tolbutamide. In the case of chlorzoxazone, elimination was essentially unchanged. For some drugs, the pharmacokinetics were also markedly altered; for example, when administered orally, the maximum plasma concentration for midazolam was increased by 2.5-fold, and the clearance decreased by 3.6-fold in hepatic microsomal cytochrome b5 null mice. These data indicate that microsomal cytochrome b5 can play a major role in the in vivo metabolism of certain drugs and chemicals but in a P450- and substrate-dependent manner.

  4. Selecting of a cytochrome P450cam SeSaM library with 3-chloroindole and endosulfan - Identification of mutants that dehalogenate 3-chloroindole.

    PubMed

    Kammoonah, Shaima; Prasad, Brinda; Balaraman, Priyadarshini; Mundhada, Hemanshu; Schwaneberg, Ulrich; Plettner, Erika

    2018-01-01

    Cytochrome P450 cam (a camphor hydroxylase) from the soil bacterium Pseudomonas putida shows potential importance in environmental applications such as the degradation of chlorinated organic pollutants. Seven P450 cam mutants generated from Sequence Saturation Mutagenesis (SeSaM) and isolated by selection on minimal media with either 3-chloroindole or the insecticide endosulfan were studied for their ability to oxidize of 3-chloroindole to isatin. The wild-type enzyme did not accept 3-chloroindole as a substrate. Mutant (E156G/V247F/V253G/F256S) had the highest maximal velocity in the conversion of 3-chloroindole to isatin, whereas mutants (T56A/N116H/D297N) and (G60S/Y75H) had highest k cat /K M values. Six of the mutants had more than one mutation, and within this set, mutation of residues 297 and 179 was observed twice. Docking simulations were performed on models of the mutant enzymes; the wild-type did not accommodate 3-chloroindole in the active site, whereas all the mutants did. We propose two potential reaction pathways for dechlorination of 3-chloroindole. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The Gymnosperm Cytochrome P450 CYP750B1 Catalyzes Stereospecific Monoterpene Hydroxylation of (+)-Sabinene in Thujone Biosynthesis in Western Redcedar1[OPEN

    PubMed Central

    Blaukopf, Markus; Yuen, Macaire M.S.; Withers, Stephen G.; Mattsson, Jim; Russell, John H.; Bohlmann, Jörg

    2015-01-01

    Western redcedar (WRC; Thuja plicata) produces high amounts of oxygenated thujone monoterpenoids associated with resistance against herbivore feeding, particularly ungulate browsing. Thujones and other monoterpenoids accumulate in glandular structures in the foliage of WRC. Thujones are produced from (+)-sabinene by sabinol and sabinone. Using metabolite analysis, enzyme assays with WRC tissue extracts, cloning, and functional characterization of cytochrome P450 monooxygenases, we established that trans-sabin-3-ol but not cis-sabin-3-ol is the intermediate in thujone biosynthesis in WRC. Based on transcriptome analysis, full-length complementary DNA cloning, and characterization of expressed P450 proteins, we identified CYP750B1 and CYP76AA25 as the enzymes that catalyze the hydroxylation of (+)-sabinene to trans-sabin-3-ol. Gene-specific transcript analysis in contrasting WRC genotypes producing high and low amounts of monoterpenoids, including a glandless low-terpenoid clone, as well as assays for substrate specificity supported a biological role of CYP750B1 in α- and β-thujone biosynthesis. This P450 belongs to the apparently gymnosperm-specific CYP750 family and is, to our knowledge, the first member of this family to be functionally characterized. In contrast, CYP76AA25 has a broader substrate spectrum, also converting the sesquiterpene farnesene and the herbicide isoproturon, and its transcript profiles are not well correlated with thujone accumulation. PMID:25829465

  6. Docking and QSAR comparative studies of polycyclic aromatic hydrocarbons and other procarcinogen interactions with cytochromes P450 1A1 and 1B1.

    PubMed

    Gonzalez, J; Marchand-Geneste, N; Giraudel, J L; Shimada, T

    2012-01-01

    To obtain chemical clues on the process of bioactivation by cytochromes P450 1A1 and 1B1, some QSAR studies were carried out based on cellular experiments of the metabolic activation of polycyclic aromatic hydrocarbons and heterocyclic aromatic compounds by those enzymes. Firstly, the 3D structures of cytochromes 1A1 and 1B1 were built using homology modelling with a cytochrome 1A2 template. Using these structures, 32 ligands including heterocyclic aromatic compounds, polycyclic aromatic hydrocarbons and corresponding diols, were docked with LigandFit and CDOCKER algorithms. Binding mode analysis highlighted the importance of hydrophobic interactions and the hydrogen bonding network between cytochrome amino acids and docked molecules. Finally, for each enzyme, multilinear regression and artificial neural network QSAR models were developed and compared. These statistical models highlighted the importance of electronic, structural and energetic descriptors in metabolic activation process, and could be used for virtual screening of ligand databases. In the case of P450 1A1, the best model was obtained with artificial neural network analysis and gave an r (2) of 0.66 and an external prediction [Formula: see text] of 0.73. Concerning P450 1B1, artificial neural network analysis gave a much more robust model, associated with an r (2) value of 0.73 and an external prediction [Formula: see text] of 0.59.

  7. The protective effects of ascorbic acid, cimetidine, and nifedipine on diethyldithiocarbamate-induced hepatic toxicity in albino rats.

    PubMed

    Gaafa, Khadiga Mohammed; Badawy, Mohammed M; Hamza, Alaaeldin A

    2011-10-01

    The aim of the present work was to clarify the involvement of free radicals, cytochrome P450 toxic metabolites, and deregulation of calcium homeostasis in the mechanism of diethyldithiocarbamate (DDC) hepatotoxicity. This was elucidated through the preadministration of ascorbic acid (a free radical scavenger), cimetidine (an inhibitor of cytochrome P450 enzymes), or nifedipine (a calcium-blocking agent) before DDC treatment to male albino rats. DDC was administered either as a single dose [800 mg/kg body weight (b.w.), subcutaneously, s.c.] or daily repeated doses for 30 days (400 mg/kg b.w., s.c.). Oxidative stress indicators [e.g., malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase enzyme (SOD)] showed that single or repeated DDC doses induce an increase in MDA level and a decrease in SOD activity in the liver, whereas it causes depletion in hepatic GSH after a single dose and an elevation in its value after repeated doses. Severe histopathological changes were also observed in the livers of rats treated with single or repeated DDC doses. Ascorbic acid, cimetidine, and nifedipine pretreatments were found to induce highly protective effects against the evinced DDC hepatotoxicity, manifesting that free radical, cytochrome P450, and calcium-dependent processes contribute to DDC liver toxicity. Finally, although multiple mechanisms may be involved in the hepatotoxic changes induced by DDC, calcium disarrangement and free radical formation play a more critical role than cytochrome P450 in metabolic events leading to toxic effects of DDC.

  8. Metabolism of deltamethrin and cis- and trans-permethrin by human expressed cytochrome P450 and carboxylesterase enzymes.

    PubMed

    Hedges, Laura; Brown, Susan; MacLeod, A Kenneth; Vardy, Audrey; Doyle, Edward; Song, Gina; Moreau, Marjory; Yoon, Miyoung; Osimitz, Thomas G; Lake, Brian G

    2018-06-04

    The metabolism of the pyrethroids deltamethrin (DLM), cis-permethrin (CPM) and trans-permethrin (TPM) was studied in human expressed cytochrome P450 (CYP) and carboxylesterase (CES) enzymes. DLM, CPM and TPM were metabolised by human CYP2B6 and CYP2C19, with the highest apparent intrinsic clearance (CL int ) values for pyrethroid metabolism being observed with CYP2C19. Other CYP enzymes contributing to the metabolism of one or more of the three pyrethroids were CYP1A2, CYP2C8, CYP2C9*1, CYP2D6*1, CYP3A4 and CYP3A5. None of the pyrethroids were metabolised by CYP2A6, CYP2E1, CYP3A7 or CYP4A11. DLM, CPM and TPM were metabolised by both human CES1 and CES2 enzymes. Apparent CL int values for pyrethroid metabolism by CYP and CES enzymes were scaled to per gram of adult human liver using abundance values for microsomal CYP enzymes and for CES enzymes in liver microsomes and cytosol. TPM had the highest and CPM the lowest apparent CL int values for total metabolism (CYP and CES enzymes) per gram of adult human liver. Due to their higher abundance, all three pyrethroids were extensively metabolised by CES enzymes in adult human liver, with CYP enzymes only accounting for 2%, 10% and 1% of total metabolism for DLM, CPM and TPM, respectively.

  9. Differences in the expression of xenobiotic-metabolizing enzymes between islets derived from the ventral and dorsal anlage of the pancreas.

    PubMed

    Standop, Jens; Ulrich, Alexis B; Schneider, Matthias B; Büchler, Markus W; Pour, Parviz M

    2002-01-01

    Chronic pancreatitis and pancreatic cancer have been linked to the exposure of environmental chemicals (xenobiotics), which generally require metabolic activation to highly reactive toxic or carcinogenic intermediates. The primary enzyme system involved is made up of numerous cytochrome P450 mono-oxygenases (CYP). Glutathione S-transferases (GST) belong to the enzyme systems that catalyze the conjugation of the reactive intermediates produced by CYPs to less toxic or readily excretable metabolites. Because the majority of chronic pancreatitis and pancreatic cancers develop in the organ's head, we compared the expression of selected CYP and GST enzymes between the tissues deriving from the ventral anlage (head) and dorsal anlage (corpus, tail). A total of 20 normal pancreatic tissue specimen from organ donors and early autopsy cases were processed immunohistochemically by using antibodies to CYP 1A1, 1A2, 2B6, 2C8/9/19, 2D6, 2E1, 3A1, 3A2 and 3A4, GST-alpha, GST-mu and GST-pi, and the NADPH cytochrome P450 oxido-reductase (NA-OR), the specificity of which has been verified in our previous study by Western blot and RT-PCR analyses. In all pancreatic regions, most of the enzymes were expressed in islet cells. However, more islets in the head region expressed CYP 2B6, 2C8/9/19, 2E1 and the NA-OR, than those in the body and tail. Moreover, the expression of CYP 2B6 and 2E1 was restricted to the pancreatic polypeptide (PP) cells, and the concentration of CYP 3A1 and 3A4 was stronger in PP cells than in other islet cells. On the other hand, GST-mu and GST-pi were expressed primarily in islet cells of the body and tail. The greater content of xenobiotic-metabolizing and carcinogen-activating CYP enzymes and a lower expression of detoxifying GST enzymes in the head of the pancreas could be one reason for the greater susceptibility of this region for inflammatory and malignant diseases. Copyright 2002 S. Karger AG, Basel and IAP

  10. Diallyl trisulfide attenuated n-hexane induced neurotoxicity in rats by modulating P450 enzymes.

    PubMed

    Wang, Shuo; Li, Ming; Wang, Xujing; Li, Xianjie; Yin, Hongyin; Jiang, Lulu; Han, Wenting; Irving, Gleniece; Zeng, Tao; Xie, Keqin

    2017-03-01

    Chronic exposure to n-hexane can induce serious nerve system impairments without effective preventive medicines. Diallyl trisulfide (DATS) is a garlic-derived organosulfur compound, which has been demonstrated to have many beneficial effects. The current study was designed to evaluate whether DATS could restrain n-hexane induced neurotoxicity in rats and to explore the underlying mechanisms. Rats were treated with n-hexane (3 g/kg, p.o.) and different doses of DATS (10, 20 and 30 mg/kg, p.o.) for 8 weeks. Behavioral assessment showed that DATS could inhibit n-hexane induced neurotoxicity, demonstrated by the improvement of the grip strength and decline of gait scores. Toxicokinetic analysis revealed that the C max and AUC 0-t of 2,5-hexanedione (product of n-hexane metabolic activation) and 2,5-hexanedione protein adducts in serum were significantly declined in DATS-treated rats, and the levels of pyrrole adducts in tissues were significantly reduced. Furthermore, DATS activated CYP1A1 and inhibited n-hexane induced increased expression and activity of CYP2E1 and CYP2B1. Collectively, these findings indicated that DATS protected the rats from n-hexane-induced neurotoxicity, which might be attributed to the modulation of P450 enzymes by DATS. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Multienzyme kinetics and sequential metabolism.

    PubMed

    Wienkers, Larry C; Rock, Brooke

    2014-01-01

    Enzymes are the catalysts of biological systems and are extremely efficient. A typical enzyme accelerates the rate of a reaction by factors of at least a million compared to the rate of the same reaction in the absence of the enzyme. In contrast to traditional catalytic enzymes, the family of cytochrome P450 (CYP) enzymes are catalytically promiscuous, and thus they possess remarkable versatility in substrates. The great diversity of reactions catalyzed by CYP enzymes appears to be based on two unique properties of these heme proteins, the ability of their iron to exist under multiple oxidation states with different reactivities and a flexible active site that can accommodate a wide variety of substrates. Herein is a discussion of two distinct types of kinetics observed with CYP enzymes. The first example is of CYP complex kinetic profiles when multiple CYP enzymes form the sample product. The second is sequential metabolism, in other words, the formation of multiple products from one CYP enzyme. Given the degree of CYP enzyme promiscuity, it is hardly surprising that there is also a high degree of complex kinetic profiles generated during the catalytic cycle.

  12. Cytochrome P450 Organization and Function Are Modulated by Endoplasmic Reticulum Phospholipid Heterogeneity.

    PubMed

    Brignac-Huber, Lauren M; Park, Ji Won; Reed, James R; Backes, Wayne L

    2016-12-01

    Cytochrome P450s (P450s) comprise a superfamily of proteins that catalyze numerous monooxygenase reactions in animals, plants, and bacteria. In eukaryotic organisms, these proteins not only carry out reactions necessary for the metabolism of endogenous compounds, but they are also important in the oxidation of exogenous drugs and other foreign compounds. Eukaryotic P450 system proteins generally reside in membranes, primarily the endoplasmic reticulum or the mitochondrial membrane. These membranes provide a scaffold for the P450 system proteins that facilitate interactions with their redox partners as well as other P450s. This review focuses on the ability of specific lipid components to influence P450 activities, as well as the role of the membrane in P450 function. These studies have shown that P450s and NADPH-cytochrome P450 reductase appear to selectively associate with specific phospholipids and that these lipid-protein interactions influence P450 activities. Finally, because of the heterogeneous nature of the endoplasmic reticulum as well as other biologic membranes, the phospholipids are not arranged randomly but associate to generate lipid microdomains. Together, these characteristics can affect P450 function by 1) altering the conformation of the proteins, 2) influencing the P450 interactions with their redox partners, and 3) affecting the localization of the proteins into specific membrane microdomains. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Heterologous expression of equine CYP3A94 and investigation of a tunable system to regulate co-expressed NADPH P450 oxidoreductase levels.

    PubMed

    Dettwiler, Ramona; Schmitz, Andrea L; Plattet, Philippe; Zielinski, Jana; Mevissen, Meike

    2014-01-01

    The activity of cytochrome P450 enzymes depends on the enzyme NADPH P450 oxidoreductase (POR). The aim of this study was to investigate the activity of the equine CYP3A94 using a system that allows to regulate the POR protein levels in mammalian cells. CYP3A94 and the equine POR were heterologously expressed in V79 cells. In the system used, the POR protein regulation is based on a destabilizing domain (DD) that transfers its instability to a fused protein. The resulting fusion protein is therefore degraded by the ubiquitin-proteasome system (UPS). Addition of "Shield-1" prevents the DD fusion protein from degradation. The change of POR levels at different Shield-1 concentrations was demonstrated by cytochrome c reduction, Western immunoblot analysis, and immunocytochemistry. The alteration of CYP3A94 activity was investigated using a substrate (BFC) known to detect CYP3A4 activity. Equine CYP3A94 was demonstrated to be metabolically active and its activity could be significantly elevated by co-expression of POR. Cytochrome c reduction was significantly increased in V79-CYP3A94/DD-POR cells compared to V79-CYP3A94 cells. Surprisingly, incubation with different Shield-1 concentrations resulted in a decrease in POR protein shown by Western immunoblot analysis. Cytochrome c reduction did not change significantly, but the CYP3A94 activity decreased more than 4-fold after incubation with 500 nM and 1 µM Shield-1 for 24 hours. No differences were obtained when V79-CYP3A94 POR cells with and without Shield-1 were compared. The basal activity levels of V79-CYP3A94/DD-POR cells were unexpectedly high, indicating that DD/POR is not degraded without Shield-1. Shield-1 decreased POR protein levels and CYP3A94 activity suggesting that Shield-1 might impair POR activity by an unknown mechanism. Although regulation of POR with the pPTuner system could not be obtained, the cell line V79-CYP3A94/DD-POR system can be used for further experiments to characterize the equine CYP3A94 since the CYP activity was significantly enhanced with co-expressed POR.

  14. Heterologous Expression of Equine CYP3A94 and Investigation of a Tunable System to Regulate Co-Expressed NADPH P450 Oxidoreductase Levels

    PubMed Central

    Dettwiler, Ramona; Schmitz, Andrea L.; Plattet, Philippe; Zielinski, Jana; Mevissen, Meike

    2014-01-01

    The activity of cytochrome P450 enzymes depends on the enzyme NADPH P450 oxidoreductase (POR). The aim of this study was to investigate the activity of the equine CYP3A94 using a system that allows to regulate the POR protein levels in mammalian cells. CYP3A94 and the equine POR were heterologously expressed in V79 cells. In the system used, the POR protein regulation is based on a destabilizing domain (DD) that transfers its instability to a fused protein. The resulting fusion protein is therefore degraded by the ubiquitin-proteasome system (UPS). Addition of “Shield-1” prevents the DD fusion protein from degradation. The change of POR levels at different Shield-1 concentrations was demonstrated by cytochrome c reduction, Western immunoblot analysis, and immunocytochemistry. The alteration of CYP3A94 activity was investigated using a substrate (BFC) known to detect CYP3A4 activity. Equine CYP3A94 was demonstrated to be metabolically active and its activity could be significantly elevated by co-expression of POR. Cytochrome c reduction was significantly increased in V79-CYP3A94/DD-POR cells compared to V79-CYP3A94 cells. Surprisingly, incubation with different Shield-1 concentrations resulted in a decrease in POR protein shown by Western immunoblot analysis. Cytochrome c reduction did not change significantly, but the CYP3A94 activity decreased more than 4-fold after incubation with 500 nM and 1 µM Shield-1 for 24 hours. No differences were obtained when V79-CYP3A94 POR cells with and without Shield-1 were compared. The basal activity levels of V79-CYP3A94/DD-POR cells were unexpectedly high, indicating that DD/POR is not degraded without Shield-1. Shield-1 decreased POR protein levels and CYP3A94 activity suggesting that Shield-1 might impair POR activity by an unknown mechanism. Although regulation of POR with the pPTuner system could not be obtained, the cell line V79-CYP3A94/DD-POR system can be used for further experiments to characterize the equine CYP3A94 since the CYP activity was significantly enhanced with co-expressed POR. PMID:25415624

  15. Assembly of lipase and P450 fatty acid decarboxylase to constitute a novel biosynthetic pathway for production of 1-alkenes from renewable triacylglycerols and oils.

    PubMed

    Yan, Jinyong; Liu, Yi; Wang, Cong; Han, Bingnan; Li, Shengying

    2015-01-01

    Biogenic hydrocarbons (biohydrocarbons) are broadly accepted to be the ideal 'drop-in' biofuel alternative to petroleum-based fuels due to their highly similar chemical composition and physical characteristics. The biological production of aliphatic hydrocarbons is largely dependent on engineering of the complicated enzymatic network surrounding fatty acid biosynthesis. In this work, we developed a novel system for bioproduction of terminal fatty alkenes (1-alkenes) from renewable and low-cost triacylglycerols (TAGs) based on the lipase hydrolysis coupled to the P450 catalyzed decarboxylation. This artificial biosynthetic pathway was constituted using both cell-free systems including purified enzymes or cell-free extracts, and cell-based systems including mixed resting cells or growing cells. The issues of high cost of fatty acid feedstock and complicated biosynthesis network were addressed by replacement of the de novo biosynthesized fatty acids with the fed cheap TAGs. This recombinant tandem enzymatic pathway consisting of the Thermomyces lanuginosus lipase (Tll) and the P450 fatty acid decarboxylase OleTJE resulted in the production of 1-alkenes from purified TAGs or natural oils with 6.7 to 46.0% yields. Since this novel hydrocarbon-producing pathway only requires two catalytically efficient enzymatic steps, it may hold great potential for industrial application by fulfilling the large-scale and cost-effective conversion of renewable TAGs into biohydrocarbons. This work highlights the power of designing and implementing an artificial pathway for production of advanced biofuels.

  16. Oxidation of Methyl and Ethyl Nitrosamines by Cytochromes P450 2E1 and 2B1

    PubMed Central

    Chowdhury, Goutam; Calcutt, M. Wade; Nagy, Leslie D.; Guengerich, F. Peter

    2012-01-01

    Cytochrome P450 (P450) 2E1 is the major enzyme that oxidizes N-nitrosodimethylamine (N,N-dimethylnitrosamine, DMN), a carcinogen and also a representative of some nitrosamines formed endogenously. Oxidation of DMN by rat or human P450 2E1 to HCHO showed a high apparent intrinsic kinetic deuterium isotope effect (KIE), ≥ 8. The KIE was not attenuated in non-competitive intermolecular experiments with rat liver microsomes (DV 12.5, D(V/K) 10.9, nomenclature of Northrop, D.B. (1982) Methods Enzymol. 87, 607–625) but was with purified human P450 2E1 (DV 3.3, D(V/K) 3.7), indicating that C-H bond breaking is partially rate-limiting with human P450 2E1. With N-nitrosodiethylamine (N,N-diethylnitrosamine, DEN), the intrinsic KIE was slightly lower and was not expressed (e.g., D(V/K) 1.2) in non-competitive intermolecular experiments. The same general pattern of KIEs was also seen in the D(V/K) results with DMN and DEN for the minor products resulting from the denitrosation reactions (CH3NH2, CH3CH2NH2, and NO2−). Experiments with deuterated N-nitroso-N-methyl,N-ethylamine demonstrated that the lower KIEs associated for ethyl compared to methyl oxidation could be distinguished within a single molecule. P450 2E1 oxidized DMN and DEN to aldehydes and then to the carboxylic acids. No kinetic lags were observed in acid formation; pulse-chase experiments with carrier aldehydes showed only limited equilibration with P450 2E1-bound aldehydes, indicative of processive reactions, as reported for P450 2A6 (Chowdhury, G. et al. (2010) J. Biol. Chem. 285, 8031–8044). These same features (no lag phase for HCO2H formation, lack of equilibration in pulse-chase assays) were also seen with (rat) P450 2B1, which has lower catalytic efficiency for DMN oxidation and a larger active site. Thus, the processivity of dialkylnitrosamine oxidation appears to be shared by a number of P450s. PMID:23186213

  17. Nanoscale Electron Transport Measurements of Immobilized Cytochrome P450 Proteins

    PubMed Central

    Bostick, Christopher D.; Flora, Darcy R.; Gannett, Peter M.; Tracy, Timothy S.; Lederman, David

    2015-01-01

    Gold nanopillars, functionalized with an organic self-assembled monolayer, can be used to measure the electrical conductance properties of immobilized proteins without aggregation. Measurements of the conductance of nanopillars with cytochrome P450 2C9 (CYP2C9) proteins using conducting probe atomic force microscopy demonstrate that a correlation exists between the energy barrier height between hopping sites and CYP2C9 metabolic activity. Measurements performed as a function of tip force indicate that, when subjected to a large force, the protein is more stable in the presence of a substrate. This agrees with the hypothesis that substrate entry into the active site helps to stabilize the enzyme. The relative distance between hopping sites also increases with increasing force, possibly because protein functional groups responsible for electron transport depend on the structure of the protein. The inhibitor sulfaphenazole, in addition to the previously studied aniline, increased the barrier height for electron transfer and thereby makes CYP2C9 reduction more difficult and inhibits metabolism. This suggests that P450 Type II binders may decrease the ease of electron transport processes in the enzyme, in addition to occupying the active site. PMID:25804257

  18. Promising Tools in Prostate Cancer Research: Selective Non-Steroidal Cytochrome P450 17A1 Inhibitors

    PubMed Central

    Bonomo, Silvia; Hansen, Cecilie H.; Petrunak, Elyse M.; Scott, Emily E.; Styrishave, Bjarne; Jørgensen, Flemming Steen; Olsen, Lars

    2016-01-01

    Cytochrome P450 17A1 (CYP17A1) is an important target in the treatment of prostate cancer because it produces androgens required for tumour growth. The FDA has approved only one CYP17A1 inhibitor, abiraterone, which contains a steroidal scaffold similar to the endogenous CYP17A1 substrates. Abiraterone is structurally similar to the substrates of other cytochrome P450 enzymes involved in steroidogenesis, and interference can pose a liability in terms of side effects. Using non-steroidal scaffolds is expected to enable the design of compounds that interact more selectively with CYP17A1. Therefore, we combined a structure-based virtual screening approach with density functional theory (DFT) calculations to suggest non-steroidal compounds selective for CYP17A1. In vitro assays demonstrated that two such compounds selectively inhibited CYP17A1 17α-hydroxylase and 17,20-lyase activities with IC50 values in the nanomolar range, without affinity for the major drug-metabolizing CYP2D6 and CYP3A4 enzymes and CYP21A2, with the latter result confirmed in human H295R cells. PMID:27406023

  19. Modulation of steroidogenesis by vitamin D3 in granulosa cells of the mouse model of polycystic ovarian syndrome.

    PubMed

    Bakhshalizadeh, Shabnam; Amidi, Fardin; Alleyassin, Ashraf; Soleimani, Masoud; Shirazi, Reza; Shabani Nashtaei, Maryam

    2017-06-01

    Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder of women of reproductive age characterized by polycystic ovarian morphology, anovulation or oligomenorrhea, and hyperandrogenism. It is shown that disruption in the steroidogenesis pathway caused by excess androgen in PCOS is a critical element of abnormal folliculogenesis and failure in dominant follicle selection. Vitamin D plays an important role in the regulation of ovulatory dysfunction and can influence genes involved in steroidogenesis in granulosa cells. In the present study, we investigated the effects of vitamin D3 on steroidogenic enzyme expression and activities in granulosa cell using a PCOS mouse model. In our study, the PCOS mouse model was developed by the injection of dehydroepiandrosterone (DHEA) for 20 days. The mRNA and protein expression levels of genes involved in steroidogenesis in granulosa cells were compared between polycystic and normal ovaries using real-time PCR and Western blotting assays. Granulosa cells of DHEA-induced PCOS mice were then cultured with and without vitamin D3 and mRNA and protein expression levels of steroidogenic enzymes and serum 17beta-estradiol and progesterone levels were investigated using qRT-PCR, western blot, and radioimmunoassay, respectively. Steroidogenic enzymes including Cyp11a1, StAR, Cyp19a1, and 3β-HSD were upregulated in granulosa cells of PCOS mice when compared to normal mice. Treatment with vitamin D3 decreased mRNA and protein expression levels of steroidogenic enzymes in cultured granulosa cells. Vitamin D3 also decreased aromatase and 3β-HSD activity that leads to decreased 17beta-estradiol and progesterone release. This study suggests that vitamin D3 could modulate the steroidogenesis pathway in granulosa cells of PCOS mice that may lead to improving follicular development and maturation. This is a step towards a possible conceivable treatment for PCOS. AMHR-II: anti-müllerian hormone receptor-II; 3β-HSD: 3β-hydroxysteroid dehydrogenase; Cyp11a1: Cytochrome P450 Family 11 Subfamily A Member 1; Cyp19a1: cytochrome P450 aromatase; DHEA: dehydroepiandrosterone; FSH: follicle stimulating hormone; FSHR: follicle stimulating hormone receptor; IVF: in vitro fertilization; 25OHD: 25-hydroxy vitamin D; OHSS: ovarian hyperstimulation syndrome; PCOS: polycystic ovarian syndrome; P450scc: P450 side-chain cleavage enzyme; StAR: steroidogenic acute regulatory protein; VDRs: vitamin D receptors.

  20. To Genotype or Phenotype for Personalized Medicine? CYP450 Drug Metabolizing Enzyme Genotype-Phenotype Concordance and Discordance in the Ecuadorian Population.

    PubMed

    De Andrés, Fernando; Terán, Santiago; Hernández, Francisco; Terán, Enrique; LLerena, Adrián

    2016-12-01

    Genetic variations within the cytochrome P450 (CYP450) superfamily of drug metabolizing enzymes confer substantial person-to-person and between-population differences in pharmacokinetics, and by extension, highly variable clinical effects of medicines. In this context, "personalized medicine," "precision medicine," and "stratified medicine" are related concepts attributed to what is essentially targeted therapeutics and companion diagnostics, aimed at improving safety and effectiveness of health interventions. We report here, to the best of our knowledge, the first comparative clinical pharmacogenomics study, in an Ecuadorian population sample, of five key CYP450s involved in drug metabolism: CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. In 139 unrelated, medication-free, and healthy Ecuadorian subjects, we measured the phenotypic activity of these drug metabolism pathways using the CEIBA multiplexed phenotyping cocktail. The subjects were genotyped for each CYP450 enzyme gene as well. Notably, based on the CYP450 metabolic phenotypes estimated by the genotype data, 0.75% and 3.10% of the subjects were genotypic poor metabolizers (gPMs) for CYP2C19 and CYP2D6, respectively. Additionally, on the other extreme, genotype-estimated ultrarapid metabolizer (gUMs) phenotype was represented by 15.79% of CYP2C19, and 5.43% of CYP2D6. There was, however, considerable discordance between directly measured phenotypes (mPMs and mUMs) and the above genotype-estimated enzyme phenotypes. For example, among individuals genotypically carrying enhanced activity alleles (gUMs), many showed a lower actual drug metabolism capacity than expected by their genotypes, even lower than individuals with reduced or no activity alleles. In conclusion, for personalized medicine in the Ecuadorian population, we recommend CYP450 multiplexed phenotyping, or genotyping and phenotyping in tandem, rather than CYP450 genotypic tests alone. Additionally, we recommend, in consideration of equity, ethical, and inclusive representation in global science, further precision medicine research and funding in support of neglected or understudied populations worldwide.

  1. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; de Vries, Emmely M; van Nierop, F Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R; Boelen, Anita; Romijn, Johannes A; Mathôt, Ron A A

    2015-06-01

    Experimental studies indicate that short-term fasting alters drug metabolism. However, the effects of short-term fasting on drug metabolism in humans need further investigation. Therefore, the aim of this study was to evaluate the effects of short-term fasting (36 h) on P450-mediated drug metabolism. In a randomized crossover study design, nine healthy subjects ingested a cocktail consisting of five P450-specific probe drugs [caffeine (CYP1A2), S-warfarin (CYP2C9), omeprazole (CYP2C19), metoprolol (CYP2D6), and midazolam (CYP3A4)] on two occasions (control study after an overnight fast and after 36 h of fasting). Blood samples were drawn for pharmacokinetic analysis using nonlinear mixed effects modeling. In addition, we studied in Wistar rats the effects of short-term fasting on hepatic mRNA expression of P450 isoforms corresponding with the five studied P450 enzymes in humans. In the healthy subjects, short-term fasting increased oral caffeine clearance by 20% (P = 0.03) and decreased oral S-warfarin clearance by 25% (P < 0.001). In rats, short-term fasting increased mRNA expression of the orthologs of human CYP1A2, CYP2C19, CYP2D6, and CYP3A4 (P < 0.05), and decreased the mRNA expression of the ortholog of CYP2C9 (P < 0.001) compared with the postabsorptive state. These results demonstrate that short-term fasting alters cytochrome P450-mediated drug metabolism in a nonuniform pattern. Therefore, short-term fasting is another factor affecting cytochrome P450-mediated drug metabolism in humans. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Role of reactive oxygen intermediates in the interferon-mediated depression of hepatic drug metabolism and protective effect of N-acetylcysteine in mice.

    PubMed

    Ghezzi, P; Bianchi, M; Gianera, L; Landolfo, S; Salmona, M

    1985-08-01

    Interferon (IFN) and IFN inducers are known to depress hepatic microsomal cytochrome P-450 levels, and the liver toxicity of IFN was reported to be lethal in newborn mice. We have observed that administration to mice of IFN and IFN inducers caused a marked increase in liver xanthine oxidase activity. Because this enzyme is well known to produce reactive oxygen intermediates and cytochrome P-450 was reported to be sensitive to the oxidative damage, we have tested the hypothesis that a free radical mechanism could mediate the depression of cytochrome P-450 levels by IFN. Administration to mice of the IFN inducer polyinosinic-polycytidylic acid (2 mg/kg i.p.) caused a 29 to 52% decrease in liver cytochrome P-450. Concomitant p.o. administration of the free radical scavenger, N-acetylcysteine (as a 2.5% solution in drinking water), or the xanthine oxidase inhibitor, allopurinol (100 mg/kg), protected against the IFN-mediated depression of P-450 kg), protected against the IFN-mediated depression of P-450 levels. The results suggest that an increased endogenous generation of free radicals, possibly due to the induction of xanthine oxidase, is implicated in the IFN-mediated depression of liver drug metabolism. The relevance of these data also extends to cases in which this side effect is observed in pathological situations (e.g., viral diseases and administration of vaccines) associated with an induction of IFN.

  3. Determination of Human Hepatic CYP2C8 and CYP1A2 Age-Dependent Expression to Support Human Health Risk Assessment for Early Ages

    EPA Science Inventory

    Predicting age-specific metabolism is important for evaluating age-related drug and chemical sensitivity. Multiple cytochrome P450s and carboxylesterase enzymes are responsible for human pyrethroid metabolism. Complete ontogeny data for each enzyme are needed to support in vitro ...

  4. Membrane Phospholipid Augments Cytochrome P4501a Enzymatic Activity by Modulating Structural Conformation during Detoxification of Xenobiotics

    PubMed Central

    Ghosh, Manik C.; Ray, Arun K.

    2013-01-01

    Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment. PMID:23469105

  5. Membrane phospholipid augments cytochrome P4501a enzymatic activity by modulating structural conformation during detoxification of xenobiotics.

    PubMed

    Ghosh, Manik C; Ray, Arun K

    2013-01-01

    Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment.

  6. Novel Use of Pharmacogenetic Testing in the Identification of CYP2C9 Polymorphisms Related to NSAID-Induced Gastropathy.

    PubMed

    Gupta, Anita; Zheng, Lu; Ramanujam, Vendhan; Gallagher, John

    2015-05-01

    To illustrate the potential value of pharmacogenetic testing to identify patients at risk for nonsteroidal anti-inflammatory drug-induced gastropathy. Case report. We report a case encountered in an outpatient setting for pain management. We present a case of a patient treated with celecoxib who developed severe nonsteroidal anti-inflammatory drug-induced gastropathy. Suspecting a relation between this adverse event and altered drug metabolism, pharmacogenetic testing was performed to assess the role of the cytochrome P450 (CP450) enzyme profile. Pharmacogenetic testing revealed a relation between this adverse event and an allelic variant of cytochrome P450, CYP2C9, subsequently leading to discontinuation of the drug along with counseling to caution the patient to avoid the use of celecoxib and other drugs metabolized by the same enzyme. Although pharmacogenetic testing is not routinely used in clinical decision making, pain physicians must be aware of the potential benefits of this testing for managing patients with pain, and to improve drug efficacy and safety profile. Wiley Periodicals, Inc.

  7. Roles of Human CYP2A6 and Monkey CYP2A24 and 2A26 Cytochrome P450 Enzymes in the Oxidation of 2,5,2',5'-Tetrachlorobiphenyl.

    PubMed

    Shimada, Tsutomu; Kakimoto, Kensaku; Takenaka, Shigeo; Koga, Nobuyuki; Uehara, Shotaro; Murayama, Norie; Yamazaki, Hiroshi; Kim, Donghak; Guengerich, F Peter; Komori, Masayuki

    2016-12-01

    2,5,2',5'-Tetrachlorobiphenyl (TCB) induced type I binding spectra with cytochrome P450 (P450) 2A6 and 2A13, with K s values of 9.4 and 0.51 µM, respectively. However, CYP2A6 oxidized 2,5,2',5'-TCB to form 4-hydroxylated products at a much higher rate (∼1.0 minute -1 ) than CYP2A13 (∼0.02 minute -1 ) based on analysis by liquid chromatography-tandem mass spectrometry. Formation of 4-hydroxy-2,5,2',5'-TCB by CYP2A6 was greater than that of 3-hydroxy-2,5,2',5'-TCB and three other hydroxylated products. Several human P450 enzymes, including CYP1A1, 1A2, 1B1, 2B6, 2D6, 2E1, 2C9, and 3A4, did not show any detectable activities in oxidizing 2,5,2',5'-TCB. Cynomolgus monkey CYP2A24, which shows 95% amino acid identity to human CYP2A6, catalyzed 4-hydroxylation of 2,5,2',5'-TCB at a higher rate (∼0.3 minute -1 ) than CYP2A26 (93% identity to CYP2A6, ∼0.13 minute -1 ) and CYP2A23 (94% identity to CYP2A13, ∼0.008 minute -1 ). None of these human and monkey CYP2A enzymes were catalytically active in oxidizing other TCB congeners, such as 2,4,3',4'-, 3,4,3',4'-, and 3,5,3',5'-TCB. Molecular docking analysis suggested that there are different orientations of interaction of 2,5,2',5'-TCB with the active sites (over the heme) of human and monkey CYP2A enzymes, and that ligand interaction energies (U values) of bound protein-ligand complexes show structural relationships of interaction of TCBs and other ligands with active sites of CYP2A enzymes. Catalytic differences in human and monkey CYP2A enzymes in the oxidation of 2,5,2',5'-TCB are suggested to be due to amino acid changes at substrate recognition sites, i.e., V110L, I209S, I300F, V365M, S369G, and R372H, based on the comparison of primary sequences. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Water Oxidation by a Cytochrome P450: Mechanism and Function of the Reaction

    PubMed Central

    Prasad, Brinda; Mah, Derrick J.; Lewis, Andrew R.; Plettner, Erika

    2013-01-01

    P450cam (CYP101A1) is a bacterial monooxygenase that is known to catalyze the oxidation of camphor, the first committed step in camphor degradation, with simultaneous reduction of oxygen (O2). We report that P450cam catalysis is controlled by oxygen levels: at high O2 concentration, P450cam catalyzes the known oxidation reaction, whereas at low O2 concentration the enzyme catalyzes the reduction of camphor to borneol. We confirmed, using 17O and 2H NMR, that the hydrogen atom added to camphor comes from water, which is oxidized to hydrogen peroxide (H2O2). This is the first time a cytochrome P450 has been observed to catalyze oxidation of water to H2O2, a difficult reaction to catalyze due to its high barrier. The reduction of camphor and simultaneous oxidation of water are likely catalyzed by the iron-oxo intermediate of P450cam, and we present a plausible mechanism that accounts for the 1∶1 borneol:H2O2 stoichiometry we observed. This reaction has an adaptive value to bacteria that express this camphor catabolism pathway, which requires O2, for two reasons: 1) the borneol and H2O2 mixture generated is toxic to other bacteria and 2) borneol down-regulates the expression of P450cam and its electron transfer partners. Since the reaction described here only occurs under low O2 conditions, the down-regulation only occurs when O2 is scarce. PMID:23634216

  9. Molecular and functional characterization of CYP6BQ23, a cytochrome P450 conferring resistance to pyrethroids in European populations of pollen beetle, Meligethes aeneus.

    PubMed

    Zimmer, Christoph T; Bass, Chris; Williamson, Martin S; Kaussmann, Martin; Wölfel, Katharina; Gutbrod, Oliver; Nauen, Ralf

    2014-02-01

    The pollen beetle (Meligethes aeneus F.) is widespread throughout much of Europe where it is a major coleopteran pest of oilseed rape (Brassica napus). The reliance on synthetic insecticides for control, particularly the pyrethroid class, has led to the development of populations with high levels of resistance. Resistance to pyrethroids is now widespread throughout Europe and is thought to be mediated by enhanced detoxification by cytochrome P450ś and/or mutation of the pyrethroid target-site, the voltage-gated sodium channel. However, in the case of cytochrome P450 mediated detoxification, the specific enzyme(s) involved has (have) not yet been identified. In this study a degenerate PCR approach was used to identify ten partial P450 gene sequences from pollen beetle. Quantitative PCR was then used to examine the level of expression of these genes in a range of pollen beetle populations that showed differing levels of resistance to pyrethroids in bioassays. The study revealed a single P450 gene, CYP6BQ23, which is significantly and highly overexpressed (up to ∼900-fold) in adults and larvae of pyrethroid resistant strains compared to susceptible strains. CYP6BQ23 overexpression is significantly correlated with both the level of resistance and with the rate of deltamethrin metabolism in microsomal preparations of these populations. Functional recombinant expression of full length CYP6BQ23 along with cytochrome P450 reductase in an insect (Sf9) cell line showed that it is able to efficiently metabolise deltamethrin to 4-hydroxy deltamethrin. Furthermore we demonstrated by detection of 4-hydroxy tau-fluvalinate using ESI-TOF MS/MS that functionally expressed CYP6BQ23 also metabolizes tau-fluvalinate. A protein model was generated and subsequent docking simulations revealed the predicted substrate-binding mode of both deltamethrin and tau-fluvalinate to CYP6BQ23. Taken together these results strongly suggest that the overexpression of CYP6BQ23 is the primary mechanism conferring pyrethroid resistance in pollen beetle populations throughout much of Europe. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The Cytochrome P450 Enzyme Responsible for the Production of (Z)-Norendoxifen in vitro.

    PubMed

    Ma, Jianli; Chu, Zhong; Lu, Jessica Bo Li; Liu, Jinzhong; Zhang, Qingyuan; Liu, Zhaoliang; Tang, Dabei

    2018-01-01

    Norendoxifen, an active metabolite of tamoxifen, is a potent aromatase inhibitor. Little information is available regarding production of norendoxifen in vitro. Here, we conducted a series of kinetic and inhibition studies in human liver microsomes (HLMs) and expressed P450s to study the metabolic disposition of norendoxifen. To validate that norendoxifen was the metabolite of endoxifen, metabolites in HLMs incubates of endoxifen were measured using a HPLC/MS/MS method. To further probe the specific isoforms involved in the metabolic route, endoxifen was incubated with recombinant P450s (CYP 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4, 3A5 and CYP4A11). Formation rates of norendoxifen were evaluated in the absence and presence of P450 isoform specific inhibitors using HLMs. The peak of norendoxifen was found in the incubations consisting of endoxifen, HLMs, and cofactors. The retention times of norendoxifen, endoxifen, and the internal standard (diphenhydramine) were 7.81, 7.97, and 5.86 min, respectively. The K m (app) and V max (app) values of norendoxifen formation from endoxifen in HLM was 47.8 μm and 35.39 pmol min -1 mg -1 . The apparent hepatic intrinsic clearances of norendoxifen formation were 0.74 μl mg -1 min. CYP3A5 and CYP2D6 were the major enzymes capable of norendoxifen formation from endoxifen with the rates of 0.26 and 0.86 pmol pmol -1 P450 × min. CYP1A2, 3A2, 2C9, and 2C19 also contributed to norendoxifen formation, but the contributions were at least 6-fold lower. One micromolar ketoconazole (CYP3A inhibitor) showed an inhibitory effect on the rates of norendoxifen formation by 45%, but 1 μm quinidine (CYP2D6 inhibitor) does not show any inhibitory effect. Norendoxifen, metabolism from endoxifen by multiple P450s that including CYP3A5. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  11. Transcriptome Analysis of an Insecticide Resistant Housefly Strain: Insights about SNPs and Regulatory Elements in Cytochrome P450 Genes.

    PubMed

    Mahmood, Khalid; Højland, Dorte H; Asp, Torben; Kristensen, Michael

    2016-01-01

    Insecticide resistance in the housefly, Musca domestica, has been investigated for more than 60 years. It will enter a new era after the recent publication of the housefly genome and the development of multiple next generation sequencing technologies. The genetic background of the xenobiotic response can now be investigated in greater detail. Here, we investigate the 454-pyrosequencing transcriptome of the spinosad-resistant 791spin strain in relation to the housefly genome with focus on P450 genes. The de novo assembly of clean reads gave 35,834 contigs consisting of 21,780 sequences of the spinosad resistant strain. The 3,648 sequences were annotated with an enzyme code EC number and were mapped to 124 KEGG pathways with metabolic processes as most highly represented pathway. One hundred and twenty contigs were annotated as P450s covering 44 different P450 genes of housefly. Eight differentially expressed P450s genes were identified and investigated for SNPs, CpG islands and common regulatory motifs in promoter and coding regions. Functional annotation clustering of metabolic related genes and motif analysis of P450s revealed their association with epigenetic, transcription and gene expression related functions. The sequence variation analysis resulted in 12 SNPs and eight of them found in cyp6d1. There is variation in location, size and frequency of CpG islands and specific motifs were also identified in these P450s. Moreover, identified motifs were associated to GO terms and transcription factors using bioinformatic tools. Transcriptome data of a spinosad resistant strain provide together with genome data fundamental support for future research to understand evolution of resistance in houseflies. Here, we report for the first time the SNPs, CpG islands and common regulatory motifs in differentially expressed P450s. Taken together our findings will serve as a stepping stone to advance understanding of the mechanism and role of P450s in xenobiotic detoxification.

  12. FTIR studies of the redox partner interaction in cytochrome P450: the Pdx-P450cam couple.

    PubMed

    Karyakin, Andrey; Motiejunas, Domantas; Wade, Rebecca C; Jung, Christiane

    2007-03-01

    Recently we have developed a new approach to study protein-protein interactions using Fourier transform infrared spectroscopy in combination with titration experiments and principal component analysis (FTIR-TPCA). In the present paper we review the FTIR-TPCA results obtained for the interaction between cytochrome P450 and the redox partner protein in two P450 systems, the Pseudomonas putida P450cam (CYP101) with putidaredoxin (P450cam-Pdx), and the Bacillus megaterium P450BM-3 (CYP102) heme domain with the FMN domain (P450BMP-FMND). Both P450 systems reveal similarities in the structural changes that occur upon redox partner complex formation. These involve an increase in beta-sheets and alpha-helix content, a decrease in the population of random coil/3(10)-helix structure, a redistribution of turn structures within the interacting proteins and changes in the protonation states or hydrogen-bonding of amino acid carboxylic side chains. We discuss in detail the P450cam-Pdx interaction in comparison with literature data and conclusions drawn from experiments obtained by other spectroscopic techniques. The results are also interpreted in the context of a 3D structural model of the Pdx-P450cam complex.

  13. Altered carbohydrate, lipid, and xenobiotic metabolism by liver from rats flown on Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Merrill, A. H. Jr; Hoel, M.; Wang, E.; Mullins, R. E.; Hargrove, J. L.; Jones, D. P.; Popova, I. A.; Merrill AH, J. r. (Principal Investigator)

    1990-01-01

    To determine the possible biochemical effects of prolonged weightlessness on liver function, samples of liver from rats that had flown aboard Cosmos 1887 were analyzed for protein, glycogen, and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. Among the parameters measured, the major differences were elevations in the glycogen content and hydroxymethylglutaryl-CoA (HMG-CoA) reductase activities for the rats flown on Cosmos 1887 and decreases in the amount of microsomal cytochrome P-450 and the activities of aniline hydroxylase and ethylmorphine N-demethylase, cytochrome P-450-dependent enzymes. These results support the earlier finding of differences in these parameters and suggest that altered hepatic function could be important during spaceflight and/or the postflight recovery period.

  14. Two Herbivore-Induced Cytochrome P450 Enzymes CYP79D6 and CYP79D7 Catalyze the Formation of Volatile Aldoximes Involved in Poplar Defense[C][W

    PubMed Central

    Irmisch, Sandra; Clavijo McCormick, Andrea; Boeckler, G. Andreas; Schmidt, Axel; Reichelt, Michael; Schneider, Bernd; Block, Katja; Schnitzler, Jörg-Peter; Gershenzon, Jonathan; Unsicker, Sybille B.; Köllner, Tobias G.

    2013-01-01

    Aldoximes are known as floral and vegetative plant volatiles but also as biosynthetic intermediates for other plant defense compounds. While the cytochrome P450 monooxygenases (CYP) from the CYP79 family forming aldoximes as biosynthetic intermediates have been intensively studied, little is known about the enzymology of volatile aldoxime formation. We characterized two P450 enzymes, CYP79D6v3 and CYP79D7v2, which are involved in herbivore-induced aldoxime formation in western balsam poplar (Populus trichocarpa). Heterologous expression in Saccharomyces cerevisiae revealed that both enzymes produce a mixture of different aldoximes. Knockdown lines of CYP79D6/7 in gray poplar (Populus × canescens) exhibited a decreased emission of aldoximes, nitriles, and alcohols, emphasizing that the CYP79s catalyze the first step in the formation of a complex volatile blend. Aldoxime emission was found to be restricted to herbivore-damaged leaves and is closely correlated with CYP79D6 and CYP79D7 gene expression. The semi-volatile phenylacetaldoxime decreased survival and weight gain of gypsy moth (Lymantria dispar) caterpillars, suggesting that aldoximes may be involved in direct defense. The wide distribution of volatile aldoximes throughout the plant kingdom and the presence of CYP79 genes in all sequenced genomes of angiosperms suggest that volatile formation mediated by CYP79s is a general phenomenon in the plant kingdom. PMID:24220631

  15. To Analyze the Amelioration of Phenobarbital Induced Oxidative Stress by Erucin, as Indicated by Biochemical and Histological Alterations.

    PubMed

    Arora, Rohit; Bhushan, Sakshi; Kumar, Rakesh; Mannan, Rahul; Kaur, Pardeep; Singh, Bikram; Sharma, Ritika; Vig, Adarsh Pal; Singh, Balbir; Singh, Amrit Pal; Arora, Saroj

    2016-01-01

    Phenobarbital is a commonly employed antidepressant and anti-epileptic drug. The cancer promoting activity of this genotoxic xenobiotic is often ignored. It is responsible for oxidative stress leading to modulation in xenobiotic and antioxidative enzymes. Glucosinolates and more specifically their hydrolytic products are known for their antioxidative and anticancer activities. The present study involves the analysis of hepatoprotective effect of erucin (isolated from Eruca sativa (Mill.) Thell.) against phenobarbital mediated hepatic damage in male wistar rats. The liver homogenate was analyzed for oxidative stress (superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione reductase and lactate dehydrogenase), other oxidative parameters (thiobarbituric acid reactive species, conjugated dienes and lipid hydroperoxide), phase I enzymes (NADPH-cytochrome P450 reductase, NADH-cytochrome b5 reductase, cytochrome P420, cytochrome P450 and cytochrome b5), phase II enzymes (γ-glutamyl transpeptidase, DT-diaphorase and glutathione-S-transferase), serum parameters (alkaline phosphatase, serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, direct bilirubin and total bilirubin) and certain histological parameters. Erucin accorded protection from phenobarbital induced hepatic damage by normalizing antioxidative enzymes, other oxidative parameters, phase I, II, and serum parameters. Erucin, an analogue of sulforaphane has the potential to act as an anticancer agent by regulating various biochemical parameters.

  16. Identification of Novel Pathways of Osimertinib Disposition and Potential Implications for the Outcome of Lung Cancer Therapy.

    PubMed

    MacLeod, A Kenneth; Lin, De; Huang, Jeffrey T-J; McLaughlin, Lesley A; Henderson, Colin J; Wolf, C Roland

    2018-05-01

    Purpose: Osimertinib is a third-generation inhibitor of the epidermal growth factor receptor used in treatment of non-small cell lung cancer. A full understanding of its disposition and capacity for interaction with other medications will facilitate its effective use as a single agent and in combination therapy. Experimental Design: Recombinant cytochrome P450s and liver microsomal preparations were used to identify novel pathways of osimertinib metabolism in vitro A panel of knockout and mouse lines humanized for pathways of drug metabolism were used to establish the relevance of these pathways in vivo Results: Although some osimertinib metabolites were similar in mouse and human liver samples there were several significant differences, in particular a marked species difference in the P450s involved. The murine Cyp2d gene cluster played a predominant role in mouse, whereas CYP3A4 was the major human enzyme responsible for osimertinib metabolism. Induction of this enzyme in CYP3A4 humanized mice substantially decreased circulating osimertinib exposure. Importantly, we discovered a further novel pathway of osimertinib disposition involving CPY1A1. Modulation of CYP1A1/CYP1A2 levels markedly reduced parent drug concentrations, significantly altering metabolite pharmacokinetics (PK) in humanized mice in vivo Conclusions: We demonstrate that a P450 enzyme expressed in smokers' lungs and lung tumors has the capacity to metabolise osimertinib. This could be a significant factor in defining the outcome of osimertinib treatment. This work also illustrates how P450-humanized mice can be used to identify and mitigate species differences in drug metabolism and thereby model the in vivo effect of critical metabolic pathways on anti-tumor response. Clin Cancer Res; 24(9); 2138-47. ©2018 AACR . ©2018 American Association for Cancer Research.

  17. The Inactivation of Human CYP2E1 by Phenethyl Isothiocyanate, a Naturally Occurring Chemopreventive Agent, and Its Oxidative Bioactivation

    PubMed Central

    Yoshigae, Yasushi; Sridar, Chitra; Kent, Ute M.

    2013-01-01

    Phenethylisothiocyanate (PEITC), a naturally occurring isothiocyanate and potent cancer chemopreventive agent, works by multiple mechanisms, including the inhibition of cytochrome P450 (P450) enzymes, such as CYP2E1, that are involved in the bioactivation of carcinogens. PEITC has been reported to be a mechanism-based inactivator of some P450s. We describe here the possible mechanism for the inactivation of human CYP2E1 by PEITC, as well as the putative intermediate that might be involved in the bioactivation of PEITC. PEITC inactivated recombinant CYP2E1 with a partition ratio of 12, and the inactivation was not inhibited in the presence of glutathione (GSH) and not fully recovered by dialysis. The inactivation of CYP2E1 by PEITC is due to both heme destruction and protein modification, with the latter being the major pathway for inactivation. GSH-adducts of phenethyl isocyanate (PIC) and phenethylamine were detected during the metabolism by CYP2E1, indicating formation of PIC as a reactive intermediate following P450-catalyzed desulfurization of PEITC. Surprisingly, PIC bound covalently to CYP2E1 to form protein adducts but did not inactivate the enzyme. Liquid chromatography mass spectroscopy analysis of the inactivated CYP2E1 apo-protein suggests that a reactive sulfur atom generated during desulfurization of PEITC is involved in the inactivation of CYP2E1. Our data suggest that the metabolism of PEITC by CYP2E1 that results in the inactivation of CYP2E1 may occur by a mechanism similar to that observed with other sulfur-containing compounds, such as parathion. Digestion of the inactivated enzyme and analysis by SEQUEST showed that Cys 268 may be the residue modified by PIC. PMID:23371965

  18. Rapid down-regulation of testicular androgen biosynthesis at increased environmental temperature is due to cytochrome P450c17 (CYP17) thermolability in Leydig cells, but not in endoplasmic reticulum membranes.

    PubMed

    Kühn-Velten, W N

    1996-01-01

    To identify possible molecular targets in moderate heat-induced, short-term derangements of rat testicular endocrine function, rates of androgen and precursor biosynthesis and key enzyme concentrations were compared at 38 degrees C (normal body core temperature) and 31 degrees C (normal scrotal temperature) in three in-vitro models of decreasing complexity and increasing specificity. In purified Leydig cells and similarly in decapsulated testes, gross testosterone secretion was by 20% higher at 38 degrees C under basal conditions and during the initial phase of stimulation with hCG or cAMP; longer (> 1 hour) exposure to the elevated temperature resulted in a marked decrease (52% after 3 hours) of testosterone response to hCG or cAMP as compared to the corresponding rates at 31 degrees C. This phenomenon was neither due to the development of hormone resistance at the receptor level nor to restricted cholesterol supply and turnover nor to increased testosterone accumulation. Whereas mitochondrial CYP11A (cytochrome P450cscc: cholesterol monooxygenase) was absolutely temperature-insensitive in all systems tested, CYP17 (cytochrome P450c17: steroid-17 alpha-monooxygenase/C17, 20-aldolase) in the smooth endoplasmic reticulum responded with a 57% loss in whole testes and 39% loss in purified Leydig cells upon a 3-hour temperature elevation from 31 degrees C to 38 degrees C. In contrast, CYP17 was stable (4% loss) when tested directly in microsomal membranes. It is concluded that CYP17, but not CYP11A, is very sensitive towards even moderate elevation of environmental temperature, and that this apparent lability is not an intrinsic property of the enzyme protein but rather mediated by heat-activated intracellular factors.

  19. Identification of Human Sulfotransferases Involved in Lorcaserin N-Sulfamate Formation.

    PubMed

    Sadeque, Abu J M; Palamar, Safet; Usmani, Khawja A; Chen, Chuan; Cerny, Matthew A; Chen, Weichao G

    2016-04-01

    Lorcaserin [(R)-8-chloro-1-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine] hydrochloride hemihydrate, a selective serotonin 5-hydroxytryptamine (5-HT) 5-HT(2C) receptor agonist, is approved by the U.S. Food and Drug Administration for chronic weight management. Lorcaserin is primarily cleared by metabolism, which involves multiple enzyme systems with various metabolic pathways in humans. The major circulating metabolite is lorcaserin N-sulfamate. Both human liver and renal cytosols catalyze the formation of lorcaserin N-sulfamate, where the liver cytosol showed a higher catalytic efficiency than renal cytosol. Human sulfotransferases (SULTs) SULT1A1, SULT1A2, SULT1E1, and SULT2A1 are involved in the formation of lorcaserin N-sulfamate. The catalytic efficiency of these SULTs for lorcaserin N-sulfamate formation is widely variable, and among the SULT isoforms SULT1A1 was the most efficient. The order of intrinsic clearance for lorcaserin N-sulfamate is SULT1A1 > SULT2A1 > SULT1A2 > SULT1E1. Inhibitory effects of lorcaserin N-sulfamate on major human cytochrome P450 (P450) enzymes were not observed or minimal. Lorcaserin N-sulfamate binds to human plasma protein with high affinity (i.e., >99%). Thus, despite being the major circulating metabolite, the level of free lorcaserin N-sulfamate would be minimal at a lorcaserin therapeutic dose and unlikely be sufficient to cause drug-drug interactions. Considering its formation kinetic parameters, high plasma protein binding affinity, minimal P450 inhibition or induction potential, and stability, the potential for metabolic drug-drug interaction or toxicological effects of lorcaserin N-sulfamate is remote in a normal patient population. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  20. A comparative genomic analysis of the oxidative enzymes potentially involved in lignin degradation by Agaricus bisporus.

    PubMed

    Doddapaneni, Harshavardhan; Subramanian, Venkataramanan; Fu, Bolei; Cullen, Dan

    2013-06-01

    The oxidative enzymatic machinery for degradation of organic substrates in Agaricus bisporus (Ab) is at the core of the carbon recycling mechanisms in this fungus. To date, 156 genes have been tentatively identified as part of this oxidative enzymatic machinery, which includes 26 peroxidase encoding genes, nine copper radical oxidase [including three putative glyoxal oxidase-encoding genes (GLXs)], 12 laccases sensu stricto and 109 cytochrome P450 monooxygenases. Comparative analyses of these enzymes in Ab with those of the white-rot fungus, Phanerochaete chrysosporium, the brown-rot fungus, Postia placenta, the coprophilic litter fungus, Coprinopsis cinerea and the ectomychorizal fungus, Laccaria bicolor, revealed enzyme diversity consistent with adaptation to substrates rich in humic substances and partially degraded plant material. For instance, relative to wood decay fungi, Ab cytochrome P450 genes were less numerous (109 gene models), distributed among distinctive families, and lacked extensive duplication and clustering. Viewed together with P450 transcript accumulation patterns in three tested growth conditions, these observations were consistent with the unique Ab lifestyle. Based on tandem gene arrangements, a certain degree of gene duplication seems to have occurred in this fungus in the copper radical oxidase (CRO) and the laccase gene families. In Ab, high transcript levels and regulation of the heme-thiolate peroxidases, two manganese peroxidases and the three GLX-like genes are likely in response to complex natural substrates, including lignocellulose and its derivatives, thereby suggesting an important role in lignin degradation. On the other hand, the expression patterns of the related CROs suggest a developmental role in this fungus. Based on these observations, a brief comparative genomic overview of the Ab oxidative enzyme machinery is presented. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Structure and function of CYP108D1 from Novosphingobium aromaticivorans DSM12444: an aromatic hydrocarbon-binding P450 enzyme.

    PubMed

    Bell, Stephen G; Yang, Wen; Yorke, Jake A; Zhou, Weihong; Wang, Hui; Harmer, Jeffrey; Copley, Rachel; Zhang, Aili; Zhou, Ruimin; Bartlam, Mark; Rao, Zihe; Wong, Luet Lok

    2012-03-01

    CYP108D1 from Novosphingobium aromaticivorans DSM12444 binds a range of aromatic hydrocarbons such as phenanthrene, biphenyl and phenylcyclohexane. Its structure, which is reported here at 2.2 Å resolution, is closely related to that of CYP108A1 (P450terp), an α-terpineol-oxidizing enzyme. The compositions and structures of the active sites of these two enzymes are very similar; the most significant changes are the replacement of Glu77 and Thr103 in CYP108A1 by Thr79 and Val105 in CYP108D1. Other residue differences lead to a larger and more hydrophobic access channel in CYP108D1. These structural features are likely to account for the weaker α-terpineol binding by CYP108D1 and, when combined with the presence of three hydrophobic phenylalanine residues in the active site, promote the binding of aromatic hydrocarbons. The haem-proximal surface of CYP108D1 shows a different charge distribution and topology to those of CYP101D1, CYP101A1 and CYP108A1, including a pronounced kink in the proximal loop of CYP108D1, which may result in poor complementarity with the [2Fe-2S] ferredoxins Arx, putidaredoxin and terpredoxin that are the respective redox partners of these three P450 enzymes. The unexpectedly low reduction potential of phenylcyclohexane-bound CYP108D1 (-401 mV) may also contribute to the low activity observed with these ferredoxins. CYP108D1 appears to function as an aromatic hydrocarbon hydroxylase that requires a different electron-transfer cofactor protein.

  2. RNA-sequencing quantification of hepatic ontogeny of phase-I enzymes in mice.

    PubMed

    Peng, Lai; Cui, Julia Y; Yoo, Byunggil; Gunewardena, Sumedha S; Lu, Hong; Klaassen, Curtis D; Zhong, Xiao-Bo

    2013-12-01

    Phase-I drug metabolizing enzymes catalyze reactions of hydrolysis, reduction, and oxidation of drugs and play a critical role in drug metabolism. However, the functions of most phase-I enzymes are not mature at birth, which markedly affects drug metabolism in newborns. Therefore, characterization of the expression profiles of phase-I enzymes and the underlying regulatory mechanisms during liver maturation is needed for better estimation of using drugs in pediatric patients. The mouse is an animal model widely used for studying the mechanisms in the regulation of developmental expression of phase-I genes. Therefore, we applied RNA sequencing to provide a "true quantification" of the mRNA expression of phase-I genes in the mouse liver during development. Liver samples of male C57BL/6 mice at 12 different ages from prenatal to adulthood were used for defining the ontogenic mRNA profiles of phase-I families, including hydrolysis: carboxylesterase (Ces), paraoxonase (Pon), and epoxide hydrolase (Ephx); reduction: aldo-keto reductase (Akr), quinone oxidoreductase (Nqo), and dihydropyrimidine dehydrogenase (Dpyd); and oxidation: alcohol dehydrogenase (Adh), aldehyde dehydrogenase (Aldh), flavin monooxygenases (Fmo), molybdenum hydroxylase (Aox and Xdh), cytochrome P450 (P450), and cytochrome P450 oxidoreductase (Por). Two rapidly increasing stages of total phase-I gene expression after birth reflect functional transition of the liver during development. Diverse expression patterns were identified, and some large gene families contained the mRNA of genes that are enriched at different stages of development. Our study reveals the mRNA abundance of phase-I genes in the mouse liver during development and provides a valuable foundation for mechanistic studies in the future.

  3. Degradation of Morpholine by an Environmental Mycobacterium Strain Involves a Cytochrome P-450

    PubMed Central

    Poupin, P.; Truffaut, N.; Combourieu, B.; Besse, P.; Sancelme, M.; Veschambre, H.; Delort, A. M.

    1998-01-01

    A Mycobacterium strain (RP1) was isolated from a contaminated activated sludge collected in a wastewater treatment unit of a chemical plant. It was capable of utilizing morpholine and other heterocyclic compounds, such as pyrrolidine and piperidine, as the sole source of carbon, nitrogen, and energy. The use of in situ 1H nuclear magnetic resonance (1H NMR) spectroscopy allowed the determination of two intermediates in the biodegradative pathway, 2-(2-aminoethoxy)acetate and glycolate. The inhibitory effects of metyrapone on the degradative abilities of strain RP1 indicated the involvement of a cytochrome P-450 in the biodegradation of morpholine. This observation was confirmed by spectrophotometric analysis and 1H NMR. Reduced cell extracts from morpholine-grown cultures, but not succinate-grown cultures, gave rise to a carbon monoxide difference spectrum with a peak near 450 nm, which indicated the presence of a soluble cytochrome P-450. 1H NMR allowed the direct analysis of the incubation medium containing metyrapone, a specific inhibitor of cytochrome P-450. The inhibition of morpholine degradation was dependent on the morpholine/metyrapone ratio. The heme-containing monooxygenase was also detected in pyrrolidine- and piperidine-grown cultures. The abilities of different compounds to support strain growth or the induction of a soluble cytochrome P-450 were assayed. The results suggest that this enzyme catalyzes the cleavage of the C—N bond of the morpholine ring. PMID:9435074

  4. Mutation of the Inducible ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2 Alters Lignin Composition and Improves Saccharification1[W][OPEN

    PubMed Central

    Sundin, Lisa; Vanholme, Ruben; Geerinck, Jan; Goeminne, Geert; Höfer, René; Kim, Hoon; Ralph, John; Boerjan, Wout

    2014-01-01

    ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE1 (ATR1) and ATR2 provide electrons from NADPH to a large number of CYTOCHROME P450 (CYP450) enzymes in Arabidopsis (Arabidopsis thaliana). Whereas ATR1 is constitutively expressed, the expression of ATR2 appears to be induced during lignin biosynthesis and upon stresses. Therefore, ATR2 was hypothesized to be preferentially involved in providing electrons to the three CYP450s involved in lignin biosynthesis: CINNAMATE 4-HYDROXYLASE (C4H), p-COUMARATE 3-HYDROXYLASE1 (C3H1), and FERULATE 5-HYDROXYLASE1 (F5H1). Here, we show that the atr2 mutation resulted in a 6% reduction in total lignin amount in the main inflorescence stem and a compositional shift of the remaining lignin to a 10-fold higher fraction of p-hydroxyphenyl units at the expense of syringyl units. Phenolic profiling revealed shifts in lignin-related phenolic metabolites, in particular with the substrates of C4H, C3H1 and F5H1 accumulating in atr2 mutants. Glucosinolate and flavonol glycoside biosynthesis, both of which also rely on CYP450 activities, appeared less affected. The cellulose in the atr2 inflorescence stems was more susceptible to enzymatic hydrolysis after alkaline pretreatment, making ATR2 a potential target for engineering plant cell walls for biofuel production. PMID:25315601

  5. Biochemical and structural characterization of CYP109A2, a vitamin D3 25-hydroxylase from Bacillus megaterium.

    PubMed

    Abdulmughni, Ammar; Jóźwik, Ilona K; Brill, Elisa; Hannemann, Frank; Thunnissen, Andy-Mark W H; Bernhardt, Rita

    2017-11-01

    Cytochrome P450 enzymes are increasingly investigated due to their potential application as biocatalysts with high regio- and/or stereo-selectivity and under mild conditions. Vitamin D 3 (VD 3 ) metabolites are of pharmaceutical importance and are applied for the treatment of VD 3 deficiency and other disorders. However, the chemical synthesis of VD 3 derivatives shows low specificity and low yields. In this study, cytochrome P450 CYP109A2 from Bacillus megaterium DSM319 was expressed, purified, and shown to oxidize VD 3 with high regio-selectivity. The in vitro conversion, using cytochrome P450 reductase (BmCPR) and ferredoxin (Fdx2) from the same strain, showed typical Michaelis-Menten reaction kinetics. A whole-cell system in B. megaterium overexpressing CYP109A2 reached 76 ± 5% conversion after 24 h and allowed to identify the main product by NMR analysis as 25-hydroxylated VD 3 . Product yield amounted to 54.9 mg·L -1 ·day -1 , rendering the established whole-cell system as a highly promising biocatalytic route for the production of this valuable metabolite. The crystal structure of substrate-free CYP109A2 was determined at 2.7 Å resolution, displaying an open conformation. Structural analysis predicts that CYP109A2 uses a highly similar set of residues for VD 3 binding as the related VD 3 hydroxylases CYP109E1 from B. megaterium and CYP107BR1 (Vdh) from Pseudonocardia autotrophica. However, the folds and sequences of the BC loops in these three P450s are highly divergent, leading to differences in the shape and apolar/polar surface distribution of their active site pockets, which may account for the observed differences in substrate specificity and the regio-selectivity of VD 3 hydroxylation. The atomic coordinates and structure factors have been deposited in the Protein Data Bank with accession code 5OFQ (substrate-free CYP109A2). Cytochrome P450 monooxygenase CYP109A2, EC 1.14.14.1, UniProt ID: D5DF88, Ferredoxin, UniProt ID: D5DFQ0, cytochrome P450 reductase, EC 1.8.1.2, UniProt ID: D5DGX1. © 2017 Federation of European Biochemical Societies.

  6. Single or Multiple Access Channels to the CYP450s Active Site? An Answer from Free Energy Simulations of the Human Aromatase Enzyme.

    PubMed

    Magistrato, Alessandra; Sgrignani, Jacopo; Krause, Rolf; Cavalli, Andrea

    2017-05-04

    Cytochromes P450 (CYP450s), in particular, CYP19A1 and CYP17A1, are key clinical targets of breast and prostate anticancer therapies, critical players in drug metabolism, and their overexpression in tumors is associated with drug resistance. In these enzymes, ligand (substrates, drugs) metabolism occurs in deeply buried active sites accessible only via several grueling channels, whose exact biological role remains unclear. Gaining direct insights on the mechanism by which ligands travel in and out is becoming increasingly important given that channels are involved in the modulation of binding/dissociation kinetics and the specificity of ligands toward a CYP450. This has profound implications for enzymatic efficiency and drug efficacy/toxicity. Here, by applying free energy methods, for a cumulative simulation time of 20 μs, we provide detailed atomistic characterization and free energy profiles of the entry/exit routes preferentially followed by a substrate (androstenedione) and a last-generation inhibitor (letrozole) to/from the catalytic site of CYP19A1 (the human aromatase (HA) enzyme), a key clinical target against breast cancer, studied here as prototypical CYP450. Despite the remarkably different size/shape/hydrophobicity of the ligands, two channels appear accessible to their entrance, while only one exit route appears to be preferential. Our study shows that the preferential paths may be conserved among different CYP450s. Moreover, our results highlight that, at least in the case of HA, ligand channeling is associated with large enzyme structural rearrangements. A wise choice of the computational method and very long simulations are, thus, required to obtain fully converged quantitative free energy profiles, which might be used to design novel biocatalysts or next-generation cytochrome inhibitors with an in silico tuned K m .

  7. Insecticide resistance in the sand fly, Phlebotomus papatasi from Khartoum State, Sudan.

    PubMed

    Hassan, Mo'awia Mukhtar; Widaa, Sally Osman; Osman, Osman Mohieldin; Numiary, Mona Siddig Mohammed; Ibrahim, Mihad Abdelaal; Abushama, Hind Mohammed

    2012-03-07

    Phlebotomus papatasi the vector of cutaneous leishmaniasis (CL) is the most widely spread sand fly in Sudan. No data has previously been collected on insecticide susceptibility and/or resistance of this vector, and a first study to establish a baseline data is reported here. Sand flies were collected from Surogia village, (Khartoum State), Rahad Game Reserve (eastern Sudan) and White Nile area (Central Sudan) using light traps. Sand flies were reared in the Tropical Medicine Research Institute laboratory. The insecticide susceptibility status of first progeny (F1) of P. papatasi of each population was tested using WHO insecticide kits. Also, P. papatasi specimens from Surogia village and Rahad Game Reserve were assayed for activities of enzyme systems involved in insecticide resistance (acetylcholinesterase (AChE), non-specific carboxylesterases (EST), glutathione-S-transferases (GSTs) and cytochrome p450 monooxygenases (Cyt p450). Populations of P. papatasi from White Nile and Rahad Game Reserve were sensitive to dichlorodiphenyltrichloroethane (DDT), permethrin, malathion, and propoxur. However, the P. papatasi population from Surogia village was sensitive to DDT and permethrin but highly resistant to malathion and propoxur. Furthermore, P. papatasi of Surogia village had significantly higher insecticide detoxification enzyme activity than of those of Rahad Game Reserve. The sand fly population in Surogia displayed high AChE activity and only three specimens had elevated levels for EST and GST. The study provided evidence for malathion and propoxur resistance in the sand fly population of Surogia village, which probably resulted from anti-malarial control activities carried out in the area during the past 50 years.

  8. Insecticide resistance in the sand fly, Phlebotomus papatasi from Khartoum State, Sudan

    PubMed Central

    2012-01-01

    Background Phlebotomus papatasi the vector of cutaneous leishmaniasis (CL) is the most widely spread sand fly in Sudan. No data has previously been collected on insecticide susceptibility and/or resistance of this vector, and a first study to establish a baseline data is reported here. Methods Sand flies were collected from Surogia village, (Khartoum State), Rahad Game Reserve (eastern Sudan) and White Nile area (Central Sudan) using light traps. Sand flies were reared in the Tropical Medicine Research Institute laboratory. The insecticide susceptibility status of first progeny (F1) of P. papatasi of each population was tested using WHO insecticide kits. Also, P. papatasi specimens from Surogia village and Rahad Game Reserve were assayed for activities of enzyme systems involved in insecticide resistance (acetylcholinesterase (AChE), non-specific carboxylesterases (EST), glutathione-S-transferases (GSTs) and cytochrome p450 monooxygenases (Cyt p450). Results Populations of P. papatasi from White Nile and Rahad Game Reserve were sensitive to dichlorodiphenyltrichloroethane (DDT), permethrin, malathion, and propoxur. However, the P. papatasi population from Surogia village was sensitive to DDT and permethrin but highly resistant to malathion and propoxur. Furthermore, P. papatasi of Surogia village had significantly higher insecticide detoxification enzyme activity than of those of Rahad Game Reserve. The sand fly population in Surogia displayed high AChE activity and only three specimens had elevated levels for EST and GST. Conclusions The study provided evidence for malathion and propoxur resistance in the sand fly population of Surogia village, which probably resulted from anti-malarial control activities carried out in the area during the past 50 years. PMID:22397726

  9. Time required for sex change in teleost fishes: Hormonal dynamics shaped by selection.

    PubMed

    Yamaguchi, Sachi

    2016-10-21

    Bidirectional sex change is observed in many teleost fish. When social conditions change, the sex transition may take place over a period of several days to a few months. To understand temporal differences for sex change in either direction, I propose a simple mathematical model for the hormone-enzyme dynamics. Aromatase (P450arom) catalyses the synthesis of estradiol from testosterone. I assume that a change in social conditions for individuals affects the rates of production and degradation of P450arom. I then consider the evolution of parameters in the dynamics. Optimal parameter values are those that minimize total fitness cost, defined as the sum of fitness losses due to delay in being a functional male or female, and the cost of accelerated degradation of P450arom in changing from female to male sex. The model predicts that, in haremic species, sex change promotes a faster degradation of P450arom, resulting in a faster female-to-male transition than male-to-female transition. In contrast, in monogamous species, or with a small number of females, there is no benefit in a faster degradation of P450arom when changing to male, resulting in approximately equal timespans for sex change in either direction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Natural variations in xenobiotic-metabolizing enzymes: developing tools for coral monitoring

    NASA Astrophysics Data System (ADS)

    Rougée, L. R. A.; Richmond, R. H.; Collier, A. C.

    2014-06-01

    The continued deterioration of coral reefs worldwide demonstrates the need to develop diagnostic tools for corals that go beyond general ecological monitoring and can identify specific stressors at sublethal levels. Cellular diagnostics present an approach to defining indicators (biomarkers) that have the potential to reflect the impact of stress at the cellular level, allowing for the detection of intracellular changes in corals prior to outright mortality. Detoxification enzymes, which may be readily induced or inhibited by environmental stressors, present such a set of indicators. However, in order to apply these diagnostic tools for the detection of stress, a detailed understanding of their normal, homeostatic levels within healthy corals must first be established. Herein, we present molecular and biochemical evidence for the expression and activity of major Phase I detoxification enzymes cytochrome P450 (CYP450), CYP2E1, and CYP450 reductase, as well as the Phase II enzymes UDP, glucuronosyltransferase (UGT), β-glucuronidase, glutathione- S-transferase (GST), and arylsulfatase C (ASC) in the coral Pocillopora damicornis. Additionally, we characterized enzyme expression and activity variations over a reproductive cycle within a coral's life history to determine natural endogenous changes devoid of stress exposure. Significant changes in enzyme activity over the coral's natural lunar reproductive cycle were observed for CYP2E1 and CYP450 reductase as well as UGT and GST, while β-glucuronidase and ASC did not fluctuate significantly. The data represent a baseline description of `health' for the expression and activity of these enzymes that can be used toward understanding the impact of environmental stressors on corals. Such knowledge can be applied to address causes of coral reef ecosystem decline and to monitor effectiveness of mitigation strategies. Achieving a better understanding of cause-and-effect relationships between putative stressors and biological responses in corals, and other marine invertebrates, can guide and evaluate mitigation and conservation approaches for marine ecosystem protection.

  11. On-line coupling of immobilized cytochrome P450 microreactor and capillary electrophoresis: A promising tool for drug development.

    PubMed

    Schejbal, Jan; Řemínek, Roman; Zeman, Lukáš; Mádr, Aleš; Glatz, Zdeněk

    2016-03-11

    In this work, the combination of an immobilized enzyme microreactor (IMER) based on the clinically important isoform cytochrome P450 2C9 (CYP2C9) with capillary electrophoresis (CE) is presented. The CYP2C9 was attached to magnetic SiMAG-carboxyl microparticles using the carbodiimide method. The formation of an IMER in the inlet part of the separation capillary was ensured by two permanent magnets fixed in a cassette from the CE apparatus in the repulsive arrangement. The resulting on-line system provides an integration of enzyme reaction mixing and incubation, reaction products separation, detection and quantification into a single fully automated procedure with the possibility of repetitive use of the enzyme and minuscule amounts of reactant consumption. The on-line kinetic and inhibition studies of CYP2C9's reaction with diclofenac as a model substrate and sulfaphenazole as a model inhibitor were conducted in order to demonstrate its practical applicability. Values of the apparent Michalis-Menten constant, apparent maximum reaction velocity, Hill coefficient, apparent inhibition constant and half-maximal inhibition concentration were determined on the basis of the calculation of the effective substrate and inhibitor concentrations inside the capillary IMER using a model described by the Hagen-Poisseulle law and a novel enhanced model that reflects the influence of the reactants' diffusion during the injection process. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The Effects of Milk Thistle (Silybum marianum) on Human Cytochrome P450 Activity

    PubMed Central

    Kawaguchi-Suzuki, Marina; Frye, Reginald F.; Zhu, Hao-Jie; Brinda, Bryan J.; Chavin, Kenneth D.; Bernstein, Hilary J.

    2014-01-01

    Milk thistle (Silybum marianum) extracts are widely used as a complementary and alternative treatment of various hepatic conditions and a host of other diseases/disorders. The active constituents of milk thistle supplements are believed to be the flavonolignans contained within the extracts. In vitro studies have suggested that some milk thistle components may significantly inhibit specific cytochrome P450 (P450) enzymes. However, determining the potential for clinically significant drug interactions with milk thistle products has been complicated by inconsistencies between in vitro and in vivo study results. The aim of the present study was to determine the effect of a standardized milk thistle supplement on major P450 drug-metabolizing enzymes after a 14-day exposure period. CYP1A2, CYP2C9, CYP2D6, and CYP3A4/5 activities were measured by simultaneously administering the four probe drugs, caffeine, tolbutamide, dextromethorphan, and midazolam, to nine healthy volunteers before and after exposure to a standardized milk thistle extract given thrice daily for 14 days. The three most abundant falvonolignans found in plasma, following exposure to milk thistle extracts, were silybin A, silybin B, and isosilybin B. The concentrations of these three major constituents were individually measured in study subjects as potential perpetrators. The peak concentrations and areas under the time-concentration curves of the four probe drugs were determined with the milk thistle administration. Exposure to milk thistle extract produced no significant influence on CYP1A2, CYP2C9, CYP2D6, or CYP3A4/5 activities. PMID:25028567

  13. Chimeric mice transplanted with human hepatocytes as a model for prediction of human drug metabolism and pharmacokinetics.

    PubMed

    Sanoh, Seigo; Ohta, Shigeru

    2014-03-01

    Preclinical studies in animal models are used routinely during drug development, but species differences of pharmacokinetics (PK) between animals and humans have to be taken into account in interpreting the results. Human hepatocytes are also widely used to examine metabolic activities mediated by cytochrome P450 (P450) and other enzymes, but such in vitro metabolic studies also have limitations. Recently, chimeric mice with humanized liver (h-chimeric mice), generated by transplantation of human donor hepatocytes, have been developed as a model for the prediction of metabolism and PK in humans, using both in vitro and in vivo approaches. The expression of human-specific metabolic enzymes and metabolic activities was confirmed in humanized liver of h-chimeric mice with high replacement ratios, and several reports indicate that the profiles of P450 and non-P450 metabolism in these mice adequately reflect those in humans. Further, the combined use of h-chimeric mice and r-chimeric mice, in which endogenous hepatocytes are replaced with rat hepatocytes, is a promising approach for evaluation of species differences in drug metabolism. Recent work has shown that data obtained in h-chimeric mice enable the semi-quantitative prediction of not only metabolites, but also PK parameters, such as hepatic clearance, of drug candidates in humans, although some limitations remain because of differences in the metabolic activities, hepatic blood flow and liver structure between humans and mice. In addition, fresh h-hepatocytes can be isolated reproducibly from h-chimeric mice for metabolic studies. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Macrolide drug interactions: an update.

    PubMed

    Pai, M P; Graci, D M; Amsden, G W

    2000-04-01

    To describe the current drug interaction profiles for the commonly used macrolides in the US and Europe, and to comment on the clinical impact of these interactions. A MEDLINE search (1975-1998) was performed to identify all pertinent studies, review articles, and case reports. When appropriate information was not available in the literature, data were obtained from the product manufacturers. All available data were reviewed to provide an unbiased account of possible drug interactions. Data for some of the interactions were not available from the literature, but were available from abstracts or company-supplied materials. Although the data were not always explicit, the best attempt was made to deliver pertinent information that clinical practitioners would need to formulate practice opinions. When more in-depth information was supplied in the form of a review or study report, a thorough explanation of pertinent methodology was supplied. Several clinically significant drug interactions have been identified since the approval of erythromycin. These interactions usually were related to the inhibition of the cytochrome P450 enzyme systems, which are responsible for the metabolism of many drugs. The decreased metabolism by the macrolides has in some instances resulted in potentially severe adverse events. The development and marketing of newer macrolides are hoped to improve the drug interaction profile associated with this class. However, this has produced variable success. Some of the newer macrolides demonstrated an interaction profile similar to that of erythromycin; others have improved profiles. The most success in avoiding drug interactions related to the inhibition of cytochrome P450 has been through the development of the azalide subclass, of which azithromycin is the first and only to be marketed. Azithromycin has not been demonstrated to inhibit the cytochrome P450 system in studies using a human liver microsome model, and to date has produced none of the classic drug interactions characteristic of the macrolides. Most of the available data regarding macrolide drug interactions are from studies in healthy volunteers and case reports. These data suggest that clarithromycin appears to have an interaction profile similar to that of erythromycin. Given this similarity, it is important to consider the interaction profile of clarithromycin when using erythromycin. This is especially necessary as funds for further studies of a medication available in generic form (e.g., erythromycin) are limited. Azithromycin has produced few clinically significant interactions with any agent cleared through the cytochrome P450 enzyme system. Although the available data are promising, the final test should come from studies conducted in patients who are taking potentially interacting compounds on a chronic basis.

  15. The synergistic effects of insecticidal essential oils and piperonyl butoxide on biotransformational enzyme activities in Aedes aegypti (Diptera: Culicidae).

    PubMed

    Waliwitiya, Ranil; Nicholson, Russell A; Kennedy, Christopher J; Lowenberger, Carl A

    2012-05-01

    The biochemical mechanisms underlying the increased toxicity of several plant essential oils (thymol, eugenol, pulegone, terpineol, and citronellal) against fourth instar of Aedes aegypti L. when exposed simultaneously with piperonyl butoxide (PBO) were examined. Whole body biotransformational enzyme activities including cytochrome P450-mediated oxidation (ethoxyresorufin O-dethylase [EROD]), glutathione S-transferase (GST), and beta-esterase activity were measured in control, essential oil-exposed only (single chemical), and essential oil + PBO (10 mg/liter) exposed larvae. At high concentrations, thymol, eugenol, pulegone, and citronellal alone reduced EROD activity by 5-25% 16 h postexposure. Terpineol at 10 mg/liter increased EROD activity by 5 +/- 1.8% over controls. The essential oils alone reduced GST activity by 3-20% but PBO exposure alone did not significantly affect the activity of any of the measured enzymes. All essential oils in combination with PBO reduced EROD activity by 58-76% and reduced GST activity by 3-85% at 16 h postexposure. This study indicates a synergistic interaction between essential oils and PBO in inhibiting the cytochrome P450 and GST detoxification enzymes in Ae. aegypti.

  16. Effects of obesity on liver cytochromes P450 in various animal models.

    PubMed

    Tomankova, Veronika; Anzenbacher, Pavel; Anzenbacherova, Eva

    2017-06-01

    The prevalence of obesity and other obesity-related diseases is increasing worldwide. Obesity is a disease characterized by increased body weight, or a condition resulting from excessive accumulation of body fat. Due to increased body fat deposits, obesity has also been associated with increased mortality resulting from higher incidence rates of hypertension, diabetes, or various types of cancer, such as breast, colorectal, cervical and prostate cancer. Physiological changes associated with obesity are likely to result in altered drug biotransformation. The main enzymes enabling the oxidative biotransformation of most drugs are cytochromes P450 (CYPs). The review summarizes how pathophysiological factors, especially obesity, affect properties (e.g. enzyme activity, protein expression, gene expression) of CYP enzymes in various experimental models of human obesity. Results reported by various authors suggest that obesity is associated with a decrease of CYP activities (except for the CYP2C and CYP2E1 enzymes). The only exception is mouse obesity induced by monosodium glutamate (administered to newborn mice) as it usually leads to increased CYP expression. Selecting an animal model that is as close as possible to the properties of human obesity is of paramount importance.

  17. Metabolization and degradation kinetics of the urban-use pesticide fipronil by white rot fungus Trametes versicolor.

    PubMed

    Wolfand, Jordyn M; LeFevre, Gregory H; Luthy, Richard G

    2016-10-12

    Fipronil is a recalcitrant phenylpyrazole-based pesticide used for flea/tick treatment and termite control that is distributed in urban aquatic environments via stormwater and contributes to stream toxicity. We discovered that fipronil is rapidly metabolized (t 1/2 = 4.2 d) by the white rot fungus Trametes versicolor to fipronil sulfone and multiple previously unknown fipronil transformation products, lowering fipronil concentration by 96.5%. Using an LC-QTOF-MS untargeted metabolomics approach, we identified four novel fipronil fungal transformation products: hydroxylated fipronil sulfone, glycosylated fipronil sulfone, and two compounds with unresolved structures. These results are consistent with identified enzymatic detoxification pathways wherein conjugation with sugar moieties follows initial ring functionalization (hydroxylation). The proposed pathway is supported by kinetic evidence of transformation product formation. Fipronil loss by sorption, hydrolysis, and photolysis was negligible. When T. versicolor was exposed to the cytochrome P450 enzyme inhibitor 1-aminobenzotriazole, oxidation of fipronil and production of hydroxylated and glycosylated transformation products significantly decreased (p = 0.038, 0.0037, 0.0023, respectively), indicating that fipronil is metabolized intracellularly by cytochrome P450 enzymes. Elucidating fipronil transformation products is critical because pesticide target specificity can be lost via structural alteration, broadening classes of impacted organisms. Integration of fungi in engineered natural treatment systems could be a viable strategy for pesticide removal from stormwater runoff.

  18. Transgenic Production of Epoxy Fatty Acids by Expression of a Cytochrome P450 Enzyme from Euphorbia lagascae Seed

    PubMed Central

    Cahoon, Edgar B.; Ripp, Kevin G.; Hall, Sarah E.; McGonigle, Brian

    2002-01-01

    Seed oils of a number of Asteraceae and Euphorbiaceae species are enriched in 12-epoxyoctadeca-cis-9-enoic acid (vernolic acid), an unusual 18-carbon Δ12-epoxy fatty acid with potential industrial value. It has been previously demonstrated that the epoxy group of vernolic acid is synthesized by the activity of a Δ12-oleic acid desaturase-like enzyme in seeds of the Asteraceae Crepis palaestina and Vernonia galamensis. In contrast, results from metabolic studies have suggested the involvement of a cytochrome P450 enzyme in vernolic acid synthesis in seeds of the Euphorbiaceae species Euphorbia lagascae. To clarify the biosynthetic origin of vernolic acid in E. lagascae seed, an expressed sequence tag analysis was conducted. Among 1,006 randomly sequenced cDNAs from developing E. lagascae seeds, two identical expressed sequence tags were identified that encode a cytochrome P450 enzyme classified as CYP726A1. Consistent with the seed-specific occurrence of vernolic acid in E. lagascae, mRNA corresponding to the CYP726A1 gene was abundant in developing seeds, but was not detected in leaves. In addition, expression of the E. lagascae CYP726A1 cDNA in Saccharomyces cerevisiae was accompanied by production of vernolic acid in cultures supplied with linoleic acid and an epoxy fatty acid tentatively identified as 12-epoxyoctadeca-9,15-dienoic acid (12-epoxy-18:2Δ9,15) in cultures supplied with α-linolenic acid. Consistent with this, expression of CYP726A1 in transgenic tobacco (Nicotiana tabacum) callus or somatic soybean (Glycine max) embryos resulted in the accumulation of vernolic acid and 12-epoxy-18:2Δ9,15. Overall, these results conclusively demonstrate that Asteraceae species and the Euphorbiaceae E. lagascae have evolved structurally unrelated enzymes to generate the Δ12-epoxy group of vernolic acid. PMID:11842164

  19. Effects of combined treatment of α-tocopherol, L-ascorbic acid, selenium and zinc on bleomycin, etoposide and cisplatin-induced alterations in testosterone synthesis pathway in rats.

    PubMed

    Kilarkaje, Narayana

    2014-12-01

    To investigate the effects of therapeutically relevant dose levels of bleomycin, etoposide and cisplatin (BEP) on testicular steroidogenic enzymes, and possible protective effects of an antioxidant cocktail (AC). Adult Sprague-Dawley rats received BEP with or without the AC (α-tocopherol, L-ascorbic acid, selenium and zinc) for either (a) 4 days (short term; 1.5, 15 and 3 mg/kg), or (b) three cycles of 21 days each (0.75, 7.5 and 1.5 mg/kg), or (c) the three cycles with a 63-day recovery period. The expression of steroidogenic enzymes were measured in the testes by Western blotting and immunofluorescent labeling. The short-term BEP exposure resulted in a decrease in scavenger receptor class-B1 and an increase in luteinizing hormone receptor (LHR). The AC with or without BEP has increased the levels of LHR, 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-HSD, but without significant changes in testosterone levels. The three cycles of BEP up-regulated the expression of steroidogenic acute regulatory protein (StAR) and down-regulated that of cholesterol side chain cleavage enzyme (P450scc), cytochrome p450 17A1 (Cyp17A1, recovered by the AC) and 17β-HSD, associated with significant reduction in testosterone levels. The three cycles with the recovery time led to decreases in LHR, StAR, P450scc and Cyp17A1 and increases in 3β-HSD and 17β-HSD. The AC did not enhance the recovery of the enzyme levels. The three cycles of BEP treatment inhibit the testosterone synthesis pathway even after the recovery time. The AC recovers the effects of BEP chemotherapy on a few steroidogenic enzymes.

  20. Santalbic acid from quandong kernels and oil fed to rats affects kidney and liver P450.

    PubMed

    Jones, G P; Watson, T G; Sinclair, A J; Birkett, A; Dunt, N; Nair, S S; Tonkin, S Y

    1999-09-01

    Kernels of the plant Santalum acuminatum (quandong) are eaten as Australian 'bush foods'. They are rich in oil and contain relatively large amounts of the acetylenic fatty acid, santalbic acid (trans-11-octadecen-9-ynoic acid), whose chemical structure is unlike that of normal dietary fatty acids. When rats were fed high fat diets in which oil from quandong kernels supplied 50% of dietary energy, the proportion of santalbic acid absorbed was more than 90%. Feeding quandong oil elevated not only total hepatic cytochrome P450 but also the cytochrome P450 4A subgroup of enzymes as shown by a specific immunoblotting technique. A purified methyl santalbate preparation isolated from quandong oil was fed to rats at 9% of dietary energy for 4 days and this also elevated cytochrome P450 4A in both kidney and liver microsomes in comparison with methyl esters from canola oil. Santalbic acid appears to be metabolized differently from the usual dietary fatty acids and the consumption of oil from quandong kernels may cause perturbations in normal fatty acid biochemistry.

  1. Cytochrome P450s from the fall armyworm (Spodoptera frugiperda): responses to plant allelochemicals and pesticides.

    PubMed

    Giraudo, M; Hilliou, F; Fricaux, T; Audant, P; Feyereisen, R; Le Goff, G

    2015-02-01

    Spodoptera frugiperda is a polyphagous lepidopteran pest that encounters a wide range of toxic plant metabolites in its diet. The ability of this insect to adapt to its chemical environment might be explained by the action of major detoxification enzymes such as cytochrome P450s (or CYP). Forty-two sequences coding for P450s were identified and most of the transcripts were found to be expressed in the midgut, Malpighian tubules and fat body of S. frugiperda larvae. Relatively few P450s were expressed in the established cell line Sf9. In order to gain information on how these genes respond to different chemical compounds, larvae and Sf9 cells were exposed to plant secondary metabolites (indole, indole-3-carbinol, quercetin, 2-tridecanone and xanthotoxin), insecticides (deltamethrin, fipronil, methoprene, methoxyfenozide) or model inducers (clofibrate and phenobarbital). Several genes were induced by plant chemicals such as P450s from the 6B, 321A and 9A subfamilies. Only a few genes responded to insecticides, belonging principally to the CYP9A family. There was little overlap between the response in vivo measured in the midgut and the response in vitro in Sf9 cells. In addition, regulatory elements were detected in the promoter region of these genes. In conclusion, several P450s were identified that could potentially be involved in the adaptation of S. frugiperda to its chemical environment. © 2014 The Royal Entomological Society.

  2. Obesity during pregnancy affects sex steroid concentrations depending on fetal gender.

    PubMed

    Maliqueo, M; Cruz, G; Espina, C; Contreras, I; García, M; Echiburú, B; Crisosto, N

    2017-11-01

    It is not clear whether maternal obesity along with fetal gender affect sex steroid metabolism during pregnancy. Therefore, we compared sex steroid concentrations and placental expression of steroidogenic enzymes between non-obese and obese pregnant women with non-pathological pregnancies, and investigated the influence of fetal gender on these parameters. In 35 normal weight (body mass index (BMI) 20-24.9 kg m - 2 ) (controls) and 36 obese women (BMI 30-36 kg m - 2 ) (obese), a fasting blood sample was obtained at first and at third trimester of gestation to measure progesterone, dehydroepiandrosterone (DHEA), DHEA sulfate, androstenedione, testosterone and estradiol by liquid chromatography-tandem mass spectrometry and estrone by radioimmunoassay. In a subset of women, placental mRNA and protein expression of steroidogenic enzymes was measured by quantitative PCR and western blot, respectively. The comparisons were primarily made between controls and obese, and then separately according to fetal gender. At first and third trimesters of gestation serum progesterone was lower whereas testosterone was higher in obese women (P<0.05, respectively). Upon analyzing according to fetal gender, lower progesterone levels were present in obese pregnant women with male fetuses at first trimester and with female fetuses at third trimester (P<0.05, respectively). Testosterone was higher in obese women with male fetuses compared to control women with male fetuses (P<0.05). The placental protein expression of P450scc was higher in obese women compared to controls (P<0.05). P450 aromatase was higher in obese women with female fetuses (P=0.009), whereas in obese women with male fetuses P450 aromatase was lower compared to control women (P=0.026). Obesity in non-pathological pregnancies alters the maternal serum progesterone and testosterone concentrations depending on fetal gender. These changes can be attributed to gender-related placental adaptations, as the expression of P450 aromatase is different in placentas from females compared to males.

  3. Biocatalytic Conversion of Avermectin to 4"-Oxo-Avermectin: Heterologous Expression of the ema1 Cytochrome P450 Monooxygenase

    PubMed Central

    Molnár, István; Hill, D. Steven; Zirkle, Ross; Hammer, Philip E.; Gross, Frank; Buckel, Thomas G.; Jungmann, Volker; Pachlatko, Johannes Paul; Ligon, James M.

    2005-01-01

    The cytochrome P450 monooxygenase Ema1 from Streptomyces tubercidicus R-922 and its homologs from closely related Streptomyces strains are able to catalyze the regioselective oxidation of avermectin into 4"-oxo-avermectin, a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate (V. Jungmann, I. Molnár, P. E. Hammer, D. S. Hill, R. Zirkle, T. G. Buckel, D. Buckel, J. M. Ligon, and J. P. Pachlatko, Appl. Environ. Microbiol. 71:6968-6976, 2005). The gene for Ema1 has been expressed in Streptomyces lividans, Streptomyces avermitilis, and solvent-tolerant Pseudomonas putida strains using different promoters and vectors to provide biocatalytically competent cells. Replacing the extremely rare TTA codon with the more frequent CTG codon to encode Leu4 in Ema1 increased the biocatalytic activities of S. lividans strains producing this enzyme. Ferredoxins and ferredoxin reductases were also cloned from Streptomyces coelicolor and biocatalytic Streptomyces strains and tested in ema1 coexpression systems to optimize the electron transport towards Ema1. PMID:16269733

  4. Deletion of P399{sub E}401 in NADPH cytochrome P450 oxidoreductase results in partial mixed oxidase deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flueck, Christa E., E-mail: christa.flueck@dkf.unibe.ch; Mallet, Delphine; Hofer, Gaby

    2011-09-09

    Highlights: {yields} Mutations in human POR cause congenital adrenal hyperplasia. {yields} We are reporting a novel 3 amino acid deletion mutation in POR P399{sub E}401del. {yields} POR mutation P399{sub E}401del decreased P450 activities by 60-85%. {yields} Impairment of steroid metabolism may be caused by multiple hits. {yields} Severity of aromatase inhibition is related to degree of in utero virilization. -- Abstract: P450 oxidoreductase (POR) is the electron donor for all microsomal P450s including steroidogenic enzymes CYP17A1, CYP19A1 and CYP21A2. We found a novel POR mutation P399{sub E}401del in two unrelated Turkish patients with 46,XX disorder of sexual development. Recombinant PORmore » proteins were produced in yeast and tested for their ability to support steroid metabolizing P450 activities. In comparison to wild-type POR, the P399{sub E}401del protein was found to decrease catalytic efficiency of 21-hydroxylation of progesterone by 68%, 17{alpha}-hydroxylation of progesterone by 76%, 17,20-lyase action on 17OH-pregnenolone by 69%, aromatization of androstenedione by 85% and cytochrome c reduction activity by 80%. Protein structure analysis of the three amino acid deletion P399{sub E}401 revealed reduced stability and flexibility of the mutant. In conclusion, P399{sub E}401del is a novel mutation in POR that provides valuable genotype-phenotype and structure-function correlation for mutations in a different region of POR compared to previous studies. Characterization of P399{sub E}401del provides further insight into specificity of different P450s for interaction with POR as well as nature of metabolic disruptions caused by more pronounced effect on specific P450s like CYP17A1 and aromatase.« less

  5. [Expression of saponin biosynthesis related genes in different tissues of Panax quinquefolius].

    PubMed

    Wang, Kang-Yu; Liu, Wei-Can; Zhang, Mei-Ping; Zhao, Ming-Zhu; Wang, Yan-Fang; Li, Li; Sun, Chun-Yu; Hu, Ke-Xin; Cong, Yue-Yi; Wang, Yi

    2018-01-01

    The relationship between saponin content of Panax quinquefolius in different parts of the organization and expression of ginsenoside biosynthesis related gene was obtained by the correlation analysis between saponin content and gene expression. The 14 tissue parts of P. quinquefolius were studied, six saponins in P. quinquefolius. Samples (ginsenoside Rg₁, Re, Rb₁, Rc, Rb₂ and Rd), group saponins and total saponins were determined by high performance liquid chromatography and vanillin-sulfuric acid colorimetric method. Simultaneously, the expression levels of 7 ginsenoside biosynthesis related genes ( SQS, OSC, DS, β-AS, SQE, P450 and FPS ) in different tissues of P. quinquefolius were determined by Real-time fluorescence quantitative PCR. Although 7 kinds of ginsenoside biosynthesis related enzyme gene in the P. quinquefolius involved in ginsenoside synthesis, the expression of β-AS and P450 genes had no significant effect on the content of monosodium saponins, grouping saponins and total saponins, FPS, SQS, OSC, DS and SQE had significant or extremely significant on the contents of single saponins Re, Rg1, Rb1, Rd, group saponin PPD and PPT, total saponin TMS and total saponin TS ( P <0.05 or P <0.01). The biosynthesis of partial saponins, grouping saponins and total saponins in P. quinquefolius was affected by the interaction of multiple enzyme genes in the saponin synthesis pathway, the content of saponins in different tissues of P. quinquefolius was determined by the differences in the expression of key enzymes in the biosynthetic pathway. Therefore, this study further clarified that FPS, SQS, OSC, DS and SQE was the key enzyme to control the synthesis of saponins in P. quinquefolius by correlation analysis, the biosynthesis of ginsenosides in P. quinquefolius was regulated by these five kind of enzymes in cluster co-expression of interaction mode. Copyright© by the Chinese Pharmaceutical Association.

  6. Listeriosis downregulates hepatic cytochrome P450 enzymes in sublethal murine infection.

    PubMed

    Kummer, Anne; Nishanth, Gopala; Koschel, Josephin; Klawonn, Frank; Schlüter, Dirk; Jänsch, Lothar

    2016-10-01

    Listeria monocytogenes (Lm) can cross the intestinal barrier in humans and then disseminates into different organs. Invasion of the liver occurs even in sublethal infections, however, knowledge of affected physiological processes is scarce. This study employed a sublethal murine infection model to investigate liver responses systematically by proteomics. Liver samples from three stages of the sublethal infection covering the initial invasion, the peak of infection, and the clearance phase (1, 3, 9 days postinoculation) were analyzed in comparison to samples from noninfected mice. Apart from flow cytometry and RT-PCRs for immune status control, liver responses were analyzed by quantitative peptide sequencing (HPLC-Orbitrap Fusion) using 4-plex iTRAQ-labeling. Accurate MS characterized about 3600 proteins and statistics revealed 15% of the hepatic proteome as regulated. Immunological data as well as protein regulation dynamics strongly indicate stage-specific hepatic responses in sublethal infections. Most notably, this study detected a comprehensive deregulation of drug metabolizing enzymes at all stages, including 25 components of the cytochrome P450 system. Sublethal Lm infection deregulates hepatic drug metabolizing pathways. This finding indicates the need to monitor drug administration along Lm infections, especially in all patients needing constant medication. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Oxidase uncoupling in heme monooxygenases: Human cytochrome P450 CYP3A4 in Nanodiscs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinkova, Yelena V.; Denisov, Ilia G.; McLean, Mark A.

    Highlights: ► Substantial reducing equivalents are lost in human P450 CYP3A4 via an oxidase channel. ► Substrate binding has a pronounced effect on uncoupling in cytochrome P450. ► Anionic phospholipids improve the overall coupling in CYP3A4 Nanodiscs. -- Abstract: The normal reaction mechanism of cytochrome P450 operates by utilizing two reducing equivalents to reduce atmospheric dioxygen, producing one molecule of water and an oxygenated product in an overall stoichiometry of 2 electrons:1 dioxygen:1 product. However, three alternate unproductive pathways exist where the intermediate iron–oxygen states in the catalytic cycle can yield reduced oxygen products without substrate metabolism. The first involvesmore » release of superoxide from the oxygenated intermediate while the second occurs after input of the second reducing equivalent. Superoxide rapidly dismutates and hence both processes produce hydrogen peroxide that can be cytotoxic to the organism. In both cases, the formation of hydrogen peroxide involves the same overall stoichiometry as oxygenases catalysis. The key step in the catalytic cycle of cytochrome P450 involves scission of the oxygen–oxygen bond of atmospheric dioxygen to produce a higher valent iron-oxo state termed “Compound I”. This intermediate initiates a radical reaction in the oxygenase pathway but also can uptake two additional reducing equivalents from reduced pyridine nucleotide (NADPH) and the flavoprotein reductase to produce a second molecule of water. This non-productive decay of Compound I thus yields an overall oxygen to NADPH ratio of 1:2 and does not produce hydrocarbon oxidation. This water uncoupling reaction provides one of a limited means to study the reactivity of the critical Compound I intermediate in P450 catalysis. We measured simultaneously the rates of NADPH and oxygen consumption as a function of substrate concentration during the steady-state hydroxylation of testosterone catalyzed by human P450 CYP3A4 reconstituted in Nanodiscs. We discovered that the “oxidase” uncoupling pathway is also operating in the substrate free form of the enzyme with rate of this pathway substantially increasing with the first substrate binding event. Surprisingly, a large fraction of the reducing equivalents used by the P450 system is wasted in this oxidase pathway. In addition, the overall coupling with testosterone and bromocryptine as substrates is significantly higher in the presence of anionic lipids, which is attributed to the changes in the redox potential of CYP3A4 and reductase.« less

  8. Inhibition of human cytochromes P450 2A6 and 2A13 by flavonoids, acetylenic thiophenes and sesquiterpene lactones from Pluchea indica and Vernonia cinerea.

    PubMed

    Boonruang, Supattra; Prakobsri, Khanistha; Pouyfung, Phisit; Srisook, Ekaruth; Prasopthum, Aruna; Rongnoparut, Pornpimol; Sarapusit, Songklod

    2017-12-01

    The human liver cytochrome P450 (CYP) 2A6 and the respiratory CYP2A13 enzymes play role in nicotine metabolism and activation of tobacco-specific nitrosamine carcinogens. Inhibition of both enzymes could offer a strategy for smoking abstinence and decreased risks of respiratory diseases and lung cancer. In this study, activity-guided isolation identified four flavonoids 1-4 (apigenin, luteolin, chrysoeriol, quercetin) from Vernonia cinerea and Pluchea indica, four hirsutinolide-type sesquiterpene lactones 5-8 from V. cinerea, and acetylenic thiophenes 9-11 from P. indica that inhibited CYP2A6- and CYP2A13-mediated coumarin 7-hydroxylation. Flavonoids were most effective in inhibition against CYP2A6 and CYP2A13, followed by thiophenes, and hirsutinolides. Hirsutinolides and thiophenes exhibited mechanism-based inhibition and in irreversible mode against both enzymes. The inactivation kinetic K I values of hirsutinolides against CYP2A6 and CYP2A13 were 5.32-15.4 and 0.92-8.67 µM, respectively, while those of thiophenes were 0.11-1.01 and 0.67-0.97 µM, respectively.

  9. The proximal pathway of metabolism of the chlorinated signal molecule differentiation-inducing factor-1 (DIF-1) in the cellular slime mould Dictyostelium.

    PubMed Central

    Morandini, P; Offer, J; Traynor, D; Nayler, O; Neuhaus, D; Taylor, G W; Kay, R R

    1995-01-01

    Stalk cell differentiation during development of the slime mould Dictyostelium is induced by a chlorinated alkyl phenone called differentiation-inducing factor-1 (DIF-1). Inactivation of DIF-1 is likely to be a key element in the DIF-1 signalling system, and we have shown previously that this is accomplished by a dedicated metabolic pathway involving up to 12 unidentified metabolites. We report here the structure of the first four metabolites produced from DIF-1, as deduced by m.s., n.m.r. and chemical synthesis. The structures of these compounds show that the first step in metabolism is a dechlorination of the phenolic ring, producing DIF metabolite 1 (DM1). DM1 is identical with the previously known minor DIF activity, DIF-3. DIF-3 is then metabolized by three successive oxidations of its aliphatic side chain: a hydroxylation at omega-2 to produce DM2, oxidation of the hydroxy group to a ketone group to produce DM3 and a further hydroxylation at omega-1 to produce DM4, a hydroxyketone of DIF-3. We have investigated the enzymology of DIF-1 metabolism. It is already known that the first step, to produce DIF-3, is catalysed by a novel dechlorinase. The enzyme activity responsible for the first side-chain oxidation (DIF-3 hydroxylase) was detected by incubating [3H]DIF-3 with cell-free extracts and resolving the reaction products by t.l.c. DIF-3 hydroxylase has many of the properties of a cytochrome P-450. It is membrane-bound and uses NADPH as co-substrate. It is also inhibited by CO, the classic cytochrome P-450 inhibitor, and by several other cytochrome P-450 inhibitors, as well as by diphenyliodonium chloride, an inhibitor of cytochrome P-450 reductase. DIF-3 hydroxylase is highly specific for DIF-3: other closely related compounds do not compete for the activity at 100-fold molar excess, with the exception of the DIF-3 analogue lacking the chlorine atom. The Km for DIF-3 of 47 nM is consistent with this enzyme being responsible for DIF-3 metabolism in vivo. The two further oxidations necessary to produce DM4 are also performed in vitro by similar enzyme activities. One of the inhibitors of DIF-3 hydroxylase, ancymidol (IC50 67 nM) is likely to be particularly suitable for probing the function of DIF metabolism during development. Images Figure 3 Figure 4 PMID:7702568

  10. Lettuce Costunolide Synthase (CYP71BL2) and Its Homolog (CYP71BL1) from Sunflower Catalyze Distinct Regio- and Stereoselective Hydroxylations in Sesquiterpene Lactone Metabolism*

    PubMed Central

    Ikezawa, Nobuhiro; Göpfert, Jens Christian; Nguyen, Don Trinh; Kim, Soo-Un; O'Maille, Paul E.; Spring, Otmar; Ro, Dae-Kyun

    2011-01-01

    Sesquiterpene lactones (STLs) are terpenoid natural products possessing the γ-lactone, well known for their diverse biological and medicinal activities. The occurrence of STLs is sporadic in nature, but most STLs have been isolated from plants in the Asteraceae family. Despite the implication of the γ-lactone group in many reported bioactivities of STLs, the biosynthetic origins of the γ-lactone ring remains elusive. Germacrene A acid (GAA) has been suggested as a central precursor of diverse STLs. The regioselective (C6 or C8) and stereoselective (α or β) hydroxylation on a carbon of GAA adjacent to its carboxylic acid at C12 is responsible for the γ-lactone formation. Here, we report two cytochrome P450 monooxygenases (P450s) capable of catalyzing 6α- and 8β-hydroxylation of GAA from lettuce and sunflower, respectively. To identify these P450s, sunflower trichomes were isolated to generate a trichome-specific transcript library, from which 10 P450 clones were retrieved. Expression of these clones in a yeast strain metabolically engineered to synthesize substrate GAA identified a P450 catalyzing 8β-hydroxylation of GAA, but the STL was not formed by spontaneous lactonization. Subsequently, we identified the closest homolog of the GAA 8β-hydroxylase from lettuce and discovered 6α-hydroxylation of GAA by the recombinant enzyme. The resulting 6α-hydroxy-GAA spontaneously undergoes a lactonization to yield the simplest form of STL, costunolide. Furthermore, we demonstrate the milligram per liter scale de novo synthesis of costunolide using the lettuce P450 in an engineered yeast strain, an important advance that will enable exploitation of STLs. Evolution and homology models of these two P450s are discussed. PMID:21515683

  11. Reactive Oxygen Species Alter Autocrine and Paracrine Signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zangar, Richard C.; Bollinger, Nikki; Weber, Thomas J.

    2011-12-01

    Cytochrome P450 (P450) 3A4 (CYP3A4) is the most abundant P450 protein in human liver and intestine and is highly inducible by a variety of drugs and other compounds. The P450 catalytic cycle is known to uncouple and release reactive oxygen species (ROS), but the effects of ROS from P450 and other enzymes in the endo-plasmic reticulum have been poorly studied from the perspective of effects on cell biology. In this study, we expressed low levels of CYP3A4 in HepG2 cells, a human hepatocarcinoma cell line, and examined effects on intracellular levels of ROS and on the secretion of a varietymore » of growth factors that are important in extracellular communication. Using the redox-sensitive dye RedoxSensor red, we demonstrate that CYP3A4 expression increases levels of ROS in viable cells. A customELISA microarray platform was employed to demonstrate that expression of CYP3A4 increased secretion of amphiregulin, intracellular adhesion molecule 1, matrix metalloprotease 2, platelet-derived growth factor (PDGF), and vascular endothelial growth factor, but suppressed secretion of CD14. The antioxidant N-acetylcysteine suppressed all P450-dependent changes in protein secretion except for CD14. Quantitative RT-PCR demonstrated that changes in protein secretion were consistently associated with corresponding changes in gene expression. Inhibition of the NF-{kappa}B pathway blocked P450 effects on PDGF secretion. CYP3A4 expression also altered protein secretion in human mammary epithelial cells and C10 mouse lung cells. Overall, these results suggest that increased ROS production in the endoplasmic reticulum alters the secretion of proteins that have key roles in paracrine and autocrine signaling.« less

  12. Synergistic Effects of Mutations in Cytochrome P450cam Designed to Mimic CYP101D1

    PubMed Central

    Batabyal, Dipanwita; Li, Huiying; Poulos, Thomas L.

    2013-01-01

    A close ortholog to the cytochrome P450cam (CYP101A1) that catalyzes the same hydroxylation of camphor to 5-exo hydroxycamphor is CYP101D1. There are potentially important differences in and around the active site that could contribute to subtle functional differences. Adjacent to the heme iron ligand, Cys357, is Leu358 in P450cam while this residue is Ala in CYP101D1. Leu358 plays a role in binding of the P450cam redox partner, putidaredoxin (Pdx). On the opposite side of the heme about 15 – 20 Å away Asp251 in P450cam plays a critical role in a proton relay network required for O2 activation but forms strong ion pairs with Arg186 and Lys178. In CYP101D1 a Gly replaces Lys178. Thus, the local electrostatic environment and ion pairing is substantially different in CYP101D1. These sites have been systematically mutated in P450cam to the corresponding residues in CYP101D1 and the mutants analyzed by crystallography, kinetics, and UV/Vis spectroscopy. Individually the mutants have little effect on activity or structure but in combination there is a major drop in enzyme activity. This loss in activity is due the mutants being locked in the low-spin state which prevents electron transfer from the P450cam redox partner, Pdx. These studies illustrate the strong synergistic effects on well separated parts of the structure in controlling the equilibrium between the open (low-spin) and closed (high-spin) conformational states. PMID:23865948

  13. Modulatory Effect of Taurine on 7,12-Dimethylbenz(a)Anthracene-Induced Alterations in Detoxification Enzyme System, Membrane Bound Enzymes, Glycoprotein Profile and Proliferative Cell Nuclear Antigen in Rat Breast Tissue.

    PubMed

    Vanitha, Manickam Kalappan; Baskaran, Kuppusamy; Periyasamy, Kuppusamy; Selvaraj, Sundaramoorthy; Ilakkia, Aruldoss; Saravanan, Dhiravidamani; Venkateswari, Ramachandran; Revathi Mani, Balasundaram; Anandakumar, Pandi; Sakthisekaran, Dhanapal

    2016-08-01

    The modulatory effect of taurine on 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer in rats was studied. DMBA (25 mg/kg body weight) was administered to induce breast cancer in rats. Protein carbonyl levels, activities of membrane bound enzymes (Na(+) /K(+) ATPase, Ca(2+) ATPase, and Mg(2+) ATPase), phase I drug metabolizing enzymes (cytochrome P450, cytochrome b5, NADPH cytochrome c reductase), phase II drug metabolizing enzymes (glutathione-S-transferase and UDP-glucuronyl transferase), glycoprotein levels, and proliferative cell nuclear antigen (PCNA) were studied. DMBA-induced breast tumor bearing rats showed abnormal alterations in the levels of protein carbonyls, activities of membrane bound enzymes, drug metabolizing enzymes, glycoprotein levels, and PCNA protein expression levels. Taurine treatment (100 mg/kg body weight) appreciably counteracted all the above changes induced by DMBA. Histological examination of breast tissue further supported our biochemical findings. The results of the present study clearly demonstrated the chemotherapeutic effect of taurine in DMBA-induced breast cancer. © 2016 Wiley Periodicals, Inc.

  14. Modulation of CYPs, P-gp, and PXR by Eschscholzia californica (California Poppy) and Its Alkaloids.

    PubMed

    Manda, Vamshi K; Ibrahim, Mohamed A; Dale, Olivia R; Kumarihamy, Mallika; Cutler, Stephen J; Khan, Ikhlas A; Walker, Larry A; Muhammad, Ilias; Khan, Shabana I

    2016-04-01

    Eschscholzia californica, a native US plant, is traditionally used as a sedative, analgesic, and anxiolytic herb. With the rapid rise in the use of herbal supplements together with over-the-counter and prescription drugs, the risk for potential herb-drug interactions is also increasing. Most of the clinically relevant pharmacokinetic drug interactions occur due to modulation of cytochrome P450 enzymes (CYPs), P-glycoprotein, and the pregnane X receptor by concomitantly used herbs. This study aimed to determine the effects of an EtOH extract, aqueous extract (tea), basic CHCl3 fractions, and isolated major alkaloids, namely protopine (1), escholtzine (2), allocryptopine (3), and californidine (4), of E. californica on the activity of cytochrome P450s, P-glycoprotein and the pregnane X receptor. The EtOH extract and fractions showed strong time-dependent inhibition of CYP 3A4, CYP 2C9, and CYP 2C19, and reversible inhibition of CYP 2D6. Among the alkaloids, escholtzine (2) and allocryptopine (3) exhibited time-dependent inhibition of CYP 3A4, CYP 2C9, and CYP 2C19 (IC50 shift ratio > 2), while protopine (1) and allocryptopine (3) showed reversible inhibition of CYP 2D6 enzyme. A significant activation of the pregnane X receptor (> 2-fold) was observed with the EtOH extract, basic CHCl3 fraction, and alkaloids (except protopine), which resulted into an increased expression of mRNA and the activity of CYP 3A4 and CYP 1A2. The expression of P-glycoprotein was unaffected. However, aqueous extract (tea) and its main alkaloid californidine (4) did not affect cytochrome P450s, P-glycoprotein, or the pregnane X receptor. This data suggests that EtOH extract of E. californica and its major alkaloids have a potential of causing interactions with drugs that are metabolized by cytochrome P450s, while the tea seems to be safer. Georg Thieme Verlag KG Stuttgart · New York.

  15. Hepatocyte spheroid arrays inside microwells connected with microchannels

    PubMed Central

    Fukuda, Junji; Nakazawa, Kohji

    2011-01-01

    Spheroid culture is a preferable cell culture approach for some cell types, including hepatocytes, as this type of culture often allows maintenance of organ-specific functions. In this study, we describe a spheroid microarray chip (SM chip) that allows stable immobilization of hepatocyte spheroids in microwells and that can be used to evaluate drug metabolism with high efficiency. The SM chip consists of 300-μm-diameter cylindrical wells with chemically modified bottom faces that form a 100-μm-diameter cell adhesion region surrounded by a nonadhesion region. Primary hepatocytes seeded onto this chip spontaneously formed spheroids of uniform diameter on the cell adhesion region in each microwell and these could be used for cytochrome P-450 fluorescence assays. A row of microwells could also be connected to a microchannel for simultaneous detection of different cytochrome P-450 enzyme activities on a single chip. The miniaturized features of this SM chip reduce the numbers of cells and the amounts of reagents required for assays. The detection of four cytochrome P-450 enzyme activities was demonstrated following induction by 3-methylcholantlene, with a sensitivity significantly higher than that in conventional monolayer culture. This microfabricated chip could therefore serve as a novel culture platform for various cell-based assays, including those used in drug screening, basic biological studies, and tissue engineering applications. PMID:21799712

  16. Infrasound-induced changes on sexual behavior in male rats and some underlying mechanisms.

    PubMed

    Zhuang, Zhiqiang; Pei, Zhaohui; Chen, Jingzao

    2007-01-01

    To investigate some bioeffects of infrasound on copulation as well as underlying mechanisms, we inspected the changes of sexual behavior, serum testosterone concentration and mRNA expression levels of steroidogenic factor 1 (SF-1), steroidogenic acute regulatory protein (StAR) and cytochrome P450 cholesterol side chain cleavage enzyme (P450scc) in testes of rats exposed to infrasound of 8Hz at 90 or 130dB for 1, 7, 14 and 21 days (2h/day), respectively. Rats exposed to 90dB exhibited significant decrement in sexual behavior, serum testosterone levels and mRNA expression levels of StAR and P450scc at the time point of 1 day but not at the rest time points, and no significantly change of SF-1 mRNA expression was observed over the period of 21 days in spite of mild fluctuation. Rats exposed to 130dB exhibited significant decrement in all aspects above, which became more profound with prolonged exposure. Our conclusion is that adverse bioeffects of infrasound on reproduction depend on some exposure parameters, the mechanism of which could involve in the decreased expression of some key enzymes or regulator for testosterone biosynthesis. Copyright © 2006. Published by Elsevier B.V.

  17. Computational Prediction of Metabolism: Sites, Products, SAR, P450 Enzyme Dynamics, and Mechanisms

    PubMed Central

    2012-01-01

    Metabolism of xenobiotics remains a central challenge for the discovery and development of drugs, cosmetics, nutritional supplements, and agrochemicals. Metabolic transformations are frequently related to the incidence of toxic effects that may result from the emergence of reactive species, the systemic accumulation of metabolites, or by induction of metabolic pathways. Experimental investigation of the metabolism of small organic molecules is particularly resource demanding; hence, computational methods are of considerable interest to complement experimental approaches. This review provides a broad overview of structure- and ligand-based computational methods for the prediction of xenobiotic metabolism. Current computational approaches to address xenobiotic metabolism are discussed from three major perspectives: (i) prediction of sites of metabolism (SOMs), (ii) elucidation of potential metabolites and their chemical structures, and (iii) prediction of direct and indirect effects of xenobiotics on metabolizing enzymes, where the focus is on the cytochrome P450 (CYP) superfamily of enzymes, the cardinal xenobiotics metabolizing enzymes. For each of these domains, a variety of approaches and their applications are systematically reviewed, including expert systems, data mining approaches, quantitative structure–activity relationships (QSARs), and machine learning-based methods, pharmacophore-based algorithms, shape-focused techniques, molecular interaction fields (MIFs), reactivity-focused techniques, protein–ligand docking, molecular dynamics (MD) simulations, and combinations of methods. Predictive metabolism is a developing area, and there is still enormous potential for improvement. However, it is clear that the combination of rapidly increasing amounts of available ligand- and structure-related experimental data (in particular, quantitative data) with novel and diverse simulation and modeling approaches is accelerating the development of effective tools for prediction of in vivo metabolism, which is reflected by the diverse and comprehensive data sources and methods for metabolism prediction reviewed here. This review attempts to survey the range and scope of computational methods applied to metabolism prediction and also to compare and contrast their applicability and performance. PMID:22339582

  18. Synthesis of chiral 2-alkanols from n-alkanes by a P. putida whole-cell biocatalyst.

    PubMed

    Tieves, Florian; Erenburg, Isabelle N; Mahmoud, Osama; Urlacher, Vlada B

    2016-09-01

    The cytochrome P450 monooxygenase CYP154A8 from Nocardia farcinica was previously found to catalyze hydroxylation of linear alkanes (C7 -C9 ) with a high regio- and stereoselectivity. The objective of this study was to integrate CYP154A8 along with suitable redox partners into a whole-cell system for the production of chiral 2-alkanols starting from alkanes. Both recombinant Escherichia coli and Pseudomonas putida whole-cell biocatalysts tested for this purpose showed the ability to produce chiral alkanols, but a solvent tolerant P. putida strain demonstrated several advantages in the applied biphasic reaction system. The optimized P. putida whole-cell system produced ∼16 mM (S)-2-octanol with 87% ee from octane, which is more than sevenfold higher than the previously described system with isolated enzymes. The achieved enantiopurity of the product could further be increased up to 99% ee by adding an alcohol dehydrogenase (ADH) to the alkane-oxidizing P. putida whole-cell systems. By using this setup for the individual conversions of heptane, octane or nonane, 2.6 mM (S)-2-heptanol with 91% ee, 5.4 mM (S)-2-octanol with 97% ee, or 5.5 mM (S)-2-nonanol with 97% ee were produced, respectively. The achieved concentrations of chiral 2-alkanols are the highest reported for a P450-based whole-cell system so far. Biotechnol. Bioeng. 2016;113: 1845-1852. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Structural comparison of cytochromes P450 2A6, 2A13, and 2E1 with pilocarpine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVore, Natasha M.; Meneely, Kathleen M.; Bart, Aaron G.

    2013-11-20

    Human xenobiotic-metabolizing cytochrome P450 (CYP) enzymes can each bind and monooxygenate a diverse set of substrates, including drugs, often producing a variety of metabolites. Additionally, a single ligand can interact with multiple CYP enzymes, but often the protein structural similarities and differences that mediate such overlapping selectivity are not well understood. Even though the CYP superfamily has a highly canonical global protein fold, there are large variations in the active site size, topology, and conformational flexibility. We have determined how a related set of three human CYP enzymes bind and interact with a common inhibitor, the muscarinic receptor agonist drugmore » pilocarpine. Pilocarpine binds and inhibits the hepatic CYP2A6 and respiratory CYP2A13 enzymes much more efficiently than the hepatic CYP2E1 enzyme. To elucidate key residues involved in pilocarpine binding, crystal structures of CYP2A6 (2.4 {angstrom}), CYP2A13 (3.0 {angstrom}), CYP2E1 (2.35 {angstrom}), and the CYP2A6 mutant enzyme, CYP2A6 I208S/I300F/G301A/S369G (2.1 {angstrom}) have been determined with pilocarpine in the active site. In all four structures, pilocarpine coordinates to the heme iron, but comparisons reveal how individual residues lining the active sites of these three distinct human enzymes interact differently with the inhibitor pilocarpine.« less

  20. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    NASA Astrophysics Data System (ADS)

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-02-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification.

  1. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    PubMed Central

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-01-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification. PMID:26899743

  2. Cytochrome P450 metabolism of the post-lanosterol intermediates explains enigmas of cholesterol synthesis

    NASA Astrophysics Data System (ADS)

    Ačimovič, Jure; Goyal, Sandeep; Košir, Rok; Goličnik, Marko; Perše, Martina; Belič, Ales; Urlep, Žiga; Guengerich, F. Peter; Rozman, Damjana

    2016-06-01

    Cholesterol synthesis is among the oldest metabolic pathways, consisting of the Bloch and Kandutch-Russell branches. Following lanosterol, sterols of both branches are proposed to be dedicated to cholesterol. We challenge this dogma by mathematical modeling and with experimental evidence. It was not possible to explain the sterol profile of testis in cAMP responsive element modulator tau (Crem τ) knockout mice with mathematical models based on textbook pathways of cholesterol synthesis. Our model differs in the inclusion of virtual sterol metabolizing enzymes branching from the pathway. We tested the hypothesis that enzymes from the cytochrome P450 (CYP) superfamily can participate in the catalysis of non-classical reactions. We show that CYP enzymes can metabolize multiple sterols in vitro, establishing novel branching points of cholesterol synthesis. In conclusion, sterols of cholesterol synthesis can be oxidized further to metabolites not dedicated to production of cholesterol. Additionally, CYP7A1, CYP11A1, CYP27A1, and CYP46A1 are parts of a broader cholesterol synthesis network.

  3. Metabolism of myclobutanil and triadimefon by human and rat cytochrome P450 enzymes and liver microsomes.

    PubMed

    Barton, H A; Tang, J; Sey, Y M; Stanko, J P; Murrell, R N; Rockett, J C; Dix, D J

    2006-09-01

    Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil was metabolized more rapidly than triadimefon, which is consistent with metabolism of the n-butyl side-chain in the former and the t-butyl group in the latter compound. Human and rat CYP2C and CYP3A enzymes were the most active. Metabolism was similar in microsomes prepared from livers of control and low-dose rats. High-dose (115 mg kg-1 day-1 of triadimefon or 150 mg kg-1 day-1 of myclobutanil) rats showed increased liver weight, induction of total CYP, and increased metabolism of the two triazoles, though the apparent Km appeared unchanged relative to the control. These data identify CYP enzymes important for the metabolization of these two triazoles. Estimated hepatic clearances suggest that CYP induction may have limited impact in vivo.

  4. Cytochrome P450 metabolism of the post-lanosterol intermediates explains enigmas of cholesterol synthesis.

    PubMed

    Ačimovič, Jure; Goyal, Sandeep; Košir, Rok; Goličnik, Marko; Perše, Martina; Belič, Ales; Urlep, Žiga; Guengerich, F Peter; Rozman, Damjana

    2016-06-23

    Cholesterol synthesis is among the oldest metabolic pathways, consisting of the Bloch and Kandutch-Russell branches. Following lanosterol, sterols of both branches are proposed to be dedicated to cholesterol. We challenge this dogma by mathematical modeling and with experimental evidence. It was not possible to explain the sterol profile of testis in cAMP responsive element modulator tau (Crem τ) knockout mice with mathematical models based on textbook pathways of cholesterol synthesis. Our model differs in the inclusion of virtual sterol metabolizing enzymes branching from the pathway. We tested the hypothesis that enzymes from the cytochrome P450 (CYP) superfamily can participate in the catalysis of non-classical reactions. We show that CYP enzymes can metabolize multiple sterols in vitro, establishing novel branching points of cholesterol synthesis. In conclusion, sterols of cholesterol synthesis can be oxidized further to metabolites not dedicated to production of cholesterol. Additionally, CYP7A1, CYP11A1, CYP27A1, and CYP46A1 are parts of a broader cholesterol synthesis network.

  5. Identification and characterization of the steroid 15α-hydroxylase gene from Penicillium raistrickii.

    PubMed

    Jia, Longgang; Dong, Jianzhang; Wang, Ruijie; Mao, Shuhong; Lu, Fuping; Singh, Suren; Wang, Zhengxiang; Liu, Xiaoguang

    2017-08-01

    Penicillium raistrickii ATCC 10490 is used for the commercial preparation of 15α-13-methy-estr-4-ene-3,17-dione, a key intermediate in the synthesis of gestodene, which is a major component of third-generation contraceptive pills. Although it was previously shown that a cytochrome P450 enzyme in P. raistrickii is involved in steroid 15α-hydroxylation, the gene encoding the steroid 15α-hydroxylase remained unknown. In this study, we report the cloning and characterization of the 15α-hydroxylase gene from P. raistrickii ATCC 10490 by combining transcriptomic profiling with functional heterologous expression in Saccharomyces cerevisiae. The full-length open reading frame (ORF) of the 15α-hydroxylase gene P450pra is 1563 bp and predicted to encode a cytochrome P450 protein of 520 amino acids. Targeted gene deletion revealed that P450pra is solely responsible for 15α-hydroxylation activity on 13-methy-estr-4-ene-3,17-dione in P. raistrickii ATCC 10490. The identification of the 15α-hydroxylase gene from P. raistrickii should help elucidate the molecular basis of regio- and stereo-specificity of steroid 15α-hydroxylation and aid in the engineering of more efficient industrial strains for useful steroid 15α-hydroxylation reactions.

  6. Blarina brevicauda as a biological monitor of polychlorinated biphenyls: Evaluation of hepatic cytochrome p450 induction

    USGS Publications Warehouse

    Russell, J.S.; Halbrook, R.S.; Woolf, A.; French, J.B.; Melancon, M.J.

    2004-01-01

    We assessed the value of short-tailed shrews (Blarina brevicauda) as a possible biomonitor for polychlorinated biphenyl pollution through measurement of the induction of hepatic cytochrome P450 and associated enzyme activities. First, we checked the inducibility of four monooxygenases (benzyloxyresorufin-O-dealkylase [BROD], ethoxyresorufin-O-dealkylase [EROD], methoxyresorufin-O-dealkylase [MROD], and pentoxyresorufin-O-dealkylase [PROD]) by measuring the activity of these enzymes in hepatic microsomes prepared from shrews injected with $-naphthoflavone ($NF) or phenobarbital (PB), typical inducers of cytochrome P4501A (CYP1A) and CYP2B enzyme families, respectively. Enzyme activity was induced in shrews that received $NF but not in shrews that received PB; PROD was not induced by either exposure. Later, shrews were exposed to a mixture of polychlorinated biphenyls (PCBs) (Aroclor 1242:1254, in 1:2 ratio) at 0.6, 9.6, and 150 ppm in food, for 31 d. Induction in these shrews was measured by specific enzyme activity (BROD, EROD, and MROD) in hepatic microsomes, by western blotting of solubilized microsomes against antibodies to CYP1A or CYP2B, and by duration of sodium pentobarbital-induced sleep. These three CYP enzymes were induced in shrews by PCBs at similar levels of exposure as in cotton rat (Sigmodon hispidus). Neither sleep time nor the amount of CYP2B family protein were affected by PCB exposure. Blarina brevicauda can be a useful biomonitor of PCBs that induce CYP1A, especially in habitats where they are the abundant small mammal.

  7. Blarina brevicauda as a biological monitor of polychlorinated biphenyls: evaluation of hepatic cytochrome P450 induction.

    PubMed

    Russell, Julie S; Halbrook, Richard S; Woolf, Alan; French, John B; Melancon, Mark J

    2004-08-01

    We assessed the value of short-tailed shrews (Blarina brevicauda) as a possible biomonitor for polychlorinated biphenyl pollution through measurement of the induction of hepatic cytochrome P450 and associated enzyme activities. First, we checked the inducibility of four monooxygenases (benzyloxyresorufin-O-dealkylase [BROD], ethoxyresorufin-O-dealkylase [EROD], methoxyresorufin-O-dealkylase [MROD], and pentoxyresorufin-O-dealkylase [PROD]) by measuring the activity of these enzymes in hepatic microsomes prepared from shrews injected with beta-naphthoflavone (betaNF) or phenobarbital (PB), typical inducers of cytochrome P4501A (CYP1A) and CYP2B enzyme families, respectively. Enzyme activity was induced in shrews that received betaNF but not in shrews that received PB; PROD was not induced by either exposure. Later, shrews were exposed to a mixture of polychlorinated biphenyls (PCBs) (Aroclor 1242:1254, in 1:2 ratio) at 0.6, 9.6, and 150 ppm in food, for 31 d. Induction in these shrews was measured by specific enzyme activity (BROD, EROD, and MROD) in hepatic microsomes, by western blotting of solubilized microsomes against antibodies to CYP1A or CYP2B, and by duration of sodium pentobarbital-induced sleep. These three CYP enzymes were induced in shrews by PCBs at similar levels of exposure as in cotton rat (Sigmodon hispidus). Neither sleep time nor the amount of CYP2B family protein were affected by PCB exposure. Blarina brevicauda can be a useful biomonitor of PCBs that induce CYP1A, especially in habitats where they are the abundant small mammal.

  8. Alprazolam as an in vivo probe for studying induction of CYP3A in cynomolgus monkeys.

    PubMed

    Ohtsuka, Tatsuyuki; Yoshikawa, Takahiro; Kozakai, Kazumasa; Tsuneto, Yumi; Uno, Yasuhiro; Utoh, Masahiro; Yamazaki, Hiroshi; Kume, Toshiyuki

    2010-10-01

    Induction of the cytochrome P450 (P450) enzyme is a major concern in the drug discovery processes. To predict the clinical significance of enzyme induction, it is helpful to investigate pharmacokinetic alterations of a coadministered drug in a suitable animal model. In this study, we focus on the induction of CYP3A, which is involved in the metabolism of approximately 50% of marketed drugs and is inducible in both the liver and intestine. As a marker substrate for CYP3A activity, alprazolam (APZ) was selected and characterized using recombinant CYP3A enzymes expressed in Escherichia coli. Both human CYP3A4 and its cynomolgus P450 ortholog predominantly catalyzed APZ 4-hydroxylation with sigmoidal kinetics. When administered intravenously and orally to cynomolgus monkeys, APZ had moderate clearance; its first-pass extraction ratio after oral dosing was estimated to be 0.09 in the liver and 0.45 in the intestine. Pretreatment with multiple doses of rifampicin (20 mg/kg p.o. for 5 days), a known CYP3A inducer, significantly decreased plasma concentrations of APZ after intravenous and oral administrations (0.5 mg/kg), and first-pass extraction ratios were increased to 0.39 in the liver and 0.63 in the intestine. The results were comparable to those obtained in clinical drug-drug interaction (DDI) reports related to CYP3A induction, although the rate of recovery of CYP3A activity seemed to be slower than rates estimated in clinical studies. In conclusion, pharmacokinetic studies using APZ as a probe in monkeys may provide useful information regarding the prediction of clinical DDIs due to CYP3A induction.

  9. Metabolic capabilities of cytochrome P450 enzymes in Chinese liver microsomes compared with those in Caucasian liver microsomes

    PubMed Central

    Yang, Junling; He, Minxia M; Niu, Wei; Wrighton, Steven A; Li, Li; Liu, Yang; Li, Chuan

    2012-01-01

    AIM The most common causes of variability in drug response include differences in drug metabolism, especially when the hepatic cytochrome P450 (CYP) enzymes are involved. The current study was conducted to assess the differences in CYP activities in human liver microsomes (HLM) of Chinese or Caucasian origin. METHODS The metabolic capabilities of CYP enzymes in 30 Chinese liver microsomal samples were compared with those of 30 Caucasian samples utilizing enzyme kinetics. Phenacetin O-deethylation, coumarin 7-hydroxylation, bupropion hydroxylation, amodiaquine N-desethylation, diclofenac 4′-hydroxylation (S)-mephenytoin 4′-hydroxylation, dextromethorphan O-demethylation, chlorzoxazone 6-hydroxylation and midazolam 1′-hydroxylation/testosterone 6β-hydroxylation were used as probes for activities of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A, respectively. Mann-Whitney U test was used to assess the differences. RESULTS The samples of the two ethnic groups were not significantly different in cytochrome-b5 concentrations but were significantly different in total CYP concentrations and NADPH-P450 reductase activity (P < 0.05). Significant ethnic differences in intrinsic clearance were observed for CYP1A2, CYP2C9, CYP2C19 and CYP2E1; the median values of the Chinese group were 54, 58, 26, and 35% of the corresponding values of the Caucasian group, respectively. These differences were associated with differences in Michaelis constant or maximum velocity. Despite negligible difference in intrinsic clearance, the Michaelis constant of CYP2B6 appeared to have a significant ethnic difference. No ethnic difference was observed for CYP2A6, CYP2C8, CYP2D6 and CYP3A. CONCLUSIONS These data extend our knowledge on the ethnic differences in CYP enzymes and will have implications for drug discovery and drug therapy for patients from different ethnic origins. PMID:21815912

  10. Polymorphisms in xenobiotic metabolizing enzymes and diet influence colorectal adenoma risk.

    PubMed

    Northwood, Emma L; Elliott, Faye; Forman, David; Barrett, Jennifer H; Wilkie, Murray J V; Carey, Francis A; Steele, Robert J C; Wolf, Roland; Bishop, Timothy; Smith, Gillian

    2010-05-01

    We have earlier shown that diet and xenobiotic metabolizing enzyme genotypes influence colorectal cancer risk, and now investigate whether similar associations are seen in patients with premalignant colorectal adenomas (CRA), recruited during the pilot phase of the Scottish Bowel Screening Programme. Nineteen polymorphisms in 13 genes [cytochrome P450 (P450), glutathione S-transferase (GST), N-acetyl transferase, quinone reductase (NQ01) and microsomal epoxide hydrolase (EPHX1) genes] were genotyped using multiplex PCR or Taqman-based allelic discrimination assays and analyzed in conjunction with diet, assessed by food frequency questionnaire, in a case-control study [317 CRA cases (308 cases genotyped), 296 controls]. Findings significant at a nominal 5% level are reported. CRA risk was inversely associated with fruit (P=0.02, test for trend) and vegetable (P=0.001, test for trend) consumption. P450 CYP2C9*3 heterozygotes had reduced CRA risk compared with homozygotes for the reference allele [odds ratio (OR): 0.60; 95% confidence interval (CI): 0.36-0.99], whereas CYP2D6*4 homozygotes (OR: 2.72; 95% CI: 1.18-6.27) and GSTM1 'null' individuals (OR: 1.43; 95% CI: 1.04-1.98) were at increased risk. The protective effect of fruit consumption was confined to GSTP1 (Ala114Val) reference allele homozygotes (OR: 0.49; 95% CI: 0.34-0.71, P=0.03 for interaction). CRA risk was not associated with meat consumption, although a significant interaction between red meat consumption and EPHX1 (His139Arg) genotype was noted (P=0.02 for interaction). We report the novel associations between P450 genotype and CRA risk, and highlight the risk association with GSTM1 genotype, common to our CRA and cancer case-control series. In addition, we report a novel modifying influence of GSTP1 genotype on dietary chemoprevention. These novel findings require independent confirmation.

  11. Dual Catalytic Activity of a Cytochrome P450 Controls Bifurcation at a Metabolic Branch Point of Alkaloid Biosynthesis in Rauwolfia serpentina

    PubMed Central

    Dang, Thu‐Thuy T.; Franke, Jakob; Tatsis, Evangelos

    2017-01-01

    Abstract Plants create tremendous chemical diversity from a single biosynthetic intermediate. In plant‐derived ajmalan alkaloid pathways, the biosynthetic intermediate vomilenine can be transformed into the anti‐arrhythmic compound ajmaline, or alternatively, can isomerize to form perakine, an alkaloid with a structurally distinct scaffold. Here we report the discovery and characterization of vinorine hydroxylase, a cytochrome P450 enzyme that hydroxylates vinorine to form vomilenine, which was found to exist as a mixture of rapidly interconverting epimers. Surprisingly, this cytochrome P450 also catalyzes the non‐oxidative isomerization of the ajmaline precursor vomilenine to perakine. This unusual dual catalytic activity of vinorine hydroxylase thereby provides a control mechanism for the bifurcation of these alkaloid pathway branches. This discovery highlights the unusual catalytic functionality that has evolved in plant pathways. PMID:28654178

  12. Dual Catalytic Activity of a Cytochrome P450 Controls Bifurcation at a Metabolic Branch Point of Alkaloid Biosynthesis in Rauwolfia serpentina.

    PubMed

    Dang, Thu-Thuy T; Franke, Jakob; Tatsis, Evangelos; O'Connor, Sarah E

    2017-08-01

    Plants create tremendous chemical diversity from a single biosynthetic intermediate. In plant-derived ajmalan alkaloid pathways, the biosynthetic intermediate vomilenine can be transformed into the anti-arrhythmic compound ajmaline, or alternatively, can isomerize to form perakine, an alkaloid with a structurally distinct scaffold. Here we report the discovery and characterization of vinorine hydroxylase, a cytochrome P450 enzyme that hydroxylates vinorine to form vomilenine, which was found to exist as a mixture of rapidly interconverting epimers. Surprisingly, this cytochrome P450 also catalyzes the non-oxidative isomerization of the ajmaline precursor vomilenine to perakine. This unusual dual catalytic activity of vinorine hydroxylase thereby provides a control mechanism for the bifurcation of these alkaloid pathway branches. This discovery highlights the unusual catalytic functionality that has evolved in plant pathways. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. Rational engineering of the fungal P450 monooxygenase CYP5136A3 to improve its oxidizing activity toward polycyclic aromatic hydrocarbons.

    PubMed

    Syed, Khajamohiddin; Porollo, Aleksey; Miller, David; Yadav, Jagjit S

    2013-09-01

    A promising polycyclic aromatic hydrocarbon-oxidizing P450 CYP5136A3 from Phanerochaete chrysosporium was rationally engineered to enhance its catalytic activity. The residues W129 and L324 found to be critical in substrate recognition were transformed by single (L324F) and double (W129L/L324G, W129L/L324F, W129A/L324G, W129F/L324G and W129F/L324F) mutations, and the engineered enzyme forms were expressed in Pichia pastoris. L324F and W129F/L324F mutations enhanced the oxidation activity toward pyrene and phenanthrene. L324F also altered the regio-selectivity favoring C position 4 over 9 for hydroxylation of phenanthrene. This is the first instance of engineering a eukaryotic P450 for enhanced oxidation of these fused-ring hydrocarbons.

  14. Cytochrome P450 isozyme protein verified in the skin of southern hemisphere humpback whales (Megaptera novaeangliae): implications for biochemical biomarker assessment.

    PubMed

    Waugh, Courtney A; Huston, Wilhelmina M; Noad, Michael J; Bengtson Nash, Susan

    2011-04-01

    Large mysticete whales represent a unique challenge for chemical risk assessment. Few epidemiological investigations are possible due to the low incidence of adult stranding events. Similarly their often extreme life-history adaptations of prolonged migration and fasting challenge exposure assumptions. Molecular biomarkers offer the potential to complement information yielded through tissue chemical analysis, as well as providing evidence of a molecular response to chemical exposure. In this study we confirm the presence of cytochrome P450 reductase (CPR) and cytochrome P450 isoenzyme 1A1 (CYP1A1) in epidermal tissue of southern hemisphere humpback whales (Megaptera novaeangliae). The detection of CYP1A1 in the integument of the humpback whale affords the opportunity for further quantitative non-destructive investigations of enzyme activity as a function of chemical stress. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Virologic outcomes of HAART with concurrent use of cytochrome P450 enzyme-inducing antiepileptics: a retrospective case control study

    PubMed Central

    2011-01-01

    Background To evaluate the efficacy of highly-active antiretroviral therapy (HAART) in individuals taking cytochrome P450 enzyme-inducing antiepileptics (EI-EADs), we evaluated the virologic response to HAART with or without concurrent antiepileptic use. Methods Participants in the US Military HIV Natural History Study were included if taking HAART for ≥6 months with concurrent use of EI-AEDs phenytoin, carbamazepine, or phenobarbital for ≥28 days. Virologic outcomes were compared to HAART-treated participants taking AEDs that are not CYP450 enzyme-inducing (NEI-AED group) as well as to a matched group of individuals not taking AEDs (non-AED group). For participants with multiple HAART regimens with AED overlap, the first 3 overlaps were studied. Results EI-AED participants (n = 19) had greater virologic failure (62.5%) compared to NEI-AED participants (n = 85; 26.7%) for the first HAART/AED overlap period (OR 4.58 [1.47-14.25]; P = 0.009). Analysis of multiple overlap periods yielded consistent results (OR 4.29 [1.51-12.21]; P = 0.006). Virologic failure was also greater in the EI-AED versus NEI-AED group with multiple HAART/AED overlaps when adjusted for both year of and viral load at HAART initiation (OR 4.19 [1.54-11.44]; P = 0.005). Compared to the non-AED group (n = 190), EI-AED participants had greater virologic failure (62.5% vs. 42.5%; P = 0.134), however this result was only significant when adjusted for viral load at HAART initiation (OR 4.30 [1.02-18.07]; P = 0.046). Conclusions Consistent with data from pharmacokinetic studies demonstrating that EI-AED use may result in subtherapeutic levels of HAART, EI-AED use is associated with greater risk of virologic failure compared to NEI-AEDs when co-administered with HAART. Concurrent use of EI-AEDs and HAART should be avoided when possible. PMID:21575228

  16. Identification of a cytochrome P450 gene in the earthworm Eisenia fetida and its mRNA expression under enrofloxacin stress.

    PubMed

    Li, Yinsheng; Zhao, Chun; Lu, Xiaoxu; Ai, Xiaojie; Qiu, Jiangping

    2018-04-15

    Cytochrome P450 (CYP450) enzymes are a family of hemoproteins primarily responsible for detoxification functions. Earthworms have been used as a bioindicator of soil pollution in numerous studies, but no CYP450 gene has so far been cloned. RT-PCR and RACE-PCR were employed to construct and sequence the CYP450 gene DNA from the extracted mRNA in the earthworm Eisenia fetida. The cloned gene (EW1) has an open reading frame of 477bp. The 3'-terminal region contained both the consensus and the signature sequences characteristic of CYP450. It was closely related to the CYP450 gene from the flatworm genus Opisthorchis felineus with 87% homology. The predicted structure of the putative protein was 97% homologous to human CYP450 family 27. This gene has been deposited in GenBank (accession no. KM881474). Earthworms (E. fetida) were then exposed to 1, 10, 100, and 500mgkg -1 enrofloxacin in soils to explore the mRNA expression by real time qPCR. The effect of enrofloxacin on mRNA expression levels of EW1 exhibited a marked hormesis pattern across the enrofloxacin dose range tested. This is believed to be the first reported CYP450 gene in earthworms, with reference value for molecular studies on detoxification processes in earthworms. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Cytochrome P450 systems--biological variations of electron transport chains.

    PubMed

    Hannemann, Frank; Bichet, Andreas; Ewen, Kerstin M; Bernhardt, Rita

    2007-03-01

    Cytochromes P450 (P450) are hemoproteins encoded by a superfamily of genes nearly ubiquitously distributed in different organisms from all biological kingdoms. The reactions carried out by P450s are extremely diverse and contribute to the biotransformation of drugs, the bioconversion of xenobiotics, the bioactivation of chemical carcinogens, the biosynthesis of physiologically important compounds such as steroids, fatty acids, eicosanoids, fat-soluble vitamins and bile acids, the conversion of alkanes, terpenes and aromatic compounds as well as the degradation of herbicides and insecticides. Cytochromes P450 belong to the group of external monooxygenases and thus receive the necessary electrons for oxygen cleavage and substrate hydroxylation from different redox partners. The classical as well as the recently discovered P450 redox systems are compiled in this paper and classified according to their composition.

  18. Current knowledge of detoxification mechanisms of xenobiotic in honey bees.

    PubMed

    Gong, Youhui; Diao, Qingyun

    2017-01-01

    The western honey bee Apis mellifera is the most important managed pollinator species in the world. Multiple factors have been implicated as potential causes or factors contributing to colony collapse disorder, including honey bee pathogens and nutritional deficiencies as well as exposure to pesticides. Honey bees' genome is characterized by a paucity of genes associated with detoxification, which makes them vulnerable to specific pesticides, especially to combinations of pesticides in real field environments. Many studies have investigated the mechanisms involved in detoxification of xenobiotics/pesticides in honey bees, from primal enzyme assays or toxicity bioassays to characterization of transcript gene expression and protein expression in response to xenobiotics/insecticides by using a global transcriptomic or proteomic approach, and even to functional characterizations. The global transcriptomic and proteomic approach allowed us to learn that detoxification mechanisms in honey bees involve multiple genes and pathways along with changes in energy metabolism and cellular stress response. P450 genes, is highly implicated in the direct detoxification of xenobiotics/insecticides in honey bees and their expression can be regulated by honey/pollen constitutes, resulting in the tolerance of honey bees to other xenobiotics or insecticides. P450s is also a key detoxification enzyme that mediate synergism interaction between acaricides/insecticides and fungicides through inhibition P450 activity by fungicides or competition for detoxification enzymes between acaricides. With the wide use of insecticides in agriculture, understanding the detoxification mechanism of insecticides in honey bees and how honeybees fight with the xenobiotis or insecticides to survive in the changing environment will finally benefit honeybees' management.

  19. Sex difference in the principal cytochrome P-450 for tributyltin metabolism in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohhira, Shuji; Enomoto, Mitsunori; Matsui, Hisao

    Tributyltin is metabolized by cytochrome P-450 (CYP) system enzymes, and its metabolic fate may contribute to the toxicity of the chemical. In the present study, it is examined whether sex differences in the metabolism of tributyltin exist in rats. In addition, the in vivo and in vitro metabolism of tributyltin was investigated using rat hepatic CYP systems to confirm the principal CYP involved. A significant sex difference in metabolism occurred both in vivo and in vitro, suggesting that one of the CYPs responsible for tributyltin metabolism in rats is male specific or predominant at least. Eight cDNA-expressed rat CYPs, includingmore » typical phenobarbital (PB)-inducible forms and members of the CYP2C subfamily, were tested to determine their capability for tributyltin metabolism. Among the enzymes studied, a statistically significant dealkylation of tributyltin was mediated by CYP2C6 and 2C11. Furthermore, the sex difference in metabolism disappeared in vitro after anti-rat CYP2C11 antibody pretreatment because CYP2C11 is a major male-specific form in rats. These results indicate that CYP2C6 is the principal CYP for tributyltin metabolism in female rats, whereas CYP2C11 as well as 2C6 is involved in tributyltin metabolism in male rats, and it is suggested that CYP2C11 is responsible for the significant sex difference in the metabolism of tributyltin observed in rats.« less

  20. Benzo[a]pyrene-7,8-dihydrodiol promotes checkpoint activation and G2/M arrest in human bronchoalveolar carcinoma H358 cells.

    PubMed

    Caino, M Cecilia; Oliva, Jose L; Jiang, Hao; Penning, Trevor M; Kazanietz, Marcelo G

    2007-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are potent carcinogens that require metabolic activation inside cells. The proximate carcinogens PAH-diols can be converted to o-quinones by aldo-keto reductases (AKRs) or to diol-epoxides by cytochrome P450 (P450) enzymes. We assessed the effect of benzo[a]pyrene-7,8-dihydrodiol (BPD) on proliferation in p53-null bronchoalveolar carcinoma H358 cells. BPD treatment led to a significant inhibition of proliferation and arrest in G2/M in H358 cells. The relative contribution of the AKR and P450 pathways to cell cycle arrest was assessed. Overexpression of AKR1A1 did not affect cell proliferation or cell cycle progression, and benzo[a]pyrene-7,8-dione did not cause any noticeable effect on cell growth, suggesting that AKR1A1 metabolic products were not involved in the antiproliferative effect of BPD. On the other hand, blockade of P450 induction or inhibition of P450 activity greatly impaired the effect of BPD. Moreover, P450 induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin significantly enhanced the antiproliferative effect of BPD. Mechanistic studies revealed that BPD caused a DNA damage response, Chk1 activation, and accumulation of phospho-Cdc2 (Tyr15) in H358 cells, effects that were impaired by an ataxia-telangectasia mutated (ATM)/ATM-related (ATR) inhibitor. Similar results were observed in human bronchoepithelial BEAS-2B cells, arguing for analogous mechanisms in tumorigenic and immortalized nontumorigenic cells lacking functional p53. Our data suggest that a p53-independent pathway operates in lung epithelial cells in response to BPD that involves P450 induction and subsequent activation of the ATR/ATM/Chk1 damage check-point pathway and cell cycle arrest in G2/M.

Top