Recent Results on Microstrip Gas Chambers at Purdue
NASA Astrophysics Data System (ADS)
Menon, Naresh; Shipsey, Ian
1997-04-01
The performance of Micrstrip Gas Chambers fabricated on polymide, with a segmented backplane providing two-dimensional position information, will be presented. MSGC Research at Purdue
NASA Technical Reports Server (NTRS)
Fonte, P.; Peskov, V.; Ramsey, B. D.
1998-01-01
We have studied the rate and gain limits of diamond-coated Microstrip Gas Counters (MSGC's) and Micro-Gap Counters (MGC's) when combined with various preamplification structures: Gas Electron Multiplier (GEM), Parallel-Plate Avalanche Chamber (PPAC) or a MICROMEGAS-type structure. Measurements were done both with X rays and alpha particles with various detector geometries and in different gas mixtures at pressures from 0.05 to 10 atm. The results obtained varied significantly with detector design, gas mixture and pressure, but some general features can be identified. We found that in all cases, bare MSGC'S, MGC'S, PPAC's and MICROMEGAS, the maximum achievable gain drops with rate. The addition of preamplification structures significantly increases the gain of MSGC's and MGC'S, but this gain is still rate dependent. There would seem to be a general rate-dependent effect governing the usable gain of all these detectors. We speculate on possible mechanisms for this effect, and identify a safe, spark-free, operation zone for each system (detector + preamplification structure) in the rate-gain coordinate plane.
Using sputter coated glass to stabilize microstrip gas chambers
Gong, Wen G.
1997-01-01
By sputter coating a thin-layer of low-resistive, electronically-conductive glass on various substrates (including quartz and ceramics, thin-film Pestov glass), microstrip gas chambers (MSGC) of high gain stability, low leakage current, and a high rate capability can be fabricated. This design can make the choice of substrate less important, save the cost of ion-implantation, and use less glass material.
Pižem, Jože; Velikonja, Mojca; Matjašič, Alenka; Jerše, Maja; Glavač, Damjan
2015-04-01
Six cases of gynecomastia with pseudoangiomatous stromal hyperplasia (PASH) and multinucleated stromal giant cells (MSGC) associated with neurofibromatosis type 1 (NF1) have been reported, and finding MSGC within PASH in gynecomastia has been suggested as being a characteristic of NF1. The frequency of PASH with MSGC in gynecomastia and its specificity for NF1 have not, however, been systematically studied. A total of 337 gynecomastia specimens from 215 patients, aged from 8 to 78 years (median, 22 years) were reevaluated for the presence of PASH with MSGC. Breast tissue samples of 25 patients were analyzed for the presence of an NF1 gene mutation using next generation sequencing. Rare MSGC, usually in the background of PASH, were noted at least unilaterally in 27 (13 %) patients; and prominent MSGC, always in the background of PASH, were noted in 8 (4 %) patients. The NF1 gene was mutated in only 1 (an 8-year-old boy with known NF1 and prominent MSGC) of the 25 tested patients, including 6 patients with prominent MSGC and 19 patients with rare MSGC. MSGC, usually in the background of PASH, are not characteristic of NF1.
Development of a 150 000 channel MSGC tracking system for the experiment HERA-B
NASA Astrophysics Data System (ADS)
Zeuner, T.
1997-02-01
The universities of Heidelberg, Siegen and Zürich are preparing the inner tracker of the HERA-B experiment at DESY designed to measure CP violation in B meson decays. The system consists of 200 MSGC chambers of sizes up to 30 × 30 cm 2 with a total of 150 000 electronic channels. Rates up to 10 4 s -1 mm -2 have to be handled. The gold electrodes (300 μm pitch) are produced by a lift-off process on an alkali-free glass (300 μm thick). The glass is CVD coated with amorphous carbon with a surface resistivity of 10 14ω/□. It provides the required lifetime of 5 years with an integrated charge of 30 mC per cm of the anode length. Gains > 5000 are obtained. The efficiency is greater than 99% with negligible noise rate. Measures to avoid deterioration of the anodes by discharges caused by heavy ionizing particles are discussed. The MSGC detectors are connected to hybrid electronics via Kapton foils. A special bonding machine has been built which allows the adjustment by a video system and the chariots moved by micrometer screws and contains electronically steered glue dispenser and pressure pistons. Members of the collaboration are: T. Beckmann, C. Bresch, H.-B. Dreis, F. Eisele, S. Feuerstack, S. Hausmann, A. Hölscher, T. Hott, A. Lange, A. Maag, V. Myalitsin, P. Robmann, B. Schmidt, S. Schmidt, S. Steiner, U. Straumann, P. Truöl, S. Visbeck, A.-H. Walenta, T. Walter, U. Werthenbach, G. Zech and T. Zeuner.
Djawe, Kpandja; Daly, Kieran R.; Walzer, Peter D.
2013-01-01
Background Humoral immune responses in human immunodeficiency virus (HIV)-infected and uninfected children with Pneumocystis pneumonia (PcP) are poorly understood. Methods Consecutive children hospitalized with acute pneumonia, tachypnea, and hypoxia in South Africa were investigated for PcP, which was diagnosed by real-time polymerase chain reaction on lower respiratory tract specimens. Serum antibody responses to recombinant fragments of the carboxyl terminus of Pneumocystis jirovecii major surface glycoprotein (MsgC) were analyzed. Results 149 children were enrolled of whom 96 (64%) were HIV-infected. PcP occurred in 69 (72%) of HIV-infected and 14 (26%) of HIV-uninfected children. HIV-infected children with PcP had significantly decreased IgG antibodies to MsgC compared to HIV-infected patients without PcP, but had similar IgM antibodies. In contrast, HIV-uninfected children with PcP showed no change in IgG antibodies to MsgC, but had significantly increased IgM antibodies compared to HIV-uninfected children without PCP. Age was an independent predictor of high IgG antibodies, whereas PcP was a predictor of low IgG antibodies and high IgM antibodies. IgG and IgM antibody levels to the most closely related MsgC fragments were predictors of survival from PcP. Conclusions Young HIV-infected children with PcP have significantly impaired humoral immune responses to MsgC, whereas HIV-uninfected children with PcP can develop active humoral immune responses. The children also exhibit a complex relationship between specific host factors and antibody levels to MsgC fragments that may be related to survival from PcP. PMID:24386119
Djawe, Kpandja; Daly, Kieran R; Levin, Linda; Zar, Heather J; Walzer, Peter D
2013-01-01
Humoral immune responses in human immunodeficiency virus (HIV)-infected and uninfected children with Pneumocystis pneumonia (PcP) are poorly understood. Consecutive children hospitalized with acute pneumonia, tachypnea, and hypoxia in South Africa were investigated for PcP, which was diagnosed by real-time polymerase chain reaction on lower respiratory tract specimens. Serum antibody responses to recombinant fragments of the carboxyl terminus of Pneumocystis jirovecii major surface glycoprotein (MsgC) were analyzed. 149 children were enrolled of whom 96 (64%) were HIV-infected. PcP occurred in 69 (72%) of HIV-infected and 14 (26%) of HIV-uninfected children. HIV-infected children with PcP had significantly decreased IgG antibodies to MsgC compared to HIV-infected patients without PcP, but had similar IgM antibodies. In contrast, HIV-uninfected children with PcP showed no change in IgG antibodies to MsgC, but had significantly increased IgM antibodies compared to HIV-uninfected children without PCP. Age was an independent predictor of high IgG antibodies, whereas PcP was a predictor of low IgG antibodies and high IgM antibodies. IgG and IgM antibody levels to the most closely related MsgC fragments were predictors of survival from PcP. Young HIV-infected children with PcP have significantly impaired humoral immune responses to MsgC, whereas HIV-uninfected children with PcP can develop active humoral immune responses. The children also exhibit a complex relationship between specific host factors and antibody levels to MsgC fragments that may be related to survival from PcP.
NASA Astrophysics Data System (ADS)
Mindur, B.; Alimov, S.; Fiutowski, T.; Schulz, C.; Wilpert, T.
2014-12-01
A two-dimensional (2D) position sensitive detector for neutron scattering applications based on low-pressure gas amplification and micro-strip technology was built and tested with an innovative readout electronics and data acquisition system. This detector contains a thin solid neutron converter and was developed for time- and thus wavelength-resolved neutron detection in single-event counting mode, which improves the image contrast in comparison with integrating detectors. The prototype detector of a Micro-Strip Gas Chamber (MSGC) was built with a solid natGd/CsI thermal neutron converter for spatial resolutions of about 100 μm and counting rates up to 107 neutrons/s. For attaining very high spatial resolutions and counting rates via micro-strip readout with centre-of-gravity evaluation of the signal amplitude distributions, a fast, channel-wise, self-triggering ASIC was developed. The front-end chips (MSGCROCs), which are very first signal processing components, are read out into powerful ADC-FPGA boards for on-line data processing and thereafter via Gigabit Ethernet link into the data receiving PC. The workstation PC is controlled by a modular, high performance dedicated software suite. Such a fast and accurate system is crucial for efficient radiography/tomography, diffraction or imaging applications based on high flux thermal neutron beam. In this paper a brief description of the detector concept with its operation principles, readout electronics requirements and design together with the signals processing stages performed in hardware and software are presented. In more detail the neutron test beam conditions and measurement results are reported. The focus of this paper is on the system integration, two dimensional spatial resolution, the time resolution of the readout system and the imaging capabilities of the overall setup. The detection efficiency of the detector prototype is estimated as well.
Blount, Robert J.; Djawe, Kpandja; Daly, Kieran R.; Jarlsberg, Leah G.; Fong, Serena; Balmes, John; Miller, Robert F.; Walzer, Peter D.; Huang, Laurence
2013-01-01
Background Ambient air pollution (AAP) may be associated with increased risk for Pneumocystis pneumonia (PCP). The mechanisms underlying this association remain uncertain. Objectives To determine if real-life exposures to AAP are associated with suppressed IgM antibody responses to P. jirovecii in HIV-infected (HIV+) patients with active PCP, and to determine if AAP, mediated by suppressed serologic responses to Pneumocystis, is associated with adverse clinical outcomes. Methods We conducted a prospective cohort study in HIV+ patients residing in San Francisco and admitted to San Francisco General Hospital with microscopically confirmed PCP. Our AAP predictors were ambient air concentrations of particulate matter of < 10 µm in diameter (PM10) and < 2.5 µm in diameter (PM2.5), nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2) measured immediately prior to hospital admission and 2 weeks prior to admission. Our primary outcomes were the IgM serologic responses to four recombinant P. jirovecii major surface glycoprotein (Msg) constructs: MsgC1, MsgC3, MsgC8, and MsgC9. Results Elevated PM10 and NO2 exposures immediately prior to and two weeks prior to hospital admission were associated with decreased IgM antibody responses to P. jirovecii Msg. For exposures immediately prior to admission, every 10 µg/m3 increase in PM10 was associated with a 25 to 35% decrease in IgM responses to Msg (statistically significant for all the Msg constructs), and every 10 ppb increase in NO2 was associated with a 19-45% decrease in IgM responses to Msg (statistically significant for MsgC8 and MsgC9). Similar findings were seen with exposures two weeks prior to admission, but for fewer of the Msg constructs. Conclusions Real life exposures to PM10 and NO2 were associated with suppressed IgM responses to P. jirovecii Msg in HIV+ patients admitted with PCP, suggesting a mechanism of immunotoxicity by which AAP increases host susceptibility to pulmonary infection. PMID:24236202
Blount, Robert J; Djawe, Kpandja; Daly, Kieran R; Jarlsberg, Leah G; Fong, Serena; Balmes, John; Miller, Robert F; Walzer, Peter D; Huang, Laurence
2013-01-01
Ambient air pollution (AAP) may be associated with increased risk for Pneumocystis pneumonia (PCP). The mechanisms underlying this association remain uncertain. To determine if real-life exposures to AAP are associated with suppressed IgM antibody responses to P. jirovecii in HIV-infected (HIV+) patients with active PCP, and to determine if AAP, mediated by suppressed serologic responses to Pneumocystis, is associated with adverse clinical outcomes. We conducted a prospective cohort study in HIV+ patients residing in San Francisco and admitted to San Francisco General Hospital with microscopically confirmed PCP. Our AAP predictors were ambient air concentrations of particulate matter of < 10 µm in diameter (PM10) and < 2.5 µm in diameter (PM2.5), nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2) measured immediately prior to hospital admission and 2 weeks prior to admission. Our primary outcomes were the IgM serologic responses to four recombinant P. jirovecii major surface glycoprotein (Msg) constructs: MsgC1, MsgC3, MsgC8, and MsgC9. Elevated PM10 and NO2 exposures immediately prior to and two weeks prior to hospital admission were associated with decreased IgM antibody responses to P. jirovecii Msg. For exposures immediately prior to admission, every 10 µg/m(3) increase in PM10 was associated with a 25 to 35% decrease in IgM responses to Msg (statistically significant for all the Msg constructs), and every 10 ppb increase in NO2 was associated with a 19-45% decrease in IgM responses to Msg (statistically significant for MsgC8 and MsgC9). Similar findings were seen with exposures two weeks prior to admission, but for fewer of the Msg constructs. Real life exposures to PM10 and NO2 were associated with suppressed IgM responses to P. jirovecii Msg in HIV+ patients admitted with PCP, suggesting a mechanism of immunotoxicity by which AAP increases host susceptibility to pulmonary infection.
Healthcare Worker Occupation and Immune Response to Pneumocystis jirovecii
Daly, Kieran R.; Jarlsberg, Leah G.; Koch, Judy V.; Swartzman, Alexandra; Roth, Brenna M.; Walzer, Peter D.; Huang, Laurence
2009-01-01
The reservoir and mode of transmission of Pneumocystis jirovecii remain uncertain. We conducted a cross-sectional study of 126 San Francisco General Hospital staff in clinical (n = 103) and nonclinical (n = 23) occupations to assess whether occupational exposure was associated with immune responses to P. jirovecii. We examined antibody levels by ELISA for 3 overlapping fragments that span the P. jirovecii major surface glycoprotein (Msg): MsgA, MsgB, and MsgC1. Clinical occupation participants had higher geometric mean antibody levels to MsgC1 than did nonclinical occupation participants (21.1 vs. 8.2, p = 0.004); clinical occupation was an independent predictor of higher MsgC1 antibody levels (parameter estimate = 0.89, 95% confidence interval 0.29–1.48, p = 0.003). In contrast, occupation was not significantly associated with antibody responses to either MsgA or MsgB. Healthcare workers may have occupational exposure to P. jirovecii. Humans may be a reservoir for P. jirovecii and may transmit it from person to person. PMID:19861050
NASA Astrophysics Data System (ADS)
Tao, Ye; Ding, Wentao; Wang, Zhongqiang; Xu, Haiyang; Zhao, Xiaoning; Li, Xuhong; Liu, Weizhen; Ma, Jiangang; Liu, Yichun
2018-05-01
In this work, we demonstrated an effective method to improve the switching reliability of HfOx based RRAM device by inserting mountain-like surface-graphited carbon (MSGC) layer. The MSGC layer was fabricated through thermal annealing of amorphous carbon (a-C) film with high sp2 proportion (49.7%) under 500 °C on Pt substrate, whose characteristics were validated by XPS and Raman spectrums. The local electric-field (LEF) was enhanced around the nanoscale tips of MSGC layer due to large surface curvature, which leads to simplified CFs and localization of resistive switching region. It takes responsibility to the reduction of high/low resistance states (HRS/LRS) fluctuation from 173.8%/64.9% to 23.6%/6.5%, respectively. In addition, the resulting RRAM devices exhibited fast switching speed (<65 ns), good retention (>104 s at 85 °C) and low cycling degradation. This method could be promising to develop reliable and repeatable high-performance RRAM for practical applications.
Sawabe, Michi; Ito, Hidemi; Takahara, Taishi; Oze, Isao; Kawakita, Daisuke; Yatabe, Yasushi; Hasegawa, Yasuhisa; Murakami, Shingo; Matsuo, Keitaro
2018-01-01
Major salivary gland cancers (M-SGCs) are rare, and have distinct heterogeneous histopathological subtypes. To the authors' knowledge, no consistent evidence of an association between cigarette smoking and the risk of M-SGCs has appeared to date. Furthermore, evidence of potential heterogeneity in the impact of smoking on histopathological subtypes is scarce, despite the fact that the histopathological subtypes of M-SGC exhibit different genetic features. The authors conducted a case-control study to investigate the association between smoking and M-SGC by histopathological subtype. Cases were 81 patients with M-SGCs and the controls were 810 age-matched and sex-matched first-visit outpatients without cancer treated at Aichi Cancer Center Hospital from 1988 to 2005. Odds ratios (OR) and 95% confidence intervals (95% CI) were assessed by conditional logistic regression analysis with adjustment for potential confounders. Smoking was found to be associated with a significantly increased risk of M-SGC overall, with an OR of 3.45 (95% CI, 1.58-7.51; P =.001) for heavy smokers compared with never-smokers. A significant dose-response relationship was observed (P for trend, .001). When stratified by histological subtype, no obvious impact of smoking was observed among patients with mucoepidermoid carcinoma (MEC). In contrast, smoking demonstrated a significantly increased risk of M-SGCs other than MEC, with an OR of 5.15 (95% CI, 2.06-12.87; P<.001) for heavy smokers compared with never-smokers. The authors observed possible heterogeneity with regard to the impact of smoking on risk between MEC and M-SGCs other than MEC (P for heterogeneity, .052). The results of the current study demonstrate a significant positive association between cigarette smoking and the risk of M-SGC overall. However, the impact of smoking appeared to be limited to M-SGCs other than MEC. Cancer 2018;124:118-24. © 2017 American Cancer Society. © 2017 American Cancer Society.
Blount, Robert J; Daly, Kieran R; Fong, Serena; Chang, Emily; Grieco, Katherine; Greene, Meredith; Stone, Stephen; Balmes, John; Miller, Robert F; Walzer, Peter D; Huang, Laurence
2017-01-01
Humoral immunity plays an important role against Pneumocystis jirovecii infection, yet clinical and environmental factors that impact bronchoalveolar antibody responses to P. jirovecii remain uncertain. From October 2008-December 2011 we enrolled consecutive HIV-infected adults admitted to San Francisco General Hospital (SFGH) who underwent bronchoscopy for suspected Pneumocystis pneumonia (PCP). We used local air quality monitoring data to assign ozone, nitrogen dioxide, and fine particulate matter exposures within 14 days prior to hospital admission. We quantified serum and bronchoalveolar lavage fluid (BALF) antibody responses to P. jirovecii major surface glycoprotein (Msg) recombinant constructs using ELISA. We then fit linear regression models to determine whether PCP and ambient air pollutants were associated with bronchoalveolar antibody responses to Msg. Of 81 HIV-infected patients enrolled, 47 (58%) were diagnosed with current PCP and 9 (11%) had a prior history of PCP. The median CD4+ count was 51 cells/μl (IQR 15-129) and 44% were current smokers. Serum antibody responses to Msg were statistically significantly predictive of BALF antibody responses, with the exception of IgG responses to MsgC8 and MsgC9. Prior PCP was associated with increased BALF IgA responses to Msg and current PCP was associated with decreased IgA responses. For instance, among patients without current PCP, those with prior PCP had a median 73.2 U (IQR 19.2-169) IgA response to MsgC1 compared to a 5.00 U (3.52-12.6) response among those without prior PCP. Additionally, current PCP predicted a 22.5 U (95%CI -39.2, -5.82) lower IgA response to MsgC1. Ambient ozone within the two weeks prior to hospital admission was associated with decreased BALF IgA responses to Msg while nitrogen dioxide was associated with increased IgA responses. PCP and ambient air pollutants were associated with BALF IgA responses to P. jirovecii in HIV-infected patients evaluated for suspected PCP.
Daly, Kieran R.; Fong, Serena; Chang, Emily; Grieco, Katherine; Greene, Meredith; Stone, Stephen; Balmes, John; Miller, Robert F.; Walzer, Peter D.; Huang, Laurence
2017-01-01
Background Humoral immunity plays an important role against Pneumocystis jirovecii infection, yet clinical and environmental factors that impact bronchoalveolar antibody responses to P. jirovecii remain uncertain. Methods From October 2008—December 2011 we enrolled consecutive HIV-infected adults admitted to San Francisco General Hospital (SFGH) who underwent bronchoscopy for suspected Pneumocystis pneumonia (PCP). We used local air quality monitoring data to assign ozone, nitrogen dioxide, and fine particulate matter exposures within 14 days prior to hospital admission. We quantified serum and bronchoalveolar lavage fluid (BALF) antibody responses to P. jirovecii major surface glycoprotein (Msg) recombinant constructs using ELISA. We then fit linear regression models to determine whether PCP and ambient air pollutants were associated with bronchoalveolar antibody responses to Msg. Results Of 81 HIV-infected patients enrolled, 47 (58%) were diagnosed with current PCP and 9 (11%) had a prior history of PCP. The median CD4+ count was 51 cells/μl (IQR 15–129) and 44% were current smokers. Serum antibody responses to Msg were statistically significantly predictive of BALF antibody responses, with the exception of IgG responses to MsgC8 and MsgC9. Prior PCP was associated with increased BALF IgA responses to Msg and current PCP was associated with decreased IgA responses. For instance, among patients without current PCP, those with prior PCP had a median 73.2 U (IQR 19.2–169) IgA response to MsgC1 compared to a 5.00 U (3.52–12.6) response among those without prior PCP. Additionally, current PCP predicted a 22.5 U (95%CI -39.2, -5.82) lower IgA response to MsgC1. Ambient ozone within the two weeks prior to hospital admission was associated with decreased BALF IgA responses to Msg while nitrogen dioxide was associated with increased IgA responses. Conclusions PCP and ambient air pollutants were associated with BALF IgA responses to P. jirovecii in HIV-infected patients evaluated for suspected PCP. PMID:28692651
Enzyme-Linked Immunosorbent Assay and Serologic Responses to Pneumocystis jiroveci
Koch, Judy; Levin, Linda; Walzer, Peter D.
2004-01-01
Seroepidemiologic studies of Pneumocystis pneumonia (PCP) in humans have been limited by inadequate reagents. We have developed an enzyme-linked immunosorbent assay (ELISA) using three overlapping recombinant fragments of the human Pneumocystis major surface glycoprotein (MsgA, MsgB, and MsgC) for analysis of antibody responses in HIV-positive patients and healthy blood donors. HIV-positive patients had significantly higher antibody levels to all Msg fragments. Furthermore, HIV-positive patients who experienced a previous episode of PCP (PCP-positive) had higher level of antibodies to MsgC than patients who never had PCP. A significant association was found between ELISA antibody level and reactivity by Western blot in HIV-positive patients, especially those who were PCP-positive. Thus, this ELISA will be useful in studying serum antibody responses to Pneumocystis in different human populations. PMID:15200818
Gas-controlled dynamic vacuum insulation with gas gate
Benson, David K.; Potter, Thomas F.
1994-06-07
Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber.
Gas-controlled dynamic vacuum insulation with gas gate
Benson, D.K.; Potter, T.F.
1994-06-07
Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.
Acoustically enhanced heat exchange and drying apparatus
Bramlette, T. Tazwell; Keller, Jay O.
1989-01-01
A heat transfer apparatus includes a first chamber having a first heat transfer gas inlet, a second heat transfer gas inlet, and an outlet. A first heat transfer gas source provides a first gas flow to the first chamber through the first heat transfer gas inlet. A second gas flow through a second chamber connected to the side of the first chamber, generates acoustic waves which bring about acoustical coupling of the first and second gases in the acoustically augmented first chamber. The first chamber may also include a material inlet for receiving material to be dried, in which case the gas outlet serves as a dried material and gas outlet.
Acoustically enhanced heat exchange and drying apparatus
Bramlette, T.T.; Keller, J.O.
1987-07-10
A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. 77.305 Section 77.305 Mineral Resources MINE SAFETY... drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. Drying chambers, hot...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. 77.305 Section 77.305 Mineral Resources MINE SAFETY... drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. Drying chambers, hot...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. 77.305 Section 77.305 Mineral Resources MINE SAFETY... drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. Drying chambers, hot...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. 77.305 Section 77.305 Mineral Resources MINE SAFETY... drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. Drying chambers, hot...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. 77.305 Section 77.305 Mineral Resources MINE SAFETY... drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. Drying chambers, hot...
30 CFR 77.303 - Hot gas inlet chamber dropout doors.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hot gas inlet chamber dropout doors. 77.303... COAL MINES Thermal Dryers § 77.303 Hot gas inlet chamber dropout doors. Thermal dryer systems which employ a hot gas inlet chamber shall be equipped with drop-out doors at the bottom of the inlet chamber...
30 CFR 77.303 - Hot gas inlet chamber dropout doors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hot gas inlet chamber dropout doors. 77.303... COAL MINES Thermal Dryers § 77.303 Hot gas inlet chamber dropout doors. Thermal dryer systems which employ a hot gas inlet chamber shall be equipped with drop-out doors at the bottom of the inlet chamber...
30 CFR 77.303 - Hot gas inlet chamber dropout doors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hot gas inlet chamber dropout doors. 77.303... COAL MINES Thermal Dryers § 77.303 Hot gas inlet chamber dropout doors. Thermal dryer systems which employ a hot gas inlet chamber shall be equipped with drop-out doors at the bottom of the inlet chamber...
30 CFR 77.303 - Hot gas inlet chamber dropout doors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hot gas inlet chamber dropout doors. 77.303... COAL MINES Thermal Dryers § 77.303 Hot gas inlet chamber dropout doors. Thermal dryer systems which employ a hot gas inlet chamber shall be equipped with drop-out doors at the bottom of the inlet chamber...
Vapor-barrier Vacuum Isolation System
NASA Technical Reports Server (NTRS)
Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)
2014-01-01
A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.
Gas laser with dual plasma mixing
Pinnaduwage, L.A.
1999-04-06
A gas laser includes an enclosure forming a first chamber, a second chamber and a lasing chamber which communicates through a first opening to the first chamber and through a second opening to the second chamber. The lasing chamber has a pair of reflectors defining a Fabry-Perot cavity. Separate inlets enable different gases to be introduced into the first and second chambers. A first cathode within the first chamber is provided to produce positive ions which travel into the lasing chamber and a second cathode of a pin-hollow type within the second chamber is provided to produce negative ions which travel into the lasing chamber. A third inlet introduces a molecular gas into the lasing chamber, where the molecular gas becomes excited by the positive and negative ions and emits light which lases in the Fabry-Perot cavity. 2 figs.
Gas laser with dual plasma mixing
Pinnaduwage, Lal A.
1999-01-01
A gas laser includes an enclosure forming a first chamber, a second chamber and a lasing chamber which communicates through a first opening to the first chamber and through a second opening to the second chamber. The lasing chamber has a pair of reflectors defining a Fabry-Perot cavity. Separate inlets enable different gases to be introduced into the first and second chambers. A first cathode within the first chamber is provided to produce positive ions which travel into the lasing chamber and a second cathode of a pin-hollow type within the second chamber is provided to produce negative ions which travel into the lasing chamber. A third inlet introduces a molecular gas into the lasing chamber, where the molecular gas becomes excited by the positive and negative ions and emits light which lases in the Fabry-Perot cavity.
Combustion-gas recirculation system
Baldwin, Darryl Dean
2007-10-09
A combustion-gas recirculation system has a mixing chamber with a mixing-chamber inlet and a mixing-chamber outlet. The combustion-gas recirculation system may further include a duct connected to the mixing-chamber inlet. Additionally, the combustion-gas recirculation system may include an open inlet channel with a solid outer wall. The open inlet channel may extend into the mixing chamber such that an end of the open inlet channel is disposed between the mixing-chamber inlet and the mixing-chamber outlet. Furthermore, air within the open inlet channel may be at a pressure near or below atmospheric pressure.
Photosynthetic and respiratory activity in germfree higher plant species
NASA Technical Reports Server (NTRS)
1976-01-01
Equipment developed for the study of gas exchange in germfree plants is described. The equipment includes a gas exchange chamber to house the plant under study, a gas feed assembly to introduce and remove gas from the chamber, and a clinostat to rotate the apparatus. Fluorescent and incandescent lights are used to illuminate the chamber and a sealed plastic barrier is used to isolate the potting soil from the chamber atmosphere. The gas outflow from the chamber can be diverted to an infrared CO2 analyzer. The performance of the system was evaluated.
Stackable multi-port gas nozzles
Poppe, Steve; Rozenzon, Yan; Ding, Peijun
2015-03-03
One embodiment provides a reactor for material deposition. The reactor includes a chamber and at least one gas nozzle. The chamber includes a pair of susceptors, each having a front side and a back side. The front side mounts a number of substrates. The susceptors are positioned vertically so that the front sides of the susceptors face each other, and the vertical edges of the susceptors are in contact with each other, thereby forming a substantially enclosed narrow channel between the substrates mounted on different susceptors. The gas nozzle includes a gas-inlet component situated in the center and a detachable gas-outlet component stacked around the gas-inlet component. The gas-inlet component includes at least one opening coupled to the chamber, and is configured to inject precursor gases into the chamber. The detachable gas-outlet component includes at least one opening coupled to the chamber, and is configured to output exhaust gases from the chamber.
System for sterilizing objects. [cleaning space vehicle systems
NASA Technical Reports Server (NTRS)
Bryan, C. J.; Wright, E. E., Jr.; Moyers, C. V. (Inventor)
1981-01-01
A system for producing a stream of humidified sterilizing gas for sterilizing objects such as the water systems of space vehicles and the like includes a source of sterilant gas which is fed to a mixing chamber which has inlet and outlet ports. The level of the water only partially fills the mixing chamber so as to provide an empty space adjacent the top of the chamber. A heater is provided for heating the water in the chamber so as to produce a humidified atmosphere. The sterilant gas is fed through an arcuate shaped tubular member connected to the inlet port of the mixing chamber for producing a vortex type of flow of sterilant gas into the chamber for humidification. A tubular member extends from the mixing chamber for supplying the humidified sterilant gas to the object for being sterilized. Scrubbers are provided for removing the sterilant gas after use.
Brandt, D.
1984-06-05
An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.
Brandt, Daniel
1985-01-01
An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.
Atomic oxygen reactor having at least one sidearm conduit
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor)
1994-01-01
An apparatus for treating a microporous structure with atomic oxygen is presented. The apparatus includes a main gas chamber for flowing gas in an axial direction and a source of gas, containing atomic oxygen, connected for introducing the gas into the main gas chamber. The apparatus employs at least one side arm extending from the main atomic oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klebanoff, Leonard E.; Delgado, Gildardo R.; Hollenshead, Jeromy T.
An optical instrument, including a chamber, an object exposed to an interior of the chamber, a source of low-pressure gas, the gas comprising at least one of low-pressure molecular hydrogen gas, low-pressure molecular oxygen and a low-pressure noble gas, the source of low pressure gas being fluidly coupled to the chamber, a low voltage source electrically coupled between the object and a remaining portion of the instrument that is exposed to the interior of the chamber so as to maintain the object at a low voltage relative to the remaining portion, and an EUV/VUV light source adapted to direct EUV/VUVmore » light through the low pressure gas in the chamber onto the object. In such a system, when the EUV/VUV light source is activated ions of the low-pressure gas are formed and directed to the object. The ions may be ions of Hydrogen, Oxygen or a noble gas.« less
Ultra-thin plasma radiation detector
Friedman, Peter S.
2017-01-24
A position-sensitive ionizing-radiation counting detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includes a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.
Ultra-thin plasma panel radiation detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, Peter S.
An ultra-thin radiation detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includesmore » a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.« less
Brandt, D.
1985-12-31
An apparatus is disclosed for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area. 3 figs.
Hardin, K. Dan
1977-01-01
The disclosure relates to a gas injected vacuum switch comprising a housing having an interior chamber, a conduit for evacuating the interior chamber, within the chamber an anode and a cathode spaced from the anode, and a detonator for injecting electrically conductive gas into the chamber between the anode and the cathode to provide a current path therebetween.
Solid oxide fuel cell generator
Draper, Robert; George, Raymond A.; Shockling, Larry A.
1993-01-01
A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.
NASA Astrophysics Data System (ADS)
Juszczak, R.; Pihlatie, M.; Christiansen, J. R.; Giebels, M.; Schreiber, P.; Aaltonen, H.; Korhonen, J.; Rasilo, T.; Chojnicki, B. H.; Urbaniak, M.
2009-04-01
Closed static chambers are often used for greenhouse gas flux measurements from soils. The type of chamber, chamber handling and sampling protocol can influence the measurements. In most cases the calculated fluxes are suspected to be underestimated mainly because of reduction of gas diffusion from the soil to chamber headspace due to changed trace gas concentration gradient. Thus, fans are often applied to obtain better mixing of the air inside the chamber headspace and in turn reduce the negative effect of decreased concentration gradient. The open question is, however, to which extent the fluxes are changed by fans and whether they still remain underestimated or may even be overestimated? On the other hand, different sampling protocols are used assuming that they do not affect the flux measurements. To test different types of static chambers and different sampling procedures applied for measurement of greenhouse gas (CH4 and N2O) fluxes a chamber calibration campaign was organized at Hyytiälä Forestry Field Station in Southern Finland during August-October 2008. The main aim of the campaign was to quantitatively assess the uncertaintities and errors related to static chamber measurements. During this campaign static chambers were tested for 5 different CH4 and N2O flux levels with 3 different soil conditions (moisture and porosity) in a calibration tank described by Pumpanen et al. (2004). Among the different experiments, several special tests were carried out with the closed static chambers. Here, results of two special tests are presented to document whether 1) the air mixing inside the chamber headspace, 2) different sampling procedures influence the CH4 fluxes, and 3) how different calculation methods lead to varying results. Two static chambers of different volumes (65.5 and 195 liters) but with the same circular shape and surface area were connected to a LOS GATOS fats methane analyzer. The CH4 concentration inside the chamber headspace was monitored continuously with 1Hz frequency. Additionally, two different manual samplings procedures were tested and gas samples from chamber headspace were taken for gas chromatograph (GC) and analysed in two different laboratories. Gas concentrations in the calibration tank were monitored with a GC and an automatic gas analyzer (INNOVA). The preliminary results showed that air mixing inside the chamber headspace, the way of chamber handling and sampling procedures could have pronounced influence on the trace gas concentration detection inside a chamber, and as a consequence the calculated chamber fluxes. The moment of chamber enclosure can lead to a rapid increase in CH4 concentration due to a pressure effect in the chambers without a vent tube. Thus, it is essential to critically estimate the time of the first sampling so that it is early enough after chamber enclosure, but not disturbed by the initial chamber handling. It was also observed that manual sampling of gas can change the CH4 concentration in the chamber headspace. When mixing the chamber headspace air by a syringe, the subsequent gas sampling in the syringe may affect the diffusion of gas between the soil and the chamber headspace, and hence affect the calculated fluxes. It was observed that mixing the chamber headspace with a fan instead of syringes, reduced this effect during the chamber enclosure. Overall, fluxes measured with chamber equipped with a fan always gave higher fluxes (up to 40%) as compared to fluxes measured from chambers without a fan. Results of our experiment lead to the assumption that these differences were generally larger the higher the chamber was, the less porous the soil was, and the higher the fluxes were. We conclude from our experiment that static chambers used for greenhouse gas flux measurements should be equipped with at least one fan and a vent tube to increase mixing and reduce pressure propagation in the chamber-soil system, and that special attention should be paid to the handling of the chamber and to the timing of the gas sampling. References: Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T., Niinistö, S., Lohila, A., Larmola, T., Morero, M., Pihlatie, M., Janssens, I., Curiel Yuste, J., Grünzweig, J. M., Reth, S., Subke, J.-A., Savage, K., Kutsch, W., Østreng, G., Ziegler, W., Anthoni, P., Lindroth, A. & Hari, P. 2004. Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology 123, 159-176.
Atac, Muzaffer
1989-01-01
A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.
NASA Astrophysics Data System (ADS)
Hutchinson, G. L.; Livingston, G. P.; Healy, R. W.; Striegl, R. G.
2000-04-01
We employed a three-dimensional finite difference gas diffusion model to simulate the performance of chambers used to measure surface-atmosphere trace gas exchange. We found that systematic errors often result from conventional chamber design and deployment protocols, as well as key assumptions behind the estimation of trace gas exchange rates from observed concentration data. Specifically, our simulations showed that (1) when a chamber significantly alters atmospheric mixing processes operating near the soil surface, it also nearly instantaneously enhances or suppresses the postdeployment gas exchange rate, (2) any change resulting in greater soil gas diffusivity, or greater partitioning of the diffusing gas to solid or liquid soil fractions, increases the potential for chamber-induced measurement error, and (3) all such errors are independent of the magnitude, kinetics, and/or distribution of trace gas sources, but greater for trace gas sinks with the same initial absolute flux. Finally, and most importantly, we found that our results apply to steady state as well as non-steady-state chambers, because the slow rate of gas diffusion in soil inhibits recovery of the former from their initial non-steady-state condition. Over a range of representative conditions, the error in steady state chamber estimates of the trace gas flux varied from -30 to +32%, while estimates computed by linear regression from non-steady-state chamber concentrations were 2 to 31% too small. Although such errors are relatively small in comparison to the temporal and spatial variability characteristic of trace gas exchange, they bias the summary statistics for each experiment as well as larger scale trace gas flux estimates based on them.
Hutchinson, G.L.; Livingston, G.P.; Healy, R.W.; Striegl, Robert G.
2000-01-01
We employed a three-dimensional finite difference gas diffusion model to simulate the performance of chambers used to measure surface-atmosphere tace gas exchange. We found that systematic errors often result from conventional chamber design and deployment protocols, as well as key assumptions behind the estimation of trace gas exchange rates from observed concentration data. Specifically, our simulationshowed that (1) when a chamber significantly alters atmospheric mixing processes operating near the soil surface, it also nearly instantaneously enhances or suppresses the postdeployment gas exchange rate, (2) any change resulting in greater soil gas diffusivity, or greater partitioning of the diffusing gas to solid or liquid soil fractions, increases the potential for chamber-induced measurement error, and (3) all such errors are independent of the magnitude, kinetics, and/or distribution of trace gas sources, but greater for trace gas sinks with the same initial absolute flux. Finally, and most importantly, we found that our results apply to steady state as well as non-steady-state chambers, because the slow rate of gas diffusion in soil inhibits recovery of the former from their initial non-steady-state condition. Over a range of representative conditions, the error in steady state chamber estimates of the trace gas flux varied from -30 to +32%, while estimates computed by linear regression from non-steadystate chamber concentrations were 2 to 31% too small. Although such errors are relatively small in comparison to the temporal and spatial variability characteristic of trace gas exchange, they bias the summary statistics for each experiment as well as larger scale trace gas flux estimates based on them.
Thermal reactor. [liquid silicon production from silane gas
NASA Technical Reports Server (NTRS)
Levin, H.; Ford, L. B. (Inventor)
1982-01-01
A thermal reactor apparatus and method of pyrolyticaly decomposing silane gas into liquid silicon product and hydrogen by-product gas is disclosed. The thermal reactor has a reaction chamber which is heated well above the decomposition temperature of silane. An injector probe introduces the silane gas tangentially into the reaction chamber to form a first, outer, forwardly moving vortex containing the liquid silicon product and a second, inner, rewardly moving vortex containing the by-product hydrogen gas. The liquid silicon in the first outer vortex deposits onto the interior walls of the reaction chamber to form an equilibrium skull layer which flows to the forward or bottom end of the reaction chamber where it is removed. The by-product hydrogen gas in the second inner vortex is removed from the top or rear of the reaction chamber by a vortex finder. The injector probe which introduces the silane gas into the reaction chamber is continually cooled by a cooling jacket.
System for drying and heating particulate coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Offergeld, E.; Wischniewski, M.
1978-04-04
Wet particulate coal and a current of hot dry gas at superatmospheric pressure are introduced into a substantially closed drying chamber to contact the material with the gas while maintaining the drying chamber under superatmospheric pressure so that the material is dried by the gas. The dried material is withdrawn from the drying chamber and the gas is withdrawn from the drying chamber and itself mixed with a stream of hot dry gas produced by burning a combustible and a combustion-supporting gas. This mixture is then reintroduced into the drying chamber as the current of hot gas used to drymore » the coal. The burner is operated at superatmospheric pressure and is formed of a jet-pump type injector, and a diffusor is provided downstream of this injector in the circulation path.« less
Correy, T.B.; DeWitt, D.E.; Nelson, I.V.
1963-04-23
This patent covers an arrangement for replacing air in a welding chamber with an inert gas. This operation usually is time-consuming because of the tendency of the inert gas to mix with the air being removed from the welding chamber. The chamber is open at the bottom and has at its top a cover and a porous plate a little below the cover. The inert gas is admitted to the chamber through two screened openings in the cover. On passing through the porous plate, the gas acts as a piston extending across the chamber and moving downwardly to expel the air through the lower open end of the chamber, with a minimum of mixing with the air being expelled. (AEC)
Osada, T; Fukumoto, Y
2001-01-01
A dynamic chamber system consisting of a chamber covering a composting mixture (3 m in diameter, 2.2 m in height, 13 m3), a ventilator for suction of air into the chamber, and equipment to measure the gas composition and indicate temperature, was developed for evaluation of harmful gas emissions from such livestock waste composting. Fresh air was introduced through the space between the floor and the lower edge of the chamber, and exhaust gas was removed through an outlet placed on top of the chamber. NH3, CH4 and N2O concentrations in exhaust air from the chamber were measured by Infrared Photoacoustic Detector (IPD, multi gas monitor type 1312, INNOVA, Copenhagen, Denmark) at 5 minutes intervals. The system was evaluated with standard gas of NH3, CH4 and N2O. High recoveries of 98.5% (NH3, SD 6.25), 96.6% (CH4, SD 4.03) and 99.5% ( N2O, SD 2.68) were obtained for each gas emission in the chamber over 17-20 min. The measured values of those gases obtained by the IPD method and conventional method at the time of a composting examination of swine waste were measured, and the differences were only a few percent of the total emissions.
Natural oscillations of a gas in an elongated combustion chamber
NASA Astrophysics Data System (ADS)
Nesterov, S. V.; Akulenko, L. D.; Baydulov, V. G.
2017-02-01
For the analysis of the frequencies and shapes of the natural oscillations of a gas in an elongated rectilinear combustion chamber, this chamber can be treated as a kind of an organ pipe that has the following specific features: 1. the chamber has an inlet and outlet nozzles; 2. a gas mixture burns in the combustion chamber; 3. the combustion materials flow out from the outlet nozzle; 4. the gas flows in such a way that its velocity in the larger part (closer to the outlet nozzle) of the chamber exceeds the speed of sound (Mach number M > 1). There are only separate domains (one or several), where M < 1. The excitation of the natural oscillations of the gas and an increase in the amplitude of such oscillations can lead to instability of the combustion process [1].
Vacuum chamber with a supersonic flow aerodynamic window
Hanson, Clark L.
1982-01-01
A supersonic flow aerodynamic window, whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.
Vacuum chamber with a supersonic-flow aerodynamic window
Hanson, C.L.
1980-10-14
A supersonic flow aerodynamic window is disclosed whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.
Henderson, Timothy M.; Wuttke, Gilbert H.
1977-01-01
A variable leak gas source and a method for obtaining the same which includes filling a quantity of hollow glass micro-spheres with a gas, storing said quantity in a confined chamber having a controllable outlet, heating said chamber above room temperature, and controlling the temperature of said chamber to control the quantity of gas passing out of said controllable outlet. Individual gas filled spheres may be utilized for calibration purposes by breaking a sphere having a known quantity of a known gas to calibrate a gas detection apparatus.
Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T
2014-10-21
A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalin, H.S.; Bermudez, J.E.; Fleming, W.T.
1987-09-08
A soap film gas flowmeter is described comprising: a flow tube having a hollow body with opposite open ends through which a soap film is propelled and a first closed chamber housing a soap solution. It also includes means for supporting the flow tube in a substantially vertical position with the open bottom end of the flow tube disposed in the first chamber above the soap solution; a second closed chamber into which the open top end of the flow tube extends and gas inlet means for introducing gas into the first chamber at a flow rate to be measuredmore » using the flowmeters. A gas exit means is included for discharging the gas introduced into the first chamber through the second chamber. Plus there are means for generating a single soap bubble from the soap solution substantially at the bottom end of the flow tube and a relatively large opening in the flowtube for providing an open passageway for inlet gas to pass through the flowtube when the bottom open end of the flowtube is covered by the soap solution.« less
Portable automation of static chamber sample collection for quantifying soil gas flux
USDA-ARS?s Scientific Manuscript database
The collection of soil gas flux using the static chamber method is labor intensive. The number of chambers that can be sampled in a given time period is limited by the spacing between chambers and the availability of trained research technicians. However, the static chamber method can limit spatial ...
Assembly for directing combustion gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charron, Richard C.; Little, David A.; Snyder, Gary D.
2016-04-12
An arrangement is provided for delivering gases from a plurality of combustors of a can-annular gas turbine combustion engine to a first row of turbine blades including a first row of turbine blades. The arrangement includes a gas path cylinder, a cone and an integrated exit piece (IEP) for each combustor. Each IEP comprises an inlet chamber for receiving a gas flow from a respective combustor, and includes a connection segment. The IEPs are connected together to define an annular chamber extending circumferentially and concentric to an engine longitudinal axis, for delivering the gas flow to the first row ofmore » blades. A radiused joint extends radially inward from a radially outer side of the inlet chamber to an outer boundary of the annular chamber, and a flared fillet extends radially inward from a radially inner side of the inlet chamber to an inner boundary of the annular chamber.« less
Corrosion test cell for bipolar plates
Weisbrod, Kirk R.
2002-01-01
A corrosion test cell for evaluating corrosion resistance in fuel cell bipolar plates is described. The cell has a transparent or translucent cell body having a pair of identical cell body members that seal against opposite sides of a bipolar plate. The cell includes an anode chamber and an cathode chamber, each on opposite sides of the plate. Each chamber contains a pair of mesh platinum current collectors and a catalyst layer pressed between current collectors and the plate. Each chamber is filled with an electrolyte solution that is replenished with fluid from a much larger electrolyte reservoir. The cell includes gas inlets to each chamber for hydrogen gas and air. As the gases flow into a chamber, they pass along the platinum mesh, through the catalyst layer, and to the bipolar plate. The gas exits the chamber through passageways that provide fluid communication between the anode and cathode chambers and the reservoir, and exits the test cell through an exit port in the reservoir. The flow of gas into the cell produces a constant flow of fresh electrolyte into each chamber. Openings in each cell body is member allow electrodes to enter the cell body and contact the electrolyte in the reservoir therein. During operation, while hydrogen gas is passed into one chamber and air into the other chamber, the cell resistance is measured, which is used to evaluate the corrosion properties of the bipolar plate.
Device for precision measurement of speed of sound in a gas
Kelner, Eric; Minachi, Ali; Owen, Thomas E.; Burzynski, Jr., Marion; Petullo, Steven P.
2004-11-30
A sensor for measuring the speed of sound in a gas. The sensor has a helical coil, through which the gas flows before entering an inner chamber. Flow through the coil brings the gas into thermal equilibrium with the test chamber body. After the gas enters the chamber, a transducer produces an ultrasonic pulse, which is reflected from each of two faces of a target. The time difference between the two reflected signals is used to determine the speed of sound in the gas.
Zhang, Ji-Guang; Tracy, C. Edwin; Benson, David K.; Turner, John A.; Liu, Ping
2000-01-01
A method is disclosed of forming a vanadium oxide film on a substrate utilizing plasma enhanced chemical vapor deposition. The method includes positioning a substrate within a plasma reaction chamber and then forming a precursor gas comprised of a vanadium-containing chloride gas in an inert carrier gas. This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected to optimize the final properties of the vanadium oxide film An rf plasma is generated within the reaction chamber to chemically react the precursor gas with the hydrogen and the oxygen to cause deposition of a vanadium oxide film on the substrate while the chamber deposition pressure is maintained at about one torr or less. Finally, the byproduct gases are removed from the plasma reaction chamber.
Process for coating an object with silicon carbide
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1989-01-01
A process for coating a carbon or graphite object with silicon carbide by contacting it with silicon liquid and vapor over various lengths of contact time. In the process, a stream of silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a co-reactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into a reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. The precursor gas is decomposed directly to silicon in the reaction chamber. A stream of any decomposition gas and any unreacted precursor gas from said reaction chamber is removed. The object within the reaction chamber is then contacted with silicon, and recovered after it has been coated with silicon carbide.
Radioiodine detector based on laser induced fluorescence
McDonald, Jimmie R.; Baronavski, Andrew P.
1980-01-01
The invention involves the measurement of the concentration of the radioisotope .sup.129 I.sub.2 in the presence of a gas. The invention uses a laser to excite a sample of the .sup.129 I.sub.2 in a sample gas chamber and a reference sample of a known concentration of .sup.129 I.sub.2 in a reference gas chamber. The .sup.129 I.sub.2 in the sample and reference gas chamber each gives off fluorescence emissions which are received by photomultipliers which provide signals to a detector. The detector uses a ratioing technique to determine the concentration of .sup.129 I.sub.2 in the sample gas chamber.
Converting a carbon preform object to a silicon carbide object
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1990-01-01
A process for converting in depth a carbon or graphite preform object to a silicon carbide object, silicon carbide/silicon object, silicon carbide/carbon-core object, or a silicon carbide/silicon/carbon-core object, by contacting it with silicon liquid and vapor over various lengths of contact time in a reaction chamber. In the process, a stream comprised of a silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a coreactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into the reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. Thus, the precursor gas is decomposed directly to silicon in the reaction chamber. Any stream of decomposition gas and any unreacted precursor gas from the reaction chamber is removed. A carbon or graphite preform object placed in the reaction chamber is contacted with the silicon. The carbon or graphite preform object is recovered from the reactor chamber after it has been converted to a desired silicon carbide, silicon and carbon composition.
Portable Automation of Static Chamber Sample Collection for Quantifying Soil Gas Flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Morgan P.; Groh, Tyler A.; Parkin, Timothy B.
Quantification of soil gas flux using the static chamber method is labor intensive. The number of chambers that can be sampled is limited by the spacing between chambers and the availability of trained research technicians. An automated system for collecting gas samples from chambers in the field would eliminate the need for personnel to return to the chamber during a flux measurement period and would allow a single technician to sample multiple chambers simultaneously. This study describes Chamber Automated Sampling Equipment (FluxCASE) to collect and store chamber headspace gas samples at assigned time points for the measurement of soil gasmore » flux. The FluxCASE design and operation is described, and the accuracy and precision of the FluxCASE system is evaluated. In laboratory measurements of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) concentrations of a standardized gas mixture, coefficients of variation associated with automated and manual sample collection were comparable, indicating no loss of precision. In the field, soil gas fluxes measured from FluxCASEs were in agreement with manual sampling for both N2O and CO2. Slopes of regression equations were 1.01 for CO2 and 0.97 for N2O. The 95% confidence limits of the slopes of the regression lines included the value of one, indicating no bias. Additionally, an expense analysis found a cost recovery ranging from 0.6 to 2.2 yr. Implementing the FluxCASE system is an alternative to improve the efficiency of the static chamber method for measuring soil gas flux while maintaining the accuracy and precision of manual sampling.« less
Gas flow meter and method for measuring gas flow rate
Robertson, Eric P.
2006-08-01
A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.
Automated soil gas monitoring chamber
Edwards, Nelson T.; Riggs, Jeffery S.
2003-07-29
A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.
Municipal Waste Incinerator Public Works Center, Yokosuka Japan Evaluation and Recommendations
1993-04-01
Incinerator and Pollution Control Equipment 24 XIV. Gas Cooling Chamber Water Injection Sites and Control Valve 25 XV. Quencher Reactor 27 XVI...discussed below.I 11I.B.1. Exhaust Gas Cooling Chamber Within the exhaust gas cooling chamber, water is atomized into the gas stream cools the gases...as it evaporates. The feed rate of water is controlled to provide gases entering the quencher at 3000C (Figure XIV). The gases exit the exhaust gas
EPA GAS PHASE CHEMISTRY CHAMBER STUDIES
Gas-phase smog chamber experiments are being performed at EPA in order to evaluate a number of current chemical mechanisms for inclusion in EPA regulatory and research models. The smog chambers are 9000 L in volume and constructed of 2-mil teflon film. One of the chambers is co...
Improved Back-Side Purge-Gas Chambers For Plasma Arc Welding
NASA Technical Reports Server (NTRS)
Ezell, Kenneth G.; Mcgee, William F.; Rybicki, Daniel J.
1995-01-01
Improved chambers for inert-gas purging of back sides of workpieces during plasma arc welding in keyhole (full-penetration) mode based on concept of directing flows of inert gases toward, and concentrating them on, hot weld zones. Tapered chamber concentrates flow of inert gas on plasma arc plume and surrounding metal.
Harthcock, Colin; Jahanbekam, Abdolreza; Eskelsen, Jeremy R; Lee, David Y
2016-11-01
We describe an example of a piecewise gas chamber that can be customized to incorporate a low flux of gas-phase radicals with an existing surface analysis chamber for in situ and stepwise gas-surface interaction experiments without any constraint in orientation. The piecewise nature of this gas chamber provides complete angular freedom and easy alignment and does not require any modification of the existing surface analysis chamber. In addition, the entire gas-surface system is readily differentially pumped with the surface chamber kept under ultra-high-vacuum during the gas-surface measurements. This new design also allows not only straightforward reconstruction to accommodate the orientation of different surface chambers but also for the addition of other desired features, such as an additional pump to the current configuration. Stepwise interaction between atomic oxygen and a highly ordered pyrolytic graphite surface was chosen to test the effectiveness of this design, and the site-dependent O-atom chemisorption and clustering on the graphite surface were resolved by a scanning tunneling microscope in the nm-scale. X-ray photoelectron spectroscopy was used to further confirm the identity of the chemisorbed species on the graphite surface as oxygen.
NASA Astrophysics Data System (ADS)
Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.
2012-12-01
Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.
Method and apparatus for measuring volatile compounds in an aqueous solution
Gilmore, Tyler J [Pasco, WA; Cantrell, Kirk J [West Richland, WA
2002-07-16
The present invention is an improvement to the method and apparatus for measuring volatile compounds in an aqueous solution. The apparatus is a chamber with sides and two ends, where the first end is closed. The chamber contains a solution volume of the aqueous solution and a gas that is trapped within the first end of the chamber above the solution volume. The gas defines a head space within the chamber above the solution volume. The chamber may also be a cup with the second end. open and facing down and submerged in the aqueous solution so that the gas defines the head space within the cup above the solution volume. The cup can also be entirely submerged in the aqueous solution. The second end of the. chamber may be closed such that the chamber can be used while resting on a flat surface such as a bench. The improvement is a sparger for mixing the gas with the solution volume. The sparger can be a rotating element such as a propeller on a shaft or a cavitating impeller. The sparger can also be a pump and nozzle where the pump is a liquid pump and the nozzle is a liquid spray nozzle open, to the head space for spraying the solution volume into the head space of gas. The pump could also be a gas pump and the nozzle a gas nozzle submerged in the solution volume for spraying the head space gas into the solution volume.
Powder collection apparatus/method
Anderson, I.E.; Terpstra, R.L.; Moore, J.A.
1994-01-11
Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing. 4 figures.
Powder collection apparatus/method
Anderson, Iver E.; Terpstra, Robert L.; Moore, Jeffery A.
1994-01-11
Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing.
Fast Gas Replacement in Plasma Process Chamber by Improving Gas Flow Pattern
NASA Astrophysics Data System (ADS)
Morishita, Sadaharu; Goto, Tetsuya; Akutsu, Isao; Ohyama, Kenji; Ito, Takashi; Ohmi, Tadahiro
2009-01-01
The precise and high-speed alteration of various gas species is important for realizing precise and well-controlled multiprocesses in a single plasma process chamber with high throughput. The gas replacement times in the replacement of N2 by Ar and that of H2 by Ar are measured in a microwave excited high-density and low electron-temperature plasma process chamber at various working pressures and gas flow rates, incorporating a new gas flow control system, which can avoid overshoot of the gas pressure in the chamber immediately after the valve operation, and a gradational lead screw booster pump, which can maintain excellent pumping capability for various gas species including lightweight gases such as H2 in a wide pressure region from 10-1 to 104 Pa. Furthermore, to control the gas flow pattern in the chamber, upper ceramic shower plates, which have thousands of very fine gas injection holes (numbers of 1200 and 2400) formed with optimized allocation on the plates, are adopted, while the conventional gas supply method in the microwave-excited plasma chamber uses many holes only opened at the sidewall of the chamber (gas ring). It has been confirmed that, in the replacement of N2 by Ar, a short replacement time of approximately 1 s in the cases of 133 and 13.3 Pa and approximately 3 s in the case of 4 Pa can be achieved when the upper shower plate has 2400 holes, while a replacement time longer than approximately 10 s is required for all pressure cases where the gas ring is used. In addition, thanks to the excellent pumping capability of the gradational lead screw booster pump for lightweight gases, it has also been confirmed that the replacement time of H2 by Ar is almost the same as that of N2 by Ar.
Ethylene monitoring and control system
NASA Technical Reports Server (NTRS)
Nelson, Bruce N. (Inventor); Kanc, James A. (Inventor); Richard, II, Roy V. (Inventor)
2000-01-01
A system that can accurately monitor and control low concentrations of ethylene gas includes a test chamber configured to receive sample gas potentially containing an ethylene concentration and ozone, a detector configured to receive light produced during a reaction between the ethylene and ozone and to produce signals related thereto, and a computer connected to the detector to process the signals to determine therefrom a value of the concentration of ethylene in the sample gas. The supply for the system can include a four way valve configured to receive pressurized gas at one input and a test chamber. A piston is journaled in the test chamber with a drive end disposed in a drive chamber and a reaction end defining with walls of the test chamber a variable volume reaction chamber. The drive end of the piston is pneumatically connected to two ports of the four way valve to provide motive force to the piston. A manifold is connected to the variable volume reaction chamber, and is configured to receive sample gasses from at least one of a plurality of ports connectable to degreening rooms and to supply the sample gas to the reactive chamber for reaction with ozone. The apparatus can be used to monitor and control the ethylene concentration in multiple degreening rooms.
Ethylene monitoring and control system
NASA Technical Reports Server (NTRS)
Nelson, Bruce N. (Inventor); Kane, James A. (Inventor); Richard, II, Roy V. (Inventor)
2001-01-01
A system that can accurately monitor and control low concentrations of ethylene gas includes a test chamber configured to receive sample gas potentially containing an ethylene concentration and ozone, a detector configured to receive light produced during a reaction between the ethylene and ozone and to produce signals related thereto, and a computer connected to the detector to process the signals to determine therefrom a value of the concentration of ethylene in the sample gas. The supply for the system can include a four way valve configured to receive pressurized gas at one input and a test chamber. A piston is journaled in the test chamber with a drive end disposed in a drive chamber and a reaction end defining with walls of the test chamber a variable volume reaction chamber. The drive end of the piston is pneumatically connected to two ports of the four way valve to provide motive force to the piston. A manifold is connected to the variable volume reaction chamber, and is configured to receive sample gasses from at least one of a plurality of ports connectable to degreening rooms and to supply the sample gas to the reactive chamber for reaction with ozone. The apparatus can be used to monitor and control the ethylene concentration in multiple degreening rooms.
External combustor for gas turbine engine
Santanam, Chandran B.; Thomas, William H.; DeJulio, Emil R.
1991-01-01
An external combustor for a gas turbine engine has a cyclonic combustion chamber into which combustible gas with entrained solids is introduced through an inlet port in a primary spiral swirl. A metal draft sleeve for conducting a hot gas discharge stream from the cyclonic combustion chamber is mounted on a circular end wall of the latter adjacent the combustible gas inlet. The draft sleeve is mounted concentrically in a cylindrical passage and cooperates with the passage in defining an annulus around the draft sleeve which is open to the cyclonic combustion chamber and which is connected to a source of secondary air. Secondary air issues from the annulus into the cyclonic combustion chamber at a velocity of three to five times the velocity of the combustible gas at the inlet port. The secondary air defines a hollow cylindrical extension of the draft sleeve and persists in the cyclonic combustion chamber a distance of about three to five times the diameter of the draft sleeve. The hollow cylindrical extension shields the drive sleeve from the inlet port to prevent discharge of combustible gas through the draft sleeve.
Methods of Testing Thermal Insulation and Associated Test Apparatus
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)
2004-01-01
The system and method for testing thermal insulation uses a cryostatic insulation tester having a vacuum chamber and a cold mass including a test chamber and upper and lower guard chambers adjacent thereto. The thermal insulation is positioned within the vacuum chamber and adjacent the cold mass. Cryogenic liquid is supplied to the test chamber, upper guard and lower guard to create a first gas layer in an upper portion of the lower guard chamber and a second gas layer in an upper portion of the test chamber. Temperature are sensed within the vacuum chamber to test the thermal insulation.
Healy, Richard W.; Striegl, Robert G.; Russell, Thomas F.; Hutchinson, Gordon L.; Livingston, Gerald P.
1996-01-01
The exchange of gases between soil and atmosphere is an important process that affects atmospheric chemistry and therefore climate. The static-chamber method is the most commonly used technique for estimating the rate of that exchange. We examined the method under hypothetical field conditions where diffusion was the only mechanism for gas transport and the atmosphere outside the chamber was maintained at a fixed concentration. Analytical and numerical solutions to the soil gas diffusion equation in one and three dimensions demonstrated that gas flux density to a static chamber deployed on the soil surface was less in magnitude than the ambient exchange rate in the absence of the chamber. This discrepancy, which increased with chamber deployment time and air-filled porosity of soil, is attributed to two physical factors: distortion of the soil gas concentration gradient (the magnitude was decreased in the vertical component and increased in the radial component) and the slow transport rate of diffusion relative to mixing within the chamber. Instantaneous flux density to a chamber decreased continuously with time; steepest decreases occurred so quickly following deployment and in response to such slight changes in mean chamber headspace concentration that they would likely go undetected by most field procedures. Adverse influences of these factors were reduced by mixing the chamber headspace, minimizing deployment time, maximizing the height and radius of the chamber, and pushing the rim of the chamber into the soil. Nonlinear models were superior to a linear regression model for estimating flux densities from mean headspace concentrations, suggesting that linearity of headspace concentration with time was not necessarily a good indicator of measurement accuracy.
Pulsed discharge ionization source for miniature ion mobility spectrometers
Xu, Jun; Ramsey, J. Michael; Whitten, William B.
2004-11-23
A method and apparatus is disclosed for flowing a sample gas and a reactant gas (38, 43) past a corona discharge electrode (26) situated at a first location in an ion drift chamber (24), applying a pulsed voltage waveform comprising a varying pulse component and a dc bias component to the corona discharge electrode (26) to cause a corona which in turn produces ions from the sample gas and the reactant gas, applying a dc bias to the ion drift chamber (24) to cause the ions to drift to a second location (25) in the ion drift chamber (24), detecting the ions at the second location (25) in the drift chamber (24), and timing the period for the ions to drift from the corona discharge electrode to the selected location in the drift chamber.
Atac, M.
1987-05-12
An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morishita, Sadaharu; Goto, Tetsuya; Nagase, Masaaki
Multiprocesses in a single plasma process chamber with high throughput require precise, sequential, high-speed alteration of partial pressures of multiple gas species. A conventional gas-distribution system cannot realize this because the system seriously overshoots gas pressure immediately following valve operation. Furthermore, chamber volume and conductance of gas piping between the system and chamber should both be considered because they delay the stabilizing time of gas pressure. Therefore, the authors proposed a new gas-distribution system without overshoot by controlling gas flow rate based on pressure measurement, as well as a method of pulse-controlled gas injection immediately following valve operation. Time variationmore » of measured partial pressure agrees well with a calculation based on an equivalent-circuit model that represents the chamber and gas piping between the system and chamber. Using pulse-controlled gas injection, the stabilizing time can be reduced drastically to 0.6 s for HBr added to pure Ar plasma, and 0.7 s for O{sub 2} added to Ar/HBr plasma; without the pulse control, the stabilizing times are 3 and 7 s, respectively. In the O{sub 2} addition case, rapid stabilization can be achieved during the period of line/space pattern etching of poly-Si on a thin SiO{sub 2} film. This occurs without anomalous etching of the underlying SiO{sub 2} film or the Si substrate near the sidewall, thus obtaining a wide process margin with high throughput.« less
Method of plasma etching Ga-based compound semiconductors
Qiu, Weibin; Goddard, Lynford L.
2012-12-25
A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.
Passivation of micro-strip gas chambers with an interstitial germanium coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, J.; Knoll, G.F.; Amos, N.
1996-12-31
Micro-strip gas chambers (MSGCs) were constructed in the Solid-State Electronics Laboratory of the University of Michigan and their performance was studied. Many efforts have been made in the past to construct MSGCs that yield high absolute gas gain and stable gas gain. Introducing a thin germanium layer has been effective for passivation but difficulties associated with the poor adhesiveness of the thin layer have been a serious obstacle. This paper reports on a new method used to overcome these difficulties. Unlike the conventional coating method the thin germanium layer was successfully deposited between the strip lines. This technique requires amore » careful geometric alignment of a second photomask with the original micro-strip structure. The resulting detector performance was noteworthy and an absolute gas gain of 2 {center_dot} 10{sup 4} was easily achieved by the new chamber. The chamber`s gain instability was also reduced significantly compared with those without interstitial coating.« less
High power gas laser amplifier
Leland, Wallace T.; Stratton, Thomas F.
1981-01-01
A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.
Oppenheimer, F.F.
1959-04-14
This patent pertains to calutrons and more particularly to means for introducing gas at selected points in the arc chamber of a calutron source to remedy unsteadiness in the arc, The disclosed ion source has a baffle at the gas entrance in the arc chamber for directing part of the gas fiow toward the anodc end of the chamber. The resulting arc is much steadier, resulting in an ion beam of increased current.
Oppenheimer, F. F.
1959-04-14
This patent pertains to calutrons and more particularly to means for introducing gas at selected points in the arc chamber of a calutron source to remedy unsteadiness in the arc. The disclosed ion source has a baffle at the gas entrance in the arc chamber for directing part of the gas flow toward the anode end of the chamber. The resulting arc is much steadier, resulting in an ion beam of increased current.
Cyclone reactor with internal separation and axial recirculation
Becker, Frederick E.; Smolensky, Leo A.
1989-01-01
A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combuston chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture of flue gas and ash may be tangentially withdrawn from the outlet end of the combustor chamber and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture.
Carbon Deposition Model for Oxygen-Hydrocarbon Combustion, Volume 2
NASA Technical Reports Server (NTRS)
Hernandez, R.; Ito, J. I.; Niiya, K. Y.
1987-01-01
Presented are details of the design, fabrication, and testing of subscale hardware used in the evaluation of carbon deposition characteristics of liquid oxygen and three hydrocarbon fuels for both main chamber and preburner/gas generator operating conditions. In main chamber conditions, the deposition of carbon on the combustion chamber wall was investigated at mixture ratios of 2.0 to 4.0 and at chamber pressures of 1000 to 1500 psia. No carbon deposition on chamber walls was detected at these main chamber mixture ratios. In preburner/gas generator operating conditions, the deposition of carbon on the turbine simulator tubes was evaluated at mixture ratios of 0.20 to 0.60 and at chamber pressures of 720 to 1650 psia. The results of the tests showed carbon deposition rate to be a strong function of mixture ratio and a weak function of chamber pressure. Further analyses evaluated the operational concequences of carbon deposition on preburner/gas generator performance. This is Volume 2 of the report, which contains data plots of all the test programs.
Auxiliary reactor for a hydrocarbon reforming system
Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.
2006-01-17
An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.
Johnson, Thomas Edward [Greer, SC; Stevenson, Christian Xavier [Inman, SC; York, William David [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC
2012-04-17
A fuel injection nozzle comprises a body member having an upstream wall opposing a downstream wall, a baffle member having an upstream surface and a downstream surface, a first chamber, a second chamber, a fuel inlet communicative with the first chamber operative to emit a first gas into the first chamber, and a plurality of mixing tubes, each of the mixing tubes having a tube inner surface, a tube outer surface, a first inlet communicative with an aperture in the upstream wall operative to receive a second gas, a second inlet communicative with the tube outer surface and the tube inner surface operative to translate the first gas into the mixing tube, a mixing portion operative to mix the first gas and the second gas, and an outlet communicative with an aperture in the downstream wall operative to emit the mixed first and second gasses.
Zheng, Ze-Mei; Yu, Gui-Rui; Sun, Xiao-Min; Cao, Guang-Min; Wang, Yue-Si; Du, Ming-Yuan; Li, Jun; Li, Ying-Nian
2008-02-01
Based on the measurement of carbon flux by the methods of eddy covariance and static chamber/gas chromatogram, a comparison was made between the two methods in evaluating ecosystem respiration over winter wheat (Triticum aestivum)--summer maize (Zea mays) double cropland and Kobresia humilis alpine meadow. The results showed that under the conditions of obtained data having good quality, nighttime ecosystem respiration from eddy covariance measurement was significantly agreed with that from static chamber/gas chromatogram measurement, with the correlation coefficients ranging from 0.95 to 0.98, and the daytime ecosystem respiration from these two measurements also had a good consistency though the static chamber/gas chromatogram measurement often produced higher values. The daily mean value of ecosystem respiration was significantly different between these two measurements, but the seasonal pattern was similar. For winter wheat-summer maize double cropland, the difference of mean air temperature inside and outside the chamber was 1.8 degrees C, and the daily mean value of ecosystem respiration across the whole study period was 30.3% lower in eddy covariance measurement than in static chamber/gas chromatogram measurement; while for alpine meadow, the difference of the mean air temperature was 1.9 degrees C, and the daily mean value of ecosystem respiration was 31.4% lower in eddy covariance measurement than in static chamber/gas chromatogram measurement. The variance between the daily mean values of ecosystem respiration obtained from the two measurements was higher in growing season than in dormant season.
Wafer chamber having a gas curtain for extreme-UV lithography
Kanouff, Michael P.; Ray-Chaudhuri, Avijit K.
2001-01-01
An EUVL device includes a wafer chamber that is separated from the upstream optics by a barrier having an aperture that is permeable to the inert gas. Maintaining an inert gas curtain in the proximity of a wafer positioned in a chamber of an extreme ultraviolet lithography device can effectively prevent contaminants from reaching the optics in an extreme ultraviolet photolithography device even though solid window filters are not employed between the source of reflected radiation, e.g., the camera, and the wafer. The inert gas removes the contaminants by entrainment.
Minimizing field time to get reasonable greenhouse gas flux estimates from many chambers
USDA-ARS?s Scientific Manuscript database
Greenhouse gas measurements from soil are typically derived from static chambers placed in several replicate field plots and in multiple locations within a plot. Inherent variability in emissions is due to a number of known and unknown factors. Getting robust emission estimates from numerous chamber...
Gas exchange in NASA's biomass production chamber - A preprototype closed human life support system
NASA Technical Reports Server (NTRS)
Corey, Kenneth A.; Wheeler, Raymond M.
1992-01-01
The unique capabilities of the NASA biomass production chamber for monitoring and evaluating gas exchange rates are examined. Special emphasis is given to results with wheat and soybeans. The potential of the chamber as a preprototype of a closed human life support system is considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, Upul P.; Claussen, Heiko
An acoustic transceiver is implemented for measuring acoustic properties of a gas in a turbine engine combustor. The transceiver housing defines a measurement chamber and has an opening adapted for attachment to a turbine engine combustor wall. The opening permits propagation of acoustic signals between the gas in the turbine engine combustor and gas in the measurement chamber. An acoustic sensor mounted to the housing receives acoustic signals propagating in the measurement chamber, and an acoustic transmitter mounted to the housing creates acoustic signals within the measurement chamber. An acoustic measurement system includes at least two such transceivers attached tomore » a turbine engine combustor wall and connected to a controller.« less
Boiler using combustible fluid
Baumgartner, H.; Meier, J.G.
1974-07-03
A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.
Development and test of combustion chamber for Stirling engine heated by natural gas
NASA Astrophysics Data System (ADS)
Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu
2014-04-01
The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.
Particle dispersing system and method for testing semiconductor manufacturing equipment
Chandrachood, Madhavi; Ghanayem, Steve G.; Cantwell, Nancy; Rader, Daniel J.; Geller, Anthony S.
1998-01-01
The system and method prepare a gas stream comprising particles at a known concentration using a particle disperser for moving particles from a reservoir of particles into a stream of flowing carrier gas. The electrostatic charges on the particles entrained in the carrier gas are then neutralized or otherwise altered, and the resulting particle-laden gas stream is then diluted to provide an acceptable particle concentration. The diluted gas stream is then split into a calibration stream and the desired output stream. The particles in the calibration stream are detected to provide an indication of the actual size distribution and concentration of particles in the output stream that is supplied to a process chamber being analyzed. Particles flowing out of the process chamber within a vacuum pumping system are detected, and the output particle size distribution and concentration are compared with the particle size distribution and concentration of the calibration stream in order to determine the particle transport characteristics of a process chamber, or to determine the number of particles lodged in the process chamber as a function of manufacturing process parameters such as pressure, flowrate, temperature, process chamber geometry, particle size, particle charge, and gas composition.
A Technique for Murine Irradiation in a Controlled Gas Environment
Walb, M. C.; Moore, J. E.; Attia, A.; Wheeler, K. T.; Miller, M. S.; Munley, M. T.
2013-01-01
NASA’s extra-vehicular activities (EVAs) involve exposure to high energy photons while breathing 100% oxygen. Using previously verified mouse models, our laboratory is studying whether low dose irradiation under these hyperoxic conditions could lead to an increase in carcinogenic potential. To simulate the environment astronauts encounter during an EVA, enclosed chambers were constructed that allowed for mouse movement, controlled gas conditions, and uniform radiation dose delivery. Custom-built gas chambers with input/output gas valves and dividers that allowed for uniform gas flow were used to keep 6 unanesthetized mice separated while they were irradiated. The chambers were supplied with 100% oxygen or air using ball valves linked together with T-splitters. A calibrated ion chamber was used to verify the radiation dose distribution across an entire chamber. Mice were placed in the gas environments for 0.5 h, irradiated with a 10 or 18 MV photon beam from a medical linear accelerator, and left in their gas environment for 2 h post-irradiation. We irradiated 200 mice (5 different doses between 0–1000 mGy) under normoxic or 100% oxygen conditions. For the next step of this research, these mice will be euthanized 9 months post-irradiation, and lung tumors will be counted and sized to determine if hyperoxia increases the carcinogenic effect for this model. PMID:22846321
Kreutzer, Joose; Ylä-Outinen, Laura; Mäki, Antti-Juhana; Ristola, Mervi; Narkilahti, Susanna; Kallio, Pasi
2017-03-15
Typically, live cell analyses are performed outside an incubator in an ambient air, where the lack of sufficient CO 2 supply results in a fast change of pH and the high evaporation causes concentration drifts in the culture medium. That limits the experiment time for tens of minutes. In many applications, e.g. in neurotoxicity studies, a prolonged measurement of extracellular activity is, however, essential. We demonstrate a simple cell culture chamber that enables stable culture conditions during prolonged extracellular recordings on a microelectrode array (MEA) outside an incubator. The proposed chamber consists of a gas permeable silicone structure that enables gas transfer into the chamber. We show that the culture chamber supports the growth of the human embryonic stem cell (hESC)-derived neurons both inside and outside an incubator. The structure provides very low evaporation, stable pH and osmolarity, and maintains strong signaling of hESC-derived neuronal networks over three-day MEA experiments. Existing systems are typically complex including continuous perfusion of medium or relatively large amount of gas to supply. The proposed chamber requires only a supply of very low flow rate (1.5ml/min) of non-humidified 5% CO 2 gas. Utilizing dry gas supply makes the proposed chamber simple to use. Using the proposed culture structure on top of MEA, we can maintain hESC-derived neural networks over three days outside an incubator. Technically, the structure requires very low flow rate of dry gas supporting, however, low evaporation and maintaining the pH of the culture. Copyright © 2017 Elsevier B.V. All rights reserved.
Foster, J.S. Jr.
1958-03-11
This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.
Maurino, Vincenzo; Allan, Bruce D S; Stevens, Julian D; Tuft, Stephen J
2002-02-01
To describe three cases of fixed dilated pupil and presumed iris ischemia (Urrets-Zavalia syndrome) after anterior chamber air/gas injection after deep lamellar keratoplasty for keratoconus. Interventional case series. Three eyes of three patients with keratoconus underwent deep lamellar keratoplasty and intraoperative or postoperative injection of air/gas in the anterior chamber to appose the host-donor lamellar graft interface. Urrets-Zavalia syndrome was diagnosed on clinical grounds in three cases and was associated with the Descemet membrane microperforation intraoperatively and introduction of air/gas into the anterior chamber intraoperatively or postoperatively. A fixed dilated pupil is an uncommon complication of penetrating keratoplasty for keratoconus that can also develop after deep lamellar keratoplasty. Leaving an air or gas bubble in the anterior chamber of a phakic eye after deep lamellar keratoplasty is a risk factor and should therefore be avoided.
Earth storable bimodal engine, phase 1
NASA Technical Reports Server (NTRS)
1973-01-01
An in-depth study of an Earth Storable Bimodal (ESB) Engine using earth storable propellants N2O/N2H4 and operating in either a monopropellant or bipropellant mode was conducted. Detailed studies were completed for both a hot-gas, regeneratively cooled thrust chamber and a ducted hot-gas, film cooled thrust chamber. Hydrazine decomposition products were used for cooling in either configuration. The various arrangements and configurations of hydrazine reactors, secondary injectors, chambers and gimbal methods were considered. The two basic materials selected for the major components were columbium alloys and L-605. The secondary injector types considered were previously demonstrated by JPL and consisted of a liquid-on-gas triplet, a liquid-on-gas doublet, and a liquid-on-gas coaxial injector. Various design tradeoffs were made with different reactor types located at: the secondary injector station, the thrust chamber throat, and the nozzle/extension interface. Associated thermal, structural, and mass analyses were completed.
Evaluation of Gas-filled Ionization Chamber Method for Radon Measurement at Two Reference Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, Tetsuo; Tokonami, Shinji; Kobayashi, Yosuke
2008-08-07
For quality assurance, gas-filled ionization chamber method was tested at two reference facilities for radon calibration: EML (USA) and PTB (Germany). Consequently, the radon concentrations estimated by the ionization chamber method were in good agreement with the reference radon concentrations provided by EML as well as PTB.
30 CFR 77.303 - Hot gas inlet chamber dropout doors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 77.303 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND... employ a hot gas inlet chamber shall be equipped with drop-out doors at the bottom of the inlet chamber...
Analysis of flow field characteristics in IC equipment chamber based on orthogonal design
NASA Astrophysics Data System (ADS)
Liu, W. F.; Yang, Y. Y.; Wang, C. N.
2017-01-01
This paper aims to study the influence of the configuration of processing chamber as a part of IC equipment on flow field characteristics. Four parameters, including chamber height, chamber diameter, inlet mass flow rate and outlet area, are arranged using orthogonally design method to study their influence on flow distribution in the processing chamber with the commercial software-Fluent. The velocity, pressure and temperature distribution above the holder were analysed respectively. The velocity difference value of the gas flow above the holder is defined as the evaluation criteria to evaluate the uniformity of the gas flow. The quantitative relationship between key parameters and the uniformity of gas flow was found through analysis of experimental results. According to our study, the chamber height is the most significant factor, and then follows the outlet area, chamber diameter and inlet mass flow rate. This research can provide insights into the study and design of configuration of etcher, plasma enhanced chemical vapor deposition (PECVD) equipment, and other systems with similar configuration and processing condition.
Monte Carlo calculation of energy deposition in ionization chambers for tritium measurements
NASA Astrophysics Data System (ADS)
Zhilin, Chen; Shuming, Peng; Dan, Meng; Yuehong, He; Heyi, Wang
2014-10-01
Energy deposition in ionization chambers for tritium measurements has been theoretically studied using Monte Carlo code MCNP 5. The influence of many factors, including carrier gas, chamber size, wall materials and gas pressure, has been evaluated in the simulations. It is found that β rays emitted by tritium deposit much more energy into chambers flowing through with argon than with deuterium in them, as much as 2.7 times higher at pressure 100 Pa. As chamber size gets smaller, energy deposition decreases sharply. For an ionization chamber of 1 mL, β rays deposit less than 1% of their energy at pressure 100 Pa and only 84% even if gas pressure is as high as 100 kPa. It also indicates that gold plated ionization chamber results in the highest deposition ratio while aluminum one leads to the lowest. In addition, simulations were validated by comparison with experimental data. Results show that simulations agree well with experimental data.
Garrett, George A.; Shacter, John
1978-01-01
1. A gaseous diffusion system comprising a plurality of diffusers connected in cascade to form a series of stages, each of said diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof.
Reactor design for uniform chemical vapor deposition-grown films without substrate rotation
Wanlass, M.
1985-02-19
A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.
Reactor design for uniform chemical vapor deposition-grown films without substrate rotation
Wanlass, Mark
1987-01-01
A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.
NASA Technical Reports Server (NTRS)
Koepler, Jack L. (Inventor); Hill, Robert L. (Inventor)
1981-01-01
A tool to assist in the servicing of a shock absorber wherein the shock absorber is constructed of a pair of aligned gas and liquid filled chambers. Each of the chambers is separated by a movable separator member. Maximum efficiency of the shock absorber is achieved in the locating of a precise volume of gas within the gas chamber and a precise volume of liquid within the liquid chamber. The servicing tool of this invention employs a rod which is to connect with the separator and by observation of the position of the rod with respect to the gauge body, the location of the separator is ascertained even though it is not directly observable.
Abernathy, Bethel R.; Walters, Ronald R.
1986-01-01
The humidity of a gas within a closed system is maintained at constant level by providing a saturated salt solution within a lower chamber in communication with an upper chamber conjointly defined by upper and lower container sections in sealing contact with each other to establish a closed container. A partition wall separates the salt solution from the test region in the upper chamber. A tube extending through the partition plate allows humidified gas to pass from the lower to the upper chamber. A glass wool plug or membranous material within the tube prevents migration of salt into the test region.
Abernathy, B.R.; Walters, R.R.
1985-08-05
The humidity of a gas within a closed system is maintained at constant level by providing a saturated salt solution within a lower chamber in communication with an upper chamber conjointly defined by upper and lower container sections in sealing contact with each other to establish a closed container. A partition wall separates the salt solution from the test region in the upper chamber. A tube extending through the partition plate allows humidified gas to pass from the lower to the upper chamber. A glass wool plug or membranous material within the tube prevents migration of salt into the test region.
Process and system for producing high-density pellets from a gaseous medium
Foster, Christopher A.
1999-01-01
A process and system for producing pellets of high density carbon dioxide or other gases utilize a chamber containing a plurality of cell-like freezing compartments within which ice is to be formed. A gas desired to be frozen into ice is introduced into the chamber while the internal pressure of the chamber is maintained at a level which is below the equilibrium triple pressure of the gas. The temperature of the freezing compartments is lowered to a temperature which is below the equilibrium vapor pressure temperature of the gas at the chamber pressure so that the gas condenses into ice within the compartments. The temperature of the freezing compartments is thereafter raised so that the ice is thereby released from and falls out of the compartments as pellets for collection.
Characterization of Gas Transport Properties of Fractured Rocks By Borehole and Chamber Tests.
NASA Astrophysics Data System (ADS)
Shimo, M.; Shimaya, S.; Maejima, T.
2014-12-01
Gas transport characteristics of fractured rocks is a great concern to variety of engineering applications such as underground storage of LPG, nuclear waste disposal, CCS and gas flooding in the oil field. Besides absolute permeability, relative permeability and capillary pressure as a function of water saturation have direct influences to the results of two phase flow simulation. However, number of the reported gas flow tests for fractured rocks are limited, therefore, the applicability of the conventional two-phase flow functions used for porous media, such as Mualem-van Genuchten model, to prediction of the gas transport in the fractured rock mass are not well understood. The authors conducted the two types of in-situ tests, with different scales, a borehole gas-injection test and a chamber gas-injection test in fractured granitic rock. These tests were conducted in the Cretaceous granitic rocks at the Namikata underground LPG storage cavern construction site in Ehime Prefecture in Japan, preceding to the cavern scale gas-tightness test. A borehole injection test was conducted using vertical and sub-vertical boreholes drilled from the water injection tunnel nearly at the depth of the top of the cavern, EL-150m. A new type downhole gas injection equipment that is capable to create a small 'cavern' within a borehole was developed. After performing a series of preliminary tests to investigate the hydraulic conductivity and gas-tightness, i.e. threshold pressure, gas injection tests were conducted under different gas pressure. Fig.1 shows an example of the test results From a chamber test using a air pressurizing chamber with volume of approximately166m3, the gas-tightness was confirmed within the uncertainty of 22Pa under the storage pressure of 0.7MPa, however, significant air leakage occurred possibly through an open fracture intersecting the chamber just after cavern pressure exceeds the initial hydrostatic pressure at the ceiling level of the chamber. Anomalies were detected in the data of the pore pressure as well as AE monitoring around the chamber. Results from the above two tests were simulated using a multi-phase transport simulator, TOUGH2, developed at Lawrence Berkeley National Laboratory. Fig.2 shows the model and an example of the simulation.
Method for microwave plasma assisted supersonic gas jet deposition of thin films
Schmitt, III, Jerome J.; Halpern, Bret L.
1994-01-01
A thin film is formed on a substrate positioned in a vacuum chamber by use of a gas jet apparatus affixed to a vacuum chamber port and having an outer nozzle with an interior cavity into which carrier gas is fed, an inner nozzle located within the outer nozzle interior cavity into which reactant gas is introduced, a tip of the inner nozzle being recessed from the vacuum chamber port within the outer nozzle interior cavity, and a microwave discharge device configured about the apparatus for generating a discharge in the carrier gas and reactant gas only in a portion of the outer nozzle interior cavity extending from approximately the inner nozzle tip towards the vacuum chamber. A supersonic free jet of carrier gas transports vapor species generated in the microwave discharge to the surface of the substrate to form a thin film on the substrate. The substrate can be translated from the supersonic jet to a second supersonic jet in less time than needed to complete film formation so that the film is chemically composed of chemical reaction products of vapor species in the jets.
Apparatus and method for in-situ cleaning of resist outgassing windows
Klebanoff, Leonard E.; Haney, Steven J.
2001-01-01
An apparatus and method for in-situ cleaning of resist outgassing windows. The apparatus includes a chamber located in a structure, with the chamber having an outgassing window to be cleaned positioned in alignment with a slot in the chamber, whereby radiation energy passes through the window, the chamber, and the slot onto a resist-coated wafer mounted in the structure. The chamber is connected to a gas supply and the structure is connected to a vacuum pump. Within the chamber are two cylindrical sector electrodes and a filament is electrically connected to one sector electrode and a power supply. In a first cleaning method the sector electrodes are maintained at the same voltage, the filament is unheated, the chamber is filled with argon (Ar) gas under pressure, and the window is maintained at a zero voltage, whereby Ar ions are accelerated onto the window surface, sputtering away carbon deposits that build up as a result of resist outgassing. A second cleaning method is similar except oxygen gas (O.sub.2) is admitted to the chamber instead of Ar. These two methods can be carried out during lithographic operation. A third method, carried out during a maintenance period, involves admitting CO.sub.2 into the chamber, heating the filament to a point of thermionic emission, the sector electrodes are at different voltages, excited CO.sub.2 gas molecules are created which impact the carbon contamination on the window, and gasify it, producing CO gaseous products that are pumped away.
NASA Astrophysics Data System (ADS)
Aleksandrov, Y. B.; Mingazov, B. G.
2017-09-01
The paper shows a method of modeling and optimization of processes in combustion chambers of gas turbine engines using a computer program developed by a team at the Department of Jet Engines and Power Plants (DJEPP) of Technical University named after A N Tupolev KNRTU-KAI.
NASA Astrophysics Data System (ADS)
Leung, S. Y. Y.; Nikezic, D.; Leung, J. K. C.; Yu, K. N.
2007-10-01
Solid-state nuclear track detectors (SSNTDs) in diffusion chambers have been routinely used for long-term measurements of radon gas concentrations. In usual practice, a filter is added across the top of the diffusion chamber to stop the progeny from entering. Thoron can also be deterred from entering the diffusion chamber by using a polyethylene (PE) membrane. However, the thickness of the PE membrane is rarely specified in the literature. In this paper, we will present our experimental results for a radon exposure that the number of alpha-particle tracks registered by the LR 115 SSNTD in a Karlsruhe diffusion chamber covered with one layer of PE membrane is actually enhanced. This is explained by enhanced deposition of radon progeny on the outside surface of the PE membrane and the insufficient thickness of the PE membrane to stop the alpha particles emitted from these deposited radon progeny to reach the SSNTD. We will present the PE thickness which can stop the alpha particles emitted from the deposited radon or thoron progeny. For the "twin diffusion chambers method", one of the diffusion chambers is covered with PE membranes. The optimal number of thickness of PE membranes will be determined, which allows the largest amount of radon gas to diffuse into the diffusion chamber while at the same time screening out the largest amount of thoron gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovic, Svetozar; Upadhyay, Janardan; Vuskovic, Leposava
2017-12-26
A method for efficient plasma etching of surfaces inside three-dimensional structures can include positioning an inner electrode within the chamber cavity; evacuating the chamber cavity; adding a first inert gas to the chamber cavity; regulating the pressure in the chamber; generating a plasma sheath along the inner wall of the chamber cavity; adjusting a positive D.C. bias on the inner electrode to establish an effective plasma sheath voltage; adding a first electronegative gas to the chamber cavity; optionally readjusting the positive D.C. bias on the inner electrode reestablish the effective plasma sheath voltage at the chamber cavity; etching the innermore » wall of the chamber cavity; and polishing the inner wall to a desired surface roughness.« less
Ceramic membrane reactor with two reactant gases at different pressures
Balachandran, Uthamalingam; Mieville, Rodney L.
2001-01-01
The invention is a ceramic membrane reactor for syngas production having a reaction chamber, an inlet in the reactor for natural gas intake, a plurality of oxygen permeating ceramic slabs inside the reaction chamber with each slab having a plurality of passages paralleling the gas flow for transporting air through the reaction chamber, a manifold affixed to one end of the reaction chamber for intake of air connected to the slabs, a second manifold affixed to the reactor for removing the oxygen depleted air, and an outlet in the reaction chamber for removing syngas.
Multiple volume compressor for hot gas engine
Stotts, Robert E.
1986-01-01
A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.
Method and apparatus for producing thermal vapor stream
Cradeur, Robert R.; Sperry, John S.; Krajicek, Richard W.
1979-01-01
Method and apparatus for producing a thermal vapor stream for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, including a pressure vessel containing a high pressure combustion chamber for producing a heating gas for introduction into a heating gas injector. The heating gas injector is partly immersed in a steam generating section of the pressure vessel such that the heating gas is passed through the steam generating section to produce steam and combustion products which are directed between the pressure vessel and the combustion chamber for simultaneously cooling of the combustion chamber by further heating of the steam and combustion gases.
Combustor for fine particulate coal
Carlson, L.W.
1988-01-26
A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.
Combustor for fine particulate coal
Carlson, Larry W.
1988-01-01
A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.
Combustor for fine particulate coal
Carlson, L.W.
1988-11-08
A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.
NASA Technical Reports Server (NTRS)
Dyatlov, I. N.
1983-01-01
The effectiveness of propellant atomization with and without air injection in the combustion chamber nozzle of a gas turbine engine is studied. Test show that the startup and burning performance of these combustion chambers can be improved by using an injection during the mechanical propellant atomization process. It is shown that the operational range of combustion chambers can be extended to poorer propellant mixtures by combined air injection mechanical atomization of the propellant.
Multi-channel gas-delivery system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozenzon, Yan; Trujillo, Robert T.; Beese, Steven C.
One embodiment of the present invention provides a gas-delivery system for delivering reaction gas to a reactor chamber. The gas-delivery system includes a main gas-inlet port for receiving reaction gases and a gas-delivery plate that includes a plurality of gas channels. A gas channel includes a plurality of gas holes for allowing the reaction gases to enter the reactor chamber from the gas channel. The gas-delivery system further includes a plurality of sub-gas lines coupling together the main gas-inlet port and the gas-delivery plate, and a respective sub-gas line is configured to deliver a portion of the received reaction gasesmore » to a corresponding gas channel.« less
Sniffle: a step forward to measure in situ CO 2 fluxes with the floating chamber technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribas-Ribas, Mariana; Kilcher, Levi F.; Wurl, Oliver
Understanding how the ocean absorbs anthropogenic CO 2 is critical for predicting climate change. We designed Sniffle, a new autonomous drifting buoy with a floating chamber, to measure gas transfer velocities and air-sea CO 2 fluxes with high spatiotemporal resolution. Currently, insufficient in situ data exist to verify gas transfer parameterizations at low wind speeds (<4 m s -1), which leads to underestimation of gas transfer velocities and, therefore, of air-sea CO 2 fluxes. The Sniffle is equipped with a sensor to consecutively measure aqueous and atmospheric pCO 2 and to monitor increases or decreases of CO 2 inside themore » chamber. During autonomous operation, a complete cycle lasts 40 minutes, with a new cycle initiated after flushing the chamber. The Sniffle can be deployed for up to 15 hours at wind speeds up to 10 m s -1. Floating chambers often overestimate fluxes because they create additional turbulence at the water surface. We correct fluxes by measuring turbulence with two acoustic Doppler velocimeters, one positioned directly under the floating chamber and the other positioned sideways, to compare artificial disturbance caused by the chamber and natural turbulence. The first results of deployment in the North Sea during the summer of 2016 demonstrate that the new drifting buoy is a useful tool that can improve our understanding of gas transfer velocity with in situ measurements. At low and moderate wind speeds and different conditions, the results obtained indicate that the observed tidal basin was acting as a source of atmospheric CO 2. Wind speed and turbulence alone could not fully explain the variance in gas transfer velocity. We suggest therefore, that other factors like surfactants, rain or tidal current will have an impact on gas transfer parameterizations.« less
Sniffle: a step forward to measure in situ CO 2 fluxes with the floating chamber technique
Ribas-Ribas, Mariana; Kilcher, Levi F.; Wurl, Oliver
2018-01-09
Understanding how the ocean absorbs anthropogenic CO 2 is critical for predicting climate change. We designed Sniffle, a new autonomous drifting buoy with a floating chamber, to measure gas transfer velocities and air-sea CO 2 fluxes with high spatiotemporal resolution. Currently, insufficient in situ data exist to verify gas transfer parameterizations at low wind speeds (<4 m s -1), which leads to underestimation of gas transfer velocities and, therefore, of air-sea CO 2 fluxes. The Sniffle is equipped with a sensor to consecutively measure aqueous and atmospheric pCO 2 and to monitor increases or decreases of CO 2 inside themore » chamber. During autonomous operation, a complete cycle lasts 40 minutes, with a new cycle initiated after flushing the chamber. The Sniffle can be deployed for up to 15 hours at wind speeds up to 10 m s -1. Floating chambers often overestimate fluxes because they create additional turbulence at the water surface. We correct fluxes by measuring turbulence with two acoustic Doppler velocimeters, one positioned directly under the floating chamber and the other positioned sideways, to compare artificial disturbance caused by the chamber and natural turbulence. The first results of deployment in the North Sea during the summer of 2016 demonstrate that the new drifting buoy is a useful tool that can improve our understanding of gas transfer velocity with in situ measurements. At low and moderate wind speeds and different conditions, the results obtained indicate that the observed tidal basin was acting as a source of atmospheric CO 2. Wind speed and turbulence alone could not fully explain the variance in gas transfer velocity. We suggest therefore, that other factors like surfactants, rain or tidal current will have an impact on gas transfer parameterizations.« less
NASA Technical Reports Server (NTRS)
Kemp, N. H.; Krech, R. H.
1980-01-01
The development of computer codes for the thrust chamber of a rocket of which the propellant gas is heated by a CW laser beam was investigated. The following results are presented: (1) simplified models of laser heated thrusters for approximate parametric studies and performance mapping; (3) computer programs for thrust chamber design; and (3) shock tube experiment to measure absorption coefficients. Two thrust chamber design programs are outlined: (1) for seeded hydrogen, with both low temperature and high temperature seeds, which absorbs the laser radiation continuously, starting at the inlet gas temperature; and (2) for hydrogen seeded with cesium, in which a laser supported combustion wave stands near the gas inlet, and heats the gas up to a temperature at which the gas can absorb the laser energy.
Photoignition Torch Applied to Cryogenic H2/O2 Coaxial Jet
2016-12-06
suitable for certain thrusters and liquid rocket engines. This ignition system is scalable for applications in different combustion chambers such as gas ...turbines, gas generators, liquid rocket engines, and multi grain solid rocket motors. photoignition, fuel spray ignition, high pressure ignition...thrusters and liquid rocket engines. This ignition system is scalable for applications in different combustion chambers such as gas turbines, gas
Power plant emissions reduction
Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy
2015-10-20
A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.
Degradation in the efficiency of glass Resistive Plate Chambers operated without external gas supply
NASA Astrophysics Data System (ADS)
Baesso, P.; Cussans, D.; Thomay, C.; Velthuis, J.; Burns, J.; Quillin, S.; Stapleton, M.; Steer, C.
2015-06-01
Resistive plate chambers (RPC) are particle detectors commonly used by the high energy physics community. Their normal operation requires a constant flow of gas mixture to prevent self-poisoning which reduces the chamber's capability to detect particles. We studied how quickly the efficiency of two RPCs drops when operated in sealed mode, i.e. without refreshing the gas mixture. The test aim is to determine how RPCs could be used as particle detectors in non-laboratory applications, such as those exploiting muon tomography for geological imaging or homeland security. The two sealed RPCs were operated in proportional mode for a period of more than three months, and their efficiencies were recorded continuously and analysed in 8-hours intervals. The results show that the efficiency drops on average by 0.79 ± 0.01 % every 24 hours of operation and returns close to the initial value after purging the old gas mixture and flushing the chambers with fresh gas.
Carbon deposition model for oxygen-hydrocarbon combustion, volume 1
NASA Technical Reports Server (NTRS)
Hernandez, R.; Ito, J. I.; Niiya, K. Y.
1987-01-01
Presented are details of the design, fabrication, and testing of subscale hardware used in the evaluation of carbon deposition characteristics of liquid oxygen and three hydrocarbon fuels for both main chamber and preburner/gas generator operating conditions. In main chamber conditions, the deposition of carbon on the combustion chamber wall was investigated at mixture ratios of 2.0 to 4.0 and at pressures of 1000 to 1500 psia. No carbon deposition on the chamber walls was detected at these main chamber mixture ratios. In preburner/gas generator operating conditions, the deposition of carbon on the turbine simulator tubes was evaluated at mixture ratios of 0.20 to 0.60 and at chamber pressures of 720 to 1650 psia. The results of the tests showed carbon deposition rate to be a strong function of mixture ratio and a weak function of chamber pressure. Further analyses evaluated the operational consequences of carbon deposition on preburner/gas generator performance. The report is in two volumes, of which this is Volume 1 covering the main body of the report plus Appendixes A through D.
Molenbroek, Edith C.; Mahan, Archie Harvin; Gallagher, Alan C.
2000-09-26
A method or producing hydrogenated amorphous silicon on a substrate, comprising the steps of: positioning the substrate in a deposition chamber at a distance of about 0.5 to 3.0 cm from a heatable filament in the deposition chamber; maintaining a pressure in said deposition chamber in the range of about 10 to 100 millitorr and pressure times substrate-filament spacing in the range of about 10 to 100 millitorr-cm, heating the filament to a temperature in the range of about 1,500 to 2,000.degree. C., and heating the substrate to a surface temperature in the range of about 280 to 475.degree. C.; and flowing silicohydride gas into the deposition chamber with said heated filament, decomposing said silicohydride gas into silicon and hydrogen atomic species and allowing products of gas reactions between said atomic species and the silicohydride gas to migrate to and deposit on said substrate while adjusting and maintaining said pressure times substrate-filament spacing in said deposition chamber at a value in said 10 to 100 millitorr range to produce statistically about 3 to 50 atomic collisions between the silicon and hydrogen atomic species migrating to said substrate and undecomposed molecules of the silane or other silicohydride gas in the deposition chamber.
Method for gas-metal arc deposition
Buhrmaster, C.L.; Clark, D.E.; Smartt, H.B.
1990-11-13
Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites are disclosed. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite. 1 fig.
Method for gas-metal arc deposition
Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.
1990-01-01
Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment wiht the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.
Apparatus for gas-metal arc deposition
Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.
1991-01-01
Apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspenion of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.
Method for microwave plasma assisted supersonic gas jet deposition of thin films
Schmitt, J.J. III; Halpern, B.L.
1994-10-18
A thin film is formed on a substrate positioned in a vacuum chamber by use of a gas jet apparatus affixed to a vacuum chamber port and having an outer nozzle with an interior cavity into which carrier gas is fed, an inner nozzle located within the outer nozzle interior cavity into which reactant gas is introduced, a tip of the inner nozzle being recessed from the vacuum chamber port within the outer nozzle interior cavity, and a microwave discharge device configured about the apparatus for generating a discharge in the carrier gas and reactant gas only in a portion of the outer nozzle interior cavity extending from approximately the inner nozzle tip towards the vacuum chamber. A supersonic free jet of carrier gas transports vapor species generated in the microwave discharge to the surface of the substrate to form a thin film on the substrate. The substrate can be translated from the supersonic jet to a second supersonic jet in less time than needed to complete film formation so that the film is chemically composed of chemical reaction products of vapor species in the jets. 5 figs.
Iridium-Coated Rhenium Combustion Chamber
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Tuffias, Robert H.; Rosenberg, Sanders D.
1994-01-01
Iridium-coated rhenium combustion chamber withstands operating temperatures up to 2,200 degrees C. Chamber designed to replace older silicide-coated combustion chamber in small rocket engine. Modified versions of newer chamber could be designed for use on Earth in gas turbines, ramjets, and scramjets.
Capacitively coupled RF diamond-like-carbon reactor
Devlin, David James; Coates, Don Mayo; Archuleta, Thomas Arthur; Barbero, Robert Steven
2000-01-01
A process of coating a non-conductive fiber with diamond-like carbon, including passing a non-conductive fiber between a pair of parallel metal grids within a reaction chamber, introducing a hydrocarbon gas into the reaction chamber, forming a plasma within the reaction chamber for a sufficient period of time whereby diamond-like carbon is formed upon the non-conductive fiber, is provided together with a reactor chamber for deposition of diamond-like carbon upon a non-conductive fiber, including a vacuum chamber, a cathode assembly including a pair of electrically isolated opposingly parallel metal grids spaced apart at a distance of less than about 1 centimeter, an anode, a means of introducing a hydrocarbon gas into said vacuum chamber, and a means of generating a plasma within said vacuum chamber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kardas, A.
1987-10-01
A kerosene heater equipped with a dual-chamber combustor was procured, tested, and technically evaluated to determine its applicability to natural gas combustion. The kerosene heater was found to have nitric oxide (NO), nitrogen dioxide (NO/sub 2/), and carbon monoxide (CO) emissions of 0.0)2, 0.006 and 0.02 lb/10/sup 6/ Btu input, respectively, much lower than those of blue-flame natural-gas combustors. A basic study was conducted to understand the interaction between kerosene combustion and the surrounding metal sleeves forming the dual chamber. Combustion characteristics of kerosene and natural gas were compared to formulate potential designs of low-emitting natural gas combustors. Three conceptsmore » were developed for low-emitting burners: an atmospheric burner to replace the kerosene wick in the dual chamber; the same concept with a powered vent; and a two-stage system equipped with a powered vent.« less
Effects of outgassing of loader chamber walls on hydriding of thin films for commercial applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Provo, James L., E-mail: jlprovo@verizon.net
2014-07-01
An important aspect of understanding industrial processing is to know the characteristics of the materials used in such processes. A study was performed to determine the effects of hydriding chamber material on the degree of hydriding for the commercial production of thin film hydride targets for various research universities, commercial companies, and government national laboratories. The goal was to increase the degree of hydriding of various thin film hydrides and to study the vacuum environment during air-exposure hydriding. For this purpose, dynamic residual gas analysis during deuterium gas hydride processing was utilized with erbium thin films, employing a special set-upmore » for direct dynamic hydride gas sampling during processing at elevated temperature and full loading gas pressure. Complete process data for (1) a copper–(1.83 wt. %)beryllium wet hydrogen fired passivated (600 °C–1 h) externally heated pipe hydriding chamber are reported. Dynamic residual gas analysis comparisons during hydriding are presented for hydriding chambers made from (2) alumina (99.8 wt. %), (3) copper (with an interior aluminum coating ∼10 k Å thick, and (4) for a stainless-steel air-fired passivated (900 °C–1 h) chamber. Dynamic data with deuterium gas in the chamber at the hydriding temperature (450 °C) showed the presence and growth of water vapor (D{sub 2}O) and related mixed ion species(H{sub 2}O{sup +}, HDO{sup +}, D{sub 2}O{sup +}, and OD{sup +}) from hydrogen isotope exchange reactions during the 1 h process time. Peaks at mass-to-charge ratios (i.e., m/e) of 12(C{sup +}), 16(CD{sub 2}{sup +}), 17(CHD{sub 2}{sup +}), and 18(CD{sub 3}{sup +}, OD{sup +}) increased for approximately the first half hour of a 1 h hydriding process and then approach steady state. Mass-to-charge peaks at 19(HDO{sup +}) and 20(D{sub 2}O{sup +}) continue to increase throughout the process cycle. Using the m/e = 20 (D{sub 2}O{sup +}) peak intensity from chamber (1)–Cu(1.83 wt. %)Be as a standard, the peak intensity from chamber (4)—stainless-steel (air-fired) was 7.1× higher, indicating that the surface of stainless-steel had a larger concentration of reactive oxygen and/or water than hydrogen. The (D{sub 2}O{sup +}) peak intensity from chamber (3)—Cu (interior Al coating) was 1.55× larger and chamber (2)—alumina(99.8%) was 1.33× higher than Cu(1.83 wt. %)Be. Thus copper–(1.83 wt. %)beryllium was the best hydriding chamber material studied followed closely by the alumina (99.8 wt. %) chamber. Gas take-up by Er occluder targets processed in Cu(1.83 wt. %)Be hydriding chambers (i.e., gas/metal atomic ratios) correlate with the dynamic RGA data.« less
Method and system to measure temperature of gases using coherent anti-stokes doppler spectroscopy
Rhodes, Mark
2013-12-17
A method of measuring a temperature of a noble gas in a chamber includes providing the noble gas in the chamber. The noble gas is characterized by a pressure and a temperature. The method also includes directing a first laser beam into the chamber and directing a second laser beam into the chamber. The first laser beam is characterized by a first frequency and the second laser beam is characterized by a second frequency. The method further includes converting at least a portion of the first laser beam and the second laser beam into a coherent anti-Stokes beam, measuring a Doppler broadening of the coherent anti-Stokes beam, and computing the temperature using the Doppler broadening.
Yudow, B.D.
1986-02-24
A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.
Yudow, Bernard D.
1987-01-01
A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.
Sales, Christopher S; Fernandez, Ana Alzaga; Anwar, Zane
2018-07-01
To present a novel technique for enhancing the surgeon's control over the volume of air or gas that is "burped" from the anterior chamber during final bubble and intraocular pressure (IOP) titration in Descemet membrane endothelial keratoplasty. After ascertaining that the intracameral bubble is either too large and/or has rendered IOP too high, a bead of ophthalmic viscoelastic is applied to the ocular surface over a paracentesis incision, which is then depressed in the usual fashion to burp gas from the anterior chamber. The weight and viscosity of the viscoelastic create a tamponade that slows the egress of gas from the anterior chamber, thereby making it more controllable. If the bubble size or IOP needs to be reduced at the conclusion of the Descemet membrane endothelial keratoplasty procedure, application of ophthalmic viscoelastic over the paracentesis can enhance the surgeon's control over the volume of gas burped from the anterior chamber, thereby reducing the tendency to swing between a bubble that is too large or too small.
Performance of a transpiration-regenerative cooled rocket thrust chamber
NASA Technical Reports Server (NTRS)
Valler, H. W.
1979-01-01
The analysis, design, fabrication, and testing of a liquid rocket engine thrust chamber which is gas transpiration cooled in the high heat flux convergent portion of the chamber and water jacket cooled (simulated regenerative) in the barrel and divergent sections of the chamber are described. The engine burns LOX-hydrogen propellants at a chamber pressure of 600 psia. Various transpiration coolant flow rates were tested with resultant local hot gas wall temperatures in the 800 F to 1400 F range. The feasibility of transpiration cooling with hydrogen and helium, and the use of photo-etched copper platelets for heat transfer and coolant metering was successfully demonstrated.
Diamond film growth from fullerene precursors
Gruen, Dieter M.; Liu, Shengzhong; Krauss, Alan R.; Pan, Xianzheng
1997-01-01
A method and system for manufacturing diamond film. The method involves forming a fullerene vapor, providing a noble gas stream and combining the gas with the fullerene vapor, passing the combined fullerene vapor and noble gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the fullerene and deposition of a diamond film on a substrate.
Liquid rocket engine self-cooled combustion chambers
NASA Technical Reports Server (NTRS)
1977-01-01
Self-cooled combustion chambers are chambers in which the chamber wall temperature is controlled by methods other than fluid flow within the chamber wall supplied from an external source. In such chambers, adiabatic wall temperature may be controlled by use of upstream fluid components such as the injector or a film-coolant ring, or by internal flow of self-contained materials; e.g. pyrolysis gas flow in charring ablators, and the flow of infiltrated liquid metals in porous matrices. Five types of self-cooled chambers are considered in this monograph. The name identifying the chamber is indicative of the method (mechanism) by which the chamber is cooled, as follows: ablative; radiation cooled; internally regenerative (Interegen); heat sink; adiabatic wall. Except for the Interegen and heat sink concepts, each chamber type is discussed separately. A separate and final section of the monograph deals with heat transfer to the chamber wall and treats Stanton number evaluation, film cooling, and film-coolant injection techniques, since these subjects are common to all chamber types. Techniques for analysis of gas film cooling and liquid film cooling are presented.
Hermetic Seal Leak Detection Apparatus with Variable Size Test Chamber
NASA Technical Reports Server (NTRS)
Kelley, Anthony R. (Inventor)
2015-01-01
The present invention is a versatile hermetic seal leak detection apparatus for testing hermetically sealed containers and devices for leaks without the need to create a custom or specially manufactured testing chamber conforming to the dimensions of the specific object under test. The size of the testing chamber may be mechanically adjusted by the novel use of bellows to reduce and optimize the amount of gas space in a test chamber which surrounds the hermetically sealed object under test. The present invention allows the size of the test chamber to be selectively adjusted during testing to provide an optimum test chamber gas space. The present invention may be further adapted to isolate and test specific portions of the hermetically sealed object under test for leaks.
Method and apparatus for noble gas atom detection with isotopic selectivity
Hurst, G. Samuel; Payne, Marvin G.; Chen, Chung-Hsuan; Parks, James E.
1984-01-01
Apparatus and methods of operation are described for determining, with isotopic selectivity, the number of noble gas atoms in a sample. The analysis is conducted within an evacuated chamber which can be isolated by a valve from a vacuum pumping system capable of producing a pressure of 10.sup.-8 Torr. Provision is made to pass pulses of laser beams through the chamber, these pulses having wavelengths appropriate for the resonance ionization of atoms of the noble gas under analysis. A mass filter within the chamber selects ions of a specific isotope of the noble gas, and means are provided to accelerate these selected ions sufficiently for implantation into a target. Specific types of targets are discussed. An electron measuring device produces a signal relatable to the number of ions implanted into the target and thus to the number of atoms of the selected isotope of the noble gas removed from the gas sample. The measurement can be continued until a substantial fraction, or all, of the atoms in the sample have been counted. Furthermore, additional embodiments of the apparatus are described for bunching the atoms of a noble gas for more rapid analysis, and for changing the target for repetitive cycling of the gas in the chamber. The number of repetitions of the cyclic steps depend upon the concentration of the isotope of interest, the separative efficiency of the mass filter, etc. The cycles are continued until a desired selectivity is achieved. Also described are components and a method of operation for a pre-enrichment operation for use when an introduction of a total sample would elevate the pressure within the chamber to levels in excess of those for operation of the mass filter, specifically a quadrupole mass filter. Specific examples of three noble gas isotope analyses are described.
NASA Astrophysics Data System (ADS)
Lorke, A.; Bodmer, P.; Noss, C.; Alshboul, Z.; Koschorreck, M.; Somlai-Haase, C.; Bastviken, D.; Flury, S.; McGinnis, D. F.; Maeck, A.; Müller, D.; Premke, K.
2015-12-01
Stream networks have recently been discovered to be major but poorly constrained natural greenhouse gas (GHG) sources. A fundamental problem is that several measurement approaches have been used without cross-comparisons. Flux chambers represent a potentially powerful methodological approach if robust and reliable ways to use chambers on running water can be defined. Here we compare the use of anchored and freely drifting chambers on various streams with different flow velocities. The study clearly shows that (1) anchored chambers enhance turbulence under the chambers and thus elevate fluxes, (2) drifting chambers have a very small impact on the water turbulence under the chamber and thus generate more reliable fluxes, (3) the bias of the anchored chambers greatly depends on chamber design and sampling conditions, and (4) there is a promising method to reduce the bias from anchored chambers by using a flexible plastic foil collar to seal the chambers to the water surface, rather than having rigid chamber walls penetrating into the water. Altogether, these results provide novel guidance on how to apply flux chambers in running water, which will have important consequences for measurements to constrain the global GHG balances.
Polyport atmospheric gas sampler
Guggenheim, S. Frederic
1995-01-01
An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.
NASA Astrophysics Data System (ADS)
Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki
2015-06-01
We investigate the effects of relative humidity on the sterilization process using a plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals were separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas is nitrogen mixed with 0.1% oxygen, and the relative humidity in the source gas is controlled by changing the mixing ratio of water vapor. The relative humidity near the sample in the reactor chamber is controlled by changing the sample temperature. As a result, the relative humidity near the sample should be kept in the range from 60 to 90% for the sterilization of Geobacillus stearothermophilus spores. When the relative humidity in the source gas increases from 30 to 90%, the sterilization effect is enhanced by the same degree.
Smith, Jay E.
1984-01-01
The present invention is directed to a detection device comprising: (1) an entrance chamber, (2) a central chamber, and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.
Smith, J.E.
1981-02-27
The present invention is directed to a detection device comprising: (1) an entrance chamber; (2) a central chamber; and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.
Verma, Vikrant; Li, Tingwen; De Wilde, Juray
2017-05-26
Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Vikrant; Li, Tingwen; De Wilde, Juray
Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less
Diamond film growth argon-carbon plasmas
Gruen, Dieter M.; Krauss, Alan R.; Liu, Shengzhong; Pan, Xianzheng; Zuiker, Christopher D.
1998-01-01
A method and system for manufacturing diamond film. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrogen and hydrocarbon and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous and deposition of a diamond film on a substrate.
Diamond film growth from fullerene precursors
Gruen, D.M.; Liu, S.; Krauss, A.R.; Pan, X.
1997-04-15
A method and system are disclosed for manufacturing diamond film. The method involves forming a fullerene vapor, providing a noble gas stream and combining the gas with the fullerene vapor, passing the combined fullerene vapor and noble gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the fullerene and deposition of a diamond film on a substrate. 10 figs.
A two-cell chamber for measuring gas exchange in tree seedlings
Keith F. Jensen; Frederick W. Bender; Roberta G. Masters
1973-01-01
A two-celled chamber for measuring gas exchange in tree seedlings is described. Temperature is controlled within ± 0.5º C by means of a copper coil. The two cells are independent of one another, and one cell can be used as a preconditioning cell while gas exchange measurements are being made in the second cell.
Cooled spool piston compressor
NASA Technical Reports Server (NTRS)
Morris, Brian G. (Inventor)
1993-01-01
A hydraulically powered gas compressor receives low pressure gas and outputs a high pressure gas. The housing of the compressor defines a cylinder with a center chamber having a cross-sectional area less than the cross-sectional area of a left end chamber and a right end chamber, and a spool-type piston assembly is movable within the cylinder and includes a left end closure, a right end closure, and a center body that are in sealing engagement with the respective cylinder walls as the piston reciprocates. First and second annual compression chambers are provided between the piston enclosures and center housing portion of the compressor, thereby minimizing the spacing between the core gas and a cooled surface of the compressor. Restricted flow passageways are provided in the piston closure members and a path is provided in the central body of the piston assembly, such that hydraulic fluid flows through the piston assembly to cool the piston assembly during its operation. The compressor of the present invention may be easily adapted for a particular application, and is capable of generating high gas pressures while maintaining both the compressed gas and the compressor components within acceptable temperature limits.
Apparatus for incinerating hazardous waste
Chang, Robert C. W.
1994-01-01
An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.
Installation for burning-out scrap metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutschmidt, P.
1982-08-24
Disclosed is an installation for burning-out scrap metal goods for the purpose of reclaiming scrap metal, comprising at least one furnace wagon, which is capable of being loaded with the scrap metal goods to be burned out; at least one burning-out chamber into which the furnace wagon is movable for burning-out the scrap metal goods to produce scrap steel; means for heating the burning-out chamber to a temperature of at least about 600* C.; at least one afterburning chamber communicating with the burning-out chamber for afterburning flue gases produced in the burning-out chamber at a temperature from about 1100* tomore » 1200* C.; a waste gas purifying plant communicating with the afterburning chamber for eliminating the flue gas impurities and for the scrubbing of the flue-gases originating from the afterburning chamber; and at least one cooling chamber arranged adjacent to and in selective communication with the burning-out chamber for cooling the burned-out material.« less
Apparatus for incinerating hazardous waste
Chang, R.C.W.
1994-12-20
An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.
NASA Astrophysics Data System (ADS)
Lorke, A.; Bodmer, P.; Noss, C.; Alshboul, Z.; Koschorreck, M.; Somlai, C.; Bastviken, D.; Flury, S.; McGinnis, D. F.; Maeck, A.; Müller, D.; Premke, K.
2015-09-01
Stream networks were recently discovered as major but poorly constrained natural greenhouse gas (GHG) sources. A fundamental problem is that several measurement approaches have been used without cross comparisons. Flux chambers represent a potentially powerful methodological approach if robust and reliable ways to use chambers on running water can be defined. Here we compare the use of anchored and freely drifting chambers on various streams having different flow velocities. The study clearly shows that (1) drifting chambers have a very small impact on the water turbulence under the chamber and thus generate more reliable fluxes, (2) anchored chambers enhance turbulence under the chambers and thus elevate fluxes, (3) the bias of the anchored chambers greatly depends on chamber design and sampling conditions, and (4) there is a promising method to reduce the bias from anchored chambers by using a flexible plastic foil seal to the water surface rather than having rigid chamber walls penetrating into the water. Altogether, these results provide novel guidance on how to apply flux chambers in running water, which will have important consequences for measurements to constrain the global GHG balances.
NASA Astrophysics Data System (ADS)
Reba, M. L.; Fong, B.; Adviento-Borbe, A.; Runkle, B.
2016-12-01
The subtropical humid mid-south region produces nearly 75% of US rice. Rice cultivation contributes higher amounts of GHG emissions (CO2, CH4, and N2O) due to flooded field conditions. Accurate measurements of gas fluxes are important to regional and global climate models. A comparison between eddy covariance and static vented flux chamber measurement techniques is presented. These measurements were collected in two NE Arkansas commercial rice fields in 2015 and 2016 production seasons under two irrigation treatments: Alternate Wetting and Drying (AWD) and continuous flood (CF) irrigation. AWD can reduce GHG emissions and water use compared to CF by introducing aerobic conditions that reduce methanogen activity and drained conditions decrease water loss due to seepage or evapotranspiration. N2O was measured only with vented chambers, while CO2 and CH4 were measured with both techniques. In the vented flux chamber technique, headspace gas sampling occurred at least once a week every 20 minutes for one hour of chamber closure. Gas Chromatograph equipped with ECD and FID were used to analyze gas concentrations. Eddy covariance used high frequency measurements wind and concentration measurements to determine fluxes. Chamber measurements were found to be more sensitive during seedling and early vegetative growth while eddy covariance was more sensitive after canopy closure during mid-vegetative to reproductive growth. Unlike eddy covariance which measured net CO2 exchange, flux chamber method measured only CO2 ecosystem respiration because flux measurements occurred using an opaque chamber material.
Rapid starting methanol reactor system
Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.
1984-01-01
The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.
Ionization-chamber smoke detector system
Roe, Robert F.
1976-10-19
This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system is designed to reduce false alarms caused by fluctuations in ambient temperature. Means are provided for periodically firing the gas discharge triode and each time recording the triggering voltage required. A computer compares each triggering voltage with its predecessor. The computer is programmed to energize an alarm if the difference between the two compared voltages is a relatively large value indicative of particulates in the measuring chamber and to disregard smaller differences typically resulting from changes in ambient temperature.
Trace level detection of analytes using artificial olfactometry
NASA Technical Reports Server (NTRS)
Wong, Bernard (Inventor); Lewis, Nathan S. (Inventor); Severin, Erik J. (Inventor)
2001-01-01
The present invention provides a device for detecting the presence of an analyte, wherein said analyte is a microorganism marker gas. The device comprises a sample chamber having a fluid inlet port for the influx of the microorganism marker gas; a fluid concentrator in flow communication with the sample chamber, wherein the fluid concentrator has an absorbent material capable of absorbing the microorganism marker gas and thereafter releasing a concentrated microorganism marker gas; and an array of sensors in fluid communication with the concentrated microorganism marker gas. The sensor array detects and identifies the marker gas upon its release from fluid concentrate.
NASA Astrophysics Data System (ADS)
Filippov, Prokopy; Levin, Evgeny; Ryzhkov, Alexander
2017-10-01
The leading gas turbines manufacturers are developing the technologies of the environmental friendly combustion of industrial and synthetic gases of low calorific values. In this case they are faced with critical problems concerning combustion stability assurance and the necessity of the gas turbines significant modernization due to the differences between the low calorific and natural gases. The numerical simulation results of the low calorific value synthetic gas combustion in the combustion chamber by means of different technologies are considered in the paper.
Diamond film growth argon-carbon plasmas
Gruen, D.M.; Krauss, A.R.; Liu, S.Z.; Pan, X.Z.; Zuiker, C.D.
1998-12-15
A method and system are disclosed for manufacturing diamond film. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrogen and hydrocarbon and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous and deposition of a diamond film on a substrate. 29 figs.
Experimental and Numerical Research of a Novel Combustion Chamber for Small Gas Turbine Engines
NASA Astrophysics Data System (ADS)
Tuma, J.; Kubata, J.; Betak, V.; Hybl, R.
2013-04-01
New combustion chamber concept (based on burner JETIS-JET Induced Swirl) for small gas turbine engine (up to 200kW) is presented in this article. The combustion chamber concept is based on the flame stabilization by the generated swirl swirl generated by two opposite tangentially arranged jet tubes in the intermediate zone, this arrangement replaces air swirler, which is very complicated and expensive part in the scope of small gas turbines with annular combustion chamber. The mixing primary jets are oriented partially opposite to the main exhaust gasses flow, this enhances hot product recirculation and fuel-air mixing necessary for low NOx production and flame stability. To evaluate the designed concept a JETIS burner demonstrator (methane fuel) was manufactured and atmospheric experimental measurements of CO, NOx for various fuel nozzles and jet tubes the configuration were done. Results of these experiments and comparison with CFD simulation are presented here. Practical application of the new chamber concept in small gas turbine liquid fuel combustor was evaluated (verified) on 3 nozzles planar combustor sector test rig at atmospheric conditions results of the experiment and numerical simulation are also presented.
George, C.M.
1957-12-31
A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.
Mohamed, Elham F; El-Hashemy, Mohammed A; Abdel-Latif, Nasser M; Shetaya, Waleed H
2015-12-01
Agricultural wastes such as rice straw, sugar beet, and sugarcane bagasse have become a critical environmental issue due to growing agriculture demand. This study aimed to investigate the valorization possibility of sugarcane bagasse waste for activated carbon preparation. It also aimed to fully characterize the prepared activated carbon (BET surface area) via scanning electron microscope (SEM) and in terms of surface functional groups to give a basic understanding of its structure and to study the adsorption capacity of the sugarcane bagasse-based activated carbon using aqueous methylene blue (MB). The second main objective was to evaluate the performance of sugarcane bagasse-based activated carbon for indoor volatile organic compounds removal using the formaldehyde gas (HCHO) as reference model in two potted plants chambers. The first chamber was labeled the polluted chamber (containing formaldehyde gas without activated carbon) and the second was taken as the treated chamber (containing formaldehyde gas with activated carbon). The results indicated that the sugarcane bagasse-based activated carbon has a moderate BET surface area (557 m2/g) with total mesoporous volume and microporous volume of 0.310 and 0.273 cm3/g, respectively. The prepared activated carbon had remarkable adsorption capacity for MB. Formaldehyde removal rate was then found to be more than 67% in the treated chamber with the sugarcane bagasse-based activated carbon. The plants' responses for this application as dry weight, chlorophyll contents, and protein concentration were also investigated. Preparation of activated carbon from sugarcane bagasse (SCBAC) is a promising approach to produce cheap and efficient adsorbent for gas pollutants removal. It may be also a solution for the agricultural wastes problems in big cities, particularly in Egypt. MB adsorption tests suggest that the SCBAC have high adsorption capacity. Formaldehyde gas removal in the plant chambers indicates that the SCBAC have potential to recover volatile gases. The results confirmed that the activated carbon produced from sugarcane bagasse waste raw materials can be used as an applicable adsorbent for treating a variety of gas pollutants from the indoor environment.
Space Storable Propellant Performance Gas/Liquid Like-Doublet Injector Characterization
NASA Technical Reports Server (NTRS)
Falk, A. Y.
1972-01-01
A 30-month applied research program was conducted, encompassing an analytical, design, and experimental effort to relate injector design parameters to simultaneous attainment of high performance and component (injector/thrust chamber) compatibility for gas/liquid space-storable propellants. The gas/liquid propellant combination selected for study was FLOX (82.6% F2)/ambient temperature gaseous methane. The injector pattern characterized was the like-(self)-impinging doublet. Program effort was apportioned into four basic technical tasks: injector and thrust chamber design, injector and thrust chamber fabrication, performance evaluation testing, and data evaluation and reporting. Analytical parametric combustion analyses and cold flow distribution and atomization experiments were conducted with injector segment models to support design of injector/thrust chamber combinations for hot fire evaluation. Hot fire tests were conducted to: (1) optimize performance of the injector core elements, and (2) provide design criteria for the outer zone elements so that injector/thrust chamber compatibility could be achieved with only minimal performance losses.
CONTINUOUSLY SENSITIVE BUBBLE CHAMBER
Good, R.H.
1959-08-18
A radiation detector of the bubble chamber class is described which is continuously sensitive and which does not require the complex pressure cycling equipment characteristic of prior forms of the chamber. The radiation sensitive element is a gas-saturated liquid and means are provided for establishing a thermal gradient across a region of the liquid. The gradient has a temperature range including both the saturation temperature of the liquid and more elevated temperatures. Thus a supersaturated zone is created in which ionizing radiations may give rise to visible gas bubbles indicative of the passage of the radiation through the liquid. Additional means are provided for replenishing the supply of gas-saturated liquid to maintaincontinuous sensitivity.
Monitoring the Gas Composition of the NIFFTE Time Projection Chamber
NASA Astrophysics Data System (ADS)
Towell, Travis; Travis Towell Collaboration
2017-09-01
The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) at Los Alamos National Laboratory(LANL) is using a Time Projection Chamber (TPC) to measure with high precision the cross section ratio of U238 to P239. When the neutron beam hits a target, it may emit fission fragments. As the fission fragments travels through the chamber, it ionizes the gas it passes through. Based on the time it takes for the ions to drift to the pad planes and the hit location of the ions, the path of fission fragments can be determined. Knowing the composition of the gas mixture is vital to accurately reconstruct the data. A Binary Gas Analyzer (BGA) is used to measure the gas composition. To confirm the accuracy of the BGA, varying amounts of nitrogen and carbon dioxide were flowed through a test gas system. Several tests were performed to validate that the BGA for our gas system is working properly. This poster will describe the test gas system setup, tests of the BGA, and elaborate on the main goals of the NIFFTE experiment.
Veterans at Risk: The Health Effects of Mustard Gas and Lewisite
1993-01-01
to Mustard Gas During WWII Testing Programs 370 F. Summary of the Department of the Army Report: Use of Volunteers in Chemical Agent Research 378 Key...concentrations of mustard agents or Lewisite in gas chambers or in field exercises over contaminated ground areas. The human subjects had experienced a...wide range of exposures to mustard agents or Lewisite, from mild (a drop of agent on the arm in "patch" tests) to quite severe (repeated gas chamber
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Van, Luong
1992-01-01
The objective of this paper are to develop a multidisciplinary computational methodology to predict the hot-gas-side and coolant-side heat transfer and to use it in parametric studies to recommend optimized design of the coolant channels for a regeneratively cooled liquid rocket engine combustor. An integrated numerical model which incorporates CFD for the hot-gas thermal environment, and thermal analysis for the liner and coolant channels, was developed. This integrated CFD/thermal model was validated by comparing predicted heat fluxes with those of hot-firing test and industrial design methods for a 40 k calorimeter thrust chamber and the Space Shuttle Main Engine Main Combustion Chamber. Parametric studies were performed for the Advanced Main Combustion Chamber to find a strategy for a proposed combustion chamber coolant channel design.
NASA Astrophysics Data System (ADS)
Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.
2016-03-01
Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.
Gas flow path for a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, Matthew D.; Charron, Richard C.; Snyder, Gary D.
A duct arrangement in a can annular gas turbine engine. The gas turbine engine has a gas delivery structure for delivering gases from a plurality of combustors to an annular chamber that extends circumferentially and is oriented concentric to a gas turbine engine longitudinal axis for delivering the gas flow to a first row of blades A gas flow path is formed by the duct arrangement between a respective combustor and the annular chamber for conveying gases from each combustor to the first row of turbine blades The duct arrangement includes at least one straight section having a centerline thatmore » is misaligned with a centerline of the combustor.« less
NASA Astrophysics Data System (ADS)
Krechmer, J.; Pagonis, D.; Ziemann, P. J.; Jimenez, J. L.
2015-12-01
Environmental "smog" chambers have played an integral role in atmospheric aerosol research for decades. Recently, many works have demonstrated that the loss of gas-phase material to fluorinated ethylene propylene (FEP) chamber walls can have significant effects on secondary organic aerosol (SOA) yield results. The effects of gas-wall partitioning on highly oxidized species is still controversial, however. In this work we performed a series of experiments examining the losses of oxidized gas-phase compounds that were generated in-situ in an environmental chamber. The loss of species to the walls was measured using three chemical ionization mass spectrometry techniques: proton-transfer-reaction (PTR), nitrate (NO3-) ion, and iodide (I-). Many oxidized species have wall loss timescales ranging between 15 to 45 minutes and scale according to the molecule's estimated saturation concentration c* and functional groups. By comparing results of the different techniques, and in particular by the use of the "wall-less" NO3- source, we find that measuring species with high chamber wall-loss rates is complicated by the use of a standard ion-molecule reaction (IMR) region, as well as long Teflon sampling lines, which can be important sinks for gas-phase species. This effect is observed even for semi-volatile species and could have significant effects on ambient sampling techniques that make highly time-resolved measurements using long sampling lines, such as eddy covariance measurements.
Method for continuous control of composition and doping of pulsed laser deposited films
Lowndes, Douglas H.; McCamy, James W.
1995-01-01
A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.
Lowndes, Douglas H.; McCamy, James W.
1996-01-01
A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.
Determination of the air w-value in proton beams using ionization chambers with gas flow capability.
Moyers, M F; Vatnitsky, S M; Miller, D W; Slater, J M
2000-10-01
The purpose of this work was to determine the w-value of air for protons using the paired gas method. Several plastic- and magnesium-walled chambers were used with air, synthetic air, nitrogen, and argon flowing gases. Using argon as a reference gas, the w-value of air was measured and ranged from 32.7 to 34.5 J/C for protons with energies encountered in radiotherapy. Using nitrogen as a reference gas, the w-value of air ranged from 35.2 to 35.4 J/C over the same range of proton energies. The w-value was found, at a given energy, to be independent of the ion chamber used. The uncertainty in these measurements was estimated at 5.2% at the 2sigma level. This uncertainty was dominated by the 4.4% uncertainty in the w-value of the reference gas.
Coaxial fuel and air premixer for a gas turbine combustor
York, William D; Ziminsky, Willy S; Lacy, Benjamin P
2013-05-21
An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.
Safety shield for vacuum/pressure-chamber windows
NASA Technical Reports Server (NTRS)
Shimansky, R. A.; Spencer, R.
1980-01-01
Optically-clear shatter-resistant safety shield protects workers from implosion and explosion of vacuum and pressure windows. Plastic shield is inexpensive and may be added to vacuum chambers, pressure chambers, and gas-filling systems.
Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber
NASA Technical Reports Server (NTRS)
Routh, D. E.; Sharma, G. C. (Inventor)
1984-01-01
An apparatus is disclosed which includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a dc magnetron sputtering system. A gas inlet introduces various gases to the vacuum chamber and creates various gas plasma during the sputtering steps. The rotating turntables insure that the respective wafers are present under the sputtering guns for an average amount of time such that consistency in sputtering and deposition is achieved. By continuous and sequential processing of the wafers in a common vacuum chamber without removal, the adverse affects of exposure to atmospheric conditions are eliminated providing higher quality circuit contacts and functional device.
Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber
NASA Technical Reports Server (NTRS)
Routh, D. E.; Sharma, G. C. (Inventor)
1982-01-01
The processing of wafer devices to form multilevel interconnects for microelectronic circuits is described. The method is directed to performing the sequential steps of etching the via, removing the photo resist pattern, back sputtering the entire wafer surface and depositing the next layer of interconnect material under common vacuum conditions without exposure to atmospheric conditions. Apparatus for performing the method includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a DC magnetron sputtering system. A gas inlet is provided in the chamber for the introduction of various gases to the vacuum chamber and the creation of various gas plasma during the sputtering steps.
Blaugher, Richard D.
1998-05-05
A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.
Vertical two chamber reaction furnace
Blaugher, Richard D.
1999-03-16
A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.
Blaugher, R.D.
1998-05-05
A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.
Vertical two chamber reaction furnace
Blaugher, R.D.
1999-03-16
A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.
Flowmeter for determining average rate of flow of liquid in a conduit
Kennerly, J.M.; Lindner, G.M.; Rowe, J.C.
1981-04-30
This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.
Flowmeter for determining average rate of flow of liquid in a conduit
Kennerly, John M.; Lindner, Gordon M.; Rowe, John C.
1982-01-01
This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.
High vacuum measurements and calibrations, molecular flow fluid transient effects
Leishear, Robert A.; Gavalas, Nickolas A.
2015-04-29
High vacuum pressure measurements and calibrations below 1 × 10 -8 Torr are problematic. Specifically, measurement accuracies change drastically for vacuum gauges when pressures are suddenly lowered in vacuum systems. How can gauges perform like this? A brief system description is first required to answer this question. Calibrations were performed using a vacuum calibration chamber with attached vacuum gauges. To control chamber pressures, vacuum pumps decreased the chamber pressure while nitrogen tanks increased the chamber pressure. By balancing these opposing pressures, equilibrium in the chamber was maintained at selected set point pressures to perform calibrations. When pressures were suddenly decreasedmore » during set point adjustments, a sudden rush of gas from the chamber also caused a surge of gas from the gauges to decrease the pressures in those gauges. Gauge pressures did not return to equilibrium as fast as chamber pressures due to the sparse distribution of gas molecules in the system. This disparity in the rate of pressure changes caused the pressures in different gauges to be different than expected. This discovery was experimentally proven to show that different gauge designs return to equilibrium at different rates, and that gauge accuracies vary for different gauge designs due to fluid transients in molecular flow.« less
Microwave off-gas treatment apparatus and process
Schulz, Rebecca L.; Clark, David E.; Wicks, George G.
2003-01-01
The invention discloses a microwave off-gas system in which microwave energy is used to treat gaseous waste. A treatment chamber is used to remediate off-gases from an emission source by passing the off-gases through a susceptor matrix, the matrix being exposed to microwave radiation. The microwave radiation and elevated temperatures within the combustion chamber provide for significant reductions in the qualitative and quantitative emissions of the gas waste stream.
Density and mixture fraction measurements in a GO2/GH2 uni-element rocket chamber
NASA Technical Reports Server (NTRS)
Moser, M. D.; Pal, S.; Santoro, R. J.
1994-01-01
In recent years, there has been a renewed interest in gas/gas injectors for rocket combustion. Specifically, the proposed new concept of full-flow oxygen rich preburner systems calls for the injection of both oxygen and hydrogen into the main chamber as gaseous propellants. The technology base for gas/gas injection must mature before actual booster class systems can be designed and fabricated. Since the data base for gas/gas injection is limited to studies focusing on the global parameters of small reaction engines, there is a critical need for experiment programs that emphasize studying the mixing and combustion characteristics of GO2 and GH2 propellants from a uni-element injector point of view. The experimental study of the combusting GO2/GH2 propellant combination in a uni-element rocket chamber also provides a simplified environment, in terms of both geometry and chemistry, that can be used to verify and validate computational fluid dynamic (CFD) models.
NASA Astrophysics Data System (ADS)
Harayama, I.; Nagashima, K.; Hirose, Y.; Matsuzaki, H.; Sekiba, D.
2016-10-01
We have developed a compact ΔE-E telescope elastic recoil detection analysis (ERDA) system, for the first time at Micro Analysis Laboratory, Tandem Accelerator (MALT) in the University of Tokyo, which consists of a gas ionization chamber and solid state detector (SSD) for the quantitative analysis of light elements. The gas ionization chamber is designed to identify the recoils of O and N from metal oxynitrides thin films irradiated with 40 MeV 35Cl7+. The length of the electrodes along the beam direction is 50 mm optimized to sufficiently separate energy loss of O and N recoils in P10 gas at 6.0 × 103 Pa. The performance of the gas ionization chamber was examined by comparing the ERDA results on the SrTaO2N thin films with semi-empirical simulation and the chemical compositions previously determined by nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS). We also confirmed availability of the gas ionization chamber for identifying not only the recoils of O and N but also those of lithium, carbon and fluorine.
NASA Astrophysics Data System (ADS)
Bondarenko, Valery; Shurshakov, Vyacheslav; Bondarenko, Valentina; Markina, Irina
The portable autonomous device for detection of soft x-ray radiation is described. Source of x-ray radiation is transition and brake radiations high-energy particles at passage through a material of a wall of the ISS and internal covering of the ship. A detecting elements of the device are gas proportional chambers of type straw in diameter 10 mm, length 140 mm. The wall chambers (cathode) is made from capton by thickness 70 microns. The anode of the chamber represents the gold-plated tungsten wire in diameter 30 microns. The general sensitive area of the detector is equal 110 cm2. Straw of the chambers (8 pieces) are connected consistently and are continuously blown by a gas mixture with a speed of 0,1 cm3/minute. The gas balloon in capacity of 200 cm3 under pressure 8 atm is used for flow. The device is capable to work long time in radiating fields. High radiating stability of the detector is reached by application of a radiation-steady material for manufacturing of chambers, constant gas flow during an irradiation and use of a clearing mixture on the basis of CF4. The electronic part of the device consists of the preamplifiers connected to chambers, the adder -splitter of analog signals, the spectrometer amplifier and amplitude - digitizer converter (ADC). From a splitter the signal acts on the discriminator for management ADC. Use of the discriminator allows to cut out registration of high-energy particles. The information is written on silicon disk.
NASA Technical Reports Server (NTRS)
Ramsey, W. D.
1980-01-01
Inert gas performance with three types of 12 cm diameter magnetoelectrostatic containment (MESC) ion thrusters was tested. The types tested included: (1) a hemispherical shaped discharge chamber with platinum cobalt magnets; (2) three different lengths of the hemispherical chambers with samarium cobalt magnets; and (3) three lengths of the conical shaped chambers with aluminum nickel cobalt magnets. The best argon performance was produced by a 8.0 cm long conical chamber with alnico magnets. The best xenon high mass utilization performance was obtained with the same 8.0 cm long conical thruster. The hemispherical thruster obtained 75 to 87% mass utilization at 185 to 205 eV/ion of singly charged ion equivalent beam.
Simultaneous specimen and stage cleaning device for analytical electron microscope
Zaluzec, Nestor J.
1996-01-01
An improved method and apparatus are provided for cleaning both a specimen stage, a specimen and an interior of an analytical electron microscope (AEM). The apparatus for cleaning a specimen stage and specimen comprising a plasma chamber for containing a gas plasma and an air lock coupled to the plasma chamber for permitting passage of the specimen stage and specimen into the plasma chamber and maintaining an airtight chamber. The specimen stage and specimen are subjected to a reactive plasma gas that is either DC or RF excited. The apparatus can be mounted on the analytical electron microscope (AEM) for cleaning the interior of the microscope.
Portable instrument and method for detecting reduced sulfur compounds in a gas
Gaffney, J.S.; Kelly, T.J.; Tanner, R.L.
1983-06-01
A portable real time instrument for detecting concentrations in the part per billion range of reduced sulfur compounds in a sample gas. Ozonized air or oxygen and reduced sulfur compounds in a sample gas stream react to produce chemiluminescence in a reaction chamber and the emitted light is filtered and observed by a photomultiplier to detect reduced sulfur compounds. Selective response to individual sulfur compounds is achieved by varying reaction chamber temperature and ozone and sample gas flows, and by the use of either air or oxygen as the ozone source gas.
NASA Astrophysics Data System (ADS)
Wang, Lanruo; Zhong, Yuan; Li, Jinjin; Cao, Wenhui; Zhong, Qing; Wang, Xueshen; Li, Xu
2018-04-01
Magnetron sputtering is an important method in the superconducting thin films deposition. The residual gas inside the vacuum chamber will directly affect the quality of the superconducting films. In this paper, niobium films are deposited by magnetron sputtering under different chamber residual gas conditions. The influence of baking and sputtering process on residual gas are studied as well. Surface morphology, electrical and mechanical properties of the films are analysed. The residual gas analysis result before the sputtering process could be regarded as a reference condition to achieve high quality superconducting thin films.
Cyclone reactor with internal separation and axial recirculation
Becker, F.E.; Smolensky, L.A.
1988-07-19
A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture is described. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combustor chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture may be tangentially withdrawn from the outlet end and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture. 10 figs.
Thief process for the removal of mercury from flue gas
Pennline, Henry W.; Granite, Evan J.; Freeman, Mark C.; Hargis, Richard A.; O'Dowd, William J.
2003-02-18
A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.
Multi-chamber deposition system
Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.
1989-10-17
A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.
Multi-chamber deposition system
Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.
1989-06-27
A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.
Method and apparatus for measuring purity of noble gases
Austin, Robert
2008-04-01
A device for detecting impurities in a noble gas includes a detection chamber and a source of pulsed ultraviolet light. The pulse of the ultraviolet light is transferred into the detection chamber and onto a photocathode, thereby emitting a cloud of free electrons into the noble gas within the detection chamber. The cloud of electrons is attracted to the opposite end of the detection chamber by a high positive voltage potential at that end and focused onto a sensing anode. If there are impurities in the noble gas, some or all of the electrons within the cloud will bond with the impurity molecules and not reach the sensing anode. Therefore, measuring a lower signal at the sensing anode indicates a higher level of impurities while sensing a higher signal indicates fewer impurities. Impurities in the range of one part per billion can be measured by this device.
Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading
Fan, D.; Huang, J. W.; Zeng, X. L.; ...
2016-05-23
We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.« less
Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, D.; Huang, J. W.; Zeng, X. L.
We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.« less
NASA Astrophysics Data System (ADS)
Park, Kyu-Hyun
Various measurement methods to quantify greenhouse gas (GHG) emissions from manure storage or treatment facilities have been used. However, it is difficult to directly compare emission data measured with different methods, which causes uncertainties in national GHG inventories. In the micrometeorological mass balance (MMB) method, a gas flux consists of a horizontal mean flux (MF) and horizontal turbulent flux (TF) terms. In Chapter 2, methane (GH4 ) TF measurements obtained using a sonic anemometer and a tunable diode laser trace gas analyzer are presented. Contrary to previous studies in wind tunnels and flat-level field conditions, an overestimation of only 0.5% was observed by only considering the MF term. This means the MMB method without consideration of TF is suitable in complex field conditions with uneven topography, and farm buildings. In Chapter 3, the MMB method was compared to a floating chamber method. Of these, the floating chamber method has been extensively used for CH4 flux quantification. The MMB method, although providing advantages such as spatial integration of fluxes, requires fast response trace gas analyzers which are not widely available. The mean ratio of CH4 flux measured with the floating chamber method to that measured using the MMB method was 1.25, ranging from 1.07 to 1.83. Flux overestimation by the floating chamber could have been caused by location of the chamber and potential disturbances by the chamber. Frequent changes of the chamber location, use of several chambers, and/or avoiding chamber placement on 'hot spots' are recommended to decrease flux overestimation. In Chapter 4, CH4 fluxes measured with a mega chamber and eight small chambers during the in-vessel composting phase showed similar temporal variation, while nitrous oxide (N2O) fluxes were, significantly lower for the small chambers. The ratios of CH4 fluxes measured with a mega chamber to eight small chambers during the in-vessel composting phase were 0.72 and 1.01, while the ratios of N2O fluxes were 2.74 and 2.01 during two in-vessel composting batches, respectively. Positioning the small chambers on the center line of the composting channels was suitable for quantifying CH4 fluxes, but was not for N 2O. It is recommended to position some chambers in peripheral regions of the composting channel, in order to capture N2O emissions. Methane and N2O fluxes over the initial 50 d of the curing phase were higher than during the in-vessel composting phase. Methane and N2O emissions during the curing phase contributed 95% and 64%, respectively, to overall CH4 and N2O emissions during the composting process (in-vessel composting phase and curing phase). In comparison to liquid swine manure storage over an equivalent time period, composting was estimated to reduce emissions of GHG on a carbon dioxide equivalent (CO2-eq) basis by 35%, which was mainly contributed by a decrease of CH4 emissions. Composting of liquid swine manure with straw has potential for decreasing GHG emissions.
Hansen, Marco B; Jansen, Tejs; Sifakis, Michael B; Hyldegaard, Ole; Jansen, Erik C
2013-01-01
We aimed to evaluate the feasibility and safety of using Nitrox 50 as breathing gas during attendance in a multiplace hyperbaric chamber. Paper logs between Jan.-Dec. 2011 were reviewed to analyze nitrogen gas-loading, actual bottom time, total bottom time and surface interval time. With the use of the Norwegian Diving Tables nitrogen gas-loading was converted to Repetitive Group Letters. Symptoms of decompression sickness and health problems related to hyperbaric exposures were registered at weekly staff meetings. The chamber personnel breathed chamber air or Nitrox 50. 1,207 hyperbaric exposures were distributed to five chamber attendants and technicians, 14 doctors, and six nurses. Nitrox 50 was inhaled on 978 occasions (81.0%). Median nitrogen gas-loading after first pressurization complied with Repetitive Group Letter A (range A-E), second to C (range A-F), third to D (range A-F), fourth to E (range C-H), fifth to F (range C-H), and sixth to E (range B-G). No symptoms of decompression sickness were reported (95% CI 0.00-0.33%). Breathing Nitrox 50 during repetitive hyperbaric sessions seems to be feasible and safe while meeting high demands in number of treatment sessions and patient flow and with fewer people employed in the hyperbaric unit.
NASA Astrophysics Data System (ADS)
Connolly, Matthew; Park, Jun-Sang; Bradley, Peter; Lauria, Damian; Slifka, Andrew; Drexler, Elizabeth
2018-06-01
We demonstrate a hydrogen gas chamber suitable for lattice strain measurements and capturing radiographs of a steel specimen under a mechanical load using high energy synchrotron x-rays. The chamber is suitable for static and cyclic mechanical loading. Experiments were conducted at the 1-ID-E end station of the Advanced Photon Source, Argonne National Laboratory. Diffraction patterns show a high signal-to-noise ratio suitable for lattice strain measurements for the specimen and with minimal scattering and overlap from the gas chamber manufactured from aluminum. In situ radiographs of a specimen in the hydrogen chamber show the ability to track a growing crack and to map the lattice strain around the crack with high spatial and strain resolution.
Methods for improved growth of group III nitride semiconductor compounds
Melnik, Yuriy; Chen, Lu; Kojiri, Hidehiro
2015-03-17
Methods are disclosed for growing group III-nitride semiconductor compounds with advanced buffer layer technique. In an embodiment, a method includes providing a suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. The method includes forming an AlN buffer layer by flowing an ammonia gas into a growth zone of the processing chamber, flowing an aluminum halide containing precursor to the growth zone and at the same time flowing additional hydrogen halide or halogen gas into the growth zone of the processing chamber. The additional hydrogen halide or halogen gas that is flowed into the growth zone during buffer layer deposition suppresses homogeneous AlN particle formation. The hydrogen halide or halogen gas may continue flowing for a time period while the flow of the aluminum halide containing precursor is turned off.
Gas turbine combustor exit piece with hinged connections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charron, Richard C.; Pankey, William W.
2016-04-26
An exit piece (66) with an inlet throat (67) that conducts a combustion gas flow (36A) in a path (82) from a combustor (63) to an annular chamber (68) that feeds the first blade section (37) of a gas turbine (26). The exit piece further includes an outlet portion (69) that forms a circumferential segment of the annular chamber. The outlet portion interconnects with adjacent outlet portions by hinges (78A, 78B, 80A, 80B). Each hinge may have a hinge axis (82A, 82B) parallel to a centerline (21) of the turbine. Respective gas flows (36A) are configured by an assembly (60)more » of the exit pieces to converge on the feed chamber (68) into a uniform helical flow that drives the first blade section with minimal circumferential variations in force.« less
CO2 and chamber effects on epidermal development in field grown peanut (Arachis hypogaea L.)
USDA-ARS?s Scientific Manuscript database
Peanut, (Arachis hypogaea L.) cvar. C76–16, was grown either in the field, or in open gas exchange chambers under elevated or ambient CO2 concentrations. Stomatal density and other selected epidermal parameters associated with leaf development and gas exchange were measured on recently fully expande...
Sounding experiments of high pressure gas discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biele, Joachim K.
A high pressure discharge experiment (200 MPa, 5{center_dot}10{sup 21} molecules/cm{sup 3}, 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm{sup 3}) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm{sup 3}) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at themore » combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved.« less
Designing an Active Target Test Projection Chamber
NASA Astrophysics Data System (ADS)
Koci, James; Tan Ahn Collaboration, Dr.; Nicolas Dixneuf Collaboration
2015-10-01
The development of instrumentation in nuclear physics is crucial for advancing our ability to measure the properties of exotic nuclei. One limitation of the use of exotic nuclei in experiment is their very low production intensities. Recently, detectors, called active-target dectectors, have been developed to address this issue. Active-target detectors use a gas medium to image charged-particle tracks that are emitted in nuclear reactions. Last semester, I designed a vacuum chamber to be used in developing Micro-Pattern Gas detectors that will upgrade the capabilities of an active-target detector called the Prototype AT-TPC. With the exterior of the chamber complete, I have now been using an electric field modeling program, Garfield, developed by CERN to design a field cage to be placed within the vacuum chamber. The field cage will be a box-like apparatus consisting of two parallel metal plates connected with a resistor chain and attached to wires wrapped between them. The cage will provide a uniform electric field within the chamber to drift electrons from nuclear reactions down to the detector in the bottom of the chamber. These signals are then amplified by a proportional counter, and the data is sent to a computer. For the long term, we would like to incorporate a Micro-Pattern Gas Detectors in the interior of the chamber and eventually use the AT-TPC to examine various nuclei. Dr. Ahn is my advising professor.
Design, construction, prototype tests and performance of a vertex chamber for the MAC detector
NASA Astrophysics Data System (ADS)
Ash, W. W.; Band, H. R.; Bloom, E. D.; Bosman, M.; Camporesi, T.; Chadwick, G. B.; Delfino, M. C.; De Sangro, R.; Ford, W. T.; Gettner, M. W.; Goderre, G. P.; Godfrey, G. L.; Groom, D. E.; Hurst, R. B.; Johnson, J. R.; Lau, K. H.; Lavine, T. L.; Leedy, R. E.; Lippi, I.; Maruyama, T.; Messner, R. L.; Moromisato, J. H.; Moss, L. J.; Muller, F.; Nelson, H. N.; Peruzzi, I.; Piccolo, M.; Prepost, R.; Pyrlik, J.; Qi, N.; Read, A. L.; Ritson, D. M.; Rosenberg, L. J.; Shambroom, W. D.; Sleeman, J. C.; Smith, J. G.; Venuti, J. P.; Verdini, P. G.; Von Goeler, E.; Wald, H. B.; Weinstein, R.; Wiser, D. E.; Zdarko, R. W.
1987-11-01
The design considerations, construction techniques, prototype tests and performance characteristics of a pressurized drift chamber used in the MAC detector at PEP are described. The chamber consists of 324 aluminized mylar tubes of 6.9 mm diameter with wall thickness of 100 μm. With appropriate shielding it operates successfully at 4.6 cm from the beam line. It was simple to construct and was configured to permit any malfunctioning tubes to be remotely disconnected without affecting operation. The chamber operated without problems for two years in the PEP environment with a gas mixture of 49.5% argon, 49.5% CO 2, 1% CH 4, at 4 atm absolute pressure. The mean spatial resolution averaged over all tubes was 45 μm. The time to distance relation for this gas mixture, along with the geometric positioning of individual wires relative to the central tracking chamber, was obtained with data from Bhabha scattering events. We also describe resolution studies performed with a prototype chamber in a SLAC test beam. A wide range of gases, gas pressures, and electronic parameters were explored. These studies proved that resolutions in the 10-50 μm range were possible. Our experience demonstrates that chambers of this type provide high precision tracking and are particularly suited for operation in regions with difficult physical access and/or high ambient radiation levels.
Government gas vans and school gas chambers: preparedness and paranoia in Britain, 1936-1941.
Moshenska, Gabriel
2010-01-01
In 1936 the Air Raid Precautions department of the British Home Office instigated a training programme in which members of the public, including school students, were systematically exposed to tear gas. Based around fixed and mobile gas chambers, this training aimed to educate the public in the value and efficacy of their gas masks. Drawing on documentary and oral historical sources, this paper examines the discrepancies between the stated form and aims of these tests, and their practical applications, including some excessively brutal training practices. In the last part of the paper I consider these variations in the context of both the gas panic and the moral panic about children's behaviour in wartime.
Method for the preparation of nanocrystalline diamond thin films
Gruen, Dieter M.; Krauss, Alan R.
1998-01-01
A method and system for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip.
Monte Carlo modeling of ion chamber performance using MCNP.
Wallace, J D
2012-12-01
Ion Chambers have a generally flat energy response with some deviations at very low (<100 keV) and very high (>2 MeV) energies. Some improvements in the low energy response can be achieved through use of high atomic number gases, such as argon and xenon, and higher chamber pressures. This work looks at the energy response of high pressure xenon-filled ion chambers using the MCNP Monte Carlo package to develop geometric models of a commercially available high pressure ion chamber (HPIC). The use of the F6 tally as an estimator of the energy deposited in a region of interest per unit mass, and the underlying assumptions associated with its use are described. The effect of gas composition, chamber gas pressure, chamber wall thickness, and chamber holder wall thicknesses on energy response are investigated and reported. The predicted energy response curve for the HPIC was found to be similar to that reported by other investigators. These investigations indicate that improvements to flatten the overall energy response of the HPIC down to 70 keV could be achieved through use of 3 mm-thick stainless steel walls for the ion chamber.
Pennell, William E.; Sutton, Jr., Harry G.
1981-01-01
Method and apparatus for detecting failure in a welded connection, particrly applicable to not readily accessible welds such as those joining components within the reactor vessel of a nuclear reactor system. A preselected tag gas is sealed within a chamber which extends through selected portions of the base metal and weld deposit. In the event of a failure, such as development of a crack extending from the chamber to an outer surface, the tag gas is released. The environment about the welded area is directed to an analyzer which, in the event of presence of the tag gas, evidences the failure. A trigger gas can be included with the tag gas to actuate the analyzer.
Jílek, K; Hýža, M; Kotík, L; Thomas, J; Tomášek, L
2014-07-01
During the 7th European Conference on Protection Against Radon at Home and at Work held in the autumn of 2013 in Prague, the second intercomparison of measuring instruments for radon and its short-lived decay products and the first intercomparison of radon/thoron gas discriminative passive detectors in mix field of radon/thoron were organised by and held at the Natural Radiation Division of the National Radiation Protection Institute (NRPI) in Prague. In total, 14 laboratories from 11 different countries took part in the 2013 NRPI intercomparison. They submitted both continuous monitors for the measurement of radon gas and equivalent equilibrium radon concentration in a big NRPI chamber (48 m3) and sets of passive detectors including radon/thoron discriminative for the measurement of radon gas in the big chamber and thoron gas in a small thoron chamber (150 dm3). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Optical monitoring system for a turbine engine
Lemieux, Dennis H; Smed, Jan P; Williams, James P; Jonnalagadda, Vinay
2013-05-14
The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.
Sealed Plant-Growth Chamber For Clinostat
NASA Technical Reports Server (NTRS)
Brown, Christopher S.; Dreschel, Thomas W.
1993-01-01
Laboratory chamber for growing plants used to measure photosynthesis and respiration in simulated microgravity. Holds plant specimens while rotated on clinostat, see article, "Clinostat Delivers Power To Plant-Growth Cabinets" (KSC-11537). Provides way of comparing gas-exchange rates of plants rotated horizontally on clinostat with those of stationary or vertically rotated plants. Gas extracted for analysis without stopping clinostat. Chamber includes potlike base and cylindrical cover, both made of transparent acrylic pipe. Gasket forms seal between cover and bottom plate of base. Cover bolted to pot baseplate, which in turn bolted to clinostat.
NASA Astrophysics Data System (ADS)
Datsenko, V. V.; Zeigarnik, Yu. A.; Kosoi, A. S.
2014-04-01
Practical experience gained from using water and steam admission into the combustion chambers of aircraft- and marine-derivative gas turbines for bringing their operation in compliance with the requirements of environmental standards is described. The design and schematic modifications of combustion chambers and fuel system through which this goal is achieved are considered. The results obtained from industrial and rig tests of combustion chambers fitted with water or steam admission systems are presented.
BOREAS TGB-3 CH4 and CO2 Chamber Flux Data over NSA Upland Sites
NASA Technical Reports Server (NTRS)
Savage, Kathleen; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Moore, Tim R.
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-3) team collected methane and carbon dioxide (CH4, CO2) chamber flux measurements at the Northern Study Area (NSA) Fen, Old Black Spruce (OBS), Young Jack Pine (YJP), and auxiliary sites along Gillam Road and the 1989 burn site. Gas samples were extracted from chambers and analyzed at the NSA lab facility approximately every 7 days during May to September 1994 and June to October 1996. The data are provided in tabular ASCII files.
Field Evaluation of Open System Chambers for Measuring Whole Canopy Gas Exchanges
USDA-ARS?s Scientific Manuscript database
The ability to monitor whole canopy CO2 and H2O fluxes of crop plants in the field is needed for many research efforts ranging from plant breeding to the study of Climate Change effects on crops. Four portable, transparent, open system chambers for measuring canopy gas exchanges were field tested on...
Computation of Neutral Gas Flow from a Hall Thruster into a Vacuum Chamber
2002-10-18
try to quantify these effects, the direct simulation Monte Carlo method is applied to model a cold flow of xenon gas expanding from a Hall thruster into...a vacuum chamber. The simulations are performed for the P5 Hall thruster operating in a large vacuum tank at the University of Michigan. Comparison
Method of pyrolyzing brown coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, W.; Heberlein, I.; Ossowski, M.
A two-step method and apparatus are disclosed based on the fluidized bed principle, for the production of coke, rich gas and pyrolysis tar, with the object of executing the method in a compact apparatus arrangement, with high energy efficiency and high throughput capacity. This is accomplished by a sequence in which the fine grains removed from the drying vapor mixture are removed from the actual pyrolysis process, and a hot gas, alien to the carbonization, is used as fluidization medium in the pyrolysis reactor, and with a hot gas-high performance separator being used for the dust separation from the pyrolysismore » gas, with the combustion exhaust gas produced in the combustion chamber being used for the indirect heating of the fluidization medium, for the pre-heating of the gas, which is alien to the carbonization, and for the direct heating in the dryer. The dryer has a double casing in the area of the fluidized bed, and a mixing chamber is arranged directly underneath its initial flow bottom, while the pyrolysis reactor is directly connected to the combustion chamber and the pre-heater.« less
NASA Astrophysics Data System (ADS)
Paonita, Antonio; Caracausi, Antonio; Martelli, Mauro; Rizzo, Andrea
2016-04-01
There is agreement in recognizing episodes of magma injection into crustal chambers as main triggers of eruptive activity of volcanoes (Caricchi et al., 2014). These events cause in fact a buildup of the internal pressure in magma chamber, which in turn controls outpouring magma amount, possible failure of wall-rocks, dike opening, up to a potential eruption. Assessment of the time-dependent pressurization while occurring in chamber is therefore challenging aim of current volcanological research. Recent advancements in estimating the time-dependent pressurization as long as occurring in chamber come from inverse modeling of ground deformation data, which does not however calculate internal evolution of the magma reservoir (Gregg et al., 2013; Cannavò et al., 2015). On the other hand, the geochemistry of volcanic gases has basically addressed to the pressure(depth) of gas exsolution so far (Caracausi et al., 2003; Aiuppa et al., 2007; Paonita et al., 2012). We developed an pioneering tool that computes the changes of 3He/4He isotope ratio of volcanic gases with respect to a background, as a function of the time-dependent outflow of volatiles from a chamber subjected to evolution of internal pressure through an injection event. Our approach postulates a low-3He/4He gas endmember coming from resident magmas stored in crust, that mixes with a high-3He/4He gas endmember from deep parental magmas refilling the deep chamber. We couple a mass balance between the two gas endmembers to a physical model of the magma chamber. When a deep input pressurizes the chamber, the latter releases large amounts of the high-3He/4He gas endmember, so as to change 3He/4He of discharged volcanic gases. We applied the model to the long-term series of He isotope ratios from geochemical monitoring of some peripheral gas emissions at the base of Mt Etna, fed by magmatic degassing occurring at 200-400 MPa (Paonita et al., 2012). The isotope ratios have in fact displayed phases of increase occurred at all the sampled emissions some months before the onset of eruptions, due to deep magma recharges. This behaviour has been systematic for all the main eruptive phases occurred at Mt Etna since 2001. For most of the events, we quantitatively estimated the rate of magmatic refill during the pre-eruptive recharges of the system, as well as the growth of the overpressure in the deep chamber. Failure of the wall rocks and dike opening is also explained in the case of 2001 eruption, because chamber overpressure overcame the yield strength of rocks. The results suggest that key parameters as the rate of magma inflow and the volume change in deep chamber can be estimated prior to impending eruptions and directly compared to inferences from geodetic signals.
De Saro, Robert; Bateman, Willis
2002-09-10
Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.
Particle and chemical control using tunnel flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chilese, Frank; Delgado, Gildardo R.; Wack, Daniel
An apparatus for contaminant control, having: a first optical assembly including: a first light homogenizer tunnel with: a first end connected to an extreme ultra-violet light source, a second end in communication with a destination chamber, a first enclosed space, and, a first gas input arranged to introduce a first gas such that the first gas flows in a first direction toward the first end and in a second direction toward the second end. The apparatus alternately having: a second optical assembly including: a second light homogenizer tunnel with: a third end connected to an extreme ultra-violet light source, amore » fourth end in communication with a destination chamber, a second enclosed space, a diffusion barrier tube including: a fifth end facing the fourth end and a sixth end in communication with a destination chamber, and a second gas input between the second light homogenizer tunnel and the diffusion tube.« less
BOREAS TGB-1/TGB-3 NEE Data over the NSA Fen
NASA Technical Reports Server (NTRS)
Bellisario, Lianne; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Moore, Tim R.
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-1) and TGB-3 teams collected several data sets that contributed to understanding the measured trace gas fluxes over sites in the Northern Study Area (NSA). This data set contains Net Ecosystem Exchange of CO2 (NEE) measurements collected with chambers at the NSA fen in 1994 and 1996. Gas samples were extracted approximately every 7 days from chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.
The Gas Monitoring of the Besiii Drift Chamber
NASA Astrophysics Data System (ADS)
Wang, Xianggao; Chen, Chang; Chen, Yuanbo; Wu, Zhi; Gu, Yunting; Ma, Xiaoyan; Jin, Yan; Liu, Rongguang; Tang, Xiao; Wang, Lan; Zhu, Qiming
Two monitoring proportional counters (MPCs), installed at the inlet and outlet of the gas system of BESIII drift chamber (DC), were used to monitor the operation of the BESIII DC successfully and effectively as reported in this paper. The ratio of Gout/Gin (full energy photoelectron peak position of 55Fe 5.9 keV X-ray in inlet MPC as Gin and outlet MPC as Gout) is used as the main monitoring parameter. The MPC method is very useful for the gas detector system.
Method for the preparation of nanocrystalline diamond thin films
Gruen, D.M.; Krauss, A.R.
1998-06-30
A method and system are disclosed for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip. 40 figs.
NASA Astrophysics Data System (ADS)
Khomenok, L. A.
2007-09-01
Problems related to efficient afterburning of fuel in the medium of gas-turbine unit exhaust gases, as well as new design arrangements of gas-jet burners used in the chambers for afterburning fuel in heat-recovery boilers at cogeneration stations equipped with combined-cycle plants, are considered. Results obtained from comparative experimental investigations of different gas-jet flame stabilizers at a test facility are presented, and the advantages of jet-ejector stabilizers are demonstrated.
NASA Astrophysics Data System (ADS)
Inozemtsev, A. A.; Sazhenkov, A. N.; Tsatiashvili, V. V.; Abramchuk, T. V.; Shipigusev, V. A.; Andreeva, T. P.; Gumerov, A. R.; Ilyin, A. N.; Gubaidullin, I. T.
2015-05-01
The paper formulates the issue of development of experimental base with noninvasive optical-electronic tools for control of combustion in a combustion chamber of gas turbine engine. The design and specifications of a pilot sample of optronic system are explained; this noninvasive system was created in the framework of project of development of main critical technologies for designing of aviation gas turbine engine PD-14. The testbench run data are presented.
Research on structural design and test technologies for a three-chamber launching device
NASA Astrophysics Data System (ADS)
Jun, Wu; Qiushi, Yan; Ling, Xiao; Tieshuan, Zhuang; Chengyu, Yang
2016-07-01
A three-chamber launching device with improved acceleration is proposed and developed. As indicated by the damage generated during the pill and engineering protection tests, the proposed device is applicable as a high-speed launching platform for pills of different shapes and quality levels. Specifically, it can be used to investigate kinetic energy weapons and their highly destructive effects due to the resulting large bomb fragments. In the horizontal direction of the barrel, two auxiliary chambers are set at a certain distance from the main chamber. When the pill reaches the mouth of the auxiliary chambers, the charges in the auxiliary chambers are ignited by the high-temperature, high-pressure combustible gas trailing the pill. The combustible gas in the auxiliary chambers can resist the rear pressure of the pill and thus maintain the high pressure of the pill base. In this way, the required secondary acceleration of the pill is met. The proposed device features the advantage of launching a pill with high initial velocity under low bore pressure. Key techniques are proposed in the design of the device to address the problems related to the angle between the main chamber axis and the ancillary chamber axis, the overall design of a three-chamber barrel, the structural design of auxiliary propellant charge, the high-pressure combustible gas sealing technology, and the sabot and belt design. Results from the launching test verify the reasonable design of this device and its reliable structural sealing. Additionally, the stiffness and the strength of the barrel meet design requirements. Compared with the single-chamber launching device with the same caliber, the proposed device increases the average launching velocity by approximately 15% and the amount of muzzle kinetic energy by approximately 35%. Therefore, this equipment is capable of carrying out small-caliber, high-speed pill firing tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Kyoung-Jae; Jung, Bong-Ki; An, YoungHwa
2014-02-15
In a volume-produced negative hydrogen ion source, control of electron temperature is essential due to its close correlation with the generation of highly vibrationally excited hydrogen molecules in the heating region as well as the generation of negative hydrogen ions by dissociative attachment in the extraction region. In this study, geometric effects of the cylindrical discharge chamber on negative ion generation via electron temperature changes are investigated in two discharge chambers with different lengths of 7.5 cm and 11 cm. Measurements with a radio-frequency-compensated Langmuir probe show that the electron temperature in the heating region is significantly increased by reducingmore » the length of the discharge chamber due to the reduced effective plasma size. A particle balance model which is modified to consider the effects of discharge chamber configuration on the plasma parameters explains the variation of the electron temperature with the chamber geometry and gas pressure quite well. Accordingly, H{sup −} ion density measurement with laser photo-detachment in the short chamber shows a few times increase compared to the longer one at the same heating power depending on gas pressure. However, the increase drops significantly as operating gas pressure decreases, indicating increased electron temperatures in the extraction region degrade dissociative attachment significantly especially in the low pressure regime. It is concluded that the increase of electron temperature by adjusting the discharge chamber geometry is efficient to increase H{sup −} ion production as long as low electron temperatures are maintained in the extraction region in volume-produced negative hydrogen ion sources.« less
Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, D.; Luo, S. N., E-mail: sluo@pims.ac.cn; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031
We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; fracture is dominated by splitting cracks followed by wing cracks, and diffraction peaks are broadened likely due to mosaic spread. Our results demonstrate the potential of such multiscale measurements for studying high strain-rate phenomena at dynamic extremes.« less
Closed-loop system for growth of aquatic biomass and gasification thereof
Oyler, James R.
2017-09-19
Processes, systems, and methods for producing combustible gas from wet biomass are provided. In one aspect, for example, a process for generating a combustible gas from a wet biomass in a closed system is provided. Such a process may include growing a wet biomass in a growth chamber, moving at least a portion of the wet biomass to a reactor, heating the portion of the wet biomass under high pressure in the reactor to gasify the wet biomass into a total gas component, separating the gasified component into a liquid component, a non-combustible gas component, and a combustible gas component, and introducing the liquid component and non-combustible gas component containing carbon dioxide into the growth chamber to stimulate new wet biomass growth.
Sobrado, J M; Martín-Soler, J; Martín-Gago, J A
2014-03-01
We have built a Mars environmental simulation chamber, designed to test new electromechanical devices and instruments that could be used in space missions. We have developed this environmental system aiming at validating the meteorological station Rover Environment Monitoring Station of NASA's Mars Science Laboratory mission currently installed on Curiosity rover. The vacuum chamber has been built following a modular configuration and operates at pressures ranging from 1000 to 10(-6) mbars, and it is possible to control the gas composition (the atmosphere) within this pressure range. The device (or sample) under study can be irradiated by an ultraviolet source and its temperature can be controlled in the range from 108 to 423 K. As an important improvement with respect to other simulation chambers, the atmospheric gas into the experimental chamber is cooled at the walls by the use of liquid-nitrogen heat exchangers. This chamber incorporates a dust generation mechanism designed to study Martian-dust deposition while modifying the conditions of temperature, and UV irradiated.
Lean direct wall fuel injection method and devices
NASA Technical Reports Server (NTRS)
Choi, Kyung J. (Inventor); Tacina, Robert (Inventor)
2000-01-01
A fuel combustion chamber, and a method of and a nozzle for mixing liquid fuel and air in the fuel combustion chamber in lean direct injection combustion for advanced gas turbine engines, including aircraft engines. Liquid fuel in a form of jet is injected directly into a cylindrical combustion chamber from the combustion chamber wall surface in a direction opposite to the direction of the swirling air at an angle of from about 50.degree. to about 60.degree. with respect to a tangential line of the cylindrical combustion chamber and at a fuel-lean condition, with a liquid droplet momentum to air momentum ratio in the range of from about 0.05 to about 0.12. Advanced gas turbines benefit from lean direct wall injection combustion. The lean direct wall injection technique of the present invention provides fast, uniform, well-stirred mixing of fuel and air. In addition, in order to further improve combustion, the fuel can be injected at a venturi located in the combustion chamber at a point adjacent the air swirler.
High-pressure gas quenching in cold chambers for increased cooling capacity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segerberg, S.; Troell, E.
1996-12-31
Gas quenching for the hardening of steel parts is a lower-pollution alternative to quenching in quenchants such as oil or salt. As the surfaces of the cooled parts remain clean after gas quenching, there is no need to wash them after heat treatment, which reduces the consumption of oils and detergents. The fire risk and ventilation requirements of oil quenching are eliminated. In addition, some trials have shown that gas quenching has a positive effect on distortion, representing a saving in finishing work and thus a reduction in costs. Today, gas quenching is used almost solely in vacuum furnaces. Quenchingmore » is normally performed in the same chamber as heating, which means that besides quenching the batch, the quenching system must also remove heat from the heating elements and insulation of the furnace. Previous trials performed by IVF have shown that gas quenching with helium of ball bearing and carburizing steels (and other steels) in sizes up to 25 mm at pressures up to 20 bar in a vacuum furnace can achieve quenching rates and hardnesses similar to those achieved by hot quenching oils. This quenching performance is not, however, capable of dealing with larger sizes or lower-alloy steels. At IVF`s request, ALD Vacuum Technologies GmbH has developed a cold high-pressure gas quenching chamber that is independent of the furnace. As a result, there is no need to cool insulation or heating elements. Quenching can be carried out in the chamber at pressures of up to 40 bar for helium or up to 10 bar for nitrogen. The quenching chamber has been supplied to IVF, and has been used for experimental quenching of steel test pieces and components. Temperatures have been recorded by using some Inconel 600 test probes, {phi} 12,5 x 60 mm, with thermocouples in their centers.« less
Triple ionization chamber method for clinical dose monitoring with a Be-covered Li BNCT field.
Nguyen, Thanh Tat; Kajimoto, Tsuyoshi; Tanaka, Kenichi; Nguyen, Chien Cong; Endo, Satoru
2016-11-01
Fast neutron, gamma-ray, and boron doses have different relative biological effectiveness (RBE). In boron neutron capture therapy (BNCT), the clinical dose is the total of these dose components multiplied by their RBE. Clinical dose monitoring is necessary for quality assurance of the irradiation profile; therefore, the fast neutron, gamma-ray, and boron doses should be separately monitored. To estimate these doses separately, and to monitor the boron dose without monitoring the thermal neutron fluence, the authors propose a triple ionization chamber method using graphite-walled carbon dioxide gas (C-CO 2 ), tissue-equivalent plastic-walled tissue-equivalent gas (TE-TE), and boron-loaded tissue-equivalent plastic-walled tissue-equivalent gas [TE(B)-TE] chambers. To use this method for dose monitoring for a neutron and gamma-ray field moderated by D 2 O from a Be-covered Li target (Be-covered Li BNCT field), the relative sensitivities of these ionization chambers are required. The relative sensitivities of the TE-TE, C-CO 2 , and TE(B)-TE chambers to fast neutron, gamma-ray, and boron doses are calculated with the particle and heavy-ion transport code system (PHITS). The relative sensitivity of the TE(B)-TE chamber is calculated with the same method as for the TE-TE and C-CO 2 chambers in the paired chamber method. In the Be-covered Li BNCT field, the relative sensitivities of the ionization chambers to fast neutron, gamma-ray, and boron doses are calculated from the kerma ratios, mass attenuation coefficient tissue-to-wall ratios, and W-values. The Be-covered Li BNCT field consists of neutrons and gamma-rays which are emitted from a Be-covered Li target, and this resultant field is simulated by using PHITS with the cross section library of ENDF-VII. The kerma ratios and mass attenuation coefficient tissue-to-wall ratios are determined from the energy spectra of neutrons and gamma-rays in the Be-covered Li BNCT field. The W-value is calculated from recoil charged particle spectra by the collision of neutrons and gamma-rays with the wall and gas materials of the ionization chambers in the gas cavities of TE-TE, C-CO 2 , and TE(B)-TE chambers ( 10 B concentrations of 10, 50, and 100 ppm in the TE-wall). The calculated relative sensitivity of the C-CO 2 chamber to the fast neutron dose in the Be-covered Li BNCT field is 0.029, and those of the TE-TE and TE(B)-TE chambers are both equal to 0.965. The relative sensitivities of the C-CO 2 , TE-TE, and TE(B)-TE chambers to the gamma-ray dose in the Be-covered Li BNCT field are all 1 within the 1% calculation uncertainty. The relative sensitivities of TE(B)-TE to boron dose with concentrations of 10, 50, and 100 ppm 10 B are calculated to be 0.865 times the ratio of the in-tumor to in-chamber wall boron concentration. The fast neutron, gamma-ray, and boron doses of a tumor in-air can be separately monitored by the triple ionization chamber method in the Be-covered Li BNCT field. The results show that these doses can be easily converted to the clinical dose with the depth correction factor in the body and the RBE.
Method and apparatus for monitoring mercury emissions
Durham, Michael D.; Schlager, Richard J.; Sappey, Andrew D.; Sagan, Francis J.; Marmaro, Roger W.; Wilson, Kevin G.
1997-01-01
A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.
Method and apparatus for monitoring mercury emissions
Durham, M.D.; Schlager, R.J.; Sappey, A.D.; Sagan, F.J.; Marmaro, R.W.; Wilson, K.G.
1997-10-21
A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber. 15 figs.
Development of a Hybrid Gas Detector/Phoswich for Hard X-Ray Astronomy
NASA Technical Reports Server (NTRS)
Pimperl, M. M.; Ramsey, B. D.; Austin, R. A.; Minamitani, T.; Weisskopf, M. C.; Grindlay, J. E.; Lum, K. S. K.; Manandhar, R. P.
1994-01-01
A hybrid detector is under development for use as a balloon-borne instrument in hard x-ray astronomy. The detector provides broad band coverage by coupling an optical avalanche chamber to a phoswich. The optical avalanche chamber yields superior instrument response at low energies while the scintillator takes over at the higher energies where the gas becomes transparent: at 25 keV, the addition of the gas chamber improves the energy resolution by a factor of 2.5 and the spatial resolution by a factor of 10 as compared to the stand-alone response of the phoswich. A half-scale prototype instrument is being constructed for test purposes and to help resolve a number of design questions involving the coupling of the two components.
External combustion engine having a combustion expansion chamber
NASA Astrophysics Data System (ADS)
Duva, Anthony W.
1993-03-01
This patent application discloses an external combustion engine having a combustion expansion chamber. The engine includes a combustion chamber for generating a high-pressure, energized gas from a monopropellant fuel, and a cylinder for receiving the energized gas through a rotary valve to perform work on a cylinder disposed therein. A baffle plate is positioned between the combustion area and expansion area for reducing the pressure of the gas. The combustion area and expansion area are separated by a baffle plate having a flow area which is sufficiently large to eliminate the transmission of pressure pulsations from the combustion area to the expansion area while being small enough to provide for substantially complete combustion in the combustion area. The engine is particularly well suited for use in a torpedo.
Foam Experiment Hardware are Flown on Microgravity Rocket MAXUS 4
NASA Astrophysics Data System (ADS)
Lockowandt, C.; Löth, K.; Jansson, O.; Holm, P.; Lundin, M.; Schneider, H.; Larsson, B.
2002-01-01
The Foam module was developed by Swedish Space Corporation and was used for performing foam experiments on the sounding rocket MAXUS 4 launched from Esrange 29 April 2001. The development and launch of the module has been financed by ESA. Four different foam experiments were performed, two aqueous foams by Doctor Michele Adler from LPMDI, University of Marne la Vallée, Paris and two non aqueous foams by Doctor Bengt Kronberg from YKI, Institute for Surface Chemistry, Stockholm. The foam was generated in four separate foam systems and monitored in microgravity with CCD cameras. The purpose of the experiment was to generate and study the foam in microgravity. Due to loss of gravity there is no drainage in the foam and the reactions in the foam can be studied without drainage. Four solutions with various stabilities were investigated. The aqueous solutions contained water, SDS (Sodium Dodecyl Sulphate) and dodecanol. The organic solutions contained ethylene glycol a cationic surfactant, cetyl trimethyl ammonium bromide (CTAB) and decanol. Carbon dioxide was used to generate the aqueous foam and nitrogen was used to generate the organic foam. The experiment system comprised four complete independent systems with injection unit, experiment chamber and gas system. The main part in the experiment system is the experiment chamber where the foam is generated and monitored. The chamber inner dimensions are 50x50x50 mm and it has front and back wall made of glass. The front window is used for monitoring the foam and the back window is used for back illumination. The front glass has etched crosses on the inside as reference points. In the bottom of the cell is a glass frit and at the top is a gas in/outlet. The foam was generated by injecting the experiment liquid in a glass frit in the bottom of the experiment chamber. Simultaneously gas was blown through the glass frit and a small amount of foam was generated. This procedure was performed at 10 bar. Then the pressure was lowered in the experiment chamber to approximately 0,1 bar to expand the foam to a dry foam that filled the experiment chamber. The foam was regenerated during flight by pressurise the cell and repeat the foam generation procedures. The module had 4 individual experiment chambers for the four different solutions. The four experiment chambers were controlled individually with individual experiment parameters and procedures. The gas system comprise on/off valves and adjustable valves to control the pressure and the gas flow and liquid flow during foam generation. The gas system can be divided in four sections, each section serving one experiment chamber. The sections are partly connected in two pairs with common inlet and outlet. The two pairs are supplied with a 1l gas bottle each filled to a pressure of 40 bar and a pressure regulator lowering the pressure from 40 bar to 10 bar. Two sections are connected to the same outlet. The gas outlets from the experiment chambers are connected to two symmetrical placed outlets on the outer structure with diffusers not to disturb the g-levels. The foam in each experiment chamber was monitored with one tomography camera and one overview camera (8 CCD cameras in total). The tomography camera is placed on a translation table which makes it possible to move it in the depth direction of the experiment chamber. The video signal from the 8 CCD cameras were stored onboard with two DV recorders. Two video signals were also transmitted to ground for real time evaluation and operation of the experiment. Which camera signal that was transmitted to ground could be selected with telecommands. With help of the tomography system it was possible to take sequences of images of the foam at different depths in the foam. This sequences of images are used for constructing a 3-D model of the foam after flight. The overview camera has a fixed position and a field of view that covers the total experiment chamber. This camera is used for monitoring the generation of foam and the overall behaviour of the foam. The experiment was performed successfully with foam generation in all 4 experiment chambers. Foam was also regenerated during flight with telecommands. The experiment data is under evaluation.
Cellular thermosetting fluoropolymers and process for making them
NASA Technical Reports Server (NTRS)
Lee, Sheng Y.
1988-01-01
Thermosetting fluoropolymer foams are made by mixing fluid from thermosetting fluoropolymer components having a substantial fluoride content, placing the mixture in a pressure tight chamber, filling the chamber with a gas, at a relatively low pressure, that is unreactive with the fluoropolymer components, allowing the mixture to gel, removing the gelled fluoropolymer from the chamber and therafter heating the fluoropolymer at a relatively low temperature to simultaneously cure and foam the fluoropolymer. The resulting fluoropolymer product is closed celled with the cells storing the gas employed for foaming. The fluoropolymer resins employed may be any thermosetting fluoropolymer including fluoroepoxies, fluoropolyurethanes and fluoroacrylates.
Cellular thermosetting fluorodiepoxide polymers
NASA Technical Reports Server (NTRS)
Lee, Sheng Y. (Inventor)
1989-01-01
Thermosetting fluoropolymer foams are made by mixing fluid form thermosetting fluoropolymer components having a substantial fluorine content, placing the mixture in a pressure tight chamber, filling the chamber with a gas, at relatively low pressure, that is unreactive with the fluoropolymer components, allowing the mixture to gel, removing the gelled fluoropolymer from the chamber and thereafter heating the fluoropolymer at a relatively low temperature to simultaneously sure and foam the fluoropolymer. The resulting fluoropolymer product is closed celled with the cells storing the gas employed for foaming. The fluoropolymer resins employed may be any thermosetting fluoropolymer including fluoroepoxies, fluoropolyurethanes and fluoroacrylates.
Underwood, N.
1958-09-23
This patent relates to a pump suitable fur pumping highly corrosive gases wherein no lubricant is needed in the pumping chamber thus eliminating possible contamination sources. The chamber contains a gas inlet and outlet in each side, with a paddle like piston suspended by a sylphon seal between these pcrts. An external arrangement causes the paddle to oscillate rapidly between the ports, alternately compressing and exhausting the gas trapped on each side of the paddle. Since the paddle does nnt touch the chamber sides at any point, no lubricant is required. This pump is useful for pumping large quantities of uranium hexafluorine.
Method of low temperature operation of an electrochemical cell array
Singh, P.; Ruka, R.J.; Bratton, R.J.
1994-04-26
A method is described for operating an electrochemical cell generator apparatus containing a generator chamber containing an array of cells having interior and exterior electrodes with solid electrolyte between the electrodes, where a hot gas contacts the outside of the cells and the generating chamber normally operates at over 850 C, where N[sub 2] gas is fed to contact the interior electrode of the cells in any case when the generating chamber temperature drops for whatever reason to within the range of from 550 C to 800 C, to eliminate cracking within the cells. 2 figures.
NASA Astrophysics Data System (ADS)
Alekseenko, S. V.; Shtork, S. I.; Yusupov, R. R.
2018-03-01
The effect of the method of gas-phase injection into a swirled fluid flow on parameters of a precessing vortex core is studied experimentally. Conditions of the appearance of the vortex-core precession effect were modeled in a hydrodynamic sudden expansion vortex chamber. The dependences of the vortexcore precession frequency, flow-pulsation level, and full pressure differential in the vortex chamber on the consumption gas content in the flow have been obtained. The results of measurements permit one to determine optimum conditions for the most effective control of vortex-core precession.
Krechmer, Jordan E; Day, Douglas A; Ziemann, Paul J; Jimenez, Jose L
2017-10-17
Secondary organic aerosols (SOA) are a major contributor to fine particulate mass and wield substantial influences on the Earth's climate and human health. Despite extensive research in recent years, many of the fundamental processes of SOA formation and evolution remain poorly understood. Most atmospheric aerosol models use gas/particle equilibrium partitioning theory as a default treatment of gas-aerosol transfer, despite questions about potentially large kinetic effects. We have conducted fundamental SOA formation experiments in a Teflon environmental chamber using a novel method. A simple chemical system produces a very fast burst of low-volatility gas-phase products, which are competitively taken up by liquid organic seed particles and Teflon chamber walls. Clear changes in the species time evolution with differing amounts of seed allow us to quantify the particle uptake processes. We reproduce gas- and aerosol-phase observations using a kinetic box model, from which we quantify the aerosol mass accommodation coefficient (α) as 0.7 on average, with values near unity especially for low volatility species. α appears to decrease as volatility increases. α has historically been a very difficult parameter to measure with reported values varying over 3 orders of magnitude. We use the experimentally constrained model to evaluate the correction factor (Φ) needed for chamber SOA mass yields due to losses of vapors to walls as a function of species volatility and particle condensational sink. Φ ranges from 1-4.
Making MUSIC: A multiple sampling ionization chamber
NASA Astrophysics Data System (ADS)
Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.
2007-08-01
A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.
Deflagration-to-Detonation Transition Control by Nanosecond Gas Discharges
2008-04-07
Report 3. DATES COVERED (From – To) 1 April 2007 - 18 August 09 4. TITLE AND SUBTITLE Deflagration-To- Detonation Transition Control By Nanosecond...SUPPLEMENTARY NOTES 14. ABSTRACT During the current project, an extensive experimental study of detonation initiation by high{voltage...nanosecond gas discharges has been performed in a smooth detonation tube with different discharge chambers and various discharge cell numbers. The chambers
A simple fast pulse gas valve using a dynamic pressure differential as the primary closing mechanism
NASA Astrophysics Data System (ADS)
Thomas, J. C.; Hwang, D. Q.; Horton, R. D.; Rogers, J. H.; Raman, R.
1993-06-01
In this article we describe a simple fast pulse gas valve developed for use in a plasma discharge experiment. The valve delivers 1017-1019 molecules per pulse varied by changing the voltage on the electromagnetic driver power supply. Valve pulse widths are observed to be less than 300 μs full width at half maximum with a rise time of less than 100 μs resulting in a maximum gas flow rate of ˜1022 molecules per second. An optical transmission technique was used to determine the mechanical opening and closing characteristics of the valve piston. A fast ionization gauge (FIG) was used for diagnosis of the temporal character of the gas pulse while the total gas throughput was determined by measuring the change in pressure per pulse in a small test chamber with a convectron tube gauge. Calibration of the FIG was accomplished by comparing the net change in pressure in a large chamber as measured by the FIG to the net change in pressure in a small test chamber as measured by the convectron tube gauge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mumford, S.E.; Smed, J.P.
This patent describes a gas turbine combustion chamber. It comprises: means for admission of fuel to the upstream end thereof and discharge of hot gases from the downstream end thereof, and a combustion chamber wall, having an outer surface, with apertures therethrough, and air scoops provided through the apertures to direct air into the combustion chamber.
Chemical vapor deposition of epitaxial silicon
Berkman, Samuel
1984-01-01
A single chamber continuous chemical vapor deposition (CVD) reactor is described for depositing continuously on flat substrates, for example, epitaxial layers of semiconductor materials. The single chamber reactor is formed into three separate zones by baffles or tubes carrying chemical source material and a carrier gas in one gas stream and hydrogen gas in the other stream without interaction while the wafers are heated to deposition temperature. Diffusion of the two gas streams on heated wafers effects the epitaxial deposition in the intermediate zone and the wafers are cooled in the final zone by coolant gases. A CVD reactor for batch processing is also described embodying the deposition principles of the continuous reactor.
A System for Controlling the Oxygen Content of a Gas Produced by Combustion
NASA Technical Reports Server (NTRS)
Singh, J. J.; Davis, W. T.; Puster, R. L. (Inventor)
1984-01-01
A mixture of air, CH4 and OH(2) is burned in a combustion chamber to produce a product gas in the test section. The OH(2) content of the product gas is compared with the OH(2) content of reference air in an OH(2) sensor. If there is a difference an error signal is produced at the output of a control circuit which by the means of a solenoid valve, regulates the flow of OH(2) into the combustion chamber to make the error signal zero. The product gas in the test section has the same oxygen content as air.
Hyperbaric hydrothermal atomic force microscope
Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.
2002-01-01
A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.
Hyperbaric Hydrothermal Atomic Force Microscope
Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.
2003-07-01
A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.
NASA Astrophysics Data System (ADS)
Gopal, Abishek; Yellapantula, Shashank; Larsson, Johan
2017-11-01
Methane is increasingly becoming viable as a rocket fuel in the latest generation of launch vehicles. In liquid rocket engines, fuel and oxidizer are injected under cryogenic conditions into the combustion chamber. At high pressures, typical of rocket combustion chambers, the propellants exist in supercritical states where the ideal gas thermodynamics are no longer valid. We investigate the effects of real-gas thermodynamics on transcritical laminar premixed methane-oxygen flames. The effect of the real-gas cubic equations of state and high-pressure transport properties on flame dynamics is presented. We also study real-gas effects on the extinction limits of the methane-oxygen flame.
NASA Astrophysics Data System (ADS)
Al-Ammar, Assad S.; Gupta, Rajesh K.; Barnes, Ramon M.
2000-06-01
Injection of 10-20 ml/min of ammonia gas into an inductively coupled plasma-mass spectrometry (ICP-MS) spray chamber during boron determination eliminates the memory effect of a 1 μg/ml B solution within a 2-min washing time. Ammonia gas injection also reduces the boron blank by a factor of four and enhances the sensitivity by 33-90%. Boron detection limits are improved from 12 and 14 to 3 and 4 ng/ml, respectively, for two ICP-MS instruments. Trace boron concentrations in certified reference materials agree well using ammonia gas injection.
Gas arc constriction for plasma arc welding
NASA Technical Reports Server (NTRS)
McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)
1994-01-01
A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.
Apparatus and method for excluding gas from a liquid
Murphy, Jr., Robert J.
1985-01-01
The present invention is directed to an apparatus and method for preventing diffusion of a gas under high pressure into the bulk of a liquid filling a substantially closed chamber. This apparatus and method is particularly useful in connection with test devices for testing fluid characteristics under harsh conditions of extremely high pressure and high temperature. These devices typically pressurize the liquid by placing the liquid in pressure and fluid communication with a high pressure inert gas. The apparatus and method of the present invention prevent diffusion of the pressurizing gas into the bulk of the test liquid by decreasing the chamber volume at a rate sufficient to maintain the bulk of the liquid free of absorbed or dissolved gas by expelling that portion of the liquid which is contaminated by the pressurizing gas.
Outgassing measurement of the aluminum alloy UHV chamber
NASA Technical Reports Server (NTRS)
Miyamoto, M.; Itoh, T.; Komaki, S.; Narushima, K.; Ishimaru, H.
1986-01-01
A large vacuum chamber (580 mm diameter) was fabricated from an aluminum alloy surface treated by a special process normally used on small chambers. The chamber was tested unbaked and baked at various temperatures, pressures, and holding periods. The chamber was filled with N2 gas, and the outgassing rate was measured after one hour. Then the ultimate pressure was measured. Outgassing rates for baked and unbaked groups were compared. It is concluded that the same surface treatment technique can be used on both large and small chambers produced by the same special extrusion process.
Analyses of Longitudinal Mode Combustion Instability in J-2X Gas Generator Development
NASA Technical Reports Server (NTRS)
Hulka, J. R.; Protz, C. S.; Casiano, M. J.; Kenny, R. J.
2011-01-01
The National Aeronautics and Space Administration (NASA) and Pratt & Whitney Rocketdyne are developing a liquid oxygen/liquid hydrogen rocket engine for future upper stage and trans-lunar applications. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. The contract for development was let to Pratt & Whitney Rocketdyne in 2006. Over the past several years, development of the gas generator for the J-2X engine has progressed through a variety of workhorse injector, chamber, and feed system configurations on the component test stand at the NASA Marshall Space Flight Center (MSFC). Several of the initial configurations resulted in combustion instability of the workhorse gas generator assembly at a frequency near the first longitudinal mode of the combustion chamber. In this paper, several aspects of these combustion instabilities are discussed, including injector, combustion chamber, feed system, and nozzle influences. To ensure elimination of the instabilities at the engine level, and to understand the stability margin, the gas generator system has been modeled at the NASA MSFC with two techniques, the Rocket Combustor Interaction Design and Analysis (ROCCID) code and a lumped-parameter MATLAB(TradeMark) model created as an alternative calculation to the ROCCID methodology. To correctly predict the instability characteristics of all the chamber and injector geometries and test conditions as a whole, several inputs to the submodels in ROCCID and the MATLAB(TradeMark) model were modified. Extensive sensitivity calculations were conducted to determine how to model and anchor a lumped-parameter injector response, and finite-element and acoustic analyses were conducted on several complicated combustion chamber geometries to determine how to model and anchor the chamber response. These modifications and their ramification for future stability analyses of this type are discussed.
Performance Evaluation of an Experimental Turbojet Engine
NASA Astrophysics Data System (ADS)
Ekici, Selcuk; Sohret, Yasin; Coban, Kahraman; Altuntas, Onder; Karakoc, T. Hikmet
2017-11-01
An exergy analysis is presented including design parameters and performance assessment, by identifying the losses and efficiency of a gas turbine engine. The aim of this paper is to determine the performance of a small turbojet engine with an exergetic analysis based on test data. Experimental data from testing was collected at full-load of small turbojet engine. The turbojet engine exhaust data contains CO2, CO, CH4, H2, H2O, NO, NO2, N2 and O2 with a relative humidity of 35 % for the ambient air of the performed experiments. The evaluated main components of the turbojet engine are the air compressor, the combustion chamber and the gas turbine. As a result of the thermodynamic analysis, exergy efficiencies (based on product/fuel) of the air compressor, the combustion chamber and the gas turbine are 81.57 %, 50.13 % and 97.81 %, respectively. A major proportion of the total exergy destruction was found for the combustion chamber at 167.33 kW. The exergy destruction rates are 8.20 %, 90.70 % and 1.08 % in the compressor, the combustion chamber and the gas turbine, respectively. The rates of exergy destruction within the system components are compared on the basis of the exergy rate of the fuel provided to the engine. Eventually, the exergy rate of the fuel is calculated to be 4.50 % of unusable due to exergy destruction within the compressor, 49.76 % unusable due to exergy destruction within the combustion chamber and 0.59 % unusable due to exergy destruction within the gas turbine. It can be stated that approximately 55 % of the exergy rate of the fuel provided to the engine can not be used by the engine.
Hyvärinen, Antti-Pekka; Brus, David; Zdímal, Vladimír; Smolík, Jiri; Kulmala, Markku; Viisanen, Yrjö; Lihavainen, Heikki
2006-06-14
Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roldin, P.; Eriksson, A. C.; Nordin, E. Z.
2014-08-11
We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3)more » and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.« less
Active Aircraft Pylon Noise Control System
NASA Technical Reports Server (NTRS)
Thomas, Russell H. (Inventor); Czech, Michael J (Inventor); Elmiligui, Alaa A. (Inventor)
2015-01-01
An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.
Active Aircraft Pylon Noise Control System
NASA Technical Reports Server (NTRS)
Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elmiligui, Alaa A. (Inventor)
2017-01-01
An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.
NASA Astrophysics Data System (ADS)
Bian, Q.; May, A. A.; Kreidenweis, S. M.; Pierce, J. R.
2015-10-01
Smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle and vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimations of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one-third of the initial particle-phase organic mass (41 %) was lost during the experiments, and over half of this particle-organic mass loss was from direct particle wall loss (65 % of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (35 % of the loss). We perform a series of sensitivity tests to understand uncertainties in our simulations. Uncertainty in the initial wood-smoke volatility distribution contributes 18 % uncertainty to the final particle-organic mass remaining in the chamber (relative to base-assumption simulation). We show that the total mass loss may depend on the effective saturation concentration of vapor with respect to the walls as these values currently vary widely in the literature. The details of smoke dilution during the filling of smog chambers may influence the mass loss to the walls, and a dilution of ~ 25:1 during the experiments increased particle-organic mass loss by 33 % compared to a simulation where we assume the particles and vapors are initially in equilibrium in the chamber. Finally, we discuss how our findings may influence interpretations of emission factors and SOA production in wood-smoke smog-chamber experiments.
NASA Astrophysics Data System (ADS)
Bian, Q.; May, A. A.; Kreidenweis, S. M.; Pierce, J. R.
2015-06-01
Smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle and vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimates of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one third of the initial particle-phase organic mass (36%) was lost during the experiments, and roughly half of this particle organic mass loss was from direct particle wall loss (56% of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (44% of the loss). We perform a series of sensitivity tests to understand uncertainties in our simulations. Uncertainty in the initial wood-smoke volatility distribution contributes 23% uncertainty to the final particle organic mass remaining in the chamber (relative to base-assumptions simulation). We show that the total mass loss may depend on the effective saturation concentration of vapor with respect to the walls as these values currently vary widely in the literature. The details of smoke dilution during the filling of smog chambers may influence the mass loss to the walls, and a dilution of ~ 25:1 during the experiments increased particle organic mass loss by 64% compared to a simulation where we assume the particles and vapors are initially in equilibrium in the chamber. Finally, we discuss how our findings may influence interpretations of emission factors and SOA production in wood-smoke smog-chamber experiments.
Wide-range radioactive-gas-concentration detector
Anderson, D.F.
1981-11-16
A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.
Wiebe, David J.; Charron, Richard C.; Morrison, Jay A.
2016-10-18
A gas turbine engine ducting arrangement (10), including: an annular chamber (14) configured to receive a plurality of discrete flows of combustion gases originating in respective can combustors and to deliver the discrete flows to a turbine inlet annulus, wherein the annular chamber includes an inner diameter (52) and an outer diameter (60); an outer diameter mounting arrangement (34) configured to permit relative radial movement and to prevent relative axial and circumferential movement between the outer diameter and a turbine vane carrier (20); and an inner diameter mounting arrangement (36) including a bracket (64) secured to the turbine vane carrier, wherein the bracket is configured to permit the inner diameter to move radially with the outer diameter and prevent axial deflection of the inner diameter with respect to the outer diameter.
Drift chambers on the basis of Mylar tube blocks
NASA Astrophysics Data System (ADS)
Budagov, Yu.; Chirikov-Zorin, I.; Golovanov, L.; Khazins, D.; Kuritsin, A.; Pukhov, O.; Zhukov, V.
1993-06-01
Prototypes of drift chambers constructed of Mylar tube blocks were tested. The purpose of developing tube blocks technology was to create long chambers (up to 3-4 m). Counting and drift characteristics of the chambers for different values of the gas pressure and different diameters of sense wires are presented. The lifetime of the chambers is determined. A photoeffect in the visible spectrum on the surface of the thin film aluminium cathode, which covers the Mylar tubes was observed.
Tran, Huy N Q; Lyman, Seth N; Mansfield, Marc L; O'Neil, Trevor; Bowers, Richard L; Smith, Ann P; Keslar, Cara
2018-07-01
In this study, the authors apply two different dispersion models to evaluate flux chamber measurements of emissions of 58 organic compounds, including C2-C11 hydrocarbons and methanol, ethanol, and isopropanol from oil- and gas-produced water ponds in the Uintah Basin. Field measurement campaigns using the flux chamber technique were performed at a limited number of produced water ponds in the basin throughout 2013-2016. Inverse-modeling results showed significantly higher emissions than were measured by the flux chamber. Discrepancies between the two methods vary across hydrocarbon compounds and are largest in alcohols due to their physical chemistries. This finding, in combination with findings in a related study using the WATER9 wastewater emission model, suggests that the flux chamber technique may underestimate organic compound emissions, especially alcohols, due to its limited coverage of the pond area and alteration of environmental conditions, especially wind speed. Comparisons of inverse-model estimations with flux chamber measurements varied significantly with the complexity of pond facilities and geometries. Both model results and flux chamber measurements suggest significant contributions from produced water ponds to total organic compound emission from oil and gas productions in the basin. This research is a component of an extensive study that showed significant amount of hydrocarbon emissions from produced water ponds in the Uintah Basin, Utah. Such findings have important meanings to air quality management agencies in developing control strategies for air pollution in oil and gas fields, especially for the Uintah Basin in which ozone pollutions frequently occurred in winter seasons.
Advanced cooling techniques for high-pressure hydrocarbon-fueled engines
NASA Technical Reports Server (NTRS)
Cook, R. T.
1979-01-01
The regenerative cooling limits (maximum chamber pressure) for 02/hydrocarbon gas generator and staged combustion cycle rocket engines over a thrust range of 89,000 N (20,000lbf) to 2,669,000 N (600,000 lbf) for a reusable life of 250 missions were defined. Maximum chamber pressure limits were first determined for the three propellant combinations (O2/CH4, O2/C3H8, and O2/RP-1 without a carbon layer (unenhanced designs). Chamber pressure cooling enhancement limits were then established for seven thermal barriers. The thermal barriers evaluated for these designs were: carbon layer, ceramic coating, graphite liner, film cooling, transpiration cooling, zoned combustion, and a combination of two of the above. All fluid barriers were assessed a 3 percent performance loss. Sensitivity studies were then conducted to determine the influence of cycle life and RP-1 decomposition temperature on chamber pressure limits. Chamber and nozzle design parameters are presented for the unenahanced and enhanced designs. The maximum regenerative cooled chamber pressure limits were attained with the O2/CH4 propellant combination. The O2/RP-1 designs relied on a carbon layer and liquid gas injection chamber contours, short chamber, to be competitive with the other two propellant combinations. This was attributed to the low decomposition temperature of RP-1.
Combustion Integrated Rack (CIR)
2016-06-22
NASA Glenn engineer Chris Mroczka installs a gas-jet burner in a chamber within the center’s Combustion Integrated Rack. This chamber is where scientists conduct gaseous combustion experiments in a zero gravity environment.
Iwancizko, Eugene; Jones, Kim M.; Crandall, Richard S.; Nelson, Brent P.; Mahan, Archie Harvin
2001-01-01
The invention provides a process for depositing an epitaxial layer on a crystalline substrate, comprising the steps of providing a chamber having an element capable of heating, introducing the substrate into the chamber, heating the element at a temperature sufficient to decompose a source gas, passing the source gas in contact with the element; and forming an epitaxial layer on the substrate.
NASA Astrophysics Data System (ADS)
Roldin, P.; Liao, L.; Mogensen, D.; Dal Maso, M.; Rusanen, A.; Kerminen, V.-M.; Mentel, T. F.; Wildt, J.; Kleist, E.; Kiendler-Scharr, A.; Tillmann, R.; Ehn, M.; Kulmala, M.; Boy, M.
2015-09-01
We used the Aerosol Dynamics gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM) to simulate the contribution of BVOC plant emissions to the observed new particle formation during photooxidation experiments performed in the Jülich Plant-Atmosphere Chamber and to evaluate how well smog chamber experiments can mimic the atmospheric conditions during new particle formation events. ADCHAM couples the detailed gas-phase chemistry from Master Chemical Mechanism with a novel aerosol dynamics and particle phase chemistry module. Our model simulations reveal that the observed particle growth may have either been controlled by the formation rate of semi- and low-volatility organic compounds in the gas phase or by acid catalysed heterogeneous reactions between semi-volatility organic compounds in the particle surface layer (e.g. peroxyhemiacetal dimer formation). The contribution of extremely low-volatility organic gas-phase compounds to the particle formation and growth was suppressed because of their rapid and irreversible wall losses, which decreased their contribution to the nano-CN formation and growth compared to the atmospheric situation. The best agreement between the modelled and measured total particle number concentration (R2 > 0.95) was achieved if the nano-CN was formed by kinetic nucleation involving both sulphuric acid and organic compounds formed from OH oxidation of BVOCs.
Theurich, Gordon R.
1976-01-01
1. In a method of separating isotopes in a high speed gas centrifuge wherein a vertically oriented cylindrical rotor bowl is adapted to rotate about its axis within an evacuated chamber, and wherein an annular molecular pump having an intake end and a discharge end encircles the uppermost portion of said rotor bowl, said molecular pump being attached along its periphery in a leak-tight manner to said evacuated chamber, and wherein end cap closure means are affixed to the upper end of said rotor bowl, and a process gas withdrawal and insertion system enters said bowl through said end cap closure means, said evacuated chamber, molecular pump and end cap defining an upper zone at the discharge end of said molecular pump, said evacuated chamber, molecular pump and rotor bowl defining a lower annular zone at the intake end of said molecular pump, a method for removing gases from said upper and lower zones during centrifuge operation with a minimum loss of process gas from said rotor bowl, comprising, in combination: continuously measuring the pressure in said upper zone, pumping gas from said lower zone from the time the pressure in said upper zone equals a first preselected value until the pressure in said upper zone is equal to a second preselected value, said first preselected value being greater than said second preselected value, and continuously pumping gas from said upper zone from the time the pressure in said upper zone equals a third preselected value until the pressure in said upper zone is equal to a fourth preselected value, said third preselected value being greater than said first, second and fourth preselected values.
Paulauskas, Felix L.; Bonds, Truman
2016-09-20
A plasma treatment method that includes providing treatment chamber including an intermediate heating volume and an interior treatment volume. The interior treatment volume contains an electrode assembly for generating a plasma and the intermediate heating volume heats the interior treatment volume. A work piece is traversed through the treatment chamber. A process gas is introduced to the interior treatment volume of the treatment chamber. A plasma is formed with the electrode assembly from the process gas, wherein a reactive species of the plasma is accelerated towards the fiber tow by flow vortices produced in the interior treatment volume by the electrode assembly.
Method of low temperature operation of an electrochemical cell array
Singh, Prabhakar; Ruka, Roswell J.; Bratton, Raymond J.
1994-01-01
In the method of operating an electrochemical cell generator apparatus containing a generator chamber (20) containing an array of cells (12) having interior and exterior electrodes with solid electrolyte between the electrodes, where a hot gas (F) contacts the outside of the cells (12) and the generating chamber normally operates at over 850.degree. C., where N.sub.2 gas is fed to contact the interior electrode of the cells (12) in any case when the generating chamber (20) temperature drops for whatever reason to within the range of from 550.degree. C. to 800.degree. C., to eliminate cracking within the cells (12).
Method and apparatus for filling thermal insulating systems
Arasteh, Dariush K.
1992-01-01
A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air.
An analytical solution for the steady-state aerosol size distribution achieved in a steady-state, continuous flow chamber is derived, where particle growth is occurring by gas-to-particle conversion and particle loss is occurring by deposition to the walls of the chamber. The s...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobrado, J. M., E-mail: sobradovj@inta.es; Martín-Soler, J.; Martín-Gago, J. A.
We have built a Mars environmental simulation chamber, designed to test new electromechanical devices and instruments that could be used in space missions. We have developed this environmental system aiming at validating the meteorological station Rover Environment Monitoring Station of NASA's Mars Science Laboratory mission currently installed on Curiosity rover. The vacuum chamber has been built following a modular configuration and operates at pressures ranging from 1000 to 10{sup −6} mbars, and it is possible to control the gas composition (the atmosphere) within this pressure range. The device (or sample) under study can be irradiated by an ultraviolet source andmore » its temperature can be controlled in the range from 108 to 423 K. As an important improvement with respect to other simulation chambers, the atmospheric gas into the experimental chamber is cooled at the walls by the use of liquid-nitrogen heat exchangers. This chamber incorporates a dust generation mechanism designed to study Martian-dust deposition while modifying the conditions of temperature, and UV irradiated.« less
Evaluation of Ti-Zr-V (NEG) Thin Films for their pumping speed and pumping Capacity
NASA Astrophysics Data System (ADS)
Bansod, Tripti; Sindal, B. K.; Kumar, K. V. A. N. P. S.; Shukla, S. K.
2012-11-01
Deposition of NEG thin films onto the interior walls of the vacuum chambers is an advanced technique to convert a vacuum chamber from a gas source to an effective pump. These films offer considerably large pumping speed for reactive gases like CO, H2 etc. A UHV compatible pumping speed measurement system was developed in-house to measure the pumping speed of NEG coated chambers. To inject the fixed quantity of CO and H2 gas in pumping speed measurement set-up a calibrated leak was also developed. Stainless steel chambers were sputter coated with thin film of Ti-Zr-V getter material using varied parameters for different compositions and thickness. Pumping capacity which is a function of sorbed gas quantities was also studied at various activation temperatures. In order to optimize the activation temperature for maximum pumping speed for CO and H2, pumping speeds were measured at room temperature after activation at different temperatures. The experimental system detail, pumping performance of the NEG film at various activation temperatures and RGA analysis are presented.
Refining Field Measurements of Methane Flux Rates from Abandoned Oil and Gas Wells
NASA Astrophysics Data System (ADS)
Lagron, C. S.; Kang, M.; Riqueros, N. S.; Jackson, R. B.
2015-12-01
Recent studies in Pennsylvania demonstrate the potential for significant methane emissions from abandoned oil and gas wells. A subset of tested wells was high emitting, with methane flux rates up to seven orders of magnitude greater than natural fluxes (up to 105 mg CH4/hour, or about 2.5LPM). These wells contribute disproportionately to the total methane emissions from abandoned oil and gas wells. The principles guiding the chamber design have been developed for lower flux rates, typically found in natural environments, and chamber design modifications may reduce uncertainty in flux rates associated with high-emitting wells. Kang et al. estimate errors of a factor of two in measured values based on previous studies. We conduct controlled releases of methane to refine error estimates and improve chamber design with a focus on high-emitters. Controlled releases of methane are conducted at 0.05 LPM, 0.50 LPM, 1.0 LPM, 2.0 LPM, 3.0 LPM, and 5.0 LPM, and at two chamber dimensions typically used in field measurements studies of abandoned wells. As most sources of error tabulated by Kang et al. tend to bias the results toward underreporting of methane emissions, a flux-targeted chamber design modification can reduce error margins and/or provide grounds for a potential upward revision of emission estimates.
Modeling Explosive Eruptions at Kīlauea, Hawai'i
NASA Astrophysics Data System (ADS)
Gonnermann, H. M.; Ferguson, D. J.; Blaser, A. P.; Houghton, B. F.; Plank, T. A.; Hauri, E. H.; Swanson, D. A.
2014-12-01
We have modeled eruptive magma ascent during two explosive eruptions of Kīlauea volcano, Hawai'i. They are the Hawaiian style Kīlauea Iki eruption, 1959, and the subplinian Keanakāko'i eruption, 1650 CE. We have modeled combined magma ascent in the volcanic conduit and exsolution of H2O and CO2 from the erupting magma. To better assess the relative roles of conduit processes and magma chamber, we also coupled conduit flow and magma chamber through mass balance and pressure. We predict magma discharge rates, superficial gas velocities, H2O and CO2 concentrations of the melt, magma chamber pressure, surface deformation, and height of the volcanic jet. Models are in part constrained by H2O and CO2 measured in olivine-hosted melt inclusions and by decompression rates recorded in melt embayment diffusion profiles. We present a parametric analysis, indicating that the pressure within the chamber that fed the subplinian Keanakāko'i eruption was significantly higher than lithostatic pressure. In contrast, chamber pressure for the Hawaiian Kīlauea Iki eruption was close to lithostatic. In both cases the superficial gas velocity, which affects the geometrical distribution of gas-liquid mixtures during upward flow in conduits, may have exceeded values at which bubble coalescence did not affect the flow.
Apparatus for purifying exhaust gases of internal combustion engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kakinuma, A.; Oya, H.
1980-06-03
Apparatus for purifying the exhaust gases of internal combustion engines is disclosed that is comprised of a pair of upstream exhaust pipes, a catalytic converter, and a downstream exhaust pipe. The catalytic converter comprises a cylindrical shell having an inlet chamber, a catalyst chamber, an outlet chamber, and a monolithic catalyst element in the catalyst chamber. The inlet chamber has inlet ports communicating with the upstream exhaust pipes respectively and axial lines of the inlet ports cross each other in the inlet chamber. In the inlet chamber, a diffusion means is provided to diffuse the exhaust gas for uniformly distributingmore » it to the catalyst element.« less
Request for Correction by the U.S. Chamber of Commerce for information in Greenhouse Gas Emissions Reporting from the Petroleum Gas Industry that regarding methane emissions, volatile organic compounds, and hazardous air pollutants.
Numerical simulation of magma chamber dynamics.
NASA Astrophysics Data System (ADS)
Longo, Antonella; Papale, Paolo; Montagna, Chiara Paola; Vassalli, Melissa; Giudice, Salvatore; Cassioli, Andrea
2010-05-01
Magma chambers are characterized by periodic arrivals of deep magma batches that give origin to complex patterns of magma convection and mixing, and modify the distribution of physical quantities inside the chamber. We simulate the transient, 2D, multi-component homogeneous dynamics in geometrically complex dyke+chamber systems, by means of GALES, a finite element parallel C++ code solving mass, momentum and energy equations for multi-component homogeneous gas-liquid (± crystals) mixtures in compressible-to-incompressible flow conditions. Code validation analysis includes several cases from the classical engineering literature, corresponding to a variety of subsonic to supersonic gas-liquid flow regimes (see http://www.pi.ingv.it/~longo/gales/gales.html). The model allows specification of the composition of the different magmas in the domain, in terms of ten major oxides plus the two volatile species H2O and CO2. Gas-liquid thermodynamics are modeled by using the compositional dependent, non-ideal model in Papale et al. (Chem.. Geol., 2006). Magma properties are defined in terms of local pressure, temperature, and composition including volatiles. Several applications are performed within domains characterized by the presence of one or more magma chambers and one or more dykes, with different geometries and characteristic size from hundreds of m to several km. In most simulations an initial compositional interface is placed at the top of a feeding dyke, or at larger depth, with the deeper magma having a lower density as a consequence of larger volatile content. The numerical results show complex patterns of magma refilling in the chamber, with alternating phases of magma ingression and magma sinking from the chamber into the feeding dyke. Intense mixing takes place in feeding dykes, so that the new magma entering the chamber is always a mixture of the deep and the initially resident magma. Buoyant plume rise occurs through the formation of complex convective patterns, giving origin to a density-stratified magma chamber.
Flow-rate independent gas-mixing system for drift chambers, using solenoid valves
NASA Astrophysics Data System (ADS)
Sugano, K.
1991-03-01
We describe an inexpensive system for mixing argon and ethane gas for drift chambers which was used for an experiment at Fermilab. This system is based on the idea of intermittent mixing of gases with fixed mixing flow rates. A dual-action pressure switch senses the pressure in a mixed gas reservoir tank and operates solenoid valves to control mixing action and regulate reservoir pressure. This system has the advantages that simple controls accurately regulate the mixing ratio and that the mixing ratio is nearly flow-rate independent without readjustments. We also report the results of the gas analysis of various samplings, and the reliability of the system in long-term running.
Chemical vapor deposition reactor. [providing uniform film thickness
NASA Technical Reports Server (NTRS)
Chern, S. S.; Maserjian, J. (Inventor)
1977-01-01
An improved chemical vapor deposition reactor is characterized by a vapor deposition chamber configured to substantially eliminate non-uniformities in films deposited on substrates by control of gas flow and removing gas phase reaction materials from the chamber. Uniformity in the thickness of films is produced by having reactive gases injected through multiple jets which are placed at uniformally distributed locations. Gas phase reaction materials are removed through an exhaust chimney which is positioned above the centrally located, heated pad or platform on which substrates are placed. A baffle is situated above the heated platform below the mouth of the chimney to prevent downdraft dispersion and scattering of gas phase reactant materials.
Combustion response to acoustic perturbation in liquid rocket engines
NASA Astrophysics Data System (ADS)
Ghafourian, Akbar
An experimental study of the effect of acoustic perturbations on combustion behavior of a model liquid propellant rocket engine has been carried out. A pair of compression drivers were used to excite transverse and longitudinal acoustic fields at strengths of up to 156.6 dB and 159.5 dB respectively in the combustion chamber of the experimental rocket engine. Propellant simulants were injected into the combustion chamber through a single element shear coaxial injector. Water and air were used in cold flow studies and ethanol and oxygen-enriched air were used as fuel and oxidizer in reacting hot flow studies. In cold flow studies an imposed transverse acoustic field had a more pronounced effect on the spray pattern than a longitudinal acoustic fields. A transverse acoustic field widened the spray by as much as 33 percent and the plane of impingement of the spray with chamber walls moved up closer to the injection plane. The behavior was strongly influenced by the gas phase velocity but was less sensitive to changes in the liquid phase velocity. In reacting hot flow studies the effects of changes in equivalence ratio, excitation amplitude, excitation frequency, liquid and gas phase velocity and chamber pressure on the response of the injector to imposed high frequency transverse acoustic excitation were measured. Reducing the equivalence ratio from 7.4 to 3.8 increased the chamber pressure response to the imposed excitation at 3000 Hz. Increasing the excitation amplitude from 147 dB to 155.6 dB at 3000 Hz increased the chamber pressure response to the excitation. In the frequency range of 1240 Hz to 3220 Hz, an excitation frequency of 3000 Hz resulted in the largest response of the chamber pressure indicating the importance of fluid dynamic coupling. Increasing the liquid phase velocity from 9.2 m/sec to 22.7 m/sec, did not change the amplitude of the chamber pressure response to excitation. This implied the importance of local equivalence ratio and not the overall equivalence ratio on chamber pressure response to excitation. Increasing the chamber pressure from 1.5 atm to 3.1 atm and gas phase velocity from 93.2 m/sec to 105.1 m/sec significantly increased the chamber pressure response to acoustic excitation. This emphasized the significance of the gas phase density and velocity. Measurements of the free radical C2 emission zone and Schlieren images indicated that transverse acoustic excitation moved the combustion zone closer to the injection plane and longitudinal acoustic excitation widened the combustion zone. The histogram of these images indicates that the area over which combustion takes place in the chamber increases under imposed acoustic excitation. This implied that more propellants combust prior to exiting from the exhaust nozzle under unsteady conditions.
Intermittently-fed high-pressure gasifier process
Bailey, J.M.; Zadoks, A.L.
1993-11-30
An improved gasifier is described which is adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications. 3 figures.
NASA Astrophysics Data System (ADS)
Amjad, M.; Salam, Z.; Ishaque, K.
2014-04-01
In order to design an efficient resonant power supply for ozone gas generator, it is necessary to accurately determine the parameters of the ozone chamber. In the conventional method, the information from Lissajous plot is used to estimate the values of these parameters. However, the experimental setup for this purpose can only predict the parameters at one operating frequency and there is no guarantee that it results in the highest ozone gas yield. This paper proposes a new approach to determine the parameters using a search and optimization technique known as Differential Evolution (DE). The desired objective function of DE is set at the resonance condition and the chamber parameter values can be searched regardless of experimental constraints. The chamber parameters obtained from the DE technique are validated by experiment.
Plasma driven neutron/gamma generator
Leung, Ka-Ngo; Antolak, Arlyn
2015-03-03
An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.
Intermittently-fed high-pressure gasifier process
Bailey, John M.; Zadoks, Abraham L.
1993-11-30
An improved gasifier adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications.
Some effects of cyclic induced deformation in rocket thrust chambers
NASA Technical Reports Server (NTRS)
Hannum, N. P.; Quentmeyer, R. J.
1979-01-01
A test program to investigate the deformation process observed in the hot gas wall of rocket thrust chambers was conducted using three different liner materials. Five thrust chambers were cycled to failure using hydrogen and oxygen as propellants at a chamber pressure of 4.14 MN/m square (600 psia). The deformation was observed nondestructively at midlife points and destructively after failure occurred. The cyclic life results are presented with an accompanying discussion about the types of failure encountered. Data indicating the deformation of the thrust chamber liner as cycles are accumulated are presented for each of the test thrust chambers.
Material-controlled dynamic vacuum insulation
Benson, D.K.; Potter, T.F.
1996-10-08
A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.
Variably insulating portable heater/cooler
Potter, Thomas F.
1998-01-01
A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.
Material-controlled dynamic vacuum insulation
Benson, David K.; Potter, Thomas F.
1996-10-08
A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.
Radiation-controlled dynamic vacuum insulation
Benson, David K.; Potter, Thomas F.
1995-01-01
A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.
Radiation-controlled dynamic vacuum insulation
Benson, D.K.; Potter, T.F.
1995-07-18
A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.
Variably insulating portable heater/cooler
Potter, T.F.
1998-09-29
A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.
Brown, Stephen K; Mahoney, K John; Cheng, Min
2004-01-01
Pollutant emissions from unflued gas heaters were assessed in CSIRO's Room Dynamic Environmental Chamber. This paper describes the chamber assessment procedure and presents findings for major commercial heaters that are nominally "low-emission". The chamber was operated at controlled conditions of temperature, humidity, ventilation and air mixing, representative of those encountered in typical indoor environments. A fixed rate of heat removal from the chamber air ensured that the heaters operated at constant heating rates, typically approximately 6 MJ/h which simulated operation of a heater after warm-up in an insulated dwelling in south-east Australia. The pollutants assessed were nitrogen dioxide, carbon monoxide, formaldehyde, VOCs and respirable suspended particulates. One type of heater was lower emitting for nitrogen dioxide, but emitted greater amounts of carbon monoxide and formaldehyde (the latter becoming significant to indoor air quality). When operated with low line pressure or slight misalignment of the gas burner, this heater became a hazardous source of these pollutants. Emissions from the heaters changed little after continuous operation for up to 2 months. Unflued gas heaters have been popular as primary heating sources in Australian homes for many years due to their ease of installation and energy efficiency, with approximately 600,000 now installed in housing and schools. However, with concerns over potential health impacts to occupants, manufacturers have reduced the nitrogen dioxide emissions from unflued gas heaters in Australia over recent years. They have done so with a target level for nitrogen dioxide in indoor air of 300 p.p.b. This is somewhat higher than the ambient air (and WHO) guideline of 110 p.p.b. Several studies of child respiratory health show an impact of unflued gas combustion products. A full characterization of the combustion products is needed under conditions that simulate heater operation in practice-this study was undertaken to provide such characterization. Key findings are that the focus needs to be on total gas emissions (not just nitrogen dioxide), and that heater installation can be very sensitive to small faults which lead to very high levels of toxic pollutants. These findings have influenced current government proposals for emission limits for these heaters.
Absolute photon-flux measurements in the vacuum ultraviolet
NASA Technical Reports Server (NTRS)
Samson, J. A. R.; Haddad, G. N.
1974-01-01
Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.
BOREAS TGB-1 NSA SF6 Chamber Flux Data
NASA Technical Reports Server (NTRS)
Crill, Patrick; Varner, Ruth K.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)
2000-01-01
The BOREAS TGB-1 team made several chamber and tower measurements of trace gases at sites in the BOREAS NSA. This data set contains sulfur hexafluoride (SF6) dark chamber flux measurements at the NSA-OJP and NSA-YJP sites from 16-May through 13-Sep-1994. Gas samples were extracted approximately every 7 days from dark chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.
Evaluation of Heat Recuperation in a Concentric Hydrogen Reduction Reactor
NASA Technical Reports Server (NTRS)
Linne, Diane; Kleinhenz, Julie; Hegde, Uday
2012-01-01
Heat recuperation in an ISRU reactor system involves the recovery of heat from a reacted regolith batch by transferring this energy into a batch of fresh regolith. One concept for a hydrogen reduction reactor is a concentric chamber design where heat is transferred from the inner, reaction chamber into fresh regolith in the outer, recuperation chamber. This concept was tested and analyzed to define the overall benefit compared to a more traditional single chamber batch reactor. Data was gathered for heat-up and recuperation in the inner chamber alone, simulating a single chamber design, as well as recuperation into the outer chamber, simulating a dual chamber design. Experimental data was also used to improve two analytical models, with good agreement for temperature behavior during recuperation, calculated mass of the reactor concepts, and energy required during heat-up. The five tests, performed using JSC-1A regolith simulant, also explored the effectiveness of helium gas fluidization, hydrogen gas fluidization, and vibrational fluidization. Results indicate that higher hydrogen volumetric flow rates are required compared to helium for complete fluidization and mixing, and that vibrational fluidization may provide equivalent mixing while eliminating the need to flow large amounts of excess hydrogen. Analysis of the total energy required for heat-up and steady-state operations for a variety of conditions and assumptions shows that the dual-chamber concept requires the same or more energy than the single chamber concept. With no clear energy savings, the added mass and complexity of the dual-chamber makes it unlikely that this design concept will provide any added benefit to the overall ISRU oxygen production system.
Prevention of breakdown behind railgun projectiles
Hawke, R.S.
1992-10-13
An electromagnetic railgun accelerator system, for accelerating projectiles by a plasma arc, introduces a breakdown inhibiting gas into the railgun chamber behind the accelerating projectile. The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF[sub 6]. The gas is introduced between the railgun rails after the projectile has passed through inlets in the rails or the projectile; by coating the rails or the projectile with a material which releases the gas after the projectile passes over it; by fabricating the rails or the projectile or insulators out of a material which releases the gas into the portions of the chamber through which the projectile has travelled. The projectile may have a cavity at its rear to control the release of ablation products. 12 figs.
Prevention of breakdown behind railgun projectiles
Hawke, R.S.
1992-09-01
An electromagnetic railgun accelerator system, for accelerating projectiles by a plasma arc, introduces a breakdown inhibiting gas into the railgun chamber behind the accelerating projectile. The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF[sub 6]. The gas is introduced between the railgun rails after the projectile has passed through inlets in the rails or the projectile; by coating the rails or the projectile with a material which releases the gas after the projectile passes over it; by fabricating the rails or the projectile or insulators out of a material which releases the gas into the portions of the chamber through which the projectile has travelled. The projectile may have a cavity at its rear to control the release of ablation products. 12 figs.
Pulmonary cyst and cerebral arterial gas embolism in a hypobaric chamber: a case report.
Cable, G G; Keeble, T; Wilson, G
2000-02-01
This is a report of an aircrew member who suffered a serious physiological incident in the form of pulmonary barotrauma and cerebral arterial gas embolism during hypobaric chamber training, and who subsequently was shown to have a cyst in the upper lobe of the left lung. The likely origin of the cyst is discussed, as well as the aeromedical disposition following thoracotomy and apical segmentectomy to remove the cyst.
Donchev, Todor I [Urbana, IL; Petrov, Ivan G [Champaign, IL
2011-05-31
Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.
Gas turbine exhaust nozzle. [for noise reduction
NASA Technical Reports Server (NTRS)
Straight, D. M. (Inventor)
1973-01-01
An elongated hollow string is disposed in an exhaust nozzle combustion chamber and communicates with an air source through hollow struts at one end. The other end of the string is bell-mouth shaped and extends over the front portion of a nozzle plug. The bell-mouth may be formed by pivotally mounted flaps or leaves which are used to vary the exhaust throat area and the area between the plug and the leaves. Air from the engine inlet flows into the string and also between the combustion chamber and a housing disposed around the chamber. The air cools the plug and serves as a low velocity inner core of secondary gas to provide noise reduction for the primary exhaust gas while the other air, when it exits from the nozzle, forms an outer low velocity layer to further reduce noise. The structure produces increased thrust in a turbojet or turbofan engine.
Wide range radioactive gas concentration detector
Anderson, David F.
1984-01-01
A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.
Charron, Richard; Pierce, Daniel
2015-08-11
A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. Furthermore, the shaft cover support may include a cooling shield supply extending from the cooling fluid chamber between the radially outward inlet and the radially inward outlet on the radially extending region and in fluid communication with the cooling fluid chamber for providing cooling fluids to a transition section. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates a transition section extending between compressor and turbine sections of the gas turbine engine.
Feasibility Study for a Practical High Rotor Tip Clearance Turbine.
GAS TURBINE BLADES ), (* TURBINE BLADES , TOLERANCES(MECHANICS)), (* TURBOFAN ENGINES , GAS TURBINES , AXIAL FLOW TURBINES , AXIAL FLOW TURBINE ROTORS...AERODYNAMIC CONFIGURATIONS, LEAKAGE(FLUID), MEASUREMENT, TEST METHODS, PERFORMANCE( ENGINEERING ), MATHEMATICAL PREDICTION, REDUCTION, PRESSURE, PREDICTIONS, NOZZLE GAS FLOW, COMBUSTION CHAMBER GASES, GAS FLOW.
Scaling study of the combustion performance of gas—gas rocket injectors
NASA Astrophysics Data System (ADS)
Wang, Xiao-Wei; Cai, Guo-Biao; Jin, Ping
2011-10-01
To obtain the key subelements that may influence the scaling of gas—gas injector combustor performance, the combustion performance subelements in a liquid propellant rocket engine combustor are initially analysed based on the results of a previous study on the scaling of a gas—gas combustion flowfield. Analysis indicates that inner wall friction loss and heat-flux loss are two key issues in gaining the scaling criterion of the combustion performance. The similarity conditions of the inner wall friction loss and heat-flux loss in a gas—gas combustion chamber are obtained by theoretical analyses. Then the theoretical scaling criterion was obtained for the combustion performance, but it proved to be impractical. The criterion conditions, the wall friction and the heat flux are further analysed in detail to obtain the specific engineering scaling criterion of the combustion performance. The results indicate that when the inner flowfields in the combustors are similar, the combustor wall shear stress will have similar distributions qualitatively and will be directly proportional to pc0.8dt-0.2 quantitatively. In addition, the combustion peformance will remain unchanged. Furthermore, multi-element injector chambers with different geometric sizes and at different pressures are numerically simulated and the wall shear stress and combustion efficiencies are solved and compared with each other. A multielement injector chamber is designed and hot-fire tested at several chamber pressures and the combustion performances are measured in a total of nine hot-fire tests. The numerical and experimental results verified the similarities among combustor wall shear stress and combustion performances at different chamber pressures and geometries, with the criterion applied.
BOREAS TGB-1/TGB-3 CH4 Chamber Flux Data over the NSA Fen
NASA Technical Reports Server (NTRS)
Bubier, Jill L.; Moore, Tim R.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)
2000-01-01
The BOREAS TGB-3 team collected methane (CH4) chamber flux measurements at the NSA fen site during May-September 1994 and June-October 1996. Gas samples were extracted approximately every 7 days from chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.
USDA-ARS GRACEnet Project Protocols, Chapter 3. Chamber-based trace gas flux measurements4
USDA-ARS?s Scientific Manuscript database
This protocol addresses N2O, CO2 and CH4 flux measurement by soil chamber methodology. The reactivities of other gasses of interest such as NOx O3, CO, and NH3 will require different chambers and associated instrumentation. Carbon dioxide is included as an analyte with this protocol; however, when p...
Method and apparatus for filling thermal insulating systems
Arasteh, D.K.
1992-01-14
A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air. 3 figs.
Ultratrace detector for hand-held gas chromatography
Andresen, Brian D.; Miller, Fred S.
1999-01-01
An ultratrace detector system for hand-held gas chromatography having high sensitivity, for example, to emissions generated during production of weapons, biological compounds, drugs, etc. The detector system is insensitive to water, air, helium, argon, oxygen, and C0.sub.2. The detector system is basically composed of a hand-held capillary gas chromatography (GC), an insulated heated redox-chamber, a detection chamber, and a vapor trap. For example, the detector system may use gas phase redox reactions and spectral absorption of mercury vapor. The gas chromatograph initially separates compounds that percolate through a bed of heated mercuric oxide (HgO) in a silica--or other metal--aerogel material which acts as an insulator. Compounds easily oxidized by HgO liberate atomic mercury that subsequently pass through a detection chamber which includes a detector cell, such as quartz, that is illuminated with a 254 nm ultra-violet (UV) mercury discharge lamp which generates the exact mercury absorption bands that are used to detect the liberated mercury atoms. Atomic mercury strongly absorbs 254 nm energy is therefore a specific signal for reducing compounds eluting from the capillary GC, whereafter the atomic mercury is trapped for example, in a silicon-aerogel trap.
Laboratory-based validation of the baseline sensors of the ITER diagnostic residual gas analyzer
NASA Astrophysics Data System (ADS)
Klepper, C. C.; Biewer, T. M.; Marcus, C.; Andrew, P.; Gardner, W. L.; Graves, V. B.; Hughes, S.
2017-10-01
The divertor-specific ITER Diagnostic Residual Gas Analyzer (DRGA) will provide essential information relating to DT fusion plasma performance. This includes pulse-resolving measurements of the fuel isotopic mix reaching the pumping ducts, as well as the concentration of the helium generated as the ash of the fusion reaction. In the present baseline design, the cluster of sensors attached to this diagnostic's differentially pumped analysis chamber assembly includes a radiation compatible version of a commercial quadrupole mass spectrometer, as well as an optical gas analyzer using a plasma-based light excitation source. This paper reports on a laboratory study intended to validate the performance of this sensor cluster, with emphasis on the detection limit of the isotopic measurement. This validation study was carried out in a laboratory set-up that closely prototyped the analysis chamber assembly configuration of the baseline design. This includes an ITER-specific placement of the optical gas measurement downstream from the first turbine of the chamber's turbo-molecular pump to provide sufficient light emission while preserving the gas dynamics conditions that allow for \\textasciitilde 1 s response time from the sensor cluster [1].
Comparing Novel Multi-Gap Resistive Plate Chamber Models
NASA Astrophysics Data System (ADS)
Stien, Haley; EIC PID Consortium Collaboration
2016-09-01
Investigating nuclear structure has led to the fundamental theory of Quantum Chromodynamics. An Electron Ion Collider (EIC) is a proposed accelerator that would further these investigations. In order to prepare for the EIC, there is an active detector research and development effort. One specific goal is to achieve better particle identification via improved Time of Flight (TOF) detectors. A promising option is the Multi-Gap Resistive Plate Chamber (mRPC). These detectors are similar to the more traditional RPCs, but their active gas gaps have dividers to form several thinner gas gaps. These very thin and accurately defined gas gaps improve the timing resolution of the chamber, so the goal is to build an mRPC with the thinnest gaps to achieve the best possible timing resolution. Two different construction techniques have been employed to make two mRPCs. The first technique is to physically separate the gas gaps with sheets of glass that are .2mm thick. The second technique is to 3D print the layered gas gaps. A comparison of these mRPCs and their performances will be discussed and the latest data presented. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.
Tobacco smoke aging in the presence of ozone: A room-sized chamber study
NASA Astrophysics Data System (ADS)
Petrick, Lauren M.; Sleiman, Mohamad; Dubowski, Yael; Gundel, Lara A.; Destaillats, Hugo
2011-09-01
Exposure to tobacco pollutants that linger indoors after smoking has taken place ( thirdhand smoke, THS) can occur over extended periods and is modulated by chemical processes involving atmospheric reactive species. This study investigates the role of ozone and indoor surfaces in chemical transformations of tobacco smoke residues. Gas and particle constituents of secondhand smoke (SHS) as well as sorbed SHS on chamber internal walls and model materials (cotton, paper, and gypsum wallboard) were characterized during aging. After smoldering 10 cigarettes in a 24-m 3 room size chamber, gas-phase nicotine was rapidly removed by sorption to chamber surfaces, and subsequently re-emitted during ventilation with clean air to a level of ˜10% that during the smoking phase. During chamber ventilation in the presence of ozone (180 ppb), ozone decayed at a rate of 5.6 h -1 and coincided with a factor of 5 less nicotine sorbed to wallboard. In the presence of ozone, no gas phase nicotine was detected as a result of re-emission, and higher concentrations of nicotine oxidation products were observed than when ventilation was performed with ozone-free air. Analysis of the model surfaces showed that heterogeneous nicotine-ozone reaction was faster on paper than cotton, and both were faster than on wallboard. However, wallboard played a dominant role in ozone-initiated reaction in the chamber due to its large total geometric surface area and sink potential compared to the other substrates. This study is the first to show in a room-sized environmental chamber that the heterogeneous ozone chemistry of sorbed nicotine generates THS constituents of concern, as observed previously in bench-top studies. In addition to the main oxidation products (cotinine, myosmine and N-methyl formamide), nicotine-1-oxide was detected for the first time.
Process and apparatus for obtaining samples of liquid and gas from soil
Rossabi, J.; May, C.P.; Pemberton, B.E.; Shinn, J.; Sprague, K.
1999-03-30
An apparatus and process for obtaining samples of liquid and gas from subsurface soil is provided having filter zone adjacent an external expander ring. The expander ring creates a void within the soil substrate which encourages the accumulation of soil-borne fluids. The fluids migrate along a pressure gradient through a plurality of filters before entering a first chamber. A one-way valve regulates the flow of fluid into a second chamber in further communication with a collection tube through which samples are collected at the surface. A second one-way valve having a reverse flow provides additional communication between the chambers for the pressurized cleaning and back-flushing of the apparatus. 8 figs.
Process and apparatus for obtaining samples of liquid and gas from soil
Rossabi, Joseph; May, Christopher P.; Pemberton, Bradley E.; Shinn, Jim; Sprague, Keith
1999-01-01
An apparatus and process for obtaining samples of liquid and gas from subsurface soil is provided having filter zone adjacent an external expander ring. The expander ring creates a void within the soil substrate which encourages the accumulation of soil-borne fluids. The fluids migrate along a pressure gradient through a plurality of filters before entering a first chamber. A one-way valve regulates the flow of fluid into a second chamber in further communication with a collection tube through which samples are collected at the surface. A second one-way valve having a reverse flow provides additional communication between the chambers for the pressurized cleaning and back-flushing of the apparatus.
High-sensitivity Leak-testing Method with High-Resolution Integration Technique
NASA Astrophysics Data System (ADS)
Fujiyoshi, Motohiro; Nonomura, Yutaka; Senda, Hidemi
A high-resolution leak-testing method named HR (High-Resolution) Integration Technique has been developed for MEMS (Micro Electro Mechanical Systems) sensors such as a vibrating angular-rate sensor housed in a vacuum package. Procedures of the method to obtain high leak-rate resolution were as follows. A package filled with helium gas was kept in a small accumulation chamber to accumulate helium gas leaking from the package. After the accumulation, the accumulated helium gas was introduced into a mass spectrometer in a short period of time, and the flux of the helium gas was measured by the mass spectrometer as a transient phenomenon. The leak-rate of the package was calculated from the detected transient waveform of the mass spectrometer and the accumulation time of the helium gas in the accumulation chamber. Because the density of the helium gas in the vacuum chamber increased and the accumulated helium gas was measured in a very short period of time with the mass spectrometer, the peak strength of the transient waveform became high and the signal to noise ratio was much improved. The detectable leak-rate resolution of the technique reached 1×10-15 (Pa·m3/s). This resolution is 103 times superior to that of the conventional helium vacuum integration method. The accuracy of the measuring system was verified with a standard helium gas leak source. The results were well matched between theoretical calculation based on the leak-rate of the source and the experimental results within only 2% error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, Q.; May, A. A.; Kreidenweis, Sonia M.
Here, smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle andmore » vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimations of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one-third of the initial particle-phase organic mass (41 %) was lost during the experiments, and over half of this particle-organic mass loss was from direct particle wall loss (65 % of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (35 % of the loss). We perform a series of sensitivity tests to understand uncertainties in our simulations. Uncertainty in the initial wood-smoke volatility distribution contributes 18 % uncertainty to the final particle-organic mass remaining in the chamber (relative to base-assumption simulation). We show that the total mass loss may depend on the effective saturation concentration of vapor with respect to the walls as these values currently vary widely in the literature. The details of smoke dilution during the filling of smog chambers may influence the mass loss to the walls, and a dilution of ~ 25:1 during the experiments increased particle-organic mass loss by 33 % compared to a simulation where we assume the particles and vapors are initially in equilibrium in the chamber. Finally, we discuss how our findings may influence interpretations of emission factors and SOA production in wood-smoke smog-chamber experiments.« less
New drift chamber technology for high energy gamma-ray telescopes
NASA Astrophysics Data System (ADS)
Hunter, Stanley D.; Cuddapah, Rajani
1990-08-01
Work to develop a low-power amplifier and discriminator for use on space qualifiable drift chambers is discussed. Consideration is given to the goals of the next generation of high-energy gamma-ray telescope design and to how the goals can be achieved using xenon gas drift chambers. The design and construction of a low power drift chamber amplifier and discriminator are described, and the design of a quad-time-to-amplitude converter is outlined.
Real-time airborne particle analyzer
Reilly, Peter T.A.
2012-10-16
An aerosol particle analyzer includes a laser ablation chamber, a gas-filled conduit, and a mass spectrometer. The laser ablation chamber can be operated at a low pressure, which can be from 0.1 mTorr to 30 mTorr. The ablated ions are transferred into a gas-filled conduit. The gas-filled conduit reduces the electrical charge and the speed of ablated ions as they collide and mix with buffer gases in the gas-filled conduit. Preferably, the gas filled-conduit includes an electromagnetic multipole structure that collimates the nascent ions into a beam, which is guided into the mass spectrometer. Because the gas-filled conduit allows storage of vast quantities of the ions from the ablated particles, the ions from a single ablated particle can be analyzed multiple times and by a variety of techniques to supply statistically meaningful analysis of composition and isotope ratios.
Electrochemical Device Comprising an Electrically-Conductive, Selectively-Permeable Membrane
NASA Technical Reports Server (NTRS)
Laicer, Castro S. T. (Inventor); Mittelsteadt, Cortney K. (Inventor); Harrison, Katherine E. (Inventor); McPheeters, Bryn M. (Inventor)
2017-01-01
An electrochemical device, such as a fuel cell or an electrolyzer. In one embodiment, the electrochemical device includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, the membrane including a solid polymer electrolyte and a non-particulate, electrically-conductive material, such as carbon nanotubes, carbon nanofibers, and/or metal nanowires. In addition, each bipolar plate also includes an electrically-conductive fluid chamber in contact with the electrically-conductive, selectively-permeable membrane and further includes a non-porous and electrically-conductive plate in contact with the fluid chamber.
NASA Astrophysics Data System (ADS)
Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki
2015-09-01
We investigate the mechanism of the sterilization with plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals are separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas uses humidified mixture of nitrogen and oxygen. Geobacillus stearothermophilus spores and tyrosine which is amino acid are treated by the plasma-excited neutral gas. Shape change of the treated spore is observed by SEM, and chemical modification of the treated tyrosine is analyzed by HPLC. As a result, the surface of the treated spore shows depression. Hydroxylation and nitration of tyrosine are shown after the treatment. For these reasons, we believe that the sterilization with plasma-excited neutral gas results from the deformation of spore structure due to the chemical modification of amino acid.
Xu, Ying; Liu, Zhe; Park, Jinsoo; Clausen, Per A; Benning, Jennifer L; Little, John C
2012-11-20
The emission of di-2-ethylhexyl phthalate (DEHP) from vinyl flooring (VF) was measured in specially designed stainless steel chambers. In duplicate chamber studies, the gas-phase concentration in the chamber increased slowly and reached a steady state level of 0.8-0.9 μg/m(3) after about 20 days. By increasing the area of vinyl flooring and decreasing that of the stainless steel surface within the chamber, the time to reach steady state was significantly reduced, compared to a previous study (1 month versus 5 months). The adsorption isotherm of DEHP on the stainless steel chamber surfaces was explicitly measured using solvent extraction and thermal desorption. The strong partitioning of DEHP onto the stainless steel surface was found to follow a simple linear relationship. Thermal desorption resulted in higher recovery than solvent extraction. Investigation of sorption kinetics showed that it takes several weeks for the sorption of DEHP onto the stainless steel surface to reach equilibrium. The content of DEHP in VF was measured at about 15% (w/w) using pressurized liquid extraction. The independently measured or calculated parameters were used to validate an SVOC emission model, with excellent agreement between model prediction and the observed gas-phase DEHP chamber concentrations.
Etching Rate of Silicon Dioxide Using Chlorine Trifluoride Gas
NASA Astrophysics Data System (ADS)
Miura, Yutaka; Kasahara, Yu; Habuka, Hitoshi; Takechi, Naoto; Fukae, Katsuya
2009-02-01
The etching rate behavior of silicon dioxide (SiO2, fused silica) using chlorine trifluoride (ClF3) gas is studied at substrate temperatures between 573 and 1273 K at atmospheric pressure in a horizontal cold-wall reactor. The etching rate increases with the ClF3 gas concentration, and the overall reaction is recognized to be of the first order. The change of the etching rate with increasing substrate temperature is nonlinear, and the etching rate tends to approach a constant value at temperatures exceeding 1173 K. The overall rate constant is estimated by numerical calculation, taking into account the transport phenomena in the reactor, including the chemical reaction at the substrate surface. The activation energy obtained in this study is 45.8 kJ mol-1, and the rate constant is consistent with the measured etching rate behavior. A reactor system in which there is minimum etching of the fused silica chamber by ClF3 gas can be achieved using an IR lamp heating unit and a chamber cooling unit to maintain a sufficiently low temperature of the chamber wall.
Device for collecting and analyzing matrix-isolated samples
Reedy, Gerald T.
1979-01-01
A gas-sample collection device is disclosed for matrix isolation of individual gas bands from a gas chromatographic separation and for presenting these distinct samples for spectrometric examination. The device includes a vacuum chamber containing a rotatably supported, specular carrousel having a number of external, reflecting surfaces around its axis of rotation for holding samples. A gas inlet is provided for depositing sample and matrix material on the individual reflecting surfaces maintained at a sufficiently low temperature to cause solidification. Two optical windows or lenses are installed in the vacuum chamber walls for transmitting a beam of electromagnetic radiation, for instance infrared light, through a selected sample. Positioned within the chamber are two concave mirrors, the first aligned to receive the light beam from one of the lenses and focus it to the sample on one of the reflecting surfaces of the carrousel. The second mirror is aligned to receive reflected light from that carrousel surface and to focus it outwardly through the second lens. The light beam transmitted from the sample is received by a spectrometer for determining absorption spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biewer, Theodore M.; Marcus, Chris; Klepper, C Christopher
The divertor-specific ITER Diagnostic Residual Gas Analyzer (DRGA) will provide essential information relating to DT fusion plasma performance. This includes pulse-resolving measurements of the fuel isotopic mix reaching the pumping ducts, as well as the concentration of the helium generated as the ash of the fusion reaction. In the present baseline design, the cluster of sensors attached to this diagnostic's differentially pumped analysis chamber assembly includes a radiation compatible version of a commercial quadrupole mass spectrometer, as well as an optical gas analyzer using a plasma-based light excitation source. This paper reports on a laboratory study intended to validate themore » performance of this sensor cluster, with emphasis on the detection limit of the isotopic measurement. This validation study was carried out in a laboratory set-up that closely prototyped the analysis chamber assembly configuration of the baseline design. This includes an ITER-specific placement of the optical gas measurement downstream from the first turbine of the chamber's turbo-molecular pump to provide sufficient light emission while preserving the gas dynamics conditions that allow for \\textasciitilde 1 s response time from the sensor cluster [1].« less
A closed-chamber method to measure greenhouse gas fluxes from dry aquatic sediments
NASA Astrophysics Data System (ADS)
Lesmeister, Lukas; Koschorreck, Matthias
2017-06-01
Recent research indicates that greenhouse gas (GHG) emissions from dry aquatic sediments are a relevant process in the freshwater carbon cycle. However, fluxes are difficult to measure because of the often rocky substrate and the dynamic nature of the habitat. Here we tested the performance of different materials to seal a closed chamber to stony ground both in laboratory and field experiments. Using on-site material consistently resulted in elevated fluxes. The artefact was caused both by outgassing of the material and production of gas. The magnitude of the artefact was site dependent - the measured CO2 flux increased between 10 and 208 %. Errors due to incomplete sealing proved to be more severe than errors due to non-inert sealing material.Pottery clay as sealing material provided a tight seal between the chamber and the ground and no production of gases was detected. With this approach it is possible to get reliable gas fluxes from hard-substrate sites without using a permanent collar. Our test experiments confirmed that CO2 fluxes from dry aquatic sediments are similar to CO2 fluxes from terrestrial soils.
Robertson, Eric P [Idaho Falls, ID; Christiansen, Richard L [Littleton, CO
2007-05-29
A method of optically determining a change in magnitude of at least one dimensional characteristic of a sample in response to a selected chamber environment. A magnitude of at least one dimension of the at least one sample may be optically determined subsequent to altering the at least one environmental condition within the chamber. A maximum change in dimension of the at least one sample may be predicted. A dimensional measurement apparatus for indicating a change in at least one dimension of at least one sample. The dimensional measurement apparatus may include a housing with a chamber configured for accommodating pressure changes and an optical perception device for measuring a dimension of at least one sample disposed in the chamber. Methods of simulating injection of a gas into a subterranean formation, injecting gas into a subterranean formation, and producing methane from a coal bed are also disclosed.
Robertson, Eric P; Christiansen, Richard L.
2007-10-23
A method of optically determining a change in magnitude of at least one dimensional characteristic of a sample in response to a selected chamber environment. A magnitude of at least one dimension of the at least one sample may be optically determined subsequent to altering the at least one environmental condition within the chamber. A maximum change in dimension of the at least one sample may be predicted. A dimensional measurement apparatus for indicating a change in at least one dimension of at least one sample. The dimensional measurement apparatus may include a housing with a chamber configured for accommodating pressure changes and an optical perception device for measuring a dimension of at least one sample disposed in the chamber. Methods of simulating injection of a gas into a subterranean formation, injecting gas into a subterranean formation, and producing methane from a coal bed are also disclosed.
NASA Technical Reports Server (NTRS)
van Boeyen, Roger W. (Inventor); Reeh, Jonathan A. (Inventor); Kesmez, Mehmet (Inventor); Heselmeyer, Eric A. (Inventor); Parkey, Jeffrey S. (Inventor)
2016-01-01
An electrochemically actuated pump and an electrochemical actuator for use with a pump. The pump includes one of various stroke volume multiplier configurations with the pressure of a pumping fluid assisting actuation of a driving fluid bellows. The electrochemical actuator has at least one electrode fluidically coupled to the driving fluid chamber of the first pump housing and at least one electrode fluidically coupled to the driving fluid chamber of the second pump housing. Accordingly, the electrochemical actuator selectively pressurizes hydrogen gas within a driving fluid chamber. The actuator may include a membrane electrode assembly including an ion exchange membrane with first and second catalyzed electrodes in contact with opposing sides of the membrane, and first and second hydrogen gas chambers in fluid communication with the first and second electrodes, respectively. A controller may reverse the polarity of a voltage source electrically coupled to the current collectors.
Gas identification by dynamic measurements of SnO2 sensors
NASA Astrophysics Data System (ADS)
Vorobioff, Juan; Rodriguez, Daniel; Boselli, Alfredo; Lamagna, Alberto; Rinaldi, Carlos
2011-09-01
It is well know that the use of chambers with the sensors in the e-nose improves the measurements, due to a constant gas flow and the controlled temperature sensors[1]. Normally, the chamber temperature is above room temperature due to the heat generated by the heater of sensors. Also, the chamber takes a long time to reach a stable equilibrium temperature and it depends on enviromental conditions. Besides, the temperature variations modify the humidity producing variations in resistance measurements[2]. In this work using a heater system that controls the temperature of the chamber, the desorption process on SnO2 sensor array was study[3]. Also, it was fitted the data signal sensors using a two exponential decay functions in order to determine the desorbing constant process. These constants were used to classify and identify different alcohols and their concentrations.
Pressure-Equalizing Cradle for Booster Rocket Mounting
NASA Technical Reports Server (NTRS)
Rutan, Elbert L. (Inventor)
2015-01-01
A launch system and method improve the launch efficiency of a booster rocket and payload. A launch aircraft atop which the booster rocket is mounted in a cradle, is flown or towed to an elevation at which the booster rocket is released. The cradle provides for reduced structural requirements for the booster rocket by including a compressible layer, that may be provided by a plurality of gas or liquid-filled flexible chambers. The compressible layer contacts the booster rocket along most of the length of the booster rocket to distribute applied pressure, nearly eliminating bending loads. Distributing the pressure eliminates point loading conditions and bending moments that would otherwise be generated in the booster rocket structure during carrying. The chambers may be balloons distributed in rows and columns within the cradle or cylindrical chambers extending along a length of the cradle. The cradle may include a manifold communicating gas between chambers.
System Would Regulate Low Gas Pressure
NASA Technical Reports Server (NTRS)
Frazer, Robert E.
1994-01-01
System intended to maintain gases in containers at pressures near atmospheric. Includes ballast volume in form of underinflated balloon that communicates with working volume. Balloon housed in rigid chamber not subjected to extremes of temperature of working volume. Pressure in chamber surrounding balloon regulated at ambient atmospheric pressure or at constant small differential pressure above or below ambient. Expansion and contraction of balloon accommodates expansion or contraction of gas during operational heating or cooling in working volume, maintaining pressure in working volume at ambient or constant differential above or below ambient. Gas lost from system due to leakage or diffusion, low-pressure sensor responds, signaling valve actuators to supply more gas to working volume. If pressure rises too high, overpressure relief valve opens before excessive pressure damages system.
A new plant chamber facility PLUS coupled to the atmospheric simulation chamber SAPHIR
NASA Astrophysics Data System (ADS)
Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.
2015-11-01
A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been build and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees are mixed with synthetic air and are transferred to the SAPHIR chamber where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOC) can be studied in detail. In PLUS all important enviromental parameters (e.g. temperature, PAR, soil RH etc.) are well-controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leafes of the plants is constructed such that gases are exposed to FEP Teflon film and other Teflon surfaces only to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 LED panels which have an emission strength up to 800 μmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOC) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light and temperature dependent BVOC emissions are studied using six Quercus Ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus Ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental set up and the utility of the newly added plant chamber.
NASA Astrophysics Data System (ADS)
Ahmad, N.; Mirza, Nasir M.; Mirza, Sikander M.; Rashid, T.; Tufail, M.; Khan, Liaquat A.
1992-09-01
The ( I, V) characteristics of two and three electrode ionization chamber filled with argon gas have been studied. To determine the sensitivity and the response with increase in exposure rate, the chamber was tested with a 60Co commercial irradiator. The response is linear up to more than 1.5 krad/h. The experimentally measured sensitivity of the chamber is 1.849×10 -13 A/cm 3 per rad/h when the argon gas pressure in the chamber is 1.24 GPa (180 psi). The effect of transparency of the intermediate electrod on the saturation current due to 137Cs gamma-rays has also been studied. The experimental results show that the electrode with holes of small diameter acts as a better intermediate electrode as compared to the electrodes without holes or with holes of a larger diameter. The chamber has also been teste with fission product gamma-rays from spent fuel elements of a typical pool type research reactor. The results indicate that the presence of an intermediate electrode lowers the operating voltage by 50% and reduces the slope in the plateau region.
Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai
2008-06-01
We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N(2) can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140 degrees C), low atmospheric pressure (5-10 mbar), and a gas composition like that of Mars during long-term experiments.
NASA Astrophysics Data System (ADS)
Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai
2008-06-01
We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N2 can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140°C), low atmospheric pressure (5 10 mbar), and a gas composition like that of Mars during long-term experiments.
Electrochemical CO2 Reduction via Gas-Phase Catholyte
NASA Astrophysics Data System (ADS)
Carter, Brittany E.; Nesbitt, Nathan T.; D'Imperio, Luke A.; Naughton, Jeffrey R.; Courtney, Dave T.; Shepard, Steve; Burns, Michael J.; Vermaas, David A.; Smith, Wilson A.; Naughton, Michael J.
Reducing CO2 to CO through electrolysis, for the eventual conversion to hydrocarbons, provides a path towards utility-scale seasonal storage of renewable energy. Electrochemical reduction of CO2 has previously been achieved using a two chamber system. The chambers are typically separated by a semipermeable Nafion membrane, with an oxygen evolution catalyst anode on one side, a gold cathode on the other, and a solution containing CO2 on both sides. If instead, CO2 gas was in the second chamber, the reaction should yield more CO formed from CO2 at a given overpotential; this would result from the increased concentration of CO2 at the cathode surface and more facile mass transport of the CO and CO2. With liquid in one chamber and gas in the other, electrolysis is performed by integrating the cathode onto the semipermeable Nafion membrane. This membrane electrode assembly is fabricated via nanoimprint lithography (NIL), simultaneously achieving high active surface area and permeability. Challenges to the Nafion NIL process, and the performance of the system in CO2 reduction, will be presented. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1258923).
Yeh, Geoffrey K; Ziemann, Paul J
2014-09-18
In this study, C8-C14 n-alkanes were reacted with OH radicals in the presence of NO(x) in a Teflon film environmental chamber and isomer-specific yields of alkyl nitrates were determined using gas chromatography. Because results indicated significant losses of alkyl nitrates to chamber walls, gas-wall partitioning was investigated by monitoring the concentrations of a suite of synthesized alkyl nitrates added to the chamber. Gas-to-wall partitioning increased with increasing carbon number and with proximity of the nitrooxy group to the terminal carbon, with losses as high as 86%. The results were used to develop a structure-activity model to predict the effects of carbon number and isomer structure on gas-wall partitioning, which was used to correct the measured yields of alkyl nitrate isomers formed in chamber reactions. The resulting branching ratios for formation of secondary alkyl nitrates were similar for all isomers of a particular carbon number, and average values, which were almost identical to alkyl nitrate yields, were 0.219, 0.206, 0.254, 0.291, and 0.315 for reactions of n-octane, n-decane, n-dodecane, n-tridecane, and n-tetradecane, respectively. The increase in average branching ratios and alkyl nitrate yields with increasing carbon number to a plateau value of ∼0.30 at about C13-C14 is consistent with predictions of a previously developed model, indicating that the model is valid for alkane carbon numbers ≥C3.
Brobeck, W.M.
1959-02-24
An ion source is described wherein a portion of the filament serving as a cathode for the arc is protected from the effects of non-ionized particles escaping from the ionizing mechanism. In the described ion source, the source block has a gas chamber and a gas passage extending from said gas chamber to two adjacent faces of the source block. A plate overlies the passage and abuts one of the aforementioned block faces, while extending beyond the other face. In addition, the plate is apertured in line with the block passage. The filament overlies the aperture to effectively shield the portion of the filament not directiy aligned with the passage where the arc is produced.
Electrochemical mercerization, souring, and bleaching of textiles
Cooper, J.F.
1995-10-10
Economical, pollution-free treatment of textiles occurs in a low voltage electrochemical cell that mercerizes (or scours), sours, and optionally bleaches without effluents and without the purchase of bulk caustic, neutralizing acids, or bleaches. The cell produces base in the cathodic chamber for mercerization and an equivalent amount of acid in the anodic chamber for neutralizing the fabric. Gas diffusion electrodes are used for one or both electrodes and may simultaneously generate hydrogen peroxide for bleaching. The preferred configuration is a stack of bipolar electrodes, in which one or both of the anode and cathode are gas diffusion electrodes, and where no hydrogen gas is evolved at the cathode. 5 figs.
Schmidinger, G; Pemp, B; Werner, L
2013-11-01
A patient with endothelial dystrophy was treated with Descemet stripping automated endothelial keratoplasty (DSAEK) combined with cataract extraction and implantation of a hydrophilic intraocular lens (IOL, Lentis-L312, Oculentis) but visual acuity dropped from 0.15 logMAR to 0.52 logMAR 18 months later due to calcification of the IOL. With new methods of lamellar corneal transplantation being used more frequently the number of necessary anterior chamber tamponades with air/gas are increasing. In cataract cases in which a gas tamponade and transplantation might be necessary later on (cornea guttata), hydrophilic IOLs should be avoided.
Electrochemical mercerization, souring, and bleaching of textiles
Cooper, John F.
1995-01-01
Economical, pollution-free treatment of textiles occurs in a low voltage electrochemical cell that mercerizes (or scours), sours, and optionally bleaches without effluents and without the purchase of bulk caustic, neutralizing acids, or bleaches. The cell produces base in the cathodic chamber for mercerization and an equivalent amount of acid in the anodic chamber for neutralizing the fabric. Gas diffusion electrodes are used for one or both electrodes and may simultaneously generate hydrogen peroxide for bleaching. The preferred configuration is a stack of bipolar electrodes, in which one or both of the anode and cathode are gas diffusion electrodes, and where no hydrogen gas is evolved at the cathode.
Evaluation of Start Transient Oscillations with the J-2X Engine Gas Generator Assembly
NASA Technical Reports Server (NTRS)
Hulka, J. R.; Morgan, C. J.; Casiano, M. J.
2015-01-01
During development of the gas generator for the liquid oxygen/liquid hydrogen propellant J-2X rocket engine, distinctive and oftentimes high-amplitude pressure oscillations and hardware vibrations occurred during the start transient of nearly every workhorse gas generator assembly test, as well as during many tests of engine system hardware. These oscillations appeared whether the steady-state conditions exhibited stable behavior or not. They occurred similarly with three different injector types, and with every combustion chamber configuration tested, including chamber lengths ranging over a 5:1 range, several different nozzle types, and with or without a side branch line simulating a turbine spin start gas supply line. Generally, two sets of oscillations occurred, one earlier in the start transient and at higher frequencies, and the other almost immediately following and at lower frequencies. Multiple dynamic pressure measurements in the workhorse combustion chambers indicated that the oscillations were associated with longitudinal acoustic modes of the combustion chambers, with the earlier and higher frequency oscillation usually related to the second longitudinal acoustic mode and the later and lower frequency oscillation usually related to the first longitudinal acoustic mode. Given that several early development gas generator assemblies exhibited unstable behavior at frequencies near the first longitudinal acoustic modes of longer combustion chambers, the start transient oscillations are presumed to provide additional insight into the nature of the combustion instability mechanisms. Aspects of the steadystate oscillations and combustion instabilities from development and engine system test programs have been reported extensively in the three previous JANNAF Liquid Propulsion Subcommittee meetings (see references below). This paper describes the hardware configurations, start transient sequence operations, and transient and dynamic test data during the start transient. The implications of these results on previous analyses and understanding of the combustion instability observed during steady-state conditions, especially the effects of injector influences, is discussed.
APPARATUS AND METHOD FOR INJECTION CASTING
Shuck, A.B.
1960-09-13
S>A single-chamber metal casting apparatus is described wherein molten metal in a vertically movable container can be brought directly into contact with molds. By increasing the gas pressure within the chamber the metal is forced upward into the molds.
Guide for the Assessment of the Vapor Intrusion Pathway
2006-02-01
variability. There are two basic types of flux chambers: the static chamber and the dynamic chamber. The static chamber does not use "sweep" gas to maintain...DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED I February 2006 FINAL 4. TITLE AND SUBTITLE 5. FUNDING...sites, the problem is typically limited to a handful of chemicals. This guidance will be most useful for two groups of Air Force environmental managers
Combustion Stability Analyses for J-2X Gas Generator Development
NASA Technical Reports Server (NTRS)
Hulka, J. R.; Protz, C. S.; Casiano, M. J.; Kenny, R. J.
2010-01-01
The National Aeronautics and Space Administration (NASA) is developing a liquid oxygen/liquid hydrogen rocket engine for upper stage and trans-lunar applications of the Ares vehicles for the Constellation program. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. Development was contracted to Pratt & Whitney Rocketdyne in 2006. Over the past several years, development of the gas generator for the J-2X engine has progressed through a variety of workhorse injector, chamber, and feed system configurations. Several of these configurations have resulted in injection-coupled combustion instability of the gas generator assembly at the first longitudinal mode of the combustion chamber. In this paper, the longitudinal mode combustion instabilities observed on the workhorse test stand are discussed in detail. Aspects of this combustion instability have been modeled at the NASA Marshall Space Flight Center with several codes, including the Rocket Combustor Interaction Design and Analysis (ROCCID) code and a new lumped-parameter MatLab model. To accurately predict the instability characteristics of all the chamber and injector geometries and test conditions, several features of the submodels in the ROCCID suite of calculations required modification. Finite-element analyses were conducted of several complicated combustion chamber geometries to determine how to model and anchor the chamber response in ROCCID. A large suite of sensitivity calculations were conducted to determine how to model and anchor the injector response in ROCCID. These modifications and their ramification for future stability analyses of this type are discussed in detail. The lumped-parameter MatLab model of the gas generator assembly was created as an alternative calculation to the ROCCID methodology. This paper also describes this model and the stability calculations.
NASA Astrophysics Data System (ADS)
Tran, H.; Mansfield, M. L.; Lyman, S. N.; O'Neil, T.; Jones, C. P.
2015-12-01
Emissions from produced-water treatment ponds are poorly characterized sources in oil and gas emission inventories that play a critical role in studying elevated winter ozone events in the Uintah Basin, Utah, U.S. Information gaps include un-quantified amounts and compositions of gases emitted from these facilities. The emitted gases are often known as volatile organic compounds (VOCs) which, beside nitrogen oxides (NOX), are major precursors for ozone formation in the near-surface layer. Field measurement campaigns using the flux-chamber technique have been performed to measure VOC emissions from a limited number of produced water ponds in the Uintah Basin of eastern Utah. Although the flux chamber provides accurate measurements at the point of sampling, it covers just a limited area of the ponds and is prone to altering environmental conditions (e.g., temperature, pressure). This fact raises the need to validate flux chamber measurements. In this study, we apply an inverse-dispersion modeling technique with evacuated canister sampling to validate the flux-chamber measurements. This modeling technique applies an initial and arbitrary emission rate to estimate pollutant concentrations at pre-defined receptors, and adjusts the emission rate until the estimated pollutant concentrations approximates measured concentrations at the receptors. The derived emission rates are then compared with flux-chamber measurements and differences are analyzed. Additionally, we investigate the applicability of the WATER9 wastewater emission model for the estimation of VOC emissions from produced-water ponds in the Uintah Basin. WATER9 estimates the emission of each gas based on properties of the gas, its concentration in the waste water, and the characteristics of the influent and treatment units. Results of VOC emission estimations using inverse-dispersion and WATER9 modeling techniques will be reported.
Spitzer, L. Jr.
1962-01-01
The system conteraplates ohmically heating a gas to high temperatures such as are useful in thermonuclear reactors of the stellarator class. To this end the gas is ionized and an electric current is applied to the ionized gas ohmically to heat the gas while the ionized gas is confined to a central portion of a reaction chamber. Additionally, means are provided for pumping impurities from the gas and for further heating the gas. (AEC)
laboratory studies on the uptake of organic compounds by ice crystals
NASA Astrophysics Data System (ADS)
Fries, E.; Jaeschke, W.
2003-04-01
Anthropogenic aerosols produced from biomass burning are known to increase the number of cloud condensation nuclei in the atmosphere at most latitudes. This reduces cloud droplet size, which prevents raindrop formation at shallower levels in the atmosphere. Vertical convection processes force particles and water vapor to rise up to the upper troposphere. At lower temperatures, ice crystals are formed via heterogeneous freezing of supercooled droplets containing particles known as ice nuclei (IN) and/or via condensation of supercooled water onto IN directly from the vapor, followed by freezing. Ice crystals grow by vapor deposition, by collision of supercooled drops with ice particles and by collision of ice crystals. The grown ice crystals melt on their way down and turn into rain. Most of the precipitation falling to the surface at midlatitudes originates as ice. The adsorption of organic gases emitted from fossil fuel combustion like BTEX may alter particle growth and sublimation rates in the atmosphere. This may also change precipitation rates, which impact the climate world-wide. Considering importance of ice in atmospheric science, laboratory studies are carried out to quantify organic vapor adsorption onto ice. At temperatures between 0 and -40^oC, organic gases at ppb gas levels are allowed to adsorb to the surface of ice crystals with surface properties similar to atmospheric ice. For the experiments, a vertical ice chamber (stainless-steel) with 10 different screen inserts (stainless-steel) was constructed. The chamber is 39 cm in length and 10,5 cm in diameter. The size of the stainless-steel mesh of the screens was chosen by the size of the ice crystals and is 0.14 cm. The ice chamber is located inside a 2x2 m walk-in cold chamber. Prior to the addition of the organic gases, the precleaned carrier gas of synthetic air is humidified to ice saturation in the walk-in cold chamber by passing the carrier stream through a 10 m long and 5 cm in diameter aluminum pipe. Resulting super cooled droplets are removed by stainless-steel-wool. The carrier gas is mixed outside the ice chamber in various proportions with a defined gas mixture of 60 different organic compounds. This mixture is allowed to flow through the ice chamber at defined pressures and temperatures. The concentrations of the compounds in the gas phase are determined at the inlet and the outlet of the ice chamber by a mobile GC (AirmoVoc1020). Additionally, the amount of adsorbed compounds is determined by a very sensitive method based on solid-phase-micro-extraction (SPME) followed by GC/FID. The resulting sorption coefficients for different gas concentrations are plotted vs the reciprocal of the absolute temperature for all substances. First results dealing with the adsorption properties of the investigated organic compounds.
Chamber for mechanical testing in H2 with observation by neutron scattering
NASA Astrophysics Data System (ADS)
Connolly, Matthew; Bradley, Peter; Slifka, Andrew; Drexler, Elizabeth
2017-06-01
A gas-pressure chamber has been designed, constructed, and tested at a moderate pressure (3.4 MPa, 500 psi) and has the capability of mechanical loading of steel specimens for neutron scattering measurements. The chamber will allow a variety of in situ neutron scattering measurements: in particular, diffraction, quasielastic scattering, inelastic scattering, and imaging. The chamber is compatible with load frames available at the user facilities at the NIST Center for Neutron Research and Oak Ridge National Laboratory Spallation Neutron Source. A demonstration of neutron Bragg edge imaging using the chamber is presented.
Development of a large inert gas ion thruster
NASA Technical Reports Server (NTRS)
Steiner, G.
1982-01-01
A 30 cm inert gas electrostatic ion thruster has been developed, exhibiting excellent performance. In the development, the effective anode area was reduced by altering the magnetic field geometry to improve plasma containment, consistent with operational stability. The propellant introduction scheme has the effect of 'folding' the discharge chamber without the increased wall loss penalty associated with a longer chamber. These features contribute to a low discharge cost (eV/ion) versus mass utilization characteristic which remains relatively flat even to high mass utilizations.
Vertical feed stick wood fuel burning furnace system
Hill, Richard C.
1982-01-01
A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.
De Wilde, Juray; Richards, George; Benyahia, Sofiane
2016-05-13
Coupled discrete particle method – computational fluid dynamics simulations are carried out to demonstrate the potential of combined high-G-intensified gas-solids contact, gas-solids separation and segregation in a rotating fluidized bed in a static vortex chamber. A case study with two distinct types of particles is focused on. When feeding solids using a standard solids inlet design, a dense and uniform rotating fluidized bed is formed, guaranteeing intense gas-solids contact. The presence of both types of particles near the chimney region reduces, however, the strength of the central vortex and is detrimental for separation and segregation. Optimization of the solids inletmore » design is required, as illustrated by stopping the solids feeding. High-G separation and segregation of the batch of particles is demonstrated, as the strength of the central vortex is restored. The flexibility with respect to the gas flow rate of the bed density and uniformity and of the gas-solids separation and segregation is demonstrated, a unique feature of vortex chamber generated rotating fluidized beds. With the particles considered in this case study, turbulent dispersion by large eddies in the gas phase is shown to have only a minor impact on the height of the inner bed of small/light particles.« less
Gas chromatography/matrix-isolation apparatus
Reedy, G.T.
1986-06-10
A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring. 10 figs.
Gas chromatography/matrix-isolation apparatus
Reedy, Gerald T.
1986-01-01
A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring.
Test stand for gas-discharge chamber of TEA CO2 lasers with pulse-periodical energy supply
NASA Astrophysics Data System (ADS)
Shorin, Vladimyr P.; Bystrov, N. D.; Zhuravlyov, O. A.; Nekrasov, V. V.
1997-05-01
Test stand for function optimization (incomposition of gas- dynamic circuit (GDC) of operating characteristics of full- size discharge chamber of flowing TEA carbon-dioxide lasers (power up to 100 kW) was created in Samara State Aerospace University (former Kuibyshev Aviation Institute). Test stand includes an inside-type GDC, low inductive generators of voltage pulses of preionization and main discharges, two-flow rate system of gas supply and noise immunity diagnostic system. Module construction of units of GDC, power supplies of preionization and main discharges allows to change configuration of stand's systems for providing given properties of gas flow and its energy supply. This test stand can also be used in servicing of laser system. The diagnostic system of this stand allows us to analyze energy properties of discharge by means of oscillographic measurements of voltage and current with following processing of discharges' volt- ampere characteristics by means of a computer; rate of non- stationary gas-dynamic disturbances in discharge gap of discharge chamber was measured by means of pulse holographic system (UlG-1M) with data processing of schliren- and interferogram (density fluctuation sensitivity approximately 10-2) and sensor measurement system of gas-dynamic shock and acoustics process with resonance frequency exceeding 100 kHz. Research results of process of plasma plate wave and channel structures interaction with mediums, including actuation non-stationary gas-dynamic flows, cavitation erosion of preionization electrodes' dielectric substructure, ancillary heating of channels by main volumetric discharge are presented as well.
Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto
2001-01-01
The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.
Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto
1999-01-01
The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.
Method for plasma formation for extreme ultraviolet lithography-theta pinch
Hassanein, Ahmed [Naperville, IL; Konkashbaev, Isak [Bolingbrook, IL; Rice, Bryan [Hillsboro, OR
2007-02-20
A device and method for generating extremely short-wave ultraviolet electromagnetic wave, utilizing a theta pinch plasma generator to produce electromagnetic radiation in the range of 10 to 20 nm. The device comprises an axially aligned open-ended pinch chamber defining a plasma zone adapted to contain a plasma generating gas within the plasma zone; a means for generating a magnetic field radially outward of the open-ended pinch chamber to produce a discharge plasma from the plasma generating gas, thereby producing a electromagnetic wave in the extreme ultraviolet range; a collecting means in optical communication with the pinch chamber to collect the electromagnetic radiation; and focusing means in optical communication with the collecting means to concentrate the electromagnetic radiation.
Ultrahigh vacuum/high pressure chamber for surface x-ray diffraction experiments
NASA Astrophysics Data System (ADS)
Bernard, P.; Peters, K.; Alvarez, J.; Ferrer, S.
1999-02-01
We describe an ultrahigh vacuum chamber that can be internally pressurized to several bars and that is designed to perform surface x-ray diffraction experiments on solid-gas interfaces. The chamber has a cylindrical beryllium window that serves as the entrance and exit for the x rays. The sample surface can be ion bombarded with an ancillary ion gun and annealed to 1200 K.
Heat exchanger with transpired, highly porous fins
Kutscher, Charles F.; Gawlik, Keith
2002-01-01
The heat exchanger includes a fin and tube assembly with increased heat transfer surface area positioned within a hollow chamber of a housing to provide effective heat transfer between a gas flowing within the hollow chamber and a fluid flowing in the fin and tube assembly. A fan is included to force a gas, such as air, to flow through the hollow chamber and through the fin and tube assembly. The fin and tube assembly comprises fluid conduits to direct the fluid through the heat exchanger, to prevent mixing with the gas, and to provide a heat transfer surface or pathway between the fluid and the gas. A heat transfer element is provided in the fin and tube assembly to provide extended heat transfer surfaces for the fluid conduits. The heat transfer element is corrugated to form fins between alternating ridges and grooves that define flow channels for directing the gas flow. The fins are fabricated from a thin, heat conductive material containing numerous orifices or pores for transpiring the gas out of the flow channel. The grooves are closed or only partially open so that all or substantially all of the gas is transpired through the fins so that heat is exchanged on the front and back surfaces of the fins and also within the interior of the orifices, thereby significantly increasing the available the heat transfer surface of the heat exchanger. The transpired fins also increase heat transfer effectiveness of the heat exchanger by increasing the heat transfer coefficient by disrupting boundary layer development on the fins and by establishing other beneficial gas flow patterns, all at desirable pressure drops.
BOREAS TGB-5 CO2, CH4 and CO Chamber Flux Data Over the NSA
NASA Technical Reports Server (NTRS)
Burke, Roger; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Zepp, Richard
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-5) team collected a variety of trace gas concentration and flux measurements at several NSA sites. This data set contains carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) chamber flux measurements conducted in 1994 at upland forest sites that experienced stand-replacement fires. These measurements were acquired to understand the impact of fires on soil biogeochemistry and related changes in trace gas exchange in boreal forest soils. Relevant ancillary data, including data concerning the soil temperature, solar irradiance, and information from nearby un-burned control sites, are included to provide a basis for modeling the regional impacts of fire and climate changes on trace gas biogeochemistry. The data are provided in tabular ASCII files.
NASA Astrophysics Data System (ADS)
Papapostolou, Vasileios; Zhang, Hang; Feenstra, Brandon J.; Polidori, Andrea
2017-12-01
A state-of-the-art integrated chamber system has been developed for evaluating the performance of low-cost air quality sensors. The system contains two professional grade chamber enclosures. A 1.3 m3 stainless-steel outer chamber and a 0.11 m3 Teflon-coated stainless-steel inner chamber are used to create controlled aerosol and gaseous atmospheres, respectively. Both chambers are temperature and relative humidity controlled with capability to generate a wide range of environmental conditions. The system is equipped with an integrated zero-air system, an ozone and two aerosol generation systems, a dynamic dilution calibrator, certified gas cylinders, an array of Federal Reference Method (FRM), Federal Equivalent Method (FEM), and Best Available Technology (BAT) reference instruments and an automated control and sequencing software. Our experiments have demonstrated that the chamber system is capable of generating stable and reproducible aerosol and gas concentrations at low, medium, and high levels. This paper discusses the development of the chamber system along with the methods used to quantitatively evaluate sensor performance. Considering that a significant number of academic and research institutions, government agencies, public and private institutions, and individuals are becoming interested in developing and using low-cost air quality sensors, it is important to standardize the procedures used to evaluate their performance. The information discussed herein provides a roadmap for entities who are interested in characterizing air quality sensors in a rigorous, systematic and reproducible manner.
Vacuum Compatibility of Flux-Core Arc Welding (FCAW)
NASA Astrophysics Data System (ADS)
Arose, Dana; Denault, Martin; Jurcznski, Stephan
2010-11-01
Typically, vacuum chambers are welded together using gas tungsten arc welding (GTAW) or gas metal arc welding (GMAW). This is demonstrated in the vacuum chamber of Princeton Plasma Physics Lab's (PPPL) National Spherical Torus Experiment (NSTX). These processes are slow and apply excess heat to the base metal, which may cause the vacuum chamber to deform beyond designed tolerance. Flux cored arc welding (FCAW) avoids these problems, but may produce an unacceptable amount of outgasing due to the flux shielding. We believe impurities due to outgasing from FCAW will not greatly exceed those found in GTAW and GMAW welding. To test this theory, samples welded together using all three welding processes will be made and baked in a residual gas analyzer (RGA). The GTAW and GMAW welds will be tested to establish a metric for permissible outgasing. By testing samples from all three processes we hope to demonstrate that FCAW does not significantly outgas, and is therefore a viable alternative to GTAW and GMAW. Results from observations will be presented.
Sensitive glow discharge ion source for aerosol and gas analysis
Reilly, Peter T. A. [Knoxville, TN
2007-08-14
A high sensitivity glow discharge ion source system for analyzing particles includes an aerodynamic lens having a plurality of constrictions for receiving an aerosol including at least one analyte particle in a carrier gas and focusing the analyte particles into a collimated particle beam. A separator separates the carrier gas from the analyte particle beam, wherein the analyte particle beam or vapors derived from the analyte particle beam are selectively transmitted out of from the separator. A glow discharge ionization source includes a discharge chamber having an entrance orifice for receiving the analyte particle beam or analyte vapors, and a target electrode and discharge electrode therein. An electric field applied between the target electrode and discharge electrode generates an analyte ion stream from the analyte vapors, which is directed out of the discharge chamber through an exit orifice, such as to a mass spectrometer. High analyte sensitivity is obtained by pumping the discharge chamber exclusively through the exit orifice and the entrance orifice.
Thermal stresses investigation of a gas turbine blade
NASA Astrophysics Data System (ADS)
Gowreesh, S.; Pravin, V. K.; Rajagopal, K.; Veena, P. H.
2012-06-01
The analysis of structural and thermal stress values that are produced while the turbine is operating are the key factors of study while designing the next generation gas turbines. The present study examines structural, thermal, modal analysis of the first stage rotor blade of a two stage gas turbine. The design features of the turbine segment of the gas turbine have been taken from the preliminary design of a power turbine for maximization of an existing turbojet engine with optimized dump gap of the combustion chamber, since the allowable temperature on the turbine blade dependents on the hot gas temperatures from the combustion chamber. In the present paper simplified 3-D Finite Element models are developed with governing boundary conditions and solved using the commercial FEA software ANSYS. As the temperature has a significant effect on the overall stress on the rotor blades, a detail study on mechanical and thermal stresses are estimated and evaluated with the experimental values.
Three-gas detection system with IR optical sensor based on NDIR technology
NASA Astrophysics Data System (ADS)
Tan, Qiulin; Tang, Licheng; Yang, Mingliang; Xue, Chenyang; Zhang, Wendong; Liu, Jun; Xiong, Jijun
2015-11-01
In this paper, a three-gas detection system with a environmental parameter compensation method is proposed based on Non-dispersive infra-red (NDIR) technique, which can be applied to detect multi-gas (methane, carbon dioxide and carbon monoxide). In this system, an IR source and four single-channel pyroelectric sensors are integrated in the miniature optical gas chamber successfully. Inner wall of the chamber coated with Au film is designed as paraboloids. The infrared light is reflected twice before reaching to detectors, thus increasing optical path. Besides, a compensation method is presented to overcome the influence in variation of environment (ambient temperature, humidity and pressure), thus leading to improve the accuracy in gas detection. Experimental results demonstrated that detection ranges are 0-50,000 ppm for CH4, 0-44,500 ppm for CO, 0-48,000 ppm for CO2 and the accuracy is ±0.05%.
Validation of High Aspect Ratio Cooling in a 89 kN (20,000 lb(sub f)) Thrust Combustion Chamber
NASA Technical Reports Server (NTRS)
Wadel, Mary F.; Meyer, Michael L.
1996-01-01
In order to validate the benefits of high aspect ratio cooling channels in a large scale rocket combustion chamber, a high pressure, 89 kN (20,000 lbf) thrust, contoured combustion chamber was tested in the NASA Lewis Research Center Rocket Engine Test Facility. The combustion chamber was tested at chamber pressures from 5.5 to 11.0 MPa (800-1600 psia). The propellants were gaseous hydrogen and liquid oxygen at a nominal mixture ratio of six, and liquid hydrogen was used as the coolant. The combustion chamber was extensively instrumented with 30 backside skin thermocouples, 9 coolant channel rib thermocouples, and 10 coolant channel pressure taps. A total of 29 thermal cycles, each with one second of steady state combustion, were completed on the chamber. For 25 thermal cycles, the coolant mass flow rate was equal to the fuel mass flow rate. During the remaining four thermal cycles, the coolant mass flow rate was progressively reduced by 5, 6, 11, and 20 percent. Computer analysis agreed with coolant channel rib thermocouples within an average of 9 percent and with coolant channel pressure drops within an average of 20 percent. Hot-gas-side wall temperatures of the chamber showed up to 25 percent reduction, in the throat region, over that of a conventionally cooled combustion chamber. Reducing coolant mass flow yielded a reduction of up to 27 percent of the coolant pressure drop from that of a full flow case, while still maintaining up to a 13 percent reduction in a hot-gas-side wall temperature from that of a conventionally cooled combustion chamber.
A new plant chamber facility, PLUS, coupled to the atmosphere simulation chamber SAPHIR
NASA Astrophysics Data System (ADS)
Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.
2016-03-01
A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been built and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow-through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees is mixed with synthetic air and transferred to the SAPHIR chamber, where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOCs) can be studied in detail. In PLUS all important environmental parameters (e.g., temperature, photosynthetically active radiation (PAR), soil relative humidity (RH)) are well controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leaves of the plants is constructed such that gases are exposed to only fluorinated ethylene propylene (FEP) Teflon film and other Teflon surfaces to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 light-emitting diode (LED) panels, which have an emission strength up to 800 µmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOCs) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light- and temperature- dependent BVOC emissions are studied using six Quercus ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental setup and the utility of the newly added plant chamber.
Nuclear reactor melt-retention structure to mitigate direct containment heating
Tutu, Narinder K.; Ginsberg, Theodore; Klages, John R.
1991-01-01
A light water nuclear reactor melt-retention structure to mitigate the extent of direct containment heating of the reactor containment building. The structure includes a retention chamber for retaining molten core material away from the upper regions of the reactor containment building when a severe accident causes the bottom of the pressure vessel of the reactor to fail and discharge such molten material under high pressure through the reactor cavity into the retention chamber. In combination with the melt-retention chamber there is provided a passageway that includes molten core droplet deflector vanes and has gas vent means in its upper surface, which means are operable to deflect molten core droplets into the retention chamber while allowing high pressure steam and gases to be vented into the upper regions of the containment building. A plurality of platforms are mounted within the passageway and the melt-retention structure to direct the flow of molten core material and help retain it within the melt-retention chamber. In addition, ribs are mounted at spaced positions on the floor of the melt-retention chamber, and grid means are positioned at the entrance side of the retention chamber. The grid means develop gas back pressure that helps separate the molten core droplets from discharged high pressure steam and gases, thereby forcing the steam and gases to vent into the upper regions of the reactor containment building.
Liang, Y; Liu, X; Allen, M R
2018-02-01
Understanding the sorption mechanisms for organophosphate flame retardants (OPFRs) on impervious surfaces is important to improve our knowledge of the fate and transport of OPFRs in indoor environments. The sorption processes of semivolatile organic compounds (SVOCs) on indoor surfaces are heterogeneous (multilayer sorption) or homogeneous (monolayer sorption). In this study, we adopted simplified Langmuir isotherm and Freundlich isotherm in a dynamic sink model to characterize the sorption dynamics of OPFRs on impervious surfaces such as stainless steel and made comparisons between the two models through a series of empty chamber studies. The tests involve two types of stainless steel chambers (53-L small chambers and 44-mL micro chambers) using tris(2-chloroethyl)phosphate (TCEP) and tris(1-chloro-2-propyl)phosphate (TCPP) as target compounds. Our test results show that the dynamic sink model using Freundlich isotherm can better represent the sorption process in the empty small chamber. Micro chamber test results from this study show that the sink model using both simplified Langmuir isotherm and Freundlich isotherm can well fit the measured gas-phase concentrations of OPFRs. We further applied both models and the parameters obtained to predict the gas phase concentrations of OPFRs in a small chamber with an emission source. Comparisons between model predictions and measurements demonstrate the reliability and applicability of the sorption parameters. Published by Elsevier Ltd.
Heated probe diagnostic inside of the gas aggregation nanocluster source
NASA Astrophysics Data System (ADS)
Kolpakova, Anna; Shelemin, Artem; Kousal, Jaroslav; Kudrna, Pavel; Tichy, Milan; Biederman, Hynek; Surface; Plasma Science Team
2016-09-01
Gas aggregation cluster sources (GAS) usually operate outside common working conditions of most magnetrons and the size of nanoparticles created in GAS is below that commonly studied in dusty plasmas. Therefore, experimental data obtained inside the GAS are important for better understanding of process of nanoparticles formation. In order to study the conditions inside the gas aggregation chamber, special ``diagnostic GAS'' has been constructed. It allows simultaneous monitoring (or spatial profiling) by means of optical emission spectroscopy, mass spectrometry and probe diagnostic. Data obtained from Langmuir and heated probes map the plasma parameters in two dimensions - radial and axial. Titanium has been studied as an example of metal for which the reactive gas in the chamber starts nanoparticles production. Three basic situations were investigated: sputtering from clean titanium target in argon, sputtering from partially pre-oxidized target and sputtering with oxygen introduced into the discharge. It was found that during formation of nanoparticles the plasma parameters differ strongly from the situation without nanoparticles. These experimental data will support the efforts of more realistic modeling of the process. Czech Science Foundation 15-00863S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Terry L.; Paulauskas, Felix L.; Bigelow, Timothy S.
A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber havingmore » the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.« less
Measurements of trace contaminants in closed-type plant cultivation chambers
NASA Astrophysics Data System (ADS)
Tani, A.; Kiyota, M.; Aiga, I.; Nitta, K.; Tako, Y.; Ashida, A.; Otsubo, K.; Saito, T.
Trace contaminants generated in closed facilities can cause abnormal plant growth. We present measurement data of trace contaminants released from soils, plants, and construction materials. We mainly used two closed chambers, a Closed-type Plant and Mushroom Cultivation Chamber (PMCC) and Closed-type Plant Cultivation Equipment (CPCE). Although trace gas budgets from soils obtained in this experiment are only one example, the results indicate that the budgets of trace gases, as well as CO_2 and O_2, change greatly with the degree of soil maturation and are dependent on the kind of substances in the soil. Both in the PMCC and in the CPCE, trace gases such as dioctyl phthalate (DOP), dibutyl phthalate (DBP), toluene and xylene were detected. These gases seemed to be released from various materials used in the construction of these chambers. The degree of increase in these trace gas levels was dependent on the relationship between chamber capacity and plant quantity. Results of trace gas measurement in the PMCC, in which lettuce and shiitake mushroom were cultivated, showed that ethylene was released both from lettuce and from the mushroom culture bed. The release rates were about 90 ng bed^-1 h^-1 for the shiitake mushroom culture bed (volume is 1700 cm^3) and 4.1 ~ 17.3 ng dm^-2h^-1 (leaf area basis) for lettuce. Higher ethylene release rates per plant and per unit leaf area were observed in mature plants than in young plants.
Forrest, Stephen R.; Vartanian, Garen; Rolin, Cedric
2015-06-23
A method for in-situ monitoring of gas-phase photoactive organic molecules in real time while depositing a film of the photoactive organic molecules on a substrate in a processing chamber for depositing the film includes irradiating the gas-phase photoactive organic molecules in the processing chamber with a radiation from a radiation source in-situ while depositing the film of the one or more organic materials and measuring the intensity of the resulting photoluminescence emission from the organic material. One or more processing parameters associated with the deposition process can be determined from the photoluminescence intensity data in real time providing useful feedback on the deposition process.
Vapor Wall Deposition in Chambers: Theoretical Considerations
NASA Astrophysics Data System (ADS)
McVay, R.; Cappa, C. D.; Seinfeld, J.
2014-12-01
In order to constrain the effects of vapor wall deposition on measured secondary organic aerosol (SOA) yields in laboratory chambers, Zhang et al. (2014) varied the seed aerosol surface area in toluene oxidation and observed a clear increase in the SOA yield with increasing seed surface area. Using a coupled vapor-particle dynamics model, we examine the extent to which this increase is the result of vapor wall deposition versus kinetic limitations arising from imperfect accommodation of organic species into the particle phase. We show that a seed surface area dependence of the SOA yield is present only when condensation of vapors onto particles is kinetically limited. The existence of kinetic limitation can be predicted by comparing the characteristic timescales of gas-phase reaction, vapor wall deposition, and gas-particle equilibration. The gas-particle equilibration timescale depends on the gas-particle accommodation coefficient αp. Regardless of the extent of kinetic limitation, vapor wall deposition depresses the SOA yield from that in its absence since vapor molecules that might otherwise condense on particles deposit on the walls. To accurately extrapolate chamber-derived yields to atmospheric conditions, both vapor wall deposition and kinetic limitations must be taken into account.
Method for detection of extremely low concentration
Andresen, Brian D.; Miller, Fred S.
2002-01-01
An ultratrace detector system for hand-held gas chromatography having high sensitivity, for example, to emissions generated during production of weapons, biological compounds, drugs, etc. The detector system is insensitive to water, air, helium, argon, oxygen, and CO.sub.2. The detector system is basically composed of a hand-held capillary gas chromatography (GC), an insulated heated redox-chamber, a detection chamber, and a vapor trap. For example, the detector system may use gas phase redox reactions and spectral absorption of mercury vapor. The gas chromatograph initially separates compounds that percolate through a bed of heated mercuric oxide (HgO) in a silica--or other metal--aerogel material which acts as an insulator. Compounds easily oxidized by HgO liberate atomic mercury that subsequently pass through a detection chamber which includes a detector cell, such as quartz, that is illuminated with a 254 nm ultra-violet (UV) mercury discharge lamp which generates the exact mercury absorption bands that are used to detect the liberated mercury atoms. Atomic mercury strongly absorbs 254 nm energy is therefore a specific signal for reducing compounds eluting from the capillary GC, whereafter the atomic mercury is trapped for example, in a silicon-aerogel trap.
MarsVac: Pneumatic Sampling System for Planetary Exploration
NASA Astrophysics Data System (ADS)
Zacny, K.; Mungas, G.; Chu, P.; Craft, J.; Davis, K.
2008-12-01
We are proposing a Mars Sample Return scheme whereby a sample of regolith is acquired directly into a Mars Ascent Vehicle using a pneumatic system. Unlike prior developments that used suction to collect fines, the proposed system uses positive pressure to move the regolith. We envisage 3 pneumatic tubes to be embedded inside the 3 legs of the lander. Upon landing, the legs will burry themselves into the regolith and the tubes will fill up with regolith. With one puff of gas, the regolith can be lifted into a sampling chamber onboard of the Mars Ascent Vehicle. An additional chamber can be opened to acquire atmospheric gas and dust. The entire MSR will require 1) an actuator to open/close sampling chamber and 2) a valve to open gas cylinder. In the most recent study related to lunar excavation and funded under the NASA SBIR program we have shown that it is possible lift over 3000 grams of soil with only 1 gram of gas at 1atm. Tests conducted under Mars atmospheric pressure conditions (5 torr). In September of 2008, we will be performing tests at 1/6thg (Moon) and 1/3g (Mars) to determine mass lifting efficiencies in reduced gravities.
Modeling of natural acoustic frequencies of a gas-turbine plant combustion chamber
NASA Astrophysics Data System (ADS)
Zubrilin, I. A.; Gurakov, N. I.; Zubrilin, R. A.; Matveev, S. G.
2017-05-01
The paper presents results of determination of natural acoustic frequencies of a gas-turbine plant annular combustion chamber model using 3D-simulation. At the beginning, a calculation procedure for determining natural acoustic frequencies of the gas-turbine plant combustion chamber was worked out. The effect of spatial inhomogeneity of the flow parameters (fluid composition, pressure, temperature) arising in combustion and some geometrical parameters (cooling holes of the flame tube walls) on the calculation results is studied. It is found that the change of the fluid composition in combustion affects the acoustic velocity not more than 5%; therefore, the air with a volume variable temperature can be taken as a working fluid in the calculation of natural acoustic frequencies. It is also shown that the cooling holes of the flame tube walls with diameter less than 2 mm can be neglected in the determination of the acoustic modes in the frequency range of up to 1000 Hz. This reduces the number of the grid-model elements by a factor of six in comparison with a model that considers all of the holes. Furthermore, a method of export of spatial inhomogeneity of the flow parameters from a CFD solver sector model to the annular combustion chamber model in a modal solver is presented. As a result of the obtained model calculation, acoustic modes of the combustion chamber in the frequency range of up to 1000 Hz are determined. For a standard engine condition, a potentially dangerous acoustic mode with a frequency close to the ripple frequency of the precessing vortex core, which is formed behind the burner device of this combustion chamber, is detected.
Thornberg, Steven M [Peralta, NM
2012-07-31
A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.
Tritium monitor and collection system
Bourne, G.L.; Meikrantz, D.H.; Ely, W.E.; Tuggle, D.G.; Grafwallner, E.G.; Wickham, K.L.; Maltrud, H.R.; Baker, J.D.
1992-01-14
This system measures tritium on-line and collects tritium from a flowing inert gas stream. It separates the tritium from other non-hydrogen isotope contaminating gases, whether radioactive or not. The collecting portion of the system is constructed of various zirconium alloys called getters. These alloys adsorb tritium in any of its forms at one temperature and at a higher temperature release it as a gas. The system consists of four on-line getters and heaters, two ion chamber detectors, two collection getters, and two guard getters. When the incoming gas stream is valved through the on-line getters, 99.9% of it is adsorbed and the remainder continues to the guard getter where traces of tritium not collected earlier are adsorbed. The inert gas stream then exits the system to the decay chamber. Once the on-line getter has collected tritium for a predetermined time, it is valved off and the next on-line getter is valved on. Simultaneously, the first getter is heated and a pure helium purge is employed to carry the tritium from the getter. The tritium loaded gas stream is then routed through an ion chamber which measures the tritium activity. The ion chamber effluent passes through a collection getter that readsorbs the tritium and is removable from the system once it is loaded and is then replaced with a clean getter. Prior to removal of the collection getter, the system switches to a parallel collection getter. The effluent from the collection getter passes through a guard getter to remove traces of tritium prior to exiting the system. The tritium loaded collection getter, once removed, is analyzed by liquid scintillation techniques. The entire sequence is under computer control except for the removal and analysis of the collection getter. 7 figs.
NASA Astrophysics Data System (ADS)
Mather, Daniel Kelly
1998-11-01
The effect of auxiliary gas injection and fuel injection rate-shaping on diesel engine combustion and emissions was studied using KIVA a multidimensional computational fluid dynamics code. Auxiliary gas injection (AGI) is the injection of a gas, in addition to the fuel injection, directly into the combustion chamber of a diesel engine. The objective of AGI is to influence the diesel combustion via mixing to reduce emissions of pollutants (soot and NO x). In this study, the accuracy of modeling high speed gas jets on very coarse computational grids was addressed. KIVA was found to inaccurately resolve the jet flows near walls. The cause of this inaccuracy was traced to the RNG k - ɛ turbulence model with the law-of-the-wall boundary condition used by KIVA. By prescribing the lengthscale near the nozzle exit, excellent agreement between computed and theoretical jet penetration was attained for a transient gas jet into a quiescent chamber at various operating conditions. The effect of AGI on diesel engine combustion and emissions was studied by incorporating the coarse grid gas jet model into a detailed multidimensional simulation of a Caterpillar 3401 heavy-duty diesel engine. The effects of AGI timing, composition, amount, orientation, and location were investigated. The effects of AGI and split fuel injection were also investigated. AGI was found to be effective at reducing soot emissions by increasing mixing within the combustion chamber. AGI of inert gas was found to be effective at reducing emissions of NOx by depressing the peak combustion temperatures. Finally, comparison of AGI simulations with experiments were conducted for a TACOM-LABECO engine. The results showed that AGI improved soot oxidation throughout the engine cycle. Simulation of fuel injection rate-shaping investigated the effects of three injection velocity profiles typical of unit-injector type, high-pressure common-rail type, and accumulator-type fuel injectors in the Caterpillar 3401 heavy-duty diesel engine. Pollutant emissions for the engine operating with different injection velocity profiles reflected the sensitivity of diesel engines to the location of pollutants within the combustion chamber, as influenced by the fuel injection.
Molecular-beam gas-sampling system
NASA Technical Reports Server (NTRS)
Young, W. S.; Knuth, E. L.
1972-01-01
A molecular beam mass spectrometer system for rocket motor combustion chamber sampling is described. The history of the sampling system is reviewed. The problems associated with rocket motor combustion chamber sampling are reported. Several design equations are presented. The results of the experiments include the effects of cooling water flow rates, the optimum separation gap between the end plate and sampling nozzle, and preliminary data on compositions in a rocket motor combustion chamber.
BOREAS TGB-1 NSA CH4 and CO2 Chamber Flux Data
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Crill, Patrick; Varner, Ruth K.
2000-01-01
The BOREAS TGB-1 team made methane (CH4) and carbon dioxide (CO2) dark chamber flux measurements at the NSA-OJP, NSA-OBS, NSA-BP, and NSA-YJP sites from 16-May-1994 through 13-Sep-1994. Gas samples were extracted approximately every 7 days from dark chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.
Tillman, Fred D; Smith, James A
2004-11-01
To determine if an aquifer contaminated with volatile organic compounds (VOCs) has potential for natural remediation, all natural processes affecting the fate and transport of VOCs in the subsurface must be identified and quantified. This research addresses the quantification of air-phase volatile organic compounds (VOCs) leaving the unsaturated zone soil gas and entering the atmosphere-including the additional flux provided by advective soil-gas movement induced by barometric pumping. A simple and easy-to-use device for measuring VOC flux under natural conditions is presented. The vertical flux chamber (VFC) was designed using numerical simulations and evaluated in the laboratory. Mass-balance numerical simulations based on continuously stirred tank reactor equations (CSTR) provided information on flux measurement performance of several sampling configurations with the final chamber configuration measuring greater than 96% of model-simulated fluxes. A laboratory device was constructed to evaluate the flux chamber under both diffusion-only and advection-plus-diffusion transport conditions. The flux chamber measured an average of 82% of 15 diffusion-only fluxes and an average of 95% of 15 additional advection-plus-diffusion flux experiments. The vertical flux chamber has the capability of providing reliable measurement of VOC flux from the unsaturated zone under both diffusion and advection transport conditions.
Inward electrostatic precipitation of interplanetary particles
NASA Technical Reports Server (NTRS)
Rulison, Aaron J.; Flagan, Richard C.; Ahrens, Thomas J.
1993-01-01
An inward precipitator collects particles initially dispersed in a gas throughout either a cylindrical or spherical chamber onto a small central planchet. The instrument is effective for particle diameters greater than about 1 micron. One use is the collection of interplanetary dust particles (IDPs) which are stopped in a noble gas (xenon) by drag and ablation after perforating the wall of a thin-walled spacecraft-mounted chamber. First, the particles are positively charged for several seconds by the corona production of positive xenon ions from inward facing needles placed on the chamber wall. Then an electric field causes the particles to migrate toward the center of the instrument and onto the planchet. The collection time (on the order of hours for a 1 m radius spherical chamber) is greatly reduced by the use of optimally located screens which reapportion the electric field. Some of the electric field lines terminate on the wires of the screens so a fraction of the total number of particles in the chamber is lost. The operation of the instrument is demonstrated by experiments which show the migration of carbon soot particles with radius of approximately 1 micron in a 5 cm diameter cylindrical chamber with a single field enhancing screen toward a 3.2 mm central collection rod.
Controls on gas transfer velocities in a large river
The emission of biogenic gases from large rivers can be an important component of regional greenhouse gas budgets. However, emission rate estimates are often poorly constrained due to uncertainties in the air-water gas exchange rate. We used the floating chamber method to estim...
Apparatus for purifying exhaust gases of internal combustion engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kakinuma, O.; Oya, H.
1980-06-03
Apparatus for purifying the exhaust gases of internal combustion engines is disclosed is comprised of a pair of upstream exhaust pipes, a catalytic converter, and a downstream exhaust pipe. The catalytic converter comprises a shell having an inlet chamber, catalyst chamber, and an outlet chamber. The axial lines of the inlet ports are arranged to cross each other in the inlet chamber at a position near, but upstream of, the upstream facing end of said monolithic catalyst element, so that gas flow can diffuse to the entire plane of the element.
NASA Astrophysics Data System (ADS)
Yue, Z. Q. Q.
2015-12-01
Many phenomena and data related to volcanoes and volcano eruptions have been observed and collected over the past four hundred years. They have been interpreted with the conventional and widely accepted hypothesis or theory of hot magma fluid from mantle. However, the prediction of volcano eruption sometimes is incorrect. For example, the devastating eruption of the Mount Ontake on Sept. 27, 2014 was not predicted and/or warned at all, which caused 55 fatalities, 9 missing and more than 60 injured. Therefore, there is a need to reconsider the cause and mechanism of active volcano and its hydrothermal system. On the basis of more than 30 year study and research in geology, volcano, earthquake, geomechanics, geophysics, geochemistry and geohazards, the author has developed a new and alternative modeling framework (or hypothesis) to better interpret the observed volcano-hydrothermal system data and to more accurately predict the occurrence of volcano explosion. An active volcano forms a cone-shape mountain and has a crater with vertical pipe conduit to allow hot lava, volcanic ash and gases to escape or erupt from its chamber (Figure). The chamber locates several kilometers below the ground rocks. The active volcanos are caused by highly compressed and dense gases escaped from the Mantle of the Earth. The gases are mainly CH4 and further trapped in the upper crustal rock mass. They make chemical reactions with the surrounding rocks in the chamber. The chemical reactions are the types of reduction and decomposition. The reactions change the gas chemical compounds into steam water gas H2O, CO2, H2S, SO2 and others. The oxygen in the chemical reaction comes from the surrounding rocks. So, the product lava has a less amount of oxygen than that of the surrounding rocks. The gas-rock chemical reactions produce heat. The gas expansion and penetration power and the heat further break and crack the surrounding rock mass and make them into lavas, fragments, ashes or bombs. The pyroclastic deposits are carried out of the chamber by the gas expansion and uplift power and form the cone-shape mountain. The crust loses its rocks and the chamber becomes larger and larger. Eventually, the last eruption occurs and breaks the upper rocks and the cone mountain. The pyroclatic rocks collapse into the chamber space and leave a basin or lake.
NASA Technical Reports Server (NTRS)
Schoenman, L.
1983-01-01
A data base which relates candidate design variables, such as injector type, acoustic cavity configuration, chamber length, fuel film-cooling, etc., to operational characteristics such as combustion efficiency, combustion stability, carbon deposition, and chamber gas-side heat flux was generated.
Determination of Offgassed Products
NASA Technical Reports Server (NTRS)
1997-01-01
A technician at Marshall Space Flight Center's Materials Combustion Research Facility begins the Determination of Offgassed Products Test to determine the identity and quantity of volatile offgassed products from materials and assembled articles. Materials are measured, weighed, and loaded into a clean toxicity chamber (pictured). The chamber is purged with high-purity air and loaded into an oven where it will be held at 120 degrees Fahrenheit (48.9 degrees Celsius) for 72 hours. At the end of the 72-hour period, the chamber is removed and allowed to cool to room temperature. Gas samples are taken from the chamber and analyzed using gas chromatography and mass spectrometry. From this, the quantity of the material that may be used safely in habitable areas of spacecraft is determined. This test also determines whether a flight hardware item may be flown safely in a crew compartment. Everything going into space with the astronauts is tested prior to flight to ensure the health and safety of the crew members.
Process for the preparation of calcium superoxide
NASA Technical Reports Server (NTRS)
Ballou, E. V.; Wood, P. C.; Wydeven, T. J.; Spitze, L. A. (Inventor)
1978-01-01
Calcium superoxide is prepared in high yields by spreading a quantity of calcium peroxide diperoxyhydrate on the surface of a container, positioning said container in a vacuum chamber on a support structure through which a coolant fluid can be circulated, partially evacuating said vacuum chamber, allowing the temperature of the diperoxyhydrate to reach the range of about 0 to about 40 C; maintaining the temperature selected for a period of time sufficient to complete the disproproriation of the diperoxyhydrate to calcium superoxide, calcium hydroxide, oxygen, and water; constantly and systematically removing the water as it is formed by sweeping the reacting material with a current of dry inert gas and/or by condensation of said water on a cold surface; backfilling the chamber with a dry inert gas; and finally, recovering the calcium superoxide produced.
Calculation of the mixing chamber of an ejector chemical oxygen - iodine laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zagidullin, M V; Nikolaev, V D
2001-06-30
Gas parameters are calculated at the outlet of the mixing chamber of an ejector chemical oxygen-iodine laser with a nozzle unit consisting of nozzles of three types, which provides a total pressure of the active medium that substantially exceeds a pressure in the generator of singlet oxygen. This technique of forming the laser active medium substantially facilitates the ejection of the exhaust gas to the atmosphere by using a diffuser and single-stage vacuum systems based on water circulating pumps. (lasers, active media)
High aspect reactor vessel and method of use
NASA Technical Reports Server (NTRS)
Wolf, David A. (Inventor); Sams, Clarence F. (Inventor); Schwarz, Ray P. (Inventor)
1992-01-01
An improved bio-reactor vessel and system useful for carrying out mammalian cell growth in suspension in a culture media are presented. The main goal of the invention is to grow and maintain cells under a homogeneous distribution under acceptable biochemical environment of gas partial pressures and nutrient levels without introducing direct agitation mechanisms or associated disruptive mechanical forces. The culture chamber rotates to maintain an even distribution of cells in suspension and minimizes the length of a gas diffusion path. The culture chamber design is presented and discussed.
ARC DISCHARGE AND METHOD OF PRODUCING THE SAME
Neidigh, R.V.
1960-03-15
A device for producing an energetic gas arc discharge between spaced electrodes in an evacuated chamber and within a magnetic field is described. Gas is fed into the arc in a direction normal to a refluxing stream of electrons and at a pressure higher than the pressure within the chamber to establish a pressure gradient along the arc discharge formed between the electrodes. This pressure gradient establishes rotating, time varying, radial electrical fields in the volume surroundimg the discharge, causing the discharge to rotate about the arc center line.
Apparatus for preparing a sample for mass spectrometry
Villa-Aleman, Eliel
1994-01-01
An apparatus for preparing a sample for analysis by a mass spectrometer system. The apparatus has an entry chamber and an ionization chamber separated by a skimmer. A capacitor having two space-apart electrodes followed by one or more ion-imaging lenses is disposed in the ionization chamber. The chamber is evacuated and the capacitor is charged. A valve injects a sample gas in the form of sample pulses into the entry chamber. The pulse is collimated by the skimmer and enters the ionization chamber. When the sample pulse passes through the gap between the electrodes, it discharges the capacitor and is thereby ionized. The ions are focused by the imaging lenses and enter the mass analyzer, where their mass and charge are analyzed.
Methods and apparatus for the on-site production of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Buschmann, Wayne E. (Inventor); James, Patrick I. (Inventor)
2010-01-01
Methods, apparatus, and applications for the on-site production of hydrogen peroxide are described. An embodiment of the apparatus comprises at least one anolyte chamber coupled to at least one anode, at least one catholyte chamber, wherein the at least one catholyte chamber is coupled to at least one cathode, at least one anode membrane and at least one cathode membrane, wherein the anode membrane is adjacent to the at least one anode, wherein the cathode membrane is adjacent to the at least one cathode, at least one central chamber disposed between the at least one anolyte chamber and the at least one catholyte chamber. Hydrogen peroxide is produced by reduction of an oxygen-containing gas at the cathode.
Sutton, Jr., Harry G.
1984-01-01
Bolts of a liquid metal fast breeder reactor, each bolt provided with an internal chamber filled with a specific, unique radioactive tag gas. Detection of the tag gas is indicative of a crack in an identifiable bolt.
NASA Astrophysics Data System (ADS)
Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki
2015-01-01
Some fundamental experiments are carried out in order to develop a plasma process that will uniformly sterilize both the space and inner wall of the reactor chamber at atmospheric pressure. Air, oxygen, argon, and nitrogen are each used as the plasma source gas to which mixed vapors of water and ethanol at different ratios are added. The reactor chamber is remotely located from the plasma area and a metal mesh for eliminating charged particles is installed between them. Thus, only reactive neutral particles such as plasma-excited gas molecules and radicals are utilized. As a result, adding vapors to the source gas markedly enhances the sterilization effect. In particular, air with water and/or ethanol vapor and oxygen with ethanol vapor show more than 6-log reduction for Geobacillus stearothermophilus spores.
Injector design guidelines for gas/liquid propellant systems
NASA Technical Reports Server (NTRS)
Falk, A. Y.; Burick, R. J.
1973-01-01
Injector design guidelines are provided for gas/liquid propellant systems. Information was obtained from a 30-month applied research program encompassing an analytical, design, and experimental effort to relate injector design parameters to simultaneous attainment of high performance and component (injector/thrust chamber) compatibility for gas/liquid space storable propellants. The gas/liquid propellant combination studied was FLOX (82.6% F2)/ ambient temperature gaseous methane. Design criteria that provide for simultaneous attainment of high performance and chamber compatibility are presented for both injector types. Parametric data are presented that are applicable for the design of circular coaxial and like-doublet injectors that operate with design parameters similar to those employed. However, caution should be exercised when applying these data to propellant combinations whose elements operate in ranges considerably different from those employed in this study.
NASA Astrophysics Data System (ADS)
Liu, X.; Day, D. A.; Ziemann, P. J.; Krechmer, J. E.; Jimenez, J. L.
2017-12-01
The partitioning of semivolatile organic compounds (SVOCs) into and out of particles plays an essential role in secondary organic aerosol (SOA) formation and evolution. Most atmospheric models treat the gas/particle partitioning as an equilibrium between bulk gas and particle phases, despite potential kinetic limitations and differences in thermodynamics as a function of SOA and pre-existing OA composition. This study directly measures the partitioning of oxidized compounds in a Teflon chamber in the presence of single component seeds of different phases and polarities, including oleic acid, squalane, dioctyl sebacate, pentaethylene glycol, dry/wet ammonium sulfate, and dry/wet sucrose. The oxidized compounds are generated by a fast OH oxidation of a series of alkanols under high nitric oxide conditions. The observed SOA mass enhancements are highest with oleic acid, and lowest with wet ammonium sulfate and sucrose. A chemical ionization mass spectrometer (CIMS) was used to measure the decay of gas-phase organic nitrates, which reflects uptake by particles and chamber walls. We observed clear changes in equilibrium timescales with varying seed concentrations and in equilibrium gas-phase concentrations across different seeds. In general, the gas evolution can be reproduced by a kinetic box model that considers partitioning and evaporation with particles and chamber walls, except for the wet sucrose system. The accommodation coefficient and saturation mass concentration of each species in the presence of each seed are derived using the model. The changes in particle size distributions and composition monitored by a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) are investigated to probe the SOA formation mechanism. Based on these results, the applicability of partitioning theory to these systems and the relevant quantitative parameters, including the dependencies on seed particle composition, will be discussed.
The Industrial Energy Consumers of America (IECA) joins the U.S. Chamber of Commerce in its request for correction of information developed by the Environmental Protection Agency (EPA) in a background technical support document titled Greenhouse Gas Emissions Reporting from the Petroleum and Natural Gas Industry
NASA Astrophysics Data System (ADS)
Kostyuk, A. G.; Karpunin, A. P.
2016-01-01
This article describes a high accuracy method enabling performance of the calculation of real values of the initial temperature of a gas turbine unit (GTU), i.e., the gas temperature at the outlet of the combustion chamber, in a situation where manufacturers do not disclose this information. The features of the definition of the initial temperature of the GTU according to ISO standards were analyzed. It is noted that the true temperatures for high-temperature GTUs is significantly higher than values determined according to ISO standards. A computational procedure for the determination of gas temperatures in the air-gas channel of the gas turbine and cooling air consumptions over blade rims is proposed. As starting equations, the heat balance equation and the flow mixing equation for the combustion chamber are assumed. Results of acceptance GTU tests according to ISO standards and statistical dependencies of required cooling air consumptions on the gas temperature and the blade metal are also used for calculations. An example of the calculation is given for one of the units. Using a developed computer program, the temperatures in the air-gas channel of certain GTUs are calculated, taking into account their design features. These calculations are performed on the previously published procedure for the detailed calculation of the cooled gas turbine subject to additional losses arising because of the presence of the cooling system. The accuracy of calculations by the computer program is confirmed by conducting verification calculations for the GTU of the Mitsubishi Comp. and comparing results with published data of the company. Calculation data for temperatures were compared with the experimental data and the characteristics of the GTU, and the error of the proposed method is estimated.
NASA Technical Reports Server (NTRS)
Lauer, H. V., Jr.; Ming, D. W.; Golden, D. C.; Lin, I.-C.; Boynton, W. V.
2000-01-01
Volatile-bearing minerals (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates) may be important phases on the surface of Mars. In order to characterize these potential phases the Thermal Evolved-Gas Analyzer (TEGA), which was onboard the Mars Polar Lander, was to have performed differential scanning calorimetry (DSC) and evolved-gas analysis of soil samples collected from the surface. The sample chamber in TEGA operates at about 100 mbar (approximately 76 torr) with a N2, carrier gas flow of 0.4 seem. Essentially, no information exists on the effects of reduced pressure on the thermal properties of volatile-bearing minerals. In support of TEGA, we have constructed a laboratory analog for TEGA from commercial instrumentation. We connected together a commercial differential scanning calorimeter, a quadruple mass spectrometer, a vacuum pump, digital pressure gauge, electronic mass flow meter, gas "K" bottles, gas dryers, and high and low pressure regulators using a collection of shut off and needle valves. Our arrangement allows us to vary and control the pressure and carrier gas flow rate inside the calorimeter oven chamber.
Process for depositing hard coating in a nozzle orifice
Flynn, P.L.; Giammarise, A.W.
1991-10-29
The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figures.
Apparatus for depositing hard coating in a nozzle orifice
Flynn, P.L.; Giammarise, A.W.
1995-02-21
The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice`s interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figs.
Apparatus for depositing hard coating in a nozzle orifice
Flynn, Paul L.; Giammarise, Anthony W.
1995-01-01
The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.
Apparatus and process for depositing hard coating in a nozzle orifice
Flynn, Paul L.; Giammarise, Anthony W.
1994-01-01
The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.
Process for depositing hard coating in a nozzle orifice
Flynn, Paul L.; Giammarise, Anthony W.
1991-01-01
The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance toerosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.
Chronic Decompression Illness Cognitive Dysfunction Improved with Hyperbaric Oxygen: A Case Report
2018-11-09
Altitude chamber exposures are used for training to allow aircrew to experience their hypoxia and pressure effect symptoms. Decompression illness ...chamber decompression illness is around 0.25% (1). Because the evolution of gas within the tissue or vasculature is being treated upon recompression
System to continuously produce carbon fiber via microwave assisted plasma processing
White, Terry L; Paulauskas, Felix L; Bigelow, Timothy S
2014-03-25
A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.
NASA Technical Reports Server (NTRS)
Geisenheyner, Robert M.; Berdysz, Joseph J.
1948-01-01
An investigation to determine the performance and operational characteristics of an axial-flow gas turbine-propeller engine was conducted in the Cleveland altitude wind tunnel. As part of this investigation, the combustion-chamber performance was determined at pressure altitudes from 5000 to 35,000 feet, compressor-inlet ram-pressure ratios of 1.00 and 1.09, and engine speeds from 8000 to 13,000 rpm. Combustion-chamber performance is presented as a function of corrected engine speed and corrected horsepower. For the range of corrected engine speeds investigated, overall total-pressure-loss ratio, cycle efficiency, and the fractional loss in cycle efficiency resulting from pressure losses in the combustion chambers were unaffected by a change in altitude or compressor-inlet ram-pressure ratio. For the range of corrected horsepowers investigated, the total-pressure-loss ratio and the fractional loss in cycle efficiency resulting from pressure losses in the combustion chambers decreased with an increase in corrected horsepower at a constant corrected engine speed. The combustion efficiency remained constant for the range of corrected horsepowers investigated at all corrected engine speeds.
Advanced ion thruster research
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1984-01-01
A simple model describing the discharge chamber performance of high strength, cusped magnetic field ion thrusters is developed. The model is formulated in terms of the energy cost of producing ions in the discharge chamber and the fraction of ions produced in the discharge chamber that are extracted to form the ion beam. The accuracy of the model is verified experimentally in a series of tests wherein the discharge voltage, propellant, grid transparency to neutral atoms, beam diameter and discharge chamber wall temperature are varied. The model is exercised to demonstrate what variations in performance might be expected by varying discharge chamber parameters. The results of a study of xenon and argon orificed hollow cathodes are reported. These results suggest that a hollow cathode model developed from research conducted on mercury cathodes can also be applied to xenon and argon. Primary electron mean free paths observed in argon and xenon cathodes that are larger than those found in mercury cathodes are identified as a cause of performance differences between mercury and inert gas cathodes. Data required as inputs to the inert gas cathode model are presented so it can be used as an aid in cathode design.
Effects of inlet distortion on gas turbine combustion chamber exit temperature profiles
NASA Astrophysics Data System (ADS)
Maqsood, Omar Shahzada
Damage to a nozzle guide vane or blade, caused by non-uniform temperature distributions at the combustion chamber exit, is deleterious to turbine performance and can lead to expensive and time consuming overhaul and repair. A test rig was designed and constructed for the Allison 250-C20B combustion chamber to investigate the effects of inlet air distortion on the combustion chamber's exit temperature fields. The rig made use of the engine's diffuser tubes, combustion case, combustion liner, and first stage nozzle guide vane shield. Rig operating conditions simulated engine cruise conditions, matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either side. An even distribution of inlet air to the combustion chamber did not create a uniform temperature profile and varying the inlet distribution of air exacerbated the profile's non-uniformity. The design of the combustion liner promoted the formation of an oval-shaped toroidal vortex inside the chamber, creating localized hot and cool sections separated by 90° that appeared in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most mass flow rate and decreasing the temperature of the hot section on the opposite side. Keywords: Allison 250, Combustion, Dual-Entry, Exit Temperature Profile, Gas Turbine, Pattern Factor, Reverse Flow.
NASA Technical Reports Server (NTRS)
Wadel, Mary F.
1998-01-01
An analytical investigation on the effect of high aspect ratio (height/width) cooling channels, considering different coolant channel designs, on hot-gas-side wall temperature and coolant pressure drop for a liquid hydrogen cooled rocket combustion chamber, was performed. Coolant channel design elements considered were: length of combustion chamber in which high aspect ratio cooling was applied, number of coolant channels, and coolant channel shape. Seven coolant channel designs were investigated using a coupling of the Rocket Thermal Evaluation code and the Two-Dimensional Kinetics code. Initially, each coolant channel design was developed, without consideration for fabrication, to reduce the hot-gas-side wall temperature from a given conventional cooling channel baseline. These designs produced hot-gas-side wall temperature reductions up to 22 percent, with coolant pressure drop increases as low as 7.5 percent from the baseline. Fabrication constraints for milled channels were applied to the seven designs. These produced hot-gas-side wall temperature reductions of up to 20 percent, with coolant pressure drop increases as low as 2 percent. Using high aspect ratio cooling channels for the entire length of the combustion chamber had no additional benefit on hot-gas-side wall temperature over using high aspect ratio cooling channels only in the throat region, but increased coolant pressure drop 33 percent. Independent of coolant channel shape, high aspect ratio cooling was able to reduce the hot-gas-side wall temperature by at least 8 percent, with as low as a 2 percent increase in coolant pressure drop. ne design with the highest overall benefit to hot-gas-side wall temperature and minimal coolant pressure drop increase was the design which used bifurcated cooling channels and high aspect ratio cooling in the throat region. An optimized bifurcated high aspect ratio cooling channel design was developed which reduced the hot-gas-side wall temperature by 18 percent and reduced the coolant pressure drop by 4 percent. Reductions of coolant mass flow rate of up to 50 percent were possible before the hot-gas-side wall temperature reached that of the baseline. These mass flow rate reductions produced coolant pressure drops of up to 57 percent.
Detection system for a gas chromatograph
Hayes, John M.; Small, Gerald J.
1984-01-01
A method and apparatus are described for the quantitative analysis of vaporizable compounds, and in particular of polycyclic aromatic hydrocarbons which may be induced to fluoresce. The sample to be analyzed is injected into a gas chromatography column and is eluted through a narrow orifice into a vacuum chamber. The free expansion of the eluted sample into the vacuum chamber creates a supersonic molecular beam in which the sample molecules are cooled to the extent that the excited vibrational and rotational levels are substantially depopulated. The cooled molecules, when induced to fluoresce by laser excitation, give greatly simplified spectra suitable for analytical purposes. The laser induced fluorimetry provides great selectivity, and the gas chromatograph provides quantitative transfer of the sample to the molecular beam.
May, Robert [Virginia Beach, VA
2008-03-11
A method for determining the mobility of hydrogen as a function of temperature in superconducting niobium cavities comprising: 1) heating a cavity under test to remove free hydrogen; 2) introducing hydrogen-3 gas into the cavity; 3) cooling the cavity to allow absorption of hydrogen-3; and 4) measuring the amount of hydrogen-3 by: a) cooling the cavity to about 4.degree. K while flowing a known and regulated amount of inert carrier gas such as argon or helium into the cavity; b) allowing the cavity to warm at a stable rate from 4.degree. K to room temperature as it leaves the chamber; and c) directing the exit gas to an ion chamber radiation detector.
Desulfurized gas production from vertical kiln pyrolysis
Harris, Harry A.; Jones, Jr., John B.
1978-05-30
A gas, formed as a product of a pyrolysis of oil shale, is passed through hot, retorted shale (containing at least partially decomposed calcium or magnesium carbonate) to essentially eliminate sulfur contaminants in the gas. Specifically, a single chambered pyrolysis vessel, having a pyrolysis zone and a retorted shale gas into the bottom of the retorted shale zone and cleaned product gas is withdrawn as hot product gas near the top of such zone.
Calibration of Relative Humidity Devices in Low-pressure, Low-temperature CO2 Environment
NASA Astrophysics Data System (ADS)
Genzer, Maria; Polkko, Jouni; Nikkanen, Timo; Hieta, Maria; Harri, Ari-Matti
2017-04-01
Calibration of relative humidity devices requires in minimum two humidity points - dry (0%RH) and (near)saturation (95-100%RH) - over the expected operational temperature and pressure range of the device. In terrestrial applications these are relatively easy to achieve using for example N2 gas as dry medium, and water vapor saturation chambers for producing saturation and intermediate humidity points. But for example in applications intended for meteorological measurements on Mars there is a need to achieve at least dry and saturation points in low-temperature, low-pressure CO2 environment. We have developed a custom-made, small, relatively low-cost calibration chamber able to produce both dry points and saturation points in Martian range pressure CO2, in temperatures down to -70°C. The system utilizes a commercially available temperature chamber for temperature control, vacuum vessels and pumps. The main pressure vessel with the devices under test inside is placed inside the temperature chamber, and the pressure inside is controlled by pumps and manual valves and monitored with a commercial pressure reference with calibration traceable to national standards. Air, CO2, or if needed another gas like N2, is used for filling the vessel until the desired pressure is achieved. Another pressure vessel with a dedicated pressure pump is used as the saturation chamber. This vessel is placed in the room outside the temperature chamber, partly filled with water and used for achieving saturated water vapor in room-temperature low-pressure environment. The saturation chamber is connected to the main pressure vessel via valves. In this system dry point, low-pressure CO2 environment is achieved by filling the main pressure vessel with dry CO2 gas until the desired pressure is achieved. A constant flow of gas is maintained with the pump and valves and monitored with the pressure reference. The saturation point is then achieved by adding some water vapor from the saturation chamber to the main pressure vessel. The amount of water vapor added is also monitored with the pressure reference. For example in -70°C, very small absolute amount of water vapor corresponding to 1 Pa [1][2] pressure rise in the main chamber results in humidity saturation. As the flow of both CO2 and water vapor is kept constant, the main chamber is served with water vapor all the time, keeping the uniform saturation conditions inside the vessel even if some of the water freezes on the vessel and pipe walls. [1] Goff, J. A., and S. Gratch (1946) Low-pressure properties of water from -160 to 212 °F, Transactions of the American Society of Heating and Ventilating Engineers [2] Goff, J. A. (1957) Saturation pressure of water on the new Kelvin temperature scale, Transactions of the American Society of Heating and Ventilating Engineers
Apparatus and method for polymer synthesis using arrays
Brennan, Thomas M.
1995-01-01
A polymer synthesis apparatus (20) for building a polymer chain including a head assembly (21) having an array of nozzles (22) with each nozzle coupled to a reservoir (23) of liquid reagent (24) , and a base assembly (25) having an array of reaction wells (26). A transport mechanism (27) aligns the reaction wells (26) and selected nozzles (22) for deposition of the liquid reagent (24) into selected reaction wells (26). A sliding seal (30) is positioned between the head assembly (21) and the base assembly (25) to form a common chamber (31) enclosing both the reaction well (26) and the nozzles (22) therein. A gas inlet (70) into the common chamber (31), upstream from the nozzles (22), and a gas outlet (71) out of the common chamber (31) , downstream from the nozzles (22) , sweeps the common chamber ( 31 ) of toxic fumes emitted by the reagents. Each reaction well (26) includes an orifice (74) extending into the well (26) which is of a size and dimension to form a capillary liquid seal to retain the reagent solution (76) in the well (26) for polymer chain growth therein. A pressure regulating device (82) is provided for controlling a pressure differential, between a first gas pressure exerted on the reaction well (26) and a second gas pressure exerted on an exit (80) of the orifice, such that upon the pressure differential exceeding a predetermined amount, the reagent solution (76) is expelled from the well (26) through the orifice (74). A method of synthesis of a polymer chain in a synthesis apparatus (20) is also included.
Apparatus and method for polymer synthesis using arrays
Brennan, Thomas M.
1996-01-01
A polymer synthesis apparatus (20) for building a polymer chain including a head assembly (21) having an array of nozzles (22) with each nozzle coupled to a reservoir (23) of liquid reagent (24), and a base assembly (25) having an array of reaction wells (26). A transport mechanism (27) aligns the reaction wells (26) and selected nozzles (22) for deposition of the liquid reagent (24) into selected reaction wells (26). A sliding seal (30) is positioned between the head assembly (21) and the base assembly (25) to form a common chamber (31) enclosing both the reaction well (26) and the nozzles (22) therein. A gas inlet (70) into the common chamber (31), upstream from the nozzles (22), and a gas outlet (71) out of the common chamber (31), downstream from the nozzles (22), sweeps the common chamber (31) of toxic fumes emitted by the reagents. Each reaction well ( 26) includes an orifice (74) extending into the well (26) which is of a size and dimension to form a capillary liquid seal to retain the reagent solution (76) in the well (26) for polymer chain growth therein. A pressure regulating device (82 ) is provided for controlling a pressure differential, between a first gas pressure exerted on the reaction well (26) and a second gas pressure exerted on an exit (80) of the orifice, such that upon the pressure differential exceeding a predetermined amount, the reagent solution (76) is expelled from the well (26) through the orifice (74). A method of synthesis of a polymer chain in a synthesis apparatus (20) is also included.
NASA Astrophysics Data System (ADS)
Hurowitz, J. A.; Yen, A. S.
2007-12-01
The biology experiments onboard the Viking Landers determined that the Martian soils at Chryse and Utopia Planitia contain an unknown chemical compound of a highly oxidizing nature. The Gas Exchange Experiments (GEx) demonstrated that the humidification of a 1-cc Martian soil sample resulted in the production of as much as 790 nanomoles of oxygen gas. Yen et al. (2000) have provided experimental evidence that superoxide radicals can be generated on plagioclase feldspar (labradorite) grain surfaces by exposure to ultraviolet (UV) light in the presence of oxygen gas. Adsorbed superoxide radicals are thought to react readily with water vapor, and produce oxygen gas in quantities sufficient to explain the Viking GEx results. Direct evidence for the formation of oxygen gas, however, was not provided in the experiments of Yen et al (2000). Accordingly, the motivation of this study is to determine whether superoxide radicals adsorbed on labradorite surfaces are capable of producing oxygen gas upon exposure to water vapor. We have constructed an experimental apparatus that is capable of monitoring oxygen gas release from basaltic mineral powders that have been exposed to UV-radiation under Martian atmospheric pressure conditions. The apparatus consists of a stainless-steel vacuum chamber with a UV- transparent window where sample radiation exposures are performed. The vacuum chamber has multiple valved ports for injection of gases and water vapor. The vacuum chamber is connected via a precision leak valve to a quadrupole mass spectrometer, which measures changes in the composition of the headspace gases over our mineral samples. We will report on the results of our experiments, which are aimed at detecting and quantifying oxygen gas release from UV-exposed basaltic mineral samples using this new experimental facility. These results will further constrain whether superoxide ions adsorbed on mineral surfaces provide a viable explanation for the Viking GEx results, which have been of considerable controversy in the roughly three decades since the measurements were first made.
Rocket thrust chamber thermal barrier coatings
NASA Technical Reports Server (NTRS)
Quentmeyer, R. J.
1985-01-01
Subscale rocket thrust chamber tests were conducted to evaluate the effectiveness and durability of thin yttria stabilized zirconium oxide coatings applied to the thrust chamber hot-gas side wall. The fabrication consisted of arc plasma spraying the ceramic coating and bond coat onto a mandrell and then electrodepositing the copper thrust chamber wall around the coating. Chambers were fabricated with coatings .008, and .005 and .003 inches thick. The chambers were thermally cycled at a chamber pressure of 600 psia using oxygen-hydrogen as propellants and liquid hydrogen as the coolant. The thicker coatings tended to delaminate, early in the cyclic testing, down to a uniform sublayer which remained well adhered during the remaining cycles. Two chambers with .003 inch coatings were subjected to 1500 thermal cycles with no coating loss in the throat region, which represents a tenfold increase in life over identical chambers having no coatings. An analysis is presented which shows that the heat lost to the coolant due to the coating, in a rocket thrust chamber design having a coating only in the throat region, can be recovered by adding only one inch to the combustion chamber length.
Annual Net Ecosystem Productivity of Wetlands: A Comparison of Automated and Manual Chamber Methods
NASA Astrophysics Data System (ADS)
Burrows, E. H.; Bubier, J. L.; Mosedale, A.; Crill, P. M.
2001-05-01
Net Ecosystem Exchange (NEE) of carbon dioxide (CO2) was measured in a minerotrophic poor fen in southeastern New Hampshire during the 2000 growing season using two types of chamber methods. Instantaneous CO2 flux was measured with transparent lexan and teflon static climate controlled chambers by calculating the change in headspace CO2 concentration in the chamber over time. Once per week the flux was sampled from ten manually operated chambers using a LI-COR 6200 portable photosynthesis system, which included a LI-6250 infrared gas analyzer, connected to the chambers. Ten automated chambers were installed in May of 2000, sampling CO2 flux every three hours over the diurnal cycle using a LI-COR 6262 infrared gas analyzer. The chambers and collars were placed throughout the fen in order to sample the range of plant communities. The manual sampling was done during the middle of the day, but the rate of photosynthesis changes depending on the amount of photosynthetically active radiation (PAR). In order to simulate varying light levels, shrouds blocking different amounts of light were placed over each manual chamber. An opaque shroud was used to measure respiration. NEE ranged from -13.0 to 12.5 μ mol CO2/m2/s in the manual chambers and -16.2 to 11.8 μ mol CO2/m2/s in the automated chambers for the mid-summer growing season. Manual respiration fluxes were measured under higher temperature regimes and the response of respiration to temperature will be factored in when comparing the two chamber techniques. Research during the summer of 2001 will also include diurnal measurements. Growing season net ecosystem productivity (NEP) will be estimated and compared for the two chamber systems. Several models will be used to estimate the flux when the manual chambers were not being sampled. The models will be based on biomass and dominant species in each chamber, and various environmental factors including water table, pH, relative humidity, PAR, air and peat temperature. These factors will also be used to compare differences in NEP among the chambers. Manual chambers provide greater spatial variability, but are more labor intensive. Automated chambers provide higher temporal resolution and sample more uniformly, but are more expensive and not feasible in isolated wetlands with no access to electricity. These complementary chamber techniques offer a unique opportunity to assess the variability and uncertainty in CO2 flux measurements.
The drift velocity monitoring system of the CMS barrel muon chambers
NASA Astrophysics Data System (ADS)
Altenhöfer, Georg; Hebbeker, Thomas; Heidemann, Carsten; Reithler, Hans; Sonnenschein, Lars; Teyssier, Daniel
2018-04-01
The drift velocity is a key parameter of drift chambers. Its value depends on several parameters: electric field, pressure, temperature, gas mixture, and contamination, for example, by ambient air. A dedicated Velocity Drift Chamber (VDC) with 1-L volume has been built at the III. Phys. Institute A, RWTH Aachen, in order to monitor the drift velocity of all CMS barrel muon Drift Tube chambers. A system of six VDCs was installed at CMS and has been running since January 2011. We present the VDC monitoring system, its principle of operation, and measurements performed.
Gillis, A; Miller, D R
2000-10-09
A series of controlled environment experiments were conducted to examine the use of a dynamic flux chamber to measure soil emission and absorption of total gaseous mercury (TGM). Uncertainty about the appropriate airflow rates through the chamber and chamber exposure to ambient wind are shown to be major sources of potential error. Soil surface mercury flux measurements over a range of chamber airflow rates showed a positive linear relationship between flux rates and airflow rate through the chamber. Mercury flux measurements using the chamber in an environmental wind tunnel showed that exposure of the system to ambient winds decreased the measured flux rates by 40% at a wind speed of 1.0 m s(-1) and 90% at a wind speed of 2 m s(-1). Wind tunnel measurements also showed that the chamber footprint was limited to the area of soil inside the chamber and there is little uncertainty of the footprint size in dry soil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degtiarenko, Pavel V.
An environmental radiation detector for detecting and distinguishing between all types of environmental radiation, including photons, charged particles, and neutrons. A large volume high pressure ionization chamber (HPIC) includes BF.sub.3 gas at a specific concentration to render the radiation detector sensitive to the reactions of neutron capture in Boron-10 isotope. A pulse-mode readout is connected to the ionization chamber capable of measuring both the height and the width of the pulse. The heavy charged products of the neutron capture reaction deposit significant characteristic energy of the reaction in the immediate vicinity of the reaction in the gas, producing a signalmore » with a pulse height proportional to the reaction energy, and a narrow pulse width corresponding to the essentially pointlike energy deposition in the gas. Readout of the pulse height and the pulse width parameters of the signals enables distinguishing between the different types of environmental radiation, such as gamma (x-rays), cosmic muons, and neutrons.« less
Bassani, Ilaria; Kougias, Panagiotis G; Angelidaki, Irini
2016-12-01
Biological biogas upgrading coupling CO 2 with external H 2 to form biomethane opens new avenues for sustainable biofuel production. For developing this technology, efficient H 2 to liquid transfer is fundamental. This study proposes an innovative setup for in-situ biogas upgrading converting the CO 2 in the biogas into CH 4 , via hydrogenotrophic methanogenesis. The setup consisted of a granular reactor connected to a separate chamber, where H 2 was injected. Different packing materials (rashig rings and alumina ceramic sponge) were tested to increase gas-liquid mass transfer. This aspect was optimized by liquid and gas recirculation and chamber configuration. It was shown that by distributing H 2 through a metallic diffuser followed by ceramic sponge in a separate chamber, having a volume of 25% of the reactor, and by applying a mild gas recirculation, CO 2 content in the biogas dropped from 42 to 10% and the final biogas was upgraded from 58 to 82% CH 4 content. Copyright © 2016 Elsevier Ltd. All rights reserved.
Apparatus for preparing a sample for mass spectrometry
Villa-Aleman, E.
1994-05-10
An apparatus is described for preparing a sample for analysis by a mass spectrometer system. The apparatus has an entry chamber and an ionization chamber separated by a skimmer. A capacitor having two space-apart electrodes followed by one or more ion-imaging lenses is disposed in the ionization chamber. The chamber is evacuated and the capacitor is charged. A valve injects a sample gas in the form of sample pulses into the entry chamber. The pulse is collimated by the skimmer and enters the ionization chamber. When the sample pulse passes through the gap between the electrodes, it discharges the capacitor and is thereby ionized. The ions are focused by the imaging lenses and enter the mass analyzer, where their mass and charge are analyzed. 1 figures.
Fire toxicology program. JSC methodology
NASA Technical Reports Server (NTRS)
Schneider, H.; Bafus, D.
1978-01-01
Toxicological testing of spacecraft materials was initiated in 1965. Toxicological evaluations of the pyrolysis/combustion products of candidate spacecraft materials were performed using a modified 142 liter Bethlehem Chamber equipped with a Linberg Model 55031 furnace external to the chamber. In all of the assessments, lethality was chosen as the endpoint. A new pyrolysis/combustion chamber was developed for toxicological testing and ranking of both spacecraft and aircraft materials. The pyrolysis/combustion chamber permits the use of both behavior and physiological measurements as indicators of incapacitation. Methods were developed which employ high resolution gas chromatography/mass spectrometry to generate chamber atmospheric profiles which indicate the reproductibility of pyrolysate concentrations. The atmospheric volatile profiles in combination with CO, CO2, and O2 analysis indicates that small chamber equipped with an internal furnace will give reproducible results.
Two-statge sorption type cryogenic refrigerator including heat regeneration system
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor); Wen, Liang-Chi (Inventor); Bard, Steven (Inventor)
1989-01-01
A lower stage chemisorption refrigeration system physically and functionally coupled to an upper stage physical adsorption refrigeration system. Waste heat generated by the lower stage cycle is regenerated to fuel the upper stage cycle thereby greatly improving the energy efficiency of a two-stage sorption refrigerator. The two stages are joined by disposing a first pressurization chamber providing a high pressure flow of a first refrigerant for the lower stage refrigeration cycle within a second pressurization chamber providing a high pressure flow of a second refrigerant for the upper stage refrigeration cycle. The first pressurization chamber is separated from the second pressurization chamber by a gas-gap thermal switch which at times is filled with a thermoconductive fluid to allow conduction of heat from the first pressurization chamber to the second pressurization chamber.
PlasmaLab/Eco-Plasma - The future of complex plasma research in space
NASA Astrophysics Data System (ADS)
Knapek, Christina; Thomas, Hubertus; Huber, Peter; Mohr, Daniel; Hagl, Tanja; Konopka, Uwe; Lipaev, Andrey; Morfill, Gregor; Molotkov, Vladimir
The next Russian-German cooperation for the investigation of complex plasmas under microgravity conditions on the International Space Station (ISS) is the PlasmaLab/Eco-Plasma project. Here, a new plasma chamber -- the ``Zyflex'' chamber -- is being developed. The chamber is a cylindrical plasma chamber with parallel electrodes and a flexible system geometry. It is designed to extend the accessible plasma parameter range, i.e. neutral gas pressure, plasma density and electron temperature, and also to allow an independent control of the plasma parameters, therefore increasing the experimental quality and expected knowledge gain significantly. With this system it will be possible to reach low neutral gas pressures (which means weak damping of the particle motion) and to generate large, homogeneous 3D particle systems for studies of fundamental phenomena such as phase transitions, dynamics of liquids or phase separation. The Zyflex chamber has already been operated in several parabolic flight campaigns with different configurations during the last years, yielding a promising outlook for its future development. Here, we will present the current status of the project, the technological advancements the Zyflex chamber will offer compared to its predecessors, and the latest scientific results from experiments on ground and in microgravity conditions during parabolic flights. This work and some of the authors are funded by DLR/BMWi (FKZ 50 WP 0700).
Construction and testing of a simple and economical soil greenhouse gas automatic sampler
Ginting, D.; Arnold, S.L.; Arnold, N.S.; Tubbs, R.S.
2007-01-01
Quantification of soil greenhouse gas emissions requires considerable sampling to account for spatial and/or temporal variation. With manual sampling, additional personnel are often not available to sample multiple sites within a narrow time interval. The objectives were to construct an automatic gas sampler and to compare the accuracy and precision of automatic versus manual sampling. The automatic sampler was tested with carbon dioxide (CO2) fluxes that mimicked the range of CO2 fluxes during a typical corn-growing season in eastern Nebraska. Gas samples were drawn from the chamber at 0, 5, and 10 min manually and with the automatic sampler. The three samples drawn with the automatic sampler were transferred to pre-vacuumed vials after 1 h; thus the samples in syringe barrels stayed connected with the increasing CO2 concentration in the chamber. The automatic sampler sustains accuracy and precision in greenhouse gas sampling while improving time efficiency and reducing labor stress. Copyright ?? Taylor & Francis Group, LLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raebiger, K.; Faculty of Advanced Technology, University of Glamorgan, Pontypridd, Wales; Maksoud, T.M.A.
In the investigation of the pumping behaviour of multiphase screw pumps, handling gas-liquid mixtures with very high gas volume fractions, theoretical and experimental analyses were performed. A new theoretical screw pump model was developed, which calculates the time-dependent conditions inside the several chambers of a screw pump as well as the exchange of mass and energy between these chambers. By means of the performed experimental analysis, the screw pump model was verified, especially at very high gas volume fractions from 90% to 99%. The experiments, which were conducted with the reference fluids water and air, can be divided mainly intomore » the determination of the steady state pumping behaviour on the one hand and into the analysis of selected transient operating conditions on the other hand, whereas the visualisation of the leakage flows through the circumferential gaps was rounded off the experimental analysis. (author)« less
RTE: A computer code for Rocket Thermal Evaluation
NASA Technical Reports Server (NTRS)
Naraghi, Mohammad H. N.
1995-01-01
The numerical model for a rocket thermal analysis code (RTE) is discussed. RTE is a comprehensive thermal analysis code for thermal analysis of regeneratively cooled rocket engines. The input to the code consists of the composition of fuel/oxidant mixture and flow rates, chamber pressure, coolant temperature and pressure. dimensions of the engine, materials and the number of nodes in different parts of the engine. The code allows for temperature variation in axial, radial and circumferential directions. By implementing an iterative scheme, it provides nodal temperature distribution, rates of heat transfer, hot gas and coolant thermal and transport properties. The fuel/oxidant mixture ratio can be varied along the thrust chamber. This feature allows the user to incorporate a non-equilibrium model or an energy release model for the hot-gas-side. The user has the option of bypassing the hot-gas-side calculations and directly inputting the gas-side fluxes. This feature is used to link RTE to a boundary layer module for the hot-gas-side heat flux calculations.
Apparatus For Metal/Inert-Gas Welding In Vacuum
NASA Technical Reports Server (NTRS)
Stocks, C. O.
1994-01-01
Metal/inert-gas welding-torch assembly operates in vacuum. Plasma generated in interior chamber and focused onto workpiece in vacuum. Pinch rollers feed wire to weld puddle. Controlled flow of plasma reduces dispersal in vacuum, preventing extinction.
Tripathi, R M; Sumesh, C G; Vinod Kumar, A; Puranik, V D
2013-07-01
Pulse ionisation chamber (PIC)-based monitors measuring radioactive gas radon ((222)Rn) without energy discrimination will have interference due to thoron ((220)Rn) present in the atmosphere. A technique has been developed to use this property of interference for simultaneous measurement of radon and thoron gas. These monitors work on the principle of counting of gross alphas emitted from radon and its progeny. A theoretical model has been developed for the variation of thoron sensitivity with respect to the flow rate of gas through the monitor. The thoron sensitivity of the monitor is found to vary with the flow rate of gas through the monitor. Using this sensitivity, the sampling procedure has been developed and verified for simultaneous measurement of radon and thoron. The PIC-measured radon and thoron concentration using this procedure agrees well with those measured by using standard radon and thoron discriminating monitor.
Plasma mixing glow discharge device for analytical applications
Pinnaduwage, Lal A.
1999-01-01
An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission.
Plasma mixing glow discharge device for analytical applications
Pinnaduwage, L.A.
1999-04-20
An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission. 3 figs.
Method of introducing additive into a reaction gas flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michelfelder, S.; Chughtai, M.Y.
1984-04-03
A method of continuously introducing additive, which is conveyed by gaseous and/or liquid carriers, into a turbulent reaction gas flow in the combustion chamber of a steam generator having dry ash withdrawal for selective removal, in a dry manner, of environmentally harmful gaseous noxious materials, such as sulfur, chlorine, and chlorine compounds, which are contained in a hot reaction gas flow which results after a complete or incomplete flame combustion of solid, liquid, or gaseous fuels. Depending upon the additive introduced, heat is stored and/or used for decomposition reactions. The additive, is first introduced at one or more input locations,more » due to locally different pressure conditions in the combustion chamber, into one or more recirculation flows which are within the system and are closed. The additive is subsequently withdrawn from these recirculation flows and is introduced into the reaction gas flow.« less
Negative Ion Time Projection Chamber operation with SF6 at nearly atmospheric pressure
NASA Astrophysics Data System (ADS)
Baracchini, E.; Cavoto, G.; Mazzitelli, G.; Murtas, F.; Renga, F.; Tomassini, S.
2018-04-01
We present the measurement of negative ion drift velocities and mobilities for innovative particle tracking detectors using gas mixtures based on SF6. This gas has recently received attention in the context of directional Dark Matter searches, thanks to its high Fluorine content, reduced diffusion and multiple species of charge carriers, which allow for full detector fiducialization. Our measurements, performed with a 5 cm drift distance Negative Ion Time Projection Chamber, show the possibility of negative ion operation in pure SF6 between 75 and 150 Torr with triple thin GEM amplification, confirming the attractive potentialities of this gas. Above all, our results with the mixture He:CF4:SF6 360:240:10 Torr demonstrate for the first time the feasibility of SF6‑ negative ion drift and gas gain in He at nearly atmospheric pressure, opening very interesting prospects for the next generation of directional Dark Matter detectors.
Kim, Yong Doo; Kang, Ji Hwan; Bae, Hyun Kil; Kang, Namgoo; Oh, Sang Hyub; Lee, Jin-Hong; Woo, Jin Chun; Lee, Sangil
2017-11-21
Liquid hydrocarbon mixtures such as liquefied petroleum gas and liquefied natural gas are becoming integral parts of the world's energy system. Certified reference materials (CRMs) of liquid hydrocarbon mixtures are necessary to allow assessment of the accuracy and traceability of the compositions of such materials. A piston-type constant-pressure cylinder (PCPC) comprising chambers for a pressurizing gas (helium) and liquid (hydrocarbons) separated by a piston can be used to develop accurate and traceable liquid hydrocarbon mixture CRMs. The development of accurate CRMs relies on the maintenance of their composition. However, a PCPC might allow hydrocarbons to leak owing to the imperfect seal of the piston. In this study, a novel leak-free bellows-type constant-pressure cylinder (BCPC) is designed and evaluated by comparison with PCPCs. Liquid hydrocarbon mixtures consisting of ethane, propane, propene, isobutane, n-butane, 1-butene, and isopentane were prepared in both types of constant pressure cylinders and then monitored to check leakages between the gas and liquid chambers. Overall, notable leakage occurred from and into both chambers in the PCPCs, whereas no leakage occurred in the BCPCs in the three months after their gravimetric preparation. The BCPCs maintained no leakage even 10 months after their preparation, whereas the PCPCs showed significantly increasing leakage during the same period.
Mahan, Archie Harvin; Molenbroek, Edith C.; Gallagher, Alan C.; Nelson, Brent P.; Iwaniczko, Eugene; Xu, Yueqin
2002-01-01
A method of fabricating device quality, thin-film a-Si:H for use as semiconductor material in photovoltaic and other devices, comprising in any order; positioning a substrate in a vacuum chamber adjacent a plurality of heatable filaments with a spacing distance L between the substrate and the filaments; heating the filaments to a temperature that is high enough to obtain complete decomposition of silicohydride molecules that impinge said filaments into Si and H atomic species; providing a flow of silicohydride gas, or a mixture of silicohydride gas containing Si and H, in said vacuum chamber while maintaining a pressure P of said gas in said chamber, which, in combination with said spacing distance L, provides a P.times.L product in a range of 10-300 mT-cm to ensure that most of the Si atomic species react with silicohydride molecules in the gas before reaching the substrate, to thereby grow a a-Si:H film at a rate of at least 50 .ANG./sec.; and maintaining the substrate at a temperature that balances out-diffusion of H from the growing a-Si:H film with time needed for radical species containing Si and H to migrate to preferred bonding sites.
Investigation of combustion characteristics of methane-hydrogen fuels
NASA Astrophysics Data System (ADS)
Vetkin, A. V.; Suris, A. L.; Litvinova, O. A.
2015-01-01
Numerical investigations of combustion characteristics of methane-hydrogen fuel used at present in tube furnaces of some petroleum refineries are carried out and possible problems related to change-over of existing furnaces from natural gas to methane-hydrogen fuel are analyzed. The effect of the composition of the blended fuel, associated temperature and emissivity of combustion products, temperature of combustion chamber walls, mean beam length, and heat release on variation in the radiation heat flux is investigated. The methane concentration varied from 0 to 100%. The investigations were carried out both at arbitrary given gas temperatures and at effective temperatures determined based on solving a set of equations at various heat-release rates of the combustion chamber and depended on the adiabatic combustion temperature and the temperature at the chamber output. The approximation dependence for estimation of the radiation heat exchange rate in the radiant chamber of the furnace at change-over to fuel with a greater hydrogen content is obtained. Hottel data were applied in the present work in connection with the impossibility to use approximated formulas recommended by the normative method for heat calculation of boilers to determine the gas emissivity, which are limited by the relationship of partial pressures of water steam and carbon dioxide in combustion products . The effect of the methane-hydrogen fuel on the equilibrium concentration of nitrogen oxides is also investigated.
Lovanh, Nanh; Warren, Jason; Sistani, Karamat
2010-03-01
In this study, the comparison and monitoring of the initial greenhouse gas (GHG) emissions using a flux chamber and gas analyzer from three different liquid manure application methods at a swine farm in Kentucky were carried out. Swine slurry was applied to farmland by row injection, surface spray, and Aerway injection. Ammonia and GHG concentrations were monitored immediately after application, 72 and 216h after application. The results showed that the initial ammonia flux ranged from 5.80 mg m(-2)h(-1) for the surface spray method to 1.80 mg m(-2)h(-1) for the row injection method. The initial fluxes of methane ranged from 8.75 mg m(-2)h(-1) for surface spray to 2.27 mg m(-2)h(-1) for Aerway injection, carbon dioxide ranged from 4357 mg m(-2)h(-1) for surface spray to 60 mg m(-2)h(-1) for row injection, and nitrous oxide ranged from 0.89 mg m(-2)h(-1) for surface spray to 0.22 mg m(-2)h(-1) for row injection. However, the Aerway injection method seemed to create the highest gas (GHG) concentrations inside the monitoring chambers at the initial application and produced the highest gas fluxes at subsequent sampling time (e.g., 72h after application). Nevertheless, the surface spray method appeared to produce the highest gas fluxes, and the row injection method appeared to emit the least amount of greenhouse gases into the atmosphere. Gas fluxes decreased over time and did not depend on the initial headspace concentration in the monitoring flux chambers. Published by Elsevier Ltd.
29 CFR 1910.253 - Oxygen-fuel gas welding and cutting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... prohibited in outside generator houses or inside generator rooms. (D) Water shall not be supplied through a... chamber shall always be flushed out with water, renewing the water supply in accordance with the.... Workmen in charge of the oxygen or fuel-gas supply equipment, including generators, and oxygen or fuel-gas...
Monitoring soil greenhouse gas emissions from managed grasslands
NASA Astrophysics Data System (ADS)
Díaz-Pinés, Eugenio; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf
2014-05-01
Grasslands in Central Europe are of enormous social, ecological and economical importance. They are intensively managed, but the influence of different common practices (i.e. fertilization, harvesting) on the total greenhouse gas budget of grasslands is not fully understood, yet. In addition, it is unknown how these ecosystems will react due to climate change. Increasing temperatures and changing precipitation will likely have an effect on productivity of grasslands and on bio-geo-chemical processes responsible for emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). In the frame of the TERENO Project (www.tereno.net), a long-term observatory has been implemented in the Ammer catchment, southern Germany. Acting as an in situ global change experiment, 36 big lysimeters (1 m2 section, 150 cm height) have been translocated along an altitudinal gradient, including three sites ranging from 600 to 860 meters above sea level. In addition, two treatments have been considered, corresponding to different management intensities. The overall aim of the pre-alpine TERENO observatory is improving our understanding of the consequences of climate change and management on productivity, greenhouse gas balance, soil nutritional status, nutrient leaching and hydrology of grasslands. Two of the sites are equipped with a fully automated measurement system in order to continuously and accurately monitor the soil-atmosphere greenhouse gas exchange. Thus, a stainless steel chamber (1 m2 section, 80 cm height) is controlled by a robotized system. The chamber is hanging on a metal structure which can move both vertically and horizontally, so that the chamber is able to be set onto each of the lysimeters placed on the field. Furthermore, the headspace of the chamber is connected with a gas tube to a Quantum Cascade Laser, which continuously measures CO2, CH4, N2O and H2O mixing ratios. The chamber acts as a static chamber and sets for 15 minutes onto each lysimeter; changes with time in the mixing ratios of the targeted gases are used to calculate exchange rates of the different molecules. The system allows for precise calculation of soil greenhouse gas fluxes at sub-daily resolution. Here, we will show the importance of high temporal frequency measurements for unbiased estimations of annual greenhouse gas emission budgets. Extremely high pulses of CH4 and N2O emissions after fertilizer application were observed, but in some occasions lasted for a couple of hours, only, before returning to baseline levels. Pulse response after fertilization was not always immediate. Especially for CO2, a clear diel pattern was observed, with emission rates varying by more than 100 % between early morning and midday. In summary, implications of the spatial and temporal dynamics of soil N2O, CH4 and CO2 emissions will be discussed and recommendations for avoiding under- and/or overestimation of exchange rates will be given.
Haldipur, G.B.; Dilmore, W.J.
1992-09-01
A vertical vessel is described having a lower inlet and an upper outlet enclosure separated by a main horizontal tube sheet. The inlet enclosure receives the flue gas from a boiler of a power system and the outlet enclosure supplies cleaned gas to the turbines. The inlet enclosure contains a plurality of particulate-removing clusters, each having a plurality of filter units. Each filter unit includes a filter clean-gas chamber defined by a plate and a perforated auxiliary tube sheet with filter tubes suspended from each tube sheet and a tube connected to each chamber for passing cleaned gas to the outlet enclosure. The clusters are suspended from the main tube sheet with their filter units extending vertically and the filter tubes passing through the tube sheet and opening in the outlet enclosure. The flue gas is circulated about the outside surfaces of the filter tubes and the particulate is absorbed in the pores of the filter tubes. Pulses to clean the filter tubes are passed through their inner holes through tubes free of bends which are aligned with the tubes that pass the clean gas. 18 figs.
Haldipur, Gaurang B.; Dilmore, William J.
1992-01-01
A vertical vessel having a lower inlet and an upper outlet enclosure separated by a main horizontal tube sheet. The inlet enclosure receives the flue gas from a boiler of a power system and the outlet enclosure supplies cleaned gas to the turbines. The inlet enclosure contains a plurality of particulate-removing clusters, each having a plurality of filter units. Each filter unit includes a filter clean-gas chamber defined by a plate and a perforated auxiliary tube sheet with filter tubes suspended from each tube sheet and a tube connected to each chamber for passing cleaned gas to the outlet enclosure. The clusters are suspended from the main tube sheet with their filter units extending vertically and the filter tubes passing through the tube sheet and opening in the outlet enclosure. The flue gas is circulated about the outside surfaces of the filter tubes and the particulate is absorbed in the pores of the filter tubes. Pulses to clean the filter tubes are passed through their inner holes through tubes free of bends which are aligned with the tubes that pass the clean gas.
Sectoral combustor for burning low-BTU fuel gas
Vogt, Robert L.
1980-01-01
A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.
Device for determining carbon activity through pressure
Roche, Michael F.
1976-01-01
A hollow iron capsule of annular shape having an interior layer of Fe.sub.0.947 0 and a near absolute internal vacuum is submersed within a molten metal with the inner chamber of the capsule connected to a pressure sensor. Carbon present in the molten metal diffuses through the capsule wall and reacts with the Fe.sub.0.947 0 layer to generate a CO.sub.2 --CO gas mixture within the internal chamber. The total absolute pressure of the gas measured by the pressure sensor is directly proportional to the carbon activity of the molten metal.
NASA Astrophysics Data System (ADS)
Smelov, V. G.; Sotov, A. V.; Agapovichev, A. V.; Nosova, E. A.
2018-03-01
The structure and mechanical properties of samples are obtained from metal powder based on intermetallic compound by selective laser melting. The chemical analysis of the raw material and static tensile test of specimens were made. Change in the samples’ structure and mechanical properties after homogenization during four and twenty-four hours were investigated. A small-sized combustion chamber of a gas turbine engine was performed by the selective laser melting method. The print combustion chamber was subjected to the gas-dynamic test in a certain temperature and time range.
Ionization detection system for aerosols
Jacobs, Martin E.
1977-01-01
This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.
The effect of controlled-release ClO2 on the preservation of grapefruit
USDA-ARS?s Scientific Manuscript database
The effect of controlled-release ClO2 gas on the safety and quality of grapefruit was studied. Three different tests were run: 1) isolated peel tissue with microorganism inoculation in a chamber system; 2) individual fruit with microorganism inoculation in a chamber; and 3) boxed fruit under commerc...
Analysis of the impact of sources on indoor pollutant concentrations and occupant exposure to indoor pollutants requires knowledge of the emission rates from the sources. Emission rates are often determined by chamber testing and the data from the chamber test are fitted to an em...
Rhenium-Foil Witness Cylinders
NASA Technical Reports Server (NTRS)
Knight, B. L.
1992-01-01
Cylindrical portion of wall of combustion chamber replaced with rhenium foil mounted on holder. Rhenium oxidizes without melting, indicating regions of excess oxidizer in combustion-chamber flow. Rhenium witness foils also useful in detecting excess oxygen and other oxidizers at temperatures between 2,000 and 3,600 degrees F in burner cores of advanced gas-turbine engines.
Research on stability of nozzle-floating plate institution
NASA Astrophysics Data System (ADS)
Huang, Bin; Tao, Jiayue; Yi, Jiajing; Chen, Shijing
2016-01-01
In this paper, air hammer instability of nozzle-floating plate institution in gas lubricated force sensor were studied. Through establishment of the theoretical model for the analysis of the nozzle-floating plate institution stability, combined with air hammer stability judgment theorems, we had some simulation research on the radius of the nozzle, the radius of the pressure chamber, pressure chamber depth, orifice radius and the relationship between air supply pressure and bearing capacity, in order to explore the instability mechanism of nozzle-floating plate institution. For conducting experimental observations for the stability of two groups nozzle-floating plate institution, which have typical structural parameters conducted experimental observations. We set up a special experimental device, verify the correctness of the theoretical study and simulation results. This paper shows that in the nozzle-floating plate institution, increasing the nozzle diameter, reduced pressure chamber radius, reducing the depth of the pressure chamber and increase the supply orifice radius, and other measures is conducive to system stability. Results of this study have important implications for research and design of gas lubricated force sensor.
Method for fracturing silicon-carbide coatings on nuclear-fuel particles
Turner, Lloyd J.; Willey, Melvin G.; Tiegs, Sue M.; Van Cleve, Jr., John E.
1982-01-01
This invention is a device for fracturing particles. It is designed especially for use in "hot cells" designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel material, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.
Testing fireproof materials in a combustion chamber
NASA Astrophysics Data System (ADS)
Kulhavy, Petr; Martinec, Tomas; Novak, Ondrej; Petru, Michal; Srb, Pavel
This article deals with a prototype concept, real experiment and numerical simulation of a combustion chamber, designed for testing fire resistance some new insulating composite materials. This concept of a device used for testing various materials, providing possibility of monitoring temperatures during controlled gas combustion. As a fuel for the combustion process propane butane mixture has been used and also several kinds of burners with various conditions of inlet air (forced, free) and fuel flows were tested. The tested samples were layered sandwich materials based on various materials or foams, used as fillers in fire shutters. The temperature distribution was measured by using thermocouples. A simulation of whole concept of experimental chamber has been carried out as the non-premixed combustion process in the commercial final volume sw Pyrosim. The result was to design chamber with a construction suitable, according to the international standards, achieve the required values (temperature in time). Model of the combustion based on a stoichiometric defined mixture of gas and the tested layered samples showed good conformity with experimental results - i.e. thermal distribution inside and heat release rate that has gone through the sample.
Device for fracturing silicon-carbide coatings on nuclear-fuel particles
Turner, L.J.; Willey, M.G.; Tiegs, S.M.; Van Cleve, J.E. Jr.
This invention is a device for fracturing particles. It is designed especially for use in hot cells designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel materials, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.
In-Situ Molecular Vapor Composition Measurements During Lyophilization.
Liechty, Evan T; Strongrich, Andrew D; Moussa, Ehab M; Topp, Elizabeth; Alexeenko, Alina A
2018-04-11
Monitoring process conditions during lyophilization is essential to ensuring product quality for lyophilized pharmaceutical products. Residual gas analysis has been applied previously in lyophilization applications for leak detection, determination of endpoint in primary and secondary drying, monitoring sterilization processes, and measuring complex solvents. The purpose of this study is to investigate the temporal evolution of the process gas for various formulations during lyophilization to better understand the relative extraction rates of various molecular compounds over the course of primary drying. In this study, residual gas analysis is used to monitor molecular composition of gases in the product chamber during lyophilization of aqueous formulations typical for pharmaceuticals. Residual gas analysis is also used in the determination of the primary drying endpoint and compared to the results obtained using the comparative pressure measurement technique. The dynamics of solvent vapors, those species dissolved therein, and the ballast gas (the gas supplied to maintain a set-point pressure in the product chamber) are observed throughout the course of lyophilization. In addition to water vapor and nitrogen, the two most abundant gases for all considered aqueous formulations are oxygen and carbon dioxide. In particular, it is observed that the relative concentrations of carbon dioxide and oxygen vary depending on the formulation, an observation which stems from the varying solubility of these species. This result has implications on product shelf life and stability during the lyophilization process. Chamber process gas composition during lyophilization is quantified for several representative formulations using residual gas analysis. The advantages of the technique lie in its ability to measure the relative concentration of various species during the lyophilization process. This feature gives residual gas analysis utility in a host of applications from endpoint determination to quality assurance. In contrast to other methods, residual gas analysis is able to determine oxygen and water vapor content in the process gas. These compounds have been shown to directly influence product shelf life. With these results, residual gas analysis technique presents a potential new method for real-time lyophilization process control and improved understanding of formulation and processing effects for lyophilized pharmaceutical products.
Modeling Gas Exchange in a Closed Plant Growth Chamber
NASA Technical Reports Server (NTRS)
Cornett, J. D.; Hendrix, J. E.; Wheeler, R. M.; Ross, C. W.; Sadeh, W. Z.
1994-01-01
Fluid transport models for fluxes of water vapor and CO2 have been developed for one crop of wheat and three crops of soybean grown in a closed plant a growth chamber. Correspondence among these fluxes is discussed. Maximum fluxes of gases are provided for engineering design requirements of fluid recycling equipment in growth chambers. Furthermore, to investigate the feasibility of generalized crop models, dimensionless representations of water vapor fluxes are presented. The feasibility of such generalized models and the need for additional data are discussed.
Modeling gas exchange in a closed plant growth chamber
NASA Technical Reports Server (NTRS)
Cornett, J. D.; Hendrix, J. E.; Wheeler, R. M.; Ross, C. W.; Sadeh, W. Z.
1994-01-01
Fluid transport models for fluxes of water vapor and CO2 have been developed for one crop of wheat and three crops of soybean grown in a closed plant growth chamber. Correspondence among these fluxes is discussed. Maximum fluxes of gases are provided for engineering design requirements of fluid recycling equipment in growth chambers. Furthermore, to investigate the feasibility of generalized crop models, dimensionless representations of water vapor fluxes are presented. The feasibility of such generalized models and the need for additional data are discussed.
Supercritical fuel injection system
NASA Technical Reports Server (NTRS)
Marek, C. J.; Cooper, L. P. (Inventor)
1980-01-01
a fuel injection system for gas turbines is described including a pair of high pressure pumps. The pumps provide fuel and a carrier fluid such as air at pressures above the critical pressure of the fuel. A supercritical mixing chamber mixes the fuel and carrier fluid and the mixture is sprayed into a combustion chamber. The use of fuel and a carrier fluid at supercritical pressures promotes rapid mixing of the fuel in the combustion chamber so as to reduce the formation of pollutants and promote cleaner burning.
Isolation of Resistance-Bearing Microorganisms
NASA Technical Reports Server (NTRS)
Venkateswaran, Kasthuri, J.; Probst, Alexander; Vaishampayan, Parang A.; Ghosh, Sudeshna; Osman, Shariff
2010-01-01
To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid dynamic shear (i.e., as required for viability of shear-sensitive cells) to the developing engineered tissue construct. This bioreactor was recently utilized to show independent and interactive effects of a growth factor (IGF-I) and slow bidirectional perfusion on the survival, differentiation, and contractile performance of 3D tissue engineering cardiac constructs. The main application of this system is within the tissue engineering industry. The ideal final application is within the automated mass production of tissue- engineered constructs. Target industries could be both life sciences companies as well as bioreactor device producing companies.
Oscillating Cell Culture Bioreactor
NASA Technical Reports Server (NTRS)
Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.
2010-01-01
To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid dynamic shear (i.e., as required for viability of shear-sensitive cells) to the developing engineered tissue construct. This bioreactor was recently utilized to show independent and interactive effects of a growth factor (IGF-I) and slow bidirectional perfusion on the survival, differentiation, and contractile performance of 3D tissue engineering cardiac constructs. The main application of this system is within the tissue engineering industry. The ideal final application is within the automated mass production of tissue- engineered constructs. Target industries could be both life sciences companies as well as bioreactor device producing companies.
Method of plasma enhanced chemical vapor deposition of diamond using methanol-based solutions
NASA Technical Reports Server (NTRS)
Tzeng, Yonhua (Inventor)
2009-01-01
Briefly described, methods of forming diamond are described. A representative method, among others, includes: providing a substrate in a reaction chamber in a non-magnetic-field microwave plasma system; introducing, in the absence of a gas stream, a liquid precursor substantially free of water and containing methanol and at least one carbon and oxygen containing compound having a carbon to oxygen ratio greater than one, into an inlet of the reaction chamber; vaporizing the liquid precursor; and subjecting the vaporized precursor, in the absence of a carrier gas and in the absence in a reactive gas, to a plasma under conditions effective to disassociate the vaporized precursor and promote diamond growth on the substrate in a pressure range from about 70 to 130 Torr.
NASA Technical Reports Server (NTRS)
Rayner, J. T.; Chuter, T. C.; Mclean, I. S.; Radostitz, J. V.; Nolt, I. G.
1988-01-01
A technique for establishing a stable intermediate temperature stage in liquid He/liquid N2 double vessel cryostats is described. The tertiary cold stage, which can be tuned to any temperature between 10 and 60 K, is ideal for cooling IR sensors for use in astronomy and physics applications. The device is called a variable-conductance gas switch. It is essentially a small chamber, located between the cold stage and liquid helium cold-face, whose thermal conductance may be controlled by varying the pressure of helium gas within the chamber. A key feature of this device is the large range of temperature control achieved with a very small (less than 10 mW) heat input from the cryogenic temperature control switch.
Detection system for a gas chromatograph. [. cap alpha. -methylnaphthalene,. beta. -methylnapthalene
Hayes, J.M.; Small, G.J.
1982-04-26
A method and apparatus are described for the quantitative analysis of vaporizable compounds, and in particular of polycyclic aromatic hydrocarbons which may be induced to fluoresce. The sample to be analyzed is injected into a gas chromatography column and is eluted through a narrow orifice into a vacuum chamber. The free expansion of the eluted sample into the vacuum chamber creates a supersonic molecular beam in which the sample molecules are cooled to the extent that the excited vibrational and rotational levels are substantially depopulated. The cooled molecules, when induced to fluoresce by laser excitation, give greatly simplified spectra suitable for analytical purposes. The laser induced fluorimetry provides great selectivity, and the gas chromatograph provides quantitative transfer of the sample to the molecular beam. 3 figures, 2 tables.
Open-circuit respirometry: real-time, laboratory-based systems.
Ward, Susan A
2018-05-04
This review explores the conceptual and technological factors integral to the development of laboratory-based, automated real-time open-circuit mixing-chamber and breath-by-breath (B × B) gas-exchange systems, together with considerations of assumptions and limitations. Advances in sensor technology, signal analysis, and digital computation led to the emergence of these technologies in the mid-20th century, at a time when investigators were beginning to recognise the interpretational advantages of nonsteady-state physiological-system interrogation in understanding the aetiology of exercise (in)tolerance in health, sport, and disease. Key milestones include the 'Auchincloss' description of an off-line system to estimate alveolar O 2 uptake B × B during exercise. This was followed by the first descriptions of real-time automated O 2 uptake and CO 2 output B × B measurement by Beaver and colleagues and by Linnarsson and Lindborg, and mixing-chamber measurement by Wilmore and colleagues. Challenges to both approaches soon emerged: e.g., the influence of mixing-chamber washout kinetics on mixed-expired gas concentration determination, and B × B alignment of gas-concentration signals with respired flow. The challenging algorithmic and technical refinements required for gas-exchange estimation at the alveolar level have also been extensively explored. In conclusion, while the technology (both hardware and software) underpinning real-time automated gas-exchange measurement has progressively advanced, there are still concerns regarding accuracy especially under the challenging conditions of changing metabolic rate.