Wharton, Christopher W.; Cornish-Bowden, Athel; Brocklehurst, Keith; Crook, Eric M.
1974-01-01
1. N-Benzoyl-l-serine methyl ester was synthesized and evaluated as a substrate for bromelain (EC 3.4.22.4) and for papain (EC 3.4.22.2). 2. For the bromelain-catalysed hydrolysis at pH7.0, plots of [S0]/vi (initial substrate concn./initial velocity) versus [S0] are markedly curved, concave downwards. 3. Analysis by lattice nomography of a modifier kinetic mechanism in which the modifier is substrate reveals that concave-down [S0]/vi versus [S0] plots can arise when the ratio of the rate constants that characterize the breakdown of the binary (ES) and ternary (SES) complexes is either less than or greater than 1. In the latter case, there are severe restrictions on the values that may be taken by the ratio of the dissociation constants of the productive and non-productive binary complexes. 4. Concave-down [S0]/vi versus [S0] plots cannot arise from compulsory substrate activation. 5. Computational methods, based on function minimization, for determination of the apparent parameters that characterize a non-compulsory substrate-activated catalysis are described. 6. In an attempt to interpret the catalysis by bromelain of the hydrolysis of N-benzoyl-l-serine methyl ester in terms of substrate activation, the general substrate-activation model was simplified to one in which only one binary ES complex (that which gives rise directly to products) can form. 7. In terms of this model, the bromelain-catalysed hydrolysis of N-benzoyl-l-serine methyl ester at pH7.0, I=0.1 and 25°C is characterized by Km1 (the dissociation constant of ES)=1.22±0.73mm, k (the rate constant for the breakdown of ES to E+products, P)=1.57×10−2±0.32×10−2s−1, Ka2 (the dissociation constant that characterizes the breakdown of SES to ES and S)=0.38±0.06m, and k′ (the rate constant for the breakdown of SES to E+P+S)=0.45±0.04s−1. 8. These parameters are compared with those in the literature that characterize the bromelain-catalysed hydrolysis of α-N-benzoyl-l-arginine ethyl ester and of α-N-benzoyl-l-arginine amide; Km1 and k for the serine ester hydrolysis are somewhat similar to Km and kcat. for the arginine amide hydrolysis and Kas and k′ for the serine ester hydrolysis are somewhat similar to Km and kcat. for the arginine ester hydrolysis. 9. A previous interpretation of the inter-relationships of the values of kcat. and Km for the bromelain-catalysed hydrolysis of the arginine ester and amide substrates is discussed critically and an alternative interpretation involving substantial non-productive binding of the arginine amide substrate to bromelain is suggested. 10. The parameters for the bromelain-catalysed hydrolysis of the serine ester substrate are tentatively interpreted in terms of non-productive binding in the binary complex and a decrease of this type of binding by ternary complex-formation. 11. The Michaelis parameters for the papain-catalysed hydrolysis of the serine ester substrate (Km=52±4mm, kcat.=2.80±0.1s−1 at pH7.0, I=0.1, 25.0°C) are similar to those for the papain-catalysed hydrolysis of methyl hippurate. 12. Urea and guanidine hydrochloride at concentrations of 1m have only small effects on the kinetic parameters for the hydrolysis of the serine ester substrate catalysed by bromelain and by papain. PMID:4455211
Chen, Xiabin; Zheng, Xirong; Zhou, Ziyuan; Zhan, Chang-Guo; Zheng, Fang
2016-11-25
Accelerating cocaine metabolism through enzymatic hydrolysis at cocaine benzoyl ester is recognized as a promising therapeutic approach for cocaine abuse treatment. Our more recently designed A199S/F227A/S287G/A328W/Y332G mutant of human BChE, denoted as cocaine hydrolase-3 (CocH3), has a considerably improved catalytic efficiency against cocaine and has been proven active in blocking cocaine-induced toxicity and physiological effects. In the present study, we have further characterized the effects of CocH3 on the detailed metabolic profile of cocaine in rats administrated intravenously (IV) with 5 mg/kg cocaine, demonstrating that IV administration of 0.15 mg/kg CocH3 dramatically changed the metabolic profile of cocaine. Without CocH3 administration, the dominant cocaine-metabolizing pathway in rats was cocaine methyl ester hydrolysis to benzoylecgonine (BZE). With the CocH3 administration, the dominant cocaine-metabolizing pathway in rats became cocaine benzoyl ester hydrolysis to ecgonine methyl ester (EME), and the other two metabolic pathways (i.e. cocaine methyl ester hydrolysis to BZE and cocaine oxidation to norcocaine) became insignificant. The CocH3-catalyzed cocaine benzoyl ester hydrolysis to EME was so efficient such that the measured maximum blood cocaine concentration (∼38 ng/ml) was significantly lower than the threshold blood cocaine concentration (∼72 ng/ml) required to produce any measurable physiological effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Anaerobic biodegradation of methyl esters by Acetobacterium woodii and Eubacterium limosum
Liu, Shi; Suflita, Joseph M.
1994-01-01
The ability ofAcetobacterium woodii andEubacterium limosum to degrade methyl esters of acetate, propionate, butyrate, and isobutyrate was examined under growing and resting-cell conditions. Both bacteria hydrolyzed the esters to the corresponding carboxylates and methanol under either condition. Methanol was further oxidized to formate under growing but not resting conditions. Unlike the metabolism of phenylmethylethers, no H2 requirement was evident for ester biotransformation. The hydrolysis of methyl carboxylates is thermodynamically favorable under standard conditions and the mixotrophic metabolism of ester/CO2 allowed for bacterial growth. These results suggest that the degradation of methyl carboxylates may be a heretofore unrecognized nutritional option for acetogenic bacteria.
Hydrolysis kinetics of secoisolariciresinol diglucoside oligomers from flaxseed.
Yuan, Jian-Ping; Li, Xin; Xu, Shi-Ping; Wang, Jiang-Hai; Liu, Xin
2008-11-12
Flaxseed is the richest dietary source of the lignan secoisolariciresinol diglucoside (SDG) and contains the largest amount of SDG oligomers, which are often hydrolyzed to break the ester linkages for the release of SDG and the glycosidic bonds for the release of secoisolariciresinol (SECO). The alkaline hydrolysis reaction kinetics of SDG oligomers from flaxseed and the acid hydrolysis process of SDG and other glucosides were investigated. For the kinetic modeling, a pseudo-first-order reaction was assumed. The results showed that the alkaline hydrolysis of SDG oligomers followed first-order reaction kinetics under mild alkaline hydrolytic conditions and that the concentration of sodium hydroxide had a strong influence on the activation energy of the alkaline hydrolysis of SDG oligomers. The results also indicated that the main acid hydrolysates of SDG included secoisolariciresinol monoglucoside (SMG), SECO, and anhydrosecoisolariciresinol (anhydro-SECO) and that the extent and the main hydrolysates of the acid hydrolysis reaction depended on the acid concentration, hydrolysis temperature, and time. In addition, the production and change of p-coumaric acid glucoside, ferulic acid glucoside and their methyl esters and p-coumaric acid, ferulic acid, and their methyl esters during the process of hydrolysis was also investigated.
Kester, H C; Benen, J A; Visser, J; Warren, M E; Orlando, R; Bergmann, C; Magaud, D; Anker, D; Doutheau, A
2000-03-01
The substrate specificity and the mode of action of Aspergillus niger pectin methylesterase (PME) was determined using both fully methyl-esterified oligogalacturonates with degrees of polymerization (DP) 2-6 and chemically synthesized monomethyl trigalacturonates. The enzymic activity on the different substrates and a preliminary characterization of the reaction products were performed by using high-performance anion-exchange chromatography at neutral pH. Electrospray ionization tandem MS (ESI-MS/MS) was used to localize the methyl esters on the (18)O-labelled reaction products during the course of the enzymic reaction. A. niger PME is able to hydrolyse the methyl esters of fully methyl-esterified oligogalacturonates with DP 2, and preferentially hydrolyses the methyl esters located on the internal galacturonate residues, followed by hydrolysis of the methyl esters towards the reducing end. This PME is unable to hydrolyse the methyl ester of the galacturonate moiety at the non-reducing end.
USDA-ARS?s Scientific Manuscript database
The known members of the plant methyl esterase (MES) family catalyze hydrolysis of a C-O ester linkage of methyl esters of several phytohormones including indole-3-acetic acid, salicylic acid, and jasmonic acid. The genome of grapevine (Vitis vinifera) was found to contain 15 MES genes, designated V...
Wolfenden, Richard; Yuan, Yang
2007-01-01
Alkyl sulfate monoesters are involved in cell signaling and structure. Alkyl sulfates are also present in many commercial detergents. Here, we show that monomethyl sulfate acts as an efficient alkylating agent in water, reacting spontaneously with oxygen nucleophiles >100-fold more rapidly than do alkylsulfonium ions, the usual methyl donors in living organisms. These reactions of methyl sulfate, which are much more rapid than its hydrolysis, are insensitive to the nature of the attacking nucleophile, with a Brønsted βnuc value of −0.01. Experiments at elevated temperatures indicate a rate constant of 2 × 10−11 s−1 for the uncatalyzed hydrolysis of methyl sulfate at 25°C (t1/2 = 1,100 y), corresponding to a rate enhancement of ≈1011-fold by a human alkylsulfatase. Equilibria of formation of methyl sulfate from methanol and sodium hydrogen sulfate indicate a group transfer potential (ΔG′pH7) of −8.9 kcal/mol for sulfate ester hydrolysis. The magnitude of that value, involving release of the strong acid HSO4−, helps to explain the need for harnessing the free energy of hydrolysis of two ATP molecules in activating sulfate for the biosynthesis of sulfate monoesters. The “energy-rich” nature of monoalkyl sulfate esters, coupled with their marked resistance to hydrolysis, renders them capable of acting as sulfating or alkylating agents under relatively mild conditions. These findings raise the possibility that, under appropriate circumstances, alkyl groups may undergo transfer from alkyl sulfate monoesters to biological target molecules. PMID:17182738
Li, Xin; Yuan, Jian-Ping; Xu, Shi-Ping; Wang, Jiang-Hai; Liu, Xin
2008-03-28
Flaxseed contains the largest amount of lignan secoisolariciresinol diglucoside (SDG) oligomers and is the richest dietary source of SDG. SDG oligomers in the flaxseed extract are often hydrolyzed to break the ester linkages for the release of SDG and the glycosidic bonds for the release of secoisolariciresinol (SECO). The hydrolysates of SDG oligomers are complicated because of the production of esters in an alcohol-containing medium. In this study, a new gradient reversed-phase high-performance liquid chromatography (HPLC) method has been developed to be suitable for the separation and determination of: (1) SDG oligomers extracted from the defatted flaxseed powder by a 70% aqueous methanol solution; (2) SDG oligomers and their alkaline hydrolysates, including SDG, p-coumaric acid glucoside and its methyl ester, ferulic acid glucoside and its methyl ester in an alkaline hydrolytic solution; and (3) the succedent acid hydrolysates, including secoisolariciresinol monoglucoside (SMG), SECO, anhydrosecoisolariciresinol (anhydro-SECO), p-coumaric acid and its methyl ester, ferulic acid and its methyl ester, 5-hydroxymethyl-2-furfural (HMF) and its degradation product in an acid hydrolytic solution. The content of SDG oligomers in a defatted flaxseed powder was found to be 38.5 mg/g on a dry matter basis, corresponding to a SDG content of 15.4 mg/g, which was determined after alkaline hydrolysis. Furthermore, this study presented a major reaction pathway for the hydrolysis of SDG oligomers.
Molecular dynamics investigations of BioH protein substrate specificity for biotin synthesis.
Xue, Qiao; Cui, Ying-Lu; Zheng, Qing-Chuan; Zhang, Hong-Xing
2016-05-01
BioH, an enzyme of biotin synthesis, plays an important role in fatty acid synthesis which assembles the pimelate moiety. Pimeloyl-acyl carrier protein (ACP) methyl ester, which is long known to be a biotin precursor, is the physiological substrate of BioH. Azelayl methyl ester, which has a longer chain than pimeloyl methyl ester, conjugated to ACP is also indeed accepted by BioH with very low rate of hydrolysis. To date, the substrate specificity for BioH and the molecular origin for the experimentally observed rate changes of hydrolysis by the chain elongation have remained elusive. To this end, we have investigated chain elongation effects on the structures by using the fully atomistic molecular dynamics simulations combined with binding free energy calculations. The results indicate that the substrate specificity is determined by BioH together with ACP. The added two methylenes would increase the structural flexibility by protein motions at the interface of ACP and BioH, instead of making steric clashes with the side chains of the BioH hydrophobic cavity. On the other hand, the slower hydrolysis of azelayl substrate is suggested to be associated with the loose of contacts between BioH and ACP, and with the lost electrostatic interactions of two ionic/hydrogen bonding networks at the interface of the two proteins. The present study provides important insights into the structure-function relationships of the complex of BioH with pimeloyl-ACP methyl ester, which could contribute to further understanding about the mechanism of the biotin synthetic pathway, including the catalytic role of BioH.
Hydrolysis of Synthetic Esters by the Antibacterial Agent in Serum
Yotis, William W.
1966-01-01
Yotis, William W. (Loyola University, Chicago, Ill.). Hydrolysis of synthetic esters by the antibacterial agent in serum. J. Bacteriol. 91:488–493. 1966.—An antistaphylococcal serum agent was assayed colorimetrically, manometrically, and titrimetrically for esterase activity. p-Nitrophenol acetate, triacetin, l-lysine methyl and ethyl ester, and norleucine methyl ester were hydrolyzed by the antistaphylococcal agent. Acetylcholine and benzoylcholine esters, triolein, tristearin, and p-tosylarginine methyl ester were not attacked by this agent. With p-nitrophenol acetate as substrate, optimal activity occurred at pH 7.4. Incubation at 60 C for 30 min reduced drastically the esterase activity of the antistaphylococcal agent, and incubation at 75 C for 30 min abolished the esterase activity of this agent. Almost complete inhibition of esterase activity was observed with 0.001 m HgCl2, ZnSO4, and ethylenediaminetetraacetic acid (EDTA). EDTA inhibition could be reversed by the addition of CaCl2, but not MgCl2. Cysteine reversed the inhibition of HgCl2. NaF, atoxyl, diisopropyl fluorophosphate, quinine, and physostigmine did not influence the esterase activity of the antibacterial agent. The demonstration of esterase activity of both the antistaphylococcal agent and coagulase may shed further light on the reported ability of coagulase to neutralize the antistaphylococcal activity of this agent, or the prevention of absorption of the agent on the staphylococcal cell surface. In addition, the colorimetric procedure described in this report may be a convenient tool in assaying the potency of the antistaphylococcal agent. Images PMID:4956776
Regiospecific Ester Hydrolysis by Orange Peel Esterase - An Undergraduate Experiment.
NASA Astrophysics Data System (ADS)
Bugg, Timothy D. H.; Lewin, Andrew M.; Catlin, Eric R.
1997-01-01
A simple but effective experiment has been developed to demonstrate the regiospecificity of enzyme catalysis using an esterase activity easily isolated from orange peel. The experiment involves the preparation of diester derivatives of para-, meta- and ortho-hydroxybenzoic acid (e.g. methyl 4-acetoxy-benzoic acid). The derivatives are incubated with orange peel esterase, as a crude extract, and with commercially available pig liver esterase and porcine pancreatic lipase. The enzymatic hydrolysis reactions are monitored by thin layer chromatography, revealing which of the two ester groups is hydrolysed, and the rate of the enzyme-catalysed reaction. The results of a group experiment revealed that in all cases hydrolysis was observed with at least one enzyme, and in most cases the enzymatic hydrolysis was specific for production of either the hydroxy-ester or acyl-acid product. Specificity towards the ortho-substituted series was markedly different to that of the para-substituted series, which could be rationalised in the case of pig liver esterase by a published active site model.
Yu, Xiaomin; Price, Neil P. J.; Evans, Bradley S.
2014-01-01
Two related actinomycetes, Glycomyces sp. strain NRRL B-16210 and Stackebrandtia nassauensis NRRL B-16338, were identified as potential phosphonic acid producers by screening for the gene encoding phosphoenolpyruvate (PEP) mutase, which is required for the biosynthesis of most phosphonates. Using a variety of analytical techniques, both strains were subsequently shown to produce phosphonate-containing exopolysaccharides (EPS), also known as phosphonoglycans. The phosphonoglycans were purified by sequential organic solvent extractions, methanol precipitation, and ultrafiltration. The EPS from the Glycomyces strain has a mass of 40 to 50 kDa and is composed of galactose, xylose, and five distinct partially O-methylated galactose residues. Per-deutero-methylation analysis indicated that galactosyl residues in the polysaccharide backbone are 3,4-linked Gal, 2,4-linked 3-MeGal, 2,3-linked Gal, 3,6-linked 2-MeGal, and 4,6-linked 2,3-diMeGal. The EPS from the Stackebrandtia strain is comprised of glucose, galactose, xylose, and four partially O-methylated galactose residues. Isotopic labeling indicated that the O-methyl groups in the Stackebrandtia phosphonoglycan arise from S-adenosylmethionine. The phosphonate moiety in both phosphonoglycans was shown to be 2-hydroxyethylphosphonate (2-HEP) by 31P nuclear magnetic resonance (NMR) and mass spectrometry following strong acid hydrolysis of the purified molecules. Partial acid hydrolysis of the purified EPS from Glycomyces yielded 2-HEP in ester linkage to the O-5 or O-6 position of a hexose and a 2-HEP mono(2,3-dihydroxypropyl)ester. Partial acid hydrolysis of Stackebrandtia EPS also revealed the presence of 2-HEP mono(2,3-dihydroxypropyl)ester. Examination of the genome sequences of the two strains revealed similar pepM-containing gene clusters that are likely to be required for phosphonoglycan synthesis. PMID:24584498
Synthesis of β-Peptide Standards for Use in Model Prebiotic Reactions
NASA Astrophysics Data System (ADS)
Forsythe, Jay G.; English, Sloane L.; Simoneaux, Rachel E.; Weber, Arthur L.
2018-05-01
A one-pot method was developed for the preparation of a series of β-alanine standards of moderate size (2 to ≥12 residues) for studies concerning the prebiotic origins of peptides. The one-pot synthesis involved two sequential reactions: (1) dry-down self-condensation of β-alanine methyl ester, yielding β-alanine peptide methyl ester oligomers, and (2) subsequent hydrolysis of β-alanine peptide methyl ester oligomers, producing a series of β-alanine peptide standards. These standards were then spiked into a model prebiotic product mixture to confirm by HPLC the formation of β-alanine peptides under plausible reaction conditions. The simplicity of this approach suggests it can be used to prepare a variety of β-peptide standards for investigating differences between α- and β-peptides in the context of prebiotic chemistry.
Hydrolase BioH knockout in E. coli enables efficient fatty acid methyl ester bioprocessing.
Kadisch, Marvin; Schmid, Andreas; Bühler, Bruno
2017-03-01
Fatty acid methyl esters (FAMEs) originating from plant oils are most interesting renewable feedstocks for biofuels and bio-based materials. FAMEs can also be produced and/or functionalized by engineered microbes to give access to, e.g., polymer building blocks. Yet, they are often subject to hydrolysis yielding free fatty acids, which typically are degraded by microbes. We identified BioH as the key enzyme responsible for the hydrolysis of medium-chain length FAME derivatives in different E. coli K-12 strains. E. coli ΔbioH strains showed up to 22-fold reduced FAME hydrolysis rates in comparison with respective wild-type strains. Knockout strains showed, beside the expected biotin auxotrophy, unchanged growth behavior and biocatalytic activity. Thus, high specific rates (~80 U g CDW -1 ) for terminal FAME oxyfunctionalization catalyzed by a recombinant alkane monooxygenase could be combined with reduced hydrolysis. Biotransformations in process-relevant two-liquid phase systems profited from reduced fatty acid accumulation and/or reduced substrate loss via free fatty acid metabolization. The BioH knockout strategy was beneficial in all tested strains, although its effect was found to differ according to specific strain properties, such as FAME hydrolysis and FFA degradation activities. BioH or functional analogs can be found in virtually all microorganisms, making bioH deletion a broadly applicable strategy for efficient microbial bioprocessing involving FAMEs.
Thiele, Nikki A; Abboud, Khalil A; Sloan, Kenneth B
2016-08-08
The development of iron chelators suitable for the chronic treatment of diseases where iron accumulation and subsequent oxidative stress are implicated in disease pathogenesis is an active area of research. The clinical use of the strong chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) and its alkyl ester prodrugs has been hindered by poor oral bioavailability and lack of conversion to the parent chelator, respectively. Here, we present novel double prodrugs of HBED that have the carboxylate and phenolate donors of HBED masked with carboxylate esters and boronic acids/esters, respectively. These double prodrugs were successfully synthesized as free bases (7a-f) or as dimesylate salts (8a-c,e), and were characterized by (1)H, (13)C, and (11)B NMR; MP; MS; and elemental analysis. The crystal structure of 8a was solved. Three of the double prodrugs (8a-c) were selected for further investigation into their abilities to convert to HBED by stepwise hydrolysis and H2O2 oxidation. The serial hydrolysis of the pinacol and methyl esters of N,N'-bis(2-boronic acid pinacol ester benzyl)ethylenediamine-N,N'-diacetic acid methyl ester dimesylate (8a) was verified by LC-MS. The macro half-lives for the hydrolyses of 8a-c, measured by UV, ranged from 3.8 to 26.3 h at 37 °C in pH 7.5 phosphate buffer containing 50% MeOH. 9, the product of hydrolysis of 8a-c and the intermediate in the conversion pathway, showed little-to-no affinity for iron or copper in UV competition experiments. 9 underwent a serial oxidative deboronation by H2O2 in N-methylmorpholine buffer to generate HBED (k = 10.3 M(-1) min(-1)). The requirement of this second step, oxidation, before conversion to the active chelator is complete may confer site specificity when only localized iron chelation is needed. Overall, these results provide proof of principle for the activation of the double prodrugs by chemical hydrolysis and H2O2 oxidation, and merit further investigation into the protective capabilities of the prodrugs against H2O2-induced cell death. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Thermally reversible gels based on acryloyl- L-proline methyl ester as drug delivery systems
NASA Astrophysics Data System (ADS)
Martellini, Flavia; Higa, Olga Z.; Takacs, Erzsebet; Safranj, Agneza; Yoshida, Masaru; Katakai, Ryoichi; Carenza, Mario
1999-06-01
Thermally reversible hydrogels were synthesized by radiation-induced copolymerization of acryloyl- L-proline methyl ester with hydrophilic or hydrophobic monomers. The swelling behaviour was found to be affected by a proper balance of the latter. In particular, the transition temperature of the different hydrogels shifted to higher or lower values depending on the presence of hydrophilic or hydrophobic moieties in the polymer chain, respectively. Acetaminophen, an analgesic and antipyretic drug, was entrapped into some hydrogels and a wide range of release rates was obtained according to the nature of the comonomers. A novel thermoresponsive hydrogel was also prepared by radiation polymerization of acryloyl- L-proline methyl ester in the presence of 4-acryloyloxy acetanilide, an acrylic derivative of acetaminophen. Again, the swelling curves showed an inverse function of temperature. It was shown that with this hydrogel bearing the drug covalently attached to the polymer backbone, the hydrolysis process was the rate-determining process of the drug release.
Tehrani-Bagha, A R; Holmberg, K; van Ginkel, C G; Kean, M
2015-07-01
The paper describes synthesis and characterization of a new type of cationic gemini surfactant, which has dodecyl tails and a spacer that contains an ester bond. The nomenclature used to describe the structure is 12Q2OCO1Q12, with Q being a quaternary ammonium group and the numbers indicating the number of methylene or methyl groups. Due to the close proximity to the two quaternary ammonium groups, the ester bond is very stable on the acid side and very labile already at slightly alkaline conditions. The hydrolysis products are two single chain surfactants (i.e. 12Q2OH and 12Q1COOH) which are less surface active than the intact gemini surfactant. 12Q2OCO1Q12 was found to be readily biodegradable, i.e. it gave more than 60% biodegradation after 28 days. This is interesting because similar gemini surfactants but with ester bonds in the tails instead of the spacer, have previously been found not to be readily biodegradable. The gemini surfactant was found to be toxic to aquatic organisms (ErC50 value of 0.27 mg/l), although less toxic than the two hydrolysis products. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Indrayanah, S.; Erwin; Marsih, I. N.; Suprapto; Murwani, I. K.
2017-05-01
The heterogeneous acid catalysts (MgF2 and ZnF2) have been used to catalyze the simultaneous transesterification and esterification reactions of crude palm oil (CPO) with methanol. Catalysts were synthesized by sol-gel method (combination of fluorolysis and hydrolysis). The physicochemical, structural, textural, thermal stability of the prepared catalysts was investigated by N2 adsorption-desorption, XRD, FT-IR, SEM and TG/DTG. Both MgF2 and ZnF2 have rutile structures with a different phase. The surface area of ZnF2 is smaller than that of MgF2, but the pore size and volume of ZnF2 are larger than those of MgF2. However, these materials are thermally stable. The performance of the catalysts is determined from the yield of catalysts toward the formation of methyl ester determined based on the product of methyl ester obtained from the reaction. The catalytic activity of ZnF2 is higher than MgF2 amounted to 85.21% and 26.82% with the optimum condition. The high activity of ZnF2 could be attributed to its pore diameter and pore volume but was not correlated with its surface area. The yield of methyl ester decreased along with the increase in molar ratio of methanol/CPO from 85.21 to 80.99 for ZnF2, respectively.
Wharton, Christopher W.
1974-01-01
1. Purified stem bromelain (EC 3.4.22.4) was eluted from Sephadex G-100 as a single peak. The specific activity across the elution peak was approximately constant towards p-nitrophenyl hippurate but increased with elution volume with N2-benzoyl-l-arginine ethyl ester as substrate. 2. The apparent molecular weight, determined by elution analysis on Sephadex G-100, is 22500±1500, an anomalously low value. 3. Purified stem bromelain was eluted from CM-cellulose CM-32 as a single peak and behaved as a single species during column electrophoresis on Sephadex G-100. 4. Purified stem bromelain migrates as a single band during polyacrylamide-gel electrophoresis under a wide variety of conditions. 5. The molecular weight determined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate is 28500±1000. 6. Sedimentation-velocity and equilibrium-ultracentrifugation experiments, under a variety of conditions, indicate that bromelain is an apparently homogeneous single peptide chain of mol.wt. 28400±1400. 7. The N-terminal amino acid composition is 0.64±0.04mol of valine and 0.36±0.04mol of alanine per mol of enzyme of mol.wt. 28500. (The amino acid recovery of the cyanate N-terminal amino acid analysis was standardized by inclusion of carbamoyl-norleucine at the cyclization stage.) 8. The pH-dependence of the Michaelis parameters of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester was determined. 9. The magnitude and pH-dependence of the Michaelis parameters have been interpreted in terms of the mechanism of the enzyme. 10. The enzyme is able to bind N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester relatively strongly but seems unable to make use of the binding energy to promote catalysis. PMID:4462742
1990-10-01
141 that the use of neopentyl glycol produces laminates with greater blister resistance because the two methyl groups provide steric protection of...It is known that susceptibility of the ester linkage to hydrolysis is also reduced by increasing the size of the glycol unit 1101, e.g. it is clairned
Delplace, Vianney; Guégain, Elise; Harrisson, Simon; Gigmes, Didier; Guillaneuf, Yohann; Nicolas, Julien
2015-08-18
2-Methylene-4-phenyl-1,3-dioxolane (MPDL) was successfully used as a controlling comonomer in NMP with oligo(ethylene glycol) methyl ether methacrylate (MeOEGMA) to prepare well-defined and degradable PEG-based P(MeOEGMA-co-MPDL) copolymers. The level of ester group incorporation is controlled, leading to reductions in molecular weight of up to 95% on hydrolysis. Neither the polymer nor its degradation products displayed cytoxicity. The method was also successfully applied to methyl methacrylate.
Rota, Paola; Allevi, Pietro; Agnolin, Irene S; Mattina, Roberto; Papini, Nadia; Anastasia, Mario
2012-04-14
A simple protocol for the synthesis of N-perfluoroacylated and N-acylated glycals of neuraminic acid, with a secondary cyclic amine (morpholine or piperidine) at the 4α position, has been set-up, starting from peracetylated N-acetylneuraminic acid methyl ester that undergoes, sequentially to its direct N-transacylation followed by a C-4 amination, a β-elimination, and a selective hydrolysis of the ester functions, without affecting the sensitive perfluorinated amide. This journal is © The Royal Society of Chemistry 2012
Total enzymatic synthesis of cholecystokinin CCK-5.
Xiang, H; Xiang, G Y; Lu, Z M; Guo, L; Eckstein, H
2004-08-01
This paper describes the enzymatic synthesis of the C-terminal fragment H-Gly-Trp-Met-Asp-Phe-NH2 of cholecystokinin. Immobilized enzymes were used for the formation of all peptide bonds except thermolysin. Beginning the synthesis with phenylacetyl (PhAc) glycine carboxamidomethyl ester (OCam) and H-Trp-OMe by using immobilized papain as biocatalyst in buffered ethyl acetate, the dipeptide methyl ester was then coupled directly with Met-OEt.HCl by alpha-chymotrypsin/Celite 545 in a solvent free system. For the 3+2 coupling PhAc-Gly-Trp-Met-OEt had to be converted into its OCam ester. The other fragment H-Asp(OMe)-Phe-NH2 resulted from the coupling of Cbo-Asp(OMe)-OH with H-Phe-NH2.HCl and thermolysin as catalyst, followed by catalytic hydrogenation. Finally PhAc-Gly-Trp-Met-Asp-Phe-NH2 was obtained in a smooth reaction from PhAc-Gly-Trp-Met-OCam and H-Asp(OMe)-Phe-NH2 with alpha-chymotrypsin/Celite 545 in acetonitrile, followed by basic hydrolysis of the beta-methyl ester. The PhAc-group is removed with penicillin G amidase and CCK-5 is obtained in an overall isolated yield of 19.6%.
Fujii, Makiko; Ohara, Rieko; Matsumi, Azusa; Ohura, Kayoko; Koizumi, Naoya; Imai, Teruko; Watanabe, Yoshiteru
2017-11-15
We studied the effect that three alcohols, ethanol (EA), propanol (PA), and isopropanol (IPA), have on the skin permeation of p-hydroxy benzoic acid methyl ester (HBM), a model ester-type prodrug. HBM was applied to Yucatan micropig skin in a saturated phosphate buffered solution with or without 10% alcohol, and HBM and related materials in receptor fluid and skin were determined with HPLC. In the absence of alcohol, p-hydroxy benzoic acid (HBA), a metabolite of HBM, permeated the skin the most. The three alcohols enhanced the penetration of HBM at almost the same extent. The addition of 10% EA or PA to the HBM solution led to trans-esterification into the ethyl ester or propyl ester of HBA, and these esters permeated skin as well as HBA and HBM did. In contrast, the addition of 10% IPA promoted very little trans-esterification. Both hydrolysis and trans-esterification in the skin S9 fraction were inhibited by BNPP, an inhibitor of carboxylesterase (CES). Western blot and native PAGE showed the abundant expression of CES in micropig skin. Both hydrolysis and trans-esterification was simultaneously catalyzed by CES during skin permeation. Our data indicate that the alcohol used in dermal drug preparations should be selected not only for its ability to enhance the solubility and permeation of the drug, but also for the effect on metabolism of the drug in the skin. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouvette, R.E.
The disposition and metabolism of L-aspartyl-L-(/sup 14/C-phenyl) alanine methyl ester (/sup 14/C-APM) was studied in male Sprague-Dawley rats after a single intragastric injection. Plasma levels of /sup 14/C-activity increased slowly within the first four hours after a 5 ..mu..Ci dose. Within 2 hours after injection 90% of the /sup 14/C-activity observed in the plasma was incorporated into precipitated proteins. HPLC analysis of the deproteinated plasma showed the /sup 14/C-activity present to be in the form of phenylalanine Disposition studies of /sup 14/C-APM 4 hours after a single intragastric dose showed the highest organs of /sup 14/C-accumulation to be the blood,more » liver, stomach, and small intestine. The molecular form of the /sup 14/C-activity in the tissues was not determined.« less
Dong, Tao; Yu, Liang; Gao, Difeng; Yu, Xiaochen; Miao, Chao; Zheng, Yubin; Lian, Jieni; Li, Tingting; Chen, Shulin
2015-12-01
Accurate determination of fatty acid contents is routinely required in microalgal and yeast biofuel studies. A method of rapid in situ fatty acid methyl ester (FAME) derivatization directly from wet fresh microalgal and yeast biomass was developed in this study. This method does not require prior solvent extraction or dehydration. FAMEs were prepared with a sequential alkaline hydrolysis (15 min at 85 °C) and acidic esterification (15 min at 85 °C) process. The resulting FAMEs were extracted into n-hexane and analyzed using gas chromatography. The effects of each processing parameter (temperature, reaction time, and water content) upon the lipids quantification in the alkaline hydrolysis step were evaluated with a full factorial design. This method could tolerate water content up to 20% (v/v) in total reaction volume, which equaled up to 1.2 mL of water in biomass slurry (with 0.05-25 mg of fatty acid). There were no significant differences in FAME quantification (p>0.05) between the standard AOAC 991.39 method and the proposed wet in situ FAME preparation method. This fatty acid quantification method is applicable to fresh wet biomass of a wide range of microalgae and yeast species.
NASA Technical Reports Server (NTRS)
Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.
1984-01-01
Quantitative structure-activity relationships are presented for the hydrolysis of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. CNDO/2 calculations provide values for molecular parameters that correlate with alkaline hydrolysis rates. For each subset of esters with the same leaving group, X, the CNDO-derived net atomic charge at the central phosphorus atom correlates well with the alkaline hydrolysis rate constants. For the whole set of esters with different leaving groups, equations are derived that relate charge, orbital energy and bond order to the hydrolysis rate constants.
Lipase-catalyzed kinetic resolution of novel antitubercular benzoxazole derivatives.
Łukowska-Chojnacka, Edyta; Kowalkowska, Anna; Napiórkowska, Agnieszka
2018-04-01
Novel benzoxazole derivatives were synthesized, and their antitubercular activity against sensitive and drug-resistant Mycobacterium tuberculosis strains (M. tuberculosis H 37 Rv, M. tuberculosis sp. 210, M. tuberculosis sp. 192, Mycobacterium scrofulaceum, Mycobacterium intracellulare, Mycobacterium fortuitum, Mycobacterium avium, and Mycobacterium kansasii) was evaluated. The chemical step included preparation of ketones, alcohols, and esters bearing benzoxazole moiety. All racemic mixtures of alcohols and esters were separated in Novozyme SP 435-catalyzed transesterification and hydrolysis, respectively. The transesterification reactions were carried out in various organic solvents (tert-butyl methyl ether, toluene, diethyl ether, and diisopropyl ether), and depending on the solvent, the enantioselectivity of the reactions ranged from 4 to >100. The enzymatic hydrolysis of esters was performed in 2 phase tert-butyl methyl ether/phosphate buffer (pH = 7.2) system and provided also enantiomerically enriched products (ee 88-99%). The antitubercular activity assay has shown that synthesized compounds exhibit an interesting antitubercular activity. Racemic mixtures of alcohols, (±)-4-(1,3-benzoxazol-2-ylsulfanyl)butan-2-ol ((±)-3a), (±)-4-[(5-bromo-1,3-benzoxazol-2-yl)sulfanyl]butan-2-ol ((±)-3b), and (±)-4-[(5,7-dibromo-1,3-benzoxazol-2-yl)sulfanyl]butan-2-ol ((±)-3c), displayed as high activity against M. scrofulaceum, M. intracellulare, M. fortuitum, and M. kansasii as commercially available antituberculosis drug-Isoniazid. Moreover, these compounds exhibited twice higher activity toward M. avium (MIC 12.5) compared with Isoniazid (MIC 50). © 2017 Wiley Periodicals, Inc.
Switching catalysis from hydrolysis to perhydrolysis in P. fluorescens esterase
Yin, De Lu (Tyler); Bernhardt, Peter; Morley, Krista L.; Jiang, Yun; Cheeseman, Jeremy D.; Purpero, Vincent; Schrag, Joseph D.; Kazlauskas, Romas J.
2010-01-01
Many serine hydrolases catalyze perhydrolysis – the reversible formation of per-acids from carboxylic acids and hydrogen peroxide. Recently we showed that a single amino acid substitution in the alcohol binding pocket - L29P - in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. Angew. Chem. Intl. Ed. 2005, 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two x-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active-site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of ε-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction – hydrolysis of peracetic acid to acetic acid and hydrogen peroxide – occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed two fold higher kcat, but Km also increased so the specificity constant, kcat/Km, remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate), but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of ε-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the active site blocks access for larger alcohol moieties, but binds ε-caprolactone more tightly. These results are consistent with the natural function of perhydrolases being either hydrolysis of peroxycarboxylic acids or hydrolysis of lactones. PMID:20112920
Hydrolysis of Indole-3-Acetic Acid Esters Exposed to Mild Alkaline Conditions 1
Baldi, Bruce G.; Maher, Barbara R.; Cohen, Jerry D.
1989-01-01
Ester conjugates of indole-3-acetic acid are hydrolyzed easily in basic solutions; however, quantitative data have not been available on the relationship between pH and rate of hydrolysis of the known ester conjugates. The use of basic conditions during extraction or purification of IAA by several laboratories suggested that a more systematic analysis of this process was needed. In this report we present data indicating: (a) that measurable hydrolysis of IAA-glucose (from standard solutions) and IAA-esters (from maize kernel extracts) occurs with only a few hours of treatment at pH 9 or above; (b) that the lability of some ester conjugates is even greater than that of IAA-glucose; and (c) that ester hydrolysis of standard compounds, IAA-glucose and IAA-p-nitrophenol, occurs in the `three phase extraction system' proposed by Liu and Tillberg ([1983] Physiol Plant 57: 441-447). These data indicate that the potential for problems with inadvertent hydrolysis of ester conjugates of IAA exists even at moderate pH values and in the multiphase system where exposure to basic conditions was thought to be limited. PMID:16667049
NASA Astrophysics Data System (ADS)
Montero, J. M.; Isaacs, M. A.; Lee, A. F.; Lynam, J. M.; Wilson, K.
2016-04-01
An in situ XPS study of water, methanol and methyl acetate adsorption over as-synthesised and calcined MgO nanocatalysts is reported with a view to gaining insight into the surface adsorption of key components relevant to fatty acid methyl esters (biodiesel) production during the transesterification of triglycerides with methanol. High temperature calcined NanoMgO-700 adsorbed all three species more readily than the parent material due to the higher density of electron-rich (111) and (110) facets exposed over the larger crystallites. Water and methanol chemisorb over the NanoMgO-700 through the conversion of surface O2 - sites to OH- and coincident creation of Mg-OH or Mg-OCH3 moieties respectively. A model is proposed in which the dissociative chemisorption of methanol occurs preferentially over defect and edge sites of NanoMgO-700, with higher methanol coverages resulting in physisorption over weakly basic (100) facets. Methyl acetate undergoes more complex surface chemistry over NanoMgO-700, with C-H dissociation and ester cleavage forming surface hydroxyl and acetate species even at extremely low coverages, indicative of preferential adsorption at defects. Comparison of C 1s spectra with spent catalysts from tributyrin transesterification suggest that ester hydrolysis plays a key factor in the deactivation of MgO catalysts for biodiesel production.
Enantioselective synthesis of (S)-naproxen using immobilized lipase on chitosan beads.
Gilani, Saeedeh L; Najafpour, Ghasem D; Heydarzadeh, Hamid D; Moghadamnia, Aliakbar
2017-06-01
S-naproxen by enantioselective hydrolysis of racemic naproxen methyl ester was produced using immobilized lipase. The lipase enzyme was immobilized on chitosan beads, activated chitosan beads by glutaraldehyde, and Amberlite XAD7. In order to find an appropriate support for the hydrolysis reaction of racemic naproxen methyl ester, the conversion and enantioselectivity for all carriers were compared. In addition, effects of the volumetric ratio of two phases in different organic solvents, addition of cosolvent and surfactant, optimum pH and temperature, reusability, and inhibitory effect of methanol were investigated. The optimum volumetric ratio of two phases was defined as 3:2 of aqueous phase to organic phase. Various water miscible and water immiscible solvents were examined. Finally, isooctane was chosen as an organic solvent, while 2-ethoxyethanol was added as a cosolvent in the organic phase of the reaction mixture. The optimum reaction conditions were determined to be 35 °C, pH 7, and 24 h. Addition of Tween-80 in the organic phase increased the accessibility of immobilized enzyme to the reactant. The optimum organic phase compositions using a volumetric ratio of 2-ethoxyethanol, isooctane and Tween-80 were 3:7 and 0.1% (v/v/v), respectively. The best conversion and enantioselectivity of immobilized enzyme using chitosan beads activated by glutaraldehyde were 0.45 and 185, respectively. © 2017 Wiley Periodicals, Inc.
Hydrolysis of substance p and neurotensin by converting enzyme and neutral endopeptidase.
Skidgel, R A; Engelbrecht, S; Johnson, A R; Erdös, E G
1984-01-01
Angiotensin I converting enzyme (ACE) and neutral endopeptidase ("enkephalinase"; NEP), were purified to homogeneity from human kidney. NEP cleaved substance P (SP) at Gln6-Phe7,-Phe8, and Gly9-Leu10 and neurotensin (NT) at Pro10-Tyr11 and Tyr11-Ile12. NEP hydrolyzed 0.1 mM SP, NT and their C-terminal fragments at the following rates (mumol/min/mg): SP1-11 = 7.8, SP4-11 = 11.7, SP5-11 = 15.4, SP6-11 = 15.6, SP8-11 = 6.7, NT1-13 = 2.9, and NT8-13 = 4.0. Purified ACE rapidly inactivated SP as measured in bioassay. HPLC analysis showed that ACE cleaved SP at Phe8-Gly9 and Gly9-Leu10 to release C-terminal tri- and dipeptide (ratio = 4:1). The hydrolysis was Cl- dependent and inhibited by captopril. ACE released mainly C-terminal tripeptide from SP methyl ester, but only dipeptide from SP free acid. Modification of arginine residues in ACE with cyclohexanedione or butanedione similarly inhibited hydrolysis of SP, bradykinin and Bz-Gly-Phe-Arg (80-93%) indicating an active site arginine is required for hydrolysis of SP. ACE hydrolyzed NT at Tyr11-Ile12 to release Ile12-Leu13. SP, NT and their derivatives (0.1 mM) were cleaved by ACE at the following rates (mumol/min/mg): SP1-11 = 1.2, SP methyl ester = 0.7, SP free acid = 8.5, SP4-11 = 2.4, SP5-11 = 0.9, SP6-11 = 1.4, SP8-11 = 0, NT1-13 = 0.2, and NT8-13 = 1.3. Peptide substrates were used as inhibitors of ACE (substrate = FA-Phe-Gly-Gly) and NEP (substrate = Leu5-enkephalin).(ABSTRACT TRUNCATED AT 250 WORDS)
Transformations of Carotenoids in the Oceanic Water Column.
1982-11-01
suggests that dehydration and epoxide rearrangement occur over considerably longer time scales than ester hydrolysis . Isofucoxanthin was not isolated...transformations: 1) ester hydrolysis via zooplanktonic metabolism, 2) dehydration via bacterial metabolism, and 3) epoxide opening via slow chemical...be restricted to zooplankton and not common to other higher heLerotrophs, as is ester hydrolysis . The high concentration of fuco- dehydrates and short
SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...
Regulatory link between steryl ester formation and hydrolysis in the yeast Saccharomyces cerevisiae.
Ploier, Birgit; Korber, Martina; Schmidt, Claudia; Koch, Barbara; Leitner, Erich; Daum, Günther
2015-07-01
Steryl esters and triacylglycerols are the major storage lipids of the yeast Saccharomyces cerevisiae. Steryl esters are formed in the endoplasmic reticulum by the two acyl-CoA:sterol acyltransferases Are1p and Are2p, whereas steryl ester hydrolysis is catalyzed by the three steryl ester hydrolases Yeh1p, Yeh2p and Tgl1p. To shed light on the regulatory link between steryl ester formation and hydrolysis in the maintenance of cellular sterol and free fatty acid levels we employed yeast mutants which lacked the enzymes catalyzing the degradation of steryl esters. These studies revealed feedback regulation of steryl ester formation by steryl ester hydrolysis although in a Δtgl1Δyeh1Δyeh2 triple mutant the gene expression levels of ARE1 and ARE2 as well as protein levels and stability of Are1p and Are2p were not altered. Nevertheless, the capacity of the triple mutant to synthesize steryl esters was significantly reduced as shown by in vitro and in vivo labeling of lipids with [(14)C]oleic acid and [(14)C]acetate. Enzymatic analysis revealed that inhibition of steryl ester formation occurred at the enzyme level. As the amounts and the formation of sterols and fatty acids were also decreased in the triple mutant we concluded that defects in steryl ester hydrolysis also caused feedback inhibition on the formation of sterols and fatty acids which serve as precursors for steryl ester formation. In summary, this study demonstrates a regulatory link within the steryl ester metabolic network which contributes to non-polar lipid homeostasis in yeast cells. Copyright © 2014 Elsevier B.V. All rights reserved.
2005-02-01
hydrochloride salt and methyl ester hydrolysis of 244 (LiOH, THF-MeOH) provided the lithium carboxylate Pyrrolidine based system (2a and b). Several hydro...strategy detailed above, the lithium salt 26 was used to provide trimer 28 (Scheme 4). However, coupling of the carboxylic acid derived from 28 with 3...M. A. Chem. Ind. 1996, 68, 325. 1. (a) Dervan, P. B. Bioorg. Med. Chem. 2001, 9, 2215. (b) 13. The lithium salt 26 was used instead of the carboxylic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdez, Carlos A.; Leif, Roald N.; Alcaraz, Armando
The effective methylation of phosphonic acids related to chemical warfare agents (CWAs) employing trimethyloxonium tetrafluoroborate (TMO·BF 4) for their qualitative detection and identification by gas chromatography-mass spectrometry (GC-MS) is presented. The methylation occurs in rapid fashion (1 h) and can be conveniently carried out at ambient temperature, thus providing a safer alternative to the universally employed diazomethane-based methylation protocols. Optimization of the methylation parameters led us to conclude that methylene chloride was the ideal solvent to carry out the derivatization, and that even though methylated products can be observed surfacing after only 1 h, additional time was not found tomore » be detrimental but beneficial to the process particularly when dealing with analytes at low concentrations (~10 μg mL -1). Due to its insolubility in methylene chloride, TMO·BF 4 conveniently settles to the bottom during the reaction and does not produce additional interfering by-products that may further complicate the GC-MS analysis. We demonstrated the method to successfully methylate a variety of Schedule 2 phosphonic acids, including their half esters, resulting in derivatives that were readily detected and identified using the instrument's spectral library. Most importantly, the method was shown to simultaneously methylate a mixture of the organophosphorus-based nerve agent hydrolysis products: pinacolyl methylphosphonate (PMPA), cyclohexyl methylphosphonate (CyMPA) and ethyl methylphosphonate (EMPA) (at a 10 μg mL -1 concentration each) in a fatty acid ester-rich organic matrix (OPCW-PT-O 3) featured in the 38th Organisation for the Prohibition of Chemical Weapons (OPCW) Proficiency Test. Additionally, the protocol was found to effectively methylate N,N-diethylamino ethanesulfonic acid and N,N-diisopropylamino ethanesulfonic acid that are products arising from the oxidative degradation of the V-series agents VR and VX respectively. This work described herein represents the first report on the use of TMO·BF 4 as a viable, stable and safe agent for the methylation of phosphonic acids and their half esters and within the context of an OPCW Proficiency Test sample analysis.« less
Valdez, Carlos A.; Leif, Roald N.; Alcaraz, Armando
2016-06-01
The effective methylation of phosphonic acids related to chemical warfare agents (CWAs) employing trimethyloxonium tetrafluoroborate (TMO·BF 4) for their qualitative detection and identification by gas chromatography-mass spectrometry (GC-MS) is presented. The methylation occurs in rapid fashion (1 h) and can be conveniently carried out at ambient temperature, thus providing a safer alternative to the universally employed diazomethane-based methylation protocols. Optimization of the methylation parameters led us to conclude that methylene chloride was the ideal solvent to carry out the derivatization, and that even though methylated products can be observed surfacing after only 1 h, additional time was not found tomore » be detrimental but beneficial to the process particularly when dealing with analytes at low concentrations (~10 μg mL -1). Due to its insolubility in methylene chloride, TMO·BF 4 conveniently settles to the bottom during the reaction and does not produce additional interfering by-products that may further complicate the GC-MS analysis. We demonstrated the method to successfully methylate a variety of Schedule 2 phosphonic acids, including their half esters, resulting in derivatives that were readily detected and identified using the instrument's spectral library. Most importantly, the method was shown to simultaneously methylate a mixture of the organophosphorus-based nerve agent hydrolysis products: pinacolyl methylphosphonate (PMPA), cyclohexyl methylphosphonate (CyMPA) and ethyl methylphosphonate (EMPA) (at a 10 μg mL -1 concentration each) in a fatty acid ester-rich organic matrix (OPCW-PT-O 3) featured in the 38th Organisation for the Prohibition of Chemical Weapons (OPCW) Proficiency Test. Additionally, the protocol was found to effectively methylate N,N-diethylamino ethanesulfonic acid and N,N-diisopropylamino ethanesulfonic acid that are products arising from the oxidative degradation of the V-series agents VR and VX respectively. This work described herein represents the first report on the use of TMO·BF 4 as a viable, stable and safe agent for the methylation of phosphonic acids and their half esters and within the context of an OPCW Proficiency Test sample analysis.« less
The hydrolysis kinetics of monobasic and dibasic aminoalkyl esters of ketorolac.
Qandil, Amjad M; Jamhawi, Noor M; Tashtoush, Bassam M; Al-Ajlouni, Ahmad M; Idkaidek, Nasir M; Obaidat, Aiman A
2013-09-01
Six aminoethyl and aminobutyl esters of ketorolac containing 1-methylpiperazine (MPE and MPB), N-acetylpiperazine (APE and APB) or morpholine (ME and MB), were synthesized and their hydrolysis kinetics were studied. The hydrolysis was studied at pH 1 to 9 (for MPE, APE and ME) and pH 1 to 8 (for MPB, APB and MB) in aqueous phosphate buffer (0.16 M) with ionic strength (0.5 M) at 37°C. Calculation of k(obs), construction of the pH-rate profiles and determination of the rate equations were performed using KaleidaGraph® 4.1. The hydrolysis displays pseudo-first order kinetics and the pH-rate profiles shows that the aminobutyl esters, MPE, APB and MB, are the most stable. The hydrolysis of the ethyl esters MPE, APE and ME, depending on the pH, is either fast and catalyzed by the hydroxide anion or slow and uncatalyzed for the diprotonated, monoprotonated and nonprotonated forms. The hydrolysis of the butyl esters showed a similar profile, albeit it was also catalyzed by hydronium cation. In addition, the hydroxide anion is 105 more effective in catalyzing the hydrolysis than the hydronium cation. The hydrolysis pattern of the aminoethyl esters is affected by the number and pKa of its basic nitrogen atoms. The monobasic APE and ME, show a similar hydrolysis pattern that is different than the dibasic MPE. The length of the side chain and the pKa of the basic nitrogen atoms in the aminoethyl moiety affect the mechanism of hydrolysis as the extent of protonation at a given pH is directly related to the pKa.
ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS - ALKALINE HYDROLYSIS
SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...
21 CFR 172.816 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 172.816... § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the methyl glucoside-coconut oil ester...
ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. I. ALKALINE HYDROLYSIS
SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...
Villar-González, A; Rodríguez-Velasco, M L; Ben-Gigirey, B; Yasumoto, T; Botana, L M
2008-04-01
The contamination of different types of shellfish by okadaic acid (OA)-group toxin esters is an important problem that presents serious risk for human health. During previous investigations carried out in our laboratory by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS), the occurrence of a high percentage of esters in relation to the total OA equivalents has been observed in several shellfish species. The determination of these kinds of toxins using LC/MS or other chemical methods requires a hydrolysis step in order to convert the sterified compounds into the parent toxins, OA, dinophysistoxins-1 (DTX-1) and dinophysistoxins-2 (DTX-2). Most of the hydrolysis procedures are based on an alkaline hydrolysis reaction. However, despite hydrolysis being a critical step within the analysis, it has not been studied in depth up to now. The present paper reports the results obtained after evaluating the hydrolysis process of an esterified form of OA by using a standard of 7-O-acyl ester with palmitoyl as the fatty acid (palOA). Investigations were focused on checking the effectiveness of the hydrolysis for palOA using methanol as solvent standard and matrices matched standards. From the results obtained, no matrix influence on the hydrolysis process was observed and the quantity of palOA converted into OA was always above 80%. The analyses of different Spanish shellfish samples showed percentages of palOA in relation to the total OA esters ranging from 27% to 90%, depending on the shellfish specie.
N-Acetyl-D- and L-esters of 5'-AMP hydrolyze at different rates
NASA Technical Reports Server (NTRS)
Wickramasinghe, N. S.; Lacey, J. C. Jr; Lacey JC, J. r. (Principal Investigator)
1993-01-01
Studies of the properties of aminoacyl derivatives of 5'-AMP are aimed at understanding the origin of the process of protein synthesis. Aminoacyl (2',3') esters of 5'-AMP can serve as models of the 3'-terminus of aminoacyl tRNA. We report here on the relative rates of hydrolysis of Ac-D- and L-Phe AMP esters as a function of pH. At all pHs above 3, the rate constant of hydrolysis of the Ac-L-Phe ester is 1.7 to 2.1 times that of Ac-D-Phe ester. The D-isomer seems partially protected from hydrolysis by a stronger association with the adenine ring of the 5'-AMP.
SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate acid and neutral hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition states of a ...
Qu, Xiao; Allan, Amanda; Chui, Grace; Hutchings, Thomas J; Jiao, Ping; Johnson, Lawrence; Leung, Wai Y; Li, Portia K; Steel, Georgina R; Thompson, Andrew S; Threadgill, Michael D; Woodman, Timothy J; Lloyd, Matthew D
2013-12-01
Ibuprofen and related 2-arylpropanoic acid (2-APA) drugs are often given as a racemic mixture and the R-enantiomers undergo activation in vivo by metabolic chiral inversion. The chiral inversion pathway consists of conversion of the drug to the coenzyme A ester (by an acyl-CoA synthetase) followed by chiral inversion by α-methylacyl-CoA racemase (AMACR; P504S). The enzymes responsible for hydrolysis of the product S-2-APA-CoA ester to the active S-2-APA drug have not been identified. In this study, conversion of a variety of 2-APA-CoA esters by human acyl-CoA thioesterase-1 and -2 (ACOT-1 and -2) was investigated. Human recombinant ACOT-1 and -2 (ACOT-1 and -2) were both able to efficiently hydrolyse a variety of 2-APA-CoA substrates. Studies with the model substrates R- and S-2-methylmyristoyl-CoA showed that both enzymes were able to efficiently hydrolyse both of the epimeric substrates with (2R)- and (2S)- methyl groups. ACOT-1 is located in the cytosol and is able to hydrolyse 2-APA-CoA esters exported from the mitochondria and peroxisomes for inhibition of cyclo-oxygenase-1 and -2 in the endoplasmic reticulum. It is a prime candidate to be the enzyme responsible for the pharmacological action of chiral inverted drugs. ACOT-2 activity may be important in 2-APA toxicity effects and for the regulation of mitochondrial free coenzyme A levels. These results support the idea that 2-APA drugs undergo chiral inversion via a common pathway. Copyright © 2013 Elsevier Inc. All rights reserved.
Ochoa, Mariela L; Harrington, Peter B
2005-02-01
Whole-cell bacteria were characterized and differentiated by thermal desorption ion mobility spectrometry and chemometric modeling. Principal component analysis was used to evaluate the differences in the ion mobility spectra of whole-cell bacteria and the fatty acid methyl esters (FAMEs) generated in situ after derivatization of the bacterial lipids. Alternating least squares served to extract bacterial peaks from the complex ion mobility spectra of intact microorganisms and, therefore, facilitated the characterization of bacterial strains, species, and Gram type. In situ thermal hydrolysis/methylation with tetramethylammonium hydroxide was necessary for the differentiation of Escherichia coli strains, which otherwise could not be distinguished by spectra acquired with the ITEMISER ion mobility spectrometer. The addition of the methylating agent had no effect on Gram-positive bacteria, and therefore, they could not be differentiated by genera. The classification of E. coli strains was possible by analysis of the IMS spectra from the FAMEs generated in situ. By using the fuzzy multivariate rule-building expert system and cross-validation, a correct classification rate of 96% (22 out of 23 spectra) was obtained. Chemometric modeling on bacterial ion mobility spectra coupled to thermal hydrolysis/methylation proved a simple, rapid (2 min/sample), inexpensive, and sensitive technique to characterize and differentiate intact microorganisms. The ITEMISER ion mobility spectrometer could detect as few as 4 x 10(6) cells/sample.
The Preparation and Enzymatic Hydrolysis of a Library of Esters
ERIC Educational Resources Information Center
Sanford, Elizabeth M.; Smith, Traci L.
2008-01-01
An investigative case study involving the preparation of a library of esters using Fischer esterification and alcoholysis of acid chlorides and their subsequent enzymatic hydrolysis by pig liver esterase and orange peel esterase is described. Students work collaboratively to prepare and characterize the library of esters and complete and evaluate…
Yuan, J P; Chen, F
1999-01-01
The reaction kinetics for the hydrolysis of astaxanthin esters and the degradation of astaxanthin during saponification of the pigment extract from the microalga Haematococcus pluvialis were investigated. Different concentrations of sodium hydroxide in methanol were used for the saponification under nitrogen in darkness at ambient temperature (22 degrees C) followed by the analysis of astaxanthins and other carotenoids using an HPLC method. The concentration of methanolic NaOH solution was important for promoting the hydrolysis of astaxanthin esters and minimizing the degradation of astaxanthin during saponification. With a higher concentration of methanolic NaOH solution, the reaction rate of hydrolysis was high, but the degradation of astaxanthin occurred significantly. The rate constants of the hydrolysis reaction (first order) of astaxanthin esters and the degradation reaction (zero-order) of astaxanthin were directly proportional to the concentration of sodium hydroxide in the saponified solution. Although the concentration of sodium hydroxide in the saponified solution was 0.018 M, complete hydrolysis of astaxanthin esters was achieved in 6 h for different concentrations (10-100 mg/L) of pigment extracts. Results also indicated that a higher temperature should be avoided to minimize the degradation of astaxanthin. In addition, during saponification, no loss of lutein, beta-carotene, and canthaxanthin was found.
[3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue
NASA Technical Reports Server (NTRS)
Hall, P. J.; Bandurski, R. S.
1986-01-01
[3H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 37 degrees C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as alpha-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected.
Muxel, Alfredo A; Neves, Ademir; Camargo, Maryene A; Bortoluzzi, Adailton J; Szpoganicz, Bruno; Castellano, Eduardo E; Castilho, Nathalia; Bortolotto, Tiago; Terenzi, Hernán
2014-03-17
Described herein is the synthesis, structure, and monoesterase and diesterase activities of a new mononuclear [La(III)(L(1))(NO3)2] (1) complex (H2L(1) = 2-bis[{(2-pyridylmethyl)-aminomethyl}-6-[N-(2-pyridylmethyl) aminomethyl)])-4-methyl-6-formylphenol) in the hydrolysis of 2,4-bis(dinitrophenyl)phosphate (2,4-BDNPP). When covalently linked to 3-aminopropyl-functionalized silica, 1 undergoes disproportionation to form a dinuclear species (APS-1), whose catalytic efficiency is increased when compared to the homogeneous reaction due to second coordination sphere effects which increase the substrate to complex association constant. The anchored catalyst APS-1 can be recovered and reused for subsequent hydrolysis reactions (five times) with only a slight loss in activity. In the presence of DNA, we suggest that 1 is also converted into the dinuclear active species as observed with APS-1, and both were shown to be efficient in DNA cleavage.
Valdez, Carlos A; Leif, Roald N; Alcaraz, Armando
2016-08-24
The effective methylation of phosphonic acids related to chemical warfare agents (CWAs) employing trimethyloxonium tetrafluoroborate (TMO·BF4) for their qualitative detection and identification by gas chromatography-mass spectrometry (GC-MS) is presented. The methylation occurs in rapid fashion (1 h) and can be conveniently carried out at ambient temperature, thus providing a safer alternative to the universally employed diazomethane-based methylation protocols. Optimization of the methylation parameters led us to conclude that methylene chloride was the ideal solvent to carry out the derivatization, and that even though methylated products can be observed surfacing after only 1 h, additional time was not found to be detrimental but beneficial to the process particularly when dealing with analytes at low concentrations (∼10 μg mL(-1)). Due to its insolubility in methylene chloride, TMO·BF4 conveniently settles to the bottom during the reaction and does not produce additional interfering by-products that may further complicate the GC-MS analysis. The method was demonstrated to successfully methylate a variety of Schedule 2 phosphonic acids, including their half esters, resulting in derivatives that were readily detected and identified using the instrument's spectral library. Most importantly, the method was shown to simultaneously methylate a mixture of the organophosphorus-based nerve agent hydrolysis products: pinacolyl methylphosphonate (PMPA), cyclohexyl methylphosphonate (CyMPA) and ethyl methylphosphonate (EMPA) (at a 10 μg mL(-1) concentration each) in a fatty acid ester-rich organic matrix (OPCW-PT-O3) featured in the 38th Organisation for the Prohibition of Chemical Weapons (OPCW) Proficiency Test. In addition, the protocol was found to effectively methylate N,N-diethylamino ethanesulfonic acid and N,N-diisopropylamino ethanesulfonic acid that are products arising from the oxidative degradation of the V-series agents VR and VX respectively. The work described herein represents the first report on the use of TMO·BF4 as a viable, stable and safe agent for the methylation of phosphonic acids and their half esters and within the context of an OPCW Proficiency Test sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl and ethyl esters of fatty acids produced... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...
21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl and ethyl esters of fatty acids produced... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...
NASA Technical Reports Server (NTRS)
Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.
1985-01-01
Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of catonic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrogen hydrolysis rate constant.
NASA Technical Reports Server (NTRS)
Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.
1985-01-01
Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of cationic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR-primeP(O)X, where R and R-prime are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrolysis rate constant.
21 CFR 178.3600 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...
21 CFR 172.816 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...
21 CFR 172.816 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 172.816 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...
21 CFR 172.816 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...
21 CFR 178.3600 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...
21 CFR 178.3600 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...
21 CFR 178.3600 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 178.3600 Section 178.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified...
21 CFR 172.816 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...
21 CFR 178.3600 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...
Thermal Decomposition of Methyl Esters in Biodiesel Fuel: Kinetics, Mechanisms and Products
NASA Astrophysics Data System (ADS)
Chai, Ming
Biodiesel continues to enjoy increasing popularity. However, recent studies on carbonyl compounds emissions from biodiesel fuel are inconclusive. Emissions of carbonyl compounds from petroleum diesel fuels were compared to emissions from pure biodiesel fuels and petroleum-biodiesel blends used in a non-road diesel generator. The concentration of total carbonyl compounds was the highest when the engine was idling. The carbonyl emissions, as well as ozone formation potential, from biodiesel fuel blends were higher than those emitted from petroleum diesel fuel. The sulfur content of diesel fuel and the source of biodiesel fuel were not found to have a significant impact on emissions of carbonyl compounds. Mechanism parameters of the thermal decomposition of biodiesel-range methyl esters were obtained from the results of thermal gravimetric analysis (TGA). The overall reaction orders are between 0.49 and 0.71 and the energies of activation are between 59.9 and 101.3 kJ/mole. Methyl esters in air have lower activation energies than those in nitrogen. Methyl linoleate has the lowest activation energy, followed by methyl oleate, and methyl stearate. The pyrolysis and oxidation of the three methyl esters were investigated using a semi-isothermal tubular flow reactor. The profiles of major products versus reaction temperature are presented. In the pyrolysis of methyl stearate, the primary reaction pathway is the decarboxylic reaction at the methyl ester functional group. Methyl oleate's products indicate more reactions on its carbon-carbon double bond. Methyl linoleate shows highest reactivity among the three methyl esters, and 87 products were detected. The oxidation of three methyl esters resulted in more products in all compound classes, and 55, 114, and 127 products were detected, respectively. The oxidation of methyl esters includes decarboxylation on ester group. The methyl ester's carbon chain could be oxidized as a hydrocarbon compound and form oxidized esters and unsaturated esters, which have been observed in methyl ester's oxidation products. The oxidation of methyl stearate, methyl oleate and methyl linoleate produces 16, 28 and 34 types of carbonyl compounds, respectively. The unsaturated methyl ester forms more carbonyl compounds compared to the saturated methyl ester, which indicates the formation of carbonyl compounds might be more related to the unsaturated carbon bond rather than the methyl ester group. Good agreement between results for total carbon (TC) generally has been found, but the organic and elemental carbon (OC and EC) fractions determined by different methods often disagree. Lack of reference materials has impeded progress on method standardization and understanding method biases. As part of this dissertation, uniform carbon distribution for the filter sets is prepared by using a simply aerosol generation and collection method. The relative standard deviations for the mean TC, OC, and EC results reported by the seven laboratories were below 10%, 11% and 12% (respectively). The method of filter generation is generally applicable and reproducible. Depending on the application, different filter loadings and types of OC materials can be employed. Matched filter sets prepared by this approach can be used for determining the accuracy of various OC-EC methods and thereby contribute to method standardization.
Lindstedt, M; Allenmark, S; Thompson, R A; Edebo, L
1990-01-01
A series of quaternary ammonium compounds that are esters of betaine and fatty alcohols with hydrocarbon chain lengths of 10 to 18 carbon atoms were tested with respect to antimicrobial activities and rates of hydrolysis. When the tetradecyl derivative was tested against some selected microorganisms, the killing effect was comparable to that of the stable quaternary ammonium compound cetyltrimethylammonium bromide. At higher pH values, both the antimicrobial effect and the rate of hydrolysis of the esters increased. However, whereas at pH 6 greater than 99.99% killing of Salmonella typhimurium was achieved with 5 micrograms/ml in 3 min, the rate of hydrolysis was less than 20% in 18 h. At pH 7, a similar killing effect was achieved in 2 min and 50% hydrolysis occurred in ca. 5 h. Thus, it is possible to exploit the rapid microbicidal effect of the compounds before they hydrolyze. The rate of hydrolysis was reduced by the presence of salt. The bactericidal effect of the betaine esters increased with the length of the hydrocarbon chain of the fatty alcohol moiety up to 18 carbon atoms. Since the hydrolysis products are normal human metabolites, the hydrolysis property may extend the use of these quaternary ammonium compounds as disinfectants and antiseptics for food and body surfaces. PMID:2291660
Huijghebaert, S M; Hofmann, A F
1986-07-01
The influence of the chemical structure of the amino acid (or amino acid analogue) moiety of a number of synthetic cholyl amidates on deconjugation by cholylglycine hydrolase from Clostridium perfringens was studied in vitro at pH 5.4. Conjugates with alkyl homologues of glycine were hydrolyzed more slowly as the number of methylene units increased (cholylglycine greater than cholyl-beta-alanine greater than cholyl-gamma-aminobutyrate). In contrast, for conjugates with the alkyl homologues of taurine, cholylaminopropane sulfonate was hydrolyzed slightly faster than cholyltaurine, whereas cholylaminomethane sulfonate was hydrolyzed much more slowly. When glycine was replaced by other neutral alpha-amino acids, rates of hydrolysis decreased with increasing steric hindrance near the amide bond (cholyl-L-alpha-alanine much much greater than cholyl-L-leucine much greater than cholyl-L-valine greater than cholyl-L-tyrosine much greater than cholyl-D-valine). Conjugation with acidic or basic amino acids also greatly reduced the rates of hydrolysis, as cholyl-L-aspartate, cholyl-L-cysteate, cholyl-L-lysine, and cholyl-L-histidine were all hydrolyzed at a rate less than one-tenth that of cholylglycine. Methyl esterification of the carboxylic group of the amino acid moiety reduced the hydrolysis, but such substrates (cholylglycine methyl ester and cholyl-beta-alanine methyl ester) were completely hydrolyzed after overnight incubation with excess of enzyme. In contrast, cholyl-cholamine was not hydrolyzed at all, suggesting that a negative charge at the end of the side chain is required for optimal hydrolysis. Despite the lack of specificity for the amino acid moiety, a bile salt moiety was required, as the cholylglycine hydrolase did not display general carboxypeptidase activity for other non-bile acid substrates containing a terminal amide bond: hippuryl-L-phenylalanine and hippuryl-L-arginine, as well as oleyltaurine and oleylglycine, were not hydrolyzed. Fecal bacterial cultures from healthy volunteers also hydrolyzed cholyl-L-valine and cholyl-D-valine more slowly than cholylglycine, suggesting that cholylglycine hydrolase from Clostridium perfringens has a substrate specificity similar to that of the deconjugating enzymes of the fecal flora. The results indicate that modification of the position of the amide bond, introduction of steric hindrance near the amide bond, or loss of a negative charge on the terminal group of the amino acid moiety of the bile acid conjugate greatly reduces the rate of bacterial deconjugation in vitro when compared to that of the naturally occurring glycine and taurine conjugates.
Koyanagi, Jyunichi; Kamei, Tomoyo; Ishizaki, Miyuki; Nakamura, Hiroshi; Takahashi, Tamiko
2014-01-01
An improved synthetic route has been developed for the preparation of methyl 1-fluoroindan-1-carboxylate (FICA Me ester) from 1-indanone. Methyl 4-methyl-1-fluoroindan-1-carboxylate (4-Me-FICA Me ester) was also prepared following the same procedure.
ESTIMATION OF CARBOXYLIC ACID ESTER HYDROLYSIS RATE CONSTANTS
SPARC chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid esters from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external...
Mastelić, Josip; Politeo, Olivera; Jerković, Igor
2008-04-07
The essential oil of Helichrysum italicum (Roth) G. Don (everlasting or Immortelle essential oil) was isolated by hydrodistillation and analysed by GC and GCMS. Forty four compounds were identified. The main components were alpha-pinene(12.8%), 2-methyl-cyclohexyl pentanoate (11.1 %), neryl acetate (10.4%), 1,7-di-epi-alpha-cedrene (6.8%) and other compounds. The oil was fractionated and ester-containing fraction was hydrolysed with KOH/H(2)SO(4). The liberated volatiles were analysed by GC and GC-MS: three phenols and twenty seven volatile carboxylic acids were identified[70% low fatty acids (C(2)-C(5)), 15% C(10)-C(12) acids and 15% other acids]. The main acids were acetic acid (24.3%) propanoic acid (17.2%), 2-methylpropanoic acid (11.4%),dodecanoic acid (8.7%), 2-methylbutanoic acid (8.3%), (Z)-2-methylbutenoic acid(5.1%) and decanoic acid (4.6%). With respect to the identified bonded carboxylic acids,the minimal number of esters in the oil was twenty seven, but their overall quantity was probably larger due to different possible combinations of alcohols with acids to form esters. On the other hand, only six main esters were identified in the oil before fractionation and hydrolysis.
Trmčić, Milena; Hodgson, David R W
2010-08-16
Heterobifunctional cross-linking agents are useful in both protein science and organic synthesis. Aminolysis of reactive esters in aqueous systems is often used in bioconjugation chemistry, but it must compete against hydrolysis processes. Here we study the kinetics of aminolysis and hydrolysis of 2-S-phosphorylacetate ester intermediates that result from displacement of bromide by a thiophosphate nucleophile from commonly used bromoacetate ester cross-linking agents. We found cross-linking between uridine-5'-monophosphorothioate and D-glucosamine using N-hydroxybenzotriazole and N-hydroxysuccinimde bromoacetates to be ineffective. In order to gain insight into these shortfalls, 2-S-(5'-thiophosphoryluridine)acetic acid esters were prepared using p-nitrophenyl bromoacetate or m-nitrophenyl bromoacetate in combination with uridine-5'-monophosphorothioate. Kinetics of hydrolysis and aminolysis of the resulting p- and m-nitrophenyl 2-S-(5'-thiophosphoryluridine)acetates were determined by monitoring the formation of phenolate ions spectrophotometrically as a function of pH. The p- and m-nitrophenyl 2-S-(5'-thiophosphoryluridine)acetates showed similar reactivity profiles despite the significant difference in the pK(aH) values of their nitrophenolate leaving groups. Both were more reactive with respect to hydrolysis and aminolysis in comparison to their simple acetate progenitors, but their calculated selectivity towards aminolysis vs hydrolysis, while reasonable, would not lead to clean reactions that do not require purification. Extrapolations of the kinetic data were used to predict leaving group pK(a) values that could lead to improved selectivity towards aminolysis while retaining reasonable reaction times. Both p- and m-nitrophenyl 2-S-(5'-thiophosphoryluridine)acetates show some selectivity towards aminolysis over hydrolysis, with the m-nitrophenolate system displaying slightly better selectivity. Extrapolation of the data for hydrolysis and aminolysis of these esters suggests that the use of readily accessible trifluoroethyl 2-S-(5'-thiophosphoryluridine)acetate with a leaving group pK(aH) of 12.4 should afford better selectivity while maintaining reasonable reaction times. Kinetically, p- and m-nitrophenyl 2-S-(5'-thiophosphoryluridine)acetates show similar properties to o-nitrophenyl 2-S-ethylacetate, and show no evidence for intramolecular catalysis of hydrolysis or aminolysis by the phosphoryl groups.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products...
Code of Federal Regulations, 2011 CFR
2011-07-01
...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products...
Pseudomonas aeruginosa arylsulfatase: a purified enzyme for the mild hydrolysis of steroid sulfates.
Stevenson, Bradley J; Waller, Christopher C; Ma, Paul; Li, Kunkun; Cawley, Adam T; Ollis, David L; McLeod, Malcolm D
2015-10-01
The hydrolysis of sulfate ester conjugates is frequently required prior to analysis for a range of analytical techniques including gas chromatography-mass spectrometry (GC-MS). Sulfate hydrolysis may be achieved with commercial crude arylsulfatase enzyme preparations such as that derived from Helix pomatia but these contain additional enzyme activities such as glucuronidase, oxidase, and reductase that make them unsuitable for many analytical applications. Strong acid can also be used to hydrolyze sulfate esters but this can lead to analyte degradation or increased matrix interference. In this work, the heterologously expressed and purified arylsulfatase from Pseudomonas aeruginosa is shown to promote the mild enzyme-catalyzed hydrolysis of a range of steroid sulfates. The substrate scope of this P. aeruginosa arylsulfatase hydrolysis is compared with commercial crude enzyme preparations such as that derived from H. pomatia. A detailed kinetic comparison is reported for selected examples. Hydrolysis in a urine matrix is demonstrated for dehydroepiandrosterone 3-sulfate and epiandrosterone 3-sulfate. The purified P. aeruginosa arylsulfatase contains only sulfatase activity allowing for the selective hydrolysis of sulfate esters in the presence of glucuronide conjugates as demonstrated in the short three-step chemoenzymatic synthesis of 5α-androstane-3β,17β-diol 17-glucuronide (ADG, 1) from epiandrosterone 3-sulfate. The P. aeruginosa arylsulfatase is readily expressed and purified (0.9 g per L of culture) and thus provides a new and selective method for the hydrolysis of steroid sulfate esters in analytical sample preparation. Copyright © 2015 John Wiley & Sons, Ltd.
Laosiripojana, N; Kiatkittipong, W; Sutthisripok, W; Assabumrungrat, S
2010-11-01
The transesterification and esterification of palm products i.e. crude palm oil (CPO), refined palm oil (RPO) and palm fatty acid distillate (PFAD) under near-critical methanol in the presence of synthesized SO(4)-ZrO(2), WO(3)-ZrO(2) and TiO(2)-ZrO(2) (with various sulfur- and tungsten loadings, Ti/Zr ratios, and calcination temperatures) were studied. Among them, the reaction of RPO with 20%WO(3)-ZrO(2) (calcined at 800 degrees C) enhanced the highest fatty acid methyl ester (FAME) yield with greatest stability after several reaction cycles; furthermore, it required shorter time, lower temperature and less amount of methanol compared to the reactions without catalyst. These benefits were related to the high acid-site density and tetragonal phase formation of synthesized WO(3)-ZrO(2). For further improvement, the addition of toluene as co-solvent considerably reduced the requirement of methanol to maximize FAME yield, while the addition of molecular sieve along with catalyst significantly increased FAME yield from PFAD and CPO due to the inhibition of hydrolysis reaction. Copyright 2010 Elsevier Ltd. All rights reserved.
Brunet, Bertrand R.; Barnes, Allan J.; Scheidweiler, Karl B.; Mura, Patrick
2009-01-01
A sensitive and specific method is presented to simultaneously quantify methadone, heroin, cocaine and metabolites in sweat. Drugs were eluted from sweat patches with sodium acetate buffer, followed by SPE and quantification by GC/MS with electron impact ionization and selected ion monitoring. Daily calibration for anhydroecgonine methyl ester, ecgonine methyl ester, cocaine, benzoylecgonine (BE), codeine, morphine, 6-acetylcodeine, 6-acetylmorphine (6AM), heroin (5–1000 ng/patch) and methadone (10–1000 ng/patch) achieved determination coefficients of >0.995, and calibrators quantified to within ±20% of the target concentrations. Extended calibration curves (1000–10,000 ng/patch) were constructed for methadone, cocaine, BE and 6AM by modifying injection techniques. Within (N=5) and between-run (N=20) imprecisions were calculated at six control levels across the dynamic ranges with coefficients of variation of <6.5%. Accuracies at these concentrations were ±11.9% of target. Heroin hydrolysis during specimen processing was <11%. This novel assay offers effective monitoring of drug exposure during drug treatment, workplace and criminal justice monitoring programs. PMID:18607576
Isolation, Solubility, and Characterization of D-Mannitol Esters of 4-Methoxybenzeneboronic Acid.
Lopalco, Antonio; Marinaro, William A; Day, Victor W; Stella, Valentino J
2017-02-01
The purpose of this study was to determine the aqueous solubility of a model phenyl boronic acid, 4-methoxybenzeneboronic acid, as a function of pH both in the absence and in the presence of varying D-mannitol concentration. Solid isolated D-mannitol esters were characterized by differential scanning calorimetry, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray studies, and the boronic acid-to-D-mannitol ratio was quantified by HPLC. Hydrolysis of the monoester was studied using UV spectral differences between the monoester and the parent boronic acid. Two D-mannitol esters of 4-methoxybenzeneboronic acid were isolated. The triboronate ester was very insoluble whereas a symmetrical monoboronate monohydrate was also less soluble than the parent. Both esters were crystalline. The monoboronate monohydrate was, however, more soluble than the parent at alkaline pH values due to its lower pKa value (6.53) compared to the parent acid (9.41). Hydrolysis of the monoboronate was extremely fast when even small amount of water was added to dry acetonitrile solutions of the ester. The hydrolysis was buffer concentration dependent and apparent pH sensitive with hydrolysis accelerated by acid. Implications affecting the formulation of future boronic acid drugs are discussed. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Enzymatic modification of natural and synthetic polymers using lipases and proteases
NASA Astrophysics Data System (ADS)
Chakraborty, Soma
Enzymatic modification of natural/synthetic polymers [starch nanoparticles, poly (n-alkyl acrylates) and poly(vinyl formamide)] was studied. Enzymes used for catalysis were lipases and proteases. Starch nanoparticles (40nm diameter) were incorporated into AOT-coated reverse micelles. Reactions performed with the acylating agents vinyl stearate, epsilon-caprolactone and maleic anhydride in toluene in presence of Novozyme-435 at 40°C for 36h gave products with degrees of substitution of 0.8, 0.6 and 0.4 respectively. DEPT-135 NMR spectra revealed that the modification occurred regioselectively at the C-6 position of the glucose units. Infrared microspectroscopy showed that the surfactant coated starch nanoparticles diffuse into pores of Novozyme-435 beads, coming in close proximity with CALB to promote modification. The modified products retained nanoscale dimensions. Catalysis of amide bond formation between a low molar mass amine and ester side groups of poly(n-alkyl acrylates)[poly(ethyl acrylate), poly(methyl acrylate) and poly(butyl acrylate)] was also examined. The nucleophiles were mono and diamines. Among the poly(n-alkyl acrylates) and the lipases studied, poly(ethyl acrylate) was the preferred substrate and Novozyme-435 the most active lipase. Poly(ethyl acrylate) in 80% by-volume toluene was reacted with 1 equivalent per repeat unit of hexyl amine at 70°C in presence of Novozyme-435. The product contained 10.6 mol% amide groups. Attempts to increase the amidation beyond 10--11 mol% by increasing the reaction time or use of fresh enzyme were unsuccessful, showing that poly(ethylacrylate-co-10mol%hexylacrylamide) is a poor substrate for further acylation. When chiral amines ([R,S]-alpha-methyl benzylamine, [R,S]-beta-methyl phenyl amine) were used as nucleophiles, Novozyme-435 enantioselectively catalyzed amidation of poly(ethyl acrylate). Poly(vinyl formamide), P(VfAm) by acid or base-catalyzed hydrolysis leads to poly(vinylamine), P(VAm), and corresponding copolymers. As an alternative to chemical hydrolysis a mild and selective enzymatic method was discovered. Fifteen proteases were evaluated for this transformation. Of these, PROT 7 was the most active. Within 24h PROT 7 gave products with 44% hydrolysis. Further hydrolysis was not observed by extending the reaction time because poly(vinylformamide-co-40%vinylamine) is a poor substrate for further hydrolysis. The sequence distribution of copolymers formed by chemical hydrolysis and enzymatic hydrolysis was compared. Chemical hydrolysis gave random copolymer. In contrast, PROT 7 gave block-like arrangement of VAm units.
In silico prediction of acyl glucuronide reactivity
NASA Astrophysics Data System (ADS)
Potter, Tim; Lewis, Richard; Luker, Tim; Bonnert, Roger; Bernstein, Michael A.; Birkinshaw, Timothy N.; Thom, Stephen; Wenlock, Mark; Paine, Stuart
2011-11-01
Drugs and drug candidates containing a carboxylic acid moiety, including many widely used non-steroidal anti-inflammatory drugs (NSAIDs) are often metabolized to form acyl glucuronides (AGs). NSAIDs such as Ibuprofen are amongst the most widely used drugs on the market, whereas similar carboxylic acid drugs such as Suprofen have been withdrawn due to adverse events. Although the link between these AG metabolites and toxicity is not proven, there is circumstantial literature evidence to suggest that more reactive acyl glucuronides may, in some cases, present a greater risk of exhibiting toxic effects. We wished therefore to rank the reactivity of potential new carboxylate-containing drug candidates, and performed kinetic studies on synthetic acyl glucuronides to benchmark our key compounds. Driven by the desire to quickly rank the reactivity of compounds without the need for lengthy synthesis of the acyl glucuronide, a correlation was established between the degradation half-life of the acyl glucuronide and the half life for the hydrolysis of the more readily available methyl ester derivative. This finding enabled a considerable broadening of chemical property space to be investigated. The need for kinetic measurements was subsequently eliminated altogether by correlating the methyl ester hydrolysis half-life with the predicted 13C NMR chemical shift of the carbonyl carbon together with readily available steric descriptors in a PLS model. This completely in silico prediction of acyl glucuronide reactivity is applicable within the earliest stages of drug design with low cost and acceptable accuracy to guide intelligent molecular design. This reactivity data will be useful alongside the more complex additional pharmacokinetic exposure and distribution data that is generated later in the drug discovery process for assessing the overall toxicological risk of acidic drugs.
21 CFR 573.660 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 573.660...
21 CFR 573.660 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2014 CFR
2014-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 573.660...
21 CFR 573.660 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 573.660...
21 CFR 573.660 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methyl glucoside-coconut oil ester. 573.660...
21 CFR 573.660 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 573.660...
OH-initiated transformation and hydrolysis of aspirin in AOPs system: DFT and experimental studies.
He, Lin; Sun, Xiaomin; Zhu, Fanping; Ren, Shaojie; Wang, Shuguang
2017-08-15
Advanced oxidation processes (AOPs) are widely used in wastewater treatment of pharmaceutical and personal care products (PPCPs). In this work, the OH-initiated transformation as well as the hydrolysis of a typical PPCPs, aspirin, was investigated using density functional theory (DFT) calculations and laboratory experiments. For DFT calculations, the frontier electron densities and bond dissociation energies were analyzed. Profiles of the potential energy surface were constructed, and all the possible pathways were discussed. Additionally, rate constants for each pathway were calculated with transition state theory (TST) method. UV/H 2 O 2 experiments of aspirin were performed and degradation intermediates were identified by UPLC-MS-MS analysis. Different findings from previous experimental works were reported that the H-abstraction pathways at methyl position were dominated and OH-addition pathways on benzene ring were also favored. Meantime, hydroxyl ASA was confirmed as the main stable intermediate. Moreover, it was the first time to use DFT method to investigate the hydrolysis mechanisms of organic ester compound. Copyright © 2017 Elsevier B.V. All rights reserved.
New dicyclopeptides from Dianthus chinensis.
Han, Jing; Wang, Zhe; Zheng, Yu-Qing; Zeng, Guang-Zhi; He, Wen-Jun; Tan, Ning-Hua
2014-05-01
One new dicyclopeptide cyclo-(L-N-methyl Glu-L-N-methyl Glu) (1), together with one new natural dicyclopeptide cyclo-(L-methyl Glu ester-L-methyl Glu ester) (2), and two known dicyclopeptides cyclo-(L-methyl Glu ester-L-Glu) (3), and cyclo-(L-Glu-L-Glu) (4), were isolated from the aerial parts of Dianthus chinensis L. Their structures were determined by spectroscopic analyses and chemical methods.
Mapping sugar beet pectin acetylation pattern.
Ralet, Marie-Christine; Cabrera, Juan Carlos; Bonnin, Estelle; Quéméner, Bernard; Hellìn, Pilar; Thibault, Jean-François
2005-08-01
Homogalacturonan-derived partly methylated and/or acetylated oligogalacturonates were recovered after enzymatic hydrolysis (endo-polygalacturonase+pectin methyl esterase+side-chain degrading enzymes) of sugar beet pectin followed by anion-exchange and size exclusion chromatography. Around 90% of the GalA and 75% of the acetyl groups present in the initial sugar beet pectin were recovered as homogalacturonan-derived oligogalacturonates, the remaining GalA and acetyl belonging to rhamnogalacturonic regions. Around 50% of the acetyl groups present in sugar beet homogalacturonans were recovered as partly methylated and/or acetylated oligogalacturonates of degree of polymerisation 5 whose structures were determined by electrospray ionization ion trap mass spectrometry (ESI-IT-MSn). 2-O-acetyl- and 3-O-acetyl-GalA were detected in roughly similar amounts but 2,3-di-O-acetylation was absent. Methyl-esterified GalA residues occurred mainly upstream 2-O-acetyl GalA. Oligogalacturonates containing GalA residues that are at once methyl- and acetyl-esterified were recovered in very limited amounts. A tentative mapping of the distribution of acetyl and methyl esters within sugar beet homogalacturonans is proposed. Unsubstituted GalA residues are likely to be present in limited amounts (approximately 10% of total GalA residues), due to the fact that methyl and acetyl groups are assumed to be most often not carried by the same residues.
Liu, W P; Fang, Z; Liu, H J; Yang, W C
2001-04-01
Adsorption and catalytic hydrolysis of the herbicide diethatyl-ethyl [N-chloroacetyl-N-(2,6-diethylphenyl)glycine ethyl ester] on homoionic Na(+)-, K(+)-, Ca(2+)-, and Mg(2+)-montmorillonite clays were investigated in water solution. The Freundlich adsorption coefficient, Ki, got from isotherms on clay followed the order of Na+ approximately K+ > Mg2+ approximately Ca2+. Analysis of FT-IR spectra of diethatyl-ethyl adsorbed on clay suggests probable bonding at the carboxyl and amide carbonyl groups of the herbicide. The rate of herbicide hydrolysis in homoionic clay suspensions followed the same order as that for adsorption, indicating that adsorption may have preceded and thus caused hydrolysis. Preliminary product identification showed that hydrolysis occurred via nucleophilic substitution at the carboxyl carbon, causing the cleavage of the ester bond and formation of diethatyl and its dechlorinated derivative, and at the amide carbon, yielding an ethyl ester derivative and its acid. These pathways also suggest that hydrolysis of diethatyl-ethyl was catalyzed by adsorption on the clay surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serra, M.; Watson, M.; Roeske, W.R.
Cloned human neuroblastoma cells (SH-SY5Y) were grown. High affinity binding of (/sup 3/H)(-)quinuclidinyl benzilate ((/sup 3/H)(-)QNB) and its quaternary derivative (/sup 3/H)(-)methyl QNB to muscarinic receptors (MR) on intact SH-SY5Y cells was studied. A 30 min rinse time gave a ratio of specific/total binding of 90% for both ligands. Association rates of (/sup 3/H)(-)QNB and (/sup 3/H)(-)methyl QNB were determined. Both ligands reached steady state by 60 min at 37/sup 0/C. Rates of dissociation for both radioligands were biphasic, although (/sup 3/H)(-)methyl QNB was faster. Saturation studies yielded K/sub d/ (dissociation constant) values of 16 and 260 pM and B/submore » max/ (maximal MR density) values of 172 and 134 fmoles/mg prot for (/sup 3/H)(-)QNB and (/sup 3/H)(-)methyl QNB, respectively. Activation of protein kinase C by phorbol esters produced increased phosphorylation of cellular proteins. Pretreatment with 100 nM of 4..beta..-phorbol 12..beta..-myristate 13..cap alpha..-acetate (PMA) induced a decrease in agonist affinity for MR, suggesting a PMA-promoted phosphorylation of the MR protein. Phosphoinositide (PhI) turnover was measured by MR agonist-induced accumulation of inositol-1-phosphate in the presence of Li/sup + +/ (10 mM). Only carbachol and acetylcholine elicited potent responses with oxotremorine (16%) pilocarpine (17%) and McN-A-343 (8%) appearing to be weak partial agonist of low efficacy.« less
Emissions analysis on diesel engine fuelled with cashew nut shell biodiesel and pentanol blends.
Devarajan, Yuvarajan; Munuswamy, Dinesh Babu; Nagappan, BeemKumar
2017-05-01
The present work is intended to investigate the emission characteristics of neat cashew nut shell methyl ester (CNSME100) by adding pentanol at two different proportions and compared with the baseline diesel. CNSME100 is prepared by the conventional transesterification process. CNSME100 is chosen due to its non-edible nature. Pentanol is chosen as an additive because of its higher inbuilt oxygen content and surface to volume ratio which reduces the drawbacks of neat CNSME100. Emission characteristics were carried out in single cylinder naturally aspirated CI engine fuelled with neat cashew nut shell methyl ester (CNSME), cashew nut shell methyl ester and pentanol by 10% volume (CNSME90P10), cashew nut shell methyl ester and pentanol by 20% volume (CNSME80P20), and diesel. This work also aims to investigate the feasibility of operating an engine fuelled with neat methyl ester and alcohol blends. Experimental results showed that by blending higher alcohol to neat cashew nut shell methyl ester reduces the emissions significantly. It is also found that the emission from neat methyl ester and pentanol blends is lesser than diesel at all loads.
Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil
NASA Astrophysics Data System (ADS)
Karthikeyan, A.; Jayaprabakar, J.; Dude Williams, Richard
2017-05-01
The aim of the study is to use fish oil methyl ester (FME) and Jatropha oil methyl ester (JME) as a substitute for diesel in compression ignition engine. Experiments were conducted when the engine was fuelled with Diesel, Fish oil methyl ester and Jatropha oil methyl ester. The experiment covered a range of loads. An AVL smoke meter was used to measure the smoke density in HSU (Hatridge Smoke Unit). The exhaust emissions were measured using exhaust gas analyzer. High volume sampler was employed to measure the particulate matter in exhaust. The performance of the engine was evaluated in terms of brake specific fuel consumption, brake thermal efficiency. The combustion characteristics of the engine were studied in terms of cylinder pressure with respect to crank angle. The emissions of the engine were studied in terms of concentration of CO, NOx, particulate matter and smoke density. The results obtained for Fish oil methyl ester, Jatropha oil methyl ester, were compared with the results of diesel. Bio-diesel, which can be used as an alternate diesel fuel, is made from vegetable oil and animal fats. It is renewable, non-toxic and possesses low emission profiles.
21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.
Code of Federal Regulations, 2013 CFR
2013-04-01
... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...
21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.
Code of Federal Regulations, 2012 CFR
2012-04-01
... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...
Facile Fabrication of Gradient Surface Based on (meth)acrylate Copolymer Films
NASA Astrophysics Data System (ADS)
Zhang, Y.; Yang, H.; Wen, X.-F.; Cheng, J.; Xiong, J.
2016-08-01
This paper describes a simple and economic approach for fabrication of surface wettability gradient on poly(butyl acrylate - methyl methacrylate) [P (BA-MMA)] and poly(butyl acrylate - methyl methacrylate - 2-hydroxyethyl methacrylate) [P (BA-MMA-HEMA)] films. The (meth)acrylate copolymer [including P (BA-MMA) and P (BA-MMA-HEMA)] films are hydrolyzed in an aqueous solution of NaOH and the transformation of surface chemical composition is achieved by hydrolysis in NaOH solution. The gradient wetting properties are generated based on different functional groups on the P (BA-MMA) and P (BA-MMA-HEMA) films. The effects of both the surface chemical and surface topography on wetting of the (meth)acrylate copolymer film are discussed. Surface chemical composition along the materials length is determined by XPS, and surface topography properties of the obtained gradient surfaces are analyzed by FESEM and AFM. Water contact angle system (WCAs) results show that the P (BA-MMA-HEMA) films provide a larger slope of the gradient wetting than P (BA-MMA). Moreover, this work demonstrates that the gradient concentration of chemical composition on the poly(meth) acrylate films is owing to the hydrolysis processes of ester group, and the hydrolysis reactions that have negligible influence on the surface morphology of the poly(meth) acrylate films coated on the glass slide. The gradient wettability surfaces may find broad applications in the field of polymer coating due to the compatibility of (meth) acrylate polymer.
Binding of indomethacin methyl ester to cyclooxygenase-2. A computational study.
Sárosi, Menyhárt-Botond
2018-06-05
Inhibitors selective towards the second isoform of prostaglandin synthase (cyclooxygenase, COX-2) are promising nonsteroidal anti-inflammatory drugs and antitumor medications. Methylation of the carboxylate group in the relatively nonselective COX inhibitor indomethacin confers significant COX-2 selectivity. Several other modifications converting indomethacin into a COX-2 selective inhibitor have been reported. Earlier experimental and computational studies on neutral indomethacin derivatives suggest that the methyl ester derivative likely binds to COX-2 with a similar binding mode as that observed for the parent indomethacin. However, docking studies followed by molecular dynamics simulations revealed two possible binding modes in COX-2 for indomethacin methyl ester, which differs from the experimental binding mode found for indomethacin. Both alternative binding modes might explain the observed COX-2 selectivity of indomethacin methyl ester. Graphical abstract Binding of indomethacin methyl ester to cyclooxygenase-2.
Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.
Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin
2007-01-01
In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.
Steryl ester synthesis, storage and hydrolysis: A contribution to sterol homeostasis.
Korber, Martina; Klein, Isabella; Daum, Günther
2017-12-01
Sterols are essential lipids of all eukaryotic cells, appearing either as free sterols or steryl esters. Besides other regulatory mechanisms, esterification of sterols and hydrolysis of steryl esters serve to buffer both an excess and a lack of free sterols. In this review, the esterification process, the storage of steryl esters and their mobilization will be described. Several model organisms are discussed but the focus was set on mammals and the yeast Saccharomyces cerevisiae. The contribution of imbalanced cholesterol homeostasis to several human diseases, namely Wolman disease, cholesteryl ester storage disease, atherosclerosis and Alzheimer's disease, Niemann-Pick type C and Tangier disease is described. Copyright © 2017 Elsevier B.V. All rights reserved.
Biodiesel production from vegetable oil and waste animal fats in a pilot plant.
Alptekin, Ertan; Canakci, Mustafa; Sanli, Huseyin
2014-11-01
In this study, corn oil as vegetable oil, chicken fat and fleshing oil as animal fats were used to produce methyl ester in a biodiesel pilot plant. The FFA level of the corn oil was below 1% while those of animal fats were too high to produce biodiesel via base catalyst. Therefore, it was needed to perform pretreatment reaction for the animal fats. For this aim, sulfuric acid was used as catalyst and methanol was used as alcohol in the pretreatment reactions. After reducing the FFA level of the animal fats to less than 1%, the transesterification reaction was completed with alkaline catalyst. Due to low FFA content of corn oil, it was directly subjected to transesterification. Potassium hydroxide was used as catalyst and methanol was used as alcohol for transesterification reactions. The fuel properties of methyl esters produced in the biodiesel pilot plant were characterized and compared to EN 14214 and ASTM D6751 biodiesel standards. According to the results, ester yield values of animal fat methyl esters were slightly lower than that of the corn oil methyl ester (COME). The production cost of COME was higher than those of animal fat methyl esters due to being high cost biodiesel feedstock. The fuel properties of produced methyl esters were close to each other. Especially, the sulfur content and cold flow properties of the COME were lower than those of animal fat methyl esters. The measured fuel properties of all produced methyl esters met ASTM D6751 (S500) biodiesel fuel standards. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tubert-Brohman, Ivan; Acevedo, Orlando; Jorgensen, William L
2006-12-27
Fatty acid amide hydrolase (FAAH) is a serine hydrolase that degrades anandamide, an endocannabinoid, and oleamide, a sleep-inducing lipid, and has potential applications as a therapeutic target for neurological disorders. Remarkably, FAAH hydrolyzes amides and esters with similar rates; however, the normal preference for esters reemerges when Lys142 is mutated to alanine. To elucidate the hydrolysis mechanisms and the causes behind this variation of selectivity, mixed quantum and molecular mechanics (QM/MM) calculations were carried out to obtain free-energy profiles for alternative mechanisms for the enzymatic hydrolyses. The methodology features free-energy perturbation calculations in Monte Carlo simulations with PDDG/PM3 as the QM method. For wild-type FAAH, the results support a mechanism, which features proton transfer from Ser217 to Lys142, simultaneous proton transfer from Ser241 to Ser217, and attack of Ser241 on the substrate's carbonyl carbon to yield a tetrahedral intermediate, which subsequently undergoes elimination with simultaneous protonation of the leaving group by a Lys142-Ser217 proton shuttle. For the Lys142Ala mutant, a striking multistep sequence is proposed with simultaneous proton transfer from Ser241 to Ser217, attack of Ser241 on the carbonyl carbon of the substrate, and elimination of the leaving group and its protonation by Ser217. Support comes from the free-energy results, which well reproduce the observation that the Lys142Ala mutation in FAAH decreases the rate of hydrolysis for oleamide significantly more than for methyl oleate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Shuqing; Sun Mingzhong; Greenaway, Frederick T.
2006-10-06
A plasminogen activator with arginine ester hydrolysis activity (ABUSV-PA) has been identified and purified to homogeneity from Chinese Agkistrodon blomhoffii Ussurensis snake venom. ABUSV-PA, a monomeric protein with molecular mass of 27815.2 Da, was purified 180-fold with 0.02% recovery for protein and 3.6% recovery for esterase activity. ABUSV-PA reacts optimally with its substrate N {sub {alpha}}-tosyl-L-arginine-methyl ester (TAME) at {approx}pH 7.5 and at 51 {sup o}C. Measurement from inductively coupled plasma-atomic emission spectroscopy (ICP-AES) reveals that ABUSV-PA is a Zn{sup 2+}-containing protein with a stoichiometry of 1:1 [Zn{sup 2+}]:[ABUSV-PA]. Analyses of esterase hydrolysis and UV absorption and CD spectra indicatemore » that Zn{sup 2+} plays an important role in maintaining the structural integrity rather than the esterase activity of ABUSV-PA. Divalent metal ions, including Ca{sup 2+}, Mg{sup 2+}, Cu{sup 2+}, Ni{sup 2+}, Mn{sup 2+}, and Co{sup 2+}, increase the TAME hydrolysis activity of ABUSV-PA. A red-shift of the emission wavelengths of the synchronous fluorescence of ABUSV-PA, compared to those of free Tyr and Trp, indicates a conformation where the Tyr and Trp residues are in exposed hydrophilic environments. The presence of zinc increases the hydrophobicity of the conformational environments surrounding the Trp residues of ABUSV-PA and affects the secondary structure of ABUSV-PA, as proved by UV absorption and CD spectroscopy.« less
Valorization of Oleuropein Via Tunable Acid-Promoted Methanolysis.
Afonso, Carlos; Cavaca, Lidia A S; Rodrigues, Catarina A B; Simeonov, Svilen P; Gomes, Rafael F A; Coelho, Jaime A S; Romanelli, Gustavo P; Sathicq, Angel G; Martínez, José J
2018-05-28
The acid-promoted methanolysis of Oleuropein was studied using a variety of homogeneous and heterogeneous acid catalysts. Exclusive cleavage of the acetal bond between the glucoside and the monoterpene subunits or further hydrolysis of the hydroxytyrosol ester and subsequent intramolecular rearrangement were observed upon identification of the most efficient catalyst and experimental conditions. Furthermore, selected conditions were tested using Oleuropein under continuous flow and using a crude mixture extracted from olive leaves under batch. Formation of (-) methyl elenolate was also observed in this study, which is a reported precursor for the synthesis of the antihypertensive drug (-) ajmalicine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tain, You-Lin; Lee, Chien-Te; Chan, Julie Y H; Hsu, Chien-Ning
2016-11-01
Pregnancy is a critical time for fetal programming of hypertension. Nitric oxide deficiency during pregnancy causes hypertension in adult offspring. We examined whether maternal melatonin or N-acetylcysteine therapy can prevent N G -nitro-L-arginine-methyl ester-induced fetal programming of hypertension in adult offspring. Next, we aimed to identify potential gatekeeper pathways that contribute to N G -nitro-L-arginine-methyl ester -induced programmed hypertension using the next generation RNA sequencing technology. Pregnant Sprague-Dawley rats were assigned to 4 groups: control, N G -nitro-L-arginine-methyl ester, N G -nitro-L-arginine-methyl ester +melatonin, and N G -nitro-L-arginine-methyl ester+N-acetylcysteine. Pregnant rats received N G -nitro-L-arginine-methyl ester administration at 60 mg/kg/d subcutaneously during pregnancy alone, with additional 0.01% melatonin in drinking water, or with additional 1% N-acetylcysteine in drinking water during the entire pregnancy and lactation. Male offspring (n=8/group) were killed at 12 weeks of age. N G -nitro-L-arginine-methyl ester exposure during pregnancy induced programmed hypertension in adult male offspring, which was prevented by maternal melatonin or N-acetylcysteine therapy. Protective effects of melatonin and N-acetylcysteine against N G -nitro-L-arginine-methyl ester-induced programmed hypertension were associated with an increase in hydrogen sulfide-generating enzymes and hydrogen sulfide synthesis in the kidneys. Nitric oxide inhibition by N G -nitro-L-arginine-methyl ester in pregnancy caused >2000 renal transcripts to be modified during nephrogenesis stage in 1-day-old offspring kidney. Among them, genes belong to the renin-angiotensin system, and arachidonic acid metabolism pathways were potentially involved in the N G -nitro-L-arginine-methyl ester-induced programmed hypertension. However, melatonin and N-acetylcysteine reprogrammed the renin-angiotensin system and arachidonic acid pathway differentially. Our results indicated that antioxidant therapy, by melatonin or N-acetylcysteine, in pregnant rats with nitric oxide deficiency can prevent programmed hypertension in male adult offspring. Early intervention with specific antioxidants that target redox imbalance in pregnancy to reprogram hypertension may well allow us to reduce the future burden of hypertension. The roles of transcriptome changes that are induced by N G -nitro-L-arginine-methyl ester in the offspring kidney require further clarification. Copyright © 2016 Elsevier Inc. All rights reserved.
Robbins, Paul S.; Alm, Steven R.; Armstrong, Charles. D.; Averill, Anne L.; Baker, Thomas C.; Bauernfiend, Robert J.; Baxendale, Frederick P.; Braman, S. Kris; Brandenburg, Rick L.; Cash, Daniel B.; Couch, Gary J.; Cowles, Richard S.; Crocker, Robert L.; DeLamar, Zandra D.; Dittl, Timothy G.; Fitzpatrick, Sheila M.; Flanders, Kathy L.; Forgatsch, Tom; Gibb, Timothy J.; Gill, Bruce D.; Gilrein, Daniel O.; Gorsuch, Clyde S.; Hammond, Abner M.; Hastings, Patricia D.; Held, David W.; Heller, Paul R.; Hiskes, Rose T.; Holliman, James L.; Hudson, William G.; Klein, Michael G.; Krischik, Vera L.; Lee, David J.; Linn, Charles E.; Luce, Nancy J.; MacKenzie, Kenna E.; Mannion, Catherine M.; Polavarapu, Sridhar; Potter, Daniel A.; Roelofs, Wendell L.; Royals, Brian M.; Salsbury, Glenn A.; Schiff, Nathan M.; Shetlar, David J.; Skinner, Margaret; Sparks, Beverly L.; Sutschek, Jessica A.; Sutschek, Timothy P.; Swier, Stanley R.; Sylvia, Martha M.; Vickers, Neil J.; Vittum, Patricia J.; Weidman, Richard; Weber, Donald C.; Williamson, R. Chris; Villani, Michael G
2006-01-01
The sex pheromone of the scarab beetle, Phyllophaga anxia, is a blend of the methyl esters of two amino acids, L-valine and L-isoleucine. A field trapping study was conducted, deploying different blends of the two compounds at 59 locations in the United States and Canada. More than 57,000 males of 61 Phyllophaga species (Coleoptera: Scarabaeidae: Melolonthinae) were captured and identified. Three major findings included: (1) widespread use of the two compounds [of the 147 Phyllophaga (sensu stricto) species found in the United States and Canada, males of nearly 40% were captured]; (2) in most species intraspecific male response to the pheromone blends was stable between years and over geography; and (3) an unusual pheromone polymorphism was described from P. anxia. Populations at some locations were captured with L-valine methyl ester alone, whereas populations at other locations were captured with L-isoleucine methyl ester alone. At additional locations, the L-valine methyl ester-responding populations and the L-isoleucine methyl ester-responding populations were both present, producing a bimodal capture curve. In southeastern Massachusetts and in Rhode Island, in the United States, P. anxia males were captured with blends of L-valine methyl ester and L-isoleucine methyl ester. PMID:19537965
Modeling Study of the Low-Temperature Oxidation of Large Methyl Esters from C11 to C19
Herbinet, Olivier; Biet, Joffrey; Hakka, Mohammed Hichem; Warth, Valérie; Glaude, Pierre Alexandre; Nicolle, André; Battin-Leclerc, Frédérique
2013-01-01
The modeling of the low temperature oxidation of large saturated methyl esters really representative of those found in biodiesel fuels has been investigated. Models have been developed for these species and then detailed kinetic mechanisms have been automatically generated using a new extended version of software EXGAS, which includes reactions specific to the chemistry of esters. A model generated for a binary mixture of n-decane and methyl palmitate was used to simulate experimental results obtained in a jet-stirred reactor for this fuel. This model predicts very well the reactivity of the fuel and the mole fraction profiles of most reaction products. This work also shows that a model for a middle size methyl ester such as methyl decanoate predicts fairly well the reactivity and the mole fractions of most species with a substantial decrease in computational time. Large n-alkanes such as n-hexadecane are also good surrogates for reproducing the reactivity of methyl esters, with an important gain in computational time, but they cannot account for the formation of specific products such as unsaturated esters or cyclic ethers with an ester function. PMID:23814504
Kumari, Arti; Gupta, Rani
2014-01-01
One of the major issues with heterologous production of proteins in Pichia pastoris X33 under AOX1 promoter is repeated methanol induction. To obviate repeated methanol induction, methyl esters were used as a slow release source of methanol in lipase expressing mut+ recombinant. Experimental design was based on the strategy that in presence of lipase, methyl esters can be hydrolysed to release their products as methanol and fatty acid. Hence, upon break down of methyl esters by lipase, first methanol will be used as a carbon source and inducer. Then P. pastoris can switch over to fatty acid as a carbon source for multiplication and biomass maintenance till further induction by methyl esters. We validated this strategy using recombinant P. pastoris expressing Lip A, Lip C from Trichosporon asahii and Lip11 from Yarrowia lipolytica. We found that the optimum lipase yield under repeated methanol induction after 120 h was 32866 U/L, 28271 U/L and 21978 U/L for Lip C, Lip A and Lip 11 respectively. In addition, we found that a single dose of methyl ester supported higher production than repeated methanol induction. Among various methyl esters tested, methyl oleate (0.5%) caused 1.2 fold higher yield for LipA and LipC and 1.4 fold for Lip11 after 120 h of induction. Sequential utilization of methanol and oleic acid by P. pastoris was observed and was supported by differential peroxisome proliferation studies by transmission electron microscopy. Our study identifies a novel strategy of using methyl esters as slow release methanol source during lipase expression. PMID:25170843
Chemical composition of the leaf and stem essential oil of Adenophorae Radix
NASA Astrophysics Data System (ADS)
Lan, Weijie; Lin, Shang; Li, Xindan; Zhang, Qing; Qin, Wen
2017-03-01
The chemical composition of the essential oil extracted from leaves and stems of Adenophorae Radix was determined for the first time in this study. Twenty-six compounds were identified by gas chromatography coupled to mass spectrometry (GC-MS). n-Hexadecanoic acid (29.14%), 9,12-octadecadienoic acid (Z,Z)- (17.22%), hexadecanoic acid, methyl ester(8.98%), 9-octadecenoic acid, methyl ester, (E)- (7.03%), 9,12-octadecadienoic acid (Z,Z)-, methyl ester (5.93%), phytol (5.50%), and estradiol (4.43%) were measured as the major compounds in stem oil. The leaf essential oil was dominated by n-hexadecanoic acid (50.78%), 9-octadecenoic acid, methyl ester, (E)- (9.04%), phytol (8.47%), d-mannitol (5.81%), 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z)- (4.31%), hexadecanoic acid, methyl ester (2.19%) and 9,12-octadecadienoic acid (Z,Z)-(1.7%). The leaves yield was 0.12% (v/w) and the stems yield showed only 0.073% (v/w). The results might provide reference basis for further exploration of its application value.
An Experimental and Kinetic Modeling Study of Methyl Decanoate Combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarathy, S M; Thomson, M J; Pitz, W J
2009-12-04
Biodiesel is a mixture of long chain fatty acid methyl esters derived from fats and oils. This research study presents opposed-flow diffusion flame data for one large fatty acid methyl ester, methyl decanoate, and uses the experiments to validate an improved skeletal mechanism consisting of 648 species and 2998 reactions. The results indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular weight oxygenated compounds such as carbon monoxide, formaldehyde, and ketene.
USDA-ARS?s Scientific Manuscript database
Biodiesel is a renewable alternative diesel fuel made from vegetable oils and animal fats. The most common form of biodiesel in the United States are fatty acid methyl esters (FAME) from soybean, canola, and used cooking oils, waste greases, and tallow. Cold flow properties of biodiesel depend on th...
USDA-ARS?s Scientific Manuscript database
Aminocyclopyrachlor (DPX MAT28) a newly discovered synthetic auxin herbicide and its methyl ester (DPX KJM44) appear to control a number of perennial broadleaf weeds. The potential volatility of this new herbicide and its methyl ester were determined under laboratory conditions and were also compar...
Fujita, Yukiko; Naka, Takashi; Doi, Takeshi; Yano, Ikuya
2005-05-01
Direct estimation of the molecular mass of single molecular species of trehalose 6-monomycolate (TMM), a ubiquitous cell-wall component of mycobacteria, was performed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. When less than 1 microg TMM was analysed by MALDI-TOF mass spectrometry, quasimolecular ions [M+Na]+ of each molecular species were demonstrated and the numbers of carbons and double bonds (or cyclopropane rings) were determined. Since the introduction of oxygen atoms such as carbonyl, methoxy and ester groups yielded the appropriate shift of mass ions, the major subclasses of mycolic acid (alpha, methoxy, keto and wax ester) were identified without resorting to hydrolytic procedures. The results showed a marked difference in the molecular species composition of TMM among mycobacterial species. Unexpectedly, differing from other mycoloyl glycolipids, TMM from Mycobacterium tuberculosis showed a distinctive mass pattern, with abundant odd-carbon-numbered monocyclopropanoic (or monoenoic) alpha-mycolates besides dicyclopropanoic mycolate, ranging from C75 to C85, odd- and even-carbon-numbered methoxymycolates ranging from C83 to C94 and even- and odd-carbon-numbered ketomycolates ranging from C83 to C90. In contrast, TMM from Mycobacterium bovis (wild strain and BCG substrains) possessed even-carbon-numbered dicyclopropanoic alpha-mycolates. BCG Connaught strain lacked methoxymycolates almost completely. These results were confirmed by MALDI-TOF mass analysis of mycolic acid methyl esters liberated by alkaline hydrolysis and methylation of the original TMM. Wax ester-mycoloyl TMM molecular species were demonstrated for the first time as an intact form in the Mycobacterium avium-intracellulare group, M. phlei and M. flavescens. The M. avium-intracellulare group possessed predominantly C85 and C87 wax ester-mycoloyl TMM, while M. phlei and the rapid growers tested contained C80, C81, C82 and C83 wax ester-mycoloyl TMM. This technique has marked advantages in the rapid analysis of not only intact glycolipid TMM, but also the mycolic acid composition of each mycobacterial species, since it does not require any degradation process.
NASA Astrophysics Data System (ADS)
Schröder, O.; Munack, A.; Schaak, J.; Pabst, C.; Schmidt, L.; Bünger, J.; Krahl, J.
2012-05-01
Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non-regulated exhaust gas components, some deviations from this linear trend were detected.
Carbohydrates as a source of energy and matter for the origin of life
NASA Technical Reports Server (NTRS)
Weber, A. L.
1991-01-01
Recently, we proposed a new model of early glycolysis in which the oxidation of glyceraldehyde self-hemiacetals yielded energy rich polyglyceric acid instead of energy rich thioesters. In this model, polyglyceric acid not only acts as an energy source for phosphoanhydride synthesis, but also as an autocatalyst that can replicate the sequence of D and L residues in its structure. We began our investigation of this new hypothesis - the triose model - by developing a thermal method for the racemization-free synthesis of polyglyceric acid. The hydrolytic stability and the role of chirality in interactions of polyglyceric acid were studied using this thermal polymer. Next, we established that the 2- and 3-glycerol esters of polyglyceric acid are energy rich by measuring the Gibbs free energy change of hydrolysis of the 2- and 3-glycerol esters of 2 and 3-O-L glyceroyl-glyceric acid methyl ester - a model of polyglyceric acid. Recently, we discovered that glyceraldehyde is bound and oxidized to glyceric acid on the surface of ferric hydroxide and that soluble ferric ion catalyzes the rearrangement of glyceraldehyde to lactic acid. We are exploring the possibility that these reactions could yield polyglyceric acid and polylactic acid under plausible prebiotic conditions.
USDA-ARS?s Scientific Manuscript database
The complementary blending of meadowfoam seed oil methyl esters (MFME) with soybean and waste cooking oil methyl esters (SME and WCME) was investigated. MFME prepared from cold-pressed meadowfoam oil exhibited an exceptionally high induction period (IP) of 66.2 h whereas SME and WCME yielded conside...
Yashiro, Kazuki; Hanaya, Kengo; Shoji, Mitsuru; Sugai, Takeshi
2015-01-01
We have synthesized artepillin C, a diprenylated p-hydroxycinnamate originally isolated from Brazilian propolis and exhibiting antioxidant and antitumor activities, from 2,6-diallylphenol. Replacement of the terminal vinyl with 2,2-dimethylvinyl group by olefin cross-metathesis and subsequent transformation yielded 2,6-diprenyl-1,4-hydroquinone diacetate. Candida antarctica lipase B-catalyzed deacetylation in 2-propanol regioselectively removed the less hindered acetyl group to give 2,6-diprenyl-1,4-hydroquinone 1-monoacetate. After triflation of the liberated 4-hydroxy group, a three-carbon side chain was introduced by palladium-mediated alkenylation with methyl acrylate. Final hydrolysis of the esters furnished artepillin C.
Haritos, V S; Dojchinov, G
2003-10-01
Volatile alkyl formates are potential replacements for the ozone-depleting fumigant, methyl bromide, as postharvest insecticides and here we have investigated their mode of insecticidal action. Firstly, a range of alkyl esters, ethanol and formic acid were tested in mortality bioassays with adults of the rice weevil, Sitophilus oryzae (L.) and the grain borer, Rhyzopertha dominica (F.) to determine whether the intact ester or one of its components was the toxic moiety. Volatile alkyl formates and formic acid caused similar levels of mortality (LC(50) 131-165 micromol l(-1)) to S. oryzae and were more potent than non-formate containing alkyl esters and ethanol (LC(50)>275 micromol l(-1)). The order of potency was the same in R. dominica. Ethyl formate was rapidly metabolised in vitro to formic acid when incubated with insect homogenates, presumably through the action of esterases. S. oryzae and R. dominica fumigated with a lethal dose of ethyl formate had eight and 17-fold higher concentrations of formic acid, respectively, in their bodies than untreated controls. When tested against isolated mitochondria from S. oryzae, alkyl esters, alcohols, acetate and propionate salts were not inhibitory towards cytochrome c oxidase (EC 1.9.3.1), but sodium cyanide and sodium formate were inhibitory with IC(50) values of 0.0015 mM and 59 mM, respectively. Volatile formate esters were more toxic than other alkyl esters, and this was found to be due, at least in part, to their hydrolysis to formic acid and its inhibition of cytochrome c oxidase.
García, Javier; Fernández, Susana; Ferrero, Miguel; Sanghvi, Yogesh S; Gotor, Vicente
2002-06-28
A short and convenient synthesis of 3'- and 5'-O-levulinyl-2'-deoxynucleosides has been developed from the corresponding 3',5'-di-O-levulinyl derivatives by regioselective enzymatic hydrolysis, avoiding several tedious chemical protection/deprotection steps. Thus, Candida antartica lipase B (CAL-B) was found to selectively hydrolyze the 5'-levulinate esters, furnishing 3'-O-levulinyl-2'-deoxynucleosides 3 in >80% isolated yields. On the other hand, immobilized Pseudomonas cepacia lipase (PSL-C) and Candida antarctica lipase A (CAL-A) exhibit the opposite selectivity toward the hydrolysis at the 3'-position, affording 5'-O-levulinyl derivatives 4 in >70% yields. A similar hydrolysis procedure was successfully extended to the synthesis of 3'- and 5'-O-levulinyl-protected 2'-O-alkylribonucleosides 7 and 8. This work demonstrates for the first time application of commercial CAL-B and PSL-C toward regioselective hydrolysis of levulinyl esters with excellent selectivity and yields. It is noteworthy that protected cytidine and adenosine base derivatives were not adequate substrates for the enzymatic hydrolysis with CAL-B, whereas PSL-C was able to accommodate protected bases during selective hydrolysis. In addition, we report an improved synthesis of dilevulinyl esters using a polymer-bound carbodiimide as a replacement for dicyclohexylcarbodiimide (DCC), thus considerably simplifying the workup for esterification reactions.
Research in Energetic Compounds.
1980-03-01
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) ,2 ABSTRACT (cont’d.) chloroperbenzoic acid gave 3-nitrooxetane. Fluoronitromalonate esters were...tetrahydropyranyl ethers. Base hydrolysis of the ester groups followed by acid hydrolysis of the tetrahydropyranyl groups gave 2-fluo- ro-2-nitroethanol...of 3-allyloxyoxetane.3 Treatment of allyl alcohol with 0.25 equivalunt of t-butyl h-pochlorite and a catalytic amount of p-toluenesulfonic acid was
ERIC Educational Resources Information Center
Lundberg, Dan; Stjerndahl, Maria
2011-01-01
The effects of self-assembly on the hydrolysis kinetics of surfactants that contain ester bonds are discussed. A number of examples on how reaction rates and apparent reaction orders can be modulated by changes in the conditions, including an instance of apparent zero-order kinetics, are presented. Furthermore, it is shown that the examples on…
Gholivand, Somayeh; Lasekan, Ola; Tan, Chin Ping; Abas, Faridah; Wei, Leong Sze
2017-06-01
The solubility limitations of phenolic acids in many lipidic environments are now greatly improved by their enzymatic esterification in ionic liquids (ILs). Herein, four different ILs were tested for the esterification of dihydrocaffeic acid with hexanol and the best IL was selected for the synthesis of four other n-alkyl esters with different chain-lengths. The effect of alkyl chain length on the anti-oxidative properties of the resulted purified esters was investigated using β-carotene bleaching (BCB) and free radical scavenging method DPPH and compared with butylated hydroxytoluene (BHT) as reference compound. All four esters (methyl, hexyl, dodecyl and octadecyl dihydrocaffeates) exhibited relatively strong radical scavenging abilities. The scavenging activity of the test compounds was in the following order: methyl ester>hexyl ester⩾dodecyl ester>octadecyl ester>BHT while the order for the BCB anti-oxidative activity was; BHT>octadecyl ester>dodecyl ester>hexyl ester>methyl ester. Copyright © 2016 Elsevier Ltd. All rights reserved.
Carden, Trevor J; Hang, Jiliang; Dussault, Patrick H; Carr, Timothy P
2015-01-01
Background: Elevated concentrations of LDL cholesterol are associated with the development of atherosclerosis and therefore are considered an important target for intervention to prevent cardiovascular diseases. The inhibition of cholesterol absorption in the small intestine is an attractive approach to lowering plasma cholesterol, one that is addressed by drug therapy as well as dietary supplementation with plant sterols and plant sterol esters (PSEs). Objective: This study was conducted to test the hypothesis that the cholesterol-lowering effects of PSE require hydrolysis to free sterols (FSs). Methods: Male Syrian hamsters were fed atherogenic diets (AIN-93M purified diet containing 0.12% cholesterol and 8% coconut oil) to which one of the following was added: no PSEs or ethers (control), 5% sterol stearate esters, 5% sterol palmitate esters (PEs), 5% sterol oleate esters (OEs), 5% sterol stearate ethers (STs; to mimic nonhydrolyzable PSE), or 3% FSs plus 2% sunflower oil. The treatments effectively created a spectrum of PSE hydrolysis across which cholesterol metabolism could be compared. Metabolic measurements included cholesterol absorption, plasma and liver lipid concentration, and fecal neutral sterol and bile acid excretion. Results: The STs and the PEs and SEs were poorly hydrolyzed (1.69–4.12%). In contrast, OEs were 88.3% hydrolyzed. The percent hydrolysis was negatively correlated with cholesterol absorption (r = −0.85; P < 0.0001) and positively correlated with fecal cholesterol excretion (r = 0.92; P < 0.0001), suggesting that PSE hydrolysis plays a central role in the cholesterol-lowering properties of PSE. Conclusions: Our data on hamsters suggest that PSE hydrolysis and the presence of FSs is necessary to induce an optimum cholesterol-lowering effect and that poorly hydrolyzed PSEs may lower cholesterol through an alternative mechanism than that of competition with cholesterol for micelle incorporation. PMID:25972524
Carden, Trevor J; Hang, Jiliang; Dussault, Patrick H; Carr, Timothy P
2015-07-01
Elevated concentrations of LDL cholesterol are associated with the development of atherosclerosis and therefore are considered an important target for intervention to prevent cardiovascular diseases. The inhibition of cholesterol absorption in the small intestine is an attractive approach to lowering plasma cholesterol, one that is addressed by drug therapy as well as dietary supplementation with plant sterols and plant sterol esters (PSEs). This study was conducted to test the hypothesis that the cholesterol-lowering effects of PSE require hydrolysis to free sterols (FSs). Male Syrian hamsters were fed atherogenic diets (AIN-93M purified diet containing 0.12% cholesterol and 8% coconut oil) to which one of the following was added: no PSEs or ethers (control), 5% sterol stearate esters, 5% sterol palmitate esters (PEs), 5% sterol oleate esters (OEs), 5% sterol stearate ethers (STs; to mimic nonhydrolyzable PSE), or 3% FSs plus 2% sunflower oil. The treatments effectively created a spectrum of PSE hydrolysis across which cholesterol metabolism could be compared. Metabolic measurements included cholesterol absorption, plasma and liver lipid concentration, and fecal neutral sterol and bile acid excretion. The STs and the PEs and SEs were poorly hydrolyzed (1.69-4.12%). In contrast, OEs were 88.3% hydrolyzed. The percent hydrolysis was negatively correlated with cholesterol absorption (r = -0.85; P < 0.0001) and positively correlated with fecal cholesterol excretion (r = 0.92; P < 0.0001), suggesting that PSE hydrolysis plays a central role in the cholesterol-lowering properties of PSE. Our data on hamsters suggest that PSE hydrolysis and the presence of FSs is necessary to induce an optimum cholesterol-lowering effect and that poorly hydrolyzed PSEs may lower cholesterol through an alternative mechanism than that of competition with cholesterol for micelle incorporation. © 2015 American Society for Nutrition.
Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique
2013-01-01
The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes. PMID:23710076
NASA Astrophysics Data System (ADS)
Walton, Stephen Michael
The increased use of biofuels presents an opportunity to improve combustion performance while simultaneously reducing greenhouse gases and pollutant emissions. This work focused on improving the fundamental understanding of the auto-ignition chemistry of oxygenated reference fuel compounds. A systematic study of the effects of ester structure on ignition chemistry was performed using the University of Michigan Rapid Compression Facility. The ignition properties of the ester compounds were investigated over a broad range of pressures (P=5-20 atm) and temperatures (T=850-1150 K) which are directly relevant to advanced combustion engine strategies. Ignition delay times for five esters were determined using the RCF. The esters were selected to systematically consider the chemical structure of the compounds. Three esters were saturated: methyl butanoate, butyl methanoate, and ethyl propanoate; and two were unsaturated: methyl crotonate and methyl trans-3-hexenoate. The unsaturated esters were more reactive than their saturated counterparts, with the largest unsaturated ester, methyl trans-3-hexenoate having the highest reactivity. Two isomers of the saturated esters, butyl methanoate and ethyl propanoate, were more reactive than the isomer methyl butanoate. The results are explained if we assume that butyl methanoate and ethyl propanoate form intermediate ring structures which decompose more rapidly than esters such as methyl butanoate, which do not form ring structures. Modeling studies of the reaction chemistry were conducted for methyl butanoate and ethyl propanoate, for which detailed mechanisms were available in the literature. The new experimental data indicated that literature rate coefficients for some of the methyl butanoate/HO2 reactions were too fast. Modifying these within the theoretical uncertainties for the reaction rates, led to excellent agreement between the model predictions and the experimental data. Comparison of the modeling results with the intermediates measured during methyl butanoate ignition indicated that pathways leading to the formation of small hydrocarbons are relatively well represented in the reaction mechanism. The results of this work provide archival benchmark data for improved understanding of the dominant reaction pathways and species controlling the auto-ignition of oxygenated reference fuel compounds. These data also provide a path for continued development of chemical kinetic models to optimize practical combustion systems.
pH-Switchable Interaction of a Carboxybetaine Ester-Based SAM with DNA and Gold Nanoparticles.
Filip, Jaroslav; Popelka, Anton; Bertok, Tomas; Holazova, Alena; Osicka, Josef; Kollar, Jozef; Ilcikova, Marketa; Tkac, Jan; Kasak, Peter
2017-07-11
We describe a self-assembled monolayer (SAM) on a gold surface with a carboxybetaine ester functionality to control the interaction between DNA and gold nanoparticles via pH. The negatively charged phosphate backbone of DNA interacts with and adsorbs to the positively charged carboxybetaine esters on the SAM. DNA release can be achieved by the hydrolysis of carboxybetaine ester (CBE) to a zwitterionic carboxybetaine state. Furthermore, the adsorption of negatively charged citrate-capped gold nanoparticles to a SAM-modified plain gold surface can be controlled by the pH. The SAM based on carboxybetaine ester allows for the homogeneous adsorption of particles, whereas the SAM after hydrolysis at high pH repels AuNP adsorption. The antifouling surface properties of the surface modified with carboxybetaine were investigated with protein samples.
van Alebeek, Gert-Jan W M; Christensen, Tove M I E; Schols, Henk A; Mikkelsen, Jørn D; Voragen, Alphons G J
2002-07-19
A thorough investigation of the mode of action of Aspergillus niger (4M-147) pectin lyase A (PLA) on differently C(6)-substituted oligogalacturonides is described. PLA appeared to be very specific for fully methyl-esterified oligogalacturonides: removal of the methyl-ester or changing the type of ester (ethyl esterification) or transamidation resulted in (almost) complete loss of conversion. The PLA activity increased with increasing length of the substrate up to a degree of polymerization (DP) of 8 indicating the presence of at least eight subsites on the enzyme. Product analysis demonstrated the formation of several Delta 4,5 unsaturated products and their saturated counterparts. The Delta 4,5 unsaturated trimer was the main product up to DP 8. For DP 9 and 10 Delta 4,5 unsaturated tetramer was the major product. Based upon the bond cleavage frequencies, a provisional subsite map was calculated, which supports the presence of eight subsites. By limited alkaline de-esterification of fully methyl-esterified pentamer and hexamer two sets of partially methyl-esterified pentamers (x and y methyl groups) and hexamers (a and b methyl groups) were prepared. Matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF MS) analysis demonstrated that the methyl-ester distribution was fully random. Using these partially methyl-esterified oligogalacturonides as substrates for PLA a 10-fold decrease in reaction rate was recorded compared with the fully methyl-esterified counterparts. Analysis of the methyl-ester distribution of the products showed that PLA tolerates carboxyl groups in the substrate binding cleft. At either subsite +2, +4, or -1 to -4 a free carboxyl group could be tolerated, whereas methyl-esters were obligatory at subsite +1 and +3. So PLA is capable to cleave the bond between a methyl-esterified and a non-esterified galacturonic acid residue, where the newly formed Delta 4,5 unsaturated non-reducing end residue always contains a methyl-ester.
CFD simulation of fatty acid methyl ester production in bubble column reactor
NASA Astrophysics Data System (ADS)
Salleh, N. S. Mohd; Nasir, N. F.
2017-09-01
Non-catalytic transesterification is one of the method that was used to produce the fatty acid methyl ester (FAME) by blowing superheated methanol bubbles continuously into the vegetable oil without using any catalyst. This research aimed to simulate the production of FAME from palm oil in a bubble column reactor. Computational Fluid Dynamic (CFD) simulation was used to predict the distribution of fatty acid methyl ester and other product in the reactor. The fluid flow and component of concentration along the reaction time was investigated and the effects of reaction temperature (523 K and 563 K) on the non-catalytic transesterification process has been examined. The study was carried out using ANSYS CFX 17.1. The finding from the study shows that increasing the temperature leads to higher amount of fatty acid methyl ester can be produced in shorter time. On the other hand, concentration of the component such as triglyceride (TG), glycerol (GL) and fatty acid methyl ester (FAME) can be known when reaching the optimum condition.
Olutoye, M A; Hameed, B H
2011-06-01
The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182°C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, H.A. Jr.
1962-08-01
I. Methyl 2-methyl-2-thiazoline-4-carboxylate was synthesized and converted to the corresponding acid. The behavior of the carboxythiazoline in various concentrations of mineral acids was studied spectrophotometrically. The cyclization of N-acetylcysteine to form a thiazoline-ring compound in concentrated mineral acids was also studied by this means. N-Acetylcysteine in concentrated mineral acid solutions yielded 2-methyl-2-thiazoline-4-carboxylic acid, which also was obtained by controlied hydrolysis of the corresponding methyl ester. Hydrolysis of methyl 2-methyl2-thiazoline-4-carboxylate, pK 3.05, in 0.1M sodium hydroxide yielded the corresponding carboxythiazoline in solution, pK 2.20 and 4.95. The carboxythiazoline was hydrolyzed very slowly in 7M hydrochloric acid, but the velocity of reactionmore » increased with decreasing acid concentration to a maximum at about pH 1.7; the products were N- and Sacetylcysteine, as well as cysteine and acetic acid. At acid concentrations below 0.2M, the last two products were formed slowly, and a pseudo-equilibrium could be established between thiazolinium ion, N-, and S-acetylcysteine. Equilibrium constants were determined. II. 4,4'-Dithiobis (benzenesulfonic acid) (I) and 4,4'-dithiobis(1-naphthalenesulfonic acid) (II) were synthesized from sulfanilic and naphthionic acids, respectively. The absorption spectra of I and II and of the corresponding mercaptans were determined. The thiol-disuifide interchange reactions were studied by spectrophotometric means for the reactions of cysteine with I and with II, and the equilibrium constants were determined. The systems had spectra very similar to those of the respective mixed disuifides with cysteine, and it was not possible to determine the concentrations from absorbancy measurements. On the other hand, the mercaptide ions had spectra different from the other species, with maxima at 285 and 348 m mu , respectively, and the concentrations of the corresponding mercaptans could be calculated from the absorbancies at these wavelengths. By appropriate choice of the initial concentrations and of pH, the equilibrium concentrations could be made negligible, and the equilibrium constants determined.« less
NASA Astrophysics Data System (ADS)
Sinaga, M. S.; Fauzi, R.; Turnip, J. R.
2017-03-01
Methyl Ester (methyl ester) is generally made by trans esterification using heterogeneous base catalyst. To simplify the separation, the heterogeneous catalyst is used, such as CaO, which in this case was isolated from chicken bones made by softening chicken bones and do calcination process. Some other important variables other than the selection of the catalyst is the catalyst dosage, molar ratio of ethanol to the CPO and the reaction temperature. The best result from this observe is at the molar ratio of ethanol to the CPO is 17: 1, the reaction temperature is 70 ° C and 7% catalyst (w.t) with reaction time for 7 hours at 500 rpm as a constant variable, got 90,052 % purity, so that this result does not get the standard requirements of biodiesel, because of the purity of the biodiesel standard temporary must be achieve > 96.5 %. This study aims to produce methyl ester yield with the influence of the reaction temperature, percent of catalyst and molar ratio of ethanol and CPO. The most influential variable is the temperature of the reaction that gives a significant yield difference of methyl ester produced. It’s been proven by the increasing temperature used will also significantly increase the yield of methyl ester.
Hapten Optimization for Cocaine Vaccine with Improved Cocaine Recognition
Ramakrishnan, Muthu; Kinsey, Berma M.; Singh, Rana A.; Kosten, Thomas R.; Orson, Frank M.
2014-01-01
In the absence of any effective pharmacotherapy for cocaine addiction, immunotherapy is being actively pursued as a therapeutic intervention. While several different cocaine haptens have been explored to develop anti-cocaine antibodies, none of the hapten was successfully designed which had a protonated tropane nitrogen as is found in native cocaine under physiological conditions, including the succinyl norcocaine (SNC) hapten that has been tested in phase II clinical trials. Herein, we discuss three different cocaine haptens: hexyl-norcocaine (HNC), bromoacetamido butyl- norcocaine (BNC), and succinyl-butyl- norcocaine (SBNC), each with a tertiary nitrogen structure mimicking that of native cocaine which could optimize the specificity of anti-cocaine antibodies for better cocaine recognition. Mice immunized with these haptens conjugated to immunogenic proteins produced high titer anti-cocaine antibodies. However, during chemical conjugation of HNC and BNC haptens to carrier proteins, the 2β methyl ester group is hydrolyzed and immunizing mice with these conjugate vaccines in mice produced antibodies that bound both cocaine and the inactive benzoylecgonine metabolite. While in the case of the SBNC conjugate vaccine hydrolysis of the methyl ester did not appear to occur, leading to antibodies with high specificity to cocaine over BE. Though we observed similar specificity with a SNC hapten, the striking difference is that SBNC carries a positive charge on the tropane nitrogen atom, and therefore it is expected to have better binding of cocaine. The 50% cocaine inhibitory concentration (IC50) value for SBNC antibodies (2.8 μM) was significantly better than the SNC antibodies (9.4 μM) when respective hapten-BSA was used as a substrate. In addition, antibodies from both sera had no inhibitory effect from BE. In contrast to BNC and HNC, the SBNC conjugate was also found to be highly stable without any noticeable hydrolysis for several months at 4°C and 2-3 days in pH 10 buffer at 37°C. PMID:24803171
Convenient synthesis of 6-nor-9,10-dihydrolysergic acid methyl ester.
Crider, A M; Grubb, R; Bachmann, K A; Rawat, A K
1981-12-01
6-Nor-9,10-dihydrolysergic acid methyl ester (IV) was prepared by demethylation of 9,10-dihydrolysergic acid methyl ester (II) with 2,2,2-trichloroethyl chloroformate, followed by reduction of the intermediate carbamate (III) with zinc in acetic acid. The 6-ethyl-V and 6-n-propyl-VI derivatives were prepared by alkylation of IV with the appropriate halide. All of the ergoline derivatives were evaluated for stereotyped behavior in rats, with 6-nor-6-ethyl-9,10-dihydrolysergic acid methyl ester (V) being active but much less potent than apomorphine. Compound VI was evaluated for its effect on blood pressure; at a dose of 30 mg/kg ip, it significantly lowered, diastolic pressure in normotensive rats.
Determination of Acylglycerols in Diesel Oils by GC
Wawrzyniak, Rafał; Wasiak, Wiesław
2008-01-01
In many EU countries and outside the EU, besides the addition of pure methyl ester B-100 to diesel oil, mixtures of methyl esters are also added to fuel. To be used as fuel, methyl esters must meet certain requirements, one of which is a certain level of acylglycerols. The paper presents results of determination of acylglycerols in diesel oil dotted with fatty acid methyl esters. The compounds were determined by gas chromatography using a high-temperature capillary column DB-5HT, made by J&W, and 1,2,3-tricaproylglycerol as internal standard. The analytical method proposed permits not only determination of acylglycerols, but also differentiation if the FAME added originated from pure vegetation oil or used cooking oil. PMID:19696907
Breithaupt, D E
2000-01-01
Analyses of red pepper extracts which had been pretreated with lipase type VII (EC 3.1.1.3.) from Candida rugosa showed for the first time pepper carotenoid esters to be substrates of this enzyme. However, the extent of enzymatic hydrolysis depends on the respective carotenoid and was not quantitative compared to chemical saponification. After enzymatic cleavage, 67-89% of total capsanthin, 61-65% of total zeaxanthin, 70-81% of total beta-cryptoxanthin and 70-86% of total violaxanthin were detected in free form. Nevertheless, the method described here offers the possibility to cleave in part several carotenoid esters originating from red pepper quickly and under comparatively mild reaction conditions. Replacement of the generally performed alkaline hydrolysis by enzymatic cleavage allows the resulting product to be used in food industry as "natural" coloring agent e.g. to colour cheese and jellies.
40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).
Code of Federal Regulations, 2012 CFR
2012-07-01
...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...
40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).
Code of Federal Regulations, 2010 CFR
2010-07-01
...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...
40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).
Code of Federal Regulations, 2011 CFR
2011-07-01
...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...
40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).
Code of Federal Regulations, 2013 CFR
2013-07-01
...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...
40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).
Code of Federal Regulations, 2014 CFR
2014-07-01
...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...
Heterologous expression of the methyl carbamate-degrading hydrolase MCD.
Naqvi, Tatheer; Cheesman, Matthew J; Williams, Michelle R; Campbell, Peter M; Ahmed, Safia; Russell, Robyn J; Scott, Colin; Oakeshott, John G
2009-10-26
The methyl carbamate-degrading hydrolase (MCD) of Achromobacter WM111 has considerable potential as a pesticide bioremediation agent. However this potential has been unrealisable until now because of an inability to express MCD in heterologous hosts such as Escherichia coli. Herein, we describe the first successful attempt to express appreciable quantities of MCD in active form in E. coli, and the subsequent characterisation of the heterologously expressed material. We find that the properties of this material closely match the previously reported properties of MCD produced from Achromobacter WM111. This includes the presence of two distinct forms of the enzyme that we show are most likely due to the presence of two functional translational start sites. The purified enzyme catalyses the hydrolysis of a carbamate (carbaryl), a carboxyl ester (alpha-naphthyl acetate) and a phophotriester (dimethyl umbelliferyl phosphate) and it is relatively resistant to thermal and solvent-mediated denaturation. The robust nature and catalytic promiscuity of MCD suggest that it could be exploited for various biotechnological applications.
Preparation and characterization of bio-diesels from various bio-oils.
Lang, X; Dalai, A K; Bakhshi, N N; Reaney, M J; Hertz, P B
2001-10-01
Methyl, ethyl, 2-propyl and butyl esters were prepared from canola and linseed oils through transesterification using KOH and/ or sodium alkoxides as catalysts. In addition, methyl and ethyl esters were prepared from rapeseed and sunflower oils using the same catalysts. Chemical composition of the esters was determined by HPLC for the class of lipids and by GC for fatty acid compositions. The bio-diesel esters were characterized for their physical and fuel properties including density, viscosity, iodine value, acid value, cloud point, pure point, gross heat of combustion and volatility. Methyl and ethyl esters prepared from a particular vegetable oil had similar viscosities, cloud points and pour points, whereas methyl, ethyl, 2-propyl and butyl esters derived from a particular vegetable oil had similar gross heating values. However, their densities, which were 2 7% higher than those of diesel fuels, statistically decreased in the order of methyl approximately 2-propyl > ethyl > butyl esters. Butyl esters showed reduced cloud points (-6 degrees C to -10 degrees C) and pour points (-13 degrees C to -16 degrees C) similar to those of summer diesel fuel having cloud and pour points of -8 degrees C and -15 degrees C, respectively. The viscosities of bio-diesels (3.3-7.6 x 10(-4) Pa s at 40 degrees C) were much less than those of pure oils (22.4-45.1 x 10(-4) Pa s at 40 degrees C) and were twice those of summer and winter diesel fuels (3.50 and 1.72 x 10(-4) Pa s at 40 degrees C), and their gross heat contents of approximately 40 MJ/kg were 11% less than those of diesel fuels (approximately 45 MJ/kg). For different esters from the same vegetable oil, methyl esters were the most volatile, and the volatility decreased as the alkyl group grew bulkier. However, the bio-diesels were considerably less volatile than the conventional diesel fuels.
van Alebeek, Gert-Jan W M; van Scherpenzeel, Katrien; Beldman, Gerrit; Schols, Henk A; Voragen, Alphons G J
2003-05-15
Investigations on the mode of action of Aspergillus niger pectin methylesterase (PME) towards differently C(6)- and C(1)-substituted oligogalacturonides (oligoGal p A) are described. De-esterification of methyl-esterified (un)saturated oligoGal p A proceeds via a specific pattern, depending on the degree of polymerization. Initially, a first methyl ester of the oligomer is hydrolysed, resulting in one free carboxyl group. Subsequently, this first product is preferred as a substrate and is de-esterified for a second time. This product is then accumulated and hereafter de-esterified further to the final product, i.e. oligoGal p A containing one methyl ester located at the non-reducing end residue for both saturated and unsaturated oligoGal p A, as found by post-source decay matrix-assisted laser-desorption/ionization-time-of-flight MS. The saturated hexamer is an exception to this: three methyl esters are removed very rapidly, instead of two methyl esters. When unsaturated oligoGal p A were used, the formation of the end product differed slightly, suggesting that the unsaturated bond at the non-reducing end influences the de-esterification process. In vivo, PME prefers methyl esters, but the enzyme appeared to be tolerant for other C(6)- and C(1)-substituents. Changing the type of ester (ethyl esterification) or addition of a methyl glycoside (C(1)) only reduced the activity or had no effect respectively. The specific product pattern was identical for all methyl- and ethyl-esterified oligoGal p A and methyl-glycosidated oligoGal p A, which strongly indicates that one or perhaps two non-esterified oligoGal p A are preferred in the active-site cleft.
van Alebeek, Gert-Jan W M; van Scherpenzeel, Katrien; Beldman, Gerrit; Schols, Henk A; Voragen, Alphons G J
2003-01-01
Investigations on the mode of action of Aspergillus niger pectin methylesterase (PME) towards differently C(6)- and C(1)-substituted oligogalacturonides (oligoGal p A) are described. De-esterification of methyl-esterified (un)saturated oligoGal p A proceeds via a specific pattern, depending on the degree of polymerization. Initially, a first methyl ester of the oligomer is hydrolysed, resulting in one free carboxyl group. Subsequently, this first product is preferred as a substrate and is de-esterified for a second time. This product is then accumulated and hereafter de-esterified further to the final product, i.e. oligoGal p A containing one methyl ester located at the non-reducing end residue for both saturated and unsaturated oligoGal p A, as found by post-source decay matrix-assisted laser-desorption/ionization-time-of-flight MS. The saturated hexamer is an exception to this: three methyl esters are removed very rapidly, instead of two methyl esters. When unsaturated oligoGal p A were used, the formation of the end product differed slightly, suggesting that the unsaturated bond at the non-reducing end influences the de-esterification process. In vivo, PME prefers methyl esters, but the enzyme appeared to be tolerant for other C(6)- and C(1)-substituents. Changing the type of ester (ethyl esterification) or addition of a methyl glycoside (C(1)) only reduced the activity or had no effect respectively. The specific product pattern was identical for all methyl- and ethyl-esterified oligoGal p A and methyl-glycosidated oligoGal p A, which strongly indicates that one or perhaps two non-esterified oligoGal p A are preferred in the active-site cleft. PMID:12589708
Navy Coalescence Test on Petroleum F-76 Fuel with FAME Additive at 1%
2012-06-20
sponsored studies have shown that in many countries there is an undesirable concentration of Fatty Acid Methyl - Ester ( FAME ) present in the F-76. This...have shown that in many countries there may be an undesirable concentration of Fatty Acid Methyl - Ester ( FAME ) present in the F-76. This study was...Acid Methyl - Ester DEFINITIONS Turnover ..................amount of time it takes to flow the entire volume of fluid in a container, also
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2,2'-(1,2-diazenediyl)bis[2-methylbutanenitrile]- and 2,2'-(1,2-diazenediyl)bis[2-methylpropanenitrile]-initiated. 721.10326...
A 13C NMR study of the structure of four cinnamic acids and their methyl esters
NASA Astrophysics Data System (ADS)
Silva, A. M. S.; Alkorta, I.; Elguero, J.; Silva, V. L. M.
2001-09-01
The 13C NMR spectra, both in DMSO solution and in the solid state of four cinnamic acids (p-methoxy, p-hydroxy, p-methyl, p-chloro) and their corresponding methyl esters have been recorded. The two main results in the solid state are: (i) the only significant difference between acids and esters chemical shifts concerns the Cdbnd O group which, on average, appears at 173 ppm in the acids and 168 ppm in the esters; (ii) the signals of the ortho and meta carbons both in the acids and the esters are splitted. The two 'anomalies' disappear in DMSO solution. These observations can be rationalized using simple GIAO/B3LYP/6-31G∗ calculations.
Estimation of hydrolysis rate constants for carbamates ...
Cheminformatics based tools, such as the Chemical Transformation Simulator under development in EPA’s Office of Research and Development, are being increasingly used to evaluate chemicals for their potential to degrade in the environment or be transformed through metabolism. Hydrolysis represents a major environmental degradation pathway; unfortunately, only a small fraction of hydrolysis rates for about 85,000 chemicals on the Toxic Substances Control Act (TSCA) inventory are in public domain, making it critical to develop in silico approaches to estimate hydrolysis rate constants. In this presentation, we compare three complementary approaches to estimate hydrolysis rates for carbamates, an important chemical class widely used in agriculture as pesticides, herbicides and fungicides. Fragment-based Quantitative Structure Activity Relationships (QSARs) using Hammett-Taft sigma constants are widely published and implemented for relatively simple functional groups such as carboxylic acid esters, phthalate esters, and organophosphate esters, and we extend these to carbamates. We also develop a pKa based model and a quantitative structure property relationship (QSPR) model, and evaluate them against measured rate constants using R square and root mean square (RMS) error. Our work shows that for our relatively small sample size of carbamates, a Hammett-Taft based fragment model performs best, followed by a pKa and a QSPR model. This presentation compares three comp
Sustaita-Rodríguez, Alejandro; Ramos-Sánchez, Víctor H; Camacho-Dávila, Alejandro A; Zaragoza-Galán, Gerardo; Espinoza-Hicks, José C; Chávez-Flores, David
2018-04-11
Nowadays the industrial chemistry reactions rely on green technologies. Enzymes as lipases are increasing its use in diverse chemical processes. Epoxidized fatty acid methyl esters obtained from transesterification of vegetable oils have recently found applications as polymer plasticizer, agrochemical, cosmetics, pharmaceuticals and food additives. In this research article, grapeseed, avocado and olive oils naturally containing high percents of mono and poly unsaturations were used as starting materials for the production of unsaturated fatty acid methyl esters. The effect of lauric acid as an active oxygen carrier was studied on epoxidation reactions where unsaturated fatty acid methyl esters were converted to epoxy fatty acid methyl esters using immobilized Candida antarctica Lipase type B as catalyst and hydrogen peroxide as oxygen donor at mild temperature and pressure conditions. After this study it was confirmed by 1 H NMR, 13 C NMR and GC-MS that the addition of lauric acid to the enzymatic reaction is unnecessary to transform the alkenes in to epoxides. It was found that quantitative conversions were possible in despite of a carboxylic acid absence.
NASA Astrophysics Data System (ADS)
Rama Krishna Reddy, E.; Dhana Raju, V.
2018-03-01
This paper evaluates the possibilities of using corn seed oil methyl ester as a fuel for compression ignition engines. The biodiesels are contained high oxygen content, and high Cetane number, due to this properties efficiency of biodiesel is higher than diesel fuel. The experiments were conducted with different biodiesel blends of (B10, B15, B20 and B25) corn seed oil on single cylinder four stroke natural aspirated diesel engines. Performance parameters and exhaust emissions are investigated in this experimental with the blends of the corn seed oil methyl ester and diesel fuel. The test results showed that the bio-diesel blends gives improved results for brake thermal efficiency and specific fuel consumption when compared with the diesel fuel. The emissions of corn seed methyl esters follow the same trend of diesel but the smoke opacity was reduces for all blends. From the investigation, corn seed methyl ester is also having the properties similar to diesel fuel; it is biodegradable and renewable fuel, so it will be used as an alternative for diesel fuel.
A Lactobacillus plantarum Esterase Active on a Broad Range of Phenolic Esters
Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca
2015-01-01
Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. PMID:25746986
Corrosion-Related Consequences of Biodiesel in Contact with Natural Seawater
2010-03-01
petroleum diesel, biodiesel contains no sulfur. In the U.S. the term “biodiesel” is standardized as fatty acid methyl ester ( FAME ). Biodiesel content is...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 to methyl (or ethyl) esters with a process known as transesterification.4 The transesterification...biodegradation of the vegetable methyl esters in agitated San Francisco Bay water was less than 4 days at 17 °C.4,22 The highest corrosion rates
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2,2â²-(1,2-diazenediyl)bis[2-methylbutanenitrile]- and 2,2â²-(1,2-diazenediyl)bis[2-methylpropanenitrile]-initiated. 721.10326...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2,2â²-(1,2-diazenediyl)bis[2-methylbutanenitrile]- and 2,2â²-(1,2-diazenediyl)bis[2-methylpropanenitrile]-initiated. 721.10326...
40 CFR 156.206 - General statements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (i.e., an organophosphorus ester that inhibits cholinesterase) or an N-methyl carbamate (i.e., an N-methyl carbamic acid ester that inhibits cholinesterase), the label shall so state. The statement shall...
40 CFR 156.206 - General statements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (i.e., an organophosphorus ester that inhibits cholinesterase) or an N-methyl carbamate (i.e., an N-methyl carbamic acid ester that inhibits cholinesterase), the label shall so state. The statement shall...
40 CFR 156.206 - General statements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (i.e., an organophosphorus ester that inhibits cholinesterase) or an N-methyl carbamate (i.e., an N-methyl carbamic acid ester that inhibits cholinesterase), the label shall so state. The statement shall...
40 CFR 156.206 - General statements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (i.e., an organophosphorus ester that inhibits cholinesterase) or an N-methyl carbamate (i.e., an N-methyl carbamic acid ester that inhibits cholinesterase), the label shall so state. The statement shall...
Wang, Meng; Nie, Kaili; Cao, Hao; Deng, Li; Wang, Fang; Tan, Tianwei
2014-12-01
The poor low-temperature properties of biodiesel, which provokes easy crystallization at low temperature, can cause fuel line plugging and limits its blending amount with petro-diesel. This work aimed to study the production of biodiesel with a new process of improving the low temperature performance of biodiesel. Waste cooking oil was first hydrolyzed into fatty acids (FAs) by 60g immobilized lipase and 240g RO water in 15h. Then, urea complexation was used to divide the FAs into saturated and unsaturated components. The conditions for complexation were: FA-to-urea ratio 1:2 (w/w), methanol to FA ratio 5:1 (v/v), duration 2h. The saturated and unsaturated FAs were then converted to iso-propyl and methyl esters by lipase, respectively. Finally, the esters were mixed together. The CFPP of this mixture was decreased from 5°C to -3°C. Hydrolysis, urea complexation and enzymic catalyzed esterification processes are discussed in this paper. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nierop, Klaas G J; Verstraten, Jacobus M
2004-01-01
Each plant species has a unique chemical composition, and also within a given plant the various tissues differ from one another in their chemistry. These different compositions can be traced back after decay of the plant parts when they are transformed into soil organic matter (SOM). As a result, the composition of SOM reflects not only the plant origin, but also the various tissues, and the composition consequently provides an estimate of the contribution of above-ground vs. below-ground litter. From the latter distribution the extent of bioturbation (mixing of above-ground litter with the mineral soil) can be assessed. Application of thermally assisted hydrolysis and methylation (THM) using tetramethylammonium hydroxide (TMAH) and subsequent analysis by gas chromatography/mass spectrometry (GC/MS) releases all typical cutin- and suberin-derived aliphatic monomers (mono-, di- and trihydroxyalkanoic acids, alpha,omega-alkanedioic acids) as their methyl esters and/or ethers in a rapid manner. Using the distribution of omega-hydroxyalkanoic acids that are present in pine needle cutin (C(12) and C(14)) and not in root suberin, and those that are present in roots but not in needles (C(20) and C(22)), the extent of bioturbation (mixing of above-ground plant litter with the mineral soil) can be assessed. Similarly, the (9,16-dihydroxyhexadecanoic acid+9,10,18-trihydroxyoctadecanoic acid)/(C(20) + C(22) alpha,omega-alkanedioic acids) ratio reflects the degree of bioturbation. Three mineral soil profiles under Corsican pine with an A horizon that exhibited extensive bioturbation phenomena, and underlying C horizons with hardly any or no bioturbation, were investigated in order to examine the applicability of such an approach. It appeared that the A horizons contained all four mentioned omega-hydroxyalkanoic acids, while the C horizons contained virtually only the C(20) and C(22) members. The results not only suggest that bioturbation occurs in the A horizons, but also that possible illuviation or other transport mechanisms of omega-hydroxyalkanoic acids seem hardly ever or never to occur, which is a prerequisite for applying this biomarker approach in assessing degrees of bioturbation. Copyright 2004 John Wiley & Sons, Ltd.
A Simple, Safe Method for Preparation of Biodiesel
ERIC Educational Resources Information Center
Behnia, Mahin S.; Emerson, David W.; Steinberg, Spencer M.; Alwis, Rasika M.; Duenas, Josue A.; Serafino, Jessica O.
2011-01-01
An experiment suitable for organic chemistry students is described. Biodiesel, a "green" fuel, consists of methyl or ethyl esters of long-chain fatty acids called FAMES (fatty acid methyl esters) or FAEES (fatty acid ethyl esters). A quick way to make FAMES is a base-catalyzed transesterification of oils or fats derived from plants or from animal…
Density of Jatropha curcas Seed Oil and its Methyl Esters: Measurement and Estimations
NASA Astrophysics Data System (ADS)
Veny, Harumi; Baroutian, Saeid; Aroua, Mohamed Kheireddine; Hasan, Masitah; Raman, Abdul Aziz; Sulaiman, Nik Meriam Nik
2009-04-01
Density data as a function of temperature have been measured for Jatropha curcas seed oil, as well as biodiesel jatropha methyl esters at temperatures from above their melting points to 90 ° C. The data obtained were used to validate the method proposed by Spencer and Danner using a modified Rackett equation. The experimental and estimated density values using the modified Rackett equation gave almost identical values with average absolute percent deviations less than 0.03% for the jatropha oil and 0.04% for the jatropha methyl esters. The Janarthanan empirical equation was also employed to predict jatropha biodiesel densities. This equation performed equally well with average absolute percent deviations within 0.05%. Two simple linear equations for densities of jatropha oil and its methyl esters are also proposed in this study.
Thurnhofer, Saskia; Vetter, Walter
2006-05-03
Ethyl esters (FAEE) and trideuterium-labeled methyl esters (d3-FAME) of fatty acids were prepared and investigated regarding their suitability as internal standards (IS) for the determination of fatty acids as methyl esters (FAME). On CP-Sil 88, ethyl esters of odd-numbered fatty acids eluted approximately 0.5 min after the respective FAME, and only coelutions with minor FAME were observed. Depending on the problem, one or even many FAEE can be added as IS for the quantification of FAME by both GC-FID and GC-MS. By contrast, d3-FAME coeluted with FAME on the polar GC column, and the use of the former as IS requires application of GC-MS. In the SIM mode, m/z 77 and 90 are suggested for d3-methyl esters of saturated fatty acids, whereas m/z 88 and 101 are recommended for ethyl esters of saturated fatty acids. These m/z values give either no or very low response for FAME and can thus be used for the analysis of FAME in food by GC-MS in the SIM mode. Fatty acids in sunflower oil and mozzarella cheese were quantified using five saturated FAEE as IS. Gravimetric studies showed that the transesterification procedure could be carried out without of loss of fatty acids. GC-EI/MS full scan analysis was suitable for the quantitative determination of all unsaturated fatty acids in both food samples, whereas GC-EI/MS in the SIM mode was particularly valuable for quantifying minor fatty acids. The novel GC-EI/MS/SIM method using fatty acid ethyl esters as internal standards can be used to quantify individual fatty acids only, that is, without determination of all fatty acids (the common 100% method), although this is present. This was demonstrated by the exclusive quantification of selected fatty acids including methyl-branched fatty acids, erucic acid (18:1n-9trans), and polyunsaturated fatty acids in cod liver oil and goat's milk fat.
A Lactobacillus plantarum esterase active on a broad range of phenolic esters.
Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca; Muñoz, Rosario
2015-05-01
Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Istiningrum, Reni Banowati; Aprianto, Toni; Pamungkas, Febria Lutfi Udin
2017-12-01
This study aims to determine the effect of temperature on conversion of biodiesel from waste cooking oil enzymatically using lipase extracted from rice bran. The feedstock was simulated waste cooking oil and lipase enzyme was extracted with buffer pH variation. The enzyme activity was titrimetrically determined and the optimum pH buffer was used to study the effect of temperature on the transesterification reaction. Temperature effects were assessed in the range of 45-60 °C and the content of methyl esters in biodiesel was determined by GC-MS. The reaction temperature significantly influences the transesterification reaction with optimum biodiesel conversion occurred at 55 °C with methyl ester content of 81.19%. The methyl ester composition in the resulting biodiesel is methyl palmitate, methyl oleate and methyl stearate.
Graham, Leigh A.; Suryadi, Jimmy; West, Tiffany K.; Kucera, Gregory L.; Bierbach, Ulrich
2012-01-01
The synthesis of platinum–acridine hybrid agents containing carboxylic acid ester groups is described. The most active derivatives and the unmodified parent compounds showed up to 6-fold higher activity in ovarian cancer (OVCAR-3) and breast cancer (MCF-7, MDA-MB-23) cell lines than cisplatin. Inhibition of cell proliferation at nanomolar concentrations was observed in pancreatic (PANC-1) and non-small cell lung cancer cells (NSCLC, NCI-H460) of 80- and 150-fold, respectively. Introduction of the ester groups did not affect the cytotoxic properties of the hybrids, which form the same monofunctional–intercalative DNA adducts as the parent compounds, as demonstrated in a plasmid unwinding assay. In-line high-performance liquid chromatography and electrospray mass spectrometry (LC-ESMS) shows that the ester moieties undergo platinum-mediated hydrolysis in a chloride concentration-dependent manner to form carboxylate chelates. Potential applications of the chloride-sensitive ester hydrolysis as a self-immolative release mechanism for tumor-selective delivery of platinum–acridines are discussed. PMID:22871158
Moreau, Robert A; Kohout, Karen; Singh, Vijay
2002-12-01
Previous attempts at separating nonpolar lipid esters (including wax esters, sterol esters, and methyl esters) have achieved only limited success. Among the several normal-phase methods tested, a single recent report of a method employing an alumina column at 30 degrees C with a binary gradient system was the most promising. In the current study, modification of the alumina method by increasing the column temperature to 75 degrees C improved the separation of standards of wax esters and sterol esters. Elevated column temperature also enhanced the separation of FAME with differing degrees of unsaturation. Evidence was also presented to indicate that the method similarly separated phytosterol esters, based on their levels of unsaturation. With the increased interest in phytosterol- and phytostanol-ester enriched functional foods, this method should provide a technique to characterize and compare these products.
Technology advances & new applications for biodiesel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmberg, B.
1994-12-31
Biodiesel, as the term is used in the United States, is a blend of methyl and/or ethyl esters with petrodiesel. The esters are biodegradable, non-toxic and essentially free of sulfur or aromatic compounds. The blend level is a function of economics, the desired emissions profile, material compatibility, and combustion characteristics. The focus at the moment is on a 20 vol% blend of a methyl ester (methyl soyate) in petrodiesel (known as B20). The name {open_quotes}biodiesel{close_quotes} was introduced by the National SoyDiesel Development Board (now the National Biodiesel Board), which has pioneered the commercialization of biodiesel in the United States. Themore » American Biofuels Association (ABA) and Information Resources Inc. (IRI) have, in the past, been part of their support team. Methyl or ethyl esters are made from vegetable and tree oils, animal fats, and used oils and fats. These oils are blended with an alcohol (usually methanol, although ethanol can be used as well) and a catalyst such as sodium hydroxide. The resulting chemical reaction (which occurs at moderate temperatures and pressures) produces a methyl or ethyl ester and glycerine, a valuable material used extensively in the manufacture of soaps and other consumer products.« less
Ačanski, Marijana M; Vujić, Djura N; Psodorov, Djordje B
2015-04-01
Gas chromatography with mass spectrometry was used to perform a qualitative analysis of the liposoluble flour extract of different types of cereals (bread wheat and spelt) and pseudocereals (amaranth and buckwheat). In addition to major fatty acids, the liposoluble extract also contained minor fatty acids with more than 20 carbon atoms, higher hydrocarbons and phytosterols. TMSH (trimethylsulfonium hydroxide, 0.2 mol/l in methanol) was used as a trans-esterification reagent. In a trans-esterification reaction, triglycerides esterified from acilglycerols to methyl-esters. SIM (selected ion monitoring) was applied to isolate fatty acid methyl esters on TIC (total ion current) chromatograms, using the 74 Da fragment ion, which originated from McLafferty rearrangement, and is typical for methyl-esters. GC-MS system was used for the trans-esterification of triglycerides to fatty acid methyl esters in the gas chromatographic injector. This eliminated laboratory preparation for fatty acid methyl esters. Cluster analysis was applied to compare the liposoluble flour extract from different types of cereals and pseudocereals. Statistical data showed the liposoluble extract analysis enabled determination of flour origin and, because the results were unambiguous, this approach could be used for quality control. Copyright © 2014 Elsevier Ltd. All rights reserved.
Takakuwa, Naoya; Saito, Katsuichi
2010-01-01
Eighty-one yeast isolates from raw milk were surveyed for the production of fatty acid methyl esters (FAME). Only one species, identified as Cryptococcus curvatus, produced FAME at a detectable level. Cr. curvatus TYC-19 produced more FAME from beet molasses and cheese whey medium than other strains of the same species. In both media, the major FAME produced were linoleic and oleic acid methyl esters. Sequence analysis of the internal transcribed spacer region of ribosomal DNA indicated that TYC-19 diverged from the same species.
Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi
2004-01-19
Based on the structure of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which exhibits selective cytotoxicity against a tumorigenic cell line, (2,4-dimethoxyphenyl)-(4-hydroxy-3-methyl-6-phenylbenzofuran-2-yl)-methanone (18m) was designed and synthesized as a biologically stable derivative containing no ester group. Although the potency of 18m was almost the same as our initial hit compound 1, 18m is expected to last longer in the human body as an anticancer agent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.I. Zherebtsov; A.I. Moiseev
Changes in the group and individual compositions of the wax fractions of bitumen in the course of brown coal methylation were studied. With the use of IR and NMR spectroscopy and chromatography-mass spectrometry, it was found that the esters of methylated coal waxes consisted of the native esters of fatty acids and the methyl esters of these acids formed as a result of an alkylation treatment. Esterification and transesterification were predominant among the reactions of aliphatic fraction components. A positive effect of methanol alkylation on an increase in the yield of the aliphatic fractions was found.
USDA-ARS?s Scientific Manuscript database
The jojoba plant (Simmondsia chinensis L.) produces seeds that contain around 50 to 60 weight percent of inedible long-chain wax esters that are suitable as a potential feedstock for biodiesel production. A Jojoba oil methyl ester (JME) was prepared in effort to evaluate an important fuel propertie...
21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.
Code of Federal Regulations, 2014 CFR
2014-04-01
... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the following prescribed conditions: (a) The...
Ohiri, Reginald Chibueze; Bassey, Essien Eka
2016-01-01
Gas chromatography-mass spectrometry analysis of constituent oil from dried Ganoderma lucidum was carried out. Fresh G. lucidum obtained from its natural environment was thoroughly washed with distilled water and air-dried for 2 weeks and the component oils were extracted and analyzed. Four predominant components identified were pentadecanoic acid, 14-methyl-ester (retention time [RT] = 19.752 minutes; percentage total = 25.489), 9,12-octadecadienoic acid (Z,Z)- (RT = 21.629 minutes and 21.663 minutes; percentage total = 25.054), n-hexadecanoic acid (RT = 20.153 minutes; percentage total = 24.275), and 9-octadecenoic acid (Z)-, methyl ester (RT = 21.297 minutes; percentage total = 13.027). The two minor oils identified were 9,12-octadecadienoic acid, methyl ester, (E,E)- and octadecanoic acid, methyl ester (RT = 21.246 minutes and 21.503 minutes; percentage total = 7.057 and 5.097, respectively).
Lu, Y; Wang, J; Deng, Z; Wu, H; Deng, Q; Tan, H; Cao, L
2013-09-01
An actinomycete producing oil-like mixtures was isolated and characterized. The strain was isolated from sheep faeces and identified as Streptomyces sp. S161 based on 16S rRNA gene sequence analysis. The strain showed cellulase and xylanase activities. The (1) H nuclear magnetic resonance (NMR) spectra of the mixtures showed that the mixtures were composed of fatty acid methyl esters (52·5), triglycerides (13·7) and monoglycerides (9·1) (mol.%). Based on the gas chromatography-mass spectrometry (GC-MS) analysis, the fatty acid methyl esters were mainly composed of C14-C16 long-chain fatty acids. The results indicated that Streptomyces sp. S161 could produce fatty acid methyl esters (FAME) directly from starch. To our knowledge, this is the first isolated strain that can produce biodiesel (FAME) directly from starch. © 2013 The Society for Applied Microbiology.
Processing Of Neem And Jatropha Methyl Esters -Alternative Fuels From Vegetable Oil
NASA Astrophysics Data System (ADS)
Ramasubramanian, S.; Manavalan, S.; Gnanavel, C.; Balakrishnan, G.
2017-03-01
Biodiesel is an alternative fuel for diesel engine. The methyl esters of vegetable oils, known as biodiesel are becoming increasingly popular because of their low environmental impact and potential as a green alternative fuel for diesel engine. This paper deals with the manufacturing process of Biodiesel from jatropha and neem oil. Biodiesel was prepared from neem oil and jatropha oil, the transestrified having kinematic viscosity of 3 & 2.6 centistokes, methanol ratio is 6:1 & 5.1respectively. The secondary solution is preheated at 65 C & 60 C and reaction temperature is maintained at 60C & 55 C and reaction time is 60 minutes approximately with NaOH catalyst and low viscosity oil is allowed to settle 24 hours. The average yield of neem and jatropha methyl esters was about 85%. These methyl esters shows excellent alternative under optimum condition for fossil fuels.
Dwiarti, Lies; Ali, Ehsan; Park, Enoch Y
2010-01-01
This study sought to identify inhibitory factors of lipase catalyzed-fatty acid methyl esters (FAME) production from waste activated bleaching earth (wABE). During the vegetable oil refinery process, activated bleaching earth (ABE) is used for removing the impure compounds, but adsorbs vegetable oil up to 35-40% as on a weight basis, and then the wABE is discarded as waste material. The impurities were extracted from the wABE with methanol and evaluated by infra-red (IR) spectroscopy, which revealed that some were chlorophyll-plant pigments. The chlorophylls inhibited the lipase during FAME conversion from wABE. The inhibition by a mixture of chlorophyll a and b was found to be competitive. The inhibition of the enzymatic hydrolysis of waste vegetable oil contained in wABE by chlorophyll a alone was competitive, while the inhibition by chlorophyll b alone was non-competitive. Furthermore, the addition of a small amount of alkali nullified this inhibitory effect and accelerated the FAME production rate. When 0.9% KOH (w/w wABE) was added to the transesterification reaction with only 0.05% lipase (w/w wABE), the maximum FAME production rate improved 120-fold, as compared to that without the addition of KOH. The alkali-combined lipase significantly enhanced the FAME production rate from wABE, in spite of the presence of the plant pigments, and even when a lower amount of lipase was used as a catalyst.
Novaes, Fábio Junior Moreira; Kulsing, Chadin; Bizzo, Humberto Ribeiro; de Aquino Neto, Francisco Radler; Rezende, Claudia Moraes; Marriott, Philip John
2018-02-09
Comprehensive two-dimensional gas chromatography (GC×GC) approaches with cryogenic modulation were developed for the qualitative analysis of selected low volatility compounds in raw coffee bean extracts, without derivatisation. The approaches employed short first ( 1 D) and second ( 2 D) dimension columns, specifically a 1 D 65% phenyl methyl siloxane column (11m) and a 2 D 5% phenyl methyl siloxane column (1m), which allowed elution of high molar mass compounds (e.g.>600Da). Solutes included hydrocarbons, fatty acids, diterpenes, tocopherols, sterols, diterpene esters, and di- and triacylglycerides. An oven temperature program up to 370°C was employed. The effects of experimental conditions were investigated, revealing that the GC×GC results strongly depended on the cryogenic trap T, and oven T program. An appropriate condition was selected and further applied for group type analysis of low volatility compounds in green Arabica coffee beans. Retention indices were compiled for 1D GC analysis and were similar for the composite column data in GC×GC. The elution of some compounds was confirmed by use of authentic standards. The approach allowed direct analysis of coffee extract in ethyl acetate solution, with improved analyte peak capacity (approximately 200 compounds were detected) without prior fractionation or pre-treatment of the sample. This avoided potential hydrolysis of high molar mass conjugate esters as well as degradation of thermally labile compounds such as the derivatives of the diterpenes cafestol and kahweol. Copyright © 2017 Elsevier B.V. All rights reserved.
Hydrogen bond docking site competition in methyl esters
NASA Astrophysics Data System (ADS)
Zhao, Hailiang; Tang, Shanshan; Du, Lin
2017-06-01
The Osbnd H ⋯ O hydrogen bonds in the 2,2,2-trifluoroethanol (TFE)-methyl ester complexes in the gas phase have been investigated by FTIR spectroscopy and DFT calculations. Methyl formate (MF), methyl acetate (MA), and methyl trifluoroacetate (MTFA) were chosen as the hydrogen bond acceptors. A dominant inter-molecular hydrogen bond was formed between the OH group of TFE and different docking sites in the methyl esters (carbonyl oxygen or ester oxygen). The competition of the two docking sites decides the structure and spectral properties of the complexes. On the basis of the observed red shifts of the OH-stretching transition with respect to the TFE monomer, the order of the hydrogen bond strength can be sorted as TFE-MA (119 cm- 1) > TFE-MF (93 cm- 1) > TFE-MTFA (44 cm- 1). Combining the experimental infrared spectra with the DFT calculations, the Gibbs free energies of formation were determined to be 1.5, 4.5 and 8.6 kJ mol- 1 for TFE-MA, TFE-MF and TFE-MTFA, respectively. The hydrogen bonding in the MTFA complex is much weaker than those of the TFE-MA and TFE-MF complexes due to the effect of the CF3 substitution on MTFA, while the replacement of an H atom with a CH3 group in methyl ester only slightly increases the hydrogen bond strength. Topological analysis and localized molecular orbital energy decomposition analysis was also applied to compare the interactions in the complexes.
Water-soluble cavitands promote hydrolyses of long-chain diesters
Shi, Qixun; Mower, Matthew P.; Blackmond, Donna G.; Rebek, Julius
2016-01-01
Water-soluble, deep cavitands serve as chaperones of long-chain diesters for their selective hydrolysis in aqueous solution. The cavitands bind the diesters in rapidly exchanging, folded J-shape conformations that bury the hydrocarbon chain and expose each ester group in turn to the aqueous medium. The acid hydrolyses in the presence of the cavitand result in enhanced yields of monoacid monoester products. Product distributions indicate a two- to fourfold relative decrease in the hydrolysis rate constant of the second ester caused by the confined space in the cavitand. The rate constant for the first acid hydrolysis step is enhanced approximately 10-fold in the presence of the cavitand, compared with control reactions of the molecules in bulk solution. Hydrolysis under basic conditions (saponification) with the cavitand gave >90% yields of the corresponding monoesters. Under basic conditions the cavitand complex of the monoanion precipitates from solution and prevents further reaction. PMID:27482089
Zeolite/magnetite composites as catalysts on the Synthesis of Methyl Esters (MES) from cooking oil
NASA Astrophysics Data System (ADS)
Sriatun; Darmawan, Adi; Sriyanti; Cahyani, Wuri; Widyandari, Hendri
2018-05-01
The using of zeolite/magnetite composite as a catalyst for the synthesis of methyl esters (MES) of cooking oil has been performed. In this study the natural magnetite was extracted from the iron sand of Semarang marina beach and milled by high energy Milling (HEM) with ball: magnetite ratio: 1:1. The composites prepared from natural zeolite and natural magnetite with zeolite: magnetite ratio 1:1; 2:1; 3:1 and 4:1. Preparation of methyl ester was catalyzed by composite of zeolite/magnetite through transeserification reaction, it was studied on variation of catalyst concentration (w/v) 1%, 3%, 5% and 10% to feed volume. The reaction product are mixture of methyl Oleic (MES), methyl Palmitic (MES) and methyl Stearic (MES). Character product of this research include density, viscosity, acid number and iodine number has fulfilled to SNI standard 7182: 2015.
NASA Astrophysics Data System (ADS)
Shoukry, Mohamed M.; Hassan, Safaa S.
2014-01-01
The formation equilibria for the binary complexes of Cu(II) with 1-aminocyclopropane carboxylic acid (ACC) and 3,3-bis(1-methylimidazol-2-yl)propionic acid (BIMP) were investigated. ACC and BIMP form the complexes 1 1 0, 1 2 0 and 1 1 -1. The ternary complexes of Cu(II) with BIMP and biorelevant ligands as some selected amino acids, peptides and DNA constituents are formed in a stepwise mechanism. The stability constants of the complexes formed were determined and their distribution diagrams were evaluated. The kinetics of hydrolysis of glycine methyl ester in presence of [Cu(BIMP)]+ was investigated by pH-stat technique and the mechanism was discussed.
Glucuronoyl esterase--novel carbohydrate esterase produced by Schizophyllum commune.
Spániková, Silvia; Biely, Peter
2006-08-21
The cellulolytic system of the wood-rotting fungus Schizophyllum commune contains an esterase that hydrolyzes methyl ester of 4-O-methyl-d-glucuronic acid. The enzyme, called glucuronoyl esterase, was purified to electrophoretic homogeneity from a cellulose-spent culture fluid. Its substrate specificity was examined on a number of substrates of other carbohydrate esterases such as acetylxylan esterase, feruloyl esterase and pectin methylesterase. The glucuronoyl esterase attacks exclusively the esters of MeGlcA. The methyl ester of free or glycosidically linked MeGlcA was not hydrolysed by other carbohydrate esterases. The results suggest that we have discovered a new type of carbohydrate esterase that might be involved in disruption of ester linkages connecting hemicellulose and lignin in plant cell walls.
USDA-ARS?s Scientific Manuscript database
The increased need for biodiesel feedstocks has caused various vegetable oils to be examined for this purpose. In the present work, the methyl esters of kapok (Ceiba pentandra) oil were prepared. The essential fuel properties were comprehensively determined and evaluated in comparison to specificati...
USDA-ARS?s Scientific Manuscript database
Additional or alternative feedstocks are one of the major areas of interest regarding biodiesel. In this paper, for the first time, the fuel properties of kenaf (Hibiscus cannabinus L.) seed oil methyl esters are comprehensively reported. This biodiesel is also relatively unique by containing small ...
NASA Astrophysics Data System (ADS)
King, Linda L.; Repeta, Daniel J.
1994-10-01
The distributions of pyropheophorbide- a steryl esters in one-year deployments of sediment traps at two locations in the Black Sea are described. In nearly all our trap samples, phorbin steryl esters (PSEs) contribute a significant portion of the total phorbin flux. The relative abundances of sterols esterified to pyropheophorbide- a varied throughout the year, and we suggest these changes result from the observed seasonal variation of phytoplankton species in the overlying water column. The distribution of free sterols in a one-year composite sediment trap sample closely approximates the distribution of sterols derived from the hydrolysis of sedimentary PSEs collected at an adjacent site. From these results, we suggest that the distribution of sedimentary PSE sterols provides a record of sterol deposition to the sediment-water interface. Esterification of sterols to pyropheophorbide- a apparently prevents the preferential removal of 4-desmethyl sterols relative to 4-methyl sterols, and the reduction of stenols to stanols during degradation. Analysis of PSEs in a gravity core covering the last 8-10 Kyr shows that the abundance and distribution of PSEs change with downcore variations in sedimentology. Detailed analysis of PSEs in sediments may, therefore, provide a means to evaluate paleooceanographic changes in phytoplankton community structure and sterol early diagenesis. The synthesis, NMR, CI-MS, and visible spectroscopic properties of four abundant PSEs found in the Black Sea are also described.
Hanzawa, Yohko; Hashimoto, Kahoko; Kasashima, Yoshio; Takahashi, Yoshiko; Mino, Takashi; Sakamoto, Masami; Fujita, Tsutomu
2012-01-01
3-hydroxy acids, 3-hydroxy-3,7-dimethyloct-6-enoic acid (1) and 3-hydroxy-2,2,3,7-tetramethyloct-6-enoic acid (2), were prepared from 6-methyl-5-hepten-2-one, and they were subsequently used to prepare (2,6,6-trimethyltetrahydropyran-2-yl)acetic acid (3) and 2-methyl-2-(2,6,6-trimethyltetrahydropyran-2-yl)propanoic acid (4), respectively, via cyclization with an acidic catalyst such as boron trifluoride diethyl etherate or iodine. The reaction of carboxylic acids 3 and 4 with alcohols, including methanol, ethanol, and 1-propanol, produced the corresponding methyl, ethyl, and propyl esters, which all contained a tetrahydropyran ring. Reduction of carboxylic acids 3 and 4 afforded the corresponding alcohols. Subsequent reactions of these alcohols with several acyl chlorides produced novel esters. The alcohols also reacted with methyl iodide and sodium hydride to provide novel ethers. A one-pot cyclization-esterification of 1 to produce esters containing a tetrahydropyran ring, using iodine as a catalyst, was also investigated.
Akinyemi, Ayodele Jacob; Thomé, Gustavo Roberto; Morsch, Vera Maria; Bottari, Nathieli B; Baldissarelli, Jucimara; de Oliveira, Lizielle Souza; Goularte, Jeferson Ferraz; Belló-Klein, Adriane; Oboh, Ganiyu; Schetinger, Maria Rosa Chitolina
2016-07-01
Hypertension is associated with platelet alterations that could contribute to the development of cardiovascular complications. Several studies have reported antiplatelet aggregation properties of ginger (Zingiber officinale) and turmeric (Curcuma longa) with limited scientific basis. Hence, this study assessed the effect of dietary supplementation of these rhizomes on platelet ectonucleotidase and adenosine deaminase (ADA) activities in Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) induced hypertensive rats. Animals were divided into seven groups (n = 10): normotensive control rats; induced (l-NAME hypertensive) rats; hypertensive rats treated with atenolol (10 mg/kg/day); normotensive and hypertensive rats treated with 4% supplementation of turmeric or ginger, respectively. After 14 days of pre-treatment, the animals were induced with hypertension by oral administration of l-NAME (40 mg/kg/day). The results revealed a significant (p < 0.05) increase in platelet ADA activity and ATP hydrolysis with a concomitant decrease in ADP and AMP hydrolysis of l-NAME hypertensive rats when compared with the control. However, dietary supplementation with turmeric or ginger efficiently prevented these alterations by modulating the hydrolysis of ATP, ADP and AMP with a concomitant decrease in ADA activity. Thus, these activities could suggest some possible mechanism of the rhizomes against hypertension-derived complications associated to platelet hyperactivity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Hapten optimization for cocaine vaccine with improved cocaine recognition.
Ramakrishnan, Muthu; Kinsey, Berma M; Singh, Rana A; Kosten, Thomas R; Orson, Frank M
2014-09-01
In the absence of any effective pharmacotherapy for cocaine addiction, immunotherapy is being actively pursued as a therapeutic intervention. While several different cocaine haptens have been explored to develop anticocaine antibodies, none of the hapten was successfully designed, which had a protonated tropane nitrogen as is found in native cocaine under physiological conditions, including the succinyl norcocaine (SNC) hapten that has been tested in phase II clinical trials. Herein, we discuss three different cocaine haptens: hexyl norcocaine (HNC), bromoacetamido butyl norcocaine (BNC), and succinyl butyl norcocaine (SBNC), each with a tertiary nitrogen structure mimicking that of native cocaine which could optimize the specificity of anticocaine antibodies for better cocaine recognition. Mice immunized with these haptens conjugated to immunogenic proteins produced high titre anticocaine antibodies. However, during chemical conjugation of HNC and BNC haptens to carrier proteins, the 2β methyl ester group is hydrolyzed, and immunizing mice with these conjugate vaccines in mice produced antibodies that bound both cocaine and the inactive benzoylecgonine metabolite. While in the case of the SBNC conjugate, vaccine hydrolysis of the methyl ester did not appear to occur, leading to antibodies with high specificity to cocaine over BE. Although we observed similar specificity with a SNC hapten, the striking difference is that SBNC carries a positive charge on the tropane nitrogen atom, and therefore, it is expected to have better binding of cocaine. The 50% cocaine inhibitory concentration (IC50 ) value for SBNC antibodies (2.8 μm) was significantly better than the SNC antibodies (9.4 μm) when respective hapten-BSA was used as a substrate. In addition, antibodies from both sera had no inhibitory effect from BE. In contrast to BNC and HNC, the SBNC conjugate was also found to be highly stable without any noticeable hydrolysis for several months at 4 °C and 2-3 days in pH 10 buffer at 37 °C. © Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Synthesis of the Fatty Esters of Solketal and Glycerol-Formal: Biobased Specialty Chemicals.
Perosa, Alvise; Moraschini, Andrea; Selva, Maurizio; Noè, Marco
2016-01-30
The caprylic, lauric, palmitic and stearic esters of solketal and glycerol formal were synthesized with high selectivity and in good yields by a solvent-free acid catalyzed procedure. No acetal hydrolysis was observed, notwithstanding the acidic reaction conditions.
New bis(alkythio) fatty acid methyl esters
USDA-ARS?s Scientific Manuscript database
The addition reaction of dimethyl disulfide (DMDS) to mono-unsaturated fatty acid methyl esters is well-known for analytical purposes to determine the position of double bonds by mass spectrometry. In this work, the classical iodine-catalyzed reaction is expanded to other dialkyl disulfides (RSSR), ...
Bruns, Hilke; Herrmann, Jennifer; Müller, Rolf; Wang, Hui; Wagner Döbler, Irene; Schulz, Stefan
2018-01-26
The marine bacterium Roseovarius tolerans EL-164 (Rhodobacteraceae) can produce unique N-acylalanine methyl esters (NAMEs) besides strucutrally related N-acylhomoserine lactones (AHLs), bacterial signaling compounds widespread in the Rhodobacteraceae. The structures of two unprecedented NAMEs carrying a rare terminally oxidized acyl chain are reported here. The compounds (Z)-N-16-hydroxyhexadec-9-enoyl-l-alanine methyl ester (Z9-16-OH-C16:1-NAME, 3) and (Z)-N-15-carboxypentadec-9-enoyl-l-alanine methyl ester (16COOH-C16:1-NAME, 4) were isolated, and the structures were determined by NMR and MS experiments. Both compounds were synthesized to prove assignments and to test their biological activity. Finally, non-natural, structurally related Z9-3-OH-C16:1-NAME (18) was synthesized to investigate the mass spectroscopy of structurally related NAMEs. Compound 3 showed moderate antibacterial activity against microorganisms such as Bacillus, Streptococcus, Micrococcus, or Mucor strains. In contrast to AHLs, quorum-sensing or quorum-quenching activity was not observed.
Coral, Natasha; Rodrigues, Elizabeth; Rumjanek, Victor; Zamian, José Roberto; da Rocha Filho, Geraldo Narciso; da Costa, Carlos Emmerson Ferreira
2013-02-01
Production of alternative fuels, such as biodiesel, from transesterification of vegetable oil driven by heterogeneous catalysts is a promising alternative to fossil diesel. However, achieving a successful substitution for a new renewable fuel depends on several quality parameters. (1)H NMR spectroscopy was used to determine the amount of methyl esters, free glycerin and acid number in the transesterification of soybean oil with methanol in the presence of hydrotalcite-type catalyst to produce biodiesel. Reaction parameters, such as temperature and time, were used to evaluate soybean oil methyl esters rate conversion. Temperatures of 100 to 180 °C and times of 20 to 240 min were tested on a 1 : 12 molar ratio soybean oil/methanol reaction. At 180 °C/240 min conditions, a rate of 94.5 wt% of methyl esters was obtained, where free glycerin and free fatty acids were not detected. Copyright © 2012 John Wiley & Sons, Ltd.
Analysis of biodiesel by high performance liquid chromatography using refractive index detector.
Syed, Mahin Basha
2017-01-01
High-performance liquid chromatography (HPLC) was used for the determination of compounds occurring during the production of biodiesel from karanja and jatropha oil. Methanol was used for fast monitoring of conversion of karanja and jatropha oil triacylglycerols to fatty acid methyl esters and for quantitation of residual triacylglycerols (TGs), in the final biodiesel product. The individual sample compounds were identified using HPLC. Analysis of fatty acid methyl esters (FAMES) in blends of biodiesel by HPLC using a refractive index and a UV detector at 238 nm. Individual triacylglycerols, diacylglycerols, monoacylglycerols and methyl esters of oleic, linoleic and linolenic acids and free fatty acids were separated within 40 min. Hence HPLC was found to be best for the analysis of biodiesel. Analysis of biodiesel by HPLC using RID detector. Estimation of amount of FAMES in biodiesel. Individual triacylglycerols, diacylglycerols, monoacylglycerols and methyl esters of oleic, linoleic and linolenic acids and free fatty acids were separated within 40 min.
Agostini, Alessandro; Mondragón, Laura; Pascual, Lluis; Aznar, Elena; Coll, Carmen; Martínez-Máñez, Ramón; Sancenón, Félix; Soto, Juan; Marcos, M Dolores; Amorós, Pedro; Costero, Ana M; Parra, Margarita; Gil, Salvador
2012-10-16
An ethylene glycol-capped hybrid material for the controlled release of molecules in the presence of esterase enzyme has been prepared. The final organic-inorganic hybrid solid S1 was synthesized by a two-step procedure. In the first step, the pores of an inorganic MCM-41 support (in the form of nanoparticles) were loaded with [Ru(bipy)(3)]Cl(2) complex, and then, in the second step, the pore outlets were functionalized with ester glycol moieties that acted as molecular caps. In the absence of an enzyme, release of the complex from aqueous suspensions of S1 at pH 8.0 is inhibited due to the steric hindrance imposed by the bulky ester glycol moieties. Upon addition of esterase enzyme, delivery of the ruthenium complex was observed due to enzymatic hydrolysis of the ester bond in the anchored ester glycol derivative, inducing the release of oligo(ethylene glycol) fragments. Hydrolysis of the ester bond results in size reduction of the appended group, therefore allowing delivery of the entrapped cargo. The S1 nanoparticles were not toxic for cells, as demonstrated by cell viability assays with HeLa and MCF-7 cell lines, and were found to be associated with lysosomes, as shown by confocal microscopy. However, when S1 nanoparticles were filled with the cytotoxic drug camptothecin (S1-CPT), S1-CPT-treated cells undergo cell death as a result of S1-CPT cell internalization and subsequent cellular enzyme-mediated hydrolysis and aperture of the molecular gate that induced the release of the camptothecin cargo. These findings point to a possible therapeutic application of these nanoparticles.
Luo, Zhu-Hua; Pang, Ka-Lai; Wu, Yi-Rui; Gu, Ji-Dong; Chow, Raymond K K; Vrijmoed, L L P
2012-01-01
Phthalate esters (PAEs) are important industrial compounds mainly used as plasticizers to increase flexibility and softness of plastic products. PAEs are of major concern because of their widespread use, ubiquity in the environment, and endocrine-disrupting toxicity. In this study, two fungal strains, Fusarium sp. DMT-5-3 and Trichosporon sp. DMI-5-1 which had the capability to degrade dimethyl phthalate esters (DMPEs), were isolated from mangrove sediments in the Futian Nature Reserve of Shenzhen, China, by enrichment culture technique. These fungi were identified on the basis of spore morphology and molecular typing using 18S rDNA sequence. Comparative investigations on the biodegradation of three isomers of DMPEs, namely dimethyl phthalate (DMP), dimethyl isophthalate (DMI), and dimethyl terephthalate (DMT), were carried out with these two fungi. It was found that both fungi could not completely mineralize DMPEs but transform them to the respective monomethyl phthalate or phthalate acid. Biochemical degradation pathways for different DMPE isomers by both fungi were different. Both fungi could transform DMT to monomethyl terephthalate (MMT) and further to terephthalic acid (TA) by stepwise hydrolysis of two ester bonds. However, they could only carry out one-step ester hydrolysis to transform DMI to monomethyl isophthalate (MMI). Further metabolism of MMI did not proceed. Only Trichosporon sp. was able to transform DMP to monomethyl phthalate (MMP) but not Fusarium sp. The optimal pH for DMI and DMT degradation by Fusarium sp. was 6.0 and 4.5, respectively, whereas for Trichosporon sp., the optimal pH for the degradation of all the three DMPE isomers was at 6.0. These results suggest that the fungal esterases responsible for hydrolysis of the two ester bonds of PAEs are highly substrate specific.
Song, Cheol; Scharf, Michael E
2009-06-01
Previous research on insecticidal formate esters in flies and mosquitoes has documented toxicity profiles, metabolism characteristics and neurological impacts. The research presented here investigated mitochondrial impacts of insecticidal formate esters and their hydrolyzed metabolite formic acid in the model dipteran insect Drosophila melanogaster Meig. These studies compared two Drosophila strains: an insecticide-susceptible strain (Canton-S) and a strain resistant by cytochrome P450 overexpression (Hikone-R). In initial studies investigating inhibition of mitochondrial cytochrome c oxidase, two proven insecticidal materials (hydramethylnon and sodium cyanide) caused significant inhibition. However, for insecticidal formate esters and formic acid, no significant inhibition was identified in either fly strain. Mitochondrial impacts of formate esters were then investigated further by tracking toxicant-induced cytochrome c release from mitochondria into the cytoplasm, a biomarker of apoptosis and neurological dysfunction. Formic acid and three positive control treatments (rotenone, antimycin A and sodium cyanide) induced cytochrome c release, verifying that formic acid is capable of causing mitochondrial disruption. However, when comparing formate ester hydrolysis and cytochrome c release between Drosophila strains, formic acid liberation was only weakly correlated with cytochrome c release in the susceptible Canton-S strain (r(2) = 0.70). The resistant Hikone-R strain showed no correlation (r(2) < 0.0001) between formate ester hydrolysis and cytochrome c release. The findings of this study provide confirmation of mitochondrial impacts by insecticidal formate esters and suggest links between mitochondrial disruption, respiratory inhibition, apoptosis and formate-ester-induced neurotoxicity.
Lee, Eun-Sook; Chen, Hongtao; Hardman, Chadwick; Simm, Anthony; Charlton, Clivel
2009-01-01
Aims Excessive methylation may be a precipitating factor for Parkinson’s disease (PD) since S-adenosylmethionine (SAM), the endogenous methyl donor, induces PD-like changes when injected into the rat brain. The hydrolysis of the methyl ester bond of the methylated proteins produces methanol. Since methanol is oxidized into formaldehyde, and formaldehyde into formic acid in the body, we investigated the effects of SAM on the production of methanol, formaldehyde and formic acid in rat brain striatal homogenates and the toxicity of these products in PC12 cells. Main methods radio-enzymatic and colorimetric assays, cell viability, Western blot. Key findings SAM increased the formation of methanol, formaldehyde and formic acid in a concentration and time-dependent manner. Concentrations of [3H-methyl]-SAM at 0.17, 0.33, 0.67 and 1.34 nM produced 3.8, 8.0, 18.3 and 34.4 fmol/mg protein/h of [3H] methanol in rat striatal homogenates, respectively. SAM also significantly generated formaldehyde and formic acid in striatal homogenates. Formaldehyde was the most toxic metabolite to differentiated PC12 pheochromocytoma cells in cell culture studies, indicating that formaldehyde formed endogenously may contribute to neuronal damage in excessive methylation conditions. Subtoxic concentration of formaldehyde decreased the expression of tyrosine hydroxylase, the limiting factor in dopamine synthesis. Formaldehyde was more toxic to catecholaminergic PC12 cells than C6 glioma cells, indicating that neurons are more vulnerable to formaldehyde than glia cells. Significance We suggest that excessive carboxylmethylation of proteins might be involved in the SAM-induced PD-like changes and in the aging process via the toxic effects of formaldehyde. PMID:18930743
Efficient and scalable synthesis of bardoxolone methyl (cddo-methyl ester).
Fu, Liangfeng; Gribble, Gordon W
2013-04-05
Bardoxolone methyl (2-cyano-3,12-dioxooleane-1,9(11)-dien-28-oic acid methyl ester; CDDO-Me) (1), a synthetic oleanane triterpenoid with highly potent anti-inflammatory activity (levels below 1 nM), has completed a successful phase I clinical trial for the treatment of cancer and a successful phase II trial for the treatment of chronic kidney disease in type 2 diabetes patients. Our synthesis of bardoxolone methyl (1) proceeds in ∼50% overall yield in five steps from oleanolic acid (2), requires only one to two chromatographic purifications, and can provide gram quantities of 1.
40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 3,3â²-methyl-enebis [6...
40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 3,3â²-methyl-enebis [6...
Methyl esters (biodiesel) from Pachyrhizus erosus seed oil
USDA-ARS?s Scientific Manuscript database
The search for additional or alternative feedstocks is one of the major areas of interest regarding biodiesel. In this paper, the fuel properties of Pachyrhizus erosus (commonly known as yam bean or Mexican potato or jicama) seed oil methyl esters were investigated by methods prescribed in biodiesel...
Hou, Juying; Dong, Jing; Zhu, Haishuang; Teng, Xue; Ai, Shiyun; Mang, Minglin
2015-06-15
In this paper, a simple and sensitive fluorescent sensor for methyl parathion is developed based on L-tyrosine methyl ester functionalized carbon dots (Tyr-CDs) and tyrosinase system. The carbon dots are obtained by simple hydrothermal reaction using citric acid as carbon resource and L-tyrosine methyl ester as modification reagent. The carbon dots are characterized by transmission electron microscope, high resolution transmission electron microscopy, X-ray diffraction spectrum, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The carbon dots show strong and stable photoluminescence with a quantum yield of 3.8%. Tyrosinase can catalyze the oxidation of tyrosine methyl ester on the surface of carbon dots to corresponding quinone products, which can quench the fluorescence of carbon dots. When organophosphorus pesticides (OPs) are introduced in system, they can decrease the enzyme activity, thus decrease the fluorescence quenching rate. Methyl parathion, as a model of OPs, was detected. Experimental results show that the enzyme inhibition rate is proportional to the logarithm of the methyl parathion concentration in the range 1.0×10(-10)-1.0×10(-4) M with the detection limit (S/N=3) of 4.8×10(-11) M. This determination method shows a low detection limit, wide linear range, good selectivity and high reproducibility. This sensing system has been successfully used for the analysis of cabbage, milk and fruit juice samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Gangula, P R; Wimalawansa, S J; Yallampalli, C
1997-04-01
We recently reported that calcitonin gene-related peptide can reverse the hypertension produced by N(G)-nitro-L-arginine methyl ester in pregnant rats. In the current study we investigated whether these vasodilator effects of calcitonin gene-related peptide were progesterone dependent. Calcitonin gene-related peptide or N(G)-nitro-L-arginine methyl ester was infused through osmotic minipumps, either separately or in combination, to groups of five pregnant rats from day 17 of gestation until day 8 post partum or to nonpregnant ovariectomized rats for 8 days. Progesterone was injected during days 1 to 6 post partum and for 6 days after ovariectomy. Systolic blood pressure was measured daily. Animals receiving N(G)-nitro-L-arginine methyl ester exhibited significant elevations of blood pressure during pregnancy and post partum. Coadministration of calcitonin gene-related peptide to these rats reversed the hypertension during pregnancy but not during the postpartum period. At the dose used in this study calcitonin gene-related peptide administered alone was without significant effects on blood pressure. However, it reduced both the mortality and growth restriction of the fetus associated with N(G)-nitro-L-arginine methyl ester in these animals. Calcitonin gene-related peptide reversed the hypertension in N(G)-nitro-L-arginine methyl ester-infused postpartum rats during the periods of progesterone treatment only, and these effects were lost when progesterone treatment was stopped. Neither progesterone nor calcitonin gene-related peptide alone were effective. To further confirm these observations, progesterone effects were tested in ovariectomized adult rats. Similar to the findings in postpartum rats, calcitonin gene-related peptide completely reversed the elevation in blood pressure in N(G)-nitro-L-arginine methyl ester-treated rats receiving progesterone injections. The effects of calcitonin gene-related peptide were apparent only during the progesterone treatment period, and these effects were lost when progesterone treatment was stopped. Again, at these doses calcitonin gene-related peptide and progesterone were each ineffective alone. Calcitonin gene-related peptide reverses the N(G)-nitro-L-arginine methyl ester-induced hypertension during pregnancy, when progesterone levels are elevated, but not post partum or in ovariectomized nonpregnant rats. The blood pressure-lowering effects of calcitonin gene-related peptide were restored in both postpartum and ovariectomized rats with progesterone treatment. Therefore we conclude that progesterone modulates vasodilator effects of calcitonin gene-related peptide in hypertensive rats.
Mahmoudi, Leila; Kissner, Reinhard; Nauser, Thomas; Koppenol, Willem H
2016-05-24
Electrode potentials for aromatic amino acid radical/amino acid couples were deduced from cyclic voltammograms and pulse radiolysis experiments. The amino acids investigated were l-tryptophan, l-tyrosine, N-acetyl-l-tyrosine methyl ester, N-acetyl-3-nitro-l-tyrosine ethyl ester, N-acetyl-2,3-difluoro-l-tyrosine methyl ester, and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester. Conditional potentials were determined at pH 7.4 for all compounds listed; furthermore, Pourbaix diagrams for l-tryptophan, l-tyrosine, and N-acetyl-3-nitro-l-tyrosine ethyl ester were obtained. Electron transfer accompanied by proton transfer is reversible, as confirmed by detailed analysis of the current waves, and because the slopes of the Pourbaix diagrams obey Nernst's law. E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) at pH 7 are 0.99 ± 0.01 and 0.97 ± 0.01 V, respectively. Pulse radiolysis studies of two dipeptides that contain both amino acids indicate a difference in E°' of approximately 0.06 V. Thus, in small peptides, we recommend values of 1.00 and 0.96 V for E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH), respectively. The electrode potential of N-acetyl-3-nitro-l-tyrosine ethyl ester is higher, while because of mesomeric stabilization of the radical, those of N-acetyl-2,3-difluoro-l-tyrosine methyl ester and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester are lower than that of tyrosine. Given that the electrode potentials at pH 7 of E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) are nearly equal, they would be, in principle, interchangeable. Proton-coupled electron transfer pathways in proteins that use TrpH and TyrOH are thus nearly thermoneutral.
Zhou, Dong-Jie; Pan, Jiang; Yu, Hui-Lei; Zheng, Gao-Wei; Xu, Jian-He
2013-07-01
A new strain, Enterobacter sp. ECU1107, was identified among over 200 soil isolates using a two-step screening strategy for the enantioselective synthesis of (2S,3R)-3-phenylglycidate methyl ester (PGM), a key intermediate for production of a potent anticancer drug Taxol®. An organic-aqueous biphasic system was employed to reduce spontaneous hydrolysis of the substrate PGM and isooctane was found to be the most suitable organic solvent. The temperature and pH optima of the whole cell-mediated bioreaction were 40 °C and 6.0, respectively. Under these reaction conditions, the enantiomeric excess (ee(s)) of (2S,3R)-PGM recovered was greater than 99 % at approximately 50 % conversion. The total substrate loading in batch reaction could reach 600 mM. By using whole cells of Enterobacter sp. ECU1107, (2S,3R)-PGM was successfully prepared in decagram scale in a 1.0-l mechanically stirred reactor, affording the chiral epoxy ester in >99 % ee s and 43.5 % molar yield based on the initial load of racemic substrate.
AN ENZYME MIMIC THAT HYDROLYZES AN UNACTIVATED ESTER WITH CATALYTIC TURNOVER. (R826653)
The Cu(II) complex of a cyclodextrin dimer linked by a bipyridyl unit catalyzes the hydrolysis of an unactivated doubly-bound benzyl ester.
Author Keywords: cyclodextrin dimer; copper
NASA Astrophysics Data System (ADS)
Yao, Jianzhuang; Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo
2016-02-01
Extensive computational modeling and simulations have been carried out, in the present study, to uncover the fundamental reaction pathway for butyrylcholinesterase (BChE)-catalyzed hydrolysis of ghrelin, demonstrating that the acylation process of BChE-catalyzed hydrolysis of ghrelin follows an unprecedented single-step reaction pathway and the single-step acylation process is rate-determining. The free energy barrier (18.8 kcal/mol) calculated for the rate-determining step is reasonably close to the experimentally-derived free energy barrier (~19.4 kcal/mol), suggesting that the obtained mechanistic insights are reasonable. The single-step reaction pathway for the acylation is remarkably different from the well-known two-step acylation reaction pathway for numerous ester hydrolysis reactions catalyzed by a serine esterase. This is the first time demonstrating that a single-step reaction pathway is possible for an ester hydrolysis reaction catalyzed by a serine esterase and, therefore, one no longer can simply assume that the acylation process must follow the well-known two-step reaction pathway.
NASA Astrophysics Data System (ADS)
Astar, Ismail; Usman, Thamrin; Wahyuni, Nelly; Rudiyansyah, Alimuddin, Andi Hairil
2017-03-01
Free fatty acids (FFA) contained in crude palm oil (CPO) and sludge oil has been used as the base material of biodiesel with the aid of a catalyst in the transesterification and esterification reactions. This study aims to synthesize and characterize bifunctional catalysts were synthesized from the ashes of palm empty fruit bunches (EFB) and alum based on the analysis of XRD, XRF and acidity test. Bifunctional catalyst obtained was used as a catalyst to production of biodiesel with different levels of FFA. The optimum ratio alum added was 0.2 mol at 3 hours of reaction time and 3% of catalyst by the FFA samples were used 67,40%. The catalyst with optimum alum mole variations subsequently used on samples with varying levels of FFA, namely 1.29%, 4.98%, 29.21%, 67.40% and 74.47%. Optimum conversion of methyl ester in the esterification reaction occurs in the sample with 67.40% FFA content, which reached 86.17%, while the conversion of methyl ester transesterification process optimum amounted to 45.70% in the samples with 4.98% FFA content. Methyl ester produced has a refractive index of 1.448 (29.8 ° C), density of 0.883 g / mL (25 °C) and a viscosity of 8.933 cSt (25 ° C). The results of GC-MS analysis showed that the main composition of methyl ester result of esterification of sludge oil methyl palmitate (36.84%), while the CPO transesterification shows the main composition of methyl ester is methyl oleic (38.87%). Based on the research results, the catalyst synthesized from alum and EFB ash can be used as a Bifunctional catalysts for biodiesel synthesis.
Lohans, Christopher T.; van Groesen, Emma; Kumar, Kiran; Tooke, Catherine L.; Spencer, James; Paton, Robert S.; Brem, Jürgen
2018-01-01
Abstract β‐Lactamases threaten the clinical use of carbapenems, which are considered antibiotics of last resort. The classical mechanism of serine carbapenemase catalysis proceeds through hydrolysis of an acyl‐enzyme intermediate. We show that class D β‐lactamases also degrade clinically used 1β‐methyl‐substituted carbapenems through the unprecedented formation of a carbapenem‐derived β‐lactone. β‐Lactone formation results from nucleophilic attack of the carbapenem hydroxyethyl side chain on the ester carbonyl of the acyl‐enzyme intermediate. The carbapenem‐derived lactone products inhibit both serine β‐lactamases (particularly class D) and metallo‐β‐lactamases. These results define a new mechanism for the class D carbapenemases, in which a hydrolytic water molecule is not required. PMID:29236332
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balan, A.; Barness, I.; Simon, G.
1988-02-15
7-(Methylethoxy phosphinyloxy)-1-methyl-quinolinium iodide (MEPQ), a powerful anti-cholinesterase methylphosphonate ester, was labeled with tritium (9 Ci/mmol) at the methylphosphonyl moiety (TCH2P(O)(OR)X) by an iodine-tritium replacement reaction. Kinetic measurements of the rate of inhibition of acetylcholinesterase (AChE) by (/sup 3/H)MEPQ and its rate of hydrolysis in alkaline solution confirmed the identity of (/sup 3/H)MEPQ with authentic MEPQ, which was prepared by the same reaction sequences. Gel-filtration experiments verified the radiospecificity of (/sup 3/H)MEPQ. In vitro radiolabeling of both AChE and butyrylcholinesterase along with the whole-body autoradiography of (/sup 3/H)MEPQ-treated mice suggests that (/sup 3/H)MEPQ is a convenient marker for studying biological systemsmore » containing these esterases.« less
Photoelectron spectroscopy of a series of acetate and propionate esters
NASA Astrophysics Data System (ADS)
Śmiałek, Małgorzata A.; Guthmuller, Julien; MacDonald, Michael A.; Zuin, Lucia; Delwiche, Jacques; Hubin-Franskin, Marie-Jeanne; Lesniewski, Tadeusz; Mason, Nigel J.; Limão-Vieira, Paulo
2017-10-01
The electronic state and photoionization spectroscopy of a series of acetate esters: methyl acetate, isopropyl acetate, butyl acetate and pentyl acetate as well as two propionates: methyl propionate and ethyl propionate, have been determined using vacuum-ultraviolet photoelectron spectroscopy. These experimental investigations are complemented by ab initio calculations. The measured first adiabatic and vertical ionization energies were determined as: 10.21 and 10.45 eV for methyl acetate, 9.99 and 10.22 eV for isopropyl acetate, 10.07 and 10.26 eV for butyl acetate, 10.01 and 10.22 eV for pentyl acetate, 10.16 and 10.36 eV for methyl propionate and 9.99 and 10.18 eV for ethyl propionate. For the four smaller esters vibrational transitions were calculated and compared with those identified in the photoelectron spectrum, revealing the most distinctive ones to be a Csbnd O stretch combined with a Cdbnd O stretch. The ionization energies of methyl and ethyl esters as well as for a series of formates and acetates were compared showing a clear dependence of the value of the ionization energy on the size of the molecule with very little influence of its conformation.
Proton-Ionizable Crown Ethers. A Short Review
1989-05-30
acid methyl ester using sodium hydride as the base in tetrahydrofuran. The m3thyl ester group was hydrolyzed to the carboxylic acid as shown in Procedure...prepared via the appropriate hydroxydibenzo-crown ether and allyl bromide RýIý R2 or ethyl acrylate as shown in Procedure N. 5 2 . 5 6 Disulfonic acid ...similar to Procedure p. 7 4 Once the precursor binrephtho-crown was obtained, it was coupled with bromoacetic acid methyl ester and R, , - R
Code of Federal Regulations, 2010 CFR
2010-07-01
...-isocyanato-, polymer with benzenedicarboxylic acid, butyl dialkyl ester, poly[oxy(methyl-1,2-ethanediyl)], .alpha.-hydro-.omega.-hydroxy-, oxirane, alkyl-, polymer with oxirane, ether with propanepolyol and...-isocyanato-, polymer with benzenedicarboxylic acid, butyl dialkyl ester, poly[oxy(methyl-1,2-ethanediyl...
USDA-ARS?s Scientific Manuscript database
We have conducted an investigation designed to identify alternate catalysts for the production of fatty acid methyl esters (FAME) to be used as biodiesel. Diphenylammonium sulfate (DPAS) and diphenylammonium chloride (DPA-HCl) salts were found to be highly active homogeneous catalysts for the simu...
Efficacy of Myricetin as an Antioxidant in Methyl Esters of Soybean Oil
USDA-ARS?s Scientific Manuscript database
The antioxidant activity of myricetin, a natural flavonol found in fruits and vegetables, was determined in soybean oil methyl esters (SME) and compared with alpha-tocopherol and tert-butylhydroquinone (TBHQ) over a 90 day period employing EN 14112, acid value, and kinematic viscosity methods. Myri...
Chemical modification of nanocellulose with canola oil fatty acid methyl ester
Liqing Wei; Umesh P. Agarwal; Kolby C. Hirth; Laurent M. Matuana; Ronald C. Sabo; Nicole M. Stark
2017-01-01
Cellulose nanocrystals (CNCs), produced from dissolving wood pulp, were chemically functionalized by transesterification with canola oil fatty acid methyl ester (CME). CME performs as both the reaction reagent and solvent. Transesterified CNC (CNCFE) was characterized for their chemical structure, morphology, crystalline structure, thermal stability, and hydrophobicity...
Effects of Blending Alcohols with Poultry Fat Methyl Esters on Cold Flow Properties
USDA-ARS?s Scientific Manuscript database
The low temperature operability, kinematic viscosity, and acid value of poultry fat methyl esters were improved with addition of ethanol, isopropanol, and butanol in a linear fashion with increasing alcohol content. The flash point decreased and moisture content increased upon addition of alcohols t...
Correlating the cold flow and melting properties of fatty acid methyl ester (FAME) mixtures
USDA-ARS?s Scientific Manuscript database
Fatty acid methyl ester (FAME) mixtures derived from plant oils or animal fats are used to make biodiesel, lubricants, surfactants, plasticizers, ink solvents, paint strippers and other products. Processing requires a precise knowledge of the physico-chemical properties of mixtures with diverse and ...
USDA-ARS?s Scientific Manuscript database
Fatty acid methyl esters (biodiesel) prepared from field pennycress and meadowfoam seed oils were blended with methyl esters from camelina, cottonseed, palm, and soybean oils in an effort to ameliorate technical deficiencies inherent to these biodiesel fuels. For instance, camelina, cottonseed, and ...
Methyl esters (biodiesel) from and fatty acid profile of Gliricidia sepium seed oil
USDA-ARS?s Scientific Manuscript database
Increasing the supply of biodiesel by defining and developing additional feedstocks is important to overcome the still limited amounts available of this alternative fuel. In this connection, the methyl esters of the seed oil of Gliricidia sepium were synthesized and the significant fuel-related prop...
Cold flow properties of fatty acid methyl esters: Additives versus diluents
USDA-ARS?s Scientific Manuscript database
Biodiesel is typically composed of fatty acid methyl esters (FAME) converted from agricultural lipids. Common feedstocks include soybean oil, canola oil, rapeseed oil, sunflower oil, and palm oil. Recent debate on the conversion of edible oils into non-food products has created opportunities to deve...
USDA-ARS?s Scientific Manuscript database
Fatty acid methyl ester (FAME) mixtures have many uses including biodiesel, lubricants, metal-working fluids, surfactants, polymers, coatings, green solvents and phase-change materials. The physical properties of a FAME mixture depends on the fatty acid concentration (FAC) profile. Some products hav...
URINARY METABOLITES OF DI-N-OCTYL PHTHALATE IN RATS
Di-n-octyl phthalate (DnOP) is a plasticizer used in polyvinyl chloride plastics, cellulose esters, and polystyrene resins. The metabolism of DnOP results in the hydrolysis of one ester linkage to produce mono-n-octyl phthalate (MnOP), which subsequently metabolizes to form oxida...
NASA Technical Reports Server (NTRS)
Haug, P.; Schnoes, H. K.; Burlingame, A. L.
1971-01-01
Study of solvent extractable acidic constituents of oil shale from the Colorado Green River Formation. Identification of individual components is based on gas chromatographic and mass spectrometric data obtained for their respective methyl esters. Normal acids, isoprenoidal acids, alpha, omega-dicarboxylic acids, mono-alpha-methyl dicarboxylic acids and methyl ketoacids were identified. In addition, the presence of monocyclic, benzoic, phenylalkanoic and naphthyl-carboxylic acids, as well as cycloaromatic acids, is demonstrated by partial identification.
Sarangi, Nirod Kumar; Ganesan, M; Muraleedharan, K M; Patnaik, Archita
2017-04-01
Interfacial hydrolysis of oxanorbornane-based amphiphile (Triol C16) by Candida rugosa lipase was investigated using real-time polarized Fourier transform-infrared reflection absorption spectroscopy (FT-IRRAS). The kinetics of hydrolysis was studied by analyzing the ester carbonyl ν(CO) stretching vibration band across the two dimensional (2D) array of molecules at the confined interface. In particular, we demonstrate Triol C16 to form Michaelis-Menten type complex, like that of lipid-substrate analogues, where the Triol C16 head group remained accessible to the catalytic triad of the lipase. The enzyme-induced selective cleavage of the ester bond was spectroscopically monitored by the disappearance of the intense ν(CO) resonance at 1736cm -1 . Consequently, the in situ spectroscopic measurements evidenced selective ester hydrolysis of Triol C16 yielding Tetrol C 2 OH and Palmitic acid, which remained predominantly in the undissociated form at the interface. The conformation sensitive amide I (majorly ν(CO)) and the interfacial water reorganization suggested 2D ordering of the enzyme molecules following which interfacial reactions were employed towards probing the enzyme kinetics at the air/water interface. The investigation demonstrated further the potential of IRRAS spectroscopy for real-time monitoring the hydrolytic product formation and selectivity at biomimetic interfaces. Copyright © 2017 Elsevier B.V. All rights reserved.
Hua, Yanling; Sansenya, Sompong; Saetang, Chiraporn; Wakuta, Shinji; Ketudat Cairns, James R
2013-09-01
In order to identify a rice gibberellin ester β-D-glucosidase, gibberellin A4 β-D-glucosyl ester (GA4-GE) was synthesized and used to screen rice β-glucosidases. Os3BGlu6 was found to have the highest hydrolysis activity to GA4-GE among five recombinantly expressed rice glycoside hydrolase family GH1 enzymes from different phylogenic clusters. The kinetic parameters of Os3BGlu6 and its mutants E178Q, E178A, E394D, E394Q and M251N for hydrolysis of p-nitrophenyl β-D-glucopyranoside (pNPGlc) and GA4-GE confirmed the roles of the catalytic acid/base and nucleophile for hydrolysis of both substrates and suggested M251 contributes to binding hydrophobic aglycones. The activities of the Os3BGlu6 E178Q and E178A acid/base mutants were rescued by azide, which they transglucosylate to produce β-D-glucopyranosyl azide, in a pH-dependent manner, while acetate also rescued Os3BGlu6 E178A at low pH. High concentrations of sodium azide (200-400 mM) inhibited Os3BGlu6 E178Q but not Os3BGlu6 E178A. The structures of Os3BGlu6 E178Q crystallized with either GA4-GE or pNPGlc had a native α-D-glucosyl moiety covalently linked to the catalytic nucleophile, E394, which showed the hydrogen bonding to the 2-hydroxyl in the covalent intermediate. These data suggest that a GH1 β-glucosidase uses the same retaining catalytic mechanism to hydrolyze 1-O-acyl glucose ester and glucoside. Copyright © 2013 Elsevier Inc. All rights reserved.
Meker, Sigalit; Manna, Cesar M; Peri, Dani; Tshuva, Edit Y
2011-10-14
A series of Ti(IV) complexes containing diamino bis(phenolato) "salan" type ligands with NH coordination were prepared, and their hydrolysis and cytotoxicity were analyzed and compared to the N-methylated analogues. Substituting methyl groups on the coordinative nitrogen donor of highly active and stable Ti(IV) salan complexes with H atoms has two main consequences: the hydrolysis rate increases and the cytotoxic activity diminishes. In addition, the small modification of a single replacement of Me with H leads to a different major hydrolysis product, where a dinuclear Ti(IV) complex with two bridging oxo ligands is obtained, as characterized by X-ray crystallography, rather than a trinuclear cluster. A partial hydrolysis product containing a single oxo bridge was also crystallographically analyzed. Investigation of a series of complexes with NH donors of different steric and electronic effects revealed that cytotoxicity may be restored by fine tuning these parameters even for complexes of low stability.
Baesman, S.M.; Miller, L.G.
2005-01-01
Large carbon kinetic isotope effects (KIEs) were measured for reactions of methyl bromide (MeBr), methyl chloride (MeCl), and methyl iodide (MeI) with various nucleophiles at 287 and 306 K in aqueous solutions. Rates of reaction of MeBr and MeI with H2O (neutral hydrolysis) or Cl- (halide substitution) were consistent with previous measurements. Hydrolysis rates increased with increasing temperature or pH (base hydrolysis). KIEs for hydrolysis were 51 ?? 6??? for MeBr and 38 ?? 8??? for MeI. Rates of halide substitution increased with increasing temperature and greater reactivity of the attacking nucleophile, with the fastest reaction being that of MeI with Br-. KIEs for halide substitution were independent of temperature but varied with the reactant methyl halide and the attacking nucleophile. KIEs were similar for MeBr substitution with Cl- and MeCl substitution with Br- (57 ?? 5 and 60 ?? 9??? respectively). The KIE for halide exchange of MeI was lower overall (33 ?? 8??? and was greater for substitution with Br- (46 ?? 6???) than with Cl- (29 ?? 6???). ?? Springer Science + Business Media, Inc. 2005.
NASA Technical Reports Server (NTRS)
Slack, B. E.; Richardson, U. I.; Nitsch, R. M.; Wurtman, R. J.
1992-01-01
Dioctanoylglycerol, a synthetic diacylglycerol, stimulated [14C]choline uptake in cultured human neuroblastoma (LA-N-2) cells. As this effect has not, to our knowledge, been reported before, it was of interest to characterize it in more detail. In the presence of 500 microM dioctanoylglycerol the levels of [14C]choline attained during a 2 hour labeling period were elevated by 78 +/- 12%, while [14C]acetylcholine and long fatty acyl chain [14C]phosphatidylcholine levels increased by 26 +/- 2% and 19 +/- 5%, respectively (mean +/- S.E.M.). Total (long chain plus dioctanoyl-) [14C]phosphatidylcholine was increased by 198 +/- 33%. Kinetic analysis showed that dioctanoylglycerol reduced the apparent Km for choline uptake to 56 +/- 9% of control (n = 4). The Vmax was not significantly altered. The stimulation of [14C]choline accumulation by dioctanoylglycerol was not dependent on protein kinase C activation; the effect was not mimicked by phorbol ester or by 1-oleoyl-2-acetylglycerol, and was not inhibited by the protein kinase C inhibitors H-7 or staurosporine, or by prolonged pretreatment with phorbol 12-myristate 13-acetate. The effect of dioctanoylglycerol was slightly (but not significantly) reduced by EGTA and strongly inhibited by the cell-permeant calcium chelator bis(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl)ester. Although these results implicate elevated intracellular calcium in the response, dioctanoylglycerol did not increase phosphatidylinositol hydrolysis in LA-N-2 cells, and its effect was not inhibited by the diacylglycerol kinase inhibitor R 59 022 (which blocks the conversion of diacylglycerol to phosphatidic acid, a known stimulator of phosphatidylinositol hydrolysis).(ABSTRACT TRUNCATED AT 250 WORDS).
Computational study on hydroxybenzotriazoles as reagents for ester hydrolysis.
Kumar, V Praveen; Ganguly, Bishwajit; Bhattacharya, Santanu
2004-12-10
1-Hydroxybenzotriazole (1) and several of its derivatives (2-5) demonstrate potent esterolytic activity toward activated esters such as p-nitrophenyl diphenyl phosphate (PNPDPP) and p-nitrophenyl hexanoate (PNPH) in cationic micelles at pH 8.2 and 25 degrees C. The deprotonated anionic forms of such reagents act as reactive species in the hydrolysis of ester. To rationalize the origin of their nucleophilic character, a detailed ab initio/DFT computational study has been performed on 1-5 along with additional hydroxybenzotriazole derivatives (6-13). The geometries of 1-hydroxybenzotriazoles (1-13) and their corresponding bases are discussed in detail. All calculations were carried out using different methods, i.e., restricted Hartree-Fock (RHF) and hybrid ab initio/DFT (B3LYP) using 6-31G and 6-31+G basis sets. Free energy of protonation ("fep") of the 1-hydroxybenzotriazoles (1-13), free energy of solvation DeltaG(aq), and the corresponding pK(a) values have been calculated. Solvation-free energies were calculated using density functional theory and the polarizable continuum model. In addition, to examine the reliability of calculated fep, benzaldehyde oxime (14) and 2-methyl propionaldehyde oxime (15) have been computed as reference systems using different methods and basis sets, the experimental feps of which are known. Our experimental finding shows that the compound 4 is the most effective catalyst for the hydrolytic cleavages of PNPDPP and PNPH. This has been predicted from our calculated fep, pK(a), and natural charge analysis results as well. In general, the introduction of electron-withdrawing substituents on 1-hydroxybenzotriazoles facilitates the lowering of pK(a) and fep. As the pK(a) values are lowered, a greater percentage of such hydroxybenzotriazoles remain in their deprotonated, anionic forms at pH 8.2. Since the anionic forms are nucleophilic, pK(a) lowering should enhance their ester cleaving capacity. However, such substitution also decreases the charge density on the catalytically active oxido atom (O(7)). Taking these two factors together, the derivatives are only modestly better nucleophiles in comparison to the parent 1-hydroxybenzotriazole. Interestingly, the introduction of electron-donating groups does not significantly enhance the charge accumulation on the oxido atom (O(7)) of 1-hydroxybenzotriazoles.
2012-09-01
Content per Combustion J FAME Fatty Acid Methyl Ester FMEP Friction Mean Effective Pressure PSI or Bar FT Fischer-Tropsch h Heat...recently, algae-derived oils. Biodiesel has gained popularity in North America over the past decade, but the ester content of Fatty Acid Methyl ... Ester ( FAME ) fuel creates both cold weather and water- based operational issues. The Fischer-Tropsch (FT) process produces liquid fuels from “syngas,” a
Update on the Us Army’s Fuel Contamination Detection Efforts
2011-04-04
Dual Eng flameout Contaminated with water and particulate 14 2009 C-130 USAF Jet Fuel Contamination with Fatty Acid Methyl Ester ( FAME ) BioFuel 15 20...DRNEN. WARRGHTER FOCUSED. Summary of Incidents • US Air Force – 2 - T-37 Super Absorbent Polymer 1 C 130 FAME Fatty Methyl Ester
USDA-ARS?s Scientific Manuscript database
In addition to characteristic fatty acid methyl esters (FAMEs), biodiesel produced from Isochrysis sp. contains a significant amount (14% dry weight) of predominantly C37 and C38 longchain alkenones. These compounds are members of a class of lipids known collectively as polyunsaturated long-chain al...
40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.304 Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The...
USDA-ARS?s Scientific Manuscript database
Fatty acid methyl esters were prepared in high yield by transesterification of Osage orange (Maclura pomifera) oil. Extracted using supercritical CO2, the crude oil was initially treated with mineral acid and methanol to lower its content of free fatty acids, thus rendering it amenable to homogeneou...
40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.
Code of Federal Regulations, 2011 CFR
2011-07-01
... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 2-(3-phenylbutylidene...
40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.
Code of Federal Regulations, 2010 CFR
2010-07-01
... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 2-(3-phenylbutylidene...
Methyl esters (biodiesel) from Melanolepis multiglandulosa (alim) seed oil and their properties
USDA-ARS?s Scientific Manuscript database
Sufficient supply of feedstock oils is a major issue facing biodiesel in order to increase the still limited amounts available. In this work, the fatty acid methyl esters, also known as biodiesel, of the seed oil of Melanolepsi multiglandulosa, a member of the Euphorbiaceae family, were prepared and...
Characterization of Microalgal Lipids for Optimization of Biofuels
2014-05-09
SUBJECT TERMS algae, biofuel, biodiesel , fatty acid methyl ester, extremophile, Galdieria 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...percentages in algal culture. KEYWORDS algae, biofuel, biodiesel , fatty acid methyl ester, extremophile, Galdieria 2...Most biofuels can be categorized as biodiesel products (to include biodistillates) or bioethanol. Corn and sugar cane undergo fermentation in order
Gas chromatography-vacuum ultraviolet spectroscopy for analysis of fatty acid methyl esters.
Fan, Hui; Smuts, Jonathan; Bai, Ling; Walsh, Phillip; Armstrong, Daniel W; Schug, Kevin A
2016-03-01
A new vacuum ultraviolet (VUV) detector for gas chromatography was recently developed and applied to fatty acid methyl ester (FAME) analysis. VUV detection features full spectral acquisition in a wavelength range of 115-240nm, where virtually all chemical species absorb. VUV absorption spectra of 37 FAMEs, including saturated, monounsaturated, and polyunsaturated types were recorded. Unsaturated FAMEs show significantly different gas phase absorption profiles than saturated ones, and these classes can be easily distinguished with the VUV detector. Another advantage includes differentiating cis/trans-isomeric FAMEs (e.g. oleic acid methyl ester and linoleic acid methyl ester isomers) and the ability to use VUV data analysis software for deconvolution of co-eluting signals. As a universal detector, VUV also provides high specificity, sensitivity, and a fast data acquisition rate, making it a powerful tool for fatty acid screening when combined with gas chromatography. The fatty acid profile of several food oil samples (olive, canola, vegetable, corn, sunflower and peanut oils) were analyzed in this study to demonstrate applicability to real world samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lee, Seung Sik; Kim, Tae Hoon; Lee, Eun Mi; Lee, Min Hee; Lee, Ha Yeong; Chung, Byung Yeoup
2014-08-01
Anthocyanins are naturally occurring phenolic compounds having broad biological activities including anti-mutagenesis and anti-carcinogenesis. We studied the effects and the degradation mechanisms of the most common type of anthocyanins, cyanidin-3-rutinoside (cya-3-rut), by using gamma ray. Cya-3-rut in methanol (1mg/ml) was exposed to gamma-rays from 1 to 10kGy. We found that the reddish colour of cya-3-rut in methanol disappeared gradually in a dose-dependent manner and effectively disappeared (>97%) at 10kGy of gamma ray. Concomitantly, a new phenolic compound was generated and identified as a protocatechuic acid methyl ester by liquid chromatography, (1)H, and (13)C NMR. The formation of protocatechuic acid methyl ester increased with increasing irradiation and the amount of protocatechuic acid methyl ester formed by decomposition of cya-3-rut (20μg) at 10kGy of gamma ray was 1.95μg. In addition, the radical-scavenging activities were not affected by gamma irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Biotin Biosynthesis Gene Restricted to Helicobacter
Bi, Hongkai; Zhu, Lei; Jia, Jia; Cronan, John E.
2016-01-01
In most bacteria the last step in synthesis of the pimelate moiety of biotin is cleavage of the ester bond of pimeloyl-acyl carrier protein (ACP) methyl ester. The paradigm cleavage enzyme is Escherichia coli BioH which together with the BioC methyltransferase allows synthesis of the pimelate moiety by a modified fatty acid biosynthetic pathway. Analyses of the extant bacterial genomes showed that bioH is absent from many bioC-containing bacteria and is replaced by other genes. Helicobacter pylori lacks a gene encoding a homologue of the known pimeloyl-ACP methyl ester cleavage enzymes suggesting that it encodes a novel enzyme that cleaves this intermediate. We isolated the H. pylori gene encoding this enzyme, bioV, by complementation of an E. coli bioH deletion strain. Purified BioV cleaved the physiological substrate, pimeloyl-ACP methyl ester to pimeloyl-ACP by use of a catalytic triad, each member of which was essential for activity. The role of BioV in biotin biosynthesis was demonstrated using a reconstituted in vitro desthiobiotin synthesis system. BioV homologues seem the sole pimeloyl-ACP methyl ester esterase present in the Helicobacter species and their occurrence only in H. pylori and close relatives provide a target for development of drugs to specifically treat Helicobacter infections. PMID:26868423
Petrović, Marinko; Debeljak, Zeljko; Blazević, Nikola
2005-09-15
The gas chromatography (GC) method for enantioseparation of well-known non-steroidal anti-inflammatory drugs ibuprofen, fenoprofen and ketoprofen methyl esters mixture was developed. Best enantioseparation was performed on capillary column with heptakis-(2,3-di-O-methyl-6-O-t-butyldimethyl-silyl)-beta-cyclodextrin stationary phase and hydrogen used as a carrier gas. Initial temperature, program rate and carrier pressure were optimized to obtain best resolution between enantiomers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, L.L.; Repeta, D.J.
1994-10-01
The distributions of pyropheophorbide-a steryl esters in one-year deployments of sediment traps at two locations in the Black Sea are described. In nearly all trap samples, phorbin steryl esters (PSEs) contribute a significant portion of the total phorbin flux. The relative abundances of sterols esterified to pyropheophorbide-a varied throughout the year, and the authors suggest these changes result from the observed seasonal variation of phytoplankton species in the overlying water column. The distribution of free sterols in a one-year composite sediment trap sample closely approximates the distribution of sterols derived from the hydrolysis of sedimentary PSEs collected at an adjacentmore » site. From these results, they suggest that the distribution of sedimentary PSE sterols provides a record of sterol deposition to the sediment-water interface. Esterification of sterols to pyropheophorbide-a apparently prevents the preferential removal of 4-desmethyl sterols relative to 4-methyl sterols, and the reduction of stenols to stanols during degradation. Analysis of PSEs in a gravity core covering the last 8-10 Kyr shows that the abundance and distribution of PSEs change with downcore variations in sedimentology. Detailed analysis of PSEs in sediments may, therefore, provide a means to evaluate paleooceanographic changes in phytoplankton community structure and sterol early diagenesis. The synthesis, NMR, CI-MS, and visible spectroscopic properties of four abundance PSEs found in the Black Sea are also described.« less
Grelis, M. E.; Tabachnick, I. I. A.
1957-01-01
Several choline esters, including the imidazoleacryloyl and imidazolepropionyl compounds, have been hydrolysed by cholinesterases from various sources. The imidazolepropionyl ester was metabolized by cholinesterases obtained from human plasma, ox spleen, ox serum, and guinea-pig liver, but not by rat liver or bovine red cell cholinesterase. It is suggested the imidazolepropionylcholine or a closely related ester might be the natural substrate for “non-specific” cholinesterase. PMID:13460237
ERIC Educational Resources Information Center
Silva, Clesia C.; Silva, Ricardo O.; Navarro, Daniela M. A. F.; Navarro, Marcelo
2009-01-01
An experimental project aimed at identifying stable reaction intermediates is described. Initially, the studied reaction appears to involve the simple hydrolysis, by aqueous sodium hydroxide, of methyl 3,5-dinitrobenzoate dissolved in dimethyl sulfoxide. On mixing the substrates, however, the reaction mixture unexpectedly turns an intense red in…
UV-induced solvent free synthesis of truxillic acid-bile acid conjugates
NASA Astrophysics Data System (ADS)
Koivukorpi, Juha; Kolehmainen, Erkki
2009-07-01
The solvent free UV-induced [2 + 2] intermolecular cycloaddition of two molecules of 3α-cinnamic acid ester of methyl lithocholate produced in 99% yield of α- and ɛ-truxillic acid-bis(methyl lithocholate) isomers, which possess two structurally different potential binding sites. A prerequisite for this effective solid state reaction is a proper self-assembled crystal structure of the starting conjugate crystallized from acetonitrile. The crystallization of cinnamic acid ester of methyl lithocholate from acetonitrile produces two different crystalline forms (polymorphs), which is the reason for the solid state formation of two isomers of truxillic acid-bis(methyl lithocholate).
Kimball, F A; Frielink, R D; Porteus, S E
1978-01-01
Male Spraque-Dawley rats receiving implants of silicone rubber discs containing 1% or 2% 15(S)-15-methyl prostaglandin F2 alpha methyl ester (15-Me-PGF 2 alpha) or no prostaglandin were tested in successive breeding trials for potency and fertility. One week after implantation, discs containing 1% 15-Me-PGF2 alpha reduced potency and fertility, which returned 2 weeks after implantation. Animals receiving implants of the 2% discs were apparently impotent the 1st week following implantation; potency returned before full fertility returned 11 weeks after implantation.
Gumel, Ahmad Mohammed; Annuar, M S M
2016-06-01
Enzymatic catalysis is considered to be among the most environmental friendly processes for the synthesis of fine chemicals. In this study, lipase from Thermomyces lanuginosus (Lecitase Ultra™) was used to catalyze the synthesis of flavor esters, i.e., methyl butanoate and methyl benzoate by esterification of the acids with methanol in a microfluidic system. Maximum reaction rates of 195 and 115 mM min -1 corresponding to catalytic efficiencies (k cat /K M ) of 0.30 and 0.24 min -1 mM -1 as well as yield conversion of 54 and 41 % were observed in methyl butanoate and methyl benzoate synthesis, respectively. Catalytic turnover (k cat ) was higher for methyl butanoate synthesis. Rate of synthesis and yield decreased with increasing flow rates. For both esters, increase in microfluidic flow rate resulted in increased advective transport over molecular diffusion and reaction rate, thus lower conversion. In microfluidic synthesis using T. lanuginosus lipase, the following reaction conditions were 40 °C, flow rate 0.1 mL min -1 , and 123 U g -1 enzyme loading found to be the optimum operating limits. The work demonstrated the application of enzyme(s) in a microreactor system for the synthesis of industrially important esters.
Günther, Catrin S; Marsh, Ken B; Winz, Robert A; Harker, Roger F; Wohlers, Mark W; White, Anne; Goddard, Matthew R
2015-02-15
Fruit esters are regarded as key volatiles for fruit aroma. In this study, the effects of cold storage on volatile ester levels of 'Hort16A' (Actinidia chinensis Planch. var chinensis) kiwifruit were examined and the changes in aroma perception investigated. Cold storage (1.5°C) for two or four months of fruit matched for firmness and soluble solids concentration resulted in a significant reduction in aroma-related esters such as methyl/ethyl propanoate, methyl/ethyl butanoate and methyl/ethyl hexanoate. Levels of these esters, however, were restored by ethylene treatment (100ppm, 24h) before ripening. A sensory panel found that "tropical" and "fruit candy" aroma was stronger and "green" odour notes less intensively perceived in kiwifruit which were ethylene-treated after cold storage compared to untreated fruit. The key findings presented in this study may lead to further work on the ethylene pathway, and innovative storage and marketing solutions for current and novel fruit cultivars. Copyright © 2014 Elsevier Ltd. All rights reserved.
Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media
Arnold, Frances H.; Moore, Jeffrey C.
1998-01-01
A method for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase.
Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media
Arnold, Frances H.; Moore, Jeffrey C.
1999-01-01
A method for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase.
21 CFR 175.210 - Acrylate ester copolymer coating.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate...) The acrylate ester copolymer is a fully polymerized copolymer of ethyl acrylate, methyl methacrylate...
Formation and hydrolysis of amide bonds by lipase A from Candida antarctica; exceptional features.
Liljeblad, Arto; Kallio, Pauli; Vainio, Marita; Niemi, Jarmo; Kanerva, Liisa T
2010-02-21
Various commercial lyophilized and immobilized preparations of lipase A from Candida antarctica (CAL-A) were studied for their ability to catalyze the hydrolysis of amide bonds in N-acylated alpha-amino acids, 3-butanamidobutanoic acid (beta-amino acid) and its ethyl ester. The activity toward amide bonds is highly untypical of lipases, despite the close mechanistic analogy to amidases which normally catalyze the corresponding reactions. Most CAL-A preparations cleaved amide bonds of various substrates with high enantioselectivity, although high variations in substrate selectivity and catalytic rates were detected. The possible role of contaminant protein species on the hydrolytic activity toward these bonds was studied by fractionation and analysis of the commercial lyophilized preparation of CAL-A (Cat#ICR-112, Codexis). In addition to minor impurities, two equally abundant proteins were detected, migrating on SDS-PAGE a few kDa apart around the calculated size of CAL-A. Based on peptide fragment analysis and sequence comparison both bands shared substantial sequence coverage with CAL-A. However, peptides at the C-terminal end constituting a motile domain described as an active-site flap were not identified in the smaller fragment. Separated gel filtration fractions of the two forms of CAL-A both catalyzed the amide bond hydrolysis of ethyl 3-butanamidobutanoate as well as the N-acylation of methyl pipecolinate. Hydrolytic activity towards N-acetylmethionine was, however, solely confined to the fractions containing the truncated form of CAL-A. These fractions were also found to contain a trace enzyme impurity identified in sequence analysis as a serine carboxypeptidase. The possible role of catalytic impurities versus the function of CAL-A in amide bond hydrolysis is further discussed in the paper.
USDA-ARS?s Scientific Manuscript database
The production of fatty acid methyl esters (FAME) by direct alkali- and acid-catalyzed in situ transesterification of soybean flakes in CO2-expanded methanol was examined at various temperatures and pressures. Attempts to synthesize FAME from soy flakes via alkaline catalysis, using sodium methoxid...
Preparation of Chemicals and Bulk Drug Substances for the U.S. Army Drug Development Program.
1997-12-01
4(R)-rio (,) -dihydroartemisininoxy]-; artemisinin ; dihydroartemisinin; artelinic acid, methyl ester; artelinic acid. -I- TABLE OF CONTENTS I...acid, 4-(4-chloro- phenyl) -4(R) -[10(P) -dihydro- artemisininoxy]-......................... 49 10. Artemisinin ................................. 58 11...dihydroartemisininoxy]-; artemisinin ; dihydroartemisinin; artelinic acid, methyl ester; artelinic acid. -V- II FOREWORD opinions, interpretations, conclusions and
Code of Federal Regulations, 2010 CFR
2010-07-01
... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8485 2-Propenoic acid, 2-methyl-, (octahydro-4,7-methano-1H- indene-5-diyl)bis(methylene) ester. (a) Chemical substance and...
40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester. 721.304 Section 721.304 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.304 Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1...
40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The...
40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The...
40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The...
USDA-ARS?s Scientific Manuscript database
Hazelnut, walnut and high-oleic peanut oils were converted into fatty acid methyl esters using catalytic sodium methoxide and evaluated as potential biodiesel fuels. These feedstocks were of interest due to their adaptability to marginal lands and their lipid production potentials (780-1780 L ha-1 y...
Determination of Hammett Equation Rho Constant for the Hydrolysis of p-Nitrophenyl Benzoate Esters
ERIC Educational Resources Information Center
Keenan, Sheue L.; Peterson, Karl P.; Peterson, Kelly; Jacobson, Kyle
2008-01-01
Seven p-nitrophenyl benzoate esters (p-nitrophenyl benzoate, p-nitrophenyl m-anisate, p-nitrophenyl p-anisate, p-nitrophenyl m-chlorobenzoate, p-nitrophenyl p-chlorobenzoate, p-nitrophenyl m-toluate, p-nitrophenyl p-toluate) were synthesized and characterized by students in a second-semester organic laboratory course. In a subsequent laboratory…
Krenek, Kimberly A; Barnes, Ryan C; Talcott, Stephen T
2014-10-01
A detailed characterization of mango pulp polyphenols and other minor phytochemicals was accomplished for the first time in the cultivar 'Keitt' whereby the identification and semiquantification of five hydroxybenzoic acids, four cinnamic acids, two flavonoids, and six apocarotenoids was accomplished. Among the most abundant compounds were two monogalloyl glucosides (MGG) identified as having an ester- or ether-linked glucose, with the ester-linked moiety present in the highest concentration among nontannin polyphenolics. Additionally, the impact of side activities of three commercial cell-wall degrading enzymes during 'Keitt' mango pulp processing was evaluated to determine their role on the hydrolysis of ester- and ether-linked phenolic acids. The use of Crystalzyme 200XL reduced the concentration of ester-linked MGG by 66%, and the use of Rapidase AR 2000 and Validase TRL completely hydrolyzed ether-linked MGG after 4 h of treatment at 50 °C. Fruit quality, in vivo absorption rate, and bioactivity of mango phytochemicals rely on their chemical characterization, and characterizing changes in composition is critical for a complete understanding of in vivo mechanisms.
NASA Astrophysics Data System (ADS)
Cui, Yuxiao; Ogasawara, Shin; Tamiaki, Hitoshi
32-Carboxy-pyropheophorbides-a possessing a variety of N-substituted carbamoyl groups at the 172-position were prepared by modifying naturally occurring chlorophyll-a. 32-Methoxycarbonyl-pyropheophorbide-a was obtained via the protection of the 172-carboxy group with an allyl group, and amidated with various primary and secondary amines at the free 17-propionate residue, followed by the acidic hydrolysis of the methyl ester in the 3-substituent to give the desired pyropheophorbide-a secondary and tertiary amides, respectively, bearing the trans-32-COOH. The synthetic pigments potentially usable for dye-sensitized solar cells gave almost the same optical properties in a solution. 32-Carboxy-pyropheophorbide-a N-monosubstituted or N,N-disubstituted amides were prepared from chemical modification of chlorophyll-a, which are potentially promising as available and environmentally friendly pigments for dye-sensitized solar cells.
Zegota, H
1999-11-26
A procedure was developed to measure the content of methanol in pectins after the base-catalysed hydrolysis of galacturonic acid methyl esters and oxidation of released methanol with potassium permanganate followed by condensation of the resulting formaldehyde (HCHO) with 2,4-dinitrophenylhydrazine (DNPH) dissolved in acetonitrile. The constant yields of resultant formaldehyde 2,4-dinitrophenylhydrazone (HCHO-DNPH derivative) were obtained at molar ratios of DNPH/HCHO higher than 5. The separation of the HCHO-DNPH derivative from DNPH reagent was achieved by isocratic reversed-phase HPLC equipped with the spectrophotometric detector set at a wavelength of 351 nm. The calibration curve was linear in the methanol concentration range between 0.04 and 15 micromol/ml (R=0.9995). The total recovery from pectin solutions spiked with methanol was equal to 100.6+/-5.1%.
Improved Quantification of Free and Ester-Bound Gallic Acid in Foods and Beverages by UHPLC-MS/MS.
Newsome, Andrew G; Li, Yongchao; van Breemen, Richard B
2016-02-17
Hydrolyzable tannins are measured routinely during the characterization of food and beverage samples. Most methods for the determination of hydrolyzable tannins use hydrolysis or methanolysis to convert complex tannins to small molecules (gallic acid, methyl gallate, and ellagic acid) for quantification by HPLC-UV. Often unrecognized, analytical limitations and variability inherent in these approaches for the measurement of hydrolyzable tannins include the variable mass fraction (0-0.90) that is released as analyte, contributions of sources other than tannins to hydrolyzable gallate (can exceed >10 wt %/wt), the measurement of both free and total analyte, and lack of controls to account for degradation. An accurate, specific, sensitive, and higher-throughput approach for the determination of hydrolyzable gallate based on ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) that overcomes these limitations was developed.
Characterization of lipophilic pentasaccharides from beach morning glory (Ipomoea pes-caprae).
Pereda-Miranda, Rogelio; Escalante-Sánchez, Edgar; Escobedo-Martínez, Carolina
2005-02-01
The hexane-soluble extract from the aerial parts of the herbal drug Ipomoea pes-caprae (beach morning-glory), through preparative-scale recycling HPLC, yielded six lipophilic glycosides, namely, five new pentasaccharides of jalapinolic acid, pescaproside A (1) and pescapreins I-IV (2-5), as well as the known stoloniferin III (6). Saponification of the crude resin glycoside mixture yielded simonic acid B (7) as the glycosidic acid component, whereas the esterifying residues of the natural oligosaccharides comprised five fatty acids: 2-methylpropanoic, (2S)-methylbutyric, n-hexanoic, n-decanoic, and n-dodecanoic acids. Pescaproside A (1), an acylated glycosidic acid methyl ester, is related structurally to the product obtained from the macrolactone hydrolysis of pescapreins I-IV (2-5). All the isolated compounds (1-6), characterized through high-field NMR spectroscopy, were found to be weakly cytotoxic to a small panel of cancer cell lines.
Influence of kaolinite on chiral hydrolysis of methyl dichlorprop enantiomers*
Fang, Zhao-hua; Wen, Yue-zhong; Liu, Wei-ping
2005-01-01
The effect of kaolinite on the enzymatic chiral hydrolysis of methyl dichlorprop enantiomers ((R,S)-methyl-2-(2,4-dichlorophenoxy) propanoic acid, 2,4-DPM) was investigated using chiral gas chromatography. Compared with the control without kaolinite, the enantiomeric ratio (ER) increased from 1.35 to 8.33 and the residual ratio of 2,4-DPM decreased from 60.89% to 41.55% in the presence of kaolinite. Kaolinite likely had emotion influence on lipase activity and its enantioselectivity. Moreover, the amount of kaolinite added was also found to be a sensitive factor affecting the enantioselective hydrolysis of 2,4-DPM. Fourier transform infrared (FTIR) spectroscopy studies of the interaction of lipase with kaolinite provided insight into the molecular structure of the complex and offered explanation of the effects of kaolinite on enzymatic hydrolysis of 2,4-DPM. Spectra showed that the effect of kaolinite on the hydrolysis of 2,4-DPM was affected by adsorption of lipase on kaolinite and changes of adsorbed lipase conformation, which led to the modified enantioselectivity. PMID:16187418
Experimental and modeling study of the thermal decomposition of methyl decanoate
Herbinet, Olivier; Glaude, Pierre-Alexandre; Warth, Valérie; Battin-Leclerc, Frédérique
2013-01-01
The experimental study of the thermal decomposition of methyl decanoate was performed in a jet-stirred reactor at temperatures ranging from 773 to 1123 K, at residence times between 1 and 4 s, at a pressure of 800 Torr (106.6 kPa) and at high dilution in helium (fuel inlet mole fraction of 0.0218). Species leaving the reactor were analyzed by gas chromatography. Main reaction products were hydrogen, carbon oxides, small hydrocarbons from C1 to C3, large 1-olefins from 1-butene to 1-nonene, and unsaturated esters with one double bond at the end of the alkyl chain from methyl-2-propenoate to methyl-8-nonenoate. At the highest temperatures, the formation of polyunsaturated species was observed: 1,3-butadiene, 1,3-cyclopentadiene, benzene, toluene, indene, and naphthalene. These results were compared with previous ones about the pyrolysis of n-dodecane, an n-alkane of similar size. The reactivity of both molecules was found to be very close. The alkane produces more olefins while the ester yields unsaturated oxygenated compounds. A detailed kinetic model for the thermal decomposition of methyl decanoate has been generated using the version of software EXGAS which was updated to take into account the specific chemistry involved in the oxidation of methyl esters. This model contains 324 species and 3231 reactions. It provided a very good prediction of the experimental data obtained in jet-stirred reactor. The formation of the major products was analyzed. The kinetic analysis showed that the retro-ene reactions of intermediate unsaturated methyl esters are of importance in low reactivity systems. PMID:23710078
Yang, Heejung; Kim, Hye Seong; Jeong, Eun Ju; Khiev, Piseth; Chin, Young-Won; Sung, Sang Hyun
2013-10-01
Juvenile hormone III (JH III) is a larval metamorphosis-regulating hormone present in most insect species. JH III was first isolated from the plant, Cyperus iria L., but the presence of JH III has not been reported in other plant species. In the present study, proof of the existence of JH III and its analogues from Cananga latifolia was established. From an aqueous MeOH extract of C. latifolia stem bark, six compounds were isolated along with nine known compounds. These were identified by using spectroscopic analyses as: (2E,6E,10R)-11-butoxy-10-hydroxy-3,7,11-trimethyldodeca-2,6-dienoic acid methyl ester, (2E,6E)-3,7,11-trimethyl-10-oxododeca-2,6-dienoic acid methyl ester, (2E)-3-methyl-5-[(1S,2R,6R)-1,2,6-trimethyl-3-oxocyclohexyl]-pent-2-enoic acid methyl ester, 1β-hydroxy-3-oxo-4β, 5α,7α-H-eudesmane 11-O-α-l-rhamnopyranoside, 4-epi-aubergenone 11-O-2',3'-di-O-acetyl-α-l-rhamnopyranoside and 4-epi-aubergenone 11-O-2',4'-di-O-acetyl-α-l-rhamnopyranoside. Three of the previously known compounds, (2E,6E,10R)-10-hydroxy-3,7,11-trimethyldodeca-2,6,11-trienoaic acid methyl ester, (2E,6E,10R)-10,11-dihydroxy-3,7,11-trimethyldodeca-2,6-dienoic acid and (2E,6S)-3-methyl-6-hydroxy-6-[(2R,5R)-5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl]-hex-2-enoaic acid methyl ester have now been found in a plant species. Ultra performance liquid chromatography-quadruple time-of-flight mass spectroscopy (UPLC-QTOF/MS) analysis of the chemical constituents of C. latifolia showed that several were predominant in the sub-fractions of a C. latifolia stem bark extract. Copyright © 2013 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The mono-alkyl esters, most commonly the methyl esters, of vegetable oils, animal fats or other materials consisting mainly of triacylglycerols, often referred to as biodiesel, are an alternative to conventional petrodiesel for use in compression-ignition engines. The fatty acid esters that thus com...
Degradation and metabolic profiling for benzene kresoxim-methyl using carbon-14 tracing.
Wang, Likun; Zhao, Jinhao; Delgado-Moreno, Laura; Cheng, Jingli; Wang, Yichen; Zhang, Sufen; Ye, Qingfu; Wang, Wei
2018-10-01
Benzene kresoxim-methyl (BKM) is an effective strobilurin fungicide for controlling fungal pathogens but limited information is available on its degradation and metabolism. This study explored the degradation and metabolic profiling for BKM in soils by carbon-14 tracing and HPLC-TOF-MS 2 analyzing. Results indicated that 88%-98% of 14 C-BKM remained as parent or incomplete intermediates after 100 days. Three main radioactive metabolites (M1 to M3, ≥90%) and three subordinate radioactive metabolites (Ma to Mc, ≤2%) were observed, along with a non-radioactive metabolite M4. The main intermediates were further confirmed by self-synthesizing their authentic standards, and BKM was proposed to degrade via pathways including: 1) the oxidative cleavage of the acrylate double bond to give BKM-enol (M1); 2) the hydrolysis of the methyl ester to give BKM acid (M2); 3) the cleavage of M1 and M2 to yield Mc, which could be decarboxylated to give M3; and 4) the ether cleavage between aromatic rings to form M4. This study builds a solid metabolic profiling method for strobilurins and gives a deeper insight into the eventual fate of BKM by demonstrating its transformation pathways for the first time, which may also be beneficial for understanding the risks of other analogous strobilurins. Copyright © 2018 Elsevier B.V. All rights reserved.
Nawabi, Parwez; Bauer, Stefan; Kyrpides, Nikos; Lykidis, Athanasios
2011-01-01
The production of low-cost biofuels in engineered microorganisms is of great interest due to the continual increase in the world's energy demands. Biodiesel is a renewable fuel that can potentially be produced in microbes cost-effectively. Fatty acid methyl esters (FAMEs) are a common component of biodiesel and can be synthesized from either triacylglycerol or free fatty acids (FFAs). Here we report the identification of a novel bacterial fatty acid methyltransferase (FAMT) that catalyzes the formation of FAMEs and 3-hydroxyl fatty acid methyl esters (3-OH-FAMEs) from the respective free acids and S-adenosylmethionine (AdoMet). FAMT exhibits a higher specificity toward 3-hydroxy free fatty acids (3-OH-FFAs) than FFAs, synthesizing 3-hydroxy fatty acid methyl esters (3-OH-FAMEs) in vivo. We have also identified bacterial members of the fatty acyl-acyl carrier protein (ACP) thioesterase (FAT) enzyme family with distinct acyl chain specificities. These bacterial FATs exhibit increased specificity toward 3-hydroxyacyl-ACP, generating 3-OH-FFAs, which can subsequently be utilized by FAMTs to produce 3-OH-FAMEs. PhaG (3-hydroxyacyl ACP:coenzyme A [CoA] transacylase) constitutes an alternative route to 3-OH-FFA synthesis; the coexpression of PhaG with FAMT led to the highest level of accumulation of 3-OH-FAMEs and FAMEs. The availability of AdoMet, the second substrate for FAMT, is an important factor regulating the amount of methyl esters produced by bacterial cells. Our results indicate that the deletion of the global methionine regulator metJ and the overexpression of methionine adenosyltransferase result in increased methyl ester synthesis. PMID:21926202
Statistical optimization for lipase production from solid waste of vegetable oil industry.
Sahoo, Rajesh Kumar; Kumar, Mohit; Mohanty, Swati; Sawyer, Matthew; Rahman, Pattanathu K S M; Sukla, Lala Behari; Subudhi, Enketeswara
2018-04-21
The production of biofuel using thermostable bacterial lipase from hot spring bacteria out of low-cost agricultural residue olive oil cake is reported in the present paper. Using a lipase enzyme from Bacillus licheniformis, a 66.5% yield of methyl esters was obtained. Optimum parameters were determined, with maximum production of lipase at a pH of 8.2, temperature 50.8°C, moisture content of 55.7%, and biosurfactant content of 1.693 mg. The contour plots and 3D surface responses depict the significant interaction of pH and moisture content with biosurfactant during lipase production. Chromatographic analysis of the lipase transesterification product was methyl esters, from kitchen waste oil under optimized conditions, generated methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate.
Yan, Xiaobo; Wu, Shaoming; Li, Nan; Lü, Huadong; Fu, Wusheng
2013-02-01
Fatty acid esters of chloropropanediols are a kinds of newly emerged food contaminants, especially 3-monochloropropane-1,2-diol (3-MCPD) esters that have been detected in many foodstuffs such as infant formula and edible oils at relatively high levels. Based on the Tolerable Dose Intake (TDI) of 3-MCPD, the intake of 3-MCPD from 3-MCPD esters may cause the health risk to human beings. The researches for the analysis of 3-MCPD esters have been carried out in some institutes abroad, but there were only a few in China. This paper reviews the methods for the determination of 3-MCPD esters in fat-rich foods, including the extraction, hydrolysis, the derivatization of 3-MCPD esters, the total amount of 3-MCPD esters and the amounts of monoesters and diesters of 3-MCPD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Wychen, Stefanie; Ramirez, Kelsey; Laurens, Lieve M. L.
2016-01-13
This procedure is based on a whole biomass transesterification of lipids to fatty acid methyl esters to represent an accurate reflection of the potential of microalgal biofuels. Lipids are present in many forms and play various roles within an algal cell, from cell membrane phospholipids to energy stored as triacylglycerols.
Code of Federal Regulations, 2010 CFR
2010-04-01
... RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing...-octadecadienoic acids). The food additive, methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10... conditions: (a) The food additive is manufactured by the reaction of refined sunflower oil with methanol to...
Code of Federal Regulations, 2013 CFR
2013-04-01
... RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing...-octadecadienoic acids). The food additive, methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10... conditions: (a) The food additive is manufactured by the reaction of refined sunflower oil with methanol to...
Code of Federal Regulations, 2012 CFR
2012-04-01
... RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing...-octadecadienoic acids). The food additive, methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10... conditions: (a) The food additive is manufactured by the reaction of refined sunflower oil with methanol to...
Code of Federal Regulations, 2011 CFR
2011-04-01
... RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing...-octadecadienoic acids). The food additive, methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10... conditions: (a) The food additive is manufactured by the reaction of refined sunflower oil with methanol to...
Code of Federal Regulations, 2014 CFR
2014-04-01
... RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing...-octadecadienoic acids). The food additive, methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10... conditions: (a) The food additive is manufactured by the reaction of refined sunflower oil with methanol to...
Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil.
Ghayal, Dyneshwar; Pandit, Aniruddha B; Rathod, Virendra K
2013-01-01
The present work demonstrates the application of a hydrodynamic cavitation reactor for the synthesis of biodiesel with used frying oil as a feedstock. The synthesis involved the transesterification of used frying oil (UFO) with methanol in the presence of potassium hydroxide as a catalyst. The effect of geometry and upstream pressure of a cavitating orifice plate on the rate of transesterification reaction has been studied. It is observed that the micro level turbulence created by hydrodynamic cavitation somewhat overcomes the mass transfer limitations for triphasic transesterification reaction. The significant effects of upstream pressure on the rate of formation of methyl esters have been seen. It has been observed that flow geometry of orifice plate plays a crucial role in process intensification. With an optimized plate geometry of 2mm hole diameter and 25 holes, more than 95% of triglycerides have been converted to methyl esters in 10 min of reaction time with cavitational yield of 1.28 × 10(-3) (Grams of methyl esters produced per Joule of energy supplied). The potential of UFO to produce good quality methyl esters has been demonstrated. Copyright © 2012 Elsevier B.V. All rights reserved.
Kwon, J Y; Jeong, H W; Kim, H K; Kang, K H; Chang, Y H; Bae, K S; Choi, J D; Lee, U C; Son, K H; Kwon, B M
2000-08-01
Selective inhibition against the yeast MetAP2 (methionine aminopeptidase type 2) was detected in the fermentation broth of a fungus F2757 that was later identified as Penicillium janczewskii. A new compound cis-fumagillin methyl ester (1) was isolated from the diazomethane treated fermentation extracts together with the known compound fumagillin methyl ester (2). The cis-fumagillin methyl ester, a stereoisomer of fumagillin methyl ester at the C2'-C3' position of the aliphatic side chain, selectively inhibited growth of the map1 mutant yeast strain (MetAP1 deletion strain) at a concentration as low as 1 ng. However, the wild type yeast w303 and the mutant map2 (MetAP2 deleted) strains were resistant up to 10 microg of the compound. In enzyme experiments, compound 1 inhibited the MetAP2 with an IC50 value of 6.3 nM, but it did not inhibit the MetAP1 (IC50 >200 microM). Compound 2 also inhibited the MetAP2 with an IC50 value of 9.2 nM and 105 microM against MetAP1.
Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohl, G.H.
1995-12-31
The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuelmore » supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.« less
Cubas, A L V; Machado, M M; Pinto, C R S C; Moecke, E H S; Dutra, A R A
2016-01-01
This article aims to describe an alternative and innovative methodology to transform waste, frying oil in a potential energy source, the biodiesel. The biodiesel was produced from fatty acids, using a waste product of the food industry as the raw material. The methodology to be described is the corona discharge plasma technology, which offers advantages such as acceleration of the esterification reaction, easy separation of the biodiesel and the elimination of waste generation. The best conditions were found to be an oil/methanol molar ratio of 6:1, ambient temperature (25 °C) and reaction time of 110 min and 30 mL of sample. The acid value indicates the content of free fatty acids in the biodiesel and the value obtained in this study was 0.43 mg KOH/g. Peaks corresponding to octadecadienoic acid methyl ester, octadecanoic acid methyl ester and octadecenoic acid methyl ester, from the biodiesel composition, were identified using GC-MS. A major advantage of this process is that the methyl ester can be obtained in the absence of chemical catalysts and without the formation of the co-product (glycerin). Copyright © 2015 Elsevier Ltd. All rights reserved.
Yan, Wei; Li, Furong; Wang, Li; Zhu, Yaxin; Dong, Zhiyang; Bai, Linhan
2017-03-01
A new gene encoding a lipase (designated as Lip-1 ) was identified from a metagenomic bacterial artificial chromosome(BAC) library prepared from a concentrated water sample collected from a hot spring field in Niujie, Eryuan of Yunnan province in China. The open reading frame of this gene encoded 622 amino acid residues. It was cloned, fused with the oleosin gene and over expressed in Escherichia coli to prepare immobilized lipase artificial oil body AOB-sole-lip-1. The monomeric Sole-lip-1 fusion protein presented a molecular mass of 102.4 kDa. Enzyme assays using olive oil and methanol as the substrates in petroleum ether confirmed its transesterification activity. Hexadecanoic acid methyl ester, 8,11-Octadecadienoic acid methyl ester, 8-Octadecenoic acid methyl ester, and Octadecanoic acid methyl ester were detected. It showed favorable transesterification activity with optimal temperature 45 °C. Besides, the maximal biodiesel yield was obtained when the petroleum ether system as the organic solvent and the substrate methanol in 350 mmol/L (at a molar ratio of methanol of 10.5:1) and the water content was 1%. In light of these advantages, this lipase presents a promising resource for biodiesel production.
Shibamoto, Shigeaki; Gooley, Andrew; Yamamoto, Kouhei
2015-01-01
Using a strongly polar cyanopropyl capillary column we have investigated the gas chromatography (GC) separation behaviors of 24 octadecadienoic acid methyl ester (18:2ME) isomers compared against saturated methyl stearate (18:0ME) and arachidic acid methyl ester (20:0ME), and the dependency on the GC column temperature. The 24 isomers were obtained by performing cis-to trans-isomerization of six regioisomers: five of the 18:2ME isomers were prepared by the partial reduction of methyl α-linolenate and methyl γ-linolenate C18 trienoic acids with different double bond positions, whereas the sixth isomer, 18:2ME (c5, c9), was obtained from a raw constituent fatty acid methyl ester (FAME) sample extracted from Japanese yew seeds. There are no reference standards commercially available for 18:2ME isomers, and in elucidating the elution order of these isomers this study should help the future identification of cis- and trans-type of 18:2ME. We also report the identification method of cis- and trans-type of FAME using equivalent chain lengths and attempt the identification of cis- and trans-type of 18:2ME isomers from partially hydrogenated canola oil.
Khayoon, M S; Olutoye, M A; Hameed, B H
2012-05-01
Methyl esters were synthesized from crude karanj oil (CKO) by single step esterification with methanol using sulfuric acid (H(2)SO(4)) and phosphoric acid (H(3)PO(4)) as catalysts in a homogeneous batch process. H(3)PO(4) was less active than H(2)SO(4) during the process as it presented very low ester yields (<20%) for the various molar ratios of fatty acid to alcohol studied. With H(2)SO(4) as catalyst, the yield was as high as 89.8% at 65°C after 5h. The fatty acids profile of the oil (palmitic acid: ≈ 12%; stearic acid: ≈ 8%; oleic acid: ≈ 52% and linolenic acid of 17%) and the different reactivities of the acids were responsible for the observed differences in conversion to methyl esters. The findings attained with this study might contribute to the economic utilization of a non-edible feedstock. Copyright © 2012 Elsevier Ltd. All rights reserved.
[Inhibition of oxidation of unsaturated fatty acid methyl esters by essential oils].
Misharina, T A; Alinkina, E S; Vorobjeva, A K; Terenina, M B; Krikunova, N I
2016-01-01
The essential oils from 16 various spice plants were studied as natural antioxidants for the inhibition of autooxidation of polyunsaturated fatty acids methyl esters isolated from linseed oil. The content of methyl oleate, methyl linoleate, and methyl linolenoate after 1, 2, and 4 months of autooxidation were used as criteria to estimate the antioxidant efficiencies of essential oils. In 4 months, 92% of the methyl linolenoate and 79% of the methyl linoleate were oxidized in a control sample of a model system. It was found that the most effective antioxidants were essential oils from clove bud, cinnamon leaves, and oregano. They inhibited autooxidation of methyl linolenoate by 76–85%. The antioxidant properties of these essential oils were due to phenols— eugenol, carvacrol, and thymol. Essential oil from coriander did not contain phenols, but it inhibited methyl linolenoate oxidation by 38%. Essential oils from thyme, savory, mace, lemon, and tea tree inhibited methyl linolenoate oxidation by 17–24%. The other essential oils had no antioxidant properties.
A density functional theory model of mechanically activated silyl ester hydrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pill, Michael F.; Schmidt, Sebastian W.; Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel
2014-01-28
To elucidate the mechanism of the mechanically activated dissociation of chemical bonds between carboxymethylated amylose (CMA) and silane functionalized silicon dioxide, we have investigated the dissociation kinetics of the bonds connecting CMA to silicon oxide surfaces with density functional calculations including the effects of force, solvent polarizability, and pH. We have determined the activation energies, the pre-exponential factors, and the reaction rate constants of candidate reactions. The weakest bond was found to be the silyl ester bond between the silicon and the alkoxy oxygen atom. Under acidic conditions, spontaneous proton addition occurs close to the silyl ester such that neutralmore » reactions become insignificant. Upon proton addition at the most favored position, the activation energy for bond hydrolysis becomes 31 kJ mol{sup −1}, which agrees very well with experimental observation. Heterolytic bond scission in the protonated molecule has a much higher activation energy. The experimentally observed bi-exponential rupture kinetics can be explained by different side groups attached to the silicon atom of the silyl ester. The fact that different side groups lead to different dissociation kinetics provides an opportunity to deliberately modify and tune the kinetic parameters of mechanically activated bond dissociation of silyl esters.« less
Kinetic analysis of butyrylcholinesterase-catalyzed hydrolysis of acetanilides.
Masson, Patrick; Froment, Marie-Thérèse; Gillon, Emilie; Nachon, Florian; Darvesh, Sultan; Schopfer, Lawrence M
2007-09-01
The aryl-acylamidase (AAA) activity of butyrylcholinesterase (BuChE) has been known for a long time. However, the kinetic mechanism of aryl-acylamide hydrolysis by BuChE has not been investigated. Therefore, the catalytic properties of human BuChE and its peripheral site mutant (D70G) toward neutral and charged aryl-acylamides were determined. Three neutral (o-nitroacetanilide, m-nitroacetanilide, o-nitrophenyltrifluoroacetamide) and one positively charged (3-(acetamido) N,N,N-trimethylanilinium, ATMA) acetanilides were studied. Hydrolysis of ATMA by wild-type and D70G enzymes showed a long transient phase preceding the steady state. The induction phase was characterized by a hysteretic "burst". This reflects the existence of two enzyme states in slow equilibrium with different catalytic properties. Steady-state parameters for hydrolysis of the three acetanilides were compared to catalytic parameters for hydrolysis of esters giving the same acetyl intermediate. Wild-type BuChE showed substrate activation while D70G displayed a Michaelian behavior with ATMA as with positively charged esters. Owing to the low affinity of BuChE for amide substrates, the hydrolysis kinetics of neutral amides was first order. Acylation was the rate-determining step for hydrolysis of aryl-acetylamide substrates. Slow acylation of the enzyme, relative to that by esters may, in part, be due suboptimal fit of the aryl-acylamides in the active center of BuChE. The hypothesis that AAA and esterase active sites of BuChE are non-identical was tested with mutant BuChE. It was found that mutations on the catalytic serine, S198C and S198D, led to complete loss of both activities. The silent variant (FS117) had neither esterase nor AAA activity. Mutation in the peripheral site (D70G) had the same effect on esterase and AAA activities. Echothiophate inhibited both activities identically. It was concluded that the active sites for esterase and AAA activities are identical, i.e. S198. This excludes any other residue present in the gorge for being the catalytic nucleophile pole.
Lawley, P. D.; Shah, S. A.
1972-01-01
1. The following methods for hydrolysis of methyl-14C-labelled RNA, and for chromatographic isolation and determination of the products, were investigated: enzymic digestion to nucleosides at pH6 or 8; alkaline hydrolysis and conversion into nucleosides; hydrolysis by acid to pyrimidine nucleotides and purine bases, or completely to bases; chromatography on Dowex 50 (NH4+ form) at pH6 or 8.9, or on Dowex 50 (H+ form), or on Sephadex G-10. 2. The suitability of the various methods for determination of methylation products was assessed. The principal product, 7-methylguanosine, was unstable under the conditions used for determinations of nucleosides. 3- and 7-Methyladenine and 3- and 7-methylguanine are best determined as bases; 1-methyladenine and 3-methylcytosine can be isolated as either nucleosides or bases; O6-methylguanine is unstable under the acid hydrolysis conditions used and can be determined as the nucleoside; 3-methyluracil was detected, but may be derived from methylation of the ionized form of uracil. 3. Differences between the patterns of methylation of RNA and homopolyribonucleotides by the N-methyl-N-nitroso compounds and dimethyl sulphate were found: the nitroso compounds were able to methylate O-6 of guanine, were relatively more reactive at N-7 of adenine and probably at N-3 of guanine, but less reactive at N-1 of adenine, N-3 of cytosine and probably at N-3 of uridine. They probably reacted more with the ribose–phosphate chain, but no products from this were identified. 4. The possible influences of these differences on biological action of the methylating agents is discussed. Nitroso compounds may differ principally in their ability to induce miscoding in the Watson–Crick sense by reaction at O-6 of guanine. Both types of agent may induce miscoding to a lesser extent through methylation at N-3 of guanine; both can methylate N atoms, presumably preventing Watson–Crick hydrogen-bonding. N-Methyl-N-nitrosourea can degrade RNA, possibly through phosphotriester formation, but this mechanism is not proven. PMID:4673570
Linear free energy relationships for selected phthalate esters were used to estimate the rate constants for hydrolysis, biolysis, sediment-water partition coefficients, and biosorption required for modeling. The fate and transport behavior of dimethyl, diethyl, di-n-butyl, di-n-o...
USDA-ARS?s Scientific Manuscript database
Jojoba (Simmondsia chinensis) is the only plant species known to use liquid wax esters (WE) as a primary seed storage reserve. Upon germination, WE hydrolysis releases very long-chain fatty alcohols, which must be oxidised to fatty acids by the sequential action of a fatty alcohol oxidase (FAO) and ...
USE OF ROUGH SETS AND SPECTRAL DATA FOR BUILDING PREDICTIVE MODELS OF REACTION RATE CONSTANTS
A model for predicting the log of the rate constants for alkaline hydrolysis of organic esters has been developed with the use of gas-phase min-infrared library spectra and a rule-building software system based on the mathematical theory of rough sets. A diverse set of 41 esters ...
Anisimova, V A; Tolpygin, I E; Spasov, A A; Serdiuk, T S; Sukhov, A G
2011-01-01
Ethyl esters of (9-subtituted-imidazo[1,2-a]benzimidazolyl-2)acetic acids were synthesized. The chemical properties of these esters (hydrolysis, decarboxylation, hydrazinolysis) and biological activity (fungicidal, antimicrobial, antiarrhythmic activity, and also affects on the brain rhythmogenesis) of the prepared compounds were studied.
Guo, Lei; Qing Li, Guo
2009-01-01
Olfactory perception of myristic, palmitic, stearic and oleic acids and their corresponding methyl esters by Asian corn borer moths, Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae) was investigated. It was found that mated females with both antennae amputated, in contrast to intact females and females with one antenna removed, could not discriminate between simultaneously provided control filter papers and filters treated with a blend of oviposition-deterring fatty acids. Oviposition by mated females exhibited a very marked periodicity, with all egg masses deposited during the scotophase and most egg masses laid before midnight. According to the peak and trough period of oviposition, electroantennogram (EAG) responses from both mated females and males to the four fatty acids and four methyl esters were tested within two two-hour periods from 3 to 5 hours after the start of darkness and from 1 to 3 hours after light onset, respectively. Significant EAG responses above solvent and background were elicited by all test chemicals from females, and by most of the test compounds from males. EAG values of all test chemicals from mated females were not statistically different between the two test periods except for methyl myristate. Conversely, EAG responses from mated males to myristic acid, stearic acid and their methyl esters significantly differed between the two test periods. PMID:20053122
Macromolecular Colloids of Diblock Poly(amino acids) That Bind Insulin.
Constancis; Meyrueix; Bryson; Huille; Grosselin; Gulik-Krzywicki; Soula
1999-09-15
The diblock polymer poly(l-leucine-block-l-glutamate), bLE, was synthesized by acid hydrolysis of the ester poly(l-leucine-block-l-methyl glutamate). During the hydrolysis reaction the leucine block precipitates from the reaction mixture, forming nanosized particulate structures. These particles can be purified and further suspended in water or in 0.15 M phosphate saline buffer (PBS) to give stable, colloidal dispersions. TEM analysis shows the predominant particle form to be that of platelets with a diameter of 200 nm. Smaller cylindrical or spherical particles form a relatively minor fraction of the sample. After fractionation, analysis shows the platelets to be compositionally rich in leucine, while the spheres are glutamate-rich. (1)H NMR, CD, and X-ray diffraction indicate that the core of the platelets is composed of crystalline, helical leucine segments. The poly(l-glutamate) polyelectrolyte brush extending out from the two faces of the disk stabilizes individual particles from flocculation. At pH 7.4, the nanoparticles (platelets and cylinders) spontaneously adsorb proteins, such as insulin, directly from solution. Partial desorption of the protein in its native configuration can be induced by simple dilution. The reversibility of the insulin-nanoparticle complex is the basis for a potential new delivery system. Copyright 1999 Academic Press.
Liu, Yuping; Chen, Haitao; Yin, Decai; Sun, Baoguo
2010-07-29
Five sulfur-containing flavor compounds were synthesized for the first time by the reaction of 4-ethyloctanoyl chloride with sulfur-containing alcohols or mercaptans. The synthesized compounds are 3-(methylthio)propyl 4-ethyloctanoate, 2-methyl-3-tetrahydro-furanthiol 4-ethyloctanoate, 4-methyl-5-thiazoleethanol 4-ethyloctanoate, 2-furan-methanethiol 4-ethyloctanoate and 2-methyl-3-furanthiol 4-ethyloctanoate. These five synthetic sulfur-containing ester flavor compounds all have meaty odor and might be used in foods if approved for this purpose in the future.
He, Hongliang; Lancina, Michael G.; Wang, Jing; Korzun, William J.; Yang, Hu; Ghosh, Shobha
2017-01-01
Current atherosclerosis treatment strategies primarily focus on limiting further cholesteryl esters (CE) accumulation by reducing endogenous synthesis of cholesterol in the liver. No therapy is currently available to enhance the removal of CE, a crucial step to reduce the burden of the existing disease. Given a central role of hepatic cholesteryl ester hydrolase (CEH) in intrahepatic hydrolysis of CE and subsequent removal of the resulting free cholesterol, in this work, we applied galactose-functionalized polyamidoamine (PAMAM) dendrimer G5 (Gal-G5) for hepatocyte-specific delivery of CEH expression vector. The data presented herein show increased specific uptake of Gal-G5 by the hepatocytes in vitro and in vivo. Furthermore, the upregulated CEH expression in the hepatocytes significantly enhanced intracellular hydrolysis of HDL-CE and subsequent conversion/secretion of hydrolyzed free cholesterol (FC) as bile acids. Increased CEH expression in the liver significantly increased the flux of HDL-CE to biliary as well as fecal FC and bile acids. Meanwhile, Gal-G5 did not induce hepatic or renal toxicity. It was not immunotoxic. Because of these encouraging pre-clinical testing results, using this safe and highly efficient hepatocyte-specific gene delivery platform to enhance the hepatic processes involved in cholesterol elimination is a promising strategy for alleviation of atherosclerosis. PMID:28349866
Kumar, Vikas; Bharate, Sonali S; Vishwakarma, Ram A
2016-09-20
Rohitukine is a medicinally important natural product which has inspired the discovery of two anticancer clinical candidates. Rohitukine is highly hydrophilic in nature which hampers its oral bioavailability. Thus, herein our objective was to improve the drug-like properties of rohitukine via prodrug-strategy. Various ester prodrugs were synthesized and studied for solubility, lipophilicity, chemical stability and enzymatic hydrolysis in plasma/esterase. All prodrugs displayed lower aqueous solubility and improved lipophilicity compared with rohitukine, which was in accordance with the criteria of compounds in drug-discovery. The stability of synthesized prodrugs was evaluated in buffers at different pH, SGF, SIF, rat plasma and in esterase enzyme. The rate of hydrolysis in all incubation media was dependent primarily on the acyl promoieties. Hexanoyl ester prodrug of rohitukine, 3d, was stable under chemical conditions; however it was completely hydrolyzed to rohitukine, in plasma and in esterase in 4h. Hexanoate ester 3d appeared to be the most promising prodrug as it remained intact at gastric/intestinal pH and was completely transformed to the parent compound in plasma as desired for an ideal prodrug. The data presented herein, will help in designing prodrugs with desired physicochemical properties in future in structurally similar chemotypes. Copyright © 2016 Elsevier B.V. All rights reserved.
Hrádková, Iveta; Merkl, Roman; Šmidrkal, Jan; Kyselka, Jan; Filip, Vladimír
2013-01-01
Antioxidant properties of mono- and dihydroxyphenolic acids and their alkyl esters were examined, with emphasis on the relationship between their molecular structure and antioxidant activity. Test media with different tocopherol level were used for determining the oxidative stability: original refined sunflower oil (total tocopherols 149.0 mg/kg), partially tocopherol-stripped sunflower oil (total tocopherols 8.7 mg/kg) and distilled fatty acid methyl esters (FAME) as a tocopherol-free medium. The chemical reaction of tocopherols with diazomethane tested for the purpose to eliminate their antioxidant activity failed due to the negligible degree of methylation of hydroxyl group in the tocopherol molecule. Caffeic acid and protocatechuic acid (3,4-dihydroxyphenolic acids) and their alkyl esters were found to be more active antioxidants than monohydroxyphenolic acid (p-hydroxybenzoic acid), 2,5-dihydroxyphenolic acid (gentisic acid), 3-methoxy-4-hydroxyphenolic acids (vanillic and ferulic acids) and their corresponding alkyl esters. Naturally present tocopherols in refined sunflower oil proved to have a synergistic effect on gentisic acid but not on its alkyl esters. In contrast, tocopherols showed an antagonistic effect on alkyl esters of caffeic acid, because their protection factors decreased with increasing level of tocopherols in the test medium. Moreover, the antioxidant activity of these alkyl esters decreased with increasing length of their alkyl chain in conformity with the polar paradox hypothesis. Practical applications: Tocopherols as naturally present antioxidants influence considerably the antioxidant activity of other antioxidants added to plant oils used as a test medium. Distilled fatty acid methyl esters prepared from refined sunflower oil may serve as an optimal tocopherol-free test medium. Some alkyl esters of phenolic acids were evaluated to be applicable as natural more lipophilic antioxidants in comparison with phenolic acids. PMID:23997655
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 1 2014-04-01 2014-04-01 false 1,4-Bis[(2-hydroxyethyl)amino]-9,10-anthracenedione bis(2-methyl-2-propenoic)ester copolymers. 73.3100 Section 73.3100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM...
USDA-ARS?s Scientific Manuscript database
The paper provides an analysis of 100% peanut fatty acid methyl esters (FAMEs) and peanut FAME/ULSD#2 blends (P20, P35, and P50) in an indirect injection (IDI) diesel engine (for auxiliary power unit applications) in comparison to ultralow sulfur diesel no. 2 (ULSD#2) at various speeds and 100% load...
Vijaya Saradhi, U V R; Prabhakar, S; Jagadeshwar Reddy, T; Murty, M R V S
2007-07-20
In the present paper, we report an improved ion-pair solid-phase extraction (IP-SPE) method for the analysis of alkylphosphonic acids, namely, methyl, ethyl and propylphosphonic acids, present in the aqueous sample. The aqueous sample was mixed with an ion-pair reagent, phenyltrimethylammonium hydroxide (PTMAH) and passed through activated charcoal SPE cartridge. The retained chemicals in the cartridge were extracted with methanol and analysed by gas chromatography-mass spectrometry (GC-MS) under the electron impact ionization (EI) mode. The analytes were converted to their methyl esters by pyrolytic methylation in the hot GC injection port. The recoveries of alkylphosphonic acids were above 95% and the minimum detection limits were as low as 10 ng/mL. The recovery of the test chemicals was tested with solvents, dichloromethane, n-hexane, ethyl acetate, acetone, acetonitrile and methanol. The chemicals could be efficiently extracted by the hydrophilic solvents. The method did not work at the highly acidic pH (when acidified with dilute HCl) but worked well from pH 4.0 to 14.0. The present method was also tested with other tetra-(methyl, ethyl, propyl and n-butyl)ammonium hydroxides. The test chemicals were not converted to their methyl and ethyl esters with tetramethyl and tetraethylammonium hydroxides, whereas they were converted to their corresponding propyl and n-butyl esters with tetrapropyl and tetra(n-butyl)ammonium hydroxides. The method was also applied to two highly cross-linked polymeric sorbents DSC-6S and Oasis HLB. The recovery of the chemicals on these sorbents was observed to be poor. Methylation using phenyltrimethylammonium hydroxide is non-hazardous and advantageous over methylation using diazomethane. The method was applied to the analysis of aqueous samples given in one of the official proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons and all the spiked chemicals were identified as methyl esters.
Ishikawa, Ken; Bellomo, Rinaldo; May, Clive N
2011-04-01
In experimental hyperdynamic sepsis, renal function deteriorates despite renal vasodilatation and increased renal blood flow. Because nitric oxide is increased in sepsis and participates in renal blood flow control, we investigated the effects of intrarenal Nω-nitro-L-arginine methyl ester, a nonspecific nitric oxide synthase inhibitor, in mild and severe sepsis. Prospective crossover and randomized control interventional studies. University-affiliated research institute. Thirty-two merino ewes. Examination of responses to intrarenal infusion of Nω-nitro-L-arginine methyl ester for 8 hrs in unilaterally nephrectomized normal sheep and in sheep administered Escherichia coli. : In normal sheep, Nω-nitro-L-arginine methyl ester decreased renal blood flow (301 ± 30 to 228 ± 26 mL/min) and creatinine clearance (40.0 ± 5.8 to 31.1 ± 2.8 mL/min), whereas plasma creatinine increased, but fractional excretion of sodium was unchanged. In sheep with nonhypotensive hyperdynamic sepsis, plasma creatinine increased and there were decreases in creatinine clearance (34.5 ± 4.6 to 20.1 ± 3.7 mL/min) and fractional excretion of sodium despite increased renal blood flow. Infusion of Nω-nitro-L-arginine methyl ester normalized renal blood flow and increased urine output, but creatinine clearance did not improve and plasma creatinine and fractional excretion of sodium increased. In sheep with severe hypotensive sepsis, creatinine clearance decreased further (31.1 ± 5.4 to 16.0 ± 1.7 mL/min) despite increased renal blood flow. Infusion of Nω-nitro-L-arginine methyl ester restored mean arterial pressure and reduced renal blood flow but did not improve plasma creatinine or creatinine clearance. In hyperdynamic sepsis, with or without hypotension, creatinine clearance decreased despite increasing renal blood flow. Intrarenal Nω-nitro-L-arginine methyl ester infusion reduced renal blood flow but did not improve creatinine clearance. These data indicate that septic acute kidney injury is not the result of decreased renal blood flow nor is it improved by nonspecific nitric oxide synthase inhibition.
Synthesis and amphiphilic properties of decanoyl esters of tri- and tetraethylene glycol.
Zhu, Ying; Molinier, Valérie; Queste, Sébastien; Aubry, Jean-Marie
2007-08-15
Well-defined decanoyl triethylene glycol ester and decanoyl tetraethylene glycol ester were synthesized and compared to their ether counterparts (C(10)E(4) and C(10)E(3)). Their physicochemical properties i.e. critical micelle concentrations (CMC), cloud points, and equilibrium surface tensions were determined. Binary water-surfactant phase behavior was also studied by polarized optical microscopy. The stability of the ester bond was determined by investigating alkaline hydrolysis of the compounds. It was found that CMC, cloud point and equilibrium surface tension are roughly the same for corresponding ethers and esters. In the binary diagram, the esters form only lamellar phases, the area of which is smaller than that of the ether counterparts. These different behaviors can be related to the modification of the molecular conformation induced by the replacement of the ether group by the ester group.
Seabrook, G. R.; Main, M.; Bowery, B.; Wood, N.; Hill, R. G.
1992-01-01
1. The depolarizations elicited by seven neurokinin receptor agonists were examined in both rat and guinea-pig superior cervical ganglia by use of grease-gap methodology in the presence of tetrodotoxin (0.1 microM). Responses were normalised with respect to 1 microM eledoisin. 2. The rank order of agonist potency in the rat ganglia was senktide greater than substance P greater than substance P methyl ester = eleidosin = Sar-Met-substance P greater than neurokinin B greater than neurokinin A, whereas in guinea-pig superior cervical ganglion (SCG) the rank order was senktide greater than Sar-Met-substance P greater than neurokinin B = eledoisin = substance P methyl ester. The concentration-effect curves for substance P and neurokinin A in guinea-pig ganglia were biphasic which precluded the determination of meaningful potency values. 3. The maximal depolarization achieved by subtype selective ligands was different between these two species. On rat and guinea-pig SCG, the NK3-selective ligand, senktide, produced a maximal depolarization of 27% and 274% respectively, whereas the NK1-selective ligand, substance P methyl ester, produced depolarizations of 77% and 64% respectively. 4. The depolarizations induced by substance P methyl ester and senktide in either species were unaffected by atropine (1 microM), suggesting a lack of involvement of presynaptic neurokinin receptors in the generation of the response. 5. The potency of substance P methyl ester, senktide, and neurokinin A were unaffected by pretreating ganglia with the peptidase inhibitors bacitracin (40 micrograms ml-1), leupeptin (4 micrograms ml-1), and chymostatin (2 micrograms ml-1). Similarly, these peptidase inhibitors had no effect on the maximal depolarizations achieved by any of these agonists.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1380375
Zhang, Ji-Wen; Li, Sheng-Kun; Wu, Wen-Jun
2009-01-08
The essential oils of the aerial parts of Ocimum basilicum Linn.var. pilosum (Willd.) Benth., an endemic medicinal plant growing in China, was obtained by hydrodistillation and analysed by GC-MS. Fifteen compounds, representing 74.19% of the total oil were identified. The main components were as follows: linalool (29.68%), (Z)-cinnamic acid methyl ester (21.49%), cyclohexene (4.41%), alpha- cadinol (3.99%), 2,4-diisopropenyl-1-methyl-1-vinylcyclohexane (2.27%), 3,5-pyridine-dicarboxylic acid, 2,6-dimethyl-diethyl ester (2.01%), beta-cubebene (1.97%), guaia-1(10),11-diene (1.58%), cadinene (1.41%) (E)-cinnamic acid methyl ester (1.36%) and beta-guaiene (1.30%). The essential oils showed significant antifungal activity against some plant pathogenic fungi.
Complexes of polyadenylic acid and the methyl esters of amino acids
NASA Technical Reports Server (NTRS)
Khaled, M. A.; Mulins, D. W., Jr.; Swindle, M.; Lacey, J. C., Jr.
1983-01-01
A study of amino acid methyl esters binding to polyadenylic acid supports the theory that the genetic code originated through weak but selective affinities between amino acids and nucleotides. NMR, insoluble complex analysis, and ultraviolet spectroscopy are used to illustrate a correlation between the hydrophybicities of A amino acids and their binding constants, which, beginning with the largest, are in the order of Phe (having nominally a hydrophobic AAA anticodon), Ile, Leu, Val and Gly (having a hydrophilic anticodon with no A). In general, the binding constants are twice the values by Reuben and Polk (1980) for monomeric AMP, which suggests that polymer amino acids are interacting with only one base. No real differences are found betwen poly A binding for free Phe, Phe methyl ester or Phe amide, except that the amide value is slightly lower.
Is there evidence for man-made nanoparticles in the Dutch environment?
Bäuerlein, Patrick S; Emke, Erik; Tromp, Peter; Hofman, Jan A M H; Carboni, Andrea; Schooneman, Ferry; de Voogt, Pim; van Wezel, Annemarie P
2017-01-15
Only very limited information is available on measured environmental concentrations of nanoparticles. In this study, several environmental compartments in The Netherlands were probed for the presence of nanoparticles. Different types of water were screened for the presence of inorganic (Ag, Au, TiO 2 ) and organic nanoparticles (C 60 , C 70 , [6,6]-phenyl-C 61 -butyric acid octyl ester, [6,6]-phenyl-C 61 -butyric acid butyl ester, [6,6]-phenyl-C 61 -butyric acid methyl ester, [6,6]-bis-phenyl-C 61 -butyric acid methyl ester, [6,6]-phenyl-C 71 -butyric acid methyl ester, [6,6]-thienyl-C 61 -butyric acid methyl ester). Air samples were analysed for the presence of nanoparticulate Mo, Ag, Ce, W, Pd, Pt, Rh, Zn, Ti, Si, B as well as Fe and Cu. ICP-MS, Orbitrap-HRMS, SEM and EDX were used for this survey. Water samples included dune and bank filtrates, surface waters and ground waters as well as influents, effluents and sludge of sewage treatment plants (STPs), and surface waters collected near airports and harbours. Air samples included both urban and rural samples. C 60 was detected in air, sewage treatment plants, influents, effluents and sludge, but in no other aqueous samples despite the low detection limit of 0.1ng/L. C 70 and functionalised fullerenes were not detected at all. In STP sludge and influent the occurrence of Ag and Au nanoparticles was verified by SEM/EDX and ICP-MS. In air up to about 25m% of certain metals was found in the nanosize fraction. Overall, between 1 and 6% of the total mass from metals in the air samples was found in the size fraction <100nm. Copyright © 2016 Elsevier B.V. All rights reserved.
Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media
Arnold, F.H.; Moore, J.C.
1999-05-25
A method is disclosed for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase. 43 figs.
Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media
Arnold, F.H.; Moore, J.C.
1998-04-21
A method is disclosed for isolating and identifying modified para-nitrobenzyl esterases. These enzymes exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase. 43 figs.
Preparation of polyol esters based on vegetable and animal fats.
Gryglewicz, S; Piechocki, W; Gryglewicz, G
2003-03-01
The possibility of using some natural fats: rapeseed oil, olive oil and lard, as starting material for the preparation of neopentyl glycol (NPG) and trimethylol propane (TMP) esters is reported. The syntheses of final products were performed by alcoholysis of fatty acid methyl esters, obtained from natural fats studied, with the appropriate polyhydric alcohol using calcium methoxide as a catalyst. The basic physicochemical properties of the NPG and TMP esters synthesized were the following: viscosity at 40 degrees C in the range of 13.5-37.6 cSt, pour point between -10.5 and -17.5 degrees C and very high viscosity indices, higher than 200. Generally, the esters of neopentyl alcohols were characterized by higher stability in thermo-oxidative conditions in comparison to native triglycerides. Due to the low content of polyunsaturated acids, the olive oil based esters showed the highest thermo-oxidative resistance. Also, methyl esters of fatty acids of lard would constitute a good raw material for the synthesis of lubricating oils, provided that their saturated acids content was lowered. This permits synthesis of NPG and TMP esters with a lower pour point (below -10 degrees C) than natural lard (+33 degrees C).
Kinetic Studies and Product Characterization during the Basic Hydrolysis of Glyceryl Nitrate Esters
1979-08-01
elaborate instrumentation, which was considered too time consuming and costly to construct for this study. 25 The quantitative estimation of the calcium...0.6 [ l-exp(- Kfc ) 1 Figure 21. Formation of N03~ during hydrolysis of 1-MNG in aqueous Ca(0H)2 solution at 25°C (See Tables 2 and 8) 6 5
High-Molecular Compounds (Selected Articles).
1987-09-03
Polyphenylmethacrylate (PFMA) is very convenient object for studying effect of adjacent links in reaction of hydrolysis of ethers/esters of polymethacrylic acid ...centrifuged and they dried by lyophili: £ drying. The obtained polymethacrylic acid they converted into the polymethyl methacrylate (PMMA) by...Since reactivity of polymethacrylates depends on their micro-tact (f], during the kinetic 4. investigations of hydrolysis it is desirable to study
NASA Astrophysics Data System (ADS)
Slamet, Ibadurrohman, Muhammad; Wulandari, Pangiastika Putri
2017-11-01
Liquid detergent with combination of MES surfactant and TiO2 nanoparticles to remove and degrade the dirt in the form of methylene blue and produce waste with the lowest surfactant residual concentration has been done. The formation of MES is carried out by esterification and transesterification of crude palm oil, sulfonation, refining, and neutralization. The photocatalyst TiO2 nanoparticles is added as an additive to improve surfactant performance in removing dirt and degrading organic compounds. MES formation is performed by varying the mole ratio of the reactants in the esterification and transesterification reactions, and the mole ratios between methyl esters and NaHSO3 during the sulfonation reaction. Variations of MES surfactant and TiO2 nanoparticles compositions were performed to obtain detergent stability. Data analysis technique in this research is characterization of methyl ester, MES surfactant, and detergent using UV-Vis spectrophotometer instrument, FTIR, GC-MS, and LC-MS. The optimum conditions in the esterification and transesterification process were each mole ratio of 1: 6 between CPO and methanol based on the highest conversion, 99%. The optimum condition of the sulfonation process is the 1: 1.5 mole ratio between methyl ester and NaHSO3 based on the lowest surface tension value, which is about 36 dyne/cm.
Gas chromatographic separation of fatty acid methyl esters on weakly polar capillary columns.
Yamamoto, Kouhei; Kinoshita, Akemi; Shibahara, Akira
2008-02-22
It was found that weakly polar columns, routinely used in capillary GC for analyzing sterols, food additives, etc., can also be used for separating fatty acid methyl esters (FAMEs). On these columns, FAMEs elute in the order of their unsaturation. The equivalent chain-length value of methyl 22:6 is below 23.00. This means FAMEs within a carbon chain length, having up to six double bonds, elute before the next (one carbon longer) saturated FAME elutes. Peak identification is easy. Weakly polar columns are compatible in both GC and GC/MS systems.
Lithium Ion Electrolytes and Lithium Ion Cells With Good Low Temperature Performance
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar V. (Inventor); Smart, Marshall C. (Inventor)
2014-01-01
There is provided in one embodiment of the invention an electrolyte for use in a lithium ion electrochemical cell. The electrolyte comprises a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), an ester cosolvent, and a lithium salt. The ester cosolvent comprises methyl propionate (MP), ethyl propionate (EP), methyl butyrate (MB), ethyl butyrate (EB), propyl butyrate (PB), or butyl butyrate (BB). The electrochemical cell operates in a temperature range of from about -60 C to about 60 C. In another embodiment there is provided a lithium ion electrochemical cell using the electrolyte of the invention.
Evaluation of the antibacterial efficacy of diesters of azelaic acid.
Charnock, Colin; Brudeli, Bjarne; Klaveness, Jo
2004-04-01
A number of diesters of the topical dermatosis treatment azelaic (nonanedioic) acid were prepared and tested for antibacterial effect. Two esters, bis-[(hexanoyloxy)methyl] nonanedioate and especially bis-[(butanoyloxy)methyl] nonanedioate showed promising activity against acne related bacteria in vitro. No activity of azelaic acid was detected in Mueller Hinton II agar at pH 7.3 when using the agar diffusion method, whereas both esters gave zones of growth inhibition. At pH 5.6, activity of azelaic acid was detected. At this pH, the zones of inhibition and MIC values obtained with azelaic acid were smaller than those of bis-[(butanoyloxy)methyl] nonanedioate for all test organisms. A preparation for topical use containing 20% (w/w) bis-[(butanoyloxy)methyl] nonanedioate, and the commercially available Skinoren (20% (w/w) azelaic acid), were compared for antibacterial effect against cutaneous bacteria using contact plate analyses of the skin. Though Skinoren was usually most effective, the differences were not statistically significant. Furthermore, bacteria surviving contact with the topical preparations were invariably more sensitive to the ester than to azelaic acid upon subculturing onto agar (pH 5.6) containing either preparation at 0.2-0.7 mg/ml. This might indicate that other factors, such as the composition of the cream base, mitigate the antibacterial activity of the ester. It is proposed that the pharmacological and microbiological properties of bis-[(butanoyloxy)methyl] nonanedioate are worthy of further study based on an extended screening of acne sufferers.
Biodiesel: Fuel properties, its “Design” and a source of “Designer” fuel
USDA-ARS?s Scientific Manuscript database
The fuel properties of biodiesel, a biogenic alternative to petrodiesel, are largely determined by its component fatty acid alkyl esters, most commonly methyl esters. These esters have vastly different properties. The properties of biodiesel are an aggregate of the properties of its components and t...
Characterization of a Feruloyl Esterase from Lactobacillus plantarum
Esteban-Torres, María; Reverón, Inés; Mancheño, José Miguel; de las Rivas, Blanca
2013-01-01
Lactobacillus plantarum is frequently found in the fermentation of plant-derived food products, where hydroxycinnamoyl esters are abundant. L. plantarum WCFS1 cultures were unable to hydrolyze hydroxycinnamoyl esters; however, cell extracts from the strain partially hydrolyze methyl ferulate and methyl p-coumarate. In order to discover whether the protein Lp_0796 is the enzyme responsible for this hydrolytic activity, it was recombinantly overproduced and enzymatically characterized. Lp_0796 is an esterase that, among other substrates, is able to efficiently hydrolyze the four model substrates for feruloyl esterases (methyl ferulate, methyl caffeate, methyl p-coumarate, and methyl sinapinate). A screening test for the detection of the gene encoding feruloyl esterase Lp_0796 revealed that it is generally present among L. plantarum strains. The present study constitutes the description of feruloyl esterase activity in L. plantarum and provides new insights into the metabolism of hydroxycinnamic compounds in this bacterial species. PMID:23793626
Characterization of a feruloyl esterase from Lactobacillus plantarum.
Esteban-Torres, María; Reverón, Inés; Mancheño, José Miguel; de Las Rivas, Blanca; Muñoz, Rosario
2013-09-01
Lactobacillus plantarum is frequently found in the fermentation of plant-derived food products, where hydroxycinnamoyl esters are abundant. L. plantarum WCFS1 cultures were unable to hydrolyze hydroxycinnamoyl esters; however, cell extracts from the strain partially hydrolyze methyl ferulate and methyl p-coumarate. In order to discover whether the protein Lp_0796 is the enzyme responsible for this hydrolytic activity, it was recombinantly overproduced and enzymatically characterized. Lp_0796 is an esterase that, among other substrates, is able to efficiently hydrolyze the four model substrates for feruloyl esterases (methyl ferulate, methyl caffeate, methyl p-coumarate, and methyl sinapinate). A screening test for the detection of the gene encoding feruloyl esterase Lp_0796 revealed that it is generally present among L. plantarum strains. The present study constitutes the description of feruloyl esterase activity in L. plantarum and provides new insights into the metabolism of hydroxycinnamic compounds in this bacterial species.
Aroma enhancement and enzymolysis regulation of grape wine using β-glycosidase
Zhu, Feng-Mei; Du, Bin; Li, Jun
2014-01-01
Adding β-glycosidase into grape wine for enhancing aroma was investigated using gas chromatography-mass spectrometry (GC-MS) and Kramer sensory evaluation. Compared with the extract from control wines, the extract from enzyme-treated wines increased more aromatic compounds using steam distillation extraction (SDE) and GC-MS analyses. Theses aromatic compounds were as follows: 3-methyl-1-butanol formate, 3-pentanol, furfural, 3-methyl-butanoic acid, 2-methyl-butanoic acid, 3-hydroxy-butanoic acid ethyl ester, hexanoic acid, hexanoic acid ethyl ester, benzyl alcohol, octanoic acid, octanoic acid ethyl ester, dodecanoic acid, and ethyl ester. The enzymolysis regulation conditions, including enzymolysis temperature, enzymolysis time, and enzyme amount, were optimized through L9(34) orthogonal test. Kramer sensory evaluation was performed by an 11-man panel of judges. The optimum enzymolysis regulation conditions were found to be temperature of 45°C, enzymolysis time of 90 min, and enzyme amount of 58.32 U/mL grape wine, respectively. The Kramer sensory evaluation supported that the enzyme-treated wines produced a stronger fragrance. PMID:24804072
Woydziak, Zachary R; Fu, Liqiang; Peterson, Blake R
2014-01-01
Fluorinated fluorophores are valuable tools for studies of biological systems. However, amine-reactive single-isomer derivatives of these compounds are often very expensive. To provide an inexpensive alternative, we report a practical synthesis of 4-carboxy-Pennsylvania Green methyl ester. Derivatives of this hydrophobic fluorinated fluorophore, a hybrid of the dyes Oregon Green and Tokyo Green, are often cell permeable, enabling labeling of intracellular targets and components. Moreover, the low pKa of Pennsylvania Green (4.8) confers bright fluorescence in acidic cellular compartments such as endosomes, enhancing its utility for chemical biology investigations. To improve access to the key intermediate 2,7-difluoro-3,6-dihydroxyxanthen-9-one, we subjected bis-(2,4,5-trifluorophenyl)methanone to iterative nucleophilic aromatic substitution by hydroxide on scales of > 40 g. This intermediate was used to prepare over 15 grams of pure 4-carboxy-Pennsylvania Green methyl ester in 28% overall yield without requiring chromatography. This compound can be converted into the amine reactive N -hydroxysuccinimidyl ester in essentially quantitative yield for the synthesis of a wide variety of fluorescent molecular probes.
Enzymatic hydrolysis of cellulose pretreated with ionic liquids and N-methyl Morpholine N-Oxide
NASA Astrophysics Data System (ADS)
Yau Li, Elizabeth
The effect of N-methyl Morpholine N-Oxide (NMMO), 1-ethyl-3-methyl-imidazolium acetate ([Emim]Ac) and 1-ethyl-3-methyl-imidazolium diethyl phosphate ([Emim]DEP) on pretreatment and enzymatic hydrolysis of dissolving pulp was studied. X-ray diffraction measurements of regenerated cellulose from these solvents showed that solvent pretreatment reduces the crystallinity of cellulose. However, crystallinity might not be a major factor affecting the in-situ enzymatic hydrolysis of cellulose in these solvents. Although regenerated cellulose from [Emim]DEP showed the lowest crystallinity index (˜15%), in-situ enzymatic hydrolysis of cellulose dissolved in NMMO showed the highest cellulose conversion (68% compared to 65% for [Emim]Ac and 37% for [Emim]DEP at enzyme loading of 122 FPU/g). Moreover, results showed that enzymes could tolerate up to NMMO concentration of 100 g/L and still yield full conversion of cellulose. Since it is not necessary to remove all the NMMO, less amount of water will be required for the washing step and thus the process will be more economical. The HCH-1 model was used in an attempt to model the enzymatic hydrolysis of cellulose in NMMO. With the incorporation of NMMO inhibition and a factor to account for unreacted cellulose, the model was able to correlate the experimental data of the enzymatic hydrolysis of cellulose (6.68 g/L) at various NMMO concentrations (0, 50, 100, 150 and 250 g/L). However, the experimental results also suggest that NMMO might be deactivating the enzymes rather than inhibiting them. More studies need to be done at varying cellulose, NMMO and enzyme concentrations to find the exact nature of this deactivation of NMMO.
Banno, Taisuke; Kuroha, Rie; Toyota, Taro
2012-01-17
Self-propelled oil droplets in a nonequilibrium system have drawn much attention as both a primitive type of inanimate chemical machinery and a dynamic model of the origin of life. Here, to create the pH-sensitive self-propelled motion of oil droplets, we synthesized cationic surfactants containing hydrolyzable ester linkages. We found that n-heptyloxybenzaldehyde oil droplets were self-propelled in the presence of ester-containing cationic surfactant. In basic solution prepared with sodium hydroxide, oil droplets moved as molecular aggregates formed on their surface. Moreover, the self-propelled motion in the presence of the hydrolyzable cationic surfactant lasted longer than that in the presence of nonhydrolyzable cationic surfactant. This is probably due to the production of a fatty acid by the hydrolysis of the ester-containing cationic surfactant and the subsequent neutralization of the fatty acid with sodium hydroxide. A complex surfactant was formed in the aqueous solution because of the cation and anion combination. Because such complex formation can induce both a decrease in the interfacial tension of the oil droplet and self-assembly with n-heptyloxybenzaldehyde and lauric acid in the aqueous dispersion, the prolonged movement of the oil droplet may be explained by the increase in heterogeneity of the interfacial tension of the oil droplet triggered by the hydrolysis of the ester-containing surfactant. © 2011 American Chemical Society
Thermal Decomposition of Potential Ester Biofuels. Part I: Methyl Acetate and Methyl Butanoate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porterfield, Jessica P.; Bross, David H.; Ruscic, Branko
2017-06-09
Two methyl esters have been examined as models for the pyrolysis of biofuels. Dilute samples (0.06 - 0.13%) of methyl acetate (CH 3COOCH 3) and methyl butanoate (CH 3CH 2CH 2COOCH 3) were entrained in (He, Ar) carrier gas and decomposed in a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from the methyl esters were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures in the pulsed micro-reactor were roughly 20 Torr and residence times through the reactors were approximately 25 - 150 µs. Reactor temperatures ofmore » 300 – 1600 K were explored. Decomposition of CH 3COOCH 3 commences at 1000 K and the initial products are (CH 2=C=O and CH 3OH). As the micro-reactor is heated to 1300 K, a mixture of (CH 2=C=O and CH 3OH, CH 3, CH 2=O, H, CO, CO 2) appears. The thermal cracking of CH 3CH 2CH 2COOCH 3 begins at 800 K with the formation of (CH 3CH 2CH=C=O, CH 3OH). By 1300 K, the pyrolysis of methyl butanoate yields a complex mixture of (CH 3CH 2CH=C=O, CH 3OH, CH 3, CH 2=O, CO, CO 2, CH 3CH=CH 2, CH 2CHCH 2, CH 2=C=CH 2, HCCCH 2, CH 2=C=C=O, CH 2=CH 2, HCΞCH, CH 2=C=O). Based on the results from the thermal cracking of methyl acetate and methyl butanoate, we predict several important decomposition channels for the pyrolysis of fatty acid methyl esters, R CH 2-COOCH 3. The lowest energy fragmentation will be a 4-center elimination of methanol to form the ketene, RCH=C=O. At higher temperatures, concerted fragmentation to radicals will ensue to produce a mixture of species: (RCH 2 + CO 2 + CH 3) and (RCH 2 + CO + CH 2=O + H). Thermal cracking of the β C-C bond of the methyl ester will generate the radicals (R and H) as well as CH 2=C=O + CH 2=O. The thermochemistry of methyl acetate and its fragmentation products have been obtained via the Active Thermochemical Tables (ATcT) approach, resulting in Δ fH 298(CH 3COOCH 3) = -98.7 ± 0.2 kcal mol -1, Δ fH 298(CH 3CO 2) = -45.7 ± 0.3 kcal mol -1, and Δ fH 298(COOCH 3) = -38.3 ± 0.4 kcal mol -1.« less
Strahm, Emmanuel; Rane, Anders; Ekström, Lena
2014-01-01
Most androgenic drugs are available as esters for a prolonged depot action. However, the enzymes involved in the hydrolysis of the esters have not been identified. There is one study indicating that PDE7B may be involved in the activation of testosterone enanthate. The aims are to identify the cellular compartments where the hydrolysis of testosterone enanthate and nandrolone decanoate occurs, and to investigate the involvement of PDE7B in the activation. We also determined if testosterone and nandrolone affect the expression of the PDE7B gene. The hydrolysis studies were performed in isolated human liver cytosolic and microsomal preparations with and without specific PDE7B inhibitor. The gene expression was studied in human hepatoma cells (HepG2) exposed to testosterone and nandrolone. We show that PDE7B serves as a catalyst of the hydrolysis of testosterone enanthate and nandrolone decanoate in liver cytosol. The gene expression of PDE7B was significantly induced 3- and 5- fold after 2 h exposure to 1 μM testosterone enanthate and nandrolone decanoate, respectively. These results show that PDE7B is involved in the activation of esterified nandrolone and testosterone and that the gene expression of PDE7B is induced by supra-physiological concentrations of androgenic drugs.
Mung bean nuclease: mode of action and specificity vs synthetic esters of 3′-nucleotides
Kole, R.; Sierakowska, Halina; Szemplińska, Halina; Shugar, D.
1974-01-01
Mung bean nuclease hydrolyzes synthetic esters of 3′-nucleotides to nucleosides and phosphate esters; esters of 2′-nucleotides, and 2′→ 5′ internucleotide linkages, are resistant. Esters of ribonucleotides are cleaved at 100-fold the rate for deoxyribonucleotides, the increased rate being due to presence of the 2′-hydroxyl and not to differences in conformation. Introduction of a 5′-substituent leads to a 3-fold increase in rate. The rates of hydrolysis vary up to 10-fold with the nature of the base, in the order adenine > hypoxanthine > uracil; and up to 6-fold with the nature of the ester radical. This form of cleavage of esters of 3′-nucleotides is also characteristic for nuclease-3′-nucleotidase activities from potato tubers and wheat, suggesting that one type of enzyme is responsible for all these activities. PMID:10793750
Ikai, K; Takesako, K; Shiomi, K; Moriguchi, M; Umeda, Y; Yamamoto, J; Kato, I; Naganawa, H
1991-09-01
Aureobasidin A, a new antifungal antibiotic, was isolated from the culture medium of Aureobasidium pullulans R106. Aureobasidin A was a cyclic depsipeptide consisting of eight alpha-amino acid units and one hydroxy acid unit. The structures of the units were found by acid hydrolysis of the antibiotic to be 2(R)-hydroxy-3(R)-methylpentanoic acid, beta-hydroxy-N-methyl-L-valine, N-methyl-L-valine, L-proline, allo-L-isoleucine, N-methyl-L-phenylalanine, L-leucine, and L-phenyl-alanine. The sequence of the units was identified by NMR and FAB-MS of the products from the alkaline hydrolysis of aureobasidin A.
Code of Federal Regulations, 2013 CFR
2013-07-01
... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10271 3′H-Cyclopropa[1,9][5,6]fullerene-C60-Ih-3′-butanoic acid, 3′-phenyl-, methyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 3′H-Cyclopropa[1,9][5,6...
Code of Federal Regulations, 2014 CFR
2014-07-01
... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10271 3′H-Cyclopropa[1,9][5,6]fullerene-C60-Ih-3′-butanoic acid, 3′-phenyl-, methyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 3′H-Cyclopropa[1,9][5,6...
Occurrence of fatty acid chlorohydrins in jellyfish lipids.
White, R H; Hager, L P
1977-11-01
Fatty acid chlorohydrins are characterized as lipid components of an edible jellyfish. The four isomers 9-chloro-10-hydroxypalmitic acid, 10-chloro-9-hydroxypalmitic acid, 9-chloro-10-hydroxystearic acid, and 10-chloro-9-hydroxystearic acid were identified by gas chromatography-mass spectrometry comparison of the methyl esters and their trimethylsilyl derivatives with known synthetic samples. Two additional isomers, 11-chloro-12-hydroxystearic acid and 12-chloro-11-hydroxystearic acid, were also found in the lipid by the identification of the expected mass spectral fragments of the trimethylsilyl (Me3Si) derivative of their methyl esters. These six isomeric compounds represented approximately 1.4% of the total extractable jellyfish lipid and were released from the lipid as methyl esters by boron trifluoride-methanol treatment. These isomers account for only about 30% of the organic chlorine in the lipid. Evidence is given that the remaining organic chlorine is also present as fatty acid chlorohydrins containing more than one hydroxyl group.
NASA Astrophysics Data System (ADS)
Bhargavi, G.; Nageswara Rao, P.; Renganathan, S.
2018-03-01
Biodiesel production was carried out from Thespesia populnea seed oil through rapid insitu transesterification. Influence of reaction parameters such as catalyst type and concentration, methanol to biomass ratio, co-solvent volume, temperature and agitation speed on conversion of oil into methyl esters was investigated. The effect of different co-solvents on conversion was evaluated. Optimum methyl ester conversion of 97.80% was achieved at 1.5wt% of KOH catalyst, 5.5:1 (v/w) methanol to biomass ratio, 25vol%tetrahydrofuranco-solvent, 60°C and 500 rpm within 120min of reaction time. Fuel properties of produced methyl esters were well fitted within the limits of ASTMD 6751 standards. Considering the properties of produced biodiesel, Thespesia populnea seed derived biodiesel can be used as potential alternate to fossil diesel fuel.
Enhancement effect on the chemiluminescence of acridinium esters under neutral conditions.
Nakazono, Manabu; Nanbu, Shinkoh
2018-03-01
Enhancement effect on the chemiluminescence of acridinium ester derivatives under neutral conditions was investigated. Additions of phenols did not enhance the chemiluminescence intensities of acridinium ester derivatives in the presence of horseradish peroxidase and hydrogen peroxide. Additions of cetyltrimethylammonium bromide apparently enhanced the chemiluminescence intensities of phenyl 10-methyl-10λ 4 -acridine-9-carboxylate derivatives with electron-withdrawing groups at the 4-position of the phenyl group. In particular, the chemiluminescence intensity of 4-(trifluoromethyl)phenyl 10-methyl-10λ 4 -acridine-9-carboxylate trifluoromethanesulfonate salt was 5.5 times stronger in the presence of cetyltrimethylammonium bromide than in its absence at pH 7. The chemiluminescence intensity of 3,4-dicyano-phenyl 10-methyl-10λ 4 -acridine-9-carboxylate trifluoromethanesulfonate salt was 46 times stronger in the presence of cetyltrimethylammonium bromide at pH 7 than in its absence at pH 10. Copyright © 2017 John Wiley & Sons, Ltd.
Optimized Carbonate and Ester-Based Li-Ion Electrolytes
NASA Technical Reports Server (NTRS)
Smart, Marshall; Bugga, Ratnakumar
2008-01-01
To maintain high conductivity in low temperatures, electrolyte co-solvents have been designed to have a high dielectric constant, low viscosity, adequate coordination behavior, and appropriate liquid ranges and salt solubilities. Electrolytes that contain ester-based co-solvents in large proportion (greater than 50 percent) and ethylene carbonate (EC) in small proportion (less than 20 percent) improve low-temperature performance in MCMB carbon-LiNiCoO2 lithium-ion cells. These co-solvents have been demonstrated to enhance performance, especially at temperatures down to 70 C. Low-viscosity, ester-based co-solvents were incorporated into multi-component electrolytes of the following composition: 1.0 M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (1:1:8 volume percent) [where X = methyl butyrate (MB), ethyl butyrate EB, methyl propionate (MP), or ethyl valerate (EV)]. These electrolyte formulations result in improved low-temperature performance of lithium-ion cells, with dramatic results at temperatures below 40 C.
Distribution of C22-, C24- and C26-alpha-unit-containing mycolic acid homologues in mycobacteria.
Kaneda, K; Imaizumi, S; Yano, I
1995-01-01
There are three mycolic acid homologues with C22-, C24- and C26-alpha-units in Mycobacterium. In order to reveal the composition and distribution of these homologues in each subclass and molecular species of mycolic acids and to compare them with the composition of constitutive non-polar fatty acids (free and bound forms), we have separated non-polar fatty acids and each subclass of mycolic acids from 21 mycobacterial species by thin-layer chromatography, and analyzed non-polar fatty acid methyl esters by gas chromatography (GC) and the cleavage products of methyl mycolate by pyrolysis GC. We further performed mass chromatographic analysis of trimethylsilyl (TMS) ether derivatives of mycolic acid methyl esters by monitoring [B-29]+ ions (loss of CHO from the alpha-branched-chain structure of mycolic acids) of m/z 426, 454 and 482 which are attributed to C22-, C24- and C26-alpha-units of TMS ether derivatives of methyl mycolates, respectively, (Kaneda, K. et al, J. Clin. Microbiol. 24: 1060-1070, 1986). By pyrolysis GC, C22:0, C24:0 and C26:0 fatty acid methyl esters generated by the C2-C3 cleavage of C22-, C24- and C26-alpha-unit-containing mycolic acid methyl esters, respectively, were detected. Their proportion was almost the same among subclasses of mycolic acids in every Mycobacterium and also similar to the proportion of constitutive non-polar C22:0, C24:0 and C26:0 fatty acids. By mass chromatography, the composition and distribution of C22- and C24-alpha-unit-containing homologues were revealed to be similar between alpha- and alpha'-mycolic acids in every Mycobacterium.(ABSTRACT TRUNCATED AT 250 WORDS)
Hydrolysis of Methylal Catalyzed by Ion Exchange Resins in Aqueous Media
NASA Astrophysics Data System (ADS)
He, Gaoyin; Dai, Fangfang; Shi, Midong; Li, Qingsong; Yu, Yingmin
2018-05-01
In the present work, the chemical equilibrium and kinetics of methylal (PODE1) hydrolysis catalyzed by ion-exchange resin in aqueous solutions were investigated. The study covers temperatures between 333.15 and 363.15 K at various starting compositions covering (PODE1 + MeOH)/water molar ratio ranges from 0.5 to 1.5 in a time scale. On the basis of the experimental results, a mole fraction-based model of the chemical equilibrium and a pseudohomogeneous model are proposed to fit data based on true amount of monomeric formaldehyde. It has been demonstrated that the hydrolysis of PODE1 is slightly endothermic with the enthalpy 8.19 kJ/mol and the rate determining step. Finally, a feed-forward artificial neural networks (ANN) model is developed to model the concentration change of methanol in aqueous solutions. The results showed that the predicted data from designed ANN model were in good agreement with the experimental data with the coefficient ( R 2) of 0.98. Designed ANN provides a reliable method for modeling the hydrolysis reaction of methylal (PODE1).
De Yan, Hong; Zhang, Yin Jun; Liu, Hong Cai; Zheng, Jian Yong; Wang, Zhao
2013-01-01
p-Nitrophenyl esters with a short-chain carboxylic group, such as p-nitrophenyl acetate (p-NPA) and p-nitrophenyl butyrate (p-NPB), could be effectively hydrolyzed by ammonium salts. p-Nitrophenyl esters were usually used as substrates to assay the lipase/esterase activity. Ammonium sulfate precipitation was often used to purify proteins, and some ammonium salts were usually used as nitrogen sources or inorganic salts for the lipase/esterase production. To study the effect of ammonium salts on the assay of the lipase/esterase activity, the contributing factors of hydrolysis of p-NPA/p-NPB catalyzed by ammonium salts were investigated. The lipase activities were compared in the presence and absence of ammonium sulfate. The hydrolysis reaction could be catalyzed under neutral and alkaline circumstances. The hydrolysis rate increased with the increase in the reaction temperature or the concentration of ammonium ion. When p-NPA was employed as the substrate for the analysis of the lipase/esterase activity, the effect of ammonium sulfate on the analysis could be neutralized by setting a control when the concentration of ammonium sulfate was less than 40% saturation. However, when the concentration of ammonium sulfate increased from 40% to 100% saturation, the enzyme activities decreased about 13-40%, which could not be ignored for accurate analysis of the enzyme activity. © 2013 International Union of Biochemistry and Molecular Biology, Inc.
Willats, W G; Orfila, C; Limberg, G; Buchholt, H C; van Alebeek, G J; Voragen, A G; Marcus, S E; Christensen, T M; Mikkelsen, J D; Murray, B S; Knox, J P
2001-06-01
Homogalacturonan (HG) is a multifunctional pectic polysaccharide of the primary cell wall matrix of all land plants. HG is thought to be deposited in cell walls in a highly methyl-esterified form but can be subsequently de-esterified by wall-based pectin methyl esterases (PMEs) that have the capacity to remove methyl ester groups from HG. Plant PMEs typically occur in multigene families/isoforms, but the precise details of the functions of PMEs are far from clear. Most are thought to act in a processive or blockwise fashion resulting in domains of contiguous de-esterified galacturonic acid residues. Such de-esterified blocks of HG can be cross-linked by calcium resulting in gel formation and can contribute to intercellular adhesion. We demonstrate that, in addition to blockwise de-esterification, HG with a non-blockwise distribution of methyl esters is also an abundant feature of HG in primary plant cell walls. A partially methyl-esterified epitope of HG that is generated in greatest abundance by non-blockwise de-esterification is spatially regulated within the cell wall matrix and occurs at points of cell separation at intercellular spaces in parenchymatous tissues of pea and other angiosperms. Analysis of the properties of calcium-mediated gels formed from pectins containing HG domains with differing degrees and patterns of methyl-esterification indicated that HG with a non-blockwise pattern of methyl ester group distribution is likely to contribute distinct mechanical and porosity properties to the cell wall matrix. These findings have important implications for our understanding of both the action of pectin methyl esterases on matrix properties and mechanisms of intercellular adhesion and its loss in plants.
Huang, Changliang; Zhang, Hongye; Zhao, Yanfei; Chen, Sha; Liu, Zhimin
2012-11-15
Diatomite supported Pd-M (M=Cu, Co, Ni) bimetal nanocatalysts with various metal compositions were prepared and characterized by means of X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was demonstrated that the metal nanoparticles were uniformly distributed on the support, and their size was centered around 8 nm with a relatively narrow size distribution. The catalysts were used to catalyze hydrogenation of long-chain aliphatic esters, including methyl palmitate, methyl stearate, and methyl laurate. It was indicated that the all diatomite-supported Pd-based bimetal catalysts were active to the selective hydrogenation of long-chain esters to corresponding alcohols at 270°C, originated from the synergistic effect between the metal particles and the diatomite support. For the selective hydrogenation of methyl palmitate, Pd-Cu/diatomite with metal loading of 1% and Pd/Cu=3 displayed the highest performance, giving a 1-hexadecanol yield of 82.9% at the substrate conversion of 98.8%. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Iriepa, I.; Bellanato, J.
2014-09-01
A series of α and β-esters bearing a 3-methyl-3-azabicyclo[3.2.1]octane moiety as well as methyl and aryl substituents were synthesized and studied by 1H and 13C NMR spectroscopies. In CDCl3 solution, at room temperature, a chair-envelope conformation for the bicycle moiety with the N-CH3 group in equatorial position with respect to the chair ring is proposed for both, α and β-esters. The chair conformation of the piperidine ring is puckered at C8 in the α-epimers and it is flattened at N3, in the β-epimers. Free rotation of the acyloxy group around the C8sbnd O bond has also been deduced. Analgesic activity of four of these substances was studied. 8β-Benzoyloxy-3-methyl-3-azabicyclo[3.2.1]octane demonstrated significant analgesic activity in the hot plate test compared to morphine. By measuring the rectal temperature in mice, results also showed a significant antipyretic activity of this compound.
Lee, Byung Chul; Kim, Dong Hyun; Lee, Iljung; Choe, Yearn Seong; Chi, Dae Yoon; Lee, Kyung-Han; Choi, Yong; Kim, Byung-Tae
2008-06-26
We synthesized 16-cyclopentadienyl tricarbonyl 99mTc 16-oxo-hexadecanoic acid (99mTc-CpTT-16-oxo-HDA, 1) and investigated its potential as a radiotracer for evaluating fatty acid metabolism in myocardium. Radiotracer 1 was synthesized in 22.6 +/- 6.3% decay-corrected yield by a double ligand transfer reaction between the ferrocene adduct of methyl hexadecanoate ( 2) and Na99mTcO 4 in the presence of Cr(CO)6 and CrCl3, followed by hydrolysis of the methyl ester group. Radiotracer 1 was found to be chemically stable (99% at 6 h) when incubated in human serum. A tissue distribution study in mice showed that high radioactivity accumulated in heart (9.03%ID/g at 1 min and 5.41%ID/g at 5 min postinjection) with rapid clearance and that heart to blood uptake ratios increased with time (2.13 at 5 min and 3.76 at 30 min postinjection). Metabolite analysis of the heart tissues using a simple extraction method showed that 99mTc-CpTT-4-oxo-butyric acid was detected as the major radioactive metabolite by HPLC, suggesting that 1 is metabolized to 99mTc-CpTT-4-oxo-butyric acid via beta-oxidation in myocardium.
NASA Astrophysics Data System (ADS)
Dougherty, Ryan J.; Singh, Jaideep; Krishnan, V. V.
2017-03-01
L-Cysteine (L-Cys), L-Cysteine methyl ester (L-CysME) or L-Cysteine ethyl ester (L-CysEE), when dissolved in dimethyl sulfoxide, undergoes an oxidation process. This process is slow enough and leads to nuclear magnetic resonance (NMR) spectral changes that could be monitored in real time. The oxidation mediated transition is modeled as a pseudo-first order kinetics and the thermodynamic parameters are estimated using the Eyring's formulation. L-Cysteine and their esters are often used as biological models due to the remarkable thiol group that can be found in different oxidation states. This oxidation mediated transition is due to the combination of thiol oxidation to a disulfide followed by solvent-induced effects may be relevant in designing cysteine-based molecular models.
van Heek, Margaret; Farley, Constance; Compton, Douglas S; Hoos, Lizbeth; Davis, Harry R
2001-01-01
Ezetimibe potently inhibits the transport of cholesterol across the intestinal wall, thereby reducing plasma cholesterol in preclinical animal models of hypercholesterolemia. The effect of ezetimibe on known absorptive processes was determined in the present studies.Experiments were conducted in the hamster and/or rat to determine whether ezetimibe would affect the absorption of molecules other than free cholesterol, namely cholesteryl ester, triglyceride, ethinylestradiol, progesterone, vitamins A and D, and taurocholic acid. In addition, to determine whether exocrine pancreatic function is involved in the mechanism of action of ezetimibe, a biliary anastomosis model, which eliminates exocrine pancreatic function from the intestine while maintaining bile flow, was established in the rat.Ezetimibe reduced plasma cholesterol and hepatic cholesterol accumulation in cholesterol-fed hamsters with an ED50 of 0.04 mg kg−1. Utilizing cholesteryl esters labelled on either the cholesterol or the fatty acid moiety, we demonstrated that ezetimibe did not affect cholesteryl ester hydrolysis and the absorption of fatty acid thus generated in both hamsters and rats. The free cholesterol from this hydrolysis, however, was not absorbed (92 – 96% inhibition) in the presence of ezetimibe. Eliminating pancreatic function in rats abolished hydrolysis of cholesteryl esters, but did not affect the ability of ezetimibe to block absorption of free cholesterol (−94%). Ezetimibe did not affect the absorption of triglyceride, ethinylestradiol, progesterone, vitamins A and D, and taurocholic acid in rats.Ezetimibe is a potent inhibitor of intestinal free cholesterol absorption that does not require exocrine pancreatic function for activity. Ezetimibe does not affect the absorption of triglyceride as a pancreatic lipase inhibitor (Orlistat) would, nor does it affect the absorption of vitamin A, D or taurocholate, as a bile acid sequestrant (cholestyramine) would. PMID:11564660
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, Y.; Chishima, S.; Takeyama, S.
1989-07-01
Trimebutine maleate (I), (+-)-2-dimethylamino-2-phenylbutyl 3,4,5-trimethoxybenzoate hydrogen maleate, and a deuterium-labeled sample of its hydrolyzed metabolite, 2-dimethylamino-2-phenylbutanol-d3 (II-d3), were simultaneously administered to experimental animals at an oral dose of 10 or 50 mumol/kg, and distribution ratios of the two alternative initial metabolic steps, i.e., ester hydrolysis and N-demethylation, were estimated by determining the composition of the urinary alcohol-moiety metabolites, II, and its mono- and di-demethylated metabolites, III and IV, by GC/MS. In dogs, the order of quantities of the metabolites from II-d3 was II much greater than III much greater than IV, showing predominance of conjugation over N-demethylation. However, this ordermore » was reversed when the amounts of the metabolites from I were compared, indicating that I was preferentially metabolized by N-demethylation followed by ester hydrolysis and conjugation in this order. In rats, a considerable proportion of I was presumed to be metabolized by ester hydrolysis before N-demethylation. In in vitro experiments employing the liver microsomes and homogenates of liver and small intestine from rats and dogs, it was found that both ester-hydrolizing and N-demethylating activities were higher in rats than in dogs, and the conjugating activity was higher in dogs than in rats. It was also found that I, having a high lipophilicity, was more susceptible to N-demethylation than less lipophilic II. These results from the in vitro experiments could account for the species differences in the distribution ratio of the metabolic pathways of I in vivo.« less
2015-01-01
N-Hydroxysuccinimide (NHS) ester terminal groups are commonly used to covalently couple amine-containing biomolecules (e.g., proteins and peptides) to surfaces via amide linkages. This one-step aminolysis is often performed in buffered aqueous solutions near physiological pH (pH 6 to pH 9). Under these conditions, the hydrolysis of the ester group competes with the amidization process, potentially degrading the efficiency of the coupling chemistry. The work herein examines the efficiency of covalent protein immobilization in borate buffer (50 mM, pH 8.50) using the thiolate monolayer formed by the chemisorption of dithiobis (succinimidyl propionate) (DSP) on gold films. The structure and reactivity of these adlayers are assessed via infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), electrochemical reductive desorption, and contact angle measurements. The hydrolysis of the DSP-based monolayer is proposed to follow a reaction mechanism with an initial nucleation step, in contrast to a simple pseudo first-order reaction rate law for the entire reaction, indicating a strong dependence of the interfacial reaction on the packing and presence of defects in the adlayer. This interpretation is used in the subsequent analysis of IR-ERS kinetic plots which give a heterogeneous aminolysis rate constant, ka, that is over 3 orders of magnitude lower than that of the heterogeneous hydrolysis rate constant, kh. More importantly, a projection of these heterogeneous kinetic rates to protein immobilization suggests that under coupling conditions in which low protein concentrations and buffers of near physiological pH are used, proteins are more likely physically adsorbed rather than covalently linked. This result is paramount for biosensors that use NHS chemistry for protein immobilization due to effects that may arise from noncovalently linked proteins. PMID:25317495
Analytical approaches to determination of total choline in foods and dietary supplements.
Phillips, Melissa M
2012-06-01
Choline is a quaternary amine that is synthesized in the body or consumed through the diet. Choline is critical for cell membrane structure and function and in synthesis of the neurotransmitter acetylcholine. Although the human body produces this micronutrient, dietary supplementation of choline is necessary for good health. The major challenge in the analysis of choline in foods and dietary supplements is in the extraction and/or hydrolysis approach. In many products, choline is present as choline esters, which can be quantitated individually or treated with acid, base, or enzymes in order to release choline ions for analysis. A critical review of approaches based on extraction and quantitation of each choline ester as well as hydrolysis-based methods for determination of total choline in foods and dietary supplements is presented.
Olutoye, M A; Hameed, B H
2011-02-01
Fatty acid methyl ester was produced from used vegetable cooking oil using Mg(1-)(x) Zn(1+)(x)O(2) solid catalyst and the performance monitored in terms of ester content obtained. Used vegetable cooking oil was employed to reduce operation cost of biodiesel. The significant operating parameters which affect the overall yield of the process were studied. The highest ester content, 80%, was achieved with the catalyst during 4h 15 min reaction at 188°C with methanol to oil ratio of 9:1 and catalyst loading of 2.55 wt% oil. Also, transesterification of virgin oil gave higher yield with the heterogeneous catalyst and showed high selectivity towards ester production. The used vegetable cooking oil did not require any rigorous pretreatment. Catalyst stability was examined and there was no leaching of the active components, and its performance was as good at the fourth as at the first cycle. Copyright © 2010 Elsevier Ltd. All rights reserved.
[Analysis of constituents of ester-type gum bases used as natural food additives].
Tada, Atsuko; Masuda, Aino; Sugimoto, Naoki; Yamagata, Kazuo; Yamazaki, Takeshi; Tanamoto, Kenichi
2007-12-01
The differences in the constituents of ten ester-type gum bases used as natural food additives in Japan (urushi wax, carnauba wax, candelilla wax, rice bran wax, shellac wax, jojoba wax, bees wax, Japan wax, montan wax, and lanolin) were investigated. Several kinds of gum bases showed characteristic TLC patterns of lipids. In addition, compositions of fatty acid and alcohol moieties of esters in the gum bases were analyzed by GC/MS after methanolysis and hydrolysis, respectively. The results indicated that the varieties of fatty acids and alcohols and their compositions were characteristic for each gum base. These results will be useful for identification and discrimination of the ester-type gum bases.
2008-11-01
was purified from natural racemic gossypol. Briefly, racemic gossypol was reacted with L - phenylalanine methyl ester hydrochloride overnight at room...solution of the resolved (F)-gossypol- phenylalanine methyl ester Schiff’s base was hydrolyzed by a mixture of tetrahydro- furan, glacial acetic acid...suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Mol Pharmacol 2007; 71: 209-19. [136]Wang L , Du F, Wang X. TNF- alpha induces
Davoodbasha, MubarakAli; Edachery, Baldev; Nooruddin, Thajuddin; Lee, Sang-Yul; Kim, Jung-Wan
2018-02-01
Fatty acid methyl esters (FAME) derived from lipids of microalgae is known to have wide bio-functional materials including antimicrobials. FAME is an ideal super-curator and superior anti-pathogenic. The present study evaluated the efficiency of FAME extracted from microalgae Scenedesmus intermedius as an antimicrobial agent against Gram positive (Staphylococcus aureus, Streptococcus mutans, and Bacillus cereus) Gram negative (Escherichia coli and Pseudomonas aeruginosa) bacteria and Fungi (Aspergillus parasiticus and Candida albicans). The minimal inhibitory concentration (MIC) for the gram negative bacteria was determined as 12-24 μg mL -1 , whereas MIC for gram positive bacteria was 24-48 μg mL -1 . MIC for the fungi was as high as 60-192 μg mL -1 . The FAME profiles determined by gas chromatography showed 18 methyl esters. Among them, pharmacologically active FAME such as palmitic acid methyl ester (C16:0) was detected at high percentage (23.08%), which accounted for the bioactivity. FAME obtained in this study exhibited a strong antimicrobial activity at the lowest MIC than those of recent reports. This result clearly indicated that FAME of S. intermedius has a strong antimicrobial and antioxidant property and that could be used as an effective resource against microbial diseases. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Krishna, K.; Kumar, B. Sudheer Prem; Reddy, K. Vijaya Kumar; Charan Kumar, S.; Kumar, K. Ravi
2017-08-01
The Present Investigation was carried out to study the effect of Alumina Metal Oxide (Al2O3) Nano Particles as additive for Palm Stearin Methyl Ester Biodiesel (B 100) and their blends as an alternate fuel in four stroke single cylinder water cooled, direct injection diesel engine. Alumina Nano Particles has high calorific value and relatively high thermal conductivity (30-1 W m K-1) compare to diesel, which helps to promote more combustion in engines due to their higher thermal efficiency. In the experimentation Al2O3 were doped in various proportions with the Palm Stearin Methyl Ester Biodiesel (B-100) using an ultrasonicator and a homogenizer with cetyl trimethyl ammonium bromide (CTAB) as the cationic surfactant. The test were performed on a Kirsloskar DI diesel engine at constant speed of 1500 rpm using different Nano Biodiesel Fuel blends (psme+50 ppm, psme+150 ppm, and psme+200 ppm) and results were compared with those of neat conventional diesel and Palm Stearin Methyl Ester Bio diesel. It was observed that for Nano Biodiesel Fuel blend (psme+50ppm) there is an significant reduction in carbon monoxide (CO) emissions and Nox emissions compared to diesel and the brake thermal efficiency for (psme+50ppm) was almost same as diesel.
Huang, R; Li, G Q; Zhang, J; Yang, L; Che, H J; Jiang, D H; Huang, H C
2011-07-01
A study was conducted to identify volatile organic compounds or volatiles produced by Candida intermedia strain C410 using gas chromatography-mass spectrometry, and to determine efficacy of the volatiles of C. intermedia in suppression of conidial germination and mycelial growth of Botrytis cinerea and control of Botrytis fruit rot of strawberry. Results showed that, among 49 volatiles (esters, alcohols, alkenes, alkanes, alkynes, organic acids, ketones, and aldehydes) identified from C. intermedia cultures on yeast extract peptone dextrose agar, two compounds, 1,3,5,7-cyclooctatetraene and 3-methyl-1-butanol, were the most abundant. Synthetic chemicals of 1,3,5,7-cyclooctatetraene; 3-methyl-1-butanol; 2-nonanone; pentanoic acid, 4-methyl-, ethyl ester; 3-methyl-1-butanol, acetate; acetic acid, pentyl ester; and hexanoic acid, ethyl ester were highly inhibitory to conidial germination and mycelial growth of B. cinerea. Inhibition of conidial germination and mycelial growth of B. cinerea by volatiles of C. intermedia was also observed. Meanwhile, results showed that incidence and severity of Botrytis fruit rot of strawberry was significantly (P < 0.01) reduced by exposure of the strawberry fruit to the volatiles from C. intermedia cultures or C. intermedia-infested strawberry fruit. These results suggest that the volatiles of C. intermedia C410 are promising biofumigants for control of Botrytis fruit rot of strawberry.
Novel fatty acid methyl esters from the actinomycete Micromonospora aurantiaca
Bruns, Hilke; Riclea, Ramona
2011-01-01
Summary The volatiles released by Micromonospora aurantiaca were collected by means of a closed-loop stripping apparatus (CLSA) and analysed by GC–MS. The headspace extracts contained more than 90 compounds from different classes. Fatty acid methyl esters (FAMEs) comprised the major compound class including saturated unbranched, monomethyl and dimethyl branched FAMEs in diverse structural variants: Unbranched, α-branched, γ-branched, (ω−1)-branched, (ω−2)-branched, α- and (ω−1)-branched, γ- and (ω−1)-branched, γ- and (ω−2)-branched, and γ- and (ω−3)-branched FAMEs. FAMEs of the last three types have not been described from natural sources before. The structures for all FAMEs have been suggested based on their mass spectra and on a retention index increment system and verified by the synthesis of key reference compounds. In addition, the structures of two FAMEs, methyl 4,8-dimethyldodecanoate and the ethyl-branched compound methyl 8-ethyl-4-methyldodecanoate were deduced from their mass spectra. Feeding experiments with isotopically labelled [2H10]leucine, [2H10]isoleucine, [2H8]valine, [2H5]sodium propionate, and [methyl-2H3]methionine demonstrated that the responsible fatty acid synthase (FAS) can use different branched and unbranched starter units and is able to incorporate methylmalonyl-CoA elongation units for internal methyl branches in various chain positions, while the methyl ester function is derived from S-adenosyl methionine (SAM). PMID:22238549
Ran-Ressler, Rinat R; Lawrence, Peter; Brenna, J Thomas
2012-01-01
Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223-229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C₃H₇), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME.
Ran-Ressler, Rinat R.; Lawrence, Peter; Brenna, J. Thomas
2012-01-01
Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223–229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C3H7), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME. PMID:22021637
Kaffarnik, Stefanie; Heid, Carolina; Kayademir, Yasemin; Eibler, Dorothee; Vetter, Walter
2015-01-21
Volatile 4-alkyl-branched fatty acids are characteristic flavor compounds of sheep and goat. Due to the methyl branch, the carbon C-4 represents a stereogenic center with the possible presence of one or both enantiomers in the respective samples. In this study, we used enantioselective gas chromatography to study the enantiomeric composition of 4-methyloctanoic acid (4-Me-8:0) and 4-ethyloctanoic acid (4-Et-8:0) in milk and dairy products from sheep and goat as well as in goat subcutaneous tissue. Different columns coated with modified cyclodextrins were tested to resolve racemic 4-alkyl-branched fatty acid methyl ester standards. The best enantiomer resolution was obtained on 25% octakis(2,3,6-tri-O-ethyl)-γ-cyclodextrin (γ-TECD) diluted in OV-1701. For analysis of the food samples, the lipids were extracted and fatty acids in the extracts were converted into fatty acid methyl esters. Non-aqueous reversed-phase high-performance liquid chromatography was used to fractionate the samples in order to gain one solution enriched in 4-Me-8:0 methyl ester and one solution enriched with 4-Et-8:0 methyl ester. Subsequent analysis by enantioselective gas chromatography with mass spectrometry allowed only the detection of one enantiomer of 4-Me-8:0 and 4-Et-8:0 in the samples. By means of a non-racemic standard of 4-Me-8:0, it was found that the predominant enantiomer was (R)-4-Me-8:0.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-dodecanethiol, N-(hydroxymethyl)-2-methyl-2-propenamide, polyfluorooctyl methacrylate and vinylidene chloride, 2...-alkyl acrylate, 1-dodecanethiol, N-(hydroxymethyl)-2-methyl-2-propenamide, polyfluorooctyl methacrylate... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2-Propenoic acid, 2-methyl-, 2...
Code of Federal Regulations, 2014 CFR
2014-07-01
...-dodecanethiol, N-(hydroxymethyl)-2-methyl-2-propenamide, polyfluorooctyl methacrylate and vinylidene chloride, 2...-alkyl acrylate, 1-dodecanethiol, N-(hydroxymethyl)-2-methyl-2-propenamide, polyfluorooctyl methacrylate... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-Propenoic acid, 2-methyl-, 2...
Glucuronoyl esterases are active on polymeric substrate, methyl esterified glucuronoxylan
USDA-ARS?s Scientific Manuscript database
Alkali extracted beechwood glucuronoxylan methyl ester prepared by esterification of 4-O-methyl-D-glucuronic acid side residues by methanol was found to serve as substrate of microbial glucuronoyl esterases from Ruminococcus flavefaciens, Schizophyllum commune and Trichoderma reesei. The enzymatic d...
2013-01-01
Sulfonate ester hydrolysis has been the subject of recent debate, with experimental evidence interpreted in terms of both stepwise and concerted mechanisms. In particular, a recent study of the alkaline hydrolysis of a series of benzene arylsulfonates (Babtie et al., Org. Biomol. Chem.10, 2012, 8095) presented a nonlinear Brønsted plot, which was explained in terms of a change from a stepwise mechanism involving a pentavalent intermediate for poorer leaving groups to a fully concerted mechanism for good leaving groups and supported by a theoretical study. In the present work, we have performed a detailed computational study of the hydrolysis of these compounds and find no computational evidence for a thermodynamically stable intermediate for any of these compounds. Additionally, we have extended the experimental data to include pyridine-3-yl benzene sulfonate and its N-oxide and N-methylpyridinium derivatives. Inclusion of these compounds converts the Brønsted plot to a moderately scattered but linear correlation and gives a very good Hammett correlation. These data suggest a concerted pathway for this reaction that proceeds via an early transition state with little bond cleavage to the leaving group, highlighting the care that needs to be taken with the interpretation of experimental and especially theoretical data. PMID:24279349
2010-01-01
Background Recent discoveries highlighting the metabolic malleability of plant lignification indicate that lignin can be engineered to dramatically alter its composition and properties. Current plant biotechnology efforts are primarily aimed at manipulating the biosynthesis of normal monolignols, but in the future apoplastic targeting of phenolics from other metabolic pathways may provide new approaches for designing lignins that are less inhibitory toward the enzymatic hydrolysis of structural polysaccharides, both with and without biomass pretreatment. To identify promising new avenues for lignin bioengineering, we artificially lignified cell walls from maize cell suspensions with various combinations of normal monolignols (coniferyl and sinapyl alcohols) plus a variety of phenolic monolignol substitutes. Cell walls were then incubated in vitro with anaerobic rumen microflora to assess the potential impact of lignin modifications on the enzymatic degradability of fibrous crops used for ruminant livestock or biofuel production. Results In the absence of anatomical constraints to digestion, lignification with normal monolignols hindered both the rate and extent of cell wall hydrolysis by rumen microflora. Inclusion of methyl caffeate, caffeoylquinic acid, or feruloylquinic acid with monolignols considerably depressed lignin formation and strikingly improved the degradability of cell walls. In contrast, dihydroconiferyl alcohol, guaiacyl glycerol, epicatechin, epigallocatechin, and epigallocatechin gallate readily formed copolymer-lignins with normal monolignols; cell wall degradability was moderately enhanced by greater hydroxylation or 1,2,3-triol functionality. Mono- or diferuloyl esters with various aliphatic or polyol groups readily copolymerized with monolignols, but in some cases they accelerated inactivation of wall-bound peroxidase and reduced lignification; cell wall degradability was influenced by lignin content and the degree of ester group hydroxylation. Conclusion Overall, monolignol substitutes improved the inherent degradability of non-pretreated cell walls by restricting lignification or possibly by reducing lignin hydrophobicity or cross-linking to structural polysaccharides. Furthermore some monolignol substitutes, chiefly readily cleaved bi-phenolic conjugates like epigallocatechin gallate or diferuloyl polyol esters, are expected to greatly boost the enzymatic degradability of cell walls following chemical pretreatment. In ongoing work, we are characterizing the enzymatic saccharification of intact and chemically pretreated cell walls lignified by these and other monolignol substitutes to identify promising genetic engineering targets for improving plant fiber utilization. PMID:20565789
Bernardino, Susana M S A; Fernandes, Pedro; Fonseca, Luís P
2009-05-01
The present work focuses on the development and basic characterization of a new magnetic biocatalyst, namely penicillin G acylase (PGA), immobilized in sol-gel matrices with magnetic properties, ultimately aimed for application in cephalexin (CEX) synthesis. A mechanically stable carrier, based on porous xerogels silica matrixes starting from tetramethoxysilane (TMOS), was prepared leading to micro-carriers with medium sized particles of 30 microm, as determined by scanning electron microscopy. An immobilization yield of 95-100% and a recovered activity of 50-65% at 37 degrees C, as determined by penicillin G (PG) hydrolysis (pH STAT method), were observed. These results clearly exceed those reported in a previous work on PGA immobilization in sol-gel, where only 10% of activity was recovered. The values of activity were kept constant for 6 months. Immobilized PGA (682 U/g(dry weight)) retained high specific activity throughout ten consecutive runs for PG hydrolysis, suggesting adequate biocatalyst stability. The CEX synthesis was performed at 14 degrees C, using the free and immobilized PGA in aqueous medium. Phenylglycine methyl ester was used as acyl donor at 90 mM and 7-aminodeacetoxycephalosporanic acid was the limiting substrate at 30 mM. The CEX stoichiometric yield after 1-h reaction was close to 68% (23 mM CEX/h) and 65% (19 mM CEX/h), respectively.
Ghelichi, Sakhi; Shabanpour, Bahareh; Pourashouri, Parastoo; Hajfathalian, Mona; Jacobsen, Charlotte
2018-03-01
Common carp roe is a rich protein and oil source, which is usually discarded with no specific use. The aims of this study were to extract oil from the discarded roe and examine functional, antioxidant, and antibacterial properties of defatted roe hydrolysates (CDRHs) at various degrees of hydrolysis (DH). Gas chromatography of fatty acid methyl esters revealed that common carp roe oil contained high levels of unsaturated fatty acids. The results of high-performance liquid chromatography-mass spectrometry indicated that enzymatic hydrolysis of defatted roe yielded higher content of essential amino acids. CDRHs displayed higher solubility than untreated defatted roe, which increased with DH. Better emulsifying and foaming properties were observed at lower DH and non-isoelectric points. Furthermore, water and oil binding capacity decreased with DH. CDRHs exhibited antioxidant activity both in vitro and in 5% roe oil-in-water emulsions and inhibited the growth of certain bacterial strains. Common carp roe could be a promising source of unsaturated fatty acids and functional bioactive agents. Unsaturated fatty acid-rich oil extracted from common carp roe can be delivered into food systems by roe oil-in-water emulsions fortified by functional, antioxidant, and antibacterial hydrolysates from the defatted roe. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Hinton, Arthur; Cason, J A; Hume, Michael E; Ingram, Kimberly D
2004-08-01
The presence of Campylobacter spp. on broiler carcasses and in scald water taken from a commercial poultry processing facility was monitored on a monthly basis from January through June. Campylobacter agar, Blaser, was used to enumerate Campylobacter in water samples from a multiple-tank scalder; on prescalded, picked, eviscerated, and chilled carcasses; and on processed carcasses stored at 4 degrees C for 7 or 14 days. The MIDI Sherlock microbial identification system was used to identify Campylobacter-like isolates based on the fatty acid methyl ester profile of the bacteria. The dendrogram program of the Sherlock microbial identification system was used to compare the fatty acid methyl ester profiles of the bacteria and determine the degree of relatedness between the isolates. Findings indicated that no Campylobacter were recovered from carcasses or scald tank water samples collected in January or February, but the pathogen was recovered from samples collected in March, April, May, and June. Processing generally produced a significant (P < 0.05) decrease in the number of Campylobacter recovered from broiler carcasses, and the number of Campylobacter recovered from refrigerated carcasses generally decreased during storage. Significantly (P < 0.05) fewer Campylobacter were recovered from the final tank of the multiple-tank scald system than from the first tank. MIDI similarity index values ranged from 0.104 to 0.928 based on MIDI-fatty acid methyl ester analysis of Campylobacterjejuni and Campylobacter coli isolates. Dendrograms of the fatty acid methyl ester profile of the isolates indicated that poultry flocks may introduce several strains of C. jejuni and C. coli into processing plants. Different populations of the pathogen may be carried into the processing plant by successive broiler flocks, and the same Campylobacter strain may be recovered from different poultry processing operations. However, Campylobacter apparently is unable to colonize equipment in the processing facility and contaminate broilers from flocks processed at later dates in the facility.
USDA-ARS?s Scientific Manuscript database
Esters, most commonly methyl esters, of vegetable oils or animal fats or other lipid feedstocks have found increasing use as an alternative diesel fuel known as biodiesel. However, biodiesel also has good solvent properties, a feature rendered additionally attractive by its biodegradability, low tox...
Hostnik, Gregor; Vlachy, Vojko; Bondarev, Dmitrij; Jiří, Vohlídal; Cerar, Janez
2012-09-01
The title polymer, PTAA, practically free of ester groups was obtained by oxidative polymerization of methyl thiophen-3-ylacetate and subsequent basic hydrolysis of primary polymer. Poly(thiophen-3-ylacetic acid) has been thoroughly characterized by NMR, IR, Raman, and UV/Vis spectroscopy. The polyacid behavior during neutralization titrations with lithium and sodium hydroxides, carried out under nitrogen atmosphere, has been studied by conductometry and potentiometry. Henderson-Hasselbach plots of potentiometric titration curves show a break point at pH around 6, where the curve slope drops from 1.8 (at lower pH) to a value from 1.05 to 1.3 (at higher pH values). The UV/Vis spectra monitored during back titration show: (i) monotonous decrease of both λmax and εmax as pH decreases, (ii) the presence of the isosbestic point at 401 nm that can be ascribed to conformational transition of PTAA chains, and (iii) absence of the isosbestic point at 392 nm reported previously by other authors.
NASA Astrophysics Data System (ADS)
Pishchugin, F. V.; Tuleberdiev, I. T.
2017-10-01
The kinetics and mechanism of interaction between pyridoxal and L-tryptophan, D-tryptophan, and their derivatives are studied. It is found that condensation reactions proceed via three kinetically distinguishable stages: (1) the rapid intraplanar addition of the NH2 groups of the amino acids to pyridoxal with the formation of amino alcohols; (2) the rotational isomerism of amino alcohol fragments with their subsequent dehydration and the formation of a Schiff base with a specific configuration; (3) the abstraction of α-hydrogen in the product of condensation of pyridoxal with L-tryptophan, or the abstraction of CO2 in the product of condensation of pyridoxal with D-tryptophan with the formation of quinoid structures, hydrolysis of which results in the preparation of pyridoxamine and keto acid or pyridoxal and tryptamine, respectively. Schiff bases resistant to further chemical transformations are formed in the reaction with tryptophan methyl ester.
An improved kilogram-scale preparation of atorvastatin calcium.
Novozhilov, Yuri V; Dorogov, Mikhail V; Blumina, Maria V; Smirnov, Alexey V; Krasavin, Mikhail
2015-01-01
If literature protocols are followed, conversion of an advanced ketal ester intermediate (available in kilogram quantities via a published Paal-Knorr synthesis) to cholesterol-lowering drug atorvastatin calcium is hampered by several process issues, particularly at the final stage where the hemi-calcium salt is obtained. We developed a high-yielding synthesis of atorvastatin calcium salt on 7 kg scale that affords >99.5% product purities by introducing the following key improvements: i. isolating the pure product of the ketal deprotection step as crystalline solid, and ii. using a convenient ethyl acetate extraction procedure to isolate the pure atorvastatin calcium at the ester hydrolysis and counter-ion exchange step. The convenient and operationally simple conversion of an advanced intermediate of atorvastatin to the clinically used hemi-calcium salt form of the drug that is superior to the methods obtainable from the literature is now available to facilitate the production of atorvastatin calcium on industrial scale. Graphical abstractStepwise ketal and tert-butyl ester group hydrolysis and a modified work-up protocol lead to a more convenient preparation of API-grade atorvastatin calcium.
Kawai, T; Mizunuma, K; Yasugi, T; Horiguchi, S; Iguchi, H; Mutti, A; Ghittori, S; Ikeda, M
1995-01-01
OBJECTIVES--To investigate the possibilities of personal ambient monitoring and biological monitoring for methylpentane isomers. METHODS--The performance of activated carbon cloth to absorb 2- and 3-methylpentane was studied by experimental vapour exposure followed by solvent extraction and gas chromatography (GC). Urine from workers and rats exposed to 2- and 3-methylpentane was analysed by GC with or without acid or enzymatic hydrolysis. RESULTS--Carbon cloth absorbed 2- and 3-methylpentane linearly to exposures up to eight hours and to 400 ppm, and was sensitive enough to detect a 15 minute peak of exposure. The two isomers were clearly separated from hexane on a DB-1 column. For analysis of the urine, enzymatic hydrolysis was superior to acid hydrolysis. Exposure of rats to methylpentane vapours showed that 2-methyl-2-pentanol and 3-methyl-2-pentanol were excreted in urine in proportion to the dose of 2-methylpentane and 3-methylpentane, respectively. 2-Methyl derivatives of 1-, 3-, and 4-propanol, 2-methylpentane-2,4-diol, and 3-methyl-2-pentanol were minor metabolites. Analysis of urine from the exposed workers showed that 2-methyl- and 3-methyl-2-pentanol are leading urinary metabolites after exposure to the corresponding methylpentane. CONCLUSIONS--Diffusive sampling is applicable to monitor 2- and 3-methylpentane vapours as is the case for hexane vapour. 2-Methyl-2-pentanol and 3-methyl-2-pentanol will be markers of occupational exposure to 2-methylpentane and 3-methylpentane, respectively. Also, 2-methylpentane-2,4-diol might be a marker of exposure to 2-methylpentane. PMID:8535496
Miyazaki, Kinuko; Koyama, Kazuo
2017-10-01
The enzymatic indirect method for simultaneous determinations of 3-chloro-1, 2-propanediol fatty acid esters (3-MCPD-Es) and glycidyl fatty acid esters (Gly-Es) make use of lipase from Candida cylindracea (previously referred to as C. rugosa). Because of low substrate specificity of the lipase for esters of polyunsaturated fatty acids (PUFA), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), fish oils high in PUFAs are currently excluded from the range of application of the method. The objective of this study was to make the enzymatic indirect method applicable to fats and oils containing PUFAs. By using a Burkholderia cepacia lipase, and by removing sodium bromide from hydrolysis step and adding it after completion of the hydrolysis step, satisfactory recovery rates of 91-109% for 3-MCPD, and 91-110% for glycidol (Gly) were obtained from an EPA and DHA concentrated sardine oil, three DHA concentrated tuna oils, two fish oils, and five fish-oil based dietary supplements spiked with DHA-esters or oleic acid-esters of 3-MCPD and Gly at 20 mg/kg. Further, results from unspiked samples of seven fish oil based dietary supplements and five DHA concentrated tuna oils analyzed by the improved enzymatic indirect method were compared with the results analyzed by AOCS Cd 29a. For all 3-MCPD, 2-MCPD and Gly, the 95% confidence intervals determined by the weighted Deming regression for slopes and intercepts contained the value of 1 and 0, respectively. It was therefore concluded that the results from the two methods were not statistically different. These results suggest that fish oils high in PUFAs may be included in the range of application for the improved enzymatic indirect method for simultaneous determinations of 3-MCPD and Gly esters in fats and oils.
Polyak, Felix; Lubell, William D.
1998-08-21
Azabicyclo[X.Y.0]alkane amino acids are tools for constructing mimics of peptide structure and templates for generating combinatorial libraries for drug discovery. Our methodology for synthesizing these conformationally rigid dipeptides has been elaborated such that alkyl groups can be appended onto the heterocycle to generate mimics of peptide backbone and side-chain structure. Inexpensive glutamic acid was employed as chiral educt in a Claisen condensation/ketone alkylation/reductive amination/lactam cyclization sequence that furnished alkyl-branched azabicyclo[4.3.0]alkane amino acid. Enantiopure 5-benzyl-, 7-benzyl-, and 5,7-dibenzylindolizidinone amino acids 2-4 were stereoselectively synthesized via efficient reaction sequences featuring the alkylation of di-tert-butyl alpha,omega-di-[N-(PhF)amino]azelate delta-ketone 5. A variety of alkyl halides were readily added to the enolate of ketone 5 to provide mono- and dialkylated ketones 6 and 7. Hydride additions to 6 and 7, methanesulfonations, and intramolecular S(N)2 displacements by the PhF amine gave 5-alkylprolines that were converted by lactam cyclizations into 7- and 5-benzyl-, as well as 5,7-dibenzyl-2-oxo-3-N-(BOC)amino-1-azabicyclo[4.3.0]nonane-9-carboxylate methyl esters 10, 11, and 14. Epimerization of the alkyl-branched stereocenter via an iminium-enaminium equilibrium proved effective for controlling diastereoselectivity in reductive aminations with 6 and 7 in order to furnish 5-alkylprolines that were similarly converted to 7- benzyl- and 5,7-dibenzylindolizidinone N-(BOC)amino esters 10 and 14. Ester hydrolysis with hydroxide ion and potassium trimethylsilanolate then gave enantiopure indolizidinone amino acids 2-4. Epimerization at C-9 of benzylindolizidinone amino esters was also used to provide alternative diastereomers of 10, 11, and 14. This practical methodology for introducing side-chain groups onto the heterocycle with regioselective and diastereoselective control is designed to enhance the use of alkyl-branched azabicycloalkane amino acids for the exploration of conformation-activity relationships of various biologically active peptides.
40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Calcium Salt Maleic Anhydride Methacrylic Acid *Methacrylic Acid Esters Methane Methyl Ethyl Ketone Methyl Methacrylate Methyl Tert-Butyl Ether Methylisobutyl Ketone *n-Alkanes n-Butyl Alcohol n-Butylacetate n... Acid Nylon Salt Oxalic Acid *Oxo Aldehydes—Alcohols Pentaerythritol Pentane *Pentenes *Petroleum...
40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., Calcium Salt Maleic Anhydride Methacrylic Acid *Methacrylic Acid Esters Methane Methyl Ethyl Ketone Methyl Methacrylate Methyl Tert-Butyl Ether Methylisobutyl Ketone *n-Alkanes n-Butyl Alcohol n-Butylacetate n... Acid Nylon Salt Oxalic Acid *Oxo Aldehydes—Alcohols Pentaerythritol Pentane *Pentenes *Petroleum...
40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Calcium Salt Maleic Anhydride Methacrylic Acid *Methacrylic Acid Esters Methane Methyl Ethyl Ketone Methyl Methacrylate Methyl Tert-Butyl Ether Methylisobutyl Ketone *n-Alkanes n-Butyl Alcohol n-Butylacetate n... Acid Nylon Salt Oxalic Acid *Oxo Aldehydes—Alcohols Pentaerythritol Pentane *Pentenes *Petroleum...
40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Calcium Salt Maleic Anhydride Methacrylic Acid *Methacrylic Acid Esters Methane Methyl Ethyl Ketone Methyl Methacrylate Methyl Tert-Butyl Ether Methylisobutyl Ketone *n-Alkanes n-Butyl Alcohol n-Butylacetate n... Acid Nylon Salt Oxalic Acid *Oxo Aldehydes—Alcohols Pentaerythritol Pentane *Pentenes *Petroleum...
Hydrolysis mechanism of methyl parathion evidenced by Q-Exactive mass spectrometry.
Liu, Yuan; Zhang, Caixiang; Liao, Xiaoping; Luo, Yinwen; Wu, Sisi; Wang, Jianwei
2015-12-01
Organophosphorus pesticides (OPPs), a kind of widely used pesticides, are currently attracting great attention due to their adverse effects on human central nervous systems, particularly in children. Although the hydrolysis behavior of OPPs has been studied well, its hydrolysis mechanism remained controversial, especially at various pH conditions, partly due to their relatively complex structures and abundant moieties that were prone to be attacked by nucleophiles. The Q-Exactive mass spectrometer, part of those hybrid high-resolution mass spectrometers (HRMS), was used to determine hydrolysis products of methyl parathion (MP), a kind of OPPs in situ buffer aqueous solution with pH ranging from 1 to 13 in this study. Most of the complex hydrolysis products of MP were identified due to the high sensitivity and accuracy of HRMS. The results demonstrated that the hydrolysis rate and pathway of MP were strong pH dependent. With the increase of pH, the hydrolysis rate of MP increased, and two different reaction mechanisms were identified: SN (2)@P pathway dominated the hydrolysis process at high pH (e.g., pH ≥ 11) while SN (2)@C was the main behavior at low pH (e.g., pH ≤ 9). This study helps understand the hydrolysis mechanism of OPPs at various pH and extends the use of Q-Exactive mass spectrometry in identifying organic pollutants and their degradation products in environmental matrices.
Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi
2004-09-06
As a result of a hit-to-lead program using a technique of solution-phase parallel synthesis, a highly potent (2,4-dimethoxyphenyl)-[6-(3-fluorophenyl)-4-hydroxy-3-methylbenzofuran-2-yl]methanone (15b) was synthesized as an optimized derivative of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which was discovered as a screening hit from small-molecule libraries and exhibited selective cytotoxicity against a tumorigenic cell line.
Code of Federal Regulations, 2014 CFR
2014-07-01
... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10273 3′H-Cyclopropa[7,22][5,6]fullerene-C70-D5h(6)-3′-butanoic acid, 3′-phenyl-, methyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified as 3′H-Cyclopropa[7,22][5,6...
Code of Federal Regulations, 2013 CFR
2013-07-01
... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10272 3′H-Cyclopropa[8,25][5,6]fullerene-C70-D5h(6)-3′-butanoic acid, 3′-phenyl-,methyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified as 3′H-Cyclopropa[8,25][5,6...
Code of Federal Regulations, 2014 CFR
2014-07-01
... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10272 3′H-Cyclopropa[8,25][5,6]fullerene-C70-D5h(6)-3′-butanoic acid, 3′-phenyl-,methyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified as 3′H-Cyclopropa[8,25][5,6...
Code of Federal Regulations, 2013 CFR
2013-07-01
... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10273 3′H-Cyclopropa[7,22][5,6]fullerene-C70-D5h(6)-3′-butanoic acid, 3′-phenyl-, methyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified as 3′H-Cyclopropa[7,22][5,6...
Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification
Gülyurt, Mustafa Ömer; Özçimen, Didem; İnan, Benan
2016-01-01
In this study, biodiesel production from microalgal oil by microwave-assisted transesterification was carried out to investigate its efficiency. Transesterification reactions were performed by using Chlorella protothecoides oil as feedstock, methanol, and potassium hydroxide as the catalyst. Methanol:oil ratio, reaction time and catalyst:oil ratio were investigated as process parameters affected methyl ester yield. 9:1 methanol/oil molar ratio, 1.5% KOH catalyst/oil ratio and 10 min were optimum values for the highest fatty acid methyl ester yield. PMID:27110772
Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification.
Gülyurt, Mustafa Ömer; Özçimen, Didem; İnan, Benan
2016-04-22
In this study, biodiesel production from microalgal oil by microwave-assisted transesterification was carried out to investigate its efficiency. Transesterification reactions were performed by using Chlorella protothecoides oil as feedstock, methanol, and potassium hydroxide as the catalyst. Methanol:oil ratio, reaction time and catalyst:oil ratio were investigated as process parameters affected methyl ester yield. 9:1 methanol/oil molar ratio, 1.5% KOH catalyst/oil ratio and 10 min were optimum values for the highest fatty acid methyl ester yield.
DNA-Catalyzed Amide Hydrolysis.
Zhou, Cong; Avins, Joshua L; Klauser, Paul C; Brandsen, Benjamin M; Lee, Yujeong; Silverman, Scott K
2016-02-24
DNA catalysts (deoxyribozymes) for a variety of reactions have been identified by in vitro selection. However, for certain reactions this identification has not been achieved. One important example is DNA-catalyzed amide hydrolysis, for which a previous selection experiment instead led to DNA-catalyzed DNA phosphodiester hydrolysis. Subsequent efforts in which the selection strategy deliberately avoided phosphodiester hydrolysis led to DNA-catalyzed ester and aromatic amide hydrolysis, but aliphatic amide hydrolysis has been elusive. In the present study, we show that including modified nucleotides that bear protein-like functional groups (any one of primary amino, carboxyl, or primary hydroxyl) enables identification of amide-hydrolyzing deoxyribozymes. In one case, the same deoxyribozyme sequence without the modifications still retains substantial catalytic activity. Overall, these findings establish the utility of introducing protein-like functional groups into deoxyribozymes for identifying new catalytic function. The results also suggest the longer-term feasibility of deoxyribozymes as artificial proteases.
Shi, Hui; Fan, Zhaoyu; Hong, Bing; Pera-Titus, Marc
2017-09-11
Rational design of the surface properties of heterogeneous catalysts can boost the interfacial activity in biphasic reactions through the generation of Pickering emulsions. This concept, termed Pickering interfacial catalysis (PIC), has shown promising credentials in acid-catalyzed transesterification, ester hydrolysis, acetalization, etherification, and alkylation reactions. PIC has now been applied to the efficient, solvent-free hydrolysis of the triglyceride glyceryl trilaurate to lauric acid, catalyzed by Aquivion perfluorosulfonic superacid at mild conditions (100 °C and ambient pressure). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Palanisamy, Kanmani; Kuppamuthu, Kumaresan; Jeyaseelan, Aravind
2015-09-01
Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorption onto styrene-divinyl benzene (Sty-Dvb) hydrophobic resin and to comparatively characterize the free and immobilized lipase preparations. The work also aimed to apply the immobilized lipase for catalysing the fatty acid methyl ester (FAME) synthesis from palm oil and optimize the process parameters for maximizing the yield. In this study, the purified lipase from Bacillus sp. PS35 was immobilized by adsorption onto styrene-divinyl benzene hydrophobic resin with gluteraldehyde cross-linking. The immobilized enzyme showed better pH and temperature stabilities than the free lipase. Organic solvent stability was also enhanced, with the relative activity in the presence of methanol being shifted from 53% to 81%, thereby facilitating the enzyme's application in fatty acid methyl ester synthesis. It exhibited remarkable storage stability over a 30-day period and after 20 repetitive uses. Cross-linking also reduced enzyme leakage by 49%. The immobilized lipase was then applied for biodiesel production from palm oil. Methanol and oil molar ratio of 5:1, three step methanol additions, and an incubation temperature of 50°C were established to be the ideal conditions favoring the transesterification reaction, resulting in 97% methyl ester yield. These promising results offer scope for further investigation and process scale up, permitting the enzyme's commercial application in a practically feasible and economically agreeable manner.
Palanisamy, Kanmani; Kuppamuthu, Kumaresan; Jeyaseelan, Aravind
2015-01-01
Background Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. Objective The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorption onto styrene-divinyl benzene (Sty-Dvb) hydrophobic resin and to comparatively characterize the free and immobilized lipase preparations. The work also aimed to apply the immobilized lipase for catalysing the fatty acid methyl ester (FAME) synthesis from palm oil and optimize the process parameters for maximizing the yield. Materials and Methods In this study, the purified lipase from Bacillus sp. PS35 was immobilized by adsorption onto styrene-divinyl benzene hydrophobic resin with gluteraldehyde cross-linking. Results The immobilized enzyme showed better pH and temperature stabilities than the free lipase. Organic solvent stability was also enhanced, with the relative activity in the presence of methanol being shifted from 53% to 81%, thereby facilitating the enzyme’s application in fatty acid methyl ester synthesis. It exhibited remarkable storage stability over a 30-day period and after 20 repetitive uses. Cross-linking also reduced enzyme leakage by 49%. The immobilized lipase was then applied for biodiesel production from palm oil. Methanol and oil molar ratio of 5:1, three step methanol additions, and an incubation temperature of 50°C were established to be the ideal conditions favoring the transesterification reaction, resulting in 97% methyl ester yield. Conclusions These promising results offer scope for further investigation and process scale up, permitting the enzyme’s commercial application in a practically feasible and economically agreeable manner. PMID:28959298
Vapor Pressure of Methyl Salicylate and n-Hexadecane
2014-01-01
VAPOR PRESSURE OF METHYL SALICYLATE AND N-HEXADECANE ECBC-TR-1184 David E. Tevault Leonard C. Buettner...REPORT TYPE Final 3. DATES COVERED (From - To) Mar 2000-Dec 2001 4. TITLE AND SUBTITLE Vapor Pressure of Methyl Salicylate and n-Hexadecane 5a...ABSTRACT Vapor pressure data are reported for O-hydroxybenzoic acid, methyl ester, more commonly known as methyl salicylate (MeS), and n-hexadecane in
76 FR 36109 - Certain New Chemicals; Receipt and Status Information
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
...-, dodecyl ester, telomer with methyl 2-methyl- 2-propenoate, tridecyl 2- methyl-2- propenoate, 3... (retard) n6-bis (3- set times in carboxy-1- calcium sulfate oxopropyl)-, based binders sodium salt such as..., hydroxyalkyl methacrylates, epoxypropyl acrylates and polyalkene glycol hydrogen sulfate, alkyloxyalkyl...
Evaluation of substituted ebselen derivatives as potential trypanocidal agents.
Gordhan, Heeren M; Patrick, Stephen L; Swasy, Maria I; Hackler, Amber L; Anayee, Mark; Golden, Jennifer E; Morris, James C; Whitehead, Daniel C
2017-02-01
Human African trypanosomiasis is a disease of sub-Saharan Africa, where millions are at risk for the illness. The disease, commonly referred to as African sleeping sickness, is caused by an infection by the eukaryotic pathogen, Trypanosoma brucei. Previously, a target-based high throughput screen revealed ebselen (EbSe), and its sulfur analog, EbS, to be potent in vitro inhibitors of the T. brucei hexokinase 1 (TbHK1). These molecules also exhibited potent trypanocidal activity in vivo. In this manuscript, we synthesized a series of sixteen EbSe and EbS derivatives bearing electron-withdrawing carboxylic acid and methyl ester functional groups, and evaluated the influence of these substituents on the biological efficacy of the parent scaffold. With the exception of one methyl ester derivative, these modifications ablated or blunted the potent TbHK1 inhibition of the parent scaffold. Nonetheless, a few of the methyl ester derivatives still exhibited trypanocidal effects with single-digit micromolar or high nanomolar EC 50 values. Copyright © 2016 Elsevier Ltd. All rights reserved.
Balakrishnan, K; Olutoye, M A; Hameed, B H
2013-01-01
The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.
Iridoid glycosides from Gardeniae Fructus for treatment of ankle sprain.
Chen, Quan Cheng; Zhang, Wei Yun; Youn, Uijoung; Kim, Hongjin; Lee, IkSoo; Jung, Hyun-Ju; Na, MinKyun; Min, Byung-Sun; Bae, KiHwan
2009-04-01
The iridoid glycosides, genipin 1-O-beta-D-isomaltoside (1) and genipin 1,10-di-O-beta-D-glucopyranoside (2), together with six known iridoid glycosides, genipin 1-O-beta-D-gentiobioside (3), geniposide (4), scandoside methyl ester (5), deacetylasperulosidic acid methyl ester (6), 6-O-methyldeacetylasperulosidic acid methyl ester (7), and gardenoside (8) were isolated from an EtOH extract of Gardeniae Fructus. The structures and relative stereochemistries of the metabolites were elucidated on the basis of 1D- and 2D-NMR spectroscopic techniques, high-resolution mass spectrometry, and chemical evidence. Geniposide (4), one of the main compounds of Gardeniae Fructus, was tested for treatment of ankle sprain using an ankle sprain model in rats. From the second to fifth day, the geniposide (4) (100mg/ml) treated group exhibited significant differences (p<0.01) with approximately 21-34% reduction in swelling ratio compared with those of the vehicle treated control group. This indicated the potential effect of geniposide (4) for the treatment of disorders such as ankle sprain.
Safety Assessment of Methyl Glucose Polyethers and Esters as Used in Cosmetics.
Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan
2016-11-01
The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the safety of methyl glucose polyethers and esters which function in cosmetics as skin/hair-conditioning agents, surfactants, or viscosity increasing agents. The esters included in this assessment are mono-, di-, or tricarboxyester substituted methyl glucosides, and the polyethers are mixtures of various chain lengths. The Panel reviewed available animal and clinical data, including the molecular weights, log K ow s, and other properties in making its determination of safety on these ingredients. Where there were data gaps, similarities between molecular structures, physicochemical and biological characteristics, and functions and concentrations in cosmetics allowed for extrapolation of the available toxicological data to assess the safety of the entire group. The Panel concluded that there likely would be no significant systemic exposure from cosmetic use of these ingredients, and that these ingredients are safe in cosmetic formulations in the present practices of use and concentration. © The Author(s) 2016.
Chinta, Satya Prabhakar; Goller, Stephan; Uhl, Gabriele; Schulz, Stefan
2016-09-01
The analysis of cuticular extracts from the kleptoparasitic spider Argyrodes elevatus revealed the presence of unusual esters, new for arthropods. These novel compounds proved to be methyl-branched long-chain fatty acid esters with methyl branches located either close or remote from the internally located ester group. The GC/MS analysis of the prosoma lipid blend from the male cuticle contained one major component, undecyl 2-methyltridecanoate (1). In contrast, four major wax-type esters, 2-methylundecyl 2,8-dimethylundecanoate (2), 2,8-dimethylundecyl 2,8-dimethylundecanoate (3), heptadecyl 4-methylheptanoate (4), and 14-methylheptadecyl 4-methylheptanoate (5), were identified in the lipid blend of female prosomata. Structure assignments were based on mass spectra, gas chromatographic retention indices, and microderivatization. Unambiguous proof of postulated structures was ensured by an independent synthesis of all five esters. Preferentially, odd-numbered carbon chains pointed to a distinct biosynthetic pathway, different from that of common fatty acids, because one or two C 3 starter units are incorporated during the biosynthesis of all acid and alcohol building blocks present in the five esters. The striking sexual dimorphism together with the unique biosynthesis points to a function of the esters in chemical communication of the spiders, although no behavioral data are currently available to test this assumption. © 2016 Wiley-VHCA AG, Zürich.
Wikmark, Ylva; Engelmark Cassimjee, Karim; Lihammar, Richard; Bäckvall, Jan-E
2016-01-01
A mobile region is proposed to be a flap that covers the active site of Candida antarctica lipase A. Removal of the mobile region retains the functional properties of the enzyme. Interestingly interfacial activation, required for the wild-type enzyme, was not observed for the truncated variant, although stability, activity, and stereoselectivity were very similar for the wild-type and variant enzymes. The variant followed classical Michaelis-Menten kinetics, unlike the wild type. Both gave the same relative specificity in the transacylation of a primary and a secondary alcohol in organic solvent. Furthermore, both showed the same enantioselectivity in transacylation of alcohols and the hydrolysis of alcohol esters, as well as in the hydrolysis of esters chiral at the acid part. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
He, Hongliang; Lancina, Michael G; Wang, Jing; Korzun, William J; Yang, Hu; Ghosh, Shobha
2017-06-01
Current atherosclerosis treatment strategies primarily focus on limiting further cholesteryl esters (CE) accumulation by reducing endogenous synthesis of cholesterol in the liver. No therapy is currently available to enhance the removal of CE, a crucial step to reduce the burden of the existing disease. Given the central role of hepatic cholesteryl ester hydrolase (CEH) in the intrahepatic hydrolysis of CE and subsequent removal of the resulting free cholesterol (FC), in this work, we applied galactose-functionalized polyamidoamine (PAMAM) dendrimer generation 5 (Gal-G5) for hepatocyte-specific delivery of CEH expression vector. The data presented herein show the increased specific uptake of Gal-G5/CEH expression vector complexes (simply Gal-G5/CEH) by hepatocytes in vitro and in vivo. Furthermore, the upregulated CEH expression in the hepatocytes significantly enhanced the intracellular hydrolysis of high density lipoprotein-associated CE (HDL-CE) and subsequent conversion/secretion of hydrolyzed FC as bile acids (BA). The increased CEH expression in the liver significantly increased the flux of HDL-CE to biliary as well as fecal FC and BA. Meanwhile, Gal-G5 did not induce hepatic or renal toxicity. It was also not immunotoxic. Because of these encouraging pre-clinical testing results, using this safe and highly efficient hepatocyte-specific gene delivery platform to enhance the hepatic processes involved in cholesterol elimination is a promising strategy for the alleviation of atherosclerosis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Parsons, Harriet T; Yasmin, Tayyaba; Fry, Stephen C
2011-12-15
L-Ascorbate catabolism involves reversible oxidation to DHA (dehydroascorbic acid), then irreversible oxidation or hydrolysis. The precursor-product relationships and the identity of several major DHA breakdown products remained unclear. In the presence of added H2O2, DHA underwent little hydrolysis to DKG (2,3-dioxo-L-gulonate). Instead, it yielded OxT (oxalyl L-threonate), cOxT (cyclic oxalyl L-threonate) and free oxalate (~6:1:1), essentially simultaneously, suggesting that all three product classes independently arose from one reactive intermediate, proposed to be cyclic-2,3-O-oxalyl-L-threonolactone. Only with plant apoplastic esterases present were the esters significant precursors of free oxalate. Without added H2O2, DHA was slowly hydrolysed to DKG. Downstream of DKG was a singly ionized dicarboxy compound (suggested to be 2-carboxy-L-xylonolactone plus 2-carboxy-L-lyxonolactone), which reversibly de-lactonized to a dianionic carboxypentonate. Formation of these lactones and acid was minimized by the presence of residual unreacted ascorbate. In vivo, the putative 2-carboxy-L-pentonolactones were relatively stable. We propose that DHA is a branch-point in ascorbate catabolism, being either oxidized to oxalate and its esters or hydrolysed to DKG and downstream carboxypentonates. The oxidation/hydrolysis ratio is governed by reactive oxygen species status. In vivo, oxalyl esters are enzymatically hydrolysed, but the carboxypentonates are stable. The biological roles of these ascorbate metabolites invite future exploration.
Process for the synthesis of unsaturated alcohols
Maughon, Bob R.; Burdett, Kenneth A.; Lysenko, Zenon
2007-02-13
A process of preparing an unsaturated alcohol (olefin alcohol), such as, a homo-allylic mono-alcohol or homo-allylic polyol, involving protecting a hydroxy-substituted unsaturated fatty acid or fatty acid ester, such as methyl ricinoleate, derived from a seed oil, to form a hydroxy-protected unsaturated fatty acid or fatty acid ester; homo-metathesizing or cross-metathesizing the hydroxy-protected unsaturated fatty acid or fatty acid ester to produce a product mixture containing a hydroxy-protected unsaturated metathesis product; and deprotecting the hydroxy-protected unsaturated metathesis product under conditions sufficient to prepare the unsaturated alcohol. Preferably, methyl ricinoleate is converted by cross-metathesis or homo-metathesis into the homo-allylic mono-alcohol 1-decene-4-ol or the homo-allylic polyol 9-octadecene-7,12-diol, respectively.
NASA Astrophysics Data System (ADS)
Deng, Kui-Lin; Zhong, Hai-Bin; Jiao, Yi-Suo; Fan, Ting; Qiao, Xiao; Zhang, Peng-Fei; Ren, Xiao-Bo
2010-06-01
In this article, poly( N-methyl acryloylglycine methyl ester) (PNMAME) was prepared as a novel thermosensitive material with a lower critical solution temperature (LCST) at around 49.5°C. The chemical structures of the monomer NMAME and PNMAME were characterized by 1H NMR and IR measurements. The LCST was investigated systematically as a function of PNMAME concentration, inorganic salt solution and pH value. The results indicated that LCST of PNMAME was obviously dependent on PNMAME concentration and pH. The LCST was increased with a decrease in pH value and PNMAME concentration. To obtain a thermo-sensitive hydrogel with the phase transition temperature close to human body temperature, the copolymerization was conducted between NMAME and N-acryloylglycine ethyl ester (NAGEE). The release behavior of caffeine was evaluated at different temperatures and contents of cross-linkers ( N, N-methylenebis(acrylamide) (NMBA)). The increase of cross-linker content led to a decrease in the release rate of caffeine due to higher crossing density in the hydrogel network. In addition, a faster release of caffeine from the hydrogel with 3% NMBA at 37°C was found in contrast to that at 18°C.
NASA Astrophysics Data System (ADS)
Fan, Xingjun; Wei, Siye; Zhu, Mengbo; Song, Jianzhong; Peng, Ping'an
2018-05-01
In this study, the molecular structures of primary humic-like substances (HULIS) in fine smoke particles emitted from the combustion of biomass materials (including rice straw, corn straw, and pine branches) and coal, and atmospheric HULIS were determined by off-line tetramethylammonium hydroxide thermochemolysis coupled with gas chromatography and mass spectrometry (TMAH-GC/MS). A total of 89 pyrolysates were identified by the thermochemolysis of primary and atmospheric HULIS. The main groups were polysaccharide derivatives, N-containing compounds, lignin derivatives, aromatic acid methyl ester, aliphatic acid methyl ester, and diterpenoid derivatives. Both the type and distribution of pyrolysates among primary HULIS were comparable to those in atmospheric HULIS. This indicates that primary HULIS from combustion processes are important contributors to atmospheric HULIS. Some distinct differences were also observed. The aromatic compounds, including lignin derivatives and aromatic acid methyl ester, were the major pyrolysates (53.0%-84.9%) in all HULIS fractions, suggesting that primary HULIS significantly contributed aromatic structures to atmospheric HULIS. In addition, primary HULIS from biomass burning (BB) contained a relatively high abundance of lignin and polysaccharide derivatives, which is consistent with the large amounts of lignin and cellulose structures contained in biomass materials. Aliphatic acid methyl ester and benzyl methyl ether were prominent pyrolysates in atmospheric HULIS. Moreover, some molecular markers of specific sources were obtained from the thermochemolysis of primary and atmospheric HULIS. For example, polysaccharide derivatives, pyridine and pyrrole derivatives, and lignin derivatives can be used as tracers of fresh HULIS emitted from BB. Diterpenoid derivatives are important markers of HULIS from pine wood combustion sources. Finally, the differences in pyrolysate types and the distributions between primary and atmospheric HULIS suggested that the primary HULIS would undergo many atmospheric processes to reconstruct the macromolecular organic matter in atmospheric aerosols.
Avula, Satya Girish Chandra; Belovich, Joanne M; Xu, Yan
2017-05-01
Algae can synthesize, accumulate and store large amounts of lipids in its cells, which holds immense potential as a renewable source of biodiesel. In this work, we have developed and validated a GC-MS method for quantitation of fatty acids and glycerolipids in forms of fatty acid methyl esters derived from algae biomass. Algae Scenedesmus dimorphus dry mass was pulverized by mortar and pestle, then extracted by the modified Folch method and fractionated into free fatty acids and glycerolipids on aminopropyl solid-phase extraction cartridges. Fatty acid methyl esters were produced by an optimized one-step esterification of fatty acids and transesterification of glycerolipids with boron trichloride/methanol. The matrix effect, recoveries and stability of fatty acids and glycerolipids in algal matrix were first evaluated by spiking stable isotopes of pentadecanoic-2,2-d 2 acid and glyceryl tri(hexadecanoate-2,2-d 2 ) as surrogate analytes and tridecanoic-2,2-d 2 acid as internal standard into algal matrix prior to sample extraction. Later, the method was validated in terms of lower limits of quantitation, linear calibration ranges, intra- and inter-assay precision and accuracy using tridecanoic-2,2-d 2 acid as internal standard. The method developed has been applied to the quantitation of fatty acid methyl esters from free fatty acid and glycerolipid fractions of algae Scenedesmus dimorphus. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oil industry waste: a potential feedstock for biodiesel production.
Abbas, Javeria; Hussain, Sabir; Iqbal, Muhammad Javid; Nadeem, Habibullah; Qasim, Muhammad; Hina, Saadia; Hafeez, Farhan
2016-08-01
The worldwide rising energy demands and the concerns about the sustainability of fossil fuels have led to the search for some low-cost renewable fuels. In this scenario, the production of biodiesel from various vegetable and animal sources has attracted worldwide attention. The present study was conducted to evaluate the production of biodiesel from the oil industry waste following base-catalysed transesterification. The transesterification reaction gave a yield of 83.7% by 6:1 methanol/oil molar ratio, at 60°C over 80 min of reaction time in the presence of NaOH. The gas chromatographic analysis of the product showed the presence of 16 fatty acid methyl esters with linoleic and oleic acid as principal components representing about 31% and 20.7% of the total methyl esters, respectively. The fourier transform infrared spectroscopy spectrum of oil industry waste and transesterified product further confirmed the formation of methyl esters. Furthermore, the fuel properties of oil industry waste methyl esters, such as kinematic viscosity, cetane number, cloud point, pour point, flash point, acid value, sulphur content, cold filter plugging point, copper strip corrosion, density, oxidative stability, higher heating values, ash content, water content, methanol content and total glycerol content, were determined and discussed in the light of ASTM D6751 and EN 14214 biodiesel standards. Overall, this study presents the production of biodiesel from the oil industry waste as an approach of recycling this waste into value-added products.
Synethesis of cyclic ketal from soybean oil and fatty esters
USDA-ARS?s Scientific Manuscript database
In this work we have shown a facile and environmentally friendly reaction to form a cyclic ketal out of soybean oil, methyl soyate, methyl linoleate, and methyl oleate. There are many advantages of this reaction. First, the ketal reaction produces a branched fatty acid moiety and is reversible. S...
Liner Technology Program. Volume 3. Liner Development Methodology Manual
1982-05-01
derivative of trimesic acid, trimenoyl-l- (2-ethyl) aziridine BNO Hydroxyl ethyl ester of carboxy-terminated polybutadiene Catocene Liquid ferrocene ...diisocyanate MAPO rris-l-(2-methyl) aziridinyl phosphine oxide I.’ lNA Methyl nedic anhydride; methyl endo-cis-cicyolo-2,2,1-5- heptene-2,3-dicarboxylic
Analysis of Chemical Signatures of Alkaliphiles using Fatty Acid Methyl Ester Analysis
Sreenivasulu, Basha; Paramageetham, Chinthala; Sreenivasulu, Dasari; Suman, Bukke; Umamahesh, Katike; Babu, Gundala Prasada
2017-01-01
Background: Fatty acids occur in nearly all living organisms as the important predominant constituents of lipids. While all fatty acids have essentially the same chemical nature, they are an extremely diverse group of compounds. Materials and Methods: To test the hypothesis, fatty acids of alkaliphiles isolates, Bacillus subtilis SVUNM4, Bacillus licheniformis SVUNM8, Bacillus methylotrohicus SVUNM9, and Paenibacillus dendritiformis SVUNM11, were characterized compared using gas chromatography-mass spectrometry (GC-MS) analysis. Results: The content of investigated ten fatty acids, 1, 2-benzenedicarboxylic acid butyl 2-methylpropyl ester, phthalic acid, isobutyl 2-pentyl ester, dibutyl phthalate, cyclotrisiloxane, hexamethyl, cyclotetrasiloxane, octamethyl, dodecamethyl, heptasiloxane 1,1,3,3,5,5,7,7,9,9,11,11,13,13-etradecamethyl, 7,15-dihydroxydehydroabietic acid, methyl ester, di (trimethylsilyl) ether, hentriacontane, 2-thiopheneacetic acid, undec-2-enyl ester, obviously varied among four species, suggesting each species has its own fatty acid pattern. Conclusions: These findings demonstrated that GC-MS-based fatty acid profiling analysis provides the reliable platform to classify these four species, which is helpful for ensuring their biotechnological interest and novel chemotaxonomic. PMID:28717333
Conformational Behaviour of Azasugars Based on Mannuronic Acid.
van Rijssel, Erwin R; Janssen, Antonius P A; Males, Alexandra; Davies, Gideon J; van der Marel, Gijsbert A; Overkleeft, Herman S; Codée, Jeroen D C
2017-07-04
A set of mannuronic-acid-based iminosugars, consisting of the C-5-carboxylic acid, methyl ester and amide analogues of 1deoxymannorjirimicin (DMJ), was synthesised and their pH-dependent conformational behaviour was studied. Under acidic conditions the methyl ester and the carboxylic acid adopted an "inverted" 1 C 4 chair conformation as opposed to the "normal" 4 C 1 chair at basic pH. This conformational change is explained in terms of the stereoelectronic effects of the ring substituents and it parallels the behaviour of the mannuronic acid ester oxocarbenium ion. Because of this solution-phase behaviour, the mannuronic acid ester azasugar was examined as an inhibitor for a Caulobacter GH47 mannosidase that hydrolyses its substrates by way of a reaction itinerary that proceeds through a 3 H 4 transition state. No binding was observed for the mannuronic acid ester azasugar, but sub-atomic resolution data were obtained for the DMJ⋅CkGH47 complex, showing two conformations- 3 S 1 and 1 C 4 -for the DMJ inhibitor. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
UCHL1 Is a Putative Tumor Suppressor in Ovarian Cancer Cells and Contributes to Cisplatin Resistance
Jin, Chengmeng; Yu, Wei; Lou, Xiaoyan; Zhou, Fan; Han, Xu; Zhao, Na; Lin, Biaoyang
2013-01-01
Ubiquitin carboxyl terminal hydrolase 1 (UCHL1) catalyzes the hydrolysis of COOH-terminal ubiquityl esters and amides. It has been reported as either an oncogene or a tumor suppressor in cancers. However, UCHL1's role in ovarian cancer is still unclear. Therefore, we conducted an analysis to understand the role of UCHL1 in ovarian cancer. Firstly, we detected UCHL1 promoter methylation status in 7 ovarian cancer cell lines. 4 of them with UCHL1 silencing showed heavy promoter methylation while the other 3 with relative high UCHL1 expression showed little promoter methylation. Then we reduced UCHL1 expression in ovarian cancer cell line A2780 and IGROV1 and found that inhibition of UCHL1 promoted cell proliferation by increasing cells in S phases of cell cycle. Knockdown of UCHL1 also reduced cell apoptosis and contributed to cisplatin resistance. Furthermore, the expression level of UCHL1 in several ovarian cancer cell lines correlated negatively with their cisplatin resistance levels. Microarray data revealed that UCHL1 related genes are enriched in apoptosis and cell death gene ontology (GO) terms. Several apoptosis related genes were increased after UCHL1 knockdown, including apoptosis regulator BCL2, BCL11A, AEN and XIAP. Furthermore, we identified up-regulation of Bcl-2 and pAKT as well as down-regulation of Bax in UCHL1 knockdown cells, while no significant alteration of p53 and AKT1 was found. This study provides a new and promising strategy to overcome cisplatin resistance in ovarian cancer via UCHL1 mediated pathways. PMID:24155778
Priatni, S; Hartati, S; Dewi, P; Kardono, L B S; Singgih, M; Gusdinar, T
2010-08-01
The objective of this study was to identify the Fatty Acid Methyl Ester (FAME) from Neurospora intermedia N-1 that isolated from Indonesian red peanut cake (oncom). FAME profiles have been used as biochemical characters to study many different groups of organisms, such as bacteria and yeasts. FAME from N. intermedia N-1 was obtained by some stages of extraction the orange spores and fractination using a chromatotron. The pure compound (1) was characterized by 500 mHz NMR (1H and 13C), FTIR and LC-MS. Summarized data's of 1H and 13C NMR spectra of compound 1 contained 19 Carbon, 34 Hydrogen and 2 Oxygen (C19H34O2). The position of the double bonds at carbon number 8 and 12 were indicated in the HMBC spectrum (2D-NMR). LC-MS spectrum indicates molecular weight of the compound 1 as 294 which is visible by the presence of protonated molecular ion [M+H] at m/z 295. Methyl esters of long chain fatty acids was presented by a 3 band pattern of IR spectrum with bands near 1249, 1199 and 1172 cm(-1). We suggested that the structure of the pure compound 1 is methyl octadeca-8,12-dienoate. The presence methyl octadeca-8,12-dienoate in N. intermedia is the first report.
Fridlyand, Aleksandr; Goldsborough, S Scott; Brezinsky, Kenneth
2015-07-16
The high pressure and temperature oxidation of methyl trans-2-nonenoate, methyl trans-3-nonenoate, 1-octene, and trans-2-octene are investigated experimentally to probe the influence of the double bond position on the chemical kinetics of long esters and alkenes. Single pulse shock tube experiments are performed in the ranges p = 3.8-6.2 MPa and T = 850-1500 K, with an average reaction time of 2 ms. Gas chromatographic measurements indicate increased reactivity for trans-2-octene compared to 1-octene, whereas both methyl nonenoate isomers have reactivities similar to that of 1-octene. A difference in the yield of stable intermediates is observed for the octenes when compared to the methyl nonenoates. Chemical kinetic models are developed with the aid of the Reaction Mechanism Generator to interpret the experimental results. The models are created using two different base chemistry submodels to investigate the influence of the foundational chemistry (i.e., C0-C4), whereas Monte Carlo simulations are performed to examine the quality of agreement with the experimental results. Significant uncertainties are found in the chemistry of unsaturated esters with the double bonds located close to the ester groups. This work highlights the importance of the foundational chemistry in predictive chemical kinetics of biodiesel combustion at engine relevant conditions.
Fardin-Kia, Ali Reza; Delmonte, Pierluigi; Kramer, John K G; Jahreis, Gerhard; Kuhnt, Katrin; Santercole, Viviana; Rader, Jeanne I
2013-12-01
The fatty acids contained in marine oils or products are traditionally analyzed by gas chromatography using capillary columns coated with polyethylene glycol phases. Recent reports indicate that 100 % cyanopropyl siloxane phases should also be used when the analyzed samples contain trans fatty acids. We investigated the separation of the fatty acid methyl esters prepared from menhaden oil using the more polar SLB-IL111 (200 m × 0.25 mm) ionic liquid capillary column and the chromatographic conditions previously optimized for the separation of the complex mixture of fatty acid methyl esters prepared from milk fat. Identifications of fatty acids were achieved by applying Ag(+)-HPLC fractionation and GC-TOF/MS analysis in CI(+) mode with isobutane as the ionization reagent. Calculation of equivalent chain lengths confirmed the assignment of double bond positions. This methodology allowed the identification of 125 fatty acids in menhaden oil, including isoprenoid and furanoid fatty acids, and the novel 7-methyl-6-hexadecenoic and 7-methyl-6-octadecenoic fatty acids. The chromatographic conditions applied in this study showed the potential of separating in a single 90-min analysis, among others, the short chain and trans fatty acids contained in dairy products, and the polyunsaturated fatty acids contained in marine products.
Islam, Md. Tofazzal; Laatsch, Hartmut; von Tiedemann, Andreas
2016-01-01
The release of zoospores from sporangia and motility of the released zoospores are critical in the disease cycle of the Peronosporomycetes that cause devastating diseases in plants, fishes, animals and humans. Disruption of any of these asexual life stages eliminates the possibility of pathogenesis. In the course of screening novel bioactive secondary metabolites, we found that extracts of some strains of marine Streptomyces spp. rapidly impaired motility and caused subsequent lysis of zoospores of the grapevine downy mildew pathogen Plasmopara viticola at 10 μg/ml. We tested a number of secondary metabolites previously isolated from these strains and found that macrotetrolide antibiotics such as nonactin, monactin, dinactin and trinactin, and nactic acids such as (+)-nonactic acid, (+)-homonactic acid, nonactic acid methyl ester, homonactic acid methyl ester, bonactin and feigrisolide C impaired motility and caused subsequent lysis of P. viticola zoospores in a dose- and time-dependent manners with dinactin being the most active compound (MIC 0.3 μg/ml). A cation channel-forming compound, gramicidin, and a carrier of monovalent cations, nigericin also showed similar biological activities. Among all 12 compounds tested, gramicidin most potently arrested the motility of zoospores at concentrations starting from 0.1 μg/ml. All macrotetrolide antibiotics also displayed similar motility impairing activities against P. viticola, Phytophthora capsici, and Aphanomyces cochlioides zoospores indicating non-specific biological effects of these compounds toward peronosporomyctes. Furthermore, macrotetrolide antibiotics and gramicidin also markedly suppressed the release of zoospores from sporangia of P. viticola in a dose-dependent manner. As macrotetrolide antibiotics and gramicidin are known as enhancers of mitochondrial ATPase activity, inhibition of zoosporogenesis and motility of zoospores by these compounds are likely linked with hydrolysis of ATP through enhanced ATPase activity in mitochondria. This is the first report on motility inhibitory and lytic activities of macrotetrolide antibiotics and nactic acids against the zoospores of peronosporomycete phytopathogens. PMID:27917156
Thermochemical Concrete Pavement Scaling Mechanism: Navy F/A-18 Jet Aircraft Parking Apron Problem
1998-06-01
boiling and recondensation) in hot, concentrated potassium hydroxide (E): Eqn 11 Alkaline Hydrolysis of Esters with Potassium Hydroxide KOH...RC02R’ -> KC02R + R’OH potassium alkyl ester (B) potassium ethanol(L) hydroxide (E) carboxylate (F) The overall reaction appears to make sense...carbonate (H) water 2. The parallel between calcium hydroxide and potassium hydroxide is not very accurate. Potassium hydroxide is a much stronger alkali
Ganesh, Mani; Mohankumar, Murugan
2017-09-01
Sida cordata (Burm.f.) is a pineal tropical plant in the family Malvaceae that is found throughout India and used to treat various diseases and ailments in many complementary and alternative medicine systems. This study identified the bioactive components present in whole-plant ethanol extracts of S . cordata using gas chromatography-mass spectrometry (GC-MS). Based on their retention times (RT) and mass-to-charge ratios (m/z), 29 bioactive compounds were identified: nonanoic acid, vitamin D 3 , 3-trifluroacetoxypentadecane, α-d-glucopyranoside, O-α-d-glucopyranosyl-(1.fwdarw.3)-α-d-fructofuranosyl,3,7,11,15-tetramethyl-2-hexadecan-1-ol, octadecanoic acid, ethyl ester, phytol, 9,12-octadecadienoic acid, methyl ester (E,E), 9,12,15-octadecadienoic acid, methyl ester (Z,Z,Z), oleic acid, 1,2-15,16-diepoxyhexadecane, 3-hexadecyloxycarbonyl-5-(2-hydroxyethyl)-4-methylimidazolium ion, methoxyacetic acid, 4-tetradecyl ester, 1,2-benzenedicarboxylic acid, mono (2-ethylhexyl) ester, 1-iodo-2-methylundecane, dodecane, 2,6,10-trimethyl-, 2-piperidinone-N-[4-bromo-n-butyl]-, squalene, octadecane-1-(ethenyloxy)-, Z,Z-2,5-pentadecadien-1-ol, 1-hexadecanol, 2-methyl-, spiro[androst-5ene-17,1'-cyclobutan]-2'-one-3-hydroxy-, (3a,17a)-, diethylene glycol monododecyl ether, vitamin E, cholestan-3-ol, 2-methylene-, (3a,5a)-, 2H-pyran, 2-(7-heptadecynyloxy)tetrahydro-, and cis -Z-α-bisabolene epoxide. The presence of various bioactive compounds justifies the use of this plant for treating various ailments by traditional practitioners.
[Studies on the chemical constituents of Phlomis younghusbandii].
Gao, Yong-li; Lin, Rui-chao; Wang, Gang-li; Zhao, Han-ru; Gao, Yuan; Ciren, Bianha
2007-10-01
To study the chemical constituents of Phlomis younghusbandii. Compounds were isolated from the ethanolic extract by silica gel column chromatography, and their structures were identified by physical and chemical evidences and spectral methods. Eight compounds were isolated and identified respectively as 8-acetylshanzhiside methyl ester (1), shanzhiside methyl ester (2), phlomiol (3), 2-butoxy-2-(hydroxymthyl) tetrahydro-2H-3,4,5-pyrantriol (4), sesamoside (5), pulchelloside-I (6), luteolin-7-O-beta-D-glucopyranoside (7) and daucosterol (8). All the compounds were isolated from the plant for the first time.
Al-Omari, Saleh; Ali, Ahmad
2009-03-01
Comparative spectroscopic study including the photosensitizers of pyropheophorbide methyl ester (PPME) and pyropheophorbide a (PPa) was performed to study their photodynamic activity. The investigated photosensitizers in a homogeneous system of dimethylformamide (DMF) are not photostable upon irradiation. The photobleaching efficiency of PPa is higher than that of PPME. Combining these results with the data obtained by measuring the singlet oxygen quantum yield and the hydroxyl group generation, it was revealed that the photobleaching efficiency could be correlated with the singlet oxygen quantum yield and the hydroxyl group production of the photosensitizer.
Facile solvolysis of a surprisingly twisted tertiary amide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloomfield, Aaron J.; Chaudhuri, Subhajyoti; Mercado, Brandon Q.
2016-01-05
In this study, a bicyclo[2.2.2]octane derivative containing both a tertiary amide and a methyl ester was shown crystallographically to adopt a conformation in which the amide is in the cis configuration, which is sterically disfavored, but electronically favored. The steric strain induces a significant torsion (15.9°) of the amide, thereby greatly increasing the solvolytic lability of the amide to the extent that we see competitive amide solvolysis in the presence of the normally more labile methyl ester also present in the molecule.
2015-09-18
a derivative is the [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), a C60 fullerene with a chemically bonded functional group. The addition of the...functional group, on the other hand, decreases the fullerene symmetry and conse- quently affects its crystallization.8 Although growth of crystalline C60...possibility to tune the grown structures to different morphologies.8 One-dimensional fullerene (C60) struc- tures, namely, nanorods and nanoribbons, are of
Lipid oxidation. Part 2. Oxidation products of olive oil methyl esters.
Pokorný, J; Tài, P; Parízková, H; Smidrkalová, E; El-Tarras, M F; Janícek, G
1976-01-01
Olive oil was converted into methyl esters which were autoxidized at 60 degrees C. The composition of oxidized products was determined by the comparison of infrared spectra and NMR spectra of the original and acetylated samples, the sample reduced with potassium iodide and the acetylated reduced sample. Oxidized products were separated by preparative thin layer chromatography on silica gel and characterized by selective detection and by infrared spectrometry of the fractions. The oxidation products consisted of hydroperoxido butyl oleate, substituted hydroperoxides, mono- and disubstituted monomeric derivatives and a small amount of oligomers.
Wiersma-Koch, Helen; Sunden, Fanny; Herschlag, Daniel
2013-12-23
Catalytic promiscuity, an evolutionary concept, also provides a powerful tool for gaining mechanistic insights into enzymatic reactions. Members of the alkaline phosphatase (AP) superfamily are highly amenable to such investigation, with several members having been shown to exhibit promiscuous activity for the cognate reactions of other superfamily members. Previous work has shown that nucleotide pyrophosphatase/phosphodiesterase (NPP) exhibits a >10⁶-fold preference for the hydrolysis of phosphate diesters over phosphate monoesters, and that the reaction specificity is reduced 10³-fold when the size of the substituent on the transferred phosphoryl group of phosphate diester substrates is reduced to a methyl group. Here we show additional specificity contributions from the binding pocket for this substituent (herein termed the R' substituent) that account for an additional ~250-fold differential specificity with the minimal methyl substituent. Removal of four hydrophobic side chains suggested on the basis of structural inspection to interact favorably with R' substituents decreases phosphate diester reactivity 10⁴-fold with an optimal diester substrate (R' = 5'-deoxythymidine) and 50-fold with a minimal diester substrate (R' = CH₃). These mutations also enhance the enzyme's promiscuous phosphate monoesterase activity by nearly an order of magnitude, an effect that is traced by mutation to the reduction of unfavorable interactions with the two residues closest to the nonbridging phosphoryl oxygen atoms. The quadruple R' pocket mutant exhibits the same activity toward phosphate diester and phosphate monoester substrates that have identical leaving groups, with substantial rate enhancements of ~10¹¹-fold. This observation suggests that the Zn²⁺ bimetallo core of AP superfamily enzymes, which is equipotent in phosphate monoester and diester catalysis, has the potential to become specialized for the hydrolysis of each class of phosphate esters via addition of side chains that interact with the substrate atoms and substituents that project away from the Zn²⁺ bimetallo core.
Chemistry of anti-AIDS and anticancer compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, S.
1992-01-01
Several types of prodrugs of 2[prime], 3[prime]-dideoxynucleosides were designed and synthesized for evaluation as anti-AIDS drugs. These prodrugs include 5[prime]-O-acyl-2[prime], 3[prime]-dideoxynucleosides, in which the acyl groups are derived from both aromatic and aliphatic acids, [alpha]-amino acids, diacylglycerol carbonic acids, and diacylglycerol carbamic acids. By applying the pyridium-dihydropyridine redox delivery system to deliver 2[prime], 3[prime]-dideoxynucleosides to the central nervous system, 1,4-dihydropyridine-2[prime], 3[prime]-dideoxy-inosine and -adenosine compounds were synthesized. 5[prime]-Esters of 2[prime], 3[prime]-dideoxyinosine and 2[prime], 3[prime]-dideoxyadenosine were evaluated for their activity against the HIV-1 virus and for delivery to the central nervous system (CNS). The isomerization, hydrolysis, and oxidation of alkyl 1,4-dihydro-N-methylpyridine-3-carboxylates weremore » studied by [sup 1]H and [sup 13]C NMR spectroscopy. Three intermediates, 1,4-dihydro-N-methylpyridine-3-carboxylic acid, alkyl (methyl or isopropyl) 1,6-dihydro-N-methylpyridine-3-carboxylate, and 1,6-dihydro-N-methylpyridine-3-carboxylic acid, were observed by [sup 1]H and [sup 13]C NMR spectroscopy, and their percentages in solution were determined. The structures of the 1,6-dihydropyridine intermediates were confirmed by comparison of the NMR spectra with those of an authentic model compound, methyl N-(4-chlorobenzyl)-1,6-dihydropyridine-3-carboxylate. The rate of hydrolysis of alkyl 1,4-dihydro-N-methylpyridine-3-carboxylates depends on the steric bulk of the O-alkyl group. A new type of 1,4-dihydropyridine drug delivery system with a three-carbon spacer group, 9-[2,3-di-O-acetyl-5-O-[3-(1,4-dihydro-N-methylpyridine-3-carboxamido)propionyl]-[beta]-D-arabinofuranosyl]adenine was designed, synthesized, and evaluated to deliver ara-ADA to the CNS for treatment of herpes encephalitis.« less
Rasheed, Hafiz Majid; Khan, Taous; Wahid, Fazli; Khan, Rasool; Shah, Abdul Jabbar
2015-01-01
Rosa indica L. belongs to the family Rosaceae and is locally known as gulaab. It has different traditional uses in cardiovascular and gastrointestinal disorders but there is no scientific data available in this regard. Therefore, the basic aim of this study was to explore the chemical composition and gastrointestinal and cardiovascular effects of the essential oil obtained from R. indica. The chemical composition of the essential oil was investigated using gas chromatography-mass spectrometry (GC-MS) technique. The cardiovascular and gastrointestinal effects were investigated using electrophysiological measurements. The GC-MS analysis of the essential oil showed various chemical components including acetic acid, mercaptohexyl ester, butanoic acid, 2-methyl-5-oxo-1-cyclopentene-1-yl ester, artemiseole, methyl santonilate, isosteviol, caryophyllene oxide, pentyl phenyl acetate, dihydromyrcene, 1,5-octadecadien, octadecanoic acid, ethyl ester, palmitic acid (2-phenyl-1,3-dioxolan-4-yl methyl ester), santolina epoxide, and 9-farnesene. The electrophysiological measurements revealed that essential oil was more potent against K+ (80 mM) than phenylephrine precontractions using isolated rabbit aorta preparations. In isolated rabbit jejunum preparations, it showed more potency against high K+ induced contractions than spontaneous contractions. Considering these evidences, it can be concluded that R. indica essential oil may work as a complementary and alternative medicine in gastrointestinal and cardiovascular diseases. PMID:26357519
Analysis of the constituents in jojoba wax used as a food additive by LC/MS/MS.
Tada, Atsuko; Jin, Zhe-Long; Sugimoto, Naoki; Sato, Kyoko; Yamazaki, Takeshi; Tanamoto, Kenichi
2005-10-01
Jojoba wax is a natural gum base used as a food additive in Japan, and is obtained from jojoba oil with a characteristically high melting point. Although the constituents of jojoba oil have been reported, the quality of jojoba wax used as a food additive has not yet been clarified. In order to evaluate its quality as a food additive and to obtain basic information useful for setting official standards, we investigated the constituents and their concentrations in jojoba wax. LC/MS analysis of the jojoba wax showed six peaks with [M+H]+ ions in the range from m/z 533.6 to 673.7 at intervals of m/z 28. After isolation of the components of the four main peaks by preparative LC/MS, the fatty acid and long chain alcohol moieties of the wax esters were analyzed by methanolysis and hydrolysis, followed by GC/MS. The results indicated that the main constituents in jojoba wax were various kinds of wax esters, namely eicosenyl octadecenoate (C20:1-C18:1) (1), eicosenyl eicosenoate (C20:1-C20:1) (II), docosenyl eicosenoate (C22:1-C20:1) (III), eicosenyl docosenoate (C20:1-C22:1) (IV) and tetracosenyl eiosenoate (C24:1-C20:1) (V). To confirm and quantify the wax esters in jojoba wax directly, LC/MS/MS analysis was performed. The product ions corresponding to the fatty acid moieties of the wax esters were observed, and by using the product ions derived from the protonated molecular ions of wax esters the fatty acid moieties were identified by MRM analysis. The concentrations of the wax esters I, II and III, in jojoba wax were 5.5, 21.4 and 37.8%, respectively. In summary, we clarified the main constituents of jojoba wax and quantified the molecular species of the wax esters without hydrolysis by monitoring their product ions, using a LC/MS/MS system.
Hydrolysis, adsorption, and biodegradation of bensulfuron methyl under methanogenic conditions.
Zhu, Fan-Ping; Duan, Jian-Lu; Yuan, Xian-Zheng; Shi, Xiao-Shuang; Han, Zhen-Lian; Wang, Shu-Guang
2018-05-01
Bensulfuron methyl (BSM), one of the most widely used herbicides in paddy soils, is frequently detected in natural and artificial aquatic systems. However, BSM transformation under methanogenic conditions has not been given sufficient attention. In this study, BSM elimination and transformation by anaerobic enrichment cultures were investigated. The results showed that BSM can be mineralized to methane through hydrolysis, adsorption, and biodegradation under a methanogenic environment. The adsorption led to protein static quenching in the extracellular polymeric substances (EPSs) of the enrichment cultures. Specifically, BSM mainly reacted with the amine, amide, amino acid, and amino sugar functional groups in proteins. BSM hydrolysis and biodegradation occurred through the breakage of the sulfonylurea bridge and sulfonyl amide linkage. The cleavage of the sulfonylurea bridge occurred in both hydrolysis and biodegradation, while the cleavage of the sulfonyl amide linkage only occurred in hydrolysis. These results elucidated the complex transformation of BSM under methanogenic conditions, which will advance the studies on sulfonylurea herbicide biotransformation and hazard assessment in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yang, Ru; Su, Mengxing; Li, Min; Zhang, Jianchun; Hao, Xinmin; Zhang, Hua
2010-08-01
A one-pot process combining transesterification and selective hydrogenation was established to produce biodiesel from hemp (Cannabis sativa L.) seed oil which is eliminated as a potential feedstock by a specification of iodine value (IV; 120 g I(2)/100g maximum) contained in EN 14214. A series of alkaline earth metal oxides and alkaline earth metal supported copper oxide were prepared and tested as catalysts. SrO supported 10 wt.% CuO showed the superior catalytic activity for transesterification with a biodiesel yield of 96% and hydrogenation with a reduced iodine value of 113 and also exhibited a promising selectivity for eliminating methyl linolenate and increasing methyl oleate without rising methyl stearate in the selective hydrogenation. The fuel properties of the selective hydrogenated methyl esters are within biodiesel specifications. Furthermore, cetane numbers and iodine values were well correlated with the compositions of the hydrogenated methyl esters according to degrees of unsaturation. (c) 2010 Elsevier Ltd. All rights reserved.
Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V
2015-08-17
Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides-oligomers with a combination of ester and amide linkages-in model prebiotic reactions that are driven by wet-cool/dry-hot cycles. Through a combination of ester-amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Elwell, Caleb
Beef tallow is a less common feedstock source for biodiesel than soy or canola oil, but it can have economic benefits in comparison to these traditional feedstocks. However, tallow methyl ester (TME) has the major disadvantage of poor cold temperature properties. Cloud point (CP) is an standard industry metric for evaluating the cold temperature performance of biodiesel and is directly related to the thermodynamic properties of the fuel's constituents. TME has a CP of 14.5°C compared with 2.3°C for soy methyl ester (SME) and -8.3°C for canola methyl ester (CME). In this study, three methods were evaluated to reduce the CP of TME: fractionation, blending with SME and CME, and using polymer additives. TME fractionation (i.e. removal of specific methyl ester constituents) was simulated by creating FAME mixtures to match the FAME profiles of fractionated TME. The fractionation yield was found to be highest at the eutectic point of methyl palmitate (MP) and methyl stearate (MS), which was empirically determined to be at a MP/(MP+MS) ratio of approximately 82%. Since unmodified TME has a MP/(MP+MS) ratio of 59%, initially only MS should be removed to produce a ratio closer to the eutectic point to reduce CP and maximize yield. Graphs relating yield (with 4:1 methyl stearate to methyl oleate carryover) to CP were produced to determine the economic viability of this approach. To evaluate the effect of blending TME with other methyl esters, SME and CME were blended with TME at blend ratios of 0 to 100%. Both the SME/TME and CME/TME blends exhibited decreased CPs with increasing levels of SME and CME. Although the CP of the SME/TME blends varied linearly with SME content, the CP of the CME/TME blends varied quadratically with CME content. To evaluate the potential of fuel additives to reduce the CP of TME, 11 different polymer additives were tested. Although all of these additives were specifically marketed to enhance the cold temperature properties of petroleum diesel or biodiesel, only two of the additives had any significant effect on TME CP. The additive formulated by Meat & Livestock Australia (MLA) outperformed Evonik's Viscoplex 10-530. The MLA additive was investigated further and its effect on CP was characterized in pure TME and in CME/TME blends. When mixed in CME/TME blends, the MLA additive had a synergistic effect and produced lower CPs than the addition of mixing MLA in TME and blending CME with TME. To evalulate the cold temperature properties of TME blended with petroleum diesel, CPs of TME/diesel blends from 0 to 100% were measured. The TME/diesel blends were treated with the MLA additives to determine the effects of the additives under these blend conditions. The MLA additive also had a synergistic effect when mixed in TME/diesel blends. Finally, all three of the TME CP reduction methods were evaluated in an economic model to determine the conditions under which each method would be economically viable. Each of the CP reduction methods were compared using a common metric based on the cost of reducing the CP of 1 gallon of finished biodiesel by 1°C (i.e. $/gal/°C). Since the cost of each method is dependent on varying commodity prices, further development of the economic model (which was developed and tested with 2012 prices) to account for stochastic variation in commodity prices is recommended.
Márquez-Ruiz, G; Holgado, F; García-Martínez, M C; Dobarganes, M C
2007-09-21
A new method based on high-performance size-exclusion chromatography (HPSEC) is proposed to quantitate primary and secondary oxidation compounds in model fatty acid methyl esters (FAMEs). The method consists on simply injecting an aliquot sample in HPSEC, without preliminary isolation procedures neither addition of standard internal. Four groups of compounds can be quantified, namely, unoxidised FAME, oxidised FAME monomers including hydroperoxides, FAME dimers and FAME polymers. Results showed high repeatability and sensitivity, and substantial advantages versus determination of residual substrate by gas-liquid chromatography. Applicability of the method is shown through selected data obtained by numerous oxidation experiments on pure FAME, mainly methyl linoleate, at ambient and moderate temperatures.
Tansey, J T; Thuren, T Y; Jerome, W G; Hantgan, R R; Grant, K; Waite, M
1997-10-07
Hepatic lipase (HL) hydrolysis of phosphatidylcholine (PC) was studied in recombinant high-density lipoprotein particles (r-HDL). r-HDL were made from cholate mixed micelles that contained PC, apo AI, and, in some cases, unesterified cholesterol. r-HDL were characterized using chemical composition, nondenaturing gradient gel electrophoresis, transmission electron microscopy, and dynamic light scattering. The r-HDL were found to be discoidal and in the size range of native HDL. Upon treatment of cholesterol-containing r-HDL with lecithin-cholesterol acyltransferase (LCAT), to form cholesteryl ester, the discoidal r-HDL became spheroidal. The effects of r-HDL morphology and size on HL activity were studied on r-HDL made of palmitoyloleoyl-PC, unesterified cholesterol, cholesteryl ester, and apolipoprotein AI. Spheroidal r-HDL were hydrolyzed at a faster rate than discoidal r-HDL. Protein-poor r-HDL were hydrolyzed by HL at a faster rate than protein rich r-HDL. Unesterified cholesterol had no apparent effect on particle PC hydrolysis. The hydrolysis of different species of PC [dipalmitoyl (DPPC), dioleoyl(DOPC), palmitoylarachidonoyl (PAPC), and palmitoyloleoyl (POPC)] in r-HDL was also investigated. In discoidal r-HDL, we found that POPC >/= DOPC = PAPC/DPPC. However, in LCAT-treated spheroidal r-HDL, POPC = DOPC > PAPC/DPPC. In both discoidal and spheroidal rHDL, DPPC containing r-HDL were not hydrolyzed to a significant extent. Collectively, these studies demonstrate that the physico-chemical properties of particles (such as phospholipid packing and phospholipid acyl composition) play a significant role in hydrolysis of HDL phospholipid by HL and, therefore, in reverse cholesterol transport.
Qandil, Amjad M; Rezigue, Meriem M; Tashtoush, Bassam M
2011-06-14
Combination therapy of fibrates and nicotinic acid has been reported to be synergistic. Herein, we describe a covalent codrug of gemfibrozil (GEM) and nicotinic acid (NA) that was synthesized and characterized by (1)H NMR, (13)C NMR, FT-IR, MS analysis and elemental analysis. A validated HPLC method was developed that allows for the accurate quantitative determination of the codrug and its hydrolytic products that are formed during the in vitro chemical and enzymatic hydrolysis. The physico-chemical properties of codrug were improved compared to its parent drugs in term of water solubility and partition coefficient. The kinetics of hydrolysis of the codrug was studied using accelerated hydrolysis experiments at high temperatures in aqueous phosphate buffer solution in pH 1.2, 6.8 and 7.4. Using the Arrhenius equation, the extrapolated half-life at 37°C were 289 days at pH 1.2 for the codrug and 130 and 20,315 days at pH 6.8 for the codrug and gemfibrozil 2-hydroxyethyl ester (GHEE), respectively. The shortest half-lives were at pH 7.4; 42 days for the codrug and 5837 days for GHEE, respectively. The hydrolysis of the latter was studied, alone, at 80°C and pH 1.2 and compared to its hydrolysis when it is produced from the codrug using similar conditions. The k(obs) was found in both cases to be 1.60×10(-3)h(-1). The half-lives in plasma were 35.24 min and 26.75 h for the codrug and GHEE, respectively. With regard to liver homogenate, the hydrolysis half-lives were 1.96 min and 48.13 min for the codrug and GHEE, respectively. It can be expected that in vivo, the codrug will liberate NA immediately in plasma then GEM will be liberated from its 2-hydroxyethyl ester in the liver. Copyright © 2011 Elsevier B.V. All rights reserved.
Experimental and numerical investigations on spray characteristics of fatty acid methyl esters
NASA Astrophysics Data System (ADS)
Lanjekar, R. D.; Deshmukh, D.
2018-02-01
A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n-heptane, n-dodecane and n-tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n-heptane fuel is closely following diesel spray tip penetration along with that of n-tetradecane and n-dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment.
Experimental and numerical investigations on spray characteristics of fatty acid methyl esters.
Lanjekar, R D; Deshmukh, D
2018-02-01
A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n -heptane, n -dodecane and n -tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n -heptane fuel is closely following diesel spray tip penetration along with that of n -tetradecane and n -dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment.
Experimental and numerical investigations on spray characteristics of fatty acid methyl esters
Deshmukh, D.
2018-01-01
A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n-heptane, n-dodecane and n-tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n-heptane fuel is closely following diesel spray tip penetration along with that of n-tetradecane and n-dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment. PMID:29515835
Tsai, Shau-Wei; Chen, Chun-Chi; Yang, Hung-Shien; Ng, I-Son; Chen, Teh-Liang
2006-08-01
In comparison with the biocatalyst engineering and medium engineering approaches, very few examples have been reported on using the substrate engineering approach such as substrate-assisted catalysis (SAC) for naturally occurring or engineered lipases and serine proteases to improve the enzyme activity and enantioselectivity. By employing lipase-catalyzed hydrolysis of (R,S)-naproxen esters in water-saturated isooctane as the model system, we demonstrate the proton shuttle device to the leaving alcohol of the substrate as a new means of SAC to effectively improve the lipase activity or enantioselectivity. The result cannot only provide a strong evidence for the rate-limiting proton transfer for the bond-breaking of tetrahedron intermediate of the acylation step, but also sheds light for performing the hydrolysis, transesterification or aminolysis in organic solvents for the ester substrate that originally lipases cannot catalyze, but now can after introducing the device.
d'Errico, Clotilde; Jørgensen, Jonas O; Krogh, Kristian B R M; Spodsberg, Nikolaj; Madsen, Robert; Monrad, Rune Nygaard
2015-05-01
Lignin-carbohydrate complexes (LCCs) are believed to influence the recalcitrance of lignocellulosic plant material preventing optimal utilization of biomass in e.g. forestry, feed and biofuel applications. The recently emerged carbohydrate esterase (CE) 15 family of glucuronoyl esterases (GEs) has been proposed to degrade ester LCC bonds between glucuronic acids in xylans and lignin alcohols thereby potentially improving delignification of lignocellulosic biomass when applied in conjunction with other cellulases, hemicellulases and oxidoreductases. Herein, we report the synthesis of four new GE model substrates comprising α- and ɣ-arylalkyl esters representative of the lignin part of naturally occurring ester LCCs as well as the cloning and purification of a novel GE from Cerrena unicolor (CuGE). Together with a known GE from Schizophyllum commune (ScGE), CuGE was biochemically characterized by means of Michaelis-Menten kinetics with respect to substrate specificity using the synthesized compounds. For both enzymes, a strong preference for 4-O-methyl glucuronoyl esters rather than unsubstituted glucuronoyl esters was observed. Moreover, we found that α-arylalkyl esters of methyl α-D-glucuronic acid are more easily cleaved by GEs than their corresponding ɣ-arylalkyl esters. Furthermore, our results suggest a preference of CuGE for glucuronoyl esters of bulky alcohols supporting the suggested biological action of GEs on LCCs. The synthesis of relevant GE model substrates presented here may provide a valuable tool for the screening, selection and development of industrially relevant GEs for delignification of biomass. © 2014 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Alston, William B.; Scheiman, Daniel A.; Sivko, Gloria S.
2005-01-01
Polymerization of Monomeric Reactants (PMR) monomer solutions and carbon cloth prepregs of PMR II-50 and VCAP-75 were prepared using both the traditional limited shelf life methanol based PMR approach and a novel extended shelf life isopropanol based PMR approach. The methyl ester and isopropyl ester based PMR monomer solutions and PMR prepregs were aged for up to four years at freezer and room temperatures. The aging products formed were monitored using high pressure liquid chromatography (HPLC). The composite processing flow characteristics and volatile contents of the aged prepregs were also correlated versus room temperature storage time. Composite processing cycles were developed and six ply cloth laminates were fabricated with prepregs after various extended room temperature storage times. The composites were then evaluated for glass transition temperature (Tg), thermal decomposition temperature (Td), initial flexural strength (FS) and modulus (FM), long term (1000 hours at 316 C) thermal oxidative stability (TOS), and retention of FS and FM after 1000 hours aging at 316 C. The results for each ester system were comparable. Freezer storage was found to prevent the formation of aging products for both ester systems. Room temperature storage of the novel isopropyl ester system increased PMR monomer solution and PMR prepreg shelf life by at least an order of magnitude while maintaining composite properties.
Three approaches to fuels from fatty compounds
USDA-ARS?s Scientific Manuscript database
Biodiesel, the alkyl esters, usually methyl esters, of vegetable oils, animal fats, or other triacylglycerol-containing materials, are the most common approach to producing a fuel from the mentioned materials. This fuel is obtained by transesterifying the oil or fat with an alcohol, usually methanol...
Ester carbonyl vibration as a sensitive probe of protein local electric field.
Pazos, Ileana M; Ghosh, Ayanjeet; Tucker, Matthew J; Gai, Feng
2014-06-10
The ability to quantify the local electrostatic environment of proteins and protein/peptide assemblies is key to gaining a microscopic understanding of many biological interactions and processes. Herein, we show that the ester carbonyl stretching vibration of two non-natural amino acids, L-aspartic acid 4-methyl ester and L-glutamic acid 5-methyl ester, is a convenient and sensitive probe in this regard, since its frequency correlates linearly with the local electrostatic field for both hydrogen-bonding and non-hydrogen-bonding environments. We expect that the resultant frequency-electric-field map will find use in various applications. Furthermore, we show that, when situated in a non-hydrogen-bonding environment, this probe can also be used to measure the local dielectric constant (ε). For example, its application to amyloid fibrils formed by Aβ(16-22) revealed that the interior of such β-sheet assemblies has an ε value of approximately 5.6. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ponzano, Stefano; Berteotti, Anna; Petracca, Rita; Vitale, Romina; Mengatto, Luisa; Bandiera, Tiziano; Cavalli, Andrea; Piomelli, Daniele; Bertozzi, Fabio; Bottegoni, Giovanni
2014-12-11
N-(2-Oxo-3-oxetanyl)carbamic acid esters have recently been reported to be noncompetitive inhibitors of the N-acylethanolamine acid amidase (NAAA) potentially useful for the treatment of pain and inflammation. In the present study, we further explored the structure-activity relationships of the carbamic acid ester side chain of 2-methyl-4-oxo-3-oxetanylcarbamic acid ester derivatives. Additional favorable features in the design of potent NAAA inhibitors have been found together with the identification of a single digit nanomolar inhibitor. In addition, we devised a 3D QSAR using the atomic property field method. The model turned out to be able to account for the structural variability and was prospectively validated by designing, synthesizing, and testing novel inhibitors. The fairly good agreement between predictions and experimental potency values points to this 3D QSAR model as the first example of quantitative structure-activity relationships in the field of NAAA inhibitors.
Stereocontrolled reduction of alpha- and beta-keto esters with micro green algae, Chlorella strains.
Ishihara, K; Yamaguchi, H; Adachi, N; Hamada, H; Nakajima, N
2000-10-01
The stereocontrolled reduction of alpha- and beta-keto esters using micro green algae was accomplished by a combination of the cultivation method and the introduction of an additive. The reduction of ethyl pyruvate and ethyl benzoylformate by the photoautotrophically cultivated Chlorella sorokiniana gave the corresponding alcohol in high e.e. (>99% e.e. (S) and >99% e.e. (R), respectively). In the presence of glucose as an additive, the reduction of ethyl 3-methyl-2-oxobutanoate by the heterotrophically cultivated C. sorokiniana afforded the corresponding (R)-alcohol. On the other hand, the reduction in the presence of ethyl propionate gave the (S)-alcohol. Ethyl 2-methyl-3-oxobutanoate was reduced in the presence of glycerol by the photoautotrophically cultivated C. sorokiniana or the heterotrophically cultivated C. sorokiniana to the corresponding syn-(2R,3S)-hydroxy ester with high diastereo- and enantiomeric excess (e.e.). Some additives altered the stereochemical course in the reduction of alpha- and beta-keto esters.
Anti-allergic Hydroxy Fatty Acids from Typhonium blumei Explored through ChemGPS-NP
Korinek, Michal; Tsai, Yi-Hong; El-Shazly, Mohamed; Lai, Kuei-Hung; Backlund, Anders; Wu, Shou-Fang; Lai, Wan-Chun; Wu, Tung-Ying; Chen, Shu-Li; Wu, Yang-Chang; Cheng, Yuan-Bin; Hwang, Tsong-Long; Chen, Bing-Hung; Chang, Fang-Rong
2017-01-01
Increasing prevalence of allergic diseases with an inadequate variety of treatment drives forward search for new alternative drugs. Fatty acids, abundant in nature, are regarded as important bioactive compounds and powerful nutrients playing an important role in lipid homeostasis and inflammation. Phytochemical study on Typhonium blumei Nicolson and Sivadasan (Araceae), a folk anti-cancer and anti-inflammatory medicine, yielded four oxygenated fatty acids, 12R-hydroxyoctadec-9Z,13E-dienoic acid methyl ester (1) and 10R-hydroxyoctadec-8E,12Z-dienoic acid methyl ester (2), 9R-hydroxy-10E-octadecenoic acid methyl ester (3), and 12R*-hydroxy-10E-octadecenoic acid methyl ester (4). Isolated compounds were identified by spectroscopic methods along with GC-MS analysis. Isolated fatty acids together with a series of saturated, unsaturated and oxygenated fatty acids were evaluated for their anti-inflammatory and anti-allergic activities in vitro. Unsaturated (including docosahexaenoic and eicosapentaenoic acids) as well as hydroxylated unsaturated fatty acids exerted strong anti-inflammatory activity in superoxide anion generation (IC50 2.14–3.73 μM) and elastase release (IC50 1.26–4.57 μM) assays. On the other hand, in the anti-allergic assays, the unsaturated fatty acids were inactive, while hydroxylated fatty acids showed promising inhibitory activity in A23187- and antigen-induced degranulation assays (e.g., 9S-hydroxy-10E,12Z-octadecadienoic acid, IC50 92.4 and 49.7 μM, respectively). According to our results, the presence of a hydroxy group in the long chain did not influence the potent anti-inflammatory activity of free unsaturated acids. Nevertheless, hydroxylation of fatty acids (or their methyl esters) seems to be a key factor for the anti-allergic activity observed in the current study. Moreover, ChemGPS-NP was explored to predict the structure-activity relationship of fatty acids. The anti-allergic fatty acids formed different cluster distant from clinically used drugs. The bioactivity of T. blumei, which is historically utilized in folk medicine, might be related to the content of fatty acids and their metabolites. PMID:28674495
Seabrook, G R; Main, M; Bowery, B; Wood, N; Hill, R G
1992-04-01
1. The depolarizations elicited by seven neurokinin receptor agonists were examined in both rat and guinea-pig superior cervical ganglia by use of grease-gap methodology in the presence of tetrodotoxin (0.1 microM). Responses were normalised with respect to 1 microM eledoisin. 2. The rank order of agonist potency in the rat ganglia was senktide greater than substance P greater than substance P methyl ester = eleidosin = Sar-Met-substance P greater than neurokinin B greater than neurokinin A, whereas in guinea-pig superior cervical ganglion (SCG) the rank order was senktide greater than Sar-Met-substance P greater than neurokinin B = eledoisin = substance P methyl ester. The concentration-effect curves for substance P and neurokinin A in guinea-pig ganglia were biphasic which precluded the determination of meaningful potency values. 3. The maximal depolarization achieved by subtype selective ligands was different between these two species. On rat and guinea-pig SCG, the NK3-selective ligand, senktide, produced a maximal depolarization of 27% and 274% respectively, whereas the NK1-selective ligand, substance P methyl ester, produced depolarizations of 77% and 64% respectively. 4. The depolarizations induced by substance P methyl ester and senktide in either species were unaffected by atropine (1 microM), suggesting a lack of involvement of presynaptic neurokinin receptors in the generation of the response. 5. The potency of substance P methyl ester, senktide, and neurokinin A were unaffected by pretreating ganglia with the peptidase inhibitors bacitracin (40 micrograms ml-1), leupeptin (4 micrograms ml-1), and chymostatin (2 micrograms ml-1). Similarly, these peptidase inhibitors had no effect on the maximal depolarizations achieved by any of these agonists.6. It is evident that rat and guinea-pig superior cervical ganglia possess both NK, and NK3 receptors, but that their net contribution to depolarizations are different between the two species. The depolarizations in guinea-pig SCG are mediated predominantly by an NK3 subtype and in rat SCG by an NK, receptor subtype.
The Rotational Spectrum and Conformational Structures of Methyl Valerate
NASA Astrophysics Data System (ADS)
Nguyen, Ha Vinh Lam; Stahl, Wolfgang
2015-06-01
Methyl valerate, C4H9COOCH3, belongs to the class of fruit esters, which play an important role in nature as odorants of different fruits, flowers, and wines. A sufficient explanation for the structure-odor relation of is not available. It is known that predicting the odor of a substance is not possible by knowing only its chemical formula. A typical example is the blueberry- or pine apple-like odor of ethyl isovalerate while its isomers ethyl valerate and isoamyl acetate smell like green apple and banana, respectively. Obviously, not only the composition but also the molecular structures are not negligible by determining the odor of a substance. Gas phase structures of fruit esters are thus important for a first step towards the determination of structure-odor relation since the sense of smell starts from gas phase molecules. For this purpose, a combination of microwave spectroscopy and quantum chemical calculations (QCCs) is an excellent tool. Small esters often have sufficient vapor pressure to be transferred easily in the gas phase for a rotational study but already contain a large number of atoms which makes them too big for classical structure determination by isotopic substitution and requires nowadays a comparison with the structures optimized by QCCs. On the other hand, the results from QCCs have to be validated by the experimental values. About the internal dynamics, the methoxy methyl group -COOCH3 of methyl acetate shows internal rotation with a barrier of 424.581(56) wn. A similar barrier height of 429.324(23) wn was found in methyl propionate, where the acetyl group is extended to the propionyl group. The investigation on methyl valerate fits well in this series of methyl alkynoates. In this talk, the structure of the most energetic favorable conformer as well as the internal rotation shown by the methoxy methyl group will be reported. It could be confirmed that the internal rotation barrier of the methoxy methyl group remains by longer alkyl chain.
van Loo, Bert; Schober, Markus; Valkov, Eugene; Heberlein, Magdalena; Bornberg-Bauer, Erich; Faber, Kurt; Hyvönen, Marko; Hollfelder, Florian
2018-03-30
Hydrolysis of organic sulfate esters proceeds by two distinct mechanisms, water attacking at either sulfur (S-O bond cleavage) or carbon (C-O bond cleavage). In primary and secondary alkyl sulfates, attack at carbon is favored, whereas in aromatic sulfates and sulfated sugars, attack at sulfur is preferred. This mechanistic distinction is mirrored in the classification of enzymes that catalyze sulfate ester hydrolysis: arylsulfatases (ASs) catalyze S-O cleavage in sulfate sugars and arylsulfates, and alkyl sulfatases break the C-O bond of alkyl sulfates. Sinorhizobium meliloti choline sulfatase (SmCS) efficiently catalyzes the hydrolysis of alkyl sulfate choline-O-sulfate (k cat /K M =4.8×10 3 s -1 M -1 ) as well as arylsulfate 4-nitrophenyl sulfate (k cat /K M =12s -1 M -1 ). Its 2.8-Å resolution X-ray structure shows a buried, largely hydrophobic active site in which a conserved glutamate (Glu386) plays a role in recognition of the quaternary ammonium group of the choline substrate. SmCS structurally resembles members of the alkaline phosphatase superfamily, being most closely related to dimeric ASs and tetrameric phosphonate monoester hydrolases. Although >70% of the amino acids between protomers align structurally (RMSDs 1.79-1.99Å), the oligomeric structures show distinctly different packing and protomer-protomer interfaces. The latter also play an important role in active site formation. Mutagenesis of the conserved active site residues typical for ASs, H 2 18 O-labeling studies and the observation of catalytically promiscuous behavior toward phosphoesters confirm the close relation to alkaline phosphatase superfamily members and suggest that SmCS is an AS that catalyzes S-O cleavage in alkyl sulfate esters with extreme catalytic proficiency. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Lubricant Foaming and Aeration Study. Part 2.
1985-12-01
phosphate. The blend 0-77-10, composed of tmp-heptanoate plus neopentyl glycol esters, tested in the same way and with the same combination of solutes at...the same concentrations, showed about half the foaminess of the unblended tmp-heptanoate. The neopentyl glycol esters are, therefore, less...substituent methyl groups in a solute confer profoaming activity in these neopentyl glycol esters as solvents. Also, not forgotten, is that the
NASA Astrophysics Data System (ADS)
Cheong, Ling-Zhi; Wei, Yayu; Wang, Hongbin; Wang, Zhiying; Su, Xiurong; Shen, Cai
2017-08-01
Zeolitic imidazolate frameworks (ZIF) represent one of the metal organic frameworks (MOF) with high potential for enzyme immobilization due to their exceptional chemical and thermal stability, negligible cytotoxicity, and easy synthesis under mild biocompatible conditions. Amine-functionalized ZIF-8 (An-ZIF-8) are capable of forming multipoint attachment via hydrogen bonding with lipase which will immobilize and further enhance stabilization of lipase. In addition, increased hydrophilicity of An-ZIF-8 will increase partitioning of An-ZIF-8 immobilized lipase at the aqueous/organic interface which enable lipase to expose its active site and retain its catalytic activity at its highest. Present study reports the use of ZIF-8 and An-ZIF-8 nanoparticles as carrier for Burkholderia cepacia lipase (BCL), compares the ester hydrolysis and transesterification activities of immobilized lipase with those of free lipase, and evaluates the reusability and recovery rate of the immobilized lipase. An-ZIF-8 nanoparticles (average 130.42 ± 0.55 nm) were facilely synthesized via mixing ZIF-8 nanoparticles with ammonia hydroxide solution. Despite having similar characteristics of high crystallinity and forming cuboid-like particles, An-ZIF-8 demonstrated significantly ( P < 0.05) lower Brunauer-Emmett-Teller (BET) surface area and higher thermal stability than ZIF-8. BCL were successfully immobilized on ZIF-8 (BCL@ZIF-8) and An-ZIF-8 (BCL@An-ZIF-8) nanoparticles with an average lipase loading rate of 8 mg/g MOF. The immobilized BCL demonstrated no significant differences in terms of esters hydrolysis and transesterification activities with those of free BCL. BCL@An-ZIF-8 demonstrated superior catalytic stability in comparison to BCL@ZIF-8 with retainment of more than 80% of its initial hydrolysis and transesterification activity for at least 10 repeated runs. In addition, more than 80% of the BCL@An-ZIF-8 can be easily recovered during each cycle of the reusability test through simple centrifugation.
Golovitchev, Valeri I; Yang, Junfeng
2009-01-01
Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.
Chahinian, Henri; Ali, Yassine Ben; Abousalham, Abdelkarim; Petry, Stefan; Mandrich, Luigi; Manco, Guiseppe; Canaan, Stephane; Sarda, Louis
2005-12-30
We have studied the kinetics of hydrolysis of triacylglycerols, vinyl esters and p-nitrophenyl butyrate by four carboxylesterases of the HSL family, namely recombinant human hormone-sensitive lipase (HSL), EST2 from Alicyclobacillus acidocaldarius, AFEST from Archeoglobus fulgidus, and protein RV1399C from Mycobacterium tuberculosis. The kinetic properties of enzymes of the HSL family have been compared to those of a series of lipolytic and non-lipolytic carboxylesterases including human pancreatic lipase, guinea pig pancreatic lipase related protein 2, lipases from Mucor miehei and Thermomyces lanuginosus, cutinase from Fusarium solani, LipA from Bacillus subtilis, porcine liver esterase and Esterase A from Aspergilus niger. Results indicate that human HSL, together with other lipolytic carboxylesterases, are active on short chain esters and hydrolyze water insoluble trioctanoin, vinyl laurate and olive oil, whereas the action of EST2, AFEST, protein RV1399C and non-lipolytic carboxylesterases is restricted to solutions of short chain substrates. Lipolytic and non-lipolytic carboxylesterases can be differentiated by their respective value of K(0.5) (apparent K(m)) for the hydrolysis of short chain esters. Among lipolytic enzymes, those possessing a lid domain display higher activity on tributyrin, trioctanoin and olive oil suggesting, then, that the lid structure contributes to enzyme binding to triacylglycerols. Progress reaction curves of the hydrolysis of p-nitrophenyl butyrate by lipolytic carboxylesterases with lid domain show a latency phase which is not observed with human HSL, non-lipolytic carboxylesterases, and lipolytic enzymes devoid of a lid structure as cutinase.
NASA Technical Reports Server (NTRS)
Kowalczyk, S.; Bandurski, R. S.
1990-01-01
The first compound in the series of reactions leading to the ester conjugates of indole-3-acetic acid (IAA) in kernels of Zea mays sweet corn is the acyl alkyl acetal, 1-O-indol-3-ylacetyl-beta-D-glucose (1-O-IAGlu). The enzyme catalyzing the synthesis of this compound is UDP-glucose:indol-3-ylacetate glucosyl-transferase (IAGlu synthase). The IAA moiety of the high energy compound 1-O-IAGlu may be enzymatically transferred to myo-inositol or to glycerol or the 1-O-IAGlu may be enzymatically hydrolyzed. Alternatively, nonenzymatic acyl migration may occur to yield the 2-O, 4-O, and 6-O esters of IAA and glucose. The 4-O and 6-O esters may then be enzymatically hydrolyzed to yield free IAA and glucose. This work reports new enzymatic activities, the transfer of IAA from 1-O-IAGlu to glycerol, and the enzyme-catalyzed hydrolysis of 4-O and 6-O-IAGlu. Data is also presented on the rate of non-enzymatic acyl migration of IAA from the 1-O to the 4-O and 6-O positions of glucose. We also report that enzymes catalyzing the synthesis of 1-O-IAGlu and the hydrolysis of 1-O, 4-O, and 6-O-IAGlu fractionate as a hormone metabolizing complex. The association of synthetic and hydrolytic capabilities in enzymes which cofractionate may have physiological significance.
Preparation of fatty acid methyl esters for gas-liquid chromatography[S
Ichihara, Ken'ichi; Fukubayashi, Yumeto
2010-01-01
A convenient method using commercial aqueous concentrated HCl (conc. HCl; 35%, w/w) as an acid catalyst was developed for preparation of fatty acid methyl esters (FAMEs) from sterol esters, triacylglycerols, phospholipids, and FFAs for gas-liquid chromatography (GC). An 8% (w/v) solution of HCl in methanol/water (85:15, v/v) was prepared by diluting 9.7 ml of conc. HCl with 41.5 ml of methanol. Toluene (0.2 ml), methanol (1.5 ml), and the 8% HCl solution (0.3 ml) were added sequentially to the lipid sample. The final HCl concentration was 1.2% (w/v). This solution (2 ml) was incubated at 45°C overnight or heated at 100°C for 1–1.5 h. The amount of FFA formed in the presence of water derived from conc. HCl was estimated to be <1.4%. The yields of FAMEs were >96% for the above lipid classes and were the same as or better than those obtained by saponification/methylation or by acid-catalyzed methanolysis/methylation using commercial anhydrous HCl/methanol. The method developed here could be successfully applied to fatty acid analysis of various lipid samples, including fish oils, vegetable oils, and blood lipids by GC. PMID:19759389
NASA Astrophysics Data System (ADS)
Li, F. W.; Ding, S. L.; Li, L.; Gao, C.; Zhong, Z.; Wang, S. X.; Li, Z. X.
2016-08-01
Waste cooking oil (WCO) and its model compounds (oleic acid and methyl laurate) are catalytically pyrolyzed in a fixed-bed reactor over La modified ZSM-5 catalysts (La/ZSM-5) aiming for production of C2-C4 light olefins. The LaO content in catalysts was set at 0, 2, 6, 10 and 14 wt%. The gas and liquid products are analyzed. The La/ZSM-5 catalyst with 6% LaO showed higher selectivity to light olefins when WCO and methyl laurate were pyrolyzed, and olefin content was 26% for WCO and 21% for methyl laurate. The catalyst with 10% LaO showed high selectivity to light olefins (28.5%) when oleic acid was pyrolyzed. The liquid products from WCO and model compounds mainly contain esters and aromatic hydrocarbons. More esters were observed in liquid products from methyl laurate and WCO pyrolysis, indicating that it is more difficult to pyrolyze esters and WCO than oleic acid. The coked catalysts were analyzed by temperature-programmed oxidation. The result shows that graphite is the main component of coke. The conversion of WCO to light olefins potentially provides an alternative and sustainable route for production of the key petrochemicals.
Selected physical properties of various diesel blends
NASA Astrophysics Data System (ADS)
Hlaváčová, Zuzana; Božiková, Monika; Hlaváč, Peter; Regrut, Tomáš; Ardonová, Veronika
2018-01-01
The quality determination of biofuels requires identifying the chemical and physical parameters. The key physical parameters are rheological, thermal and electrical properties. In our study, we investigated samples of diesel blends with rape-seed methyl esters content in the range from 3 to 100%. In these, we measured basic thermophysical properties, including thermal conductivity and thermal diffusivity, using two different transient methods - the hot-wire method and the dynamic plane source. Every thermophysical parameter was measured 100 times using both methods for all samples. Dynamic viscosity was measured during the heating process under the temperature range 20-80°C. A digital rotational viscometer (Brookfield DV 2T) was used for dynamic viscosity detection. Electrical conductivity was measured using digital conductivity meter (Model 1152) in a temperature range from -5 to 30°C. The highest values of thermal parameters were reached in the diesel sample with the highest biofuel content. The dynamic viscosity of samples increased with higher concentration of bio-component rapeseed methyl esters. The electrical conductivity of blends also increased with rapeseed methyl esters content.
Kim, Min-A; Son, Hyeong-U; Yoon, Cheol-Sik; Nam, Sung-Hee; Choi, Young-Cheol; Lee, Sang-Han
2014-09-01
Beauveria bassiana is a fungi that is well-known for demonstrating a resistance to environmental change. To confirm whether S-(-)-10,11-dihydroxyfarnesic acid methyl ester (DHFAME) produced by Beauveria bassiana KACC46831 causes phototoxicity when used for cosmetic purposes due to its anti-tyrosinase activity, we conducted in vitro and in vivo phototoxicity tests. There were no significant changes or damage observed in the compound-treated group with regards to skin phototoxicity, while 8-methoxypsoralen, which served as a positive control, induced toxic effects. The in vitro 3T3 neutral red uptake assay, an alternative assessment, was used for further confirmation of the phototoxicity. The results showed that DHFAME did not exhibit phototoxicity at the designated concentrations, with or without UV irradiation in the 3T3 cells. These results indicated that the methyl ester produced by Beauveria bassiana KACC46831 does not induce phototoxicity in the skin. Therefore, the results of the present study indicate that DHFAME shows potential for use as a cosmetic ingredient that does not cause skin phototoxicity.
Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar
2014-08-01
A CO2 sequestering bacterial strain, Serratia sp. ISTD04, that produces a significant amount of extracellular lipids was isolated from marble mine rocks. (14)C labeling analysis revealed that the rate of assimilation of CO2 by the strain is 0.756×10(-9)μmolCO2fixedcell(-1)h(-1). It was found to produce 466mg/l of extracellular lipid which was characterized using (1)H NMR. After transesterification of lipids, the total saturated and unsaturated FAME was found to be 51% and 49% respectively. The major FAME contained in the biodiesel were palmitic acid methyl ester (C16:0), oleic acid methyl ester (C18:1) and 10-nonadecenoic acid methyl ester (C19:1). Biodiesel produced by Serratia sp. ISTD04 is balanced in terms of FAME composition of good quality. It also contained higher proportion of oleic acid (35%) which makes it suitable for utilization in existing engines. Thus, the strain can be harnessed commercially to sequester CO2 into biodiesel. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ji, Shilei; Li, Nan; Qi, Li; Wang, Minglin
2017-01-01
In this study, poly(styrene-co-N-methacryloyl-l-phenylalanine methyl ester)-functionalized magnetic nanoparticles were constructed and used as magnetic solid-phase extraction sorbents for analysis of food preservatives in beverages. To prepare the poly(amino acid)-based sorbents, N-methacryloyl-l-phenylalanine methyl ester, and styrene served as the functional monomers and modified onto the magnetic nanoparticles via free radical polymerization. Interestingly, compared with propylparaben and potassium sorbate, the proposed poly(amino acid)-based sorbents showed a good selectivity to sodium benzoate. The adsorption capacity of the sorbents to sodium benzoate was 6.08 ± 0.31 mg/g. Moreover, the fast adsorption equilibrium could be reached within 5 min. Further, the resultant poly(amino acid)-based sorbents were applied in the analysis of sodium benzoate in real beverage samples. The results proved that the proposed magnetic solid-phase extraction sorbents have a great potential for the analysis of preservatives in food samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mäkelä, Miia R; Dilokpimol, Adiphol; Koskela, Salla M; Kuuskeri, Jaana; de Vries, Ronald P; Hildén, Kristiina
2018-04-26
Feruloyl esterases (FAEs) are accessory enzymes for plant biomass degradation, which catalyse hydrolysis of carboxylic ester linkages between hydroxycinnamic acids and plant cell-wall carbohydrates. They are a diverse group of enzymes evolved from, e.g. acetyl xylan esterases (AXEs), lipases and tannases, thus complicating their classification and prediction of function by sequence similarity. Recently, an increasing number of fungal FAEs have been biochemically characterized, owing to their potential in various biotechnological applications and multitude of candidate FAEs in fungal genomes. However, only part of the fungal FAEs are included in Carbohydrate Esterase family 1 (CE1) of the carbohydrate-active enzymes (CAZy) database. In this work, we performed a phylogenetic analysis that divided the fungal members of CE1 into five subfamilies of which three contained characterized enzymes with conserved activities. Conservation within one of the subfamilies was confirmed by characterization of an additional CE1 enzyme from Aspergillus terreus. Recombinant A. terreus FaeD (AtFaeD) showed broad specificity towards synthetic methyl and ethyl esters, and released ferulic acid from plant biomass substrates, demonstrating its true FAE activity and interesting features as potential biocatalyst. The subfamily division of the fungal CE1 members enables more efficient selection of candidate enzymes for biotechnological processes. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Epoxy Phosphonate Crosslinkers for Providing Flame Resistance to Cotton Textiles
USDA-ARS?s Scientific Manuscript database
Two new monomers (2-methyl-oxiranylmethyl)-phosphonic acid dimethyl ester (3) and [2-(dimethoxy-phosphorylmethyl)-oxyranylmethyl]-phosphonic acid dimethyl ester (6) were prepared and used with dicyandiamide (7) and citric acid (8) to impart flame resistance to cotton plain weave, twill, and 80:20-co...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-06
... esters of conjugated linoleic acid (CLA) as a source of fatty acids in lactating dairy cow diets and for... a source of fatty acids in lactating dairy cow diets. BASF's FAP 2269 further proposes the use of...
ESTER HYDROLYSIS RATE CONSTANT PREDICTION FROM INFRARED INTERFEROGRAMS
A method for predicting reactivity parameters of organic chemicals from spectroscopic data is being developed to assist in assessing the environmental fate of pollutants. he prototype system, which employs multiple linear regression analysis using selected points from the Fourier...
Sowers, L C; Sedwick, W D; Shaw, B R
1989-11-01
Protonation of cytosine residues at physiological pH may occur in DNA as a consequence of both alkylation and aberrant base-pair formation. When cytosine derivatives are protonated, they undergo hydrolysis reactions at elevated rates and can either deaminate to form the corresponding uracil derivatives or depyrimidinate generating abasic sites. The kinetic parameters for reaction of protonated cytosine are derived by studying the hydrolysis of N3-methyl-2'-deoxycytidine (m3dC), a cytosine analogue which is predominantly protonated at physiological pH. Both deamination and depyrimidimation reaction rates are shown to be linearly dependent upon the fraction of protonated molecules. We present here thermodynamic parameters which allow determination of hydrolysis rates of m3dC as functions of pH and temperature. Protonation of cytosine residues in DNA, as induced by aberrant base-pair formation or base modification, may accelerate the rate of both deamination and depyrimidation up to several thousand-fold under physiological conditions.
Scholz, Birgit; Weiherer, Renate; Engel, Karl-Heinz
2017-09-01
The effects of thermooxidation of a phytosteryl/-stanyl and a phytostanyl fatty acid ester mixture on cholesterol micellarization were investigated using an in vitro digestion model simulating enzymatic hydrolysis by cholesterol esterase and subsequent competition of the liberated phytosterols/-stanols with cholesterol for incorporation into mixed micelles. As a first step, relationships between different doses of the ester mixtures and the resulting micellarized cholesterol were established. Subsequent subjection of the thermooxidized ester mixtures to the in vitro digestion model resulted in three principal observations: (i) thermal treatment of the ester mixtures led to substantial decreases of the intact esters, (ii) in vitro digestion of cholesterol in the presence of the thermooxidized ester mixtures resulted in significant increases of cholesterol micellarization, and (iii) the extents of the observed effects on cholesterol micellarization were strongly associated to the remaining contents of intact esters. The loss of efficacy to inhibit cholesterol micellarization due to thermally induced losses of intact esters corresponded to a loss of efficacy that would have been induced by an actual removal of these amounts of esters prior to the in vitro digestion. The obtained results suggest that in particular oxidative modifications of the fatty acid moieties might be responsible for the observed increases of cholesterol micellarization. Copyright © 2017 Elsevier Inc. All rights reserved.
Solvation of Esters and Ketones in Supercritical CO2.
Kajiya, Daisuke; Imanishi, Masayoshi; Saitow, Ken-ichi
2016-02-04
Vibrational Raman spectra for the C═O stretching modes of three esters with different functional groups (methyl, a single phenyl, and two phenyl groups) were measured in supercritical carbon dioxide (scCO2). The results were compared with Raman spectra for three ketones involving the same functional groups, measured at the same thermodynamic states in scCO2. The peak frequencies of the Raman spectra of these six solute molecules were analyzed by decomposition into the attractive and repulsive energy components, based on the perturbed hard-sphere theory. For all solute molecules, the attractive energy is greater than the repulsive energy. In particular, a significant difference in the attractive energies of the ester-CO2 and ketone-CO2 systems was observed when the methyl group is attached to the ester or ketone. This difference was significantly reduced in the solute systems with a single phenyl group and was completely absent in those with two phenyl groups. The optimized structures among the solutes and CO2 molecules based on quantum chemical calculations indicate that greater attractive energy is obtained for a system where the oxygen atom of the ester is solvated by CO2 molecules.
Muff, Jens; MacKinnon, Leah; Durant, Neal D; Bennedsen, Lars Frausing; Rügge, Kirsten; Bondgaard, Morten; Pennell, Kurt
2016-11-01
The presented research concerned the compatibility of cosolvents with in situ alkaline hydrolysis (ISAH) for treatment of organophosphorous (OPP) pesticide contaminated sites. In addition, the influence of moderate temperature heat increments was studied as a possible enhancement method. A complex dense non-aqueous phase liquid (DNAPL) of primarily parathion (~50 %) and methyl parathion (~15 %) obtained from the Danish Groyne 42 site was used as a contaminant source, and ethanol and propan-2-ol (0, 25, and 50 v/v%) was used as cosolvents in tap water and 0.34 M NaOH. Both cosolvents showed OPP solubility enhancement at 50 v/v% cosolvent content, with slightly higher OPP concentrations reached with propan-2-ol. Data on hydrolysis products did not show a clear trend with respect to alkaline hydrolysis reactivity in the presence of cosolvents. Results indicated that the hydrolysis rate of methyl-parathion (MP3) decreased with addition of cosolvent, whereas the hydrolysis rate of ethyl-parathion (EP3) remained constant, and overall indications were that the hydrolysis reactions were limited by the rate of hydrolysis rather than NAPL dissolution. In addition to cosolvents, the influence of low-temperature heating on ISAH was studied. Increasing reaction temperature from 10 to 30 °C provided an average rate of hydrolysis enhancement by a factor of 1.4-4.8 dependent on the base of calculation. When combining 50 v/v% cosolvent addition and heating to 30 °C, EP3 solubility was significantly enhanced and results for O,O-diethyl-thiophosphoric acid (EP2 acid) showed a significant enhancement of hydrolysis as well. However, this could not be supported by para-nitrophenol (PNP) data indicating the instability of this product in the presence of cosolvent.
Lima, Luciana Alves Rodrigues dos Santos; Johann, Susana; Cisalpino, Patrícia Silva; Pimenta, Lúcia Pinheiro Santos; Boaventura, Maria Amélia Diamantino
2011-01-01
Fatty acids are abundant in vegetable oils. They are known to have antibacterial and antifungal properties. Antifungal susceptibility was evaluated by broth microdilution assay following CLSI (formerly the NCCLS) guidelines against 16 fungal strains of clinical interest. In this work, fatty acid methyl esters (FAME) was able to inhibit 12 clinical strains of the pathogenic fungus Paracoccidioides brasiliensis and were also active in the bioautographic assay against Cladosporium sphaerospermum. FAME was a more potent antifungal than trimethoprim-sulfamethoxazole against P. brasiliensis under the experimental conditions tested.
Covalent modification of proteins by cocaine
NASA Astrophysics Data System (ADS)
Deng, Shi-Xian; Bharat, Narine; Fischman, Marian C.; Landry, Donald W.
2002-03-01
Cocaine covalently modifies proteins through a reaction in which the methyl ester of cocaine acylates the -amino group of lysine residues. This reaction is highly specific in vitro, because no other amino acid reacts with cocaine, and only cocaine's methyl ester reacts with the lysine side chain. Covalently modified proteins were present in the plasma of rats and human subjects chronically exposed to cocaine. Modified endogenous proteins are immunogenic, and specific antibodies were elicited in mouse and detected in the plasma of human subjects. Covalent modification of proteins could explain cocaine's autoimmune effects and provide a new biochemical approach to cocaine's long-term actions.
1988-11-01
Copyright 0 198 by The Winiams & Wilkins Co. Printed in U.S.A. L-LEUCYL-L-LEUCINE METHYL ESTER TREATMENT OF CANINE MARROW AND PERIPHERAL BLOOD CELLS...Reearch CeThs eatetle, Washington 9%104 tInaiyuba on o canine UMrrowt and peripher hi Recently, Thiele and Lipsky have described adipeptide nionon clear...that marrow iincubation with Leu-Leu. Leu-Leu-OMe is a feasible method to deplete canine marrows of aloreactive and cytotoxic T cells prior to OMe
Study of the mode of action of a polygalacturonase from the phytopathogen Burkholderia cepacia
Massa, Claudia; Clausen, Mads H.; Stojan, Jure; Lamba, Doriano; Campa, Cristiana
2007-01-01
We have recently isolated and heterologously expressed BcPeh28A, an endopolygalacturonase from the phytopathogenic Gram-negative bacterium Burkholderia cepacia. Endopolygalacturonases belong to glycoside hydrolase family 28 and are responsible for the hydrolysis of the non-esterified regions of pectins. The mode of action of BcPeh28A on different substrates has been investigated and its enzymatic mechanism elucidated. The hydrolysis of polygalacturonate indicates that BcPeh28A is a non-processive enzyme that releases oligomers with chain lengths ranging from two to eight. By inspection of product progression curves, a kinetic model has been generated and extensively tested. It has been used to derive the kinetic parameters that describe the time course of the formation of six predominant products. Moreover, an investigation of the enzymatic activity on shorter substrates that differ in their overall length and methylation patterns sheds light on the architecture of the BcPeh28A active site. Specifically the tolerance of individual sites towards methylated saccharide units was rationalized on the basis of the hydrolysis of hexagalacturonides with different methylation patterns. PMID:17627609
Froehner, Sandro; Sánez, Juan; Dombroski, Luiz Fernando; Gracioto, Maria Paula
2017-09-01
Biodiesel for combustible engine is available as mixture of fossil diesel and fatty esters obtained by transesterification of vegetable oils. The use of biodiesel reduces the amount of SO x , mainly. However, it was already observed that biodiesel has a different behavior in environment in cases of accidental spill and groundwater contamination. It was noticed that the biodegradation of hydrocarbons (cyclic and aliphatic) in the presence of biodiesel are speeded, although the mechanism is still unclear. Considering the chemical structure of fatty esters, it was investigated the formation of aggregates in water solution by fatty esters present in commercial biodiesel. In Brazil, biodiesel is composed by 95% of fossil diesel and 5% of fatty esters mixture. In this work, fatty esters were treated as neutral surfactant, i.e., it was treated as a molecule with polar and non-polar part. Turbidity and fluorescence were used to determine the critical aggregates concentration (CAC). Water solutions containing fatty esters were examined exploiting changes in turbidity and fluorescence intensity of pyrene. Abrupt changes were attributed to aggregates formation, following the same behavior of traditional amphiphilic compounds. It was determined the CAC for ethyl palmitate, ethyl stearate, ethyl oleate, and ethyl linoleate. The values of CAC for fatty esters varied from 1.91 to 4.27 μmol/L, while CAC for the mixture of esters (biodiesel) was 2.01 for methyl esters and 1.19 for ethyl esters, both prepared using soybean oil. The aggregates formation was also determined by fluorescence measurements considering the changes in intensity of peaks I and III of pyrene. Pyrene senses the changes in environment polarity. The values found of CAC by fluorescence for individual ethyl esters varied from 1.85 to 3.21 μmol/L, while mixtures of ethyl esters was 2.23 and 2.07 μmol/L for mixture of methyl esters. The results clearly showed that fatty esters form aggregates and might be responsible for speed degradation of compounds by accommodation of them in inner part of aggregates.
Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.
1995-01-01
Polycarboxylic acid structures that account for the strong-acid characteristics (pKa1 near 2.0) were examined for fulvic acid from the Suwannee River. Studies of model compounds demonstrated that pKa values near 2.0 occur only if the ??-ether or ??-ester groups were in cyclic structures with two to three additional electronegative functional groups (carboxyl, ester, ketone, aromatic groups) at adjacent positions on the ring. Ester linkage removal by alkaline hydrolysis and destruction of ether linkages through cleavage and reduction with hydriodic acid confirmed that the strong carboxyl acidity in fulvic acid was associated with polycarboxylic ??-ether and ??-ester structures. Studies of hypothetical structural models of fulvic acid indicated possible relation of these polycarboxylic structures with the amphiphilic and metal-binding properties of fulvic acid.
Evaluation of nitrate-substituted pseudocholine esters of aspirin as potential nitro-aspirins.
Gilmer, John F; Moriarty, Louise M; Clancy, John M
2007-06-01
Herein we explore some designs for nitro-aspirins, compounds potentially capable of releasing both aspirin and nitric oxide in vivo. A series of nitrate-bearing alkyl esters of aspirin were prepared based on the choline ester template preferred by human plasma butyrylcholinesterase. The degradation kinetics of the compounds were followed in human plasma solution. All compounds underwent hydrolysis rapidly (t(1/2) approximately 1min) but generating exclusively the corresponding nitro-salicylate. The one exception, an N-propyl, N-nitroxyethyl aminoethanol ester produced 9.2% aspirin in molar terms indicating that the nitro-aspirin objective is probably achievable if due cognisance can be paid to the demands of the activating enzyme. Even at this low level of aspirin release, this compound is the most successful nitro-aspirin reported to date in the key human plasma model.
González-Arias, Cyndia A; Marín, Sonia; Rojas-García, Aurora E; Sanchis, Vicente; Ramos, Antonio J
2017-11-01
Ochatoxin A (OTA) is one of the most important mycotoxins based on its toxicity. The oral route is the main gateway of entry of OTA into the human body, and specialized epithelial cells constitute the first barrier. The present study investigated the in vitro cytotoxic effect of OTA (5, 15 and 45 μM) and production of OTA metabolities in Caco-2 and HepG2 cells using a co-culture Transwell System to mimic the passage through the intestinal epithelium and hepatic metabolism. The results derived from MTS cell viability assays and transepithelial electrical resistance measurements showed that OTA was slightly cytotoxic at the lowest concentration at 3 h, but significant toxicity was observed at all concentrations at 24 h. OTA metabolites generated in this co-culture were ochratoxin B (OTB), OTA methyl ester, OTA ethyl ester and the OTA glutathione conjugate (OTA-GSH). OTA methyl ester was the major metabolite found in both Caco-2 and HepG2 cells after all treatments. Our results showed that OTA can cause cell damage through several mechanisms and that the OTA exposure time is more important that the dosage in in vitro studies. OTA methyl ester is proposed as an OTA exposure biomarker, although future studies should be conducted. Copyright © 2017 Elsevier Ltd. All rights reserved.
Leonaviciute, Gintare; Zupančič, Ožbej; Prüfert, Felix; Rohrer, Julia; Bernkop-Schnürch, Andreas
2016-07-11
The aim of this study is the development of self-emulsifying drug delivery systems (SEDDS) differing in amounts of ester substructures and to evaluate their stability in presence of pancreatic lipase and protective effect against luminal enzymatic metabolism using leuprorelin as model peptide drug. Hydrophobic leuprolide oleate was incorporated into three different SEDDS formulations and their stability towards pancreatic lipases was investigated utilizing a dynamic in vitro digestion model. Protective effect of SEDDS in respect to peptide drug stability against proteolytic enzymes, trypsin and α-chymotrypsin, was determined via HPLC. Results of in vitro digestion demonstrated that 80% of SEDDS containing the highest amount of ester linkages was degraded within 60min. In comparison to that, SEDDS without ester bonds showed no degradation. With increasing oil droplets hydrolysis the remaining amount of peptide encapsulated into formulation decreased. Furthermore, after 180min incubation with trypsin up to 33.5% and with α-chymotrypsin up to 60.5% of leuprolide oleate was intact while leuprorelin acetate aqueous solution was completely metabolized by trypsin within 120min and by α-chymotrypsin within 5min. Protective effect in environment containing lipases was lower due to oil phase degradation, however, the amount of peptide in ester-free SEDDS was remarkably higher compared to SEDDS susceptible to lipases. The present study revealed that SEDDS stable towards hydrolysis is able to exhibit a protective effect for oral peptide delivery. Copyright © 2016 Elsevier B.V. All rights reserved.
AVOIDING PITFALLS IN THE DETERMINATION OF HALOCARBOXYLIC ACIDS: THE PHOTOCHEMISTRY OF METHYLATION
Haloethanoic (haloacetic) acids are formed during chlorination of drinking water and are regulated by the Environmental Protection Agency (EPA). These compounds are normally quantified by gas chromatography with electron capture detection (GC-ECD) ad the methyl esters. EPA Meth...
Microbial Glucuronoyl Esterases: 10 Years after Discovery
2016-01-01
A carbohydrate esterase called glucuronoyl esterase (GE) was discovered 10 years ago in a cellulolytic system of the wood-rotting fungus Schizophyllum commune. Genes coding for GEs were subsequently found in a number of microbial genomes, and a new family of carbohydrate esterases (CE15) has been established. The multidomain structures of GEs, together with their catalytic properties on artificial substrates and positive effect on enzymatic saccharification of plant biomass, led to the view that the esterases evolved for hydrolysis of the ester linkages between 4-O-methyl-d-glucuronic acid of plant glucuronoxylans and lignin alcohols, one of the crosslinks in the plant cell walls. This idea of the function of GEs is further supported by the effects of cloning of fungal GEs in plants and by very recently reported evidence for changes in the size of isolated lignin-carbohydrate complexes due to uronic acid de-esterification. These facts make GEs interesting candidates for biotechnological applications in plant biomass processing and genetic modification of plants. This article is a brief summary of current knowledge of these relatively recent and unexplored esterases. PMID:27694239
Remoroza, C; Buchholt, H C; Gruppen, H; Schols, H A
2014-01-30
Enzymatic fingerprinting was applied to sugar beet pectins (SBPs) modified by either plant or fungal pectin methyl esterases and alkali catalyzed de-esterification to reveal the ester distributions over the pectin backbone. A simultaneous pectin lyase (PL) treatment to the commonly used endo-polygalacturonase (endo-PG) degradation showed to be effective in degrading both high and low methylesterified and/or acetylated homogalaturonan regions of SBP simultaneously. Using LC-HILIC-MS/ELSD, we studied in detail all the diagnostic oligomers present, enabling us to discriminate between differently prepared sugar beet pectins having various levels of methylesterification and acetylation. Furthermore, distinction between commercially extracted and de-esterified sugar beet pectin having different patterns of substitution was achieved by using novel descriptive pectin parameters. In addition to DBabs approach for nonmethylesterified sequences degradable by endo-PG, the "degree of hydrolysis" (DHPG) representing all partially saturated methylesterified and/or acetylated galacturonic acid (GalA) moieties was introduced as a new parameter. Consequently, the description DHPL has been introduced to quantify all esterified unsaturated GalA oligomers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ultrasound-assisted production of biodiesel and ethanol from spent coffee grounds.
Rocha, Maria Valderez Ponte; de Matos, Leonardo José Brandão Lima; Lima, Larissa Pinto de; Figueiredo, Pablo Marciano da Silva; Lucena, Izabelly Larissa; Fernandes, Fabiano André Narciso; Gonçalves, Luciana Rocha Barros
2014-09-01
This study evaluates the production of biodiesel and ethanol from spent coffee grounds (SCG). The extraction of oil from SCG, biodiesel production and ethanol production processes were studied. The liquid-to-solid ratio and temperature were evaluated in the ultrasound-assisted extraction of the oil from SCG. The highest yield (12%) was obtained using 4 mL g(-1) liquid-to-solid ratio at 60°C for 45 min. The process to produce biodiesel showed a yield of 97% into fatty acid methyl esters (FAME). The highest glucose yield (192 mg g SCG(-1)) was obtained by hydrolysis with 0.4 mol L(-1) sulfuric acid at 121°C for 15 min. The hydrolysate was used as fermentation medium for ethanol production by Saccharomyces cerevisiae obtaining 19.0 g L(-1) at 10h of process of ethanol with a yield of ethanol and productivity of 0.50 g g(-1) and 1.90 g L(-1)h(-1), respectively. Spent coffee grounds were considered a potential feedstock for biodiesel and ethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Xuemei; Wiemer, Andrew J; Hohl, Raymond J; Wiemer, David F
2002-12-27
Both the (R)- and (S)-5'-hydroxy 5'-phosphonate derivatives of cytidine and cytosine arabinoside (ara-C) have been prepared via phosphite addition or a Lewis acid mediated hydrophosphonylation of appropriately protected 5'-nucleoside aldehydes. Phosphite addition to a cytosine aldehyde protected as the 2',3'-acetonide gave predominately the 5'R isomer, while phosphite addition to the corresponding 2',3'-bis TBS derivative favored the 5'S stereochemistry. In contrast, phosphite addition to the 2',3'-bis TBS protected aldehyde derived from ara-C gave only the 5'R adduct. However, TiCl(4)-mediated hydrophosphonylation of the same ara-C aldehyde favored the 5'S stereoisomer by a 2:1 ratio. Once all four of the diastereomers were in hand, the stereochemistry of these compounds could be assigned based on their spectral data or that obtained from their O-methyl mandelate derivatives. After hydrolysis of the phosphonate esters and various protecting groups, the four alpha-hydroxy phosphonic acids were tested for their ability to serve as substrates for the enzyme nucleoside monophosphate kinase and for their toxicity to K562 cells.
Photochemical transformation of azoxystrobin in aqueous solutions.
Boudina, A; Emmelin, C; Baaliouamer, A; Païssé, O; Chovelon, J M
2007-07-01
The photochemical behaviour of azoxystrobin fungicide (AZX) in water was studied under laboratory conditions. Photodegradation was initiated using a solar simulator (xenon arc lamp) or a jacketed Pyrex reaction cell equipped with a 125 W, high-pressure mercury lamp. HPLC/MS analysis (APCI and ESI in positive and negative modes) was used to identify AZX photoproducts. The calculated polychromatic quantum efficiencies (phi) of AZX at pH 4.5, 7 and 9 were 5.42 x 10(-3), 3.47 x 10(-3) and 3.06 x 10(-3) (degraded molecules per absorbed photon), respectively. The relatively narrow range of values indicates the stability of AZX with respect to photodegradation in the studied pH range. Results from the HPLC/MS analysis suggest that the phototransformation of AZX proceeds via multiple, parallel reaction pathways including: (1) photo-isomerization (E-->Z), (2) photo-hydrolysis of the methyl ester and of the nitrile group, (3) cleavage of the acrylate double bond, (4) photohydrolytic ether cleavage between the aromatic ring giving phenol, and (5) oxidative cleavage of the acrylate double bond.
Talebi, Mohsen; Patil, Rahul A; Sidisky, Leonard M; Berthod, Alain; Armstrong, Daniel W
2017-12-06
Twelve bis- or dicationic ionic liquids (ILs) including eight based on imidazolium, a single one based on phosphonium, and three based on pyrrolidinium cationic units were prepared with the bis(trifluoromethyl sulfonyl) imide anion. The two identical cationic moieties were attached by different alkyl spacers having three or five carbons and differing alkyl substituents attached to the spacer. The SLB-IL111 column, as the most polar commercial stationary phase known, was included in the study for comparison. Isothermal separations of a rapeseed oil fatty acid methyl ester (FAME) sample were used to study and compare the 12 IL-based column performances and selectivities. The retention times of the most retained methyl esters of lignoceric (C24:0) and erucic (C22:1) acids were used to estimate the IL polarity. The phosphonium dicationic IL column was, by far, the least polar. Imidazolium-based dicationic IL columns were the most polar. Polarity and selectivity for the FAME separation were somewhat related. The separation of a 37-FAME standard mixture allowed the investigation of selectivity variations observed on the 12 IL-based columns under temperature gradients up to 230 °C. The remarkable selectivity of the IL-based columns is demonstrated by the detailed analysis of the cis/trans C18:1 isomers of a partially hydrogenated vegetable oil sample on 30-m columns, separations competing with that done following an "official method" performed on a 100-m column. Graphical abstract Separation of fatty acid methyl esters on a 30-m 3m 2 C 5 (mpy) 2 . 2NTf 2 branched-chain dicationic IL-based column. Branched chain dicationic ILs show great selectivity for separation of cis/trans, ω-3/ω-6, and detailed analysis of cis/trans fats.
Paula, Stefan; Tabet, Michael R; Farr, Carol D; Norman, Andrew B; Ball, W James
2004-01-01
Human monoclonal antibodies (mAbs) designed for immunotherapy have a high potential for avoiding the complications that may result from human immune system responses to the introduction of nonhuman mAbs into patients. This study presents a characterization of cocaine/antibody interactions that determine the binding properties of the novel human sequence mAb 2E2 using three-dimensional quantitative structure-activity relationship (3D-QSAR) methodology. We have experimentally determined the binding affinities of mAb 2E2 for cocaine and 38 cocaine analogues. The K(d) of mAb 2E2 for cocaine was 4 nM, indicating a high affinity. Also, mAb 2E2 displayed good cocaine specificity, as reflected in its 10-, 1500-, and 25000-fold lower binding affinities for the three physiologically relevant cocaine metabolites benzoylecgonine, ecgonine methyl ester, and ecgonine, respectively. 3D-QSAR models of cocaine binding were developed by comparative molecular similarity index analysis (CoMSIA). A model of high statistical quality was generated showing that cocaine binds to mAb 2E2 in a sterically restricted binding site that leaves the methyl group attached to the ring nitrogen of cocaine solvent-exposed. The methyl ester group of cocaine appears to engage in attractive van der Waals interactions with mAb 2E2, whereas the phenyl group contributes to the binding primarily via hydrophobic interactions. The model further indicated that an increase in partial positive charge near the nitrogen proton and methyl ester carbonyl group enhances binding affinity and that the ester oxygen likely forms an intermolecular hydrogen bond with mAb 2E2. Overall, the cocaine binding properties of mAb 2E2 support its clinical potential for development as a treatment of cocaine overdose and addiction.
Moreira, Cleci M.; Meira, Eduardo F.; Vestena, Luis; Stefanon, Ivanita; Vassallo, Dalton V.; Padilha, Alessandra S.
2012-01-01
OBJECTIVES: Tension cost, the ratio of myosin ATPase activity to tension, reflects the economy of tension development in the myocardium. To evaluate the mechanical advantage represented by the tension cost, we studied papillary muscle contractility and the activity of myosin ATPase in the left ventricles in normal and pathophysiological conditions. METHODS: Experimental protocols were performed using rat left ventricles from: (1) streptozotocin-induced diabetic and control Wistar rats; (2) N-nitro-L-arginine methyl ester (L-NAME) hypertensive and untreated Wistar rats; (3) deoxycorticosterone acetate (DOCA) salt-treated, nephrectomized and salt- and DOCA-treated rats; (4) spontaneous hypertensive rats (SHR) and Wistar Kyoto (WKY) rats; (5) rats with myocardial infarction and sham-operated rats. The isometric force, tetanic tension, and the activity of myosin ATPase were measured. RESULTS: The results obtained from infarcted, diabetic, and deoxycorticosterone acetate-salt-treated rats showed reductions in twitch and tetanic tension compared to the control and sham-operated groups. Twitch and tetanic tension increased in the N-nitro-L-arginine methyl ester-treated rats compared with the Wistar rats. Myosin ATPase activity was depressed in the infarcted, diabetic, and deoxycorticosterone acetate salt-treated rats compared with control and sham-operated rats and was increased in N-nitro-L-arginine methyl ester-treated rats. These parameters did not differ between SHR and WKY rats. In the studied conditions (e.g., post-myocardial infarction, deoxycorticosterone acetate salt-induced hypertension, chronic N-nitro-L-arginine methyl ester treatment, and streptozotocin-induced diabetes), a positive correlation between force or plateau tetanic tension and myosin ATPase activity was observed. CONCLUSION: Our results suggest that the myocardium adapts to force generation by increasing or reducing the tension cost to maintain myocardial contractility with a better mechanical advantage. PMID:22666794
Mendes, Jorge; Zhou, Chong-Wen; Curran, Henry J
2013-12-27
This work details an ab initio and chemical kinetic study of the hydrogen atom abstraction reactions by the hydroperoxyl radical (HȮ2) on the following esters: methyl ethanoate, methyl propanoate, methyl butanoate, methyl pentanoate, methyl isobutyrate, ethyl ethanoate, propyl ethanoate, and isopropyl ethanoate. Geometry optimizations and frequency calculations of all of the species involved, as well as the hindrance potential descriptions for reactants and transition states, have been performed with the Møller-Plesset (MP2) method using the 6-311G(d,p) basis set. A validation of all of the connections between transition states and local minima was performed by intrinsic reaction coordinate calculations. Electronic energies for all of the species are reported at the CCSD(T)/cc-pVTZ level of theory in kcal mol(-1) with the zero-point energy corrections. The CCSD(T)/CBS (extrapolated from CCSD(T)/cc-pVXZ, in which X = D, T, Q) was used for the reactions of methyl ethanoate + HȮ2 radicals as a benchmark in the electronic energy calculations. High-pressure limit rate constants, in the temperature range 500-2000 K, have been calculated for all of the reaction channels using conventional transition state theory with asymmetric Eckart tunneling corrections. The 1-D hindered rotor approximation has been used for the low frequency torsional modes in both reactants and transition states. The calculated individual and total rate constants are reported for all of the reaction channels in each reaction system. A branching ratio analysis for each reaction site has also been investigated for all of the esters studied in this work.
2015-01-01
The uncharacterized protein Rsp3690 from Rhodobacter sphaeroides is a member of the amidohydrolase superfamily of enzymes. In this investigation the gene for Rsp3690 was expressed in Escherichia coli and purified to homogeneity, and the three-dimensional structure was determined to a resolution of 1.8 Å. The protein folds as a distorted (β/α)8-barrel, and the subunits associate as a homotetramer. The active site is localized to the C-terminal end of the β-barrel and is highlighted by the formation of a binuclear metal center with two manganese ions that are bridged by Glu-175 and hydroxide. The remaining ligands to the metal center include His-32, His-34, His-207, His-236, and Asp-302. Rsp3690 was shown to catalyze the hydrolysis of a wide variety of carboxylate esters, in addition to organophosphate and organophosphonate esters. The best carboxylate ester substrates identified for Rsp3690 included 2-naphthyl acetate (kcat/Km = 1.0 × 105 M–1 s–1), 2-naphthyl propionate (kcat/Km = 1.5 × 105 M–1 s–1), 1-naphthyl acetate (kcat/Km = 7.5 × 103 M–1 s–1), 4-methylumbelliferyl acetate (kcat/Km = 2.7 × 103 M–1 s–1), 4-nitrophenyl acetate (kcat/Km = 2.3 × 105 M–1 s–1), and 4-nitrophenyl butyrate (kcat/Km = 8.8 × 105 M–1 s–1). The best organophosphonate ester substrates included ethyl 4-nitrophenyl methylphosphonate (kcat/Km = 3.8 × 105 M–1 s–1) and isobutyl 4-nitrophenyl methylphosphonate (kcat/Km = 1.1 × 104 M–1 s–1). The (SP)-enantiomer of isobutyl 4-nitrophenyl methylphosphonate was hydrolyzed 10 times faster than the less toxic (RP)-enantiomer. The high inherent catalytic activity of Rsp3690 for the hydrolysis of the toxic enantiomer of methylphosphonate esters make this enzyme an attractive target for directed evolution investigations. PMID:24832101
NASA Astrophysics Data System (ADS)
Sari, V. I.; Hambali, E.; Suryani, A.; Permadi, P.
2017-02-01
Esterification reaction between glycerol with palm oil oleic acid to produce glycerol ester and one of the utilization of glycerol esters is as ingredients of drilling fluids formula for oil drilling needs. The purpose of this research is to get the best conditions of the esterification process. The esterification reaction does with the reactants is glycerol with purity of 97.6%, palm oil oleic acid with the molar ratio is 1:1, Methyl Ester Sulfonate Acid (MESA) catalyst 0.5%, and stirring speed 400 rpm. The temperature range of 180°C to 240°C and the processing time between 120 to 180 minutes. The results showed that the best conditions of the esterification reaction at the temperature 240°C and time process are 180 minute. The increasing temperature resulted that the acid number decreases and causing the conversion increased. The maximum conversion is 99.24%, density 0.93 g/cm3, flash point 241°C, pour point -3°C, the boiling point of 244 °C, the acid value of 1.90 mg KOH/g sample, kinematic viscosity 31.51 cSt (40°C), surface tension 37.0526 dyne/cm and GCMS identification, glycerol ester at 22,256 retention time (minutes) and wide area 73.75 (%). From the research results obtained glycerol ester with characteristics suitable for drilling fluid formulations.
Mora, Liliana; Heurgué-Hamard, Valérie; de Zamaroczy, Miklos; Kervestin, Stephanie; Buckingham, Richard H
2007-12-07
Bacterial release factors RF1 and RF2 are methylated on the Gln residue of a universally conserved tripeptide motif GGQ, which interacts with the peptidyl transferase center of the large ribosomal subunit, triggering hydrolysis of the ester bond in peptidyl-tRNA and releasing the newly synthesized polypeptide from the ribosome. In vitro experiments have shown that the activity of RF2 is stimulated by Gln methylation. The viability of Escherichia coli K12 strains depends on the integrity of the release factor methyltransferase PrmC, because K12 strains are partially deficient in RF2 activity due to the presence of a Thr residue at position 246 instead of Ala. Here, we study in vivo RF1 and RF2 activity at termination codons in competition with programmed frameshifting and the effect of the Ala-246 --> Thr mutation. PrmC inactivation reduces the specific termination activity of RF1 and RF2(Ala-246) by approximately 3- to 4-fold. The mutation Ala-246 --> Thr in RF2 reduces the termination activity in cells approximately 5-fold. After correction for the decrease in level of RF2 due to the autocontrol of RF2 synthesis, the mutation Ala-246 --> Thr reduced RF2 termination activity by approximately 10-fold at UGA codons and UAA codons. PrmC inactivation had no effect on cell growth in rich media but reduced growth considerably on poor carbon sources. This suggests that the expression of some genes needed for optimal growth under such conditions can become growth limiting as a result of inefficient translation termination.
Fatty acid methyl esters with two vicinal alkylthio side chains and their NMR characterization
USDA-ARS?s Scientific Manuscript database
The addition reaction of dimethyl disulfide (DMDS) to double bonds in alkenes and monounsaturated fatty acid esters in the presence of iodine or other catalysts to give bis(methylthio) derivatives has largely served analytical purposes in mass spectrometry with scattered reports on the addition of o...
Oligomeric secoiridoid glucosides from Jasminum abyssinicum.
Gallo, Francesca Romana; Palazzino, Giovanna; Federici, Elena; Iurilli, Raffaella; Monache, Franco Delle; Chifundera, Kusamba; Galeffi, Corrado
2006-03-01
From the root bark of Jasminum abyssinicum (Oleaceae) collected in Congo was isolated tree oligomeric secoiridoid glucosides named craigosides A-C. The three compounds are esters of a cyclopentanoid monoterpene with an iridane skeleton, esterified with three, two and two, respectively, units of oleoside 11-methyl ester. The structures were elucidated by spectroscopic methods and chemical correlations.
Ultraviolet absorbing copolymers
Gupta, Amitava; Yavrouian, Andre H.
1982-01-01
Photostable and weather stable absorping copolymers have been prepared from acrylic esters such as methyl methacrylate containing 0.1 to 5% of an 2-hydroxy-allyl benzophenone, preferably the 4,4' dimethoxy derivative thereof. The pendant benzophenone chromophores protect the acrylic backbone and when photoexcited do not degrade the ester side chain, nor abstract hydrogen from the backbone.
Design of Enzymatically Cleavable Prodrugs of a Potent Platinum-Containing Anticancer Agent
Ding, Song; Pickard, Amanda J.; Kucera, Gregory L.
2014-01-01
Using a versatile synthetic approach, a new class of potential ester prodrugs of highly potent, but systemically too toxic, platinum–acridine anticancer agents was generated. The new hybrids contain a hydroxyl group, which has been masked with a cleavable lipophilic acyl moiety. Both butanoic (butyric) and bulkier 2-propanepentanoic (valproic) esters were introduced. The goals of this design were to improve the drug-like properties (e.g., logD) and to reduce the systemic toxicity of the pharmacophore. Two distinct pathways by which the target compounds undergo effective ester hydrolysis, the proposed activating step, have been confirmed: platinum-assisted, self-immolative ester cleavage in a low-chloride environment (LC-ESMS, NMR spectroscopy) and enzymatic cleavage by human carboxylesterase-2 (hCES-2) (LC-ESMS). The valproic acid ester derivatives are the first example of a metal-containing agent cleavable by the pro-drug-converting enzyme. They show excellent chemical stability and reduced systemic toxicity. Preliminary results from screening in lung adenocarcinoma cell lines (A549, NCI-H1435) suggest that the mechanism of the valproic esters may involve intracellular deesterification. PMID:25303639
Wolfram, Ratna Kancana; Heller, Lucie; Csuk, René
2018-05-25
Triterpenoic acids, ursolic acid (1), oleanolic acid (2), glycyrrhetinic acid (3) and betulinic acid (4) were converted into their corresponding methyl 5-8 and benzyl esters 9-12 or benzyl amides 21-24. These derivatives served as starting materials for the synthesis of pink colored rhodamine B derivatives 25-36 which were screened for cytotoxicity in colorimetric SRB assays. All of the compounds were cytotoxic for a variety of human tumor cell lines. The activity of the benzyl ester derivatives 29-32 was lower than the cytotoxicity of the methyl esters 25-28. The benzyl amides 33-36 were the most cytotoxic compounds of this series. The most potential compound was a glycyrrhetinic acid rhodamine B benzyl amide 35. This compound showed activity against the different cancer cell lines in a two-digit to low three-digit nano-molar range. Staining experiments combined with fluorescence microscopy showed that this compound triggered apoptosis in A2780 ovarian carcinoma cells and acted as a mitocan. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Geiger, H Cristina; Zick, Patricia L; Roberts, William R; Geiger, David K
2017-04-01
The synthesis of a novel benzimidazole derivative with a long-chain-ester substituent, namely methyl 8-[4-(1H-benzimidazol-2-yl)phenoxy]octanoate, (3), is reported. Ester (3) shows evidence of aggregation in solution and weak gelation ability with toluene. The octan-1-ol solvate, methyl 8-[4-(1H-benzimidazol-2-yl)phenoxy]octanoate octan-1-ol monosolvate, C 22 H 26 N 2 O 3 ·C 8 H 18 O, (4), exhibits a four-molecule hydrogen-bonded motif in the solid state, with N-H...O hydrogen bonds between benzimidazole molecules and O-H...N hydrogen bonds between the octan-1-ol solvent molecules and the benzimidazole unit. The alkyl chains of the ester and the octan-1-ol molecules are in unfolded conformations. The phenylene ring is canted by 10.27 (6)° from the plane of the benzimidazole ring system. H...C contacts make up 20.7% of the Hirshfeld surface coverage. Weak C-H...π interactions involving the benzimidazole alkyl chain and three aromatic rings are observed.
21 CFR 182.60 - Synthetic flavoring substances and adjuvants.
Code of Federal Regulations, 2014 CFR
2014-04-01
... aldehyde). N-Butyric acid (butanoic acid). d- or l-Carvone (carvol). Cinnamaldehyde (cinnamic aldehyde... aldehyde, caprinaldehyde, aldehyde C-10). Ethyl acetate. Ethyl butyrate. 3-Methyl-3-phenyl glycidic acid ethyl ester (ethyl-methyl-phenyl-glycidate, so-called strawberry aldehyde, C-16 aldehyde). Ethyl...
Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran.
Wang, Wei; Guo, Jia; Zhang, Junnan; Peng, Jie; Liu, Tianxing; Xin, Zhihong
2015-03-15
The bound phenolic compounds in rice bran were released and extracted with ethyl acetate based on alkaline digestion. An investigation of the chemical constituents of EtOAc extract has led to the isolation of a new compound, para-hydroxy methyl benzoate glucoside (8), together with nine known compounds, cycloeucalenol cis-ferulate (1), cycloeucalenol trans-ferulate (2), trans-ferulic acid (3), trans-ferulic acid methyl ester (4), cis-ferulic acid (5), cis-ferulic acid methyl ester (6), methyl caffeate (7), vanillic aldehyde (9) and para-hydroxy benzaldehyde (10). The structures of these compounds were determined using a combination of spectroscopic methods and chemical analysis. Among the compounds isolated, compound 3, 5 and 7 exhibited strong DPPH and ABTS(+) radical scavenging activities, followed by compounds 4 and 6. Compound 1 and 2 showed potent DPPH and ABTS(+) radical scavenging activities, compound 8 displayed moderate antioxidant activity against ABTS(+) radical, whereas compound 9 and 10 showed weak antioxidant activity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cao, Yingying; Deng, Dun; Sun, Aijun; Zhang, Yun; Hu, Yunfeng
2016-09-01
Chiral 2-chloropropanoic acids and their ester derivatives are crucial intermediates in the synthesis of many chemicals, especially herbicides. The enzymatic synthesis of chiral 2-chloropropanoic acids and their ester derivatives by esterases was not easily achieved, because the structural difference between the two enantiomers was too small to be recognized by esterases. Herein, we report the expression and functional characterization of one novel low temperature-resistant esterase EST12-7 identified from the genome of Pseudonocardia antitumoralis SCSIO 01299 isolated from the sediments of the South China Sea. Biocatalyst EST12-7 could hydrolyze racemic methyl 2-chloropropinate and generate optically pure (R)-methyl 2-chloropropinate with high enantiomeric excess (>99 %) and conversion (>49 %) after process optimization. Notably, the addition of different surfactants and using surfactants of different concentrations in the kinetic resolution catalyzed by EST12-7 could greatly affect the enantiomeric excess and conversion rate of product (R)-methyl 2-chloropropinate.
Carbodithioic acid esters of fluoxetine, a novel class of dual-function spermicides.
Kiran Kumar, S T V S; Kumar, Lalit; Sharma, Vishnu L; Jain, Ashish; Jain, Rajeev K; Maikhuri, Jagdamba P; Kumar, Manish; Shukla, Praveen K; Gupta, Gopal
2008-10-01
Carbodithioic acid esters of fluoxetine have been prepared by replacing the methylamino function in aminopropane chain with carbodithioic acid ester group and by adding various S-2-hydroxypropyl ester of dialkyl carbodithioic acid at 3-methylamino group. Some of these compounds showed spermicidal, antifungal and anti-Trichomonas activities. The study revealed that incorporation of carbodithioic acid residue directly into fluoxetine structure leads to compounds with better antifungal and anti-Trichomonas activities, and N-methyl-[3-phenyl-3-(4-trifluoromethyl-phenoxy)-propyl]carbodithioic acid S-(2-pyrrolidino-ethyl) ester (14) has shown better profile than both fluoxetine and nonoxynol-9. Further lead optimization may yield a potent dual-function spermicide.