Sample records for paranitrophenol-an xrd tem

  1. XRD, TEM, and thermal analysis of Arizona Ca-montmorillonites modified with didodecyldimethylammonium bromide.

    PubMed

    Sun, Zhiming; Park, Yuri; Zheng, Shuilin; Ayoko, Godwin A; Frost, Ray L

    2013-10-15

    An Arizona SAz-2 calcium montmorillonite was modified by a typical dialkyl cationic surfactant (didodecyldimethylammonium bromide, abbreviated to DDDMA) through direct ion exchange. The obtained organoclays were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), high-resolution thermogravimetric analysis (HR-TG), and infrared emission spectroscopy (IES). The intercalation of surfactants greatly increased the basal spacing of the interlayers and the conformation arrangement of the loaded surfactant were assessed based on the XRD and TEM measurements. This work shows that the dialkyl surfactant can be directly intercalated into the montmorillonite without first undergoing Na(+) exchange. Moreover, the thermal stability of organoclays and the different arrangements of the surfactant molecules intercalated in the SAz-2 Ca-montmorillonite were determined by a combination of TG and IES techniques. The detailed conformational ordering of different intercalated surfactants under different conditions was also studied. The surfactant molecule DDDMA has proved to be thermally stable even at 400°C which indicates that the prepared organoclay is stable to significantly high temperatures. This study offers new insights into the structure and thermal stabilities of SAz-2 Ca-montmorillonite modified with DDDMA. The experimental results also confirm the potential applications of organic SAz-2 Ca-montmorillonites as adsorbents and polymer-clay nanocomposites. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Crystal growth and DFT insight on sodium para-nitrophenolate para-nitrophenol dihydrate single crystal for NLO applications

    NASA Astrophysics Data System (ADS)

    Selvakumar, S.; Boobalan, Maria Susai; Anthuvan Babu, S.; Ramalingam, S.; Leo Rajesh, A.

    2016-12-01

    Single crystals of sodium para-nitrophenolate para-nitrophenol dihydrate (SPPD) were grown by slow evaporation technique and its structure has been studied by FT-IR, FT-Raman and single crystal X-ray diffraction techniques. The optical and electrical properties were characterized by UV-Vis spectrum, and dielectric studies respectively. SPPD was thermally stable up to 128 °C as determined by TG-DTA curves. Using the Kurtz-Perry powder method, the second-harmonic generation efficiency was found to be five times to that of KDP. Third-order nonlinear response was studied using Z-scan technique with a He-Ne laser (632.8 nm) and NLO parameters such as intensity dependent refractive index, nonlinear absorption coefficient and third-order susceptibility were also estimated. The molecular geometry from X-ray experiment in the ground state has been compared using density functional theory (DFT) with appropriate basis set. The first-order hyperpolarizability also calculated using DFT approaches. Stability of the molecule arising from hyperconjugative interactions leading to its nonlinear optical activity and charge delocalization were analyzed using natural bond orbital technique. HOMO-LUMO energy gap value suggests the possibility of charge transfer within the molecule. Based on optimized ground state geometries, Natural bond orbital (NBO) analysis was performed to study donor-acceptor interactions.

  3. Effect of Dermal Applications of Paranitrophenol on the Reproductive Functions of Rats.

    DTIC Science & Technology

    1985-03-01

    flaked solid with a musty odor . It Is also identified as 4-Hydroxynitrobenzene and 4-Nitrophenol. Paranitrophenol is soluble in alcohol, ether and hot...would not mate (positive mating was determined by the presence of sperm plugs and verified by vaginal smear). When positive mating was achieved, the

  4. Mössbauer, TEM/SAED and XRD investigation on waste dumps of the Valea lui Stan gold mines

    NASA Astrophysics Data System (ADS)

    Constantinescu, Serban Grigore; Udubasa, Sorin S.; Udubasa, Gheorghe; Kuncser, Victor; Popescu-Pogrion, Nicoleta; Mercioniu, Ionel; Feder, Marcel

    2012-03-01

    The complementary investigation techniques, Mössbauer spectroscopy, transmission electron microscopy with selected area electron diffraction (TEM/SAED), X-ray diffraction (XRD) have been used to investigate the fate of the Valea lui Stan, Romania, gold-ore nanoscale-minerals during the long time of residence in the waste dumps. The preliminary investigations showed such waste dumps to contain significant amount of metals which cannot be identified by conventional methods. An intense research activity started up in order to evaluate the possibilities to recycle Valea lui Stan waste dumps and to recover metals by chemical or phytoextraction procedures. The waste dumps naturally show different mineral constituents with clay minerals as major phases, observed by XRD-technique. Although the waste dumps materials have whitish-yellowish colours, MÖSSBAUER technique evidences the presence of the finely dispersed iron bearing minerals. The authors are focusing to inspect and analyze Fe-compounds in the samples collected from Valea lui Stan's waste dumps in order to identify the magnetic phases by Mössbauer technique.

  5. Sludge reduction by uncoupling metabolism: SBR tests with para-nitrophenol and a commercial uncoupler.

    PubMed

    Zuriaga-Agustí, E; Mendoza-Roca, J A; Bes-Piá, A; Alonso-Molina, J L; Amorós-Muñoz, I

    2016-11-01

    Nowadays cost reduction is a very important issue in wastewater treatment plants. One way, is to minimize the sludge production. Microorganisms break down the organic matter into inorganic compounds through catabolism. Uncoupling metabolism is a method which promote catabolism reactions instead of anabolism ones, where adenosine triphosphate synthesis is inhibited. In this work, the influence of the addition of para-nitrophenol and a commercial reagent to a sequencing batch reactor (SBR) on sludge production and process performance has been analyzed. Three laboratory SBRs were operated in parallel to compare the effect of the addition of both reagents with a control reactor. SBRs were fed with synthetic wastewater and were operated with the same conditions. Results showed that sludge production was slightly reduced for the tested para-nitrophenol concentrations (20 and 25 mg/L) and for a LODOred dose of 1 mL/day. Biological process performance was not influenced and high COD removals were achieved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. XRD, TEM, IR, Raman and NMR Spectroscopy of In Situ Crystallization of Lithium Disilicate Glass

    NASA Technical Reports Server (NTRS)

    Fuss, T.; Mogus-Milankovic, A.; Ray, C. S.; Lesher, C. E.; Youngman, R.; Day, D. E.

    2006-01-01

    The structure of a Li2O-2SiO2 (LS2) glass was investigated as a function of pressure and temperature up to 6 GPa and 750 C respectively, using XRD, TEM, IR, Raman and NMR spectroscopy. Glass densified at 6 GPa has an average Si-O-Si bond angle approx.7deg lower than that found in glass processed at 4.5 GPa. At 4.5 GPa, lithium disilicate crystallizes from the glass, while at 6 GPa a new high pressure form of lithium metasilicate crystallizes. The new phase, while having lithium metasilicate crystal symmetry, contains at least 4 different Si sites. NMR results for 6 GPa sample indicate the presence of Q4 species with (Q(sup 4))Si-O-Si(Q(sup 4)) bond angles of approx.157deg. This is the first reported occurrence of Q(sup 4) species with such large bond angles in alumina free alkali silicate glass. No five- or six- coordinated Si are found.

  7. Powder XRD, TEM, FTIR and thermal studies of strontium tartrate nano particles

    NASA Astrophysics Data System (ADS)

    Lathiya, U. M.; Jethva, H. O.; Joshi, M. J.; Vyas, P. M.

    2017-05-01

    Strontium tartrate finds several applications, e.g., as non-linear optical and dielectric material, in tracer composition and ammunition unit, in treating structural integrity of bone. The growth of single crystals of strontium tartrate in silica gel has been widely reported. In the present study, strontium tartrate nano particles were synthesized by wet chemical method using strontium chloride, tartaric acid and sodium meta-silicate solutions in the presence of Triton X -100 surfactant. It was found that the presence of sodium meta-silicate facilitated the reaction for strontium tartrate product. The powder XRD study of strontium tartrate nano-particles suggested monoclinic crystal system and the average crystallite size was found to be 40 nm determined by applying Scherrer's formula. The TEM analysis indicated that the nano particles were spherical in nature. The FTIR spectrum confirmed the presence of various functional groups such as O-H,C-H, and C=O stretching mode. The thermal analysis was carried out by using TGA and DTA studies. The nano-particles were found to be stable up to 175°C and then decomposed through various stages. The results are compared with the bulk crystalline material available in the literature.

  8. Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: characterization of nanocomposite by FTIR, XRD, FESEM and TEM.

    PubMed

    Habibi, Neda

    2014-10-15

    The preparation and characterization of magnetite-carboxymethyl cellulose nano-composite (M-CMC) material is described. Magnetite nano-particles were synthesized by a modified co-precipitation method using ferrous chloride tetrahydrate and ferric chloride hexahydrate in ammonium hydroxide solution. The M-CMC nano-composite particles were synthesized by embedding the magnetite nanoparticles inside carboxymethyl cellulose (CMC) using a freshly prepared mixture of Fe3O4 with CMC precursor. Morphology, particle size, and structural properties of magnetite-carboxymethyl cellulose nano-composite was accomplished using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. As a result, magnetite nano-particles with an average size of 35nm were obtained. The biocompatible Fe3O4-carboxymethyl cellulose nano-composite particles obtained from the natural CMC polymers have a potential range of application in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect of interparticle interactions on size determination of zirconia and silica based systems – A comparison of SAXS, DLS, BET, XRD and TEM

    PubMed Central

    Pabisch, Silvia; Feichtenschlager, Bernhard; Kickelbick, Guido; Peterlik, Herwig

    2012-01-01

    The aim of this work is a systematic comparison of size characterisation methods for two completely different model systems of oxide nanoparticles, i.e. amorphous spherical silica and anisotropic facet-shaped crystalline zirconia. Size and/or size distribution were determined in a wide range from 5 to 70 nm using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), nitrogen sorption (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM). A nearly perfect coincidence was observed only for SAXS and TEM for both types of particles. For zirconia nanoparticles considerable differences between different measurement methods were observed. PMID:22347721

  10. Identification of the silver state in the framework of Ag-containing zeolite by XRD, FTIR, photoluminescence, 109Ag NMR, EPR, DR UV-vis, TEM and XPS investigations.

    PubMed

    Popovych, Nataliia; Kyriienko, Pavlo; Soloviev, Sergiy; Baran, Rafal; Millot, Yannick; Dzwigaj, Stanislaw

    2016-10-26

    Silver has been identified in the framework of Ag x SiBEA zeolites (where x = 3-6 Ag wt%) by the combined use of XRD, 109 Ag MAS NMR, FTIR, diffuse reflectance UV-visible, EPR and XPS spectroscopy. The incorporation of Ag ions into the framework of SiBEA zeolite has been evidenced by XRD. The consumption of OH groups as a result of their reaction with the silver precursor has been monitored by FTIR and photoluminescence spectroscopy. The changes in the silver state as a function of Ag content and thermal and hydrogen treatment at 573 K have been identified by 109 Ag MAS NMR, EPR, DR UV-visible, TEM and XPS investigations. The acidity of AgSiBEA has been investigated by FTIR spectroscopy of adsorbed CO and pyridine used as probe molecules.

  11. Swelling induced by alpha decay in monazite and zirconolite ceramics: A XRD and TEM comparative study

    NASA Astrophysics Data System (ADS)

    Deschanels, X.; Seydoux-Guillaume, A. M.; Magnin, V.; Mesbah, A.; Tribet, M.; Moloney, M. P.; Serruys, Y.; Peuget, S.

    2014-05-01

    Zirconolite and monazite matrices are potential ceramics for the containment of actinides (Np, Cm, Am, Pu) which are produced over the reprocessing of spent nuclear fuel. Actinides decay mainly through the emission of alpha particles, which in turn causes most ceramics to undergo structural and textural changes (amorphization and/or swelling). In order to study the effects of alpha decays on the above mentioned ceramics two parallel approaches were set up. The first involved the use of an external irradiation source, Au, which allowed the deposited recoil energy to be simulated. The second was based on short-lived actinide doping with 238Pu, (i.e. an internal source), via the incorporation of plutonium oxide into both the monazite and zirconolite structures during synthesis. In both types of irradiation experiments, the zirconolite samples became amorphous at room temperature with damage close to 0.3 dpa; corresponding to a critical dose of 4 × 1018 α g-1 (i.e. ∼1.3 × 1021 keV cm-3). Both zirconolite samples also showed the same degree of macroscopic swelling at saturation (∼6%), with ballistic processes being the predominant damaging effect. In the case of the monazite however, the macroscopic swelling and amorphization were dependent on the nature of the irradiation. Externally, (Au), irradiated samples became amorphous while also demonstrating a saturation swelling of up to 8%. In contrast to this, the swelling of the 238Pu doped samples was much smaller at ∼1%. Also, unlike the externally (Au) irradiated monazite these 238Pu doped samples remained crystalline up to 7.5 × 1018 α g-1 (0.8 dpa). XRD, TEM and swelling measurements were used to fully characterize and interpret this behavior. The low swelling and the conservation of the crystalline state of 238Pu doped monazite samples indicates that alpha annealing took place within this material.

  12. Acute and repeated dose inhalation toxicity of para-nitrophenol sodium salt in rats.

    PubMed

    Smith, L W; Hall, G T; Kennedy, G L

    1988-01-01

    Para-Nitrophenol Sodium Salt (PNSP) has relatively low acute inhalation toxicity; the 4-hr Approximate Lethal Concentration in rats is greater than 4.7 mg/l. One subacute study was conducted at 0, 0.34 and 2.47 mg PNSP/l for ten 6-hr exposures. Darker urine, proteinuria and elevated creatinine and SGOT were seen after exposure and were still evident after 14 days recovery. Methemoglobinemia also was seen and was reversible at 0.34 mg/l after 14 days. In addition, exposure to 2.47 mg/l caused elevated erythrocytes, hemoglobin and hematocrit. A second subacute study at 0.03 and 0.13 mg PNSP/l showed reversible methemoglobinemia only at 0.13 mg/l. The repeated dose no-observable effect level was 0.03 mg/l. No compound-related pathologic changes were noted in any of the studies.

  13. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    NASA Astrophysics Data System (ADS)

    Subbarao, Udumula; Marakatti, Vijaykumar S.; Amshumali, Mungalimane K.; Loukya, B.; Singh, Dheeraj Kumar; Datta, Ranjan; Peter, Sebastian C.

    2016-12-01

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP) using NaBH4 as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process.

  14. Quantitative XRD analysis of {110} twin density in biotic aragonites.

    PubMed

    Suzuki, Michio; Kim, Hyejin; Mukai, Hiroki; Nagasawa, Hiromichi; Kogure, Toshihiro

    2012-12-01

    {110} Twin densities in biotic aragonite have been estimated quantitatively from the peak widths of specific reflections in powder X-ray diffraction (XRD) patterns, as well as direct confirmation of the twins using transmission electron microscopy (TEM). Influence of the twin density on the peak widths in the XRD pattern was simulated using DIFFaX program, regarding (110) twin as interstratification of two types of aragonite unit layers with mirrored relationship. The simulation suggested that the twin density can be estimated from the difference of the peak widths between 111 and 021, or between 221 and 211 reflections. Biotic aragonite in the crossed-lamellar microstructure (three species) and nacreous microstructure (four species) of molluscan shells, fish otoliths (two species), and a coral were investigated. The XRD analyses indicated that aragonite crystals in the crossed-lamellar microstructure of the three species contain high density of the twins, which is consistent with the TEM examination. On the other hand, aragonite in the nacre of the four species showed almost no difference of the peak widths between the paired reflections, indicating low twin densities. The results for the fish otoliths were varied between the species. Such variation of the twin density in biotic aragonites may reflect different schemes of crystal growth in biomineralization. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Evolution of TEM-type enzymes: biochemical and genetic characterization of two new complex mutant TEM enzymes, TEM-151 and TEM-152, from a single patient.

    PubMed

    Robin, Frédéric; Delmas, Julien; Schweitzer, Cédric; Tournilhac, Olivier; Lesens, Olivier; Chanal, Catherine; Bonnet, Richard

    2007-04-01

    Two clinical isolates of Escherichia coli, CF1179 and CF1295, were isolated from a patient hospitalized in the hematology unit of the University Hospital of Clermont-Ferrand, Clermont-Ferrand, France. They were resistant to penicillin-clavulanate combinations and to ceftazidime. The double-disk synergy test was positive only for isolate CF1179. Molecular comparison of the isolates showed that they were clonally related. E. coli recombinant strains exhibiting the resistance phenotype of the clinical strains were obtained by cloning. The clones corresponding to strains CF1179 and CF1295 produced TEM-type beta-lactamases with pI values of 5.7 and 5.3, respectively. Sequencing analysis revealed two novel blaTEM genes encoding closely related complex mutant TEM enzymes, designated TEM-151 (pI 5.3) and TEM-152 (pI 5.7). These two genes also harbored a new promoter region which presented a 9-bp deletion. The two novel beta-lactamases differed from the parental enzyme, TEM-1, by the substitution Arg164His, previously observed in extended-spectrum beta-lactamases (ESBLs), and by the substitutions Met69Val and Asn276Asp, previously observed in the inhibitor-resistant penicillinase TEM-36/IRT-7. They differed by two amino acid substitutions: TEM-152 harbored a Glu240Lys ESBL-type substitution and TEM-151 had an Ala284Gly substitution. Functional analysis of TEM-151 and TEM-152 showed that both enzymes had hydrolytic activity against ceftazidime (kcat, 5 and 16 s-1, respectively). TEM-152 was more resistant than TEM-151 to the inhibitor clavulanic acid (50% inhibitory concentrations, 1 versus 0.17 microM). These results confirm the evolution of TEM-type enzymes toward complex enzymes harboring the two kinds of substitutions which confer an extended spectrum of action against beta-lactam antibiotics and resistance to inhibitors.

  16. High Catalytic Efficiency of Nanostructured β-CoMoO₄ in the Reduction of the Ortho-, Meta- and Para-Nitrophenol Isomers.

    PubMed

    Al-Wadaani, Fahd; Omer, Ahmed; Abboudi, Mostafa; Oudghiri Hassani, Hicham; Rakass, Souad; Messali, Mouslim; Benaissa, Mohammed

    2018-02-09

    Nanostructured β-CoMoO₄ catalysts have been prepared via the thermal decomposition of an oxalate precursor. The catalyst was characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller method (BET), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The efficiency of these nanoparticles in the reduction of ortho - and meta -nitrophenol isomers (2-NP, 3-NP, and 4-NP) to their corresponding aminophenols was tested using UV-visible spectroscopy measurements. It was found that, with a β-CoMoO₄ catalyst, NaBH₄ reduces 3-NP instantaneously, whilst the reduction of 2-NP and 4-NP is slower at 8 min. This difference is thought to arise from the lower acidity of 3-NP, where the negative charge of the phenolate could not be delocalized onto the oxygen atoms of the meta-nitro group.

  17. Transmission Electron Microscopy (TEM) Sample Preparation of Si(1-x)Gex in c-Plane Sapphire Substrate

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Jung; Choi, Sang H.; Bae, Hyung-Bin; Lee, Tae Woo

    2012-01-01

    The National Aeronautics and Space Administration-invented X-ray diffraction (XRD) methods, including the total defect density measurement method and the spatial wafer mapping method, have confirmed super hetero epitaxy growth for rhombohedral single crystalline silicon germanium (Si1-xGex) on a c-plane sapphire substrate. However, the XRD method cannot observe the surface morphology or roughness because of the method s limited resolution. Therefore the authors used transmission electron microscopy (TEM) with samples prepared in two ways, the focused ion beam (FIB) method and the tripod method to study the structure between Si1-xGex and sapphire substrate and Si1?xGex itself. The sample preparation for TEM should be as fast as possible so that the sample should contain few or no artifacts induced by the preparation. The standard sample preparation method of mechanical polishing often requires a relatively long ion milling time (several hours), which increases the probability of inducing defects into the sample. The TEM sampling of the Si1-xGex on sapphire is also difficult because of the sapphire s high hardness and mechanical instability. The FIB method and the tripod method eliminate both problems when performing a cross-section TEM sampling of Si1-xGex on c-plane sapphire, which shows the surface morphology, the interface between film and substrate, and the crystal structure of the film. This paper explains the FIB sampling method and the tripod sampling method, and why sampling Si1-xGex, on a sapphire substrate with TEM, is necessary.

  18. Removal Mechanisms of Para-nitrophenol in Reclaimed Water using SAT and its Bio-enhancement

    NASA Astrophysics Data System (ADS)

    Wen, Y. L.; Yang, Y.; Zhang, H.; Lou, B.

    2017-12-01

    Nowadays, we were facing with water resource shortage along with water pollution. It was important to undertake the cost effective technology to treat polluted water whilst encourage water reuse. Soil aquifer treatment (SAT) was an efficient technology, using the infiltration process of mediation, adsorption and biodegradation on the pollutants in the environment to achieve the goal of recycling water. For a better understanding of the transport and attenuation of para-nitrophenol (P-NP) and the change of microbial community at the stress of p-nitrophenol in soil aquifer treatment system, two column experiments were operated to investigate the physical, chemical, and microbial dynamics. At the same time, the bio-augment method was used to enhance the SAT biodegradation system. The SAT column experiment was operated about 38 days, which demonstrated that two reduction zones were revealed at the middle of the column and the biodiversity of the microbial community could be destroyed under the P-NP stress. Absorption was the main removal mechanism according to the obtained experimental data. By using the displacement method, the BIO-SAT system was operated about 36 days, which showed perfect outcome for the P-NP removal at a higher concentration. From the PCR-DGGE and high throughput sequencing study, enhanced bacteria could form a stable biological community with indigenous communities. Through the Canonical Correspondence Analysis (CCA) microbial degradation and environmental factors, the results showed that the pH was a very important parameter affects the degradation of nitrophenol degradation bacteria. The metal ions under the condition of low concentration can promote the growth of microbial degradation. This study provide valuable result on the attenuation potential of for the bio-enhanced SAT system (BIO-SAT). (No Image Selected)

  19. XRD measurement of mean crystallite thickness of illite and illite/smectite: Reappraisal of the Kubler index and the Scherrer equation

    USGS Publications Warehouse

    Drits, Victor A.; Środoń, Jan; Eberl, D.D.

    1997-01-01

    The standard form of the Scherrer equation, which has been used to calculate the mean thickness of the coherent scattering domain (CSD) of illite crystals from X-ray diffraction (XRD) full width data at half maximum (FWHM) intensity, employs a constant, Ksh, of 0.89. Use of this constant is unjustified, even if swelling has no effect on peak broadening, because this constant is valid only if all CSDs have a single thickness. For different thickness distributions, the Scherrer “constant” has very different values.Analysis of fundamental particle thickness data (transmission electron microscopy, TEM) for samples of authigenic illite and illite/smectite from diagenetically altered pyroclastics and filamentous illites from sandstones reveals a unique family of lognormal thickness distributions for these clays. Experimental relations between the distributions' lognormal parameters and mean thicknesses are established. These relations then are used to calculate the mean thickness of CSDs for illitic samples from XRD FWHM, or from integral XRD peak widths (integrated intensity/maximum intensity).For mixed-layer illite/smectite, the measured thickness of the CSD corresponds to the mean thickness of the mixed-layer crystal. Using this measurement, the mean thickness of the fundamental particles that compose the mixed-layer crystals can be calculated after XRD determination of percent smectitic interlayers. The effect of mixed layering (swelling) on XRD peak width for these samples is eliminated by using the 003 reflection for glycolated samples, and the 001, 002 or 003 reflection for dehydrated, K-saturated samples. If this technique is applied to the 001 reflection of air-dried samples (Kubler index measurement), mean CSD thicknesses are underestimated due to the mixed-layering effect.The technique was calibrated using NEW MOD©-simulated XRD profiles of illite, and then tested on well-characterized illite and illite/smectite samples. The XRD measurements are in good

  20. Multi-wavelength dye concentration determination for enzymatic assays: evaluation of chromogenic para-nitrophenol over a wide pH range.

    PubMed

    Max, Jean-Joseph; Meddeb-Mouelhi, Fatma; Beauregard, Marc; Chapados, Camille

    2012-12-01

    Enzymatic assays need robust, rapid colorimetric methods that can follow ongoing reactions. For this, we developed a highly accurate, multi-wavelength detection method that could be used for several systems. Here, it was applied to the detection of para-nitrophenol (pNP) in basic and acidic solutions. First, we confirmed by factor analysis that pNP has two forms, with unique spectral characteristics in the 240 to 600 nm range: Phenol in acidic conditions absorbs in the lower range, whereas phenolate in basic conditions absorbs in the higher range. Thereafter, the method was used for the determination of species concentration. For this, the intensity measurements were made at only two wavelengths with a microtiter plate reader. This yielded total dye concentration, species relative abundance, and solution pH value. The method was applied to an enzymatic assay. For this, a chromogenic substrate that generates pNP after hydrolysis catalyzed by a lipase from the fungus Yarrowia lipolytica was used. Over the pH range of 3-11, accurate amounts of acidic and basic pNP were determined at 340 and 405 nm, respectively. This method surpasses the commonly used single-wavelength assay at 405 nm, which does not detect pNP acidic species, leading to activity underestimations. Moreover, alleviation of this pH-related problem by neutralization is not necessary. On the whole, the method developed is readily applicable to rapid high-throughput of enzymatic activity measurements over a wide pH range.

  1. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite.

    PubMed

    Reyes-Gasga, José; Martínez-Piñeiro, Esmeralda L; Rodríguez-Álvarez, Galois; Tiznado-Orozco, Gaby E; García-García, Ramiro; Brès, Etienne F

    2013-12-01

    The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI)XRD index is related to the crystal structure of the samples and the (CI)FTIR index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI)XRD value indicated that enamel is more crystalline than synthetic HAP, while (CI)FTIR indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values. © 2013.

  2. An Integrated XRF/XRD Instrument for Mars Exobiology and Geology Experiments

    NASA Technical Reports Server (NTRS)

    Koppel, L. N.; Franco, E. D.; Kerner, J. A.; Fonda, M. L.; Schwartz, D. E.; Marshall, J. R.

    1993-01-01

    By employing an integrated x-ray instrument on a future Mars mission, data obtained will greatly augment those returned by Viking; details characterizing the past and present environment on Mars and those relevant to the possibility of the origin and evolution of life will be acquired. A combined x-ray fluorescence/x-ray diffraction (XRF/XRD) instrument was breadboarded and demonstrated to accommodate important exobiology and geology experiment objectives outlined for MESUR and future Mars missions. Among others, primary objectives for the exploration of Mars include the intense study of local areas on Mars to establish the chemical, mineralogical, and petrological character of different components of the surface material; to determine the distribution, abundance, and sources and sinks of volatile materials, including an assessment of the biologic potential, now and during past epoches; and to establish the global chemical and physical characteristics of the Martian surface. The XRF/XRD breadboard instrument identifies and quantifies soil surface elemental, mineralogical, and petrological characteristics and acquires data necessary to address questions on volatile abundance and distribution. Additionally, the breadboard is able to characterize the biogenic element constituents of soil samples providing information on the biologic potential of the Mars environment. Preliminary breadboard experiments confirmed the fundamental instrument design approach and measurement performance.

  3. Compressive Classification for TEM-EELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Weituo; Stevens, Andrew; Yang, Hao

    Electron energy loss spectroscopy (EELS) is typically conducted in STEM mode with a spectrometer, or in TEM mode with energy selction. These methods produce a 3D data set (x, y, energy). Some compressive sensing [1,2] and inpainting [3,4,5] approaches have been proposed for recovering a full set of spectra from compressed measurements. In many cases the final form of the spectral data is an elemental map (an image with channels corresponding to elements). This means that most of the collected data is unused or summarized. We propose a method to directly recover the elemental map with reduced dose and acquisitionmore » time. We have designed a new computational TEM sensor for compressive classification [6,7] of energy loss spectra called TEM-EELS.« less

  4. The Gene Cluster for para-Nitrophenol Catabolism Is Responsible for 2-Chloro-4-Nitrophenol Degradation in Burkholderia sp. Strain SJ98

    PubMed Central

    Min, Jun; Zhang, Jun-Jie

    2014-01-01

    Burkholderia sp. strain SJ98 (DSM 23195) utilizes 2-chloro-4-nitrophenol (2C4NP) or para-nitrophenol (PNP) as a sole source of carbon and energy. Here, by genetic and biochemical analyses, a 2C4NP catabolic pathway different from those of all other 2C4NP utilizers was identified with chloro-1,4-benzoquinone (CBQ) as an intermediate. Reverse transcription-PCR analysis showed that all of the pnp genes in the pnpABA1CDEF cluster were located in a single operon, which is significantly different from the genetic organization of all other previously reported PNP degradation gene clusters, in which the structural genes were located in three different operons. All of the Pnp proteins were purified to homogeneity as His-tagged proteins. PnpA, a PNP 4-monooxygenase, was found to be able to catalyze the monooxygenation of 2C4NP to CBQ. PnpB, a 1,4-benzoquinone reductase, has the ability to catalyze the reduction of CBQ to chlorohydroquinone. Moreover, PnpB is also able to enhance PnpA activity in vitro in the conversion of 2C4NP to CBQ. Genetic analyses indicated that pnpA plays an essential role in the degradation of both 2C4NP and PNP by gene knockout and complementation. In addition to being responsible for the lower pathway of PNP catabolism, PnpCD, PnpE, and PnpF were also found to be likely involved in that of 2C4NP catabolism. These results indicated that the catabolism of 2C4NP and that of PNP share the same gene cluster in strain SJ98. These findings fill a gap in our understanding of the microbial degradation of 2C4NP at the molecular and biochemical levels. PMID:25085488

  5. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subbarao, Udumula; Marakatti, Vijaykumar S.; Amshumali, Mungalimane K.

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP)more » using NaBH{sub 4} as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process. - Graphical abstract: NiSe nanoparticles in different size and morphology were synthesized using facile ball milling and polyol methods. Particle size, morphology and the presence of surfactant in these materials played a crucial role in the hydrogenation of PNA and PNP. - Highlights: • NiSe nanoparticles synthesized using ball milling and solution phase methods. • NiSe nanoparticle is an efficient catalyst for the reduction of PNA and PNP. • NiSe is found to be better than the best reported noble metal catalysts.« less

  6. A Two-Component para-Nitrophenol Monooxygenase Initiates a Novel 2-Chloro-4-Nitrophenol Catabolism Pathway in Rhodococcus imtechensis RKJ300

    PubMed Central

    Min, Jun; Zhang, Jun-Jie

    2015-01-01

    Rhodococcus imtechensis RKJ300 (DSM 45091) grows on 2-chloro-4-nitrophenol (2C4NP) and para-nitrophenol (PNP) as the sole carbon and nitrogen sources. In this study, by genetic and biochemical analyses, a novel 2C4NP catabolic pathway different from those of all other 2C4NP utilizers was identified with hydroxyquinol (hydroxy-1,4-hydroquinone or 1,2,4-benzenetriol [BT]) as the ring cleavage substrate. Real-time quantitative PCR analysis indicated that the pnp cluster located in three operons is likely involved in the catabolism of both 2C4NP and PNP. The oxygenase component (PnpA1) and reductase component (PnpA2) of the two-component PNP monooxygenase were expressed and purified to homogeneity, respectively. The identification of chlorohydroquinone (CHQ) and BT during 2C4NP degradation catalyzed by PnpA1A2 indicated that PnpA1A2 catalyzes the sequential denitration and dechlorination of 2C4NP to BT and catalyzes the conversion of PNP to BT. Genetic analyses revealed that pnpA1 plays an essential role in both 2C4NP and PNP degradations by gene knockout and complementation. In addition to catalyzing the oxidation of CHQ to BT, PnpA1A2 was also found to be able to catalyze the hydroxylation of hydroquinone (HQ) to BT, revealing the probable fate of HQ that remains unclear in PNP catabolism by Gram-positive bacteria. This study fills a gap in our knowledge of the 2C4NP degradation mechanism in Gram-positive bacteria and also enhances our understanding of the genetic and biochemical diversity of 2C4NP catabolism. PMID:26567304

  7. An electron energy loss spectrometer based streak camera for time resolved TEM measurements.

    PubMed

    Ali, Hasan; Eriksson, Johan; Li, Hu; Jafri, S Hassan M; Kumar, M S Sharath; Ögren, Jim; Ziemann, Volker; Leifer, Klaus

    2017-05-01

    We propose an experimental setup based on a streak camera approach inside an energy filter to measure time resolved properties of materials in the transmission electron microscope (TEM). In order to put in place the streak camera, a beam sweeper was built inside an energy filter. After exciting the TEM sample, the beam is swept across the CCD camera of the filter. We describe different parts of the setup at the example of a magnetic measurement. This setup is capable to acquire time resolved diffraction patterns, electron energy loss spectra (EELS) and images with total streaking times in the range between 100ns and 10μs. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. In-situ heating TEM observation of microscopic structural changes of size-controlled metallic copper/gelatin composite.

    PubMed

    Narushima, Takashi; Hyono, Atsushi; Nishida, Naoki; Yonezawa, Tetsu

    2012-10-01

    Copper/gelatin composite particles with controlled sizes were prepared at room temperature from cupric sulfate pentahydrate in the presence of gelatin as a protective reagent by using hydrazine monohydrate as a reducing agent. The formed particles with the size between 190-940 nm were secondary aggregated particles which were composed of smaller nanosized particles ("particle-in-particle"), the presence of which was established by XRD patterns and a cross-sectional TEM image. The sintering behavior of these copper/gelatin composite particles was demonstrated by in-situ heating TEM under a high vacuum (approximately 10(-5) Pa) and separately with the oxygen partial pressure controlled at the 10(-4) Pa level. It was established that the particles began to sinter at about 330 degrees C with the oxygen and that they sublimate above 450 degrees C both in the vacuum and oxygen conditions. This result shows that the introduction of an adequate amount of oxygen was effective to remove the gelatin surrounding the particles. It can also be concluded that the sintering of the copper/gelatin composite particles occurred even in the absence of a reducing agent such as hydrogen gas.

  9. [Identification of Dens Draconis and Os Draconis by XRD method].

    PubMed

    Chen, Guang-Yun; Wu, Qi-Nan; Shen, Bei; Chen, Rong

    2012-04-01

    To establish an XRD method for evaluating the quality of Os Draconis and Dens Draconis and applying in judgement of the counterfeit. Dens Draconis, Os Draconis and the counterfeit of Os Draconis were analyzed by XRD. Their diffraction patterns were clustered analysis and evaluated their similarity degree. Established the analytical method of Dens Draconis and Os Draconis basing the features fingerprint information of the 10 common peaks by XRD pattern. Obtained the XRD pattern of the counterfeit of Os Draconis. The similarity degree of separate sources of Dens Draconis was high,while the similarity degree of separate sources of Os Draconis was significant different from each other. This method can be used for identification and evaluation of Os Draconis and Dens Draconis. It also can be used for identification the counterfeit of Os Draconis effectively.

  10. Recognition and Resistance in TEM [superscript beta]-Lactamase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaojun; Minasov, George; Blazquez, Jesus

    Developing antimicrobials that are less likely to engender resistance has become an important design criterion as more and more drugs fall victim to resistance mutations. One hypothesis is that the more closely an inhibitor resembles a substrate, the more difficult it will be to develop resistant mutations that can at once disfavor the inhibitor and still recognize the substrate. To investigate this hypothesis, 10 transition-state analogues, of greater or lesser similarity to substrates, were tested for inhibition of TEM-1 beta-lactamase, the most widespread resistance enzyme to penicillin antibiotics. The inhibitors were also tested against four characteristic mutant enzymes: TEM-30, TEM-32,more » TEM-52, and TEM-64. The inhibitor most similar to the substrate, compound 10, was the most potent inhibitor of the WT enzyme, with a K(i) value of 64 nM. Conversely, compound 10 was the most susceptible to the TEM-30 (R244S) mutant, for which inhibition dropped by over 100-fold. The other inhibitors were relatively impervious to the TEM-30 mutant enzyme. To understand recognition and resistance to these transition-state analogues, the structures of four of these inhibitors in complex with TEM-1 were determined by X-ray crystallography. These structures suggest a structural basis for distinguishing inhibitors that mimic the acylation transition state and those that mimic the deacylation transition state; they also suggest how TEM-30 reduces the affinity of compound 10. In cell culture, this inhibitor reversed the resistance of bacteria to ampicillin, reducing minimum inhibitory concentrations of this penicillin by between 4- and 64-fold, depending on the strain of bacteria. Notwithstanding this activity, the resistance of TEM-30, which is already extant in the clinic, suggests that there can be resistance liabilities with substrate-based design.« less

  11. ToTem: a tool for variant calling pipeline optimization.

    PubMed

    Tom, Nikola; Tom, Ondrej; Malcikova, Jitka; Pavlova, Sarka; Kubesova, Blanka; Rausch, Tobias; Kolarik, Miroslav; Benes, Vladimir; Bystry, Vojtech; Pospisilova, Sarka

    2018-06-26

    High-throughput bioinformatics analyses of next generation sequencing (NGS) data often require challenging pipeline optimization. The key problem is choosing appropriate tools and selecting the best parameters for optimal precision and recall. Here we introduce ToTem, a tool for automated pipeline optimization. ToTem is a stand-alone web application with a comprehensive graphical user interface (GUI). ToTem is written in Java and PHP with an underlying connection to a MySQL database. Its primary role is to automatically generate, execute and benchmark different variant calling pipeline settings. Our tool allows an analysis to be started from any level of the process and with the possibility of plugging almost any tool or code. To prevent an over-fitting of pipeline parameters, ToTem ensures the reproducibility of these by using cross validation techniques that penalize the final precision, recall and F-measure. The results are interpreted as interactive graphs and tables allowing an optimal pipeline to be selected, based on the user's priorities. Using ToTem, we were able to optimize somatic variant calling from ultra-deep targeted gene sequencing (TGS) data and germline variant detection in whole genome sequencing (WGS) data. ToTem is a tool for automated pipeline optimization which is freely available as a web application at  https://totem.software .

  12. Strains on the nano- and microscale in nickel-titanium: An advanced TEM study

    NASA Astrophysics Data System (ADS)

    Tirry, Wim

    2007-12-01

    A general introduction to shape memory behavior and the martensitic transformation is given in chapter 1, with speck information concerning the NiTi material. The technique used to study the material is transmission electron microscopy (TEM) of which the basics are explained in chapter 2 as well as information concerning the NiTi material. The main goal was to apply more advanced TEM techniques in order to measure some aspects in a quantitative way rather than qualitative, which is mostly the case in conventional TEM. (1) Quantitative electron diffraction was used to refine the structure of Ni4Ti3 precipitates, this was done by using the MSLS method in combination with density functional theory (DFT) calculations. (2) These Ni4Ti3 precipitates are (semi-)coherent which results in a strain field in the matrix close to the precipitate. High resolution TEM (HRTEM) in combination with image processing techniques was used to measure these strain fields. The obtained results are compared to the Eshelby model for elliptical inclusions, and major difference is an underestimation of the strain magnitude by the model. One of the algorithms used to extract strain information from HRTEM images is the geometric phase method. (3) The Ni4Ti3-Ni4Ti3 and Ni4Ti3-precipitate interface was investigated with HRTEM showing that the Ni4Ti3-precipitate interface might be diffuse over a range of 3nm. (4) In-situ straining experiments were performed on single crystalline and superelastic polycrystalline NiTi samples. It seems that the strain induced martensite planes in the polycrystalline sample show no sign of twinning. This is in contradiction to what is expected and is discussed in the view of the crystallographic theory of martensite, in addition a first model explaining this behavior is proposed. In this dissertation the main attention is divided over the material aspects of NiTi and on how to apply these more advanced TEM techniques.

  13. Retrofit implementation of Zernike phase plate imaging for cryo-TEM

    PubMed Central

    Marko, Michael; Leith, ArDean; Hsieh, Chyongere; Danev, Radostin

    2011-01-01

    In-focus phase-plate imaging is particularly beneficial for cryo-TEM because it offers a substantial overall increase in image contrast, without an electron dose penalty, and it simplifies image interpretation. We show how phase-plate cryo-TEM can be implemented with an appropriate existing TEM, and provide a basic practical introduction to use of thin-film (carbon) phase plates. We point out potential pitfalls of phase-plate operation, and discuss solutions. We provide information on evaluating a particular TEM for its suitability. PMID:21272647

  14. Preparation of carbon-free TEM microgrids by metal sputtering.

    PubMed

    Janbroers, S; de Kruijff, T R; Xu, Q; Kooyman, P J; Zandbergen, H W

    2009-08-01

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775K under vacuum conditions.

  15. Clay pigment structure characterisation as a guide for provenance determination--a comparison between laboratory powder micro-XRD and synchrotron radiation XRD.

    PubMed

    Švarcová, Silvie; Bezdička, Petr; Hradil, David; Hradilová, Janka; Žižak, Ivo

    2011-01-01

    Application of X-ray diffraction (XRD)-based techniques in the analysis of painted artworks is not only beneficial for indisputable identification of crystal constituents in colour layers, but it can also bring insight in material crystal structure, which can be affected by their geological formation, manufacturing procedure or secondary changes. This knowledge might be helpful for art historic evaluation of an artwork as well as for its conservation. By way of example of kaolinite, we show that classification of its crystal structure order based on XRD data is useful for estimation of its provenance. We found kaolinite in the preparation layer of a Gothic wall painting in a Czech church situated near Karlovy Vary, where there are important kaolin deposits. Comparing reference kaolin materials from eight various Czech deposits, we found that these can be differentiated just according to the kaolinite crystallinity. Within this study, we compared laboratory powder X-ray micro-diffraction (micro-XRD) with synchrotron radiation X-ray diffraction analysing the same real sample. We found that both techniques led to the same results.

  16. Retrofit implementation of Zernike phase plate imaging for cryo-TEM.

    PubMed

    Marko, Michael; Leith, Ardean; Hsieh, Chyongere; Danev, Radostin

    2011-05-01

    In-focus phase-plate imaging is particularly beneficial for cryo-TEM because it offers a substantial overall increase in image contrast, without an electron dose penalty, and it simplifies image interpretation. We show how phase-plate cryo-TEM can be implemented with an appropriate existing TEM, and provide a basic practical introduction to use of thin-film (carbon) phase plates. We point out potential pitfalls of phase-plate operation, and discuss solutions. We provide information on evaluating a particular TEM for its suitability. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. An alternative to the TEM (Transformed Eulerian Mean) equations

    NASA Astrophysics Data System (ADS)

    Gaßmann, Almut

    2013-04-01

    The TEM equations constitute a powerful means to get access to the residual circulation. However, due to their foundation on the wave perspective, they deliver only a zonally averaged picture without access to the three-dimensional structure or the local origins of the residual circulation. Therefore it is worth to investigate whether there are alternatives. The pathway followed here is to perform a transformation of the momentum and the potential temperature equation before taking the zonal mean. This is done by removing the steady state ideal wind solution vid = ?×?B-(?±P) from the equations (? - potential temperature, B - Bernoulli function, P - Ertel's potential vorticity EPV, ?± - density). The advantage of that approach is that the total EPV-flux does no longer contain an explicitly visible 'do-nothing-flux'. This flux, ?? ×?B, does only vanish when averaging on isentropic surfaces, but not on other isosurfaces. Here we find the reason why the conventional zonal mean on isentropes delivers a direct overturning cell on each hemisphere, whereas on other isosurfaces we obtain the typical three-cell structure with Headley, Ferrel, and polar cells. It will be demonstrated and made visible through idealized climate experiments with the ICON-IAP model that the zonal averages of the nonideal wind components vnid = v - vid and wnid = w - wid constitute similar direct overturning cells on non-isentropic surfaces as obtained with the TEM-generated v* and w*. It is also interesting to inspect fields of local nonideal wind components, the very origin of the residual circulation.

  18. Dynamic XRD, Shock and Static Compression of CaF2

    NASA Astrophysics Data System (ADS)

    Kalita, Patricia; Specht, Paul; Root, Seth; Sinclair, Nicholas; Schuman, Adam; White, Melanie; Cornelius, Andrew; Smith, Jesse; Sinogeikin, Stanislav

    2017-06-01

    The high-pressure behavior of CaF2 is probed with x-ray diffraction (XRD) combined with both dynamic compression, using a two-stage light gas gun, and static compression, using diamond anvil cells. We use XRD to follow the unfolding of a shock-driven, fluorite to cotunnite phase transition, on the timescale of nanoseconds. The dynamic behavior of CaF2 under shock loading is contrasted with that under static compression. This work leverages experimental capabilities at the Advanced Photon Source: dynamic XRD and shock experiments at the Dynamic Compression Sector, as well as XRD and static compression in diamond anvil cell at the High-Pressure Collaborative Access Team. These experiments and cross-platform comparisons, open the door to an unprecedented understanding of equations of state and phase transitions at the microstructural level and at different time scales and will ultimately improve our capability to simulate the behavior of materials at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Design of a TEM cell EMP simulator

    NASA Astrophysics Data System (ADS)

    Sevat, Pete

    1991-06-01

    Electromagnetic pulse (EMP) simulators are designed to simulate the EMP generated by a nuclear weapon and are used to harden equipment against the effects of EMP. A transverse electromagnetic (TEM) cell is a square or rectangular coaxial transmission line tapered at each end to form a closed cell. The cell is fed at one end with a signal generator, a continuous wave or pulse generator, and terminated at the other end with a resistor equal to the characteristic impedance of the line. An advantage of the TEM cell is that the field is well characterized and reasonably uniform. A small, symmetric, TEM cell EMP simulator is described which is intended for applications such as susceptibility testing of small equipment, calibration of sensors, design and testing of countermeasures, measurement of transfer functions, and research and development. A detailed design is presented for a 50 ohm and 100 ohm TEM cell with an inner volume of 4 m(exp 3) and a test volume of 0.24 m(exp 3). The pulse generator and terminating network are integrated into the cell to form a completely shielded structure. In this way no interference from the inside of the cell to the outside, or vice versa, will occur.

  20. Treatment of semivolatile compounds in high strength wastes using an anaerobic expanded-bed GAC reactor

    EPA Science Inventory

    The potential of the anaerobic, expanded bed granular activated carbon (GAC) reactor in treating a high strength waste containing RCRA semivolatile organic compounds (VOCs) was studied. Six semivolatiles, orthochlorophenol, nitrobenzene, naphthalene, para-nitrophenol, lindane, a...

  1. Development of an analytical environmental TEM system and its application.

    PubMed

    Kishita, Keisuke; Sakai, Hisashi; Tanaka, Hiromochi; Saka, Hiroyasu; Kuroda, Kotaro; Sakamoto, Masayuki; Watabe, Akira; Kamino, Takeo

    2009-12-01

    Many automotive materials, such as catalysts and fuel cell materials, undergo significant changes in structure or properties when subjected to temperature change or the addition of a gas. For this reason, in the development of these materials, it is important to study the behavior of the material under controlled temperatures and gaseous atmospheres. Recently, a new environmental transmission electron microscope (TEM) has been developed for observation with a high resolution at high temperatures and under gaseous atmospheres, thus making it possible to analyze reaction processes in details. Also, the new TEM provides a high degree of reproducibility of observation conditions, thus making it possible to compare and validate observation of various specimens under a given set of conditions. Furthermore, easiness of gas condition and temperature control can provide a powerful tool for the studying of the mechanism of material change, such as oxidation and reduction reactions.

  2. Spotiton: A prototype for an integrated inkjet dispense and vitrification system for cryo-TEM

    PubMed Central

    Jain, Tilak; Sheehan, Patrick; Crum, John; Carragher, Bridget; Potter, Clinton S.

    2012-01-01

    Over the last three decades, Cryo-TEM has developed into a powerful technique for high-resolution imaging of biological macromolecules in their native vitrified state. However, the technique for vitrifying specimens onto EM grids is essentially unchanged – application of ~ 3 µL sample to a grid, followed by blotting and rapid plunge freezing into liquid ethane. Several trials are often required to obtain suitable thin (few hundred nanometers or less) vitrified layers amenable for cryo-TEM imaging, which results in waste of precious sample and resources. While commercially available instruments provide some level of automation to control the vitrification process in an effort to increase quality and reproducibility, obtaining satisfactory vitrified specimens remains a bottleneck in the Cryo-TEM pipeline. We describe here a completely novel method for EM specimen preparation based on small volume (picoliter to nanoliter) dispensing using inkjet technology. A first prototype system (Spotiton v0.5) demonstrates feasibility of this new approach for specimen vitrification. A piezo-electric inkjet dispenser is integrated with optical real-time cameras (100 Hz frame rate) to analyze picoliter to nanoliter droplet profiles in-flight and spreading dynamics on the grid, and thus provides a method to optimize timing of the process. Using TEM imaging and biochemical assays we demonstrate that the piezo-electric inkjet mechanism does not disrupt the structural or functional integrity of macromolecules. These preliminary studies provide insight into the factors and components that will need further development to enable a robust and repeatable technique for specimen vitrification using this novel approach. PMID:22569522

  3. In situ TEM of radiation effects in complex ceramics.

    PubMed

    Lian, Jie; Wang, L M; Sun, Kai; Ewing, Rodney C

    2009-03-01

    In situ transmission electron microscopy (TEM) has been extensively applied to study radiation effects in a wide variety of materials, such as metals, ceramics and semiconductors and is an indispensable tool in obtaining a fundamental understanding of energetic beam-matter interactions, damage events, and materials' behavior under intense radiation environments. In this article, in situ TEM observations of radiation effects in complex ceramics (e.g., oxides, silicates, and phosphates) subjected to energetic ion and electron irradiations have been summarized with a focus on irradiation-induced microstructural evolution, changes in microchemistry, and the formation of nanostructures. New results for in situ TEM observation of radiation effects in pyrochlore, A(2)B(2)O(7), and zircon, ZrSiO(4), subjected to multiple beam irradiations are presented, and the effects of simultaneous irradiations of alpha-decay and beta-decay on the microstructural evolution of potential nuclear waste forms are discussed. Furthermore, in situ TEM results of radiation effects in a sodium borosilicate glass subjected to electron-beam exposure are introduced to highlight the important applications of advanced analytical TEM techniques, including Z-contrast imaging, energy filtered TEM (EFTEM), and electron energy loss spectroscopy (EELS), in studying radiation effects in materials microstructural evolution and microchemical changes. By combining ex situ TEM and advanced analytical TEM techniques with in situ TEM observations under energetic beam irradiations, one can obtain invaluable information on the phase stability and response behaviors of materials under a wide range of irradiation conditions. (c) 2009 Wiley-Liss, Inc.

  4. Technical Evaluation Motor No. 7 (TEM-7)

    NASA Technical Reports Server (NTRS)

    Hughes, Phil

    1991-01-01

    The Technical Evaluation Motor No. 7 (TEM-7) test was a full-scale, full duration static test firing of a high performance motor-configuration solid rocket motor with nozzle vectoring. The final test report documents the procedures, performance, and results of the static test firing of TEM-7. All observations, discussions, conclusions, and recommendations included in the report are complete and final except for the TEM-7 fixed housing unbond investigation. A presentation and discussion of TEM-7 performance, anomalies, and test result concurrence with the objectives outlined in CTP-0107, Rev A, Space Shuttle Technical Evaluation Motor No. 7 (TEM-7) Static Fire Test Plan are included.

  5. Multiscale structural characterizations of mixed U(iv)-An(iii) oxalates (An(iii) = Pu or Am) combining XAS and XRD measurements.

    PubMed

    Arab-Chapelet, B; Martin, P M; Costenoble, S; Delahaye, T; Scheinost, A C; Grandjean, S; Abraham, F

    2016-04-28

    Mixed actinide(III,IV) oxalates of the general formula M2.2UAn(C2O4)5·nH2O (An = Pu or Am and M = H3O(+) and N2H5(+)) have been quantitatively precipitated by oxalic precipitation in nitric acid medium (yield >99%). Thorough multiscale structural characterization using XRD and XAS measurements confirmed the existence of mixed actinide oxalate solid solutions. The XANES analysis confirmed that the oxidation states of the metallic cations, tetravalent for uranium and trivalent for plutonium and americium, are maintained during the precipitation step. EXAFS measurements show that the local environments around U(+IV), Pu(+III) and Am(+III) are comparable, and the actinides are surrounded by ten oxygen atoms from five bidentate oxalate anions. The mean metal-oxygen distances obtained by XAS measurements are in agreement with those calculated from XRD lattice parameters.

  6. Use of an Ultrasonic/Sonic Driller/Corer to Obtain Sample Powder for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Bish, D. L.; Vaniman, D. T.; Sherrit, S.; Bar-Cohen, Y.; Sarrazin, P.; Blake, D. F.

    2003-01-01

    A miniature CHEMIN XRD/XRF (X-Ray Diffraction/X-Ray Fluourescence) instrument is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed in order to enable XRD analysis on an extraterrestrial body is how best to obtain a representative sample powder for analysis. For XRD powder diffraction analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a 2-dimensional detector as used in the CHEMIN instrument will produce good results with poorly prepared powders, the quality of the data will improve if the sample is fine-grained and randomly oriented. An Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL is an effective mechanism of sampling rock to produce cores and powdered cuttings. It requires low axial load (< 5N) and thus offers significant advantages for operation from lightweight platforms and in low gravity environments. The USDC is lightweight (<0.5kg), and can be driven at low power (<5W) using duty cycling. It consists of an actuator with a piezoelectric stack, ultrasonic horn, free-mass, and drill bit. The stack is driven with a 20 kHz AC voltage at resonance. The strain generated by the piezoelectric is amplified by the horn by a factor of up to 10 times the displacement amplitude. The tip impacts the free-mass and drives it into the drill bit in a hammering action. The free-mass rebounds to interact with the horn tip leading to a cyclic rebound at frequencies in the range of 60-1000 Hz. It does not require lubricants, drilling fluid or bit sharpening and it has the potential to operate at high and low temperatures using a suitable choice of piezoelectric material. To assess whether the powder from an ultrasonic drill would be adequate for analyses by an XRD/XRF spectrometer such as CHEMIN, powders obtained from the JPL

  7. Remote In-Situ Quantitative Mineralogical Analysis Using XRD/XRF

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Bish, D.; Vaniman, D.; Chipera, S.; Sarrazin, P.; Collins, S. A.; Elliott, S. T.

    2001-01-01

    X-Ray Diffraction (XRD) is the most direct and accurate method for determining mineralogy. The CHEMIN XRD/XRF instrument has shown promising results on a variety of mineral and rock samples. Additional information is contained in the original extended abstract.

  8. Technical Evaluation Motor No. 10 (TEM-10)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Technical Evaluation Motor No. 10 (TEM-10) was static fired on 27 Apr. 1993 at the Thiokol Corporation full-scale motor static test bay, T-24. This final test report documents the procedures, performance, and results of the static test firing of TEM-10. All observations, discussions, conclusions, and recommendations contained are final. Included is a presentation and discussion of TEM-10 performance, anomalies, and test results in concurrence with the objectives outlined in CTP-0110, Revision D, Space Shuttle Technical Evaluation Motor No. 10 (TEM-10) Static Fire Test Plan.

  9. CryoTEM as an Advanced Analytical Tool for Materials Chemists.

    PubMed

    Patterson, Joseph P; Xu, Yifei; Moradi, Mohammad-Amin; Sommerdijk, Nico A J M; Friedrich, Heiner

    2017-07-18

    Morphology plays an essential role in chemistry through the segregation of atoms and/or molecules into different phases, delineated by interfaces. This is a general process in materials synthesis and exploited in many fields including colloid chemistry, heterogeneous catalysis, and functional molecular systems. To rationally design complex materials, we must understand and control morphology evolution. Toward this goal, we utilize cryogenic transmission electron microscopy (cryoTEM), which can track the structural evolution of materials in solution with nanometer spatial resolution and a temporal resolution of <1 s. In this Account, we review examples of our own research where direct observations by cryoTEM have been essential to understanding morphology evolution in macromolecular self-assembly, inorganic nucleation and growth, and the cooperative evolution of hybrid materials. These three different research areas are at the heart of our approach to materials chemistry where we take inspiration from the myriad examples of complex materials in Nature. Biological materials are formed using a limited number of chemical components and under ambient conditions, and their formation pathways were refined during biological evolution by enormous trial and error approaches to self-organization and biomineralization. By combining the information on what is possible in nature and by focusing on a limited number of chemical components, we aim to provide an essential insight into the role of structure evolution in materials synthesis. Bone, for example, is a hierarchical and hybrid material which is lightweight, yet strong and hard. It is formed by the hierarchical self-assembly of collagen into a macromolecular template with nano- and microscale structure. This template then directs the nucleation and growth of oriented, nanoscale calcium phosphate crystals to form the composite material. Fundamental insight into controlling these structuring processes will eventually allow us

  10. 2D Inversion of Transient Electromagnetic Method (TEM)

    NASA Astrophysics Data System (ADS)

    Bortolozo, Cassiano Antonio; Luís Porsani, Jorge; Acácio Monteiro dos Santos, Fernando

    2017-04-01

    A new methodology was developed for 2D inversion of Transient Electromagnetic Method (TEM). The methodology consists in the elaboration of a set of routines in Matlab code for modeling and inversion of TEM data and the determination of the most efficient field array for the problem. In this research, the 2D TEM modeling uses the finite differences discretization. To solve the inversion problem, were applied an algorithm based on Marquardt technique, also known as Ridge Regression. The algorithm is stable and efficient and it is widely used in geoelectrical inversion problems. The main advantage of 1D survey is the rapid data acquisition in a large area, but in regions with two-dimensional structures or that need more details, is essential to use two-dimensional interpretation methodologies. For an efficient field acquisition we used in an innovative form the fixed-loop array, with a square transmitter loop (200m x 200m) and 25m spacing between the sounding points. The TEM surveys were conducted only inside the transmitter loop, in order to not deal with negative apparent resistivity values. Although it is possible to model the negative values, it makes the inversion convergence more difficult. Therefore the methodology described above has been developed in order to achieve maximum optimization of data acquisition. Since it is necessary only one transmitter loop disposition in the surface for each series of soundings inside the loop. The algorithms were tested with synthetic data and the results were essential to the interpretation of the results with real data and will be useful in future situations. With the inversion of the real data acquired over the Paraná Sedimentary Basin (PSB) was successful realized a 2D TEM inversion. The results indicate a robust geoelectrical characterization for the sedimentary and crystalline aquifers in the PSB. Therefore, using a new and relevant approach for 2D TEM inversion, this research effectively contributed to map the most

  11. A TEM quantitative evaluation of strengthening in an Mg-RE alloy reinforced with SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabibbo, Marcello, E-mail: m.cabibbo@univpm.it; Spigarelli, Stefano

    2011-10-15

    Magnesium alloys containing rare earth elements are known to have high specific strength, good creep and corrosion resistance up to 523 K. The addition of SiC ceramic particles strengthens the metal matrix composite resulting in better wear and creep resistance while maintaining good machinability. The role of the reinforcement particles in enhancing strength can be quantitatively evaluated using transmission electron microscopy (TEM). This paper presents a quantitative evaluation of the different strengthening contributions, determined through TEM inspections, in an SiC Mg-RE composite alloy containing yttrium, neodymium, gadolinium and dysprosium. Compression tests at temperatures ranging between 290 and 573 K weremore » carried out. The microstructure strengthening mechanism was studied for all the compression conditions. Strengthening was compared to the mechanical results and the way the different contributions were combined is also discussed and justified. - Research Highlights: {yields} TEM yield strengthening terms evaluation on a Mg-RE SiC alloy. {yields} The evaluation has been extended to different compression temperature conditions. {yields} Linear and Quadratic sum has been proposed and validated. {yields} Hall-Petch was found to be the most prominent strengthening contributions.« less

  12. Genes Involved in Degradation of para-Nitrophenol Are Differentially Arranged in Form of Non-Contiguous Gene Clusters in Burkholderia sp. strain SJ98

    PubMed Central

    Vikram, Surendra; Pandey, Janmejay; Kumar, Shailesh; Raghava, Gajendra Pal Singh

    2013-01-01

    Biodegradation of para-Nitrophenol (PNP) proceeds via two distinct pathways, having 1,2,3-benzenetriol (BT) and hydroquinone (HQ) as their respective terminal aromatic intermediates. Genes involved in these pathways have already been studied in different PNP degrading bacteria. Burkholderia sp. strain SJ98 degrades PNP via both the pathways. Earlier, we have sequenced and analyzed a ~41 kb fragment from the genomic library of strain SJ98. This DNA fragment was found to harbor all the lower pathway genes; however, genes responsible for the initial transformation of PNP could not be identified within this fragment. Now, we have sequenced and annotated the whole genome of strain SJ98 and found two ORFs (viz., pnpA and pnpB) showing maximum identity at amino acid level with p-nitrophenol 4-monooxygenase (PnpM) and p-benzoquinone reductase (BqR). Unlike the other PNP gene clusters reported earlier in different bacteria, these two ORFs in SJ98 genome are physically separated from the other genes of PNP degradation pathway. In order to ascertain the identity of ORFs pnpA and pnpB, we have performed in-vitro assays using recombinant proteins heterologously expressed and purified to homogeneity. Purified PnpA was found to be a functional PnpM and transformed PNP into benzoquinone (BQ), while PnpB was found to be a functional BqR which catalyzed the transformation of BQ into hydroquinone (HQ). Noticeably, PnpM from strain SJ98 could also transform a number of PNP analogues. Based on the above observations, we propose that the genes for PNP degradation in strain SJ98 are arranged differentially in form of non-contiguous gene clusters. This is the first report for such arrangement for gene clusters involved in PNP degradation. Therefore, we propose that PNP degradation in strain SJ98 could be an important model system for further studies on differential evolution of PNP degradation functions. PMID:24376843

  13. RECENT DEVELOPMENT IN TEM CHARACTERIZATION OF IRRADIATED RERTR FUELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Gan; B.D. Miller; D.D. Keiser Jr.

    2011-10-01

    The recent development on TEM work of irradiated RERTR fuels includes microstructural characterization of the irradiated U-10Mo/alloy-6061 monolithic fuel plate, the RERTR-7 U-7Mo/Al-2Si and U-7Mo/Al-5Si dispersion fuel plates. It is the first time that a TEM sample of an irradiated nuclear fuel was prepared using the focused-ion-beam (FIB) lift-out technical at the Idaho National Laboratory. Multiple FIB TEM samples were prepared from the areas of interest in a SEM sample. The characterization was carried out using a 200kV TEM with a LaB6 filament. The three dimensional orderings of nanometer-sized fission gas bubbles are observed in the crystalline region of themore » U-Mo fuel. The co-existence of bubble superlattice and dislocations is evident. Detailed microstructural information along with composition analysis is obtained. The results and their implication on the performance of these fuels are discussed.« less

  14. Technical Evaluation Motor no. 5 (TEM-5)

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Technical Evaluation Motor No. 5 (TEM-5) was static test fired at the Thiokol Corporation Static Test Bay T-97. TEM-5 was a full scale, full duration static test fire of a high performance motor (HPM) configuration solid rocket motor (SRM). The primary purpose of TEM static tests is to recover SRM case and nozzle hardware for use in the redesigned solid rocket motor (RSRM) flight program. Inspection and instrumentation data indicate that the TEM-5 static test firing was successful. The ambient temperature during the test was 41 F and the propellant mean bulk temperature (PMBT) was 72 F. Ballistics performance values were within the specified requirements. The overall performance of the TEM-5 components and test equipment was nominal. Dissembly inspection revealed that joint putty was in contact with the inner groove of the inner primary seal of the ignitor adapter-to-forward dome (inner) joint gasket; this condition had not occurred on any previous static test motor or flight RSRM. While no qualification issues were addressed on TEM-5, two significant component changes were evaluated. Those changes were a new vented assembly process for the case-to-nozzle joint and the installation of two redesigned field joint protection systems. Performance of the vented case-to-nozzle joint assembly was successful, and the assembly/performance differences between the two field joint protection system (FJPS) configurations were compared.

  15. XRD- and infrared-probed anisotropic thermal expansion properties of an organic semiconducting single crystal.

    PubMed

    Mohanraj, J; Capria, E; Benevoli, L; Perucchi, A; Demitri, N; Fraleoni-Morgera, A

    2018-01-17

    The anisotropic thermal expansion properties of an organic semiconducting single crystal constituted by 4-hydroxycyanobenzene (4HCB) have been probed by XRD in the range 120-300 K. The anisotropic thermal expansion coefficients for the three crystallographic axes and for the crystal volume have been determined. A careful analysis of the crystal structure revealed that the two different H-bonds stemming from the two independent, differently oriented 4HCB molecules composing the unit cell have different rearrangement patterns upon temperature variations, in terms of both bond length and bond angle. Linearly Polarized Mid InfraRed (LP-MIR) measurements carried out in the same temperature range, focused on the O-H bond spectral region, confirm this finding. The same LP-MIR measurements, on the basis of a semi-empirical relation and of geometrical considerations and assumptions, allowed calculation of the -CNH-O- hydrogen bond length along the a and b axes of the crystal. In turn, the so-calculated -CNH-O- bond lengths were used to derive the thermal expansion coefficients along the corresponding crystal axes, as well as the volumetric one, using just the LP-MIR data. Reasonable to good agreement with the same values obtained from XRD measurements was obtained. This proof-of-principle opens interesting perspectives about the possible development of a rapid, low cost and industry-friendly assessment of the thermal expansion properties of organic semiconducting single crystals (OSSCs) involving hydrogen bonds.

  16. Double-tilt in situ TEM holder with ultra-high stability.

    PubMed

    Xu, Mingjie; Dai, Sheng; Blum, Thomas; Li, Linze; Pan, Xiaoqing

    2018-05-06

    A double tilting holder with high stability is essential for acquiring atomic-scale information by transmission electron microscopy (TEM), but the availability of such holders for in situ TEM studies under various external stimuli is limited. Here, we report a unique design of seal-bearing components that provides ultra-high stability and multifunctionality (including double tilting) in an in situ TEM holder. The seal-bearing subsystem provides superior vibration damping and electrical insulation while maintaining excellent vacuum sealing and small form factor. A wide variety of in situ TEM applications including electrical measurement, STM mapping, photovoltaic studies, and CL spectroscopy can be performed on this platform with high spatial resolution imaging and electrical sensitivity at the pA scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Chipera, S.; Bish, D.; Blake, D.; Feldman, S.; Vaniman, D.; Bryson, C.

    2004-01-01

    Sample preparation and sample handling are among the most critical operations associated with X-ray diffraction (XRD) analysis. These operations require attention in a laboratory environment, but they become a major constraint in the deployment of XRD instruments for robotic planetary exploration. We are developing a novel sample handling system that dramatically relaxes the constraints on sample preparation by allowing characterization of coarse-grained material that would normally be impossible to analyze with conventional powder-XRD techniques.

  18. TEM Derivative-Producing Enterobacter aerogenes Strains: Dissemination of a Prevalent Clone

    PubMed Central

    Dumarche, P.; De Champs, C.; Sirot, D.; Chanal, C.; Bonnet, R.; Sirot, J.

    2002-01-01

    TEM-24 (CAZ-6) extended-spectrum β-lactamase (ESBL) was detected in 1988 in Clermont-Ferrand, France, in Klebsiella pneumoniae (blaTEM-24) and Enterobacter aerogenes (blaTEM-24b), and since 1994, a TEM-24-producing E. aerogenes clonal strain has been observed elsewhere in the country. To determine if the spread of this clonal strain was restricted to TEM-24-producing E. aerogenes strains, 84 E. aerogenes strains (non-TEM/SHV-producing strains, TEM-1- or -2-producing strains, and different ESBL-producing strains), isolated from 1988 to 1999 in Clermont-Ferrand (n = 59) and in 11 other French hospitals in 1998 (n = 25), were studied. A clonal strain was found for TEM-24- but also for TEM-3- and TEM-1- or 2-producing isolates. This study shows that there is a clonal strain dependent on acquisition of the TEM-type enzyme (TEM-24 and other TEM types). PMID:11897606

  19. TEM PSHA2015 Reliability Assessment

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Wang, Y. J.; Chan, C. H.; Ma, K. F.

    2016-12-01

    The Taiwan Earthquake Model (TEM) developed a new probabilistic seismic hazard analysis (PSHA) for determining the probability of exceedance (PoE) of ground motion over a specified period in Taiwan. To investigate the adequacy of the seismic source parameters adopted in the 2015 PSHA of the TEM (TEM PSHA2015), we conducted several tests of the seismic source models. The observed maximal peak ground acceleration (PGA) of the ML > 4.0 mainshocks in the 23-year data period of 1993-2015 were used to test the predicted PGA of PSHA from the areal and subduction zone sources with the time-independent Poisson assumption. This comparison excluded the observations from 1999 Chi-Chi earthquake, as this was the only earthquake associated with the identified active fault in this past 23 years. We used tornado diagrams to analyze the sensitivities of these source parameters to the ground motion values of the PSHA. This study showed that the predicted PGA for a 63% PoE in the 23-year period corresponded to the empirical PGA and the predicted numbers of PGA exceedances to a threshold value 0.1g close to the observed numbers, confirming the parameter applicability for the areal and subduction zone sources. We adopted the disaggregation analysis from a hazard map to determine the contribution of the individual seismic sources to hazard for six metropolitan cities in Taiwan. The sensitivity tests of the seismogenic structure parameters indicated that the slip rate and maximum magnitude are dominant factors for the TEM PSHA2015. For densely populated faults in SW Taiwan, maximum magnitude is more sensitive than the slip rate, giving the concern on the possible multiple fault segments rupture with larger magnitude in this area, which was not yet considered in TEM PSHA2015. The source category disaggregation also suggested that special attention is necessary for subduction zone earthquakes for long-period shaking seismic hazards in Northern Taiwan.

  20. A Structural Study of Escherichia coli Cells Using an In Situ Liquid Chamber TEM Technology.

    PubMed

    Wang, Yibing; Chen, Xin; Cao, Hongliang; Deng, Chao; Cao, Xiaodan; Wang, Ping

    2015-01-01

    Studying cell microstructures and their behaviors under living conditions has been a challenging subject in microbiology. In this work, in situ liquid chamber TEM was used to study structures of Escherichia coli cells in aqueous solutions at a nanometer-scale resolution. Most of the cells remained intact under electron beam irradiation, and nanoscale structures were observed during the TEM imaging. The analysis revealed structures of pili surrounding the E. coli cells; the movements of the pili in the liquid were also observed during the in situ tests. This technology also allowed the observation of features of the nucleoid in the E. coli cells. Overall, in situ TEM can be applied as a valuable tool to study real-time microscopic structures and processes in microbial cells residing in native aqueous solutions.

  1. Appraisal of an Array TEM Method in Detecting a Mined-Out Area Beneath a Conductive Layer

    NASA Astrophysics Data System (ADS)

    Li, Hai; Xue, Guo-qiang; Zhou, Nan-nan; Chen, Wei-ying

    2015-10-01

    The transient electromagnetic method has been extensively used for the detection of mined-out area in China for the past few years. In the cases that the mined-out area is overlain by a conductive layer, the detection of the target layer is difficult with a traditional loop source TEM method. In order to detect the target layer in this condition, this paper presents a newly developed array TEM method, which uses a grounded wire source. The underground current density distribution and the responses of the grounded wire source TEM configuration are modeled to demonstrate that the target layer is detectable in this condition. The 1D OCCAM inversion routine is applied to the synthetic single station data and common middle point gather. The result reveals that the electric source TEM method is capable of recovering the resistive target layer beneath the conductive overburden. By contrast, the conductive target layer cannot be recovered unless the distance between the target layer and the conductive overburden is large. Compared with inversion result of the single station data, the inversion of common middle point gather can better recover the resistivity of the target layer. Finally, a case study illustrates that the array TEM method is successfully applied in recovering a water-filled mined-out area beneath a conductive overburden.

  2. 'How I do it': TEM for tumors of the rectum.

    PubMed

    Collinson, Rowan J; McC Mortensen, Neil J

    2009-02-01

    Transanal endoscopic microsurgery (TEM) has an established role in the management of benign rectal tumors. It also has an expanding role in the management of malignant tumors, which is more demanding for the clinician. It requires accurate histological and radiological assessment and draws on an expert understanding of the nature of local recurrence, metastasis, and the place of adjuvant therapies. A multidisciplinary approach is recommended. This paper discusses our institutional approach to TEM for benign and malignant tumors and covers some of the current management controversies.

  3. Grain Nucleation and Growth in Deformed NiTi Shape Memory Alloys: An In Situ TEM Study

    NASA Astrophysics Data System (ADS)

    Burow, J.; Frenzel, J.; Somsen, C.; Prokofiev, E.; Valiev, R.; Eggeler, G.

    2017-12-01

    The present study investigates the evolution of nanocrystalline (NC) and ultrafine-grained (UFG) microstructures in plastically deformed NiTi. Two deformed NiTi alloys were subjected to in situ annealing in a transmission electron microscope (TEM) at 400 and 550 °C: an amorphous material state produced by high-pressure torsion (HPT) and a mostly martensitic partly amorphous alloy produced by wire drawing. In situ annealing experiments were performed to characterize the microstructural evolution from the initial nonequilibrium states toward energetically more favorable microstructures. In general, the formation and evolution of nanocrystalline microstructures are governed by the nucleation of new grains and their subsequent growth. Austenite nuclei which form in HPT and wire-drawn microstructures have sizes close to 10 nm. Grain coarsening occurs in a sporadic, nonuniform manner and depends on the physical and chemical features of the local environment. The mobility of grain boundaries in NiTi is governed by the local interaction of each grain with its microstructural environment. Nanograin growth in thin TEM foils seems to follow similar kinetic laws to those in bulk microstructures. The present study demonstrates the strength of in situ TEM analysis and also highlights aspects which need to be considered when interpreting the results.

  4. TEM-nanoindentation studies of semiconducting structures.

    PubMed

    Le Bourhis, E; Patriarche, G

    2007-01-01

    This paper reviews the application of nanoindentation coupled with transmission electron microscopy (TEM) to investigations of the plastic behaviour of semiconducting structures and its implication for device design. Instrumented nanoindentation has been developed to extract the mechanical behaviour of small volumes scaled to those encountered in semiconductor heterostructures. We illustrate that TEM is a powerful complementary tool for the study of local plasticity induced by nanoindentation. TEM-nanoindentation allows for detailed understanding of the plastic deformation in semiconducting structures and opens practical routes for improvement of devices. Performances of heterostructures are deteriously affected by dislocations that relax the lattice mismatched layers. Different ways to obtain compliant substructures are being developed in order to concentrate the plastic relaxation underneath the heterostructure. Such approaches allow for mechanical design of micro- and opto-electronic devices to be considered throughout the fabrication process.

  5. Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.

    2004-01-01

    A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.

  6. Development of 89Zr-Ontuxizumab for in vivo TEM-1/endosialin PET applications

    PubMed Central

    Lange, Sara E.S.; Zheleznyak, Alex; Studer, Matthew; O'Shannessy, Daniel J.; Lapi, Suzanne E.; Van Tine, Brian A.

    2016-01-01

    Purpose The complexity of sarcoma has led to the need for patient selection via in vivo biomarkers. Tumor endothelial marker-1 (TEM-1) is a cell surface marker expressed by the tumor microenvironment. Currently MORAb-004 (Ontuxizumab), an anti-TEM-1 humanized monoclonal antibody, is in sarcoma clinical trials. Development of positron emission tomography (PET) for in vivo TEM-1 expression may allow for stratification of patients, potentially enhancing clinical outcomes seen with Ontuxizumab. Results Characterization of cell lines revealed clear differences in TEM-1 expression. One high expressing (RD-ES) and one low expressing (LUPI) cell line were xenografted, and mice were injected with 89Zr-Ontuxizumab. PET imaging post-injection revealed that TEM-1 was highly expressed and readily detectable in vivo only in RD-ES. In vivo biodistribution studies confirmed high radiopharmaceutical uptake in tumor relative to normal organs. Experimental Design Sarcoma cell lines were characterized for TEM-1 expression. Ontuxizumab was labeled with 89Zr and evaluated for immunoreactivity preservation. 89Zr-Ontuxizumab was injected into mice with high or null expressing TEM-1 xenografts. In vivo PET imaging experiments were performed. Conclusion 89Zr-Ontuxizumab can be used in vivo to determine high versus low TEM-1 expression. Reliable PET imaging of TEM-1 in sarcoma patients may allow for identification of patients that will attain the greatest benefit from anti-TEM-1 therapy. PMID:26909615

  7. Comparing Time Domain Electromagnetics (TEM) and Early-Time TEM for Mapping Highly Conductive Groundwater in Mars Analog Environments

    NASA Astrophysics Data System (ADS)

    Jernsletten, J. A.

    2005-05-01

    Introduction: The purpose of this study is to evaluate the use of (diffusive) Time Domain Electromagnetics (TEM) for sounding of subsurface water in conductive Mars analog environments. To provide a baseline for such studies, I show data from two field studies: 1) Diffusive sounding data (TEM) from Pima County, Arizona; and 2) Shallower sounding data using the Fast-Turnoff TEM method from Peña de Hierro in the Rio Tinto region of Spain. The latter is data from work conducted under the auspices of the Mars Analog Research and Technology Experiment (MARTE). Pima County TEM Survey: A TEM survey was carried out in Pima County, Arizona, in January 2003. Data was collected using 100 m Tx loops and a ferrite-cored magnetic coil Rx antenna, and processed using commercial software. The survey used a 16 Hz sounding frequency, which is sensitive to slightly salty groundwater. Prominent features in the data from Arizona are the ~500 m depth of investigation and the ~120 m depth to the water table, confirmed by data from four USGS test wells surrounding the field area. Note also the conductive (~20-40 ω m) clay-rich soil above the water table. Rio Tinto Fast-Turnoff TEM Survey: During May and June of 2003, a Fast-Turnoff (early time) TEM survey was carried out at the Peña de Hierro field area of the MARTE project, near the town of Nerva, Spain. Data was collected using 20 m and 40 m Tx loop antennae and 10 m loop Rx antennae, with a 32 Hz sounding frequency. Data from Line 4 (of 16) from this survey, collected using 40 m Tx loops, show ~200 m depth of investigation and a conductive high at ~90 m depth below Station 20 (second station of 10 along this line). This is the water table, matching the 431 m MSL elevation of the nearby pit lake. The center of the "pileup" below Station 60 is spatially coincident with the vertical fault plane located here. Data from Line 15 and Line 14 of the Rio Tinto survey, collected using 20 m Tx loops, achieve ~50 m depth of investigation and

  8. Exploring the potential reservoirs of non specific TEM beta lactamase (bla(TEM)) gene in the Indo-Gangetic region: A risk assessment approach to predict health hazards.

    PubMed

    Singh, Gulshan; Vajpayee, Poornima; Rani, Neetika; Amoah, Isaac Dennis; Stenström, Thor Axel; Shanker, Rishi

    2016-08-15

    The emergence of antimicrobial resistant bacteria is an important public health and environmental contamination issue. Antimicrobials of β-lactam group accounts for approximately two thirds, by weight, of all antimicrobials administered to humans due to high clinical efficacy and low toxicity. This study explores β-lactam resistance determinant gene (blaTEM) as emerging contaminant in Indo-Gangetic region using qPCR in molecular beacon format. Quantitative Microbial Risk Assessment (QMRA) approach was adopted to predict risk to human health associated with consumption/exposure of surface water, potable water and street foods contaminated with bacteria having blaTEM gene. It was observed that surface water and sediments of the river Ganga and Gomti showed high numbers of blaTEM gene copies and varied significantly (p<0.05) among the sampling locations. The potable water collected from drinking water facility and clinical settings exhibit significant number of blaTEM gene copies (13±0.44-10200±316 gene copies/100mL). It was observed that E.crassipes among aquatic flora encountered in both the rivers had high load of blaTEM gene copies. The information on prevalence of environmental reservoirs of blaTEM gene containing bacteria in Indo-Gangetic region and risk associated will be useful for formulating strategies to protect public from menace of clinical risks linked with antimicrobial resistant bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. MultiLaue: A Technique to Extract d-spacings from Laue XRD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi

    We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less

  10. MultiLaue: A Technique to Extract d-spacings from Laue XRD

    DOE PAGES

    Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi; ...

    2016-07-25

    We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less

  11. Objective function analysis for electric soundings (VES), transient electromagnetic soundings (TEM) and joint inversion VES/TEM

    NASA Astrophysics Data System (ADS)

    Bortolozo, Cassiano Antonio; Bokhonok, Oleg; Porsani, Jorge Luís; Monteiro dos Santos, Fernando Acácio; Diogo, Liliana Alcazar; Slob, Evert

    2017-11-01

    Ambiguities in geophysical inversion results are always present. How these ambiguities appear in most cases open to interpretation. It is interesting to investigate ambiguities with regard to the parameters of the models under study. Residual Function Dispersion Map (RFDM) can be used to differentiate between global ambiguities and local minima in the objective function. We apply RFDM to Vertical Electrical Sounding (VES) and TEM Sounding inversion results. Through topographic analysis of the objective function we evaluate the advantages and limitations of electrical sounding data compared with TEM sounding data, and the benefits of joint inversion in comparison with the individual methods. The RFDM analysis proved to be a very interesting tool for understanding the joint inversion method of VES/TEM. Also the advantage of the applicability of the RFDM analyses in real data is explored in this paper to demonstrate not only how the objective function of real data behaves but the applicability of the RFDM approach in real cases. With the analysis of the results, it is possible to understand how the joint inversion can reduce the ambiguity of the methods.

  12. Technical Evaluation Motor No. 7 (TEM-07)

    NASA Technical Reports Server (NTRS)

    Hugh, Phil

    1991-01-01

    Technical Evaluation Motor Number 7 (TEM-7) was a full scale, full-duration static test firing of a high performance motor (HPM) configuration solid rocket motor (SRM) with nozzle vectoring. The static test fire occurred on 11 December 1990 at the Thiokol Corporation Static Test Bay T-97. Documented here are the procedures, performance, and results available through 22 January 1991. Critical post test hardware activities and assessment of the test data are not complete. A completed test report will be submitted 60 days after the test date. Included here is a presentation and discussion of the TEM-7 performance, anomalies, and test result concurrence with the objectives outlined in CTP-0107 Revision A, Space Shuttle Technical Evaluation Motor number 7 (TEM-07) Static Fire Test Plan.

  13. Characterization of CuCl quantum dots grown in NaCl single crystals via optical measurements, X-ray diffraction, and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken

    2018-05-01

    We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.

  14. The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L

    NASA Astrophysics Data System (ADS)

    Suman, T. Y.; Radhika Rajasree, S. R.; Ramkumar, R.; Rajthilak, C.; Perumal, P.

    2014-01-01

    In the present work, we describe the synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia. UV-vis spectroscopy, XRD, FTIR, FE-SEM, EDX and TEM were performed to characterize the formation of gold nanoparticles. The synthesized gold nanoparticles were characterized by a peak at 540 nm in the UV-vis spectrum. The XRD peaks at 38°, 44°, 64° and 77° can be indexed to the (1 1 1), (2 0 0), (2 2 0) and (3 1 1) Bragg's reflections of cubic structure of metallic gold, respectively. The FTIR result showed that extract containing protein might be responsible for the formation of the nanoparticles and may play an important role in the stabilization of the formed nanoparticles. FESEM images revealed that the particles were triangle and mostly spherical in shape. TEM images clearly revealed the size of the nanoparticles were 12.17-38.26 nm in size.

  15. The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L.

    PubMed

    Suman, T Y; Rajasree, S R Radhika; Ramkumar, R; Rajthilak, C; Perumal, P

    2014-01-24

    In the present work, we describe the synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia. UV-vis spectroscopy, XRD, FTIR, FE-SEM, EDX and TEM were performed to characterize the formation of gold nanoparticles. The synthesized gold nanoparticles were characterized by a peak at 540 nm in the UV-vis spectrum. The XRD peaks at 38°, 44°, 64° and 77° can be indexed to the (111), (200), (220) and (311) Bragg's reflections of cubic structure of metallic gold, respectively. The FTIR result showed that extract containing protein might be responsible for the formation of the nanoparticles and may play an important role in the stabilization of the formed nanoparticles. FESEM images revealed that the particles were triangle and mostly spherical in shape. TEM images clearly revealed the size of the nanoparticles were 12.17-38.26 nm in size. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Correlations of Apparent Cellulose Crystallinity Determined by XRD, NMR, IR, Raman, and SFG Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, David K; Lee, Christopher; Dazen, Kevin

    2015-07-04

    Although the cellulose crystallinity index (CI) is used widely, its limitations have not been adequately described. In this study, the CI values of a set of reference samples were determined from X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and infrared (IR), Raman, and vibrational sum frequency generation (SFG) spectroscopies. The intensities of certain crystalline peaks in IR, Raman, and SFG spectra positively correlated with the amount of crystalline cellulose in the sample, but the correlation with XRD was nonlinear as a result of fundamental differences in detection sensitivity to crystalline cellulose and improper baseline corrections for amorphous contributions. It ismore » demonstrated that the intensity and shape of the XRD signal is affected by both the amount of crystalline cellulose and crystal size, which makes XRD analysis complicated. It is clear that the methods investigated show the same qualitative trends for samples, but the absolute CI values differ depending on the determination method. This clearly indicates that the CI, as estimated by different methods, is not an absolute value and that for a given set of samples the CI values can be compared only as a qualitative measure.« less

  17. Correlations of Apparent Cellulose Crystallinity Determined by XRD, NMR, IR, Raman, and SFG Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Christopher M; Dazen, Kevin; Kafle, Kabindra

    2015-01-01

    Although the cellulose crystallinity index (CI) is used widely, its limitations have not been adequately described. In this study, the CI values of a set of reference samples were determined from X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and infrared (IR), Raman, and vibrational sum frequency generation (SFG) spectroscopies. The intensities of certain crystalline peaks in IR, Raman, and SFG spectra positively correlated with the amount of crystalline cellulose in the sample, but the correlation with XRD was nonlinear as a result of fundamental differences in detection sensitivity to crystalline cellulose and improper baseline corrections for amorphous contributions. It ismore » demonstrated that the intensity and shape of the XRD signal is affected by both the amount of crystalline cellulose and crystal size, which makes XRD analysis complicated. It is clear that the methods investigated show the same qualitative trends for samples, but the absolute CI values differ depending on the determination method. This clearly indicates that the CI, as estimated by different methods, is not an absolute value and that for a given set of samples the CI values can be compared only as a qualitative measure.« less

  18. Coexistence of SHV-4- and TEM-24-Producing Enterobacter aerogenes Strains before a Large Outbreak of TEM-24-Producing Strains in a French Hospital

    PubMed Central

    Mammeri, H.; Laurans, G.; Eveillard, M.; Castelain, S.; Eb, F.

    2001-01-01

    In 1996, a monitoring program was initiated at the teaching hospital of Amiens, France, and carried out for 3 years. All extended-spectrum β-lactamase (ESBL)-producing Enterobacter aerogenes isolates recovered from clinical specimens were collected for investigation of their epidemiological relatedness by pulsed-field gel electrophoresis and enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) and determination of the type of ESBL harbored by isoelectric focusing and DNA sequencing. Molecular typing revealed the endemic coexistence, during the first 2 years, of two clones expressing, respectively, SHV-4 and TEM-24 ESBLs, while an outbreak of the TEM-24-producing strain raged in the hospital during the third year, causing the infection or colonization of 165 patients. Furthermore, this strain was identified as the prevalent clone responsible for outbreaks in many French hospitals since 1996. This study shows that TEM-24-producing E. aerogenes is an epidemic clone that is well established in the hospital's ecology and able to spread throughout wards. The management of the outbreak at the teaching hospital of Amiens, which included the reinforcement of infection control measures, failed to obtain complete eradication of the clone, which has become an endemic pathogen. PMID:11376055

  19. Challenges in quantitative crystallographic characterization of 3D thin films by ACOM-TEM.

    PubMed

    Kobler, A; Kübel, C

    2017-02-01

    Automated crystal orientation mapping for transmission electron microscopy (ACOM-TEM) has become an easy to use method for the investigation of crystalline materials and complements other TEM methods by adding local crystallographic information over large areas. It fills the gap between high resolution electron microscopy and electron back scatter diffraction in terms of spatial resolution. Recent investigations showed that spot diffraction ACOM-TEM is a quantitative method with respect to sample parameters like grain size, twin density, orientation density and others. It can even be used in combination with in-situ tensile or thermal testing. However, there are limitations of the current method. In this paper we discuss some of the challenges and discuss solutions, e.g. we present an ambiguity filter that reduces the number of pixels with a '180° ambiguity problem'. For that an ACOM-TEM tilt series of nanocrystalline Pd thin films with overlapping crystallites was acquired and analyzed. Copyright © 2017. Published by Elsevier B.V.

  20. Definitive Mineralogical Analysis of Mars Analog Rocks Using the CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Sarrazin, P.; Bish, D. L.; Feldman, S.; Chipera, S. J.; Vaniman, D. T.; Collins, S.

    2004-01-01

    Mineral identification is a critical component of Mars Astrobiological missions. Chemical or elemental data alone are not definitive because a single elemental or chemical composition or even a single bonding type can represent a range of substances or mineral assemblages. Minerals are defined as unique structural and compositional phases that occur naturally. There are about 15,000 minerals that have been described on Earth, all uniquely identifiable via diffraction methods. There are likely many minerals yet undiscovered on Earth, and likewise on Mars. If an unknown phase is identified on Mars, it can be fully characterized by structural (X-ray Diffraction, XRD) and elemental analysis (X-ray Fluorescence, XRF) without recourse to other data because XRD relies on the principles of atomic arrangement for its determinations. XRD is the principal means of identification and characterization of minerals on Earth.

  1. Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes

    NASA Astrophysics Data System (ADS)

    Citrin, J.; Arnichand, H.; Bernardo, J.; Bourdelle, C.; Garbet, X.; Jenko, F.; Hacquin, S.; Pueschel, M. J.; Sabot, R.

    2017-06-01

    The observation of distinct peaks in tokamak core reflectometry measurements—named quasi-coherent-modes (QCMs)—are identified as a signature of trapped-electron-mode (TEM) turbulence (Arnichand et al 2016 Plasma Phys. Control. Fusion 58 014037). This phenomenon is investigated with detailed linear and nonlinear gyrokinetic simulations using the Gene code. A Tore-Supra density scan is studied, which traverses through a linear (LOC) to saturated (SOC) ohmic confinement transition. The LOC and SOC phases are both simulated separately. In the LOC phase, where QCMs are observed, TEMs are robustly predicted unstable in linear studies. In the later SOC phase, where QCMs are no longer observed, ion-temperature-gradient (ITG) modes are identified. In nonlinear simulations, in the ITG (SOC) phase, a broadband spectrum is seen. In the TEM (LOC) phase, a clear emergence of a peak at the TEM frequencies is seen. This is due to reduced nonlinear frequency broadening of the underlying linear modes in the TEM regime compared with the ITG regime. A synthetic diagnostic of the nonlinearly simulated frequency spectra reproduces the features observed in the reflectometry measurements. These results support the identification of core QCMs as an experimental marker for TEM turbulence.

  2. TEM-72, a New Extended-Spectrum β-Lactamase Detected in Proteus mirabilis and Morganella morganii in Italy

    PubMed Central

    Perilli, Mariagrazia; Segatore, Bernardetta; Rosaria De Massis, Maria; Riccio, Maria Letizia; Bianchi, Ciro; Zollo, Alessandro; Rossolini, Gian Maria; Amicosante, Gianfranco

    2000-01-01

    A new natural TEM-2 derivative, named TEM-72, was identified in a Proteus mirabilis strain and in a Morganella morganii strain isolated in Italy in 1999. Compared to TEM-1, TEM-72 contains the following amino acid substitutions: Q39K, M182T, G238S, and E240K. Kinetic analysis showed that TEM-72 exhibits an extended-spectrum activity, including activity against oxyimino-cephalosporins and aztreonam. Expression of blaTEM-72 in Escherichia coli was capable of decreasing the host susceptibility to the above drugs. PMID:10952610

  3. An Atom Probe Tomographic Investigation of High-Strength, High-Toughness Precipitation Strengthened Steels for Naval Applications

    NASA Astrophysics Data System (ADS)

    Hunter, Allen H.

    Novel high-strength high-toughness alloys strengthened by precipitation are investigated for use in naval applications. The mechanical properties of an experimental steel alloy, NUCu-140, are evaluated and are not suitable for the naval requirements due to poor impact toughness at -40°C. An investigation is conducted to determine optimum processing conditions to restore toughness. A detailed aging study is conducted at 450, 500, and 550°C to determine the evolution of the microstructure and mechanical properties. A combination of transmission electron microscopy (TEM), synchrotron X-ray Diffraction (XRD), and Local electrode atom probe (LEAP) tomography are used to measure the evolution of the Cu precipitates, austenite, NbC, and cementite phases during aging. The evolution of the Cu precipitates significantly affects the yield strength of the steel, but low temperature toughness is controlled by the cementite precipitates. Extended aging is effective at improving the impact toughness but the yield strength is also decreased due to coarsening of the Cu precipitates. To provide a foundation for successful welding of NUCu-140 steel, an investigation of the effects of gas metal arc welding (GMAW) are performed. The microstructures in the base metal (BM), heat affected zone (HAZ), and fusion zone (FZ) of a GMAW sample are analyzed to determine the effects of the welding thermal cycle. Weld simulation samples with known thermal histories are prepared and analyzed by XRD and LEAP tomography. A significant loss in microhardness is observed as a result of dissolution of the Cu precipitates after the weld thermal cycle. The cooling time is too rapid to allow significant precipitation of Cu. In addition to the NUCu-140 alloy, a production HSLA-115 steel alloy is investigated using TEM, XRD, and LEAP tomography. The strength of the HSLA-115 is found to be derived primarily from Cu precipitates. The volume fractions of cementite, austenite, and NbC are measured by XRD

  4. A Generic 1D Forward Modeling and Inversion Algorithm for TEM Sounding with an Arbitrary Horizontal Loop

    NASA Astrophysics Data System (ADS)

    Li, Zhanhui; Huang, Qinghua; Xie, Xingbing; Tang, Xingong; Chang, Liao

    2016-08-01

    We present a generic 1D forward modeling and inversion algorithm for transient electromagnetic (TEM) data with an arbitrary horizontal transmitting loop and receivers at any depth in a layered earth. Both the Hankel and sine transforms required in the forward algorithm are calculated using the filter method. The adjoint-equation method is used to derive the formulation of data sensitivity at any depth in non-permeable media. The inversion algorithm based on this forward modeling algorithm and sensitivity formulation is developed using the Gauss-Newton iteration method combined with the Tikhonov regularization. We propose a new data-weighting method to minimize the initial model dependence that enhances the convergence stability. On a laptop with a CPU of i7-5700HQ@3.5 GHz, the inversion iteration of a 200 layered input model with a single receiver takes only 0.34 s, while it increases to only 0.53 s for the data from four receivers at a same depth. For the case of four receivers at different depths, the inversion iteration runtime increases to 1.3 s. Modeling the data with an irregular loop and an equal-area square loop indicates that the effect of the loop geometry is significant at early times and vanishes gradually along the diffusion of TEM field. For a stratified earth, inversion of data from more than one receiver is useful in noise reducing to get a more credible layered earth. However, for a resistive layer shielded below a conductive layer, increasing the number of receivers on the ground does not have significant improvement in recovering the resistive layer. Even with a down-hole TEM sounding, the shielded resistive layer cannot be recovered if all receivers are above the shielded resistive layer. However, our modeling demonstrates remarkable improvement in detecting the resistive layer with receivers in or under this layer.

  5. An exploratory method to detect tephras from quantitative XRD scans: Examples from Iceland and east Greenland marine sediments

    USGS Publications Warehouse

    Andrews, John T.; Eberl, D.D.; Kristjansdottir, G.B.

    2006-01-01

    Tephras, mainly from Iceland, are becoming increasingly important in interpreting leads and lags in the Holocene climate system across NW Europe. Here we demonstrate that Quantitative Phase Analysis of x-ray diffractograms of the 150 um fraction and identify these same peaks in XRD scans - two of these correlate geochemically and chronologically with Hekla 1104 and 3. At a distal site to the WNW of Iceland, on the East Greenland margin (core MD99-2317), the weight% of volcanic glass reaches values of 11% at about the time of the Saksunarvatn tephra. The XRD method identifies the presence of volcanic glass but not its elemental composition; hence it will assist in focusing attention on specific sections of sediment cores for subsequent geochemical fingerprinting of tephras. ?? 2006 SAGE Publications.

  6. 1D Cole-Cole inversion of TEM transients influenced by induced polarization

    NASA Astrophysics Data System (ADS)

    Seidel, Marc; Tezkan, Bülent

    2017-03-01

    Effects of induced polarization (IP) can have an impact on time-domain electromagnetic measurements (TEM) and may lead to sign reversals in the recorded transients. To study these IP effects on TEM data, a new 1D inversion algorithm was developed for both, the central-loop and the separate-loop TEM configurations using the Cole-Cole relaxation model. 1D forward calculations for a homogeneous half-space were conducted with the aim of analyzing the impacts of the Cole-Cole parameters on TEM transients with respect to possible sign reversals. The forward modelings showed that the variation of different parameters have comparable effects on the TEM transients. This leads to an increasing number of equivalent models as a result of inversion calculations. Subsequently, 1D inversions of synthetic data were performed to study the potentials and limitations of the algorithm regarding the resolution of the Cole-Cole parameters. In order to achieve optimal inversion results, it was essential to error-weight the data points in the direct vicinity of sign reversals. The obtained findings were eventually adopted on the inversion of real field data which contained considerable IP signatures such as sign reversals. One field data set was recorded at the Nakyn kimberlite field in Western Yakutiya, Russia, in the central-loop configuration. Another field data set originates from a waste site in Cologne, Germany, and was measured utilizing the separate-loop configuration.

  7. Automated SEM and TEM sample preparation applied to copper/low k materials

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Shaapur, F.; Griffiths, D.; Diebold, A. C.; Foran, B.; Raz, E.

    2001-01-01

    We describe the use of automated microcleaving for preparation of both SEM and TEM samples as done by SELA's new MC500 and TEMstation tools. The MC500 is an automated microcleaving tool that is capable of producing cleaves with 0.25 μm accuracy resulting in SEM-ready samples. The TEMstation is capable of taking a sample output from the MC500 (or from SELA's earlier MC200 tool) and producing a FIB ready slice of 25±5 μm, mounted on a TEM-washer and ready for FIB thinning to electron transparency for TEM analysis. The materials selected for the tool set evaluation mainly included the Cu/TaN/HOSP low-k system. The paper is divided into three sections, experimental approach, SEM preparation and analysis of HOSP low-k, and TEM preparation and analysis of Cu/TaN/HOSP low-k samples. For the samples discussed, data is presented to show the quality of preparation provided by these new automated tools.

  8. A joint TEM-HLEM geophysical approach to borehole sitting in deeply weathered granitic terrains.

    PubMed

    Meju, M A; Fontes, S L; Ulugergerli, E U; La Terra, E F; Germano, C R; Carvalho, R M

    2001-01-01

    The accurate location of aquiferous fracture zones in granite beneath a > 50 m thick weathered mantle in semi-arid regions is a major hydrogeological problem. It is expected that the zone of intensive fracturing will be more susceptible to weathering and thus be characterized by the thickest development of saprolite, a good electrically conductive target for deep-probing electromagnetic systems. The single-loop transient electromagnetic (TEM) technique is well known to have the capability for detecting concealed steep mineralized targets in mining environments and can be adapted to this hydrogeological problem. We propose that combining the conventional frequency-domain horizontal-loop electromagnetic (HLEM) and single-loop TEM is an effective practical approach to locating concealed aquiferous fracture zones. In the supporting case studies presented here, we deployed multifrequency HLEM profiling (with 50 m transmitter-receiver separation) and TEM soundings with contiguous 10 or 20 m sided loops along the survey lines in a granitic terrain affected by deep (> 50 m) weathering in northeast Brazil. A somewhat layered structure consisting of resistive hardpan/leached zone, conductive saprolite, and resistive basement is identifiable in the typical TEM depth sounding data. We obtained coincident HLEM and TEM anomalies at all the sites, enabling a relatively straightforward selection of potential drilling positions. Simple resistivity-depth transformation of the TEM data was done for each site, yielding an approximate section from which drilling depths were estimated. All of the boreholes located were successful. Although our results appear to indicate that the single-loop TEM method could be used independently for borehole sitting in deeply weathered granitic terrains and that the weathering profile over granite can be mapped using TEM depth soundings of appropriate observational bandwidth, we recommend a joint electromagnetic approach for optimal well sitting.

  9. In-situ XRD vs ex-situ vacuum annealing of tantalum oxynitride thin films: Assessments on the structural evolution

    NASA Astrophysics Data System (ADS)

    Cunha, L.; Apreutesei, M.; Moura, C.; Alves, E.; Barradas, N. P.; Cristea, D.

    2018-04-01

    The purpose of this work is to discuss the main structural characteristics of a group of tantalum oxynitride (TaNxOy) thin films, with different compositions, prepared by magnetron sputtering, and to interpret and compare the structural changes, by X-ray diffraction (XRD), when the samples are vacuum annealed under two different conditions: i) annealing, followed by ex-situ XRD: one sample of each deposition run was annealed at a different temperature, until a maximum of 800 °C, and the XRD patterns were obtained, at room temperature, after each annealing process; ii) annealing with in-situ XRD: the diffraction patterns are obtained, at certain temperatures, during the annealing process, using always the same sample. In-situ XRD annealing could be an interesting process to perform annealing, and analysing the evolution of the structure with the temperature, when compared to the classical process. A higher structural stability was observed in some of the samples, particularly on those with highest oxygen content, but also on the sample with non-metal (O + N) to metal (Ta) ratio around 0.5.

  10. Minimum depth of investigation for grounded-wire TEM due to self-transients

    NASA Astrophysics Data System (ADS)

    Zhou, Nannan; Xue, Guoqiang

    2018-05-01

    The grounded-wire transient electromagnetic method (TEM) has been widely used for near-surface metalliferous prospecting, oil and gas exploration, and hydrogeological surveying in the subsurface. However, it is commonly observed that such TEM signal is contaminated by the self-transient process occurred at the early stage of data acquisition. Correspondingly, there exists a minimum depth of investigation, above which the observed signal is not applicable for reliable data processing and interpretation. Therefore, for achieving a more comprehensive understanding of the TEM method, it is necessary to perform research on the self-transient process and moreover develop an approach for quantifying the minimum detection depth. In this paper, we first analyze the temporal procedure of the equivalent circuit of the TEM method and present a theoretical equation for estimating the self-induction voltage based on the inductor of the transmitting wire. Then, numerical modeling is applied for building the relationship between the minimum depth of investigation and various properties, including resistivity of the earth, offset, and source length. It is guide for the design of survey parameters when the grounded-wire TEM is applied to the shallow detection. Finally, it is verified through applications to a coal field in China.

  11. TEM00 mode Nd:YAG solar laser by side-pumping a grooved rod

    NASA Astrophysics Data System (ADS)

    Vistas, Cláudia R.; Liang, Dawei; Almeida, Joana; Guillot, Emmanuel

    2016-05-01

    A simple TEM00 mode solar laser system with a grooved Nd:YAG rod pumped through a heliostat-parabolic mirror system is reported here. The radiation coupling capacity of a fused silica tube lens was combined with the multipass pumping ability of a 2 V-shaped cavity to provide efficient side-pumping along a 4.0 mm diameter grooved Nd:YAG single-crystal rod. TEM00 mode solar laser power of 3.4 W was measured by adopting an asymmetric large-mode laser resonant cavity. Record TEM00 mode solar laser collection efficiency of 3.4 W/m2and slope efficiency of 1.9% was achieved, which corresponds to 1.8 and 2.4 times more than the previous TEM00 mode Nd:YAG solar laser using the PROMES-CNRS heliostat-parabolic mirror system, respectively.

  12. Synthesis of Lead Sulfide Nanoparticles by Chemical Precipitation Method

    NASA Astrophysics Data System (ADS)

    Chongad, L. S.; Sharma, A.; Banerjee, M.; Jain, A.

    2016-10-01

    Lead sulfide (PbS) nanoparticles were prepared by chemical precipitation method (CPM) with the assistance of H2S gas. The microstructure and morphology of the synthesized nanoparticles have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the PbS nanoparticles reveal formation of cubic phase. To investigate the quality of prepared nanoparticles, the particles size, lattice constant, strain, dislocation density etc. have been determined using XRD. TEM images reveal formation of cubic nanoparticles and the particle size determined from TEM images agree well with those from XRD.

  13. TEM in situ cube-corner indentation analysis using ViBe motion detection algorithm

    NASA Astrophysics Data System (ADS)

    Yano, K. H.; Thomas, S.; Swenson, M. J.; Lu, Y.; Wharry, J. P.

    2018-04-01

    Transmission electron microscopic (TEM) in situ mechanical testing is a promising method for understanding plasticity in shallow ion irradiated layers and other volume-limited materials. One of the simplest TEM in situ experiments is cube-corner indentation of a lamella, but the subsequent analysis and interpretation of the experiment is challenging, especially in engineering materials with complex microstructures. In this work, we: (a) develop MicroViBE, a motion detection and background subtraction-based post-processing approach, and (b) demonstrate the ability of MicroViBe, in combination with post-mortem TEM imaging, to carry out an unbiased qualitative interpretation of TEM indentation videos. We focus this work around a Fe-9%Cr oxide dispersion strengthened (ODS) alloy, irradiated with Fe2+ ions to 3 dpa at 500 °C. MicroViBe identifies changes in Laue contrast that are induced by the indentation; these changes accumulate throughout the mechanical loading to generate a "heatmap" of features in the original TEM video that change the most during the loading. Dislocation loops with b = ½ <111> identified by post-mortem scanning TEM (STEM) imaging correspond to hotspots on the heatmap, whereas positions of dislocation loops with b = <100> do not correspond to hotspots. Further, MicroViBe enables consistent, objective quantitative approximation of the b = ½ <111> dislocation loop number density.

  14. Binding of TEM-1 beta-lactamase to beta-lactam antibiotics by frontal affinity chromatography.

    PubMed

    Chen, Xiu; Li, Yuhua; Zhang, Yan; Yang, Jianting; Bian, Liujiao

    2017-04-15

    TEM-1 beta-lactamases can accurately catalyze the hydrolysis of the beta-lactam rings in beta-lactam antibiotics, which make beta-lactam antibiotics lose its activity, and the prerequisite for the hydrolysis procedure in the binding interaction of TEM-1 beta-lactamases with beta-lactam antibiotics is the beta-lactam rings in beta-lactam antibiotics. Therefore, the binding of TEM-1 beta-lactamase to three beta-lactam antibiotics including penicillin G, cefalexin as well as cefoxitin was explored here by frontal affinity chromatography in combination with fluorescence spectra, adsorption and thermodynamic data in the temperature range of 278-288K under simulated physiological conditions. The results showed that all the binding of TEM-1 beta-lactamase to the three antibiotics were spontaneously exothermic processes with the binding constants of 8.718×10 3 , 6.624×10 3 and 2.244×10 3 (mol/L), respectively at 288K. All the TEM-1 beta-lactamases were immobilized on the surface of the stationary phase in the mode of monolayer and there existed only one type of binding sites on them. Each TEM-1 beta-lactamase bound with only one beta-lactam antibiotic and hydrogen bond interaction and Van der Waals force were the main forces between them. This work provided an insight into the binding interactions between TEM-1 beta-lactamases and beta-lactam antibiotics, which may be beneficial for the designing and developing of new substrates resistant to TEM-1 beta-lactamases. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Structure and Dynamics of Domains in Ferroelectric Nanostructures. In-situ TEM Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Xiaoqing

    2015-06-30

    The goal of this project was to explore the structure and dynamic behaviors of ferroelectric domains in ferroelectric thin films and nanostructures by advanced transmission electron microscopy (TEM) techniques in close collaboration with phase field modeling. The experimental techniques used include aberration-corrected sub-Å resolution TEM and in-situ TEM using a novel scanning tunneling microscopy (STM) - TEM holder that allows the direct observation of nucleation and dynamic evolution of ferroelectric domains under applied electric field. Specifically, this project was aimed to (1) to study the roles of static electrical boundary conditions and electrical charge in controlling the equilibrium domain structuresmore » of BiFeO 3 thin films with controlled substrate constraints, (2) to explore the fundamental mechanisms of ferroelectric domain nucleation, growth, and switching under an applied electric field in both uniform thin films and nanostructures, and to understand the roles of crystal defects such as dislocations and interfaces in these processes, (3) to understand the physics of ferroelectric domain walls and the influence of defects on the electrical switching of ferroelectric domains.« less

  16. Complete Tem-Tomography: 3D Structure of Gems Cluster

    NASA Technical Reports Server (NTRS)

    Matsuno, J.; Miyake, A.; Tsuchiyama, A.; Messenger, S.; Nakamura-Messenger, K.

    2015-01-01

    GEMS (glass with embedded metal and sulfide) grains in interplanetary dust particles (IDPs) are considered to be one of the ubiquitous and fundamental building blocks of solids in the Solar System. They have been considered to be interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk but the elemental and isotopic composition measurements suggest that most of them have been formed in the protoplanetary disk as condensates from high temperature gas. This formation model is also supported by the formation of GEMS-like grains with respect to the size, mineral assemblage, texture and infrared spectrum by condensation experiments from mean GEMS composition materials. Previous GEMS studies were performed only with 2D observation by transmission electron microscopy (TEM) or scanning TEM (STEM). However, the 3D shape and structure of GEMS grains and the spatial distribution of Fe/FeS's has critical information about their formation and origin. Recently, the 3D structure of GEMS grains in ultrathin sections of cluster IDPs was revealed by electron tomography using a TEM/STEM (JEM-2100F, JEOL). However, CT images of thin sections mounted on Cu grids acquired by conventional TEM-tomography are limited to low tilt angles (e. g., less than absolute value of 75 deg. In fact, previous 3D TEM observations of GEMS were affected by some artifacts related to the limited tilt range in the TEM used. Complete tomographic images should be acquired by rotating the sample tilt angle over a range of more than absolute value of 80 deg otherwise the CT images lose their correct structures. In order to constrain the origin and formation process of GEMS grains more clearly, we performed complete electron tomography for GEMS grains. Here we report the sample preparation method we have developed for this study, and the preliminary results.

  17. Structure, Elastic Constants and XRD Spectra of Extended Solids under High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batyrev, I. G.; Coleman, S. P.; Ciezak-Jenkins, J. A.

    We present results of evolutionary simulations based on density functional calculations of a potentially new type of energetic materials called extended solids: P-N and N-H. High-density structures with covalent bonds generated using variable and fixed concentration methods were analysed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction (XRD) spectra. X-ray diffraction spectra were calculated using a virtual diffraction algorithm that computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculated XRD patterns were used to search for the structure of extended solids present at experimental pressures by optimizing data accordingmore » to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Elastic constants has been calculated for thermodynamically stable structures of P-N system.« less

  18. Study the oxidation kinetics of uranium using XRD and Rietveld method

    NASA Astrophysics Data System (ADS)

    Zhang, Yanzhi; Guan, Weijun; Wang, Qinguo; Wang, Xiaolin; Lai, Xinchun; Shuai, Maobing

    2010-03-01

    The surface oxidation of uranium metal has been studied by X-ray diffraction (XRD) and Rietveld method in the range of 50~300°C in air. The oxidation processes are analyzed by XRD to determine the extent of surface oxidation and the oxide structure. The dynamics expression for the formation of UO2 was derived. At the beginning, the dynamic expression was nonlinear, but switched to linear subsequently for uranium in air and humid oxygen. That is, the growth kinetics of UO2 can be divided into two stages: nonlinear portion and linear portion. Using the kinetic data of linear portion, the activation energy of reaction between uranium and air was calculated about 46.0 kJ/mol. However the content of oxide as a function of time was linear in humid helium ambience. Contrast the dynamics results, it prove that the absence of oxygen would accelerate the corrosion rate of uranium in the humid gas. We can find that the XRD and Rietveld method are a useful convenient method to estimate the kinetics and thermodynamics of solid-gas reaction.

  19. In situ TEM study of the Li-Au reaction in an electrochemical liquid cell.

    PubMed

    Zeng, Zhiyuan; Liang, Wen-I; Chu, Ying-Hao; Zheng, Haimei

    2014-01-01

    We study the lithiation of a Au electrode in an electrochemical liquid cell using transmission electron microscopy (TEM). The commercial liquid electrolyte for lithium ion batteries (1 M lithium hexafluorophosphate LiPF6 dissolved in 1 : 1 (v/v) ethylene carbonate (EC) and diethyl carbonate (DEC)) was used. Three distinct types of morphology change during the reaction, including gradual dissolution, explosive reaction and local expansion/shrinkage, are observed. It is expected that significant stress is generated from lattice expansion during lithium-gold alloy formation. There is vigorous bubble formation from electrolyte decomposition, likely due to the catalytic effect of Au, while the bubble generation is less severe with titanium electrodes. There is an increase of current in response to electron beam irradiation, and electron beam effects on the observed electrochemical reaction are discussed.

  20. Synchronizing flash-melting in a diamond cell with synchrotron X ray diffraction (XRD)

    NASA Astrophysics Data System (ADS)

    Karandikar, Amol; Boehler, Reinhard; Meng, Yue; Rod, Eric; Shen, Guoyin

    2013-06-01

    The major challenges in measuring melting temperatures in laser heated diamond cells are sample instability, thermal runaway and chemical reactions. To circumvent these problems, we developed a ``flash heating'' method using a modulated CW fiber laser and fast X ray detection capability at APS (Pilatus 1M detector). As an example, Pt spheres of 5 micron diameter were loaded in a single crystal sapphire encapsulation in the diamond cell at 65 GPa and heated in a single flash heating event for 20 ms to reach a desired temperature. A CCD spectrometer and the Pilatus were synchronized to measure the temperature and the XRD signal, respectively, when the sample reached the thermal steady state. Each successive flash heating was done at a higher temperature. The integrated XRD pattern, collected during and after (300 K) each heating, showed no chemical reaction up to 3639 K, the highest temperature reached in the experiment. Pt111 and 200 peak intensity variation showed gradual recrystalization and complete diminishing at about 3600 K, indicating melting. Thus, synchronized flash heating with novel sample encapsulation circumvents previous notorious problems and enables accurate melting temperature measurement in the diamond cell using synchrotron XRD probe. Affiliation 2: Geowissenschaeften, Goethe-Universitaet, Altenhoeferallee 1, D-60438 Frankfurt a.M., Germany.

  1. Interfacial kinetics in nanosized Au/Ge films: An in situ TEM study

    NASA Astrophysics Data System (ADS)

    Kryshtal, Aleksandr P.; Minenkov, Alexey A.; Ferreira, Paulo J.

    2017-07-01

    We investigate the morphology and crystalline structure of Au/Ge films in a wide range of temperatures by in situ TEM heating. Au/Ge films with Au mass thickness of 0.2-0.3 nm and Ge thickness of 5 nm were produced in vacuum by the sequential deposition of components on a carbon substrate at room temperature. It has been shown that particles with an average size of 4 nm, formed by Au film de-wetting, melt on the germanium substrate at temperatures 110-160 °C, which are below the eutectic temperature for the bulk. The effect of crystallization-induced capillary motion of liquid eutectic particles over Ge surface has been found in this work. Formation of metastable fcc phase of Ge has been observed at the liquid-germanium interface and behind the moving particle. Formation of a liquid phase with its subsequent crystallization at the metal-semiconductor interface seems to play a key role in the metal-induced crystallization effect.

  2. Detecting single-electron events in TEM using low-cost electronics and a silicon strip sensor.

    PubMed

    Gontard, Lionel C; Moldovan, Grigore; Carmona-Galán, Ricardo; Lin, Chao; Kirkland, Angus I

    2014-04-01

    There is great interest in developing novel position-sensitive direct detectors for transmission electron microscopy (TEM) that do not rely in the conversion of electrons into photons. Direct imaging improves contrast and efficiency and allows the operation of the microscope at lower energies and at lower doses without loss in resolution, which is especially important for studying soft materials and biological samples. We investigate the feasibility of employing a silicon strip detector as an imaging detector for TEM. This device, routinely used in high-energy particle physics, can detect small variations in electric current associated with the impact of a single charged particle. The main advantages of using this type of sensor for direct imaging in TEM are its intrinsic radiation hardness and large detection area. Here, we detail design, simulation, fabrication and tests in a TEM of the front-end electronics developed using low-cost discrete components and discuss the limitations and applications of this technology for TEM.

  3. Multivariate analysis of DSC-XRD simultaneous measurement data: a study of multistage crystalline structure changes in a linear poly(ethylene imine) thin film.

    PubMed

    Kakuda, Hiroyuki; Okada, Tetsuo; Otsuka, Makoto; Katsumoto, Yukiteru; Hasegawa, Takeshi

    2009-01-01

    A multivariate analytical technique has been applied to the analysis of simultaneous measurement data from differential scanning calorimetry (DSC) and X-ray diffraction (XRD) in order to study thermal changes in crystalline structure of a linear poly(ethylene imine) (LPEI) film. A large number of XRD patterns generated from the simultaneous measurements were subjected to an augmented alternative least-squares (ALS) regression analysis, and the XRD patterns were readily decomposed into chemically independent XRD patterns and their thermal profiles were also obtained at the same time. The decomposed XRD patterns and the profiles were useful in discussing the minute peaks in the DSC. The analytical results revealed the following changes of polymorphisms in detail: An LPEI film prepared by casting an aqueous solution was composed of sesquihydrate and hemihydrate crystals. The sesquihydrate one was lost at an early stage of heating, and the film changed into an amorphous state. Once the sesquihydrate was lost by heating, it was not recovered even when it was cooled back to room temperature. When the sample was heated again, structural changes were found between the hemihydrate and the amorphous components. In this manner, the simultaneous DSC-XRD measurements combined with ALS analysis proved to be powerful for obtaining a better understanding of the thermally induced changes of the crystalline structure in a polymer film.

  4. β-lactamases produced by amoxicillin-clavulanate-resistant enterobacteria isolated in Buenos Aires, Argentina: a new blaTEM gene.

    PubMed

    Di Conza, José A; Badaracco, Alejandra; Ayala, Juan; Rodríguez, Cynthia; Famiglietti, Angela; Gutkind, Gabriel O

    2014-01-01

    Resistance to β-lactam/β-lactamase inhibitors in enterobacteria is a growing problem that has not been intensively studied in Argentina. In the present work, 54/843 enterobacteria collected in a teaching hospital of Buenos Aires city were ampicillin-sulbactam-resistant isolates remaining susceptible to second- and third-generation cephalosporins. The enzymatic mechanisms present in the isolates, which were also amoxicillin-clavulanic acid (AMC)-resistant (18/54) were herein analyzed. Sequencing revealed two different variants of blaTEM-1, being blaTEM-1b the most frequently detected allelle (10 Escherichia coli, 3 Klebsiella pneumoniae, 2 Proteus mirabilis and 1 Raoultella terrigena) followed by blaTEM-1a (1 K. pneumoniae). Amoxicillin-clavulanate resistance seems to be mainly associated with TEM-1 overproduction (mostly in E. coli) or co-expressed with OXA-2-like and/or SHV β-lactamases (K. pneumoniae and P. mirabilis). A new blaTEM variant (TEM-163) was described in an E. coli strain having an AMC MIC value of 16/8μg/ml. TEM-163 contains Arg275Gln and His289Leu amino acid substitutions. On the basis of the high specific activity and low IC50 for clavulanic acid observed, the resistance pattern seems to be due to overproduction of the new variant of broad spectrum β-lactamase rather than to an inhibitor-resistant TEM (IRT)-like behavior. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  5. [Study of the phase transformation of TiO2 with in-situ XRD in different gas].

    PubMed

    Ma, Li-Jing; Guo, Lie-Jin

    2011-04-01

    TiO2 sample was prepared by sol-gel method from chloride titanium. The phase transformation of the prepared TiO2 sample was studied by in-situ XRD and normal XRD in different gas. The experimental results showed that the phase transformation temperatures of TiO2 were different under in-situ or normal XRD in different kinds of gas. The transformation of amorphous TiO2 to anatase was controlled by kinetics before 500 degrees C. In-situ XRD showed that the growth of anatase was inhibited, but the transformation of anatase to rutile was accelerated under inactive nitrogen in contrast to air. Also better crystal was obtained under hydrogen than in argon. These all showed that external oxygen might accelerate the growth of TiO2, but reduced gas might partly counteract the negative influence of lack of external oxygen. The mechanism of phase transformation of TiO2 was studied by in-situ XRD in order to control the structure in situ.

  6. Scalable pumping approach for extracting the maximum TEM(00) solar laser power.

    PubMed

    Liang, Dawei; Almeida, Joana; Vistas, Cláudia R

    2014-10-20

    A scalable TEM(00) solar laser pumping approach is composed of four pairs of first-stage Fresnel lens-folding mirror collectors, four fused-silica secondary concentrators with light guides of rectangular cross-section for radiation homogenization, four hollow two-dimensional compound parabolic concentrators for further concentration of uniform radiations from the light guides to a 3 mm diameter, 76 mm length Nd:YAG rod within four V-shaped pumping cavities. An asymmetric resonator ensures an efficient large-mode matching between pump light and oscillating laser light. Laser power of 59.1 W TEM(00) is calculated by ZEMAX and LASCAD numerical analysis, revealing 20 times improvement in brightness figure of merit.

  7. Distortion of DNA Origami on Graphene Imaged with Advanced TEM Techniques.

    PubMed

    Kabiri, Yoones; Ananth, Adithya N; van der Torre, Jaco; Katan, Allard; Hong, Jin-Yong; Malladi, Sairam; Kong, Jing; Zandbergen, Henny; Dekker, Cees

    2017-08-01

    While graphene may appear to be the ultimate support membrane for transmission electron microscopy (TEM) imaging of DNA nanostructures, very little is known if it poses an advantage over conventional carbon supports in terms of resolution and contrast. Microscopic investigations are carried out on DNA origami nanoplates that are supported onto freestanding graphene, using advanced TEM techniques, including a new dark-field technique that is recently developed in our lab. TEM images of stained and unstained DNA origami are presented with high contrast on both graphene and amorphous carbon membranes. On graphene, the images of the origami plates show severe unwanted distortions, where the rectangular shape of the nanoplates is significantly distorted. From a number of comparative control experiments, it is demonstrated that neither staining agents, nor screening ions, nor the level of electron-beam irradiation cause this distortion. Instead, it is suggested that origami nanoplates are distorted due to hydrophobic interaction of the DNA bases with graphene upon adsorption of the DNA origami nanoplates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Chemical Species, Micromorphology, and XRD Fingerprint Analysis of Tibetan Medicine Zuotai Containing Mercury

    PubMed Central

    Li, Cen; Yang, Hongxia; Xiao, Yuancan; Zhandui; Sanglao; Wang, Zhang; Ladan, Duojie; Bi, Hongtao

    2016-01-01

    Zuotai (gTso thal) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100–800 nm, which commonly further aggregate into 1–30 μm loosely amorphous particles. XRD test shows that β-HgS, S8, and α-HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai, and it would play a positive role in interpreting this mysterious Tibetan drug. PMID:27738409

  9. Chemical Species, Micromorphology, and XRD Fingerprint Analysis of Tibetan Medicine Zuotai Containing Mercury.

    PubMed

    Li, Cen; Yang, Hongxia; Du, Yuzhi; Xiao, Yuancan; Zhandui; Sanglao; Wang, Zhang; Ladan, Duojie; Bi, Hongtao; Wei, Lixin

    2016-01-01

    Zuotai ( gTso thal ) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100-800 nm, which commonly further aggregate into 1-30  μ m loosely amorphous particles. XRD test shows that β -HgS, S 8 , and α -HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai , and it would play a positive role in interpreting this mysterious Tibetan drug.

  10. Facile synthesis of the Li-rich layered oxide Li1.23Ni0.09Co0.12Mn0.56O2 with superior lithium storage performance and new insights into structural transformation of the layered oxide material during charge-discharge cycle: in situ XRD characterization.

    PubMed

    Shen, Chong-Heng; Wang, Qin; Fu, Fang; Huang, Ling; Lin, Zhou; Shen, Shou-Yu; Su, Hang; Zheng, Xiao-Mei; Xu, Bin-Bin; Li, Jun-Tao; Sun, Shi-Gang

    2014-04-23

    In this work, the Li-rich oxide Li1.23Ni0.09Co0.12Mn0.56O2 was synthesized through a facile route called aqueous solution-evaporation route that is simple and without waste water. The as-prepared Li1.23Ni0.09Co0.12Mn0.56O2 oxide was confirmed to be a layered LiMO2-Li2MnO3 solid solution through ex situ X-ray diffraction (ex situ XRD) and transmission electron microscopy (TEM). Electrochemical results showed that the Li-rich oxide Li1.23Ni0.09Co0.12Mn0.56O2 material can deliver a discharge capacity of 250.8 mAhg(-1) in the 1st cycle at 0.1 C and capacity retention of 86.0% in 81 cycles. In situ X-ray diffraction technique (in situ XRD) and ex situ TEM were applied to study structural changes of the Li-rich oxide Li1.23Ni0.09Co0.12Mn0.56O2 material during charge-discharge cycles. The study allowed observing experimentally, for the first time, the existence of β-MnO2 phase that is appeared near 4.54 V in the first charge process, and a phase transformation of the β-MnO2 to layered Li0.9MnO2 is occurred in the initial discharge process by evidence of in situ XRD pattrens and selected area electron diffraction (SAED) patterns at different states of the initial charge and discharge process. The results illustrated also that the variation of the in situ X-ray reflections during charge-discharge cycling are clearly related to the changes of lattice parameters of the as-prepared Li-rich oxide during the charge-discharge cycles.

  11. Matching 4.7-Å XRD spacing in amelogenin nanoribbons and enamel matrix.

    PubMed

    Sanii, B; Martinez-Avila, O; Simpliciano, C; Zuckermann, R N; Habelitz, S

    2014-09-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. © International & American Associations for Dental Research.

  12. Matching 4.7-Å XRD Spacing in Amelogenin Nanoribbons and Enamel Matrix

    PubMed Central

    Sanii, B.; Martinez-Avila, O.; Simpliciano, C.; Zuckermann, R.N.; Habelitz, S.

    2014-01-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. PMID:25048248

  13. Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method

    NASA Astrophysics Data System (ADS)

    Kibasomba, Pierre M.; Dhlamini, Simon; Maaza, Malik; Liu, Chuan-Pu; Rashad, Mohamed M.; Rayan, Diaa A.; Mwakikunga, Bonex W.

    2018-06-01

    The Williamson-Hall (W-H) equation, which has been used to obtain relative crystallite sizes and strains between samples since 1962, is revisited. A modified W-H equation is derived which takes into account the Scherrer equation, first published in 1918, (which traditionally gives more absolute crystallite size prediction) and strain prediction from Raman spectra. It is found that W-H crystallite sizes are on average 2.11 ± 0.01 times smaller than the sizes from Scherrer equation. Furthermore the strain from the W-H plots when compared to strain obtained from Raman spectral red-shifts yield factors whose values depend on the phases in the materials - whether anatase, rutile or brookite. Two main phases are identified in the annealing temperatures (350 °C-700 °C) chosen herein - anatase and brookite. A transition temperature of 550 °C has been found for nano-TiO2 to irreversibly transform from brookite to anatase by plotting the Raman peak shifts against the annealing temperatures. The W-H underestimation on the strain in the brookite phase gives W-H/Raman factor of 3.10 ± 0.05 whereas for the anatase phase, one gets 2.46 ± 0.03. The new βtot2cos2θ-sinθ plot and when fitted with a polynomial yield less strain but much better matching with experimental TEM crystallite sizes and the agglomerates than both the traditional Williamson-Hall and the Scherrer methods. There is greater improvement in the model when linearized - that is the βtotcos2θ-sinθ plot rather than the βtot2cos2θ-sinθ plot.

  14. Robotics Collaborative Technology Alliance (RCTA): Technical Exchange Meeting (TEM) 2015

    DTIC Science & Technology

    2017-05-01

    ARL-CR-0814 ● MAY 2017 US Army Research Laboratory Robotics Collaborative Technology Alliance (RCTA): Technical Exchange Meeting...0814 ● MAY 2017 US Army Research Laboratory Robotics Collaborative Technology Alliance (RCTA): Technical Exchange Meeting (TEM) 2015 by...SUBTITLE Robotics Collaborative Technology Alliance (RCTA): Technical Exchange Meeting (TEM) 2015 5a. CONTRACT NUMBER W911NF-10-2-0016 5b. GRANT

  15. A Study on Factors Affecting Strength of Solidified Peat through XRD and FESEM Analysis

    NASA Astrophysics Data System (ADS)

    Rahman, J. A.; Napia, A. M. A.; Nazri, M. A. A.; Mohamed, R. M. S. R.; Al-Geethi, A. S.

    2018-04-01

    Peat is soft soil that often causes multiple problems to construction. Peat has low shear strength and high deformation characteristics. Thus, peat soil needs to be stabilized or treated. Study on peat stabilization has been conducted for decades with various admixtures and mixing formulations. This project intends to provide an overview of the solidification of peat soil and the factors that affecting the strength of solidified peat soil. Three types of peats which are fabric, hemic and sapric were used in this study to understand the differences on the effect. The understanding of the factors affecting strength of solidified peat in this study is limited to XRD and FESEM analysis only. Peat samples were collected at Pontian, Johor and Parit Raja, Johor. Peat soil was solidified using fly ash, bottom ash and Portland cement with two mixing formulation following literature review. The solidified peat were cured for 7 days, 14 days, 28 days and 56 days. All samples were tested using Unconfined Compressive Strength Test (UCS), X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). The compressive strength test of solidified peat had shown consistently increase of sheer strength, qu for Mixing 1 while decrease of its compressive strength value for Mixing 2. All samples were tested and compared for each curing days. Through XRD, it is found that all solidified peat are dominated with pargasite and richterite. The highest qu is Fabric Mixing 1(FM1) with the value of 105.94 kPa. This sample were proven contain pargasite. Samples with high qu were observed to be having fly ash and bottom ash bound together with the help of pargasite. Sample with decreasing strength showed less amount of pargasite in it. In can be concluded that XRD and FESEM findings are in line with UCS values.

  16. Using Instruments as Applied Science, Multipurpose Tools During Human Exploration: An XRD/XRF Demonstration Strategy for the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Gendreau, K.; Arzoumanian, Z.; Young, K. E.; McAdam, A.

    2018-02-01

    Science instruments to be used during human exploration should be designed to serve as multipurpose tools that are of use throughout a mission. Here we discuss a multipurpose tool approach to using contact XRD/XRF onboard the Deep Space Gateway.

  17. Application of Mythen detector: In-situ XRD study on the thermal expansion behavior of metal indium

    NASA Astrophysics Data System (ADS)

    Du, Rong; Chen, ZhongJun; Cai, Quan; Fu, JianLong; Gong, Yu; Wu, ZhongHua

    2016-07-01

    A Mythen detector has been equipped at the beamline 4B9A of Beijing Synchrotron Radiation Facility (BSRF), which is expected to enable BSRF to perform time-resolved measurement of X-ray diffraction (XRD) full-profiles. In this paper, the thermal expansion behavior of metal indium has been studied by using the in-situ XRD technique with the Mythen detector. The indium was heated from 303 to 433 K with a heating rate of 2 K/min. The in-situ XRD full-profiles were collected with a rate of one profile per 10 seconds. Rietveld refinement was used to extract the structural parameters. The results demonstrate that these collected quasi-real-time XRD profiles can be well used for structural analysis. The metal indium was found to have a nonlinear thermal expansion behavior from room temperature to the melting point (429.65 K). The a-axis of the tetragonal unit cell expands with a biquadratic dependency on temperature, while the c-axis contracts with a cubic dependency on temperature. By the time-resolved XRD measurements, it was observed that the [200] preferred orientation can maintain to about 403.15 K. While (110) is the last and detectable crystal plane just before melting of the polycrystalline indium foil. This study is not only beneficial to the application of metal indium, but also exhibits the capacity of in-situ time-resolved XRD measurements at the X-ray diffraction station of BSRF.

  18. Response Time Measurements of the NIF DANTE XRD-31 X-Ray Diodes (Pre-print)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Don Pellinen and Michael Griffin

    2009-01-23

    The XRD-31 is a fast, windowless X-ray vacuum photodiode developed by EG&G. It is currently the primary fast X-ray detector used to diagnose the X-rays on NIF and OMEGA on the multichannel DANTE spectrometer. The XRD-31 has a dynamic range of less than 1e-12 amps to more than 10 amps. A technique is described to measure the impulse response of the diodes to a 150 fs pulse of 200 nm laser light and a method to calculate the “risetime” for a square pulse and compare it with the computed electron transit time from the photocathode to the anode. Measured responsemore » time for 5 XRD-31s assembled in early 2004 was 149.7 ps +-2.75 ps.« less

  19. XMCD and TEM studies of as-cast and rapidly quenched Fe50Nd50 alloys

    NASA Astrophysics Data System (ADS)

    Menushenkov, V. P.; Menushenkov, A. P.; Shchetinin, I. V.; Wilhelm, F.; Ivanov, A. A.; Rudnev, I. A.; Ivanov, V. G.; Rogalev, A.; Savchenko, A. G.; Zhukov, D. G.; Rafalskiy, A. V.; Ketov, S. V.

    2017-12-01

    We present the XMCD analysis of as-cast and melt spun Fe50Nd50 samples performed at L2,3 -Nd and K-Fe absorption edges at 5 and 50 K in comparison with macroscopic data of XRD, TEM and magnetic properties measurements. In addition, we have measured the magnetic field dependence of XMCD signal for both types of the samples in magnetic fields up/down to 17 T. The obtained results pointed to the strong difference between structure and magnetic properties of the as-cast and melt spun Fe50Nd50 alloys for both macroscopic and local measurements. The element selective XMCD loops for melt spun alloy show almost identical value of the coercive force Hci for L 2-Nd and K-Fe edges and practically do not depend on temperature. XMCD loop at K-Fe edge is a sum of contributions of the Fe-based phases. The main Fe-rich phase has high Hci ≈ 2,4 T as a highly anisotropic phase. The absence of the K-Fe XMCD loop saturation in the field up to 17 T points to presence of the second Nd-rich Nd-Fe phase which is ferromagnetic at temperature lower than 50 K. In accordance to the TEM results these both phases may coexist as the mixture of nanocrystals which was formed as a result of decomposition of the amorphous-like matrix phase. The XMCD loop at L2 -Nd edge with Hci ≈ 1,9 T is the sum of contributions from two Nd-based phases: hard Fe-rich phase (Hci ≈ 2,4 T) and Nd-Fe matrix phase of medium hardness with Hci ≈ 1,3 T. The macroscopic loop showed the higher Hci compared to XMCD loops. Such discrepancy may be caused by the fact that XMCD signal is collected from a 5-10 mcm thick surface layer, which contains many defects that reduce anisotropy and coercivity.

  20. Joint TEM and MT aquifer study in the Atacama Desert, North Chile

    NASA Astrophysics Data System (ADS)

    Ruthsatz, Alexander D.; Sarmiento Flores, Alvaro; Diaz, Daniel; Reinoso, Pablo Salazar; Herrera, Cristian; Brasse, Heinrich

    2018-06-01

    The Atacama Desert represents one of the driest regions on earth, and despite the absence of sustainable clean water reserves the demand has increased drastically since 1970 as a result of growing population and expanding mining activities. Magnetotelluric (MT) and Transient Electromagnetic (TEM) measurements were carried out for groundwater exploration in late 2015 in the area of the Profeta Basin at the western margin of the Chilean Precordillera. Both methods complement each other: While MT in general attains larger penetration depths, TEM allows better resolution of near surface layers; furthermore TEM is free from galvanic distortion. Data were collected along three profiles, enabling a continuous resistivity image from the surface to at least several hundred meters depth. TEM data were inverted in a 1-D manner, consistently yielding a poorly conductive near-surface layer with a thickness of approximately 30 m and below a well-conducting layer which we interpret as the aquifer with resistivities around 10 Ωm. At marginal sites of the main SW-NE-profile the resistive basement was found in 150 m. These depths are confirmed by interpretation of the MT soundings. Those were firstly inverted with a 2-D approach and then by 3-D inversion as clear indications of three-dimensionality exist. Several modeling runs were performed with different combinations of transfer functions and smoothing parameters. Generally, MT and TEM results agree reasonably well and an overall image of the resistivity structures in the Profeta Basin could be achieved. The aquifer reaches depths of more than 500 m in parts and, by applying Archie's law, resistivities of 1 Ωm can be assumed, indicating highly saline fluids from the source region of the surrounding high Andes under persisting arid conditions.

  1. Silver Trees: Chemistry on a TEM Grid

    EPA Science Inventory

    The copper/carbon substrate of a TEM grid reacted with aqueous silver nitrate solution within minutes to yield spectacular tree-like silver dendrites, without using any added capping or reducing reagents. These results demonstrate a facile, aqueous, room temperature synthesis of...

  2. TEM measurement in a low resistivity overburden performed by using low temperature SQUID

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Du, Shangyu; Xie, Lijun; Chang, Kai; Liu, Yang; Zhang, Yi; Xie, Xiaoming; Wang, Yuan; Lin, Jun; Rong, Liangliang

    2016-12-01

    Exploration of areas with thick low resistivity overburden is still a challenge for time domain transient electromagnetic method (TEM). We report modeling of a sandwich-layered earth by simulating the B field response with different conductive target layer thicknesses, thus obtaining a relationship between the resolution of the B field and the exploration depth. A low temperature Superconducting Quantum Interference Device (SQUID) is an ideal sensor for measuring the secondary magnetic field B in TEM measurements, because its sensitivity of several fT/√Hz is independent of frequency. In our TEM experiments, we utilized two different coils as receivers, a simple SQUID system, and a large transmitter loop of 200 × 200 m2 to compare the detected decay curves. At some measurement points, a decay signal of more than 300 ms duration was obtained by using the SQUID. Apparent resistivity profiles of about 9 km length are presented.

  3. Mineralogical composition of the meteorite El Pozo (Mexico): a Raman, infrared and XRD study.

    PubMed

    Ostrooumov, Mikhail; Hernández-Bernal, Maria del Sol

    2011-12-01

    The Raman (RMP), infrared (IR) and XRD analysis have been applied to the examination of mineralogical composition of El Pozo meteorite (an ordinary chondrite L5 type; village Valle of Allende, founded in State of Chihuahua, Mexico: 26°56'N and 105°24'W, 1998). RMP measurements in the range of 100-3500 cm(-1) revealed principal characteristic bands of the major minerals: olivine, two polymorph modifications of pyroxene (OPx and CPx) and plagioclase. Some bands of the minor minerals (hematite and goethite) were also identified. All these minerals were clearly distinguished using IR and XRD techniques. XRD technique has shown the presence of some metallic phases such as kamacite and taenite as well as troilite and chromite. These minerals do not have characteristic Raman spectra because Fe-Ni metals have no active modes for Raman spectroscopy and troilite is a weak Raman scatterer. Raman mapping microspectroscopy was a key part in the investigation of El Pozo meteorite's spatial distribution of the main minerals because these samples are structurally and chemically complex and heterogeneous. The mineral mapping by Raman spectroscopy has provided information for a certain spatial region on which a spatial distribution coexists of the three typical mineral assemblages: olivine; olivine+orthopyroxene; and orthopyroxene. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Atom-counting in High Resolution Electron Microscopy:TEM or STEM - That's the question.

    PubMed

    Gonnissen, J; De Backer, A; den Dekker, A J; Sijbers, J; Van Aert, S

    2017-03-01

    In this work, a recently developed quantitative approach based on the principles of detection theory is used in order to determine the possibilities and limitations of High Resolution Scanning Transmission Electron Microscopy (HR STEM) and HR TEM for atom-counting. So far, HR STEM has been shown to be an appropriate imaging mode to count the number of atoms in a projected atomic column. Recently, it has been demonstrated that HR TEM, when using negative spherical aberration imaging, is suitable for atom-counting as well. The capabilities of both imaging techniques are investigated and compared using the probability of error as a criterion. It is shown that for the same incoming electron dose, HR STEM outperforms HR TEM under common practice standards, i.e. when the decision is based on the probability function of the peak intensities in HR TEM and of the scattering cross-sections in HR STEM. If the atom-counting decision is based on the joint probability function of the image pixel values, the dependence of all image pixel intensities as a function of thickness should be known accurately. Under this assumption, the probability of error may decrease significantly for atom-counting in HR TEM and may, in theory, become lower as compared to HR STEM under the predicted optimal experimental settings. However, the commonly used standard for atom-counting in HR STEM leads to a high performance and has been shown to work in practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. XRD, SEM and infrared study into the intercalation of sodium hexadecyl sulfate (SHS) into hydrocalumite.

    PubMed

    Zhang, Ping; Wang, Tianqi; Zhang, Longlong; Wu, Daishe; Frost, Ray L

    2015-12-05

    Hydrocalumite (CaAl-LDH-Cl) interacted with a natural anionic surfactant, sodium hexadecyl sulfate (SHS), was performed using an intercalation method. To understand the intercalation behavior and characterize the resulting products, powder X-ray diffraction (XRD), scan electron microscopy (SEM) and mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique were used. The XRD analysis indicated that SHS was intercalated into CaAl-LDH-Cl successfully, resulting in an expansion of the interlayer (from 0.78 nm to 2.74 nm). The bands of C-H stretching vibrations of SHS were observed in the near-infrared spectra, which indicated that the resulting products were indeed CaAl-LDH-SHS. In addition, the bands of water stretching vibrations and OH groups shifted to higher wavenumbers when SHS was intercalated into CaAl-LDH-Cl interlayer space. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Geological Hypothesis Testing and Investigations of Coupling with Transient Electromagnetics (TEM)

    NASA Astrophysics Data System (ADS)

    Adams, A. C.; Moeller, M. M.; Snyder, E.; Workman, E. J.; Urquhart, S.; Bedrosian, P.; Pellerin, L.

    2014-12-01

    Transient electromagnetic (TEM) data were acquired in Borrego Canyon within the Santo Domingo Basin of the Rio Grande Rift, central New Mexico, during the 2014 Summer of Applied Geophysical Experience (SAGE) field program. TEM surveys were carried out in several regions both to investigate geologic structure and to illustrate the effects of coupling to anthropogenic structures. To determine an optimal survey configuration, 50, 100 and 200 m square transmitter loops were deployed; estimates of depth-of-investigation and logistical considerations determined that 50 m loops were sufficient for production-style measurements. A resistive (100s of ohm-m) layer was identified at a depth of 25-75 m at several locations, and interpreted as dismembered parts of one or more concealed volcanic flows, an interpretation consistent with Tertiary volcanic flows that cap the Santa Anna Mesa immediately to the south. TEM soundings were also made across an inferred fault to investigate whether fault offset is accompanied by lateral changes in electrical resistivity. Soundings within several hundred meters of the inferred fault strand were identical, indicating no resistivity contrast across the fault, and possibly an absence of recent activity. An old windmill and water tank, long-abandoned, offered an excellent laboratory to study the effect of coupling to metallic anthropogenic structures. The character of the measured data strongly suggests the water tank is in electrical contact with the earth (galvanic coupling), and an induced response was persistent to more than 1 second after current turn-off. Coupling effects could be identified at least 150 meters from the tank. Understanding the mechanism behind such coupling and the ability to identify coupled data are critical skills, as one-dimensional modeling of data is affected by such coupling producing artificial conductive layers at depth.

  7. Prevalence of bla TEM-220 gene in Penicillinase-producing Neisseria gonorrhoeae strains carrying Toronto/Rio plasmid in Argentina, 2002 - 2011.

    PubMed

    Gianecini, Ricardo; Oviedo, Claudia; Guantay, Cristina; Piccoli, Laura; Stafforini, Graciela; Galarza, Patricia

    2015-12-16

    TEM-220 allele does not appear to be associated with an extended spectrum beta-lactamase (ESBL) phenotype of resistance, a single nucleotide polymorphism added to the bla TEM-220 or bla TEM containing the T539C substitution could lead to the emergence of ESBL. Thus, it is imperative to investigate in surveillance programs, not only the plasmid type in PPNG isolates and the bla TEM allele associated, but phenotypical characteristics and geographical distribution of isolates.

  8. TEM Analysis of Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers

    NASA Technical Reports Server (NTRS)

    Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y; Mori, S.; Asthana, R.

    2017-01-01

    Silicon Carbide (SiC) is a promising material for thermostructural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, Mo-B and TiCu. In this presentation, we report the microstructure of diffusion bonded SA-THX mainly with TiCu interlayers obtained by TEM observations, and the influence of metallic interlayers on the joint microstructure and microhardness will be discussed.

  9. Geoelectrical characterization by joint inversion of VES/TEM in Paraná basin, Brazil

    NASA Astrophysics Data System (ADS)

    Bortolozo, C. A.; Couto, M. A.; Almeida, E. R.; Porsani, J. L.; Santos, F. M.

    2012-12-01

    For many years electrical (DC) and transient electromagnetic (TEM) soundings have been used in a great number of environmental, hydrological and mining exploration studies. The data of both methods are interpreted usually by individual 1D models resulting in many cases in ambiguous models. This can be explained by how the two different methodologies sample the subsurface. The vertical electrical sounding (VES) is good on marking very resistive structures, while the transient electromagnetic sounding (TEM) is very sensitive to map conductive structures. Another characteristic is that VES is more sensitive to shallow structures, while TEM soundings can reach deeper structures. A Matlab program for joint inversion of VES and TEM soundings, by using CRS algorithm was developed aiming explore the best of the both methods. Initially, the algorithm was tested with synthetic data and after it was used to invert experimental data from Paraná sedimentary basin. We present the results of a re-interpretation of 46 VES/TEM soundings data set acquired in Bebedouro region in São Paulo State - Brazil. The previous interpretation was based in geoelectrical models obtained by single inversion of the VES and TEM soundings. In this work we present the results with single inversion of VES and TEM sounding inverted by the Curupira Program and a new interpretation based in the joint inversion of both methodologies. The goal is increase the accuracy in determining the underground structures. As a result a new geoelectrical model of the region is obtained.

  10. Influences of surfactants on the preparation of copper nanoparticles by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Zhou, Ruimin; Wu, Xinfeng; Hao, Xufeng; Zhou, Fei; Li, Hongbin; Rao, Weihong

    2008-02-01

    Electron beam radiation was applied to prepare nano-size copper in water system using polyvinyl alcohol, sodium dodecyl benzene sulfonate, gluten and polyethylene glycol as the surfactants, respectively. The irradiated products were characterized by XRD, TEM and LSPSDA. The XRD and TEM showed that relative pure copper products with an average size of 20 nm, 40 nm and 20 nm can be obtained by using gluten, PEG and SDBS as surfactant, respectively. An admixture of copper and cuprous oxide was obtained in PVA system. The LSPSDA showed that the size of the Cu nanoparticles decreased with increasing the glutin concentration.

  11. A Combined XRD/XRF Instrument for Lunar Resource Assessment

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Blacic, J. D.

    1992-01-01

    Robotic surface missions to the Moon should be capable of measuring mineral as well as chemical abundances in regolith samples. Although much is already known about the lunar regolith, our data are far from comprehensive. Most of the regolith samples returned to Earth for analysis had lost the upper surface, or it was intermixed with deeper regolith. This upper surface is the part of the regolith most recently exposed to the solar wind; as such it will be important to resource assessment. In addition, it may be far easier to mine and process the uppermost few centimeters of regolith over a broad area than to engage in deep excavation of a smaller area. The most direct means of analyzing the regolith surface will be by studies in situ. In addition, the analysis of the impact-origin regolith surfaces, the Fe-rich glasses of mare pyroclastic deposits, are of resource interest, but are inadequately known; none of the extensive surface-exposed pyroclastic deposits of the Moon have been systematically sampled, although we know something about such deposits from the Apollo 17 site. Because of the potential importance of pyroclastic deposits, methods to quantify glass as well as mineral abundances will be important to resource evaluation. Combined x ray diffraction (XRD) and x ray fluorescence (XRF) analysis will address many resource characterization problems on the Moon. XRF methods are valuable for obtaining full major-element abundances with high precision. Such data, collected in parallel with quantitative mineralogy, permit unambiguous determination of both mineral and chemical abundances where concentrations are high enough to be of resource grade. Collection of both XRD and XRF data from a single sample provides simultaneous chemical and mineralogic information. These data can be used to correlate quantitative chemistry and mineralogy as a set of simultaneous linear equations, the solution of which can lead to full characterization of the sample. The use of

  12. Helicopter TEM parameters analysis and system optimization based on time constant

    NASA Astrophysics Data System (ADS)

    Xiao, Pan; Wu, Xin; Shi, Zongyang; Li, Jutao; Liu, Lihua; Fang, Guangyou

    2018-03-01

    Helicopter transient electromagnetic (TEM) method is a kind of common geophysical prospecting method, widely used in mineral detection, underground water exploration and environment investigation. In order to develop an efficient helicopter TEM system, it is necessary to analyze and optimize the system parameters. In this paper, a simple and quantitative method is proposed to analyze the system parameters, such as waveform, power, base frequency, measured field and sampling time. A wire loop model is used to define a comprehensive 'time constant domain' that shows a range of time constant, analogous to a range of conductance, after which the characteristics of the system parameters in this domain is obtained. It is found that the distortion caused by the transmitting base frequency is less than 5% when the ratio of the transmitting period to the target time constant is greater than 6. When the sampling time window is less than the target time constant, the distortion caused by the sampling time window is less than 5%. According to this method, a helicopter TEM system, called CASHTEM, is designed, and flight test has been carried out in the known mining area. The test results show that the system has good detection performance, verifying the effectiveness of the method.

  13. Transmission X-ray Diffraction (XRD) Patterns Relevant to the MSL Chemin Amorphous Component: Sulfates And Silicates

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Rampe, E. B.; Graff, T. G.; Archer, P. D., Jr.; Le, L.; Ming, D. W.; Sutter, B.

    2015-01-01

    The Mars Science Laboratory (MSL) CheMin instrument on the Curiosity rover is a transmission X-ray diffractometer (Co-Kalpha radiation source and a approx.5deg to approx.52deg 2theta range) where the analyzed powder samples are constrained to have discrete particle diameters <150 microns by a sieve. To date, diffraction patterns have been obtained for one basaltic soil (Rocknest (RN)) and four drill fines of coherent rock (John Klein (JK), Cumberland (CB), Windjana (WJ), and Confidence Hills (CH)). The CheMin instrument has detected and quantified the abundance of both primary igneous (e.g., feldspar, olivine, and pyroxene) and secondary (e.g., Ca-sulfates, hematite, akaganeite, and Fe-saponite) minerals. The diffraction patterns of all CheMin samples are also characterized by a broad diffraction band centered near 30deg 2theta and by increasing diffraction intensity (scattering continuum) from approx.15deg to approx.5deg, the 2theta minimum. Both the broad band and the scattering continuum are attributed to the presence of an XRD amorphous component. Estimates of amorphous component abundance, based on the XRD data itself and on mass-balance calculations using APXS data crystalline component chemistry derived from XRD data, martian meteorites, and/or stoichiometry [e.g., 6-9], range from approx.20 wt.% to approx.50 wt.% of bulk sample. The APXSbased calculations show that the amorphous component is rich in volatile elements (esp. SO3) and is not simply primary basaltic glass, which was used as a surrogate to model the broad band in the RN CheMin pattern. For RN, the entire volatile inventory (except minor anhydrite) is assigned to the amorphous component because no volatile-bearing crystalline phases were reported within detection limits [2]. For JK and CB, Fesaponite, basanite, and akaganeite are volatile-bearing crystalline components. Here we report transmission XRD patterns for sulfate and silicate phases relevant to interpretation of MSL-CheMin XRD amorphous

  14. Processing grounded-wire TEM signal in time-frequency-pseudo-seismic domain: A new paradigm

    NASA Astrophysics Data System (ADS)

    Khan, M. Y.; Xue, G. Q.; Chen, W.; Huasen, Z.

    2017-12-01

    Grounded-wire TEM has received great attention in mineral, hydrocarbon and hydrogeological investigations for the last several years. Conventionally, TEM soundings have been presented as apparent resistivity curves as function of time. With development of sophisticated computational algorithms, it became possible to extract more realistic geoelectric information by applying inversion programs to 1-D & 3-D problems. Here, we analyze grounded-wire TEM data by carrying out analysis in time, frequency and pseudo-seismic domain supported by borehole information. At first, H, K, A & Q type geoelectric models are processed using a proven inversion program (1-D Occam inversion). Second, time-to-frequency transformation is conducted from TEM ρa(t) curves to magneto telluric MT ρa(f) curves for the same models based on all-time apparent resistivity curves. Third, 1-D Bostick's algorithm was applied to the transformed resistivity. Finally, EM diffusion field is transformed into propagating wave field obeying the standard wave equation using wavelet transformation technique and constructed pseudo-seismic section. The transformed seismic-like wave indicates that some reflection and refraction phenomena appear when the EM wave field interacts with geoelectric interface at different depth intervals due to contrast in resistivity. The resolution of the transformed TEM data is significantly improved in comparison to apparent resistivity plots. A case study illustrates the successful hydrogeophysical application of proposed approach in recovering water-filled mined-out area in a coal field located in Ye county, Henan province, China. The results support the introduction of pseudo-seismic imaging technology in short-offset version of TEM which can also be an useful aid if integrated with seismic reflection technique to explore possibilities for high resolution EM imaging in future.

  15. [Infrared spectroscopy and XRD studies of coral fossils].

    PubMed

    Chen, Quan-li; Zhou, Guan-min; Yin, Zuo-wei

    2012-08-01

    Coral fossil is an old remain of multicellular animal on the earth, and formed by various geological processes. The structural characteristics and compositions of the coral fossils with different color and radial texture on the surface were studied by infrared absorption spectroscopy and X-ray powder diffraction analyses. The results show that the studied coral fossils mainly are composed of SiO2, and the radial microstructure characterized by the calcareous coral cross-section is preserved. It is formed by metasomatism by SiO2. The infrared absorption spectra of the coral fossil with different color and texture are essentially the same, showing typical infrared absorption spectra of the quartz jade. XRD analysis shows that the main components of the coral fossils with different color and texture are consistent and mainly composed of SiO2 with a trace amount of other minerals and without CaCO3.

  16. (S)TEM analysis of functional transition metal oxides

    NASA Astrophysics Data System (ADS)

    Chi, Miaofang

    Perovskite vanadates (AVO3) form an ideal family to study the structure-property relationships in transition metal oxides because their physical properties can easily be tailored by varying the A-site cations. (S)TEM is an ideal tool for this type of study due to its capacity for simultaneous imaging and chemical analysis. Determination of the oxidation state of vanadium in complex oxides have been carried out by electron energy loss spectroscopy. SrVO3/LaAlO3 is then studied both experimentally and theoretically as a prototype system. Extra electrons have been detected on the interface layer, and further proven to originate mainly from a change in the local bonding configuration of V at the La-O terminated substrate surface. Cr-containing stainless steel deposited with a LaCrO3 thin-film layer is a promising interconnect material of Solid Oxide Fuel Cells (SOFC). Our investigation on its microstructural evolution reveals that the LaCrO 3 thin film plays a role in inhibiting the growth of an oxide layer on the metal surface and thus protects the surface of the stainless steel. Ca-doped LaCoO3 is a promising SOFC cathode material. The domain structures and the oxidation state of Co in Ca-doped LaCoO3, which are directly related to its mechanical properties and electronic conductivity, are investigated by in-situ TEM and EELS. The formation of microcracks is observed during thermal cycles. Ca-doping in LaCoO3 is shown to not only improve the electronic conductivity of the material, but is also likely to strengthen the grain boundaries. The realization of its application in SOFCs depends on depressing the ferroelastisity to reduce strain formation during thermal cycles. The application of the (S)TEM techniques used for studying the perovskite systems are further extended to other compounds containing transition metal elements. The refractory minerals from Comet 81 P/Wild-2 are studied to investigate the formation of the early solar system. A relatively high Ti3+/Ti 4

  17. Reduction of Off-Boresight Fields for a TEM Horn Antenna

    DTIC Science & Technology

    1994-12-01

    model predicts the tapers will reduce the diffraction. Experimental results verify the TPS’s ability to reduce the peak off-hureslht ld& for a. TElL horn...diffractin. Experimental results verify the PS’s ability to reduce the fields foi a T14 horn anitnna xi Reduction of Off-Boresight Fields for a TEM Horn...geometry, has a constant amplitude response. Two simple models repiesent a TEM horn - a high frequency model and a low frequency model [5). At high

  18. X-Ray Diffraction (XRD) Characterization Methods for Sigma=3 Twin Defects in Cubic Semiconductor (100) Wafers

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Kim, Hyun Jung (Inventor); Skuza, Jonathan R. (Inventor); Lee, Kunik (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor)

    2017-01-01

    An X-ray defraction (XRD) characterization method for sigma=3 twin defects in cubic semiconductor (100) wafers includes a concentration measurement method and a wafer mapping method for any cubic tetrahedral semiconductor wafers including GaAs (100) wafers and Si (100) wafers. The methods use the cubic semiconductor's (004) pole figure in order to detect sigma=3/{111} twin defects. The XRD methods are applicable to any (100) wafers of tetrahedral cubic semiconductors in the diamond structure (Si, Ge, C) and cubic zinc-blend structure (InP, InGaAs, CdTe, ZnSe, and so on) with various growth methods such as Liquid Encapsulated Czochralski (LEC) growth, Molecular Beam Epitaxy (MBE), Organometallic Vapor Phase Epitaxy (OMVPE), Czochralski growth and Metal Organic Chemical Vapor Deposition (MOCVD) growth.

  19. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity.

    PubMed

    Liu, Yongliang; Thibodeaux, Devron; Gamble, Gary; Bauer, Philip; VanDerveer, Don

    2012-08-01

    Despite considerable efforts in developing curve-fitting protocols to evaluate the crystallinity index (CI) from X-ray diffraction (XRD) measurements, in its present state XRD can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous fraction in a sample. The greatest barrier to establishing quantitative XRD is the lack of appropriate cellulose standards, which are needed to calibrate the XRD measurements. In practice, samples with known CI are very difficult to prepare or determine. In a previous study, we reported the development of a simple algorithm for determining fiber crystallinity information from Fourier transform infrared (FT-IR) spectroscopy. Hence, in this study we not only compared the fiber crystallinity information between FT-IR and XRD measurements, by developing a simple XRD algorithm in place of a time-consuming and subjective curve-fitting process, but we also suggested a direct way of determining cotton cellulose CI by calibrating XRD with the use of CI(IR) as references.

  20. Cdc15 integrates Tem1 GTPase-mediated spatial signals with Polo kinase-mediated temporal cues to activate mitotic exit.

    PubMed

    Rock, Jeremy M; Amon, Angelika

    2011-09-15

    In budding yeast, a Ras-like GTPase signaling cascade known as the mitotic exit network (MEN) promotes exit from mitosis. To ensure the accurate execution of mitosis, MEN activity is coordinated with other cellular events and restricted to anaphase. The MEN GTPase Tem1 has been assumed to be the central switch in MEN regulation. We show here that during an unperturbed cell cycle, restricting MEN activity to anaphase can occur in a Tem1 GTPase-independent manner. We found that the anaphase-specific activation of the MEN in the absence of Tem1 is controlled by the Polo kinase Cdc5. We further show that both Tem1 and Cdc5 are required to recruit the MEN kinase Cdc15 to spindle pole bodies, which is both necessary and sufficient to induce MEN signaling. Thus, Cdc15 functions as a coincidence detector of two essential cell cycle oscillators: the Polo kinase Cdc5 synthesis/degradation cycle and the Tem1 G-protein cycle. The Cdc15-dependent integration of these temporal (Cdc5 and Tem1 activity) and spatial (Tem1 activity) signals ensures that exit from mitosis occurs only after proper genome partitioning.

  1. High temperature XRD of Cu2.1Zn0.9SnSe4

    NASA Astrophysics Data System (ADS)

    Chetty, Raju; Mallik, Ramesh Chandra

    2014-04-01

    Quaternary compound with chemical composition Cu2.1Zn0.9SnSe4 is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.

  2. 3D TEM reconstruction and segmentation process of laminar bio-nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iturrondobeitia, M., E-mail: maider.iturrondobeitia@ehu.es; Okariz, A.; Fernandez-Martinez, R.

    2015-03-30

    The microstructure of laminar bio-nanocomposites (Poly (lactic acid)(PLA)/clay) depends on the amount of clay platelet opening after integration with the polymer matrix and determines the final properties of the material. Transmission electron microscopy (TEM) technique is the only one that can provide a direct observation of the layer dispersion and the degree of exfoliation. However, the orientation of the clay platelets, which affects the final properties, is practically immeasurable from a single 2D TEM image. This issue can be overcome using transmission electron tomography (ET), a technique that allows the complete 3D characterization of the structure, including the measurement ofmore » the orientation of clay platelets, their morphology and their 3D distribution. ET involves a 3D reconstruction of the study volume and a subsequent segmentation of the study object. Currently, accurate segmentation is performed manually, which is inefficient and tedious. The aim of this work is to propose an objective/automated segmentation methodology process of a 3D TEM tomography reconstruction. In this method the segmentation threshold is optimized by minimizing the variation of the dimensions of the segmented objects and matching the segmented V{sub clay} (%) and the actual one. The method is first validated using a fictitious set of objects, and then applied on a nanocomposite.« less

  3. Thinning of Large Biological Cells for Cryo-TEM Characterization by Cryo-FIB Milling

    PubMed Central

    Strunk, Korrinn M.; Ke, Danxia; Gray, Jennifer L.; Zhang, Peijun

    2013-01-01

    SUMMARY Focused ion beam milling at cryogenic temperatures (cryo-FIB) is a valuable tool that can be used to thin vitreous biological specimens for subsequent imaging and analysis in a cryo-transmission electron microscope (cryo-TEM) in their frozen-hydrated state. This technique offers the potential benefit of eliminating the mechanical artifacts that are typically found with cryo-ultramicrotomy. However, due to the additional complexity in transferring samples in and out of the FIB, contamination and devitrification of the amorphous ice is commonly encountered. In order to address these problems, we have designed a new sample cryo-shuttle that specifically accepts Polara TEM cartridges directly in order to simplify the transfer process between the FIB and TEM. We used the quality of the ice in the sample as an indicator to test various parameters used the process, and demonstrated with successful milling of large mammalian cells. By comparing the results from larger HeLa cells to those from E. coli cells, we discuss some of the artifacts and challenges we have encountered using this technique. PMID:22906009

  4. Identification of TEM-135 β-Lactamase in Neisseria gonorrhoeae Strains Carrying African and Toronto Plasmids in Argentina

    PubMed Central

    Gianecini, R.; Oviedo, C.; Littvik, A.; Mendez, E.; Piccoli, L.; Montibello, S.

    2014-01-01

    One hundred forty-three penicillinase-producing Neisseria gonorrhoeae (PPNG) isolates obtained in Argentina from 2008 and 2012 were examined to detect blaTEM-135 genes and to investigate plasmid profiles and multiantigen sequence types. Forty-two PPNG isolates were found to carry TEM-135, and two contained a new TEM derivative characterized as TEM-220. The blaTEM-135 allele was carried by the Toronto/Rio and African plasmids. Molecular epidemiology revealed that two blaTEM-135 isolates were related to previously described isolates from Thailand and China, indicating a common evolutionary origin. PMID:25367903

  5. TEM Study of Internal Crystals in Supernova Graphites

    NASA Astrophysics Data System (ADS)

    Croat, T. K.; Bernatowicz, T.; Stadermann, F. J.; Messenger, S.; Amari, S.

    2003-03-01

    A coordinated TEM and isotopic study of ten supernova (SN) graphites from the Murchison meteorite has revealed many internal grains, mostly titanium carbides (TiCs) and TiC-kamacite composite grains, which were accreted during the graphite growth.

  6. Inhibitive effect of Pt on Pd-hydride formation of Pd@Pt core-shell electrocatalysts: An in situ EXAFS and XRD study

    DOE PAGES

    Wise, Anna M.; Richardson, Peter W.; Price, Stephen W. T.; ...

    2017-12-27

    In situ EXAFS and XRD have been used to study the electrochemical formation of hydride phases, H abs, in 0.5 M H 2SO 4 for a Pd/C catalyst and a series of Pd@Pt core-shell catalysts with varying Pt shell thickness, from 0.5 to 4 monolayers. Based on the XRD data a 3% lattice expansion is observed for the Pd/C core catalyst upon hydride formation at 0.0 V. In contrast, the expansion was ≤0.6% for all of the core-shell catalysts. The limited extent of the lattice expansion observed suggests that hydride formation, which may occur during periodic active surface area measurementsmore » conducting during accelerated aging tests or driven by H 2 crossover in PEM fuel cells, is unlikely to contribute significantly to the degradation of Pd@Pt core-shell electrocatalysts in contrast to the effects of oxide formation.« less

  7. Inhibitive effect of Pt on Pd-hydride formation of Pd@Pt core-shell electrocatalysts: An in situ EXAFS and XRD study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, Anna M.; Richardson, Peter W.; Price, Stephen W. T.

    In situ EXAFS and XRD have been used to study the electrochemical formation of hydride phases, H abs, in 0.5 M H 2SO 4 for a Pd/C catalyst and a series of Pd@Pt core-shell catalysts with varying Pt shell thickness, from 0.5 to 4 monolayers. Based on the XRD data a 3% lattice expansion is observed for the Pd/C core catalyst upon hydride formation at 0.0 V. In contrast, the expansion was ≤0.6% for all of the core-shell catalysts. The limited extent of the lattice expansion observed suggests that hydride formation, which may occur during periodic active surface area measurementsmore » conducting during accelerated aging tests or driven by H 2 crossover in PEM fuel cells, is unlikely to contribute significantly to the degradation of Pd@Pt core-shell electrocatalysts in contrast to the effects of oxide formation.« less

  8. Post Irradiation TEM Investigation of ZrN Coated U(Mo) Particles Prepared with FIB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Renterghem, W.; Leenaers, A.; Van den Berghe, S.

    2015-10-01

    In the framework of the Selenium project, two dispersion fuel plates were fabricated with Si and ZrN coated fuel particles and irradiated in the Br2 reactor of SCK•CEN to high burn-up. The first analysis of the irradiated plate proved the reduced swelling of the fuel plate and interaction layer growth up to 70% burn-up. The question was raised how the structure of the interaction layer had been affected by the irradiation and how the structure of the fuel particles had evolved. Hereto, samples from the ZrN coated UMo particles were prepared for transmission electron microscopy (TEM) using focused ion beammore » milling (FIB) at INL. The FIB technique allowed to precisely select the area of the interaction layer and/or fuel to produce a sample that is TEM transparent over an area of 20 by 20 µm. In this contribution, the first TEM results will be presented from the 66% burn-up sample.« less

  9. GISAXS modelling of helium-induced nano-bubble formation in tungsten and comparison with TEM

    NASA Astrophysics Data System (ADS)

    Thompson, Matt; Sakamoto, Ryuichi; Bernard, Elodie; Kirby, Nigel; Kluth, Patrick; Riley, Daniel; Corr, Cormac

    2016-05-01

    Grazing-incidence small angle x-ray scattering (GISAXS) is a powerful non-destructive technique for the measurement of nano-bubble formation in tungsten under helium plasma exposure. Here, we present a comparative study between transmission electron microscopy (TEM) and GISAXS measurements of nano-bubble formation in tungsten exposed to helium plasma in the Large Helical Device (LHD) fusion experiment. Both techniques are in excellent agreement, suggesting that nano-bubbles range from spheroidal to ellipsoidal, displaying exponential diameter distributions with mean diameters μ=0.68 ± 0.04 nm and μ=0.6 ± 0.1 nm measured by TEM and GISAXS respectively. Depth distributions were also computed, with calculated exponential depth distributions with mean depths of 8.4 ± 0.5 nm and 9.1 ± 0.4 nm for TEM and GISAXS. In GISAXS modelling, spheroidal particles were fitted with an aspect ratio ε=0.7 ± 0.1. The GISAXS model used is described in detail.

  10. VES/TEM 1D joint inversion by using Controlled Random Search (CRS) algorithm

    NASA Astrophysics Data System (ADS)

    Bortolozo, Cassiano Antonio; Porsani, Jorge Luís; Santos, Fernando Acácio Monteiro dos; Almeida, Emerson Rodrigo

    2015-01-01

    Electrical (DC) and Transient Electromagnetic (TEM) soundings are used in a great number of environmental, hydrological, and mining exploration studies. Usually, data interpretation is accomplished by individual 1D models resulting often in ambiguous models. This fact can be explained by the way as the two different methodologies sample the medium beneath surface. Vertical Electrical Sounding (VES) is good in marking resistive structures, while Transient Electromagnetic sounding (TEM) is very sensitive to conductive structures. Another difference is VES is better to detect shallow structures, while TEM soundings can reach deeper layers. A Matlab program for 1D joint inversion of VES and TEM soundings was developed aiming at exploring the best of both methods. The program uses CRS - Controlled Random Search - algorithm for both single and 1D joint inversions. Usually inversion programs use Marquadt type algorithms but for electrical and electromagnetic methods, these algorithms may find a local minimum or not converge. Initially, the algorithm was tested with synthetic data, and then it was used to invert experimental data from two places in Paraná sedimentary basin (Bebedouro and Pirassununga cities), both located in São Paulo State, Brazil. Geoelectric model obtained from VES and TEM data 1D joint inversion is similar to the real geological condition, and ambiguities were minimized. Results with synthetic and real data show that 1D VES/TEM joint inversion better recovers simulated models and shows a great potential in geological studies, especially in hydrogeological studies.

  11. Towards 3D crystal orientation reconstruction using automated crystal orientation mapping transmission electron microscopy (ACOM-TEM).

    PubMed

    Kobler, Aaron; Kübel, Christian

    2018-01-01

    To relate the internal structure of a volume (crystallite and phase boundaries) to properties (electrical, magnetic, mechanical, thermal), a full 3D reconstruction in combination with in situ testing is desirable. In situ testing allows the crystallographic changes in a material to be followed by tracking and comparing the individual crystals and phases. Standard transmission electron microscopy (TEM) delivers a projection image through the 3D volume of an electron-transparent TEM sample lamella. Only with the help of a dedicated TEM tomography sample holder is an accurate 3D reconstruction of the TEM lamella currently possible. 2D crystal orientation mapping has become a standard method for crystal orientation and phase determination while 3D crystal orientation mapping have been reported only a few times. The combination of in situ testing with 3D crystal orientation mapping remains a challenge in terms of stability and accuracy. Here, we outline a method to 3D reconstruct the crystal orientation from a superimposed diffraction pattern of overlapping crystals without sample tilt. Avoiding the typically required tilt series for 3D reconstruction enables not only faster in situ tests but also opens the possibility for more stable and more accurate in situ mechanical testing. The approach laid out here should serve as an inspiration for further research and does not make a claim to be complete.

  12. Beyond the job exposure matrix (JEM): the task exposure matrix (TEM).

    PubMed

    Benke, G; Sim, M; Fritschi, L; Aldred, G

    2000-09-01

    The job exposure matrix (JEM) has been employed to assign cumulative exposure to workers in many epidemiological studies. In these studies, where quantitative data are available, all workers with the same job title and duration are usually assigned similar cumulative exposures, expressed in mgm(-3)xyears. However, if the job is composed of multiple tasks, each with its own specific exposure profile, then assigning all workers within a job the same mean exposure can lead to misclassification of exposure. This variability of exposure within job titles is one of the major weaknesses of JEMs. A method is presented for reducing the variability in the JEM methodology, which has been called the task exposure matrix (TEM). By summing the cumulative exposures of a worker over all the tasks worked within a job title, it is possible to address the variability of exposure within the job title, and reduce possible exposure misclassification. The construction of a TEM is outlined and its application in the context of a study in the primary aluminium industry is described. The TEM was found to assign significantly different cumulative exposures to the majority of workers in the study, compared with the JEM and the degree of difference in cumulative exposure between the JEM and the TEM varied greatly between contaminants.

  13. "One-sample concept" micro-combinatory for high throughput TEM of binary films.

    PubMed

    Sáfrán, György

    2018-04-01

    Phases of thin films may remarkably differ from that of bulk. Unlike to the comprehensive data files of Binary Phase Diagrams [1] available for bulk, complete phase maps for thin binary layers do not exist. This is due to both the diverse metastable, non-equilibrium or instable phases feasible in thin films and the required volume of characterization work with analytical techniques like TEM, SAED and EDS. The aim of the present work was to develop a method that remarkably facilitates the TEM study of the diverse binary phases of thin films, or the creation of phase maps. A micro-combinatorial method was worked out that enables both preparation and study of a gradient two-component film within a single TEM specimen. For a demonstration of the technique thin Mn x Al 1- x binary samples with evolving concentration from x = 0 to x = 1 have been prepared so that the transition from pure Mn to pure Al covers a 1.5 mm long track within the 3 mm diameter TEM grid. The proposed method enables the preparation and study of thin combinatorial samples including all feasible phases as a function of composition or other deposition parameters. Contrary to known "combinatorial chemistry", in which a series of different samples are deposited in one run, and investigated, one at a time, the present micro-combinatorial method produces a single specimen condensing a complete library of a binary system that can be studied, efficiently, within a single TEM session. That provides extremely high throughput for TEM characterization of composition-dependent phases, exploration of new materials, or the construction of phase diagrams of binary films. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Identification of TEM-135 β-lactamase in Neisseria gonorrhoeae strains carrying African and Toronto plasmids in Argentina.

    PubMed

    Gianecini, R; Oviedo, C; Littvik, A; Mendez, E; Piccoli, L; Montibello, S; Galarza, P

    2015-01-01

    One hundred forty-three penicillinase-producing Neisseria gonorrhoeae (PPNG) isolates obtained in Argentina from 2008 and 2012 were examined to detect blaTEM-135 genes and to investigate plasmid profiles and multiantigen sequence types. Forty-two PPNG isolates were found to carry TEM-135, and two contained a new TEM derivative characterized as TEM-220. The blaTEM-135 allele was carried by the Toronto/Rio and African plasmids. Molecular epidemiology revealed that two blaTEM-135 isolates were related to previously described isolates from Thailand and China, indicating a common evolutionary origin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. cisTEM, user-friendly software for single-particle image processing.

    PubMed

    Grant, Timothy; Rohou, Alexis; Grigorieff, Nikolaus

    2018-03-07

    We have developed new open-source software called cis TEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cis TEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k - 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cis TEM is available for download from cistem.org. © 2018, Grant et al.

  16. cisTEM, user-friendly software for single-particle image processing

    PubMed Central

    2018-01-01

    We have developed new open-source software called cisTEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cisTEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k – 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cisTEM is available for download from cistem.org. PMID:29513216

  17. Preparation of high-quality planar FeRh thin films for in situ TEM investigations

    NASA Astrophysics Data System (ADS)

    Almeida, Trevor P.; McGrouther, Damien; Pivak, Yevheniy; Perez Garza, Hector Hugo; Temple, Rowan; Massey, Jamie; Marrows, Christopher H.; McVitie, Stephen

    2017-10-01

    The preparation of a planar FeRh thin film using a focused ion beam (FIB) secondary electron microscope (SEM) for the purpose of in situ transmission electron microscopy (TEM) is presented. A custom SEM stub with 45° faces allows for the transfer and milling of the sample on a TEM heating chip, whilst Fresnel imaging within the TEM revealed the presence of the magnetic domain walls, confirming the quality of the FIB-prepared sample.

  18. Electric shielding films for biased TEM samples and their application to in situ electron holography.

    PubMed

    Nomura, Yuki; Yamamoto, Kazuo; Hirayama, Tsukasa; Saitoh, Koh

    2018-06-01

    We developed a novel sample preparation method for transmission electron microscopy (TEM) to suppress superfluous electric fields leaked from biased TEM samples. In this method, a thin TEM sample is first coated with an insulating amorphous aluminum oxide (AlOx) film with a thickness of about 20 nm. Then, the sample is coated with a conductive amorphous carbon film with a thickness of about 10 nm, and the film is grounded. This technique was applied to a model sample of a metal electrode/Li-ion-conductive-solid-electrolyte/metal electrode for biasing electron holography. We found that AlOx film with a thickness of 10 nm has a large withstand voltage of about 8 V and that double layers of AlOx and carbon act as a 'nano-shield' to suppress 99% of the electric fields outside of the sample. We also found an asymmetry potential distribution between high and low potential electrodes in biased solid-electrolyte, indicating different accumulation behaviors of lithium-ions (Li+) and lithium-ion vacancies (VLi-) in the biased solid-electrolyte.

  19. Bayesian resolution of TEM, CSEM and MT soundings: a comparative study

    NASA Astrophysics Data System (ADS)

    Blatter, D. B.; Ray, A.; Key, K.

    2017-12-01

    We examine the resolution of three electromagnetic exploration methods commonly used to map the electrical conductivity of the shallow crust - the magnetotelluric (MT) method, the controlled-source electromagnetic (CSEM) method and the transient electromagnetic (TEM) method. TEM and CSEM utilize an artificial source of EM energy, while MT makes use of natural variations in the Earth's electromagnetic field. For a given geological setting and acquisition parameters, each of these methods will have a different resolution due to differences in the source field polarization and the frequency range of the measurements. For example, the MT and TEM methods primarily rely on induced horizontal currents and are most sensitive to conductive layers while the CSEM method generates vertical loops of current and is more sensitive to resistive features. Our study seeks to provide a robust resolution comparison that can help inform exploration geophysicists about which technique is best suited for a particular target. While it is possible to understand and describe a difference in resolution qualitatively, it remains challenging to fully describe it quantitatively using optimization based approaches. Part of the difficulty here stems from the standard electromagnetic inversion toolkit, which makes heavy use of regularization (often in the form of smoothing) to constrain the non-uniqueness inherent in the inverse problem. This regularization makes it difficult to accurately estimate the uncertainty in estimated model parameters - and therefore obscures their true resolution. To overcome this difficulty, we compare the resolution of CSEM, airborne TEM, and MT data quantitatively using a Bayesian trans-dimensional Markov chain Monte Carlo (McMC) inversion scheme. Noisy synthetic data for this study are computed from various representative 1D test models: a conductive anomaly under a conductive/resistive overburden; and a resistive anomaly under a conductive/resistive overburden. In

  20. Graphite to Graphene via Graphene Oxide: An Overview on Synthesis, Properties, and Applications

    NASA Astrophysics Data System (ADS)

    Hansora, D. P.; Shimpi, N. G.; Mishra, S.

    2015-12-01

    This work represents a state-of-the-art technique developed for the preparation of graphene from graphite-metal electrodes by the arc-discharge method carried out in a continuous flow of water. Because of continuous arcing of graphite-metal electrodes, the graphene sheets were observed in water with uniformity and little damage. These nanosheets were subjected to various purification steps such as acid treatment, oxidation, water washing, centrifugation, and drying. The pure graphene sheets were analyzed using Raman spectrophotometry, x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and tunneling electron microscopy (TEM). Peaks of Raman spectra were recorded at (1300-1400 cm-1) and (1500-1600 cm-1) for weak D-band and strong G-band, respectively. The XRD pattern showed 85.6% crystallinity of pure graphite, whereas pure graphene was 66.4% crystalline. TEM and FE-SEM micrographs revealed that graphene sheets were overlapped to each other and layer-by-layer formation was also observed. Beside this research work, we also reviewed recent developments of graphene and related nanomaterials along with their preparations, properties, functionalizations, and potential applications.

  1. TEM Analysis of Interfaces in Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers

    NASA Technical Reports Server (NTRS)

    Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y.; Mori, S.; Asthana R.

    2016-01-01

    Silicon Carbide (SiC) is a promising material for thermo-structural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, and Mo-B. In this presentation, the result of microstructural analysis obtained by TEM observations and the influence of metallic interlayers and fiber orientation of SA-THX on the joint microstructure will be discussed.

  2. Development and Application of Operando TEM to a Ruthenium Catalyst for CO Oxidation

    NASA Astrophysics Data System (ADS)

    Miller, Benjamin Kyle

    Operando transmission electron microscopy (TEM) is an extension of in-situ TEM in which the performance of the material being observed is measured simultaneously. This is of great value, since structure-performance relationships lie at the heart of materials science. For catalyst materials, like the SiO2-supported Ru nanoparticles studied, the important performance metric, catalyst activity, is measured inside the microscope by determining the gas composition during imaging. This is accomplished by acquisition of electron energy loss spectra (EELS) of the gas in the environmental TEM while catalysis is taking place. In this work, automated methods for rapidly quantifying low-loss and core-loss EELS of gases were developed. A new sample preparation method was also established to increase catalytic conversion inside a differentially-pumped environmental TEM, and the maximum CO conversion observed was about 80%. A system for mixing gases and delivering them to the environmental TEM was designed and built, and a method for locating and imaging nanoparticles in zone axis orientations while minimizing electron dose rate was determined. After atomic resolution images of Ru nanoparticles observed during CO oxidation were obtained, the shape and surface structures of these particles was investigated. A Wulff model structure for Ru particles was compared to experimental images both by manually rotating the model, and by automatically determining a matching orientation using cross-correlation of shape signatures. From this analysis, it was determined that most Ru particles are close to Wulff-shaped during CO oxidation. While thick oxide layers were not observed to form on Ru during CO oxidation, thin RuO2 layers on the surface of Ru nanoparticles were imaged with atomic resolution for the first time. The activity of these layers is discussed in the context of the literature on the subject, which has thus far been inconclusive. We conclude that disordered oxidized ruthenium

  3. Microwave assisted synthesis and characterisation of a zinc oxide/tobacco mosaic virus hybrid material. An active hybrid semiconductor in a field-effect transistor device.

    PubMed

    Sanctis, Shawn; Hoffmann, Rudolf C; Eiben, Sabine; Schneider, Jörg J

    2015-01-01

    Tobacco mosaic virus (TMV) has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET). A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO) nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS), transmission electron microscopy (TEM), grazing incidence X-ray diffractometry (GI-XRD) and atomic force microscopy (AFM). TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics.

  4. Fabrication of mesoporous cerium dioxide films by cathodic electrodeposition.

    PubMed

    Kim, Young-Soo; Lee, Jin-Kyu; Ahn, Jae-Hoon; Park, Eun-Kyung; Kim, Gil-Pyo; Baeck, Sung-Hyeon

    2007-11-01

    Mesoporous cerium dioxide (Ceria, CeO2) thin films have been successfully electrodeposited onto ITO-coated glass substrates from an aqueous solution of cerium nitrate using CTAB (Cetyltrimethylammonium Bromide) as a templating agent. The synthesized films underwent detailed characterizations. The crystallinity of synthesized CeO2 film was confirmed by XRD analysis and HR-TEM analysis, and surface morphology was investigated by SEM analysis. The presence of mesoporosity in fabricated films was confirmed by TEM and small angle X-ray analysis. As-synthesized film was observed from XRD analysis and HR-TEM image to have well-crystallized structure of cubic phase CeO2. Transmission electron microscopy and small angle X-ray analysis revealed the presence of uniform mesoporosity with a well-ordered lamellar phase in the CeO2 films electrodeposited with CTAB templating.

  5. Cross section TEM characterization of high-energy-Xe-irradiated U-Mo

    DOE PAGES

    Ye, B.; Jamison, L.; Miao, Y.; ...

    2017-03-09

    U-Mo alloys irradiated with 84 MeV Xe ions to various doses were characterized with transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) techniques. The TEM thin foils were prepared perpendicular to the irradiated surface to allow a direct observation of the entire region modified by ions. Furthermore, depth-selective microstructural information was revealed. Varied irradiation-induced phenomena such as gas bubble formation, phase reversal, and recrystallization were observed at different ion penetration depths in U-Mo.

  6. TEM Video Compressive Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Andrew; Kovarik, Libor; Abellan, Patricia

    One of the main limitations of imaging at high spatial and temporal resolution during in-situ TEM experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use of coded aperture compressive sensing methods [1, 2, 3, 4] to increase the framerate of any camera with simple, low-cost hardware modifications. The coded aperture approach allows multiple sub-frames to be coded and integrated into amore » single camera frame during the acquisition process, and then extracted upon readout using statistical compressive sensing inversion. Our simulations show that it should be possible to increase the speed of any camera by at least an order of magnitude. Compressive Sensing (CS) combines sensing and compression in one operation, and thus provides an approach that could further improve the temporal resolution while correspondingly reducing the electron dose rate. Because the signal is measured in a compressive manner, fewer total measurements are required. When applied to TEM video capture, compressive imaging couled improve acquisition speed and reduce the electron dose rate. CS is a recent concept, and has come to the forefront due the seminal work of Candès [5]. Since the publication of Candès, there has been enormous growth in the application of CS and development of CS variants. For electron microscopy applications, the concept of CS has also been recently applied to electron tomography [6], and reduction of electron dose in scanning transmission electron microscopy (STEM) imaging [7]. To demonstrate the applicability of coded aperture CS video reconstruction for atomic level imaging, we simulate compressive sensing on observations of Pd nanoparticles and Ag nanoparticles during exposure to high temperatures and other environmental

  7. A novel functional domain of Cdc15 kinase is required for its interaction with Tem1 GTPase in Saccharomyces cerevisiae.

    PubMed Central

    Asakawa, K; Yoshida, S; Otake, F; Toh-e, A

    2001-01-01

    Exit from mitosis requires the inactivation of cyclin-dependent kinase (CDK) activity. In the budding yeast Saccharomyces cerevisiae, a number of gene products have been identified as components of the signal transduction network regulating inactivation of CDK (called the MEN, for the mitotic exit network). Cdc15, one of such components of the MEN, is an essential protein kinase. By the two-hybrid screening, we identified Cdc15 as a binding protein of Tem1 GTPase, another essential regulator of the MEN. Coprecipitation experiments revealed that Tem1 binds to Cdc15 in vivo. By deletion analysis, we found that the Tem1-binding domain resides near the conserved kinase domain of Cdc15. The cdc15-LF mutation, which was introduced into the Tem1-binding domain, reduced the interaction with Cdc15 and Tem1 and caused temperature-sensitive growth.The kinase activity of Cdc15 was not so much affected by the cdc15-LF mutation. However, Cdc15-LF failed to localize to the SPB at the restrictive temperature. Our data show that the interaction with Tem1 is important for the function of Cdc15 and that Cdc15 and Tem1 function in a complex to direct the exit from mitosis. PMID:11290702

  8. Using nuclear magnetic resonance and transient electromagnetics to characterise water distribution beneath an ice covered volcanic crater: the case of Sherman Crater Mt. Baker Washington.

    USGS Publications Warehouse

    Irons, Trevor P.; Martin, Kathryn; Finn, Carol A.; Bloss, Benjamin; Horton, Robert J.

    2014-01-01

    Surface and laboratory Nuclear Magnetic Resonance (NMR) measurements combined with transient electromagnetic (TEM) data are powerful tools for subsurface water detection. Surface NMR (sNMR) and TEM soundings, laboratory NMR, complex resistivity, and X-Ray Diffraction (XRD) analysis were all conducted to characterise the distribution of water within Sherman Crater on Mt. Baker, WA. Clay rich rocks, particularly if water saturated, can weaken volcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-travelled, destructive debris flows. Detecting the presence and volume of shallow groundwater is critical for evaluating these landslide hazards. The TEM data identified a low resistivity layer (<10 ohm-m), under 60 m of glacial ice related to water saturated clays. The TEM struggles to resolve the presence or absence of a plausible thin layer of bulk liquid water on top of the clay. The sNMR measurements did not produce any observable signal, indicating the lack of substantial accumulated bulk water below the ice. Laboratory analysis on a sample from the crater wall that likely represented the clays beneath the ice confirmed that the controlling factor for the lack of sNMR signal was the fine-grained nature of the media. The laboratory measurements further indicated that small pores in clays detected by the XRD contain as much as 50% water, establishing an upper bound on the water content in the clay layer. Forward modelling of geologic scenarios revealed that bulk water layers as thin as ½ m between the ice and clay layer would have been detectable using sNMR. The instrumentation conditions which would allow for sNMR detection of the clay layer are investigated. Using current instrumentation the combined analysis of the TEM and sNMR data allow for valuable characterisation of the groundwater system in the crater. The sNMR is able to reduce the uncertainty of the TEM in regards to the presence of a bulk water layer, a valuable

  9. Improving the Mechanical Performance and Thermal Stability of a PVA-Clay Nanocomposite by Electron Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Shokuhi Rad, A.; Ebrahimi, D.

    2017-07-01

    The effects of electron beam irradiation and presence of clay on the mechanical properties and thermal stability of montmorillonite clay-modified polyvinyl alcohol nanocomposites were studied. By using the X-ray diffraction (XRD) and transmission electron microscopy (TEM), the microstructure of the nanocomposites was investigated. The results obtained from TEM and XRD tests showed that montmorillonite clay nanoparticles were located in the polyvinyl alcohol phase. The XRD analysis confirmed the formation of an exfoliated structure in nanocomposites samples. Increasing the amount of clay to 20 wt.% increased the tensile strength and modulus of the nanocomposite. Irradiation up to an absorbed dose of 100 kGy increased its mechanical properties and thermal stability, but at higher irradiation levels, the mechanical strength and thermal stability declined. The sample with 20 wt.% of the nanofiller, exposed to 100 kGy, showed the highest mechanical strength and thermal stability.

  10. [Transanal endocopic microsurgery (TEM) in advanced rectal cancer disease treatment].

    PubMed

    Paci, Marcello; Scoglio, Daniele; Ursi, Pietro; Barchetti, Luciana; Fabiani, Bernardina; Ascoli, Giada; Lezoche, Giovanni

    2010-01-01

    After Heald's revolution in 1982, who introduced the total mesorectal excision, for improve the results in terms of recurrance and survival rate, there is a need to explore new therapeutic options in treatment of sub-peritoneal rectal cancer. In particular, local excision represent more often a valid technique for non advanced rectal cancer treatment in comparison with the more invasive procedure, especially in elderly and/or in poor health patients. The introduction of TEM by Buess (transanal endoscopy microsurgery), has extended the local treatment also to classes of patients who would normally have been candidates for TME. The author gives literature's details and his experience in the use of TEM for early rectal cancer sub-peritoneal. The aim of the study is to analyze short and long term results in terms of local recurrence and survival rate comparing TEM technique with the other transanal surgery in rectal cancer treatment. Preoperative Chemio-Radio therapy and rigorous Imaging Staging are the first steps to planning surgery. It's time, for local rectal cancer, has come to make the devolution a few decades ago has been accomplished in the treatment of breast cancer

  11. Synchrotron-based XRD from rat bone of different age groups.

    PubMed

    Rao, D V; Gigante, G E; Cesareo, R; Brunetti, A; Schiavon, N; Akatsuka, T; Yuasa, T; Takeda, T

    2017-05-01

    Synchrotron-based XRD spectra from rat bone of different age groups (w, 56 w and 78w), lumber vertebra at early stages of bone formation, Calcium hydroxyapatite (HAp) [Ca 10 (PO 4 ) 6 (OH) 2 ] bone fill with varying composition (60% and 70%) and bone cream (35-48%), has been acquired with 15keV synchrotron X-rays. Experiments were performed at Desy, Hamburg, Germany, utilizing the Resonant and Diffraction beamline (P9), with 15keV X-rays (λ=0.82666 A 0 ). Diffraction data were quantitatively analyzed using the Rietveld refinement approach, which allowed us to characterize the structure of these samples in their early stages. Hydroxyapatite, received considerable attention in medical and materials sciences, since these materials are the hard tissues, such as bone and teeth. Higher bioactivity of these samples gained reasonable interest for biological application and for bone tissue repair in oral surgery and orthopedics. The results obtained from these samples, such as phase data, crystalline size of the phases, as well as the degree of crystallinity, confirm the apatite family crystallizing in a hexagonal system, space group P6 3 /m with the lattice parameters of a=9.4328Å and c=6.8842Å (JCPDS card #09-0432). Synchrotron-based XRD patterns are relatively sharp and well resolved and can be attributed to the hexagonal crystal form of hydroxyapatite. All the samples were examined with scanning electron microscope at an accelerating voltage of 15kV. The presence of large globules of different sizes is observed, in small age groups of the rat bone (8w) and lumber vertebra (LV), as distinguished from, large age groups (56 and 78w) in all samples with different magnification, reflects an amorphous phase without significant traces of crystalline phases. Scanning electron microscopy (SEM) was used to characterize the morphology and crystalline properties of Hap, for all the samples, from 2 to 100μm resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. TEM Analysis of Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers

    NASA Technical Reports Server (NTRS)

    Ozaki, T.; Hasegawa, Y.; Tsuda, H.; Mori, S.; Halbig, M. C.; Asthana, R.; Singh, M.

    2017-01-01

    SiC fiber-bonded ceramics (SA-Tyrannohex: SA-THX) diffusion-bonded with TiCu metallic interlayers were investigated. Thin samples of the ceramics were prepared with a focused ion beam (FIB) and the interfacial microstructure of the prepared samples was studied by transmission electron microscopy (TEM) and scanning TEM (STEM). In addition to conventional microstructure observation, for detailed analysis of reaction compounds in diffusion-bonded area, we performed STEM-EDS measurements and selected area electron diffraction (SAD) experiments. The TEM and STEM experiments revealed the diffusion-bonded area was composed of only one reaction layer, which was characterized by TiC precipitates in Cu-Si compound matrix. This reaction layer was in good contact with the SA-THX substrates, and it is concluded that the joint structure led to the excellent bonding strength.

  13. Effects of diagnostic ionizing radiation on pregnancy via TEM

    NASA Astrophysics Data System (ADS)

    Mohammed, W. H.; Artoli, A. M.

    2008-08-01

    In Sudan, X-rays are routinely used at least once for measurements of pelvis during the gestation period, though this is highly prohibited worldwide, except for a few life threatening cases. To demonstrate the effect of diagnostic ionizing radiation on uterus, fetus and neighboring tissues to the ovaries, two independent experiments on pregnant rabbits were conducted. The first experiment was a proof of concept that diagnostic ionizing radiation is hazardous throughout the gestation period. The second experiment was done through Transmission Electron Microscopy (TEM) to elucidate the morphological changes in the ultra structure of samples taken from irradiated pregnant rabbits. This study uses TEM to test the effect of diagnostic radiation of less than 0.6 Gray on the cellular level. Morphological changes have been captured and the images were analyzed to quantify these effects.

  14. TEM1 expression in cancer-associated fibroblasts is correlated with a poor prognosis in patients with gastric cancer

    PubMed Central

    Fujii, Satoshi; Fujihara, Ayano; Natori, Kei; Abe, Anna; Kuboki, Yasutoshi; Higuchi, Youichi; Aizawa, Masaki; Kuwata, Takeshi; Kinoshita, Takahiro; Yasui, Wataru; Ochiai, Atsushi

    2015-01-01

    The cancer stroma, including cancer-associated fibroblasts (CAFs), is known to contribute to cancer cell progression and metastasis, suggesting that functional proteins expressed specifically in CAFs might be candidate molecular targets for cancer treatment. The purpose of the present study was to explore the possibility of using TEM1 (tumor endothelial marker 1), which is known to be expressed in several types of mesenchymal cells, as a molecular target by examining the impact of TEM1 expression on clinicopathological factors in gastric cancer patients. A total of 945 consecutive patients with gastric cancer who underwent surgery at the National Cancer Center Hospital East between January 2003 and July 2007 were examined using a tissue microarray approach. TEM1 expression in CAFs or vessel-associated cells was determined using immunohistochemical staining. Three items (CAF-TEM1-positivity, CAF-TEM1-intensity, and vessel-TEM1-intensity) were then examined to determine the correlations between the TEM1 expression status and the recurrence-free survival (RFS), overall survival (OS), cancer-related survival (COS), and other clinicopathological factors. Significant correlations between CAF-TEM1-positivity or CAF-TEM1-intensity and RFS, OS, or COS were observed (P < 0.001, Kaplan–Meier curves); however, no significant correlation between vessel-TEM1-intensity and RFS, OS, or COS was observed. A univariate analysis showed that CAF-TEM1-positivity and CAF-TEM1-intensity were each correlated with a scirrhous subtype, tumor depth, nodal status, distant metastasis, serosal invasion, lymphatic or venous vessel infiltrations, and pTMN stage. This study suggests that the inhibition of TEM1 expression specifically in the CAFs of gastric carcinoma might represent a new strategy for the treatment of gastric cancer. PMID:26336878

  15. Correlative Magnetic Imaging of Heat-Assisted Magnetic Recording Media in Cross Section Using Lorentz TEM and MFM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taeho Roy; Phatak, Charudatta; Petford-Long, Amanda K.

    In order to increase the storage density of hard disk drives, a detailed understanding of the magnetic structure of the granular magnetic layer is essential. Here, we demonstrate an experimental procedure of imaging recorded bits on heat-assisted magnetic recording (HAMR) media in cross section using Lorentz transmission electron microscopy (TEM). With magnetic force microscopy and focused ion beam (FIB), we successfully targeted a single track to prepare cross-sectional TEM specimens. Then, we characterized the magnetic structure of bits with their precise location and orientation using Fresnel mode of Lorentz TEM. Here, this method can promote understanding of the correlation betweenmore » bits and their material structure in HAMR media to design better the magnetic layer.« less

  16. Correlative Magnetic Imaging of Heat-Assisted Magnetic Recording Media in Cross Section Using Lorentz TEM and MFM

    DOE PAGES

    Kim, Taeho Roy; Phatak, Charudatta; Petford-Long, Amanda K.; ...

    2017-10-23

    In order to increase the storage density of hard disk drives, a detailed understanding of the magnetic structure of the granular magnetic layer is essential. Here, we demonstrate an experimental procedure of imaging recorded bits on heat-assisted magnetic recording (HAMR) media in cross section using Lorentz transmission electron microscopy (TEM). With magnetic force microscopy and focused ion beam (FIB), we successfully targeted a single track to prepare cross-sectional TEM specimens. Then, we characterized the magnetic structure of bits with their precise location and orientation using Fresnel mode of Lorentz TEM. Here, this method can promote understanding of the correlation betweenmore » bits and their material structure in HAMR media to design better the magnetic layer.« less

  17. Technical Evaluation Motor 3 (TEM-3)

    NASA Technical Reports Server (NTRS)

    Garecht, Diane

    1989-01-01

    A primary objective of the technical evaluation motor program is to recover the case, igniter and nozzle hardware for use on the redesigned solid rocket motor flight program. Two qualification objectives were addressed and met on TEM-3. The Nylok thread locking device of the 1U100269-03 leak check port plug and the 1U52295-04 safe and arm utilizing Krytox grease on the barrier-booster shaft O-rings were both certified. All inspection and instrumentation data indicate that the TEM-3 static test firing conducted 23 May 1989 was successful. The test was conducted at ambient conditions with the exception of the field joints (set point of 121 F, with a minimum of 87 F at the sensors), igniter joint (set point at 122 F with a minimum of 87 F at sensors) and case-to-nozzle joint (set point at 114 F with a minimum of 87 F at sensors). Ballistics performance values were within specification requirements. Nozzle performance was nominal with typical erosion. The nozzle and the case joint temperatures were maintained at the heaters controlling set points while electrical power was supplied. The water and the CO2 quench systems prevented damage to the metal hardware. All other test equipment performed as planned, contributing to a successful motor firing. All indications are that the test was a success, and all expected hardware will be refurbished for the RSRM program.

  18. Thermal behavior of polyhalite: a high-temperature synchrotron XRD study

    DOE PAGES

    Xu, Hongwu; Guo, Xiaofeng; Bai, Jianming

    2016-09-17

    As an accessory mineral in marine evaporites, polyhalite, K 2MgCa 2(SO 4) 4·2H 2O, coexists with halite (NaCl) in salt formations, which have been considered as potential repositories for permanent storage of high-level nuclear wastes. However, because of the heat generated by radioactive decays in the wastes, polyhalite may dehydrate, and the released water will dissolve its neighboring salt, potentially affecting the repository integrity. Thus, studying the thermal behavior of polyhalite is important. In this paper, a polyhalite sample containing a small amount of halite was collected from the Salado formation at the WIPP site in Carlsbad, New Mexico. Tomore » determine its thermal behavior, in situ high-temperature synchrotron X-ray diffraction was conducted from room temperature to 1066 K with the sample powders sealed in a silica-glass capillary. At about 506 K, polyhalite started to decompose into water vapor, anhydrite (CaSO 4) and two langbeinite-type phases, K 2Ca x Mg 2-x (SO 4) 3, with different Ca/Mg ratios. XRD peaks of the minor halite disappeared, presumably due to its dissolution by water vapor. With further increasing temperature, the two langbeinite solid solution phases displayed complex variations in crystallinity, composition and their molar ratio and then were combined into the single-phase triple salt, K 2CaMg(SO 4) 3, at ~919 K. Rietveld analyses of the XRD data allowed determination of structural parameters of polyhalite and its decomposed anhydrite and langbeinite phases as a function of temperature. Finally, from the results, the thermal expansion coefficients of these phases have been derived, and the structural mechanisms of their thermal behavior been discussed.« less

  19. Comprehensive analysis of TEM methods for LiFePO4/FePO4 phase mapping: spectroscopic techniques (EFTEM, STEM-EELS) and STEM diffraction techniques (ACOM-TEM).

    PubMed

    Mu, X; Kobler, A; Wang, D; Chakravadhanula, V S K; Schlabach, S; Szabó, D V; Norby, P; Kübel, C

    2016-11-01

    Transmission electron microscopy (TEM) has been used intensively in investigating battery materials, e.g. to obtain phase maps of partially (dis)charged (lithium) iron phosphate (LFP/FP), which is one of the most promising cathode material for next generation lithium ion (Li-ion) batteries. Due to the weak interaction between Li atoms and fast electrons, mapping of the Li distribution is not straightforward. In this work, we revisited the issue of TEM measurements of Li distribution maps for LFP/FP. Different TEM techniques, including spectroscopic techniques (energy filtered (EF)TEM in the energy range from low-loss to core-loss) and a STEM diffraction technique (automated crystal orientation mapping (ACOM)), were applied to map the lithiation of the same location in the same sample. This enabled a direct comparison of the results. The maps obtained by all methods showed excellent agreement with each other. Because of the strong difference in the imaging mechanisms, it proves the reliability of both the spectroscopic and STEM diffraction phase mapping. A comprehensive comparison of all methods is given in terms of information content, dose level, acquisition time and signal quality. The latter three are crucial for the design of in-situ experiments with beam sensitive Li-ion battery materials. Furthermore, we demonstrated the power of STEM diffraction (ACOM-STEM) providing additional crystallographic information, which can be analyzed to gain a deeper understanding of the LFP/FP interface properties such as statistical information on phase boundary orientation and misorientation between domains. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Simulation and analysis of the effect of ungrounded rectangular loop distributed parameters on TEM response

    NASA Astrophysics Data System (ADS)

    Shi, Zongyang; Liu, Lihua; Xiao, Pan; Geng, Zhi; Liu, Fubo; Fang, Guangyou

    2018-02-01

    An ungrounded loop in the shallow subsurface transient electromagnetic surveys has been studied as the transmission line model for early turn-off stage, which can accurately explicate the early turn-off current waveform inconsistency along the loop. In this paper, the Gauss-Legendre numerical integration method is proposed for the first time to simulate and analyze the transient electromagnetic (TEM) response considering the different early turn-off current waveforms along the loop. During the simulation, these integral node positions along the loop are firstly determined by solving these zero points of Legendre polynomial, then the turn-off current of each node position is simulated by using the transfer function of the transmission line. Finally, the total TEM response is calculated by using the Gauss-Legendre integral formula. In addition, the comparison and analysis between the results affected by the distributed parameters and that generated by lumped parameters are presented. It is found that the TEM responses agree well with each other after current is thoroughly switched off, while the transient responses in turn-off stage are completely different. It means that the position dependence of the early turn-off current should be introduced into the forward model during the early response data interpretation of the shallow TEM detection of the ungrounded loop. Furthermore, the TEM response simulations at four geometric symmetry points are made. It shows that early responses of different geometric symmetry points are also inconsistent. The research on the influence of turn-off current position dependence on the early response of geometric symmetry point is of great significance to guide the layout of the survey lines and the transmitter location.

  1. Appendix B: Summary of TEM Particle Size Distribution Datasets

    EPA Pesticide Factsheets

    As discussed in the main text (see Section 5.3.2), calculation of the concentration of asbestos fibers in each of the bins of potential interest requires particle size distribution data derived using transmission electron microscopy (TEM).

  2. An improved green synthesis method and Escherichia coli antibacterial activity of silver nanoparticles.

    PubMed

    Van Viet, Pham; Sang, Truong Tan; Bich, Nguyen Ho Ngoc; Thi, Cao Minh

    2018-05-01

    Silver nanoparticles (Ag NPs) were synthesized by an improved green synthesis method via a photo-reduction process using low-power UV light in the presence of poly (vinyl pyrrolidone) (PVP) as the surface stabilizer. The effective synthesis process was achieved by optimized synthesis parameters such as C 2 H 5 OH: H 2 O ratio, AgNO 3 : PVP ratio, pH value, and reducing time. The formation of Ag NPs was identified by Ultraviolet-visible (UV-vis) absorption spectra, X-ray diffraction pattern (XRD) and Fourier transform infrared spectroscopy (FTIR) spectra. Ag NPs were crystallized according to (111), (200), and (220) planes of the face-centered cubic. The transmission electron microscopy (TEM) image showed that the morphology of Ag NPs was uniform spherical with the average particle size of 16 ± 2 nm. The results of XRD pattern, TEM image, and dynamic light scattering (DLS) analysis proved that Ag crystals with uniform size were formed after the reduction process. The mechanism of the formation of Ag NPs was proposed and confirmed by FTIR spectra. The antibacterial activity of Ag NPs against Escherichia coli (E. coli) was tested and approximately 100% of E. coli was eliminated by Ag NPs 35 ppm. In the future, this study can become a new process for the application of Ag NPs as an antibiotic in the industrial scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Investigation of C3 S hydration mechanism by transmission electron microscope (TEM) with integrated Super-XTM EDS system.

    PubMed

    Sakalli, Y; Trettin, R

    2017-07-01

    Tricalciumsilicate (C 3 S, Alite) is the major component of the Portland cement clinker. Hydration of Alite is decisive in influencing the properties of the resulting material. This is due to its high content in cement. The mechanism of the hydration of C 3 S is very complicated and not yet fully understood. There are different models describing the hydration of C 3 S in various ways. In this work for a better understanding of hydration mechanism, the hydrated C 3 S was investigated by using the transmission electron microscope (TEM) and for the first time, the samples for the investigations were prepared by using of focused ion beam from sintered pellets of C 3 S. Also, an FEI Talos F200x with an integrated Super-X EDS system was used for the investigations. FEI Talos F200X combines outstanding high-resolution S/TEM and TEM imaging with energy dispersive X-ray spectroscopy signal detection, and 3D chemical characterization with compositional mapping. TEM is a very powerful tool for material science. A high energy beam of electrons passes through a very thin sample, and the interactions between the electrons and the atoms can be used to observe the structure of the material and other features in the structure. TEM can be used to study the growth of layers and their composition. TEM produces high-resolution, two-dimensional images and will be used for a wide range of educational, science and industry applications. Chemical analysis can also be performed. The purpose of these investigations was to get the information about the composition of the C-S-H phases and some details of the nanostructure of the C-S-H phases. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  4. Structural investigations in helium charged titanium films using grazing incidence XRD and EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Wan, Chubin; Zhou, Xiaosong; Wang, Yuting; Li, Shina; Ju, Xin; Peng, Shuming

    2014-01-01

    The crystal structure and local atomic arrangements surrounding Ti atoms were determined for He-charged hexagonal close-packed (hcp) Ti films and measured at glancing angles by synchrotron radiation X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively. The charged specimens were prepared by direct current magnetron sputtering with a He/Ar mixture. He atoms with a relatively medium concentration (He/Ti atomic ratio as high as 17 at.%) were incorporated evenly in the deposited films. XRD results showed the changes in the peak intensities in Ti films with different He contents. EXAFS Fourier Transform analysis indicated that the average Ti-Ti distance decreased significantly, and proved the existence of phase transition.

  5. Quantitative energy-filtered TEM imaging of interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentley, J.; Kenik, E.A.; Siangchaew, K.

    Quantitative elemental mapping by inner shell core-loss energy-filtered transmission electron microscopy (TEM) with a Gatan Imaging Filter (GIF) interfaced to a Philips CM30 TEM operated with a LaB{sub 6} filament at 300 kV has been applied to interfaces in a range of materials. In sensitized type 304L stainless steel aged 15 h at 600{degrees}C, grain-boundary Cr depletion occurs between Cr-rich intergranular M{sub 23}C{sub 6} particles. Images of net Cr L{sub 23} intensity show segregation profiles that agree quantitatively with focused-probe spectrum-line measurements recorded with a Gatan PEELS on a Philips EM400T/FEG (0.8 nA in 2-nm-diam probe) of the same regions.more » Rare-earth oxide additives that are used for the liquid-phase sintering of Si{sub 3}N{sub 4} generate second phases of complex composition at grain boundaries and edges. These grain boundary phases often control corrosion, crack growth and creep damage behavior. High resolution imaging has been widely and with focused probes can be compromised by beam damage, but elemental mapping by EFTEM appears not to cause appreciable beam damage.« less

  6. Localised corrosion in aluminium alloy 2024-T3 using in situ TEM.

    PubMed

    Malladi, Sairam; Shen, Chenggang; Xu, Qiang; de Kruijff, Tom; Yücelen, Emrah; Tichelaar, Frans; Zandbergen, Henny

    2013-11-28

    An approach to carry out chemical reactions using aggressive gases in situ in a transmission electron microscope (TEM), at ambient pressures of 1.5 bar using a windowed environmental cell, called a nanoreactor, is presented here. The nanoreactor coupled with a specially developed holder with platinum tubing permits the usage of aggressive chemicals like hydrochloric acid (HCl).

  7. Characterization of microbially Fe(III)-reduced nontronite: Environmental cell-transmission electron microscopy study

    USGS Publications Warehouse

    Kim, Jin-wook; Furukawa, Yoko; Daulton, Tyrone L.; Lavoie, Dawn L.; Newell, Steven W.

    2003-01-01

    Microstructural changes induced by the microbial reduction of Fe(III) in nontronite by Shewanella oneidensis were studied using environmental cell (EC)-transmission electron microscopy (TEM), conventional TEM, and X-ray powder diffraction (XRD). Direct observations of clays by EC-TEM in their hydrated state allowed for the first time an accurate and unambiguous TEM measurement of basal layer spacings and the contraction of layer spacing caused by microbial effects, most likely those of Fe(III) reduction. Non-reduced and Fe(III)-reduced nontronite, observed by EC-TEM, exhibited fringes with mean d001 spacings of 1.50 nm (standard deviation, σ = 0.08 nm) and 1.26 nm (σ = 0.10 nm), respectively. In comparison, the same samples embedded with Nanoplast resin, sectioned by microtome, and observed using conventional TEM, displayed layer spacings of 1.0–1.1 nm (non-reduced) and 1.0 nm (reduced). The results from Nanoplast-embedded samples are typical of conventional TEM studies, which have measured nearly identical layer spacings regardless of Fe oxidation state. Following Fe(III) reduction, both EC- and conventional TEM showed an increase in the order of nontronite selected area electron diffraction patterns while the images exhibited fewer wavy fringes and fewer layer terminations. An increase in stacking order in reduced nontronite was also suggested by XRD measurements. In particular, the ratio of the valley to peak intensity (v/p) of the 1.7 nm basal 001 peak of ethylene glycolated nontronite was measured at 0.65 (non-reduced) and 0.85 (microbially reduced).

  8. Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies.

    PubMed

    Bulavchenko, O A; Vinokurov, Z S; Afonasenko, T N; Tsyrul'nikov, P G; Tsybulya, S V; Saraev, A A; Kaichev, V V

    2015-09-21

    A series of mixed Mn-Zr oxides with different molar ratios Mn/Zr (0.1-9) have been prepared by coprecipitation of manganese and zirconium nitrates and characterized by X-ray diffraction (XRD) and BET methods. It has been found that at concentrations of Mn below 30 at%, the samples are single-phase solid solutions (MnxZr1-xO2-δ) based on a ZrO2 structure. X-ray photoelectron spectroscopy (XPS) measurements showed that manganese in these solutions exists mainly in the Mn(4+) state on the surface. An increase in Mn content mostly leads to an increase in the number of Mn cations in the structure of solid solutions; however, a part of the manganese cations form Mn2O3 and Mn3O4 in the crystalline and amorphous states. The reduction of these oxides with hydrogen was studied by a temperature-programmed reduction technique, in situ XRD, and near ambient pressure XPS in the temperature range from 100 to 650 °C. It was shown that the reduction of the solid solutions MnxZr1-xO2-δ proceeds via two stages. During the first stage, at temperatures between 100 and 500 °C, the Mn cations incorporated into the solid solutions MnxZr1-xO2-δ undergo partial reduction. During the second stage, at temperatures between 500 and 700 °C, Mn cations segregate on the surface of the solid solution. In the samples with more than 30 at% Mn, the reduction of manganese oxides was observed: Mn2O3 → Mn3O4 → MnO.

  9. An Optimized Air-Core Coil Sensor with a Magnetic Flux Compensation Structure Suitable to the Helicopter TEM System.

    PubMed

    Chen, Chen; Liu, Fei; Lin, Jun; Zhu, Kaiguang; Wang, Yanzhang

    2016-04-12

    The air-core coil sensor (ACS) is widely used as a transducer to measure the variation in magnetic fields of a helicopter transient electromagnetic (TEM) system. A high periodic emitting current induces the magnetic field signal of the underground medium. However, such current also generates a high primary field signal that can affect the received signal of the ACS and even damage the receiver. To increase the dynamic range of the received signal and to protect the receiver when emitting current rises/falls, the combination of ACS with magnetic flux compensation structure (bucking coil) is necessary. Moreover, the optimized ACS, which is composed of an air-core coil and a differential pre-amplifier circuit, must be investigated to meet the requirements of the helicopter TEM system suited to rapid surveying for shallow buried metal mine in rough topography. Accordingly, two ACSs are fabricated in this study, and their performance is verified and compared inside a magnetic shielding room. Using the designed ACSs, field experiments are conducted in Baoqing County. The field experimental data show that the primary field response can be compensated when the bucking coil is placed at an appropriate point in the range of allowed shift distance beyond the center of the transmitting coil and that the damage to the receiver induced by the over-statured signal can be solved. In conclusion, a more suitable ACS is adopted and is shown to have better performance, with a mass of 2.5 kg, resultant effective area of 11.6 m² (i.e., diameter of 0.496 m), 3 dB bandwidth of 66 kHz, signal-to-noise ratio of 4 (i.e., varying magnetic field strength of 0.2 nT/s), and normalized equivalent input noise of 3.62 nV/m².

  10. XRD and FTIR structural investigation of gadolinium-zinc-borate glass ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borodi, G.; Pascuta, P.; Dan, V.

    2013-11-13

    X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy measurements have been employed to investigate the (Gd{sub 2}O{sub 3}){sub x}⋅(B{sub 2}O{sub 3}){sub (60−x)}⋅(ZnO){sub 40} glass ceramics system, with 0 ≤ x ≤ 15 mol%. After heat treatment applied at 860 °C for 2 h, some structural changes were observed and new crystalline phases appeared in the structure of the samples. In these glass ceramics four crystalline phases were identified using powder diffraction files (PDF 2), namely ZnB{sub 4}O{sub 7}, Zn{sub 4}O(B{sub 6}O{sub 12}), Zn{sub 3}(BO{sub 3}){sub 2} and GdBO{sub 3}. From the XRD data, the average unit-cell parameter and themore » quantitative ratio of the crystallographic phases in the studied samples were evaluated. FTIR data revealed that the BO{sub 3}, BO{sub 4} and ZnO{sub 4} are the main structural units of these glass ceramics network. The compositional dependence of the different structural units which appear in the studied samples was followed.« less

  11. Investigating Processes of Materials Formation via Liquid Phase and Cryogenic TEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Yoreo, James J.; Sommerdijk, Nico

    2016-06-14

    The formation of materials in solutions is a widespread phenomenon in synthetic, biological and geochemical systems, occurring through dynamic processes of nucleation, self-assembly, crystal growth, and coarsening. The recent advent of liquid phase TEM and advances in cryogenic TEM are transforming our understanding of these phenomena by providing new insights into the underlying physical and chemical mechanisms. The techniques have been applied to metallic and semiconductor nanoparticles, geochemical and biological minerals, electrochemical systems, macromolecular complexes, and selfassembling systems, both organic and inorganic. New instrumentation and methodologies currently on the horizon promise new opportunities for advancing the science of materials synthesis.

  12. XRD measurement of mean thickness, thickness distribution and strain for illite and illite-smectite crystallites by the Bertaut-Warren-Averbach technique

    USGS Publications Warehouse

    Drits, Victor A.; Eberl, Dennis D.; Środoń, Jan

    1998-01-01

    A modified version of the Bertaut-Warren-Averbach (BWA) technique (Bertaut 1949, 1950; Warren and Averbach 1950) has been developed to measure coherent scattering domain (CSD) sizes and strains in minerals by analysis of X-ray diffraction (XRD) data. This method is used to measure CSD thickness distributions for calculated and experimental XRD patterns of illites and illite-smectites (I-S). The method almost exactly recovers CSD thickness distributions for calculated illite XRD patterns. Natural I-S samples contain swelling layers that lead to nonperiodic structures in the c* direction and to XRD peaks that are broadened and made asymmetric by mixed layering. Therefore, these peaks cannot be analyzed by the BWA method. These difficulties are overcome by K-saturation and heating prior to X-ray analysis in order to form 10-Å periodic structures. BWA analysis yields the thickness distribution of mixed-layer crystals (coherently diffracting stacks of fundamental illite particles). For most I-S samples, CSD thickness distributions can be approximated by lognormal functions. Mixed-layer crystal mean thickness and expandability then can be used to calculate fundamental illite particle mean thickness. Analyses of the dehydrated, K-saturated samples indicate that basal XRD reflections are broadened by symmetrical strain that may be related to local variations in smectite interlayers caused by dehydration, and that the standard deviation of the strain increases regularly with expandability. The 001 and 002 reflections are affected only slightly by this strain and therefore are suited for CSD thickness analysis. Mean mixed-layer crystal thicknesses for dehydrated I-S measured by the BWA method are very close to those measured by an integral peak width method.

  13. Characterization of some biological specimens using TEM and SEM

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabarun; Smith, Don W.

    2009-05-01

    The advent of novel techniques using the Transmission and Scanning Electron Microscopes improved observation on various biological specimens to characterize them. We studied some biological specimens using Transmission and Scanning Electron Microscopes. We followed negative staining technique with Phosphotungstic acid using bacterial culture of Bacillus subtilis. Negative staining is very convenient technique to view the structural morphology of different samples including bacteria, phage viruses and filaments in a cell. We could observe the bacterial cell wall and flagellum very well when trapped the negative stained biofilm from bacterial culture on a TEM grid. We cut ultra thin sections from the fixed root tips of Pisum sativum (Garden pea). Root tips were pre fixed with osmium tetroxide and post fixed with uranium acetate and placed in the BEEM capsule for block making. The ultrathin sections on the grid under TEM showed the granular chromatin in the nucleus. The protein bodies and large vacuoles with the storage materials were conspicuous. We followed fixation, critical point drying and sputter coating with gold to view the tissues with SEM after placing on stubs. SEM view of the leaf surface of a dangerous weed Tragia hispida showed the surface trichomes. These trichomes when break on touching releases poisonous content causing skin irritation. The cultured tissue from in vitro culture of Albizia lebbeck, a tree revealed the regenerative structures including leaf buds and stomata on the tissue surface. SEM and TEM allow investigating the minute details characteristic morphological features that can be used for classroom teaching.

  14. Elucidation of reaction mechanism involved in the formation of LaNiO3 from XRD and TG analysis

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Dipti V.; Athawale, Anjali A.

    2013-06-01

    The present work is focused on the synthesis and elucidation of reaction mechanism involved in the formation of LaNiO3 with the help of X-ray diffraction (XRD) and thermogravimetric (TG) analysis. LaNiO3 was synthesized by hydrothermal method by heating at 160°C under autogenous pressure for 6h. Pure phase product was obtained after calcining the hydrothermally activated product for 6h at 700°C. The various phases of the product obtained after hydrothermal treatment and calcination followed by the formation of pure phase nanocrystalline lanthanum nickel oxide could be determined from XRD analysis of the samples. The reaction mechanism and phase formation temperature has been interpreted by thermogravimetric analysis of the hydrothermally synthesized product and XRD analysis.

  15. The high - low-p clinoenstatite transition: in situ xrd and ultrasonic study

    NASA Astrophysics Data System (ADS)

    Müller, H. J.; Wunder, B.; Lathe, C.; Schilling, F. R.

    2003-04-01

    Using single-crystal X-ray diffraction analyses in a diamond anvil cell Angel et al. (1992) published the transformation of MgSiO_3 from LCEn to a C2/c-polymorph (HCEn) at around 5.5 - 8.0 GPa and room-T (RT)conditions. This LCEn - HCEn-transition is not quenchable. However, the knowledge of the exact phase boundary positions for the MgSiO_3-transitions is essential as pyroxene is an important component of the Earth's mantle and will significantly influence elastic properties (e.g. v_p, v_s) of the mantle. We determined the HCEn - LCEn-transition by in-situ XRD experiments under high P, T using the multi-anvil appar atus MAX80 at the synchrotron facility HASYLAB, Hamburg. Our preliminary results only represent the minimum P-conditions of the HCEn - LCEn phase boundary, which is approximated by equation P (GPa) = 0.0021T (/C) + 6.06. Nevertheless, our results are in good agreement to data published by Angel & Hugh-Jones (1994). The invariant point defined by the intersection of the HCEn - LCEn equilibrium determined within this study and the OEn - LCEn reaction after Angel &Hugh-Jones (1994) lies at about 7.9 GPa and 875/C. This is in contrast to earlier experimental results of Kanzaki (1991) and Ulmer &Stalder (2001). The samples for the ultrasonic interferometry experiments were prepared by hot-isostatic pressing also using the MAX80. Adjacent XRD ruled out any phase transition during the hip-process. For the ultrasonic measurements one of the six anvils of MAX80 were exchanged by an anvil equipped with lithium niobate p- and s-wave transducers of 33.3 MHz natural frequency (Mueller et al., 2002). Corresponding to the XRD experiments HCEn was formed by increasing the pressure at RT. The velocities of elastic compressional and shear waves were measured under in situ conditions using the classical digital sweep technique. After the phase transition to LCEn as a result of rising the temperature at given pressure the measurements were repeated. The newly developed

  16. Ceftazidime-Resistant Enterobacteriaceae Isolates from Three Polish Hospitals: Identification of Three Novel TEM- and SHV-5-Type Extended-Spectrum β-Lactamases

    PubMed Central

    Gniadkowski, Marek; Schneider, Ines; Jungwirth, Renate; Hryniewicz, Waleria; Bauernfeind, Adolf

    1998-01-01

    Twelve ceftazidime-resistant isolates of the family Enterobacteriaceae (11 Klebsiella pneumoniae isolates and 1 Escherichia coli isolate) were collected in 1995 from three Polish hospitals located in different cities. All were identified as producers of extended-spectrum β-lactamases (ESBLs). Detailed analysis of their β-lactamase contents revealed that six of them expressed SHV-5-like ESBLs. The remaining six were found to produce three different TEM enzymes, each characterized by a pI value of 6.0 and specified by new combinations of amino acid substitutions. The amino acid substitutions compared to the TEM-1 β-lactamase sequence were Gly238Ser, Glu240Lys, and Thr265Met for TEM-47; Leu21Phe, Gly238Ser, Glu240Lys, and Thr265Met for TEM-48; and Leu21Phe, Gly238Ser, Glu240Lys, Thr265Met, and Ser268Gly for TEM-49. The new TEM β-lactamases, TEM-47, TEM-48, and TEM-49, belong to a subfamily of TEM-2-related enzymes. Genes coding for TEM-47 and TEM-49 could have originated from the TEM-48-encoding sequence by various single genetic events. The new TEM derivatives probably document the already advanced microevolution of ESBLs ongoing in Polish hospitals, in a majority of which no monitoring of ESBL producers was performed before 1996. PMID:9517925

  17. Prevalence of β-lactam (blaTEM) and Metronidazole (nim) Resistance Genes in the Oral Cavity of Greek Subjects

    PubMed Central

    Koukos, Georgios; Konstantinidis, Antonios; Tsalikis, Lazaros; Arsenakis, Minas; Slini, Theodora; Sakellari, Dimitra

    2016-01-01

    Objectives: The aim of this study is to investigate the prevalence of blaTEM and nim genes that encode resistance to β-lactams and nitroimidazoles, respectively, in the oral cavity of systemically healthy Greek subjects. Materials and Methodology: After screening 720 potentially eligible subjects, 154 subjects were recruited for the study, including 50 periodontally healthy patients, 52 cases of gingivitis and 52 cases of chronic periodontitis. The clinical parameters were assessed with an automated probe. Various samples were collected from the tongue, first molars and pockets >6mm, and analysed by polymerase chain reaction-amplification of the blaTEM and nim genes, using primers and conditions previously described in the literature. Results: There was a high rate of detection of blaTEM in plaque and tongue samples alike in all periodontal conditions (37% of plaque and 60% of tongue samples, and 71% of participants). The blaTEM gene was detected more frequently in the tongue samples of the periodontally healthy (56%) and chronic periodontitis (62%) groups compared to the plaque samples from the same groups (36% and 29%, respectively; z-test with Bonferroni corrections-tests, P<0.05). The nim gene was not detected in any of the 343 samples analysed. Conclusion: The oral cavity of Greek subjects often harbours blaTEM but not nim genes, and therefore the antimicrobial activity of β-lactams might be compromised. PMID:27099637

  18. Advantages and Disadvantages of using a Focused Ion Beam to Prepare TEM Samples From Irradiated U-10Mo Monolithic Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. D. Miller; J. Gan; J. Madden

    2012-05-01

    Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and focused ion beam (FIB) milling were performed on an irradiated U-10Mo monolithic fuel to understand its irradiation microstructure. This is the first reported TEM work of irradiated fuel sample prepared using a FIB. Advantages and disadvantages of using the FIB to create TEM samples from this irradiated fuel will be presented along with some results from the work. Sample preparation techniques used to create SEM and FIB samples from the brittle irradiated monolithic sample will also be discussed.

  19. XRD and SEM study of alumina silicate porcelain insulator

    NASA Astrophysics Data System (ADS)

    Duddi, Dharmender; Singh, G. P.; Kalra, Swati; Shekhawat, M. S.; Tak, S. K.

    2018-05-01

    Higher strength electrical porcelain is a requirement of industry. This will be achieved by a specific composition of raw materials, which is consisted of clays and feldspars. Water absorption, particle size and insulating properties are of special interest now a day. China clay, Ball clay and Quartz are widely used by ceramic industries in Bikaner district of Rajasthan. Sample for present study were prepared by mixing of above clay, feldspar with MnO2, then shrinkage is observed. Bar shaped samples were prepared and heated up to a temperature of about 1185° C to observe shrinkage. For phase study of XRD and SEM are observed.

  20. Subgrain boundary analyses in deformed orthopyroxene by TEM/STEM with EBSD-FIB sample preparation technique

    NASA Astrophysics Data System (ADS)

    Kogure, Toshihiro; Raimbourg, Hugues; Kumamoto, Akihito; Fujii, Eiko; Ikuhara, Yuichi

    2014-12-01

    High-resolution structure analyses using electron beam techniques have been performed for the investigation of subgrain boundaries (SGBs) in deformed orthopyroxene (Opx) in mylonite from Hidaka Metamorphic Belt, Hokkaido, Japan, to understand ductile deformation mechanism of silicate minerals in shear zones. Scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) analysis of Opx porphyroclasts in the mylonitic rock indicated that the crystal orientation inside the Opx crystals gradually changes by rotation about the b-axis by SGBs and crystal folding. In order to observe the SGBs along the b-axis by transmission electron microscopy (TEM) or scanning TEM (STEM), the following sample preparation protocol was adopted. First, petrographic thin sections were slightly etched with hydrofluoric acid to identify SGBs in SEM. The Opx crystals whose b-axes were oriented close to the normal of the surface were identified by EBSD, and the areas containing SGBs were picked and thinned for (S) TEM analysis with a focused ion beam instrument with micro-sampling system. High-resolution TEM imaging of the SGBs in Opx revealed various boundary structures from a periodic array of dissociated (100) [001] edge dislocations to partially or completely incoherent crystals, depending on the misorientation angle. Atomic-resolution STEM imaging clearly confirmed the formation of clinopyroxene (Cpx) structure between the dissociated partial dislocations. Moreover, X-ray microanalysis in STEM revealed that the Cpx contains a considerable amount of calcium replacing iron. Such chemical inhomogeneity may limit glide motion of the dislocation and eventually the plastic deformation of the Opx porphyroclasts at a low temperature. Chemical profiles across the high-angle incoherent SGB also showed an enrichment of the latter in calcium at the boundary, suggesting that SGBs are an efficient diffusion pathway of calcium out of host Opx grain during cooling.

  1. The XRD Amorphous Component in John Klein Drill Fines at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.; Ming,, Douglas W.; Blake, David; Vaniman, David; Bish, David L; Chipera, Steve; Downs, Robert; Morrison, Shaunna; Gellert, Ralf; Campbell, Iain; hide

    2013-01-01

    the position of its 021 diffraction peak is similar to that reported for John Klein. In both cases, the amorphous component has low SiO2 and MgO and high FeO + Fe2O3, P2O5, and SO3 concentrations relative to bulk sample. The chemical composition of the bulk drill fines and XRD crystalline, smectite, and amorphous components implies alteration of an initially basaltic material under near neutral conditions (not acid sulfate), with the sulfate incorporated later as veins of CaSO4 injected into the mudstone.

  2. Coordinated Isotopic and TEM Studies of Presolar Graphites from Murchison

    NASA Astrophysics Data System (ADS)

    Croat, T. K.; Stadermann, F. J.; Zinner, E.; Bernatowicz, T. J.

    2004-03-01

    TEM and NanoSIMS investigations of the same presolar Murchison KFC graphites revealed high Zr, Mo, and Ru content in refractory carbides within the graphites. Along with isotopically light carbon, these suggest a low-metallicity AGB source.

  3. blaOXA-23-like and blaTEM rather than blaOXA-51-like contributed to a high level of carbapenem resistance in Acinetobacter baumannii strains from a teaching hospital in Xi'an, China.

    PubMed

    Han, Lei; Lei, Jine; Xu, Jiru; Han, Shaoshan

    2017-12-01

    Acinetobacter baumannii is one of the major threats in clinical infections due to its antibiotic resistance ability. It shows increasing resistance to carbapenems, mainly due to β-lactamase mediated mechanisms. The aim of this study was to investigate carbapenem resistance (CR) profiles and analyze β-lactamases genes composition of clinical A. baumannii strains from a teaching hospital in Xi'an. The resistance patterns to imipenem and meropenem were checked for 51 clinical A. baumannii strains. The existence of 15 β-lactamases genes was detected by polymerase chain reaction (PCR), and the positive genes were sequenced. The correlation between PCR-positive genes and CR phenotype was analyzed using Chi-square test and contingency coefficient. The expressions of PCR-positive genes were investigated. Forty-five out of 51 strains were resistant to imipenem and meropenem. blaTEM, blaOXA-23-like, and blaOXA-51-like were positive among 15 β-lactamases genes, and TEM-1, OXA-23, and OXA-66/69 were their subtypes. TEM and OXA-23-like only showed up in CR isolates, with the occurrence rate of 91.1% and 97.8%, respectively, whereas OXA-51-like appeared in all strains. ISAba1 was present in the upstream of OXA-23-like, but absent from that of OXA-51-like in our strains. OXA-23-like had highest relationship with CR, followed by TEM, but OXA-51-like had no correlation. This was verified by RT-qPCR that the expression was positive for OXA-23 and TEM-1, but negative for OXA-66/-69. A high rate of CR A. baumannii was detected in this study. Coexistence of TEM, OXA-23-like, and OXA-51-like was the primary resistance profile. The expressions of OXA-23-like and TEM genes were closely related with CR, while OXA-51-like had no contribution to the CR phenotype.

  4. Synchrotron Radiation XRD Analysis of Indialite in Y-82094 Ungrouped Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Hagiya, K.; Sawa, N.; Kimura, M.; Ohsumi, K.; Komatsu, M.; Zolensky, M.

    2016-01-01

    Y-82094 is an ungrouped type 3.2 carbonaceous chondrite, with abundant chondrules making 78 vol.% of the rock. Among these chondrules, an unusual porphyritic Al-rich magnesian chondrule is reported that consists of a cordierite-like phase, Al-rich orthopyroxene, cristobalite, and spinel surrounded by an anorthitic mesostasis. The reported chemical formula of the cordierite-like phase is Na(0.19)Mg(1.95)Fe(0.02)Al(3.66)Si(5.19)O18, which is close to stoichiometric cordierite (Mg2Al3[AlSi5O18]). Although cordierite can be present in Al-rich chondrules, it has a high temperature polymorph (indialite) and it is therefore necessary to determine whether it is cordierite or indialite in order to better constrain its formation conditions. In this abstract we report on our synchrotron radiation X-ray diffraction (SR-XRD) study of the cordierite-like phase in Y-82094.

  5. Strain mapping in TEM using precession electron diffraction

    DOEpatents

    Taheri, Mitra Lenore; Leff, Asher Calvin

    2017-02-14

    A sample material is scanned with a transmission electron microscope (TEM) over multiple steps having a predetermined size at a predetermined angle. Each scan at a predetermined step and angle is compared to a template, wherein the template is generated from parameters of the material and the scanning. The data is then analyzed using local mis-orientation mapping and/or Nye's tensor analysis to provide information about local strain states.

  6. Mössbauer and XRD study of novel quaternary Sn-Fe-Co-Ni electroplated alloy

    NASA Astrophysics Data System (ADS)

    Kuzmann, E.; Sziráki, L.; Stichleutner, S.; Homonnay, Z.; Lak, G. B.; El-Sharif, M.; Chisholm, C. U.

    2017-11-01

    Constant current electrochemical deposition technique was used to obtain quaternary alloys of Sn-Fe-Co-Ni from a gluconate electrolyte, which to date have not been reported in the literature. For the characterization of electroplated alloys, 57Fe and 119Sn Conversion Electron Mössbauer Spectroscopy (CEMS), XRD and SEM/EDAX were used. XRD revealed the amorphous character of the novel Sn-Fe-Co-Ni electrodeposited alloys. 57Fe Mössbauer spectrum of quaternary deposit with composition of 37.0 at% Sn, 38.8 at% Fe, 16.8 at% Co and 7.4 at% Ni displayed a magnetically split sextet (B = 28.9T) with broad lines typical of iron bearing ferromagnetic amorphous alloys. Magnetically split 119Sn spectra reflecting a transferred hyperfine field (B = 2.3T) were also observed. New quaternary Sn-Fe-Co-Ni alloys were successfully prepared.

  7. The gain-of-function GLI1 transcription factor TGLI1 enhances expression of VEGF-C and TEM7 to promote glioblastoma angiogenesis.

    PubMed

    Carpenter, Richard L; Paw, Ivy; Zhu, Hu; Sirkisoon, Sherona; Xing, Fei; Watabe, Kounosuke; Debinski, Waldemar; Lo, Hui-Wen

    2015-09-08

    We recently discovered that truncated glioma-associated oncogene homolog 1 (TGLI1) is highly expressed in glioblastoma (GBM) and linked to increased GBM vascularity. The mechanisms underlying TGLI1-mediated angiogenesis are unclear. In this study, we compared TGLI1- with GLI1-expressing GBM xenografts for the expression profile of 84 angiogenesis-associated genes. The results showed that expression of six genes were upregulated and five were down-regulated in TGLI1-carrying tumors compared to those with GLI1. Vascular endothelial growth factor-C (VEGF-C) and tumor endothelial marker 7 (TEM7) were selected for further investigations because of their significant correlations with high vascularity in 135 patient GBMs. TGLI1 bound to both VEGF-C and TEM7 gene promoters. Conditioned medium from TGLI1-expressing GBM cells strongly induced tubule formation of brain microvascular endothelial cells, and the induction was prevented by VEGF-C/TEM7 knockdown. Immunohistochemical analysis of 122 gliomas showed that TGLI1 expression was positively correlated with VEGF-C, TEM7 and microvessel density. Analysis of NCBI Gene Expression Omnibus datasets with 161 malignant gliomas showed an inverse relationship between tumoral VEGF-C, TEM7 or microvessel density and patient survival. Together, our findings support an important role that TGLI1 plays in GBM angiogenesis and identify VEGF-C and TEM7 as novel TGLI1 target genes of importance to GBM vascularity.

  8. 2.5D Modeling of TEM Data Applied to Hidrogeological Studies in PARANÁ Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Bortolozo, C. A.; Porsani, J. L.; Santos, F. M.

    2013-12-01

    The transient electromagnetic method (TEM) is used all over the world and has shown great potential in hydrological, hazardous waste site characterization, mineral exploration, general geological mapping, and geophysical reconnaissance. However, the behavior of TEM fields are very complex and is not yet fully understood. Forward modeling is one of the most common and effective methods to understand the physical behavior and significance of the electromagnetics responses of a TEM sounding. Until now, there are a limited number of solutions for the 2D forward problem for TEM. More rare are the descriptions of a three-component response of a 3D source over 2D earth, which is the so-called 2.5D. The 2.5D approach is more realistic than the conventional 2D source previous used, once normally the source cannot be realistic represented for a 2D approximation (normally source are square loops). At present the 2.5D model represents the only way of interpreting TEM data in terms of a complex earth, due to the prohibitive amount of computer time and storage required for a full 3D model. In this work we developed a TEM modeling program for understanding the different responses and how the magnetic and electric fields, produced by loop sources at air-earth interface, behave in different geoelectrical distributions. The models used in the examples are proposed focusing hydrogeological studies, once the main objective of this work is for detecting different kinds of aquifers in Paraná sedimentary basin, in São Paulo State - Brazil. The program was developed in MATLAB, a widespread language very common in the scientific community.

  9. Network Analysis of Sequence-Function Relationships and Exploration of Sequence Space of TEM β-Lactamases.

    PubMed

    Zeil, Catharina; Widmann, Michael; Fademrecht, Silvia; Vogel, Constantin; Pleiss, Jürgen

    2016-05-01

    The Lactamase Engineering Database (www.LacED.uni-stuttgart.de) was developed to facilitate the classification and analysis of TEM β-lactamases. The current version contains 474 TEM variants. Two hundred fifty-nine variants form a large scale-free network of highly connected point mutants. The network was divided into three subnetworks which were enriched by single phenotypes: one network with predominantly 2be and two networks with 2br phenotypes. Fifteen positions were found to be highly variable, contributing to the majority of the observed variants. Since it is expected that a considerable fraction of the theoretical sequence space is functional, the currently sequenced 474 variants represent only the tip of the iceberg of functional TEM β-lactamase variants which form a huge natural reservoir of highly interconnected variants. Almost 50% of the variants are part of a quartet. Thus, two single mutations that result in functional enzymes can be combined into a functional protein. Most of these quartets consist of the same phenotype, or the mutations are additive with respect to the phenotype. By predicting quartets from triplets, 3,916 unknown variants were constructed. Eighty-seven variants complement multiple quartets and therefore have a high probability of being functional. The construction of a TEM β-lactamase network and subsequent analyses by clustering and quartet prediction are valuable tools to gain new insights into the viable sequence space of TEM β-lactamases and to predict their phenotype. The highly connected sequence space of TEM β-lactamases is ideally suited to network analysis and demonstrates the strengths of network analysis over tree reconstruction methods. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. International Spread and Persistence of TEM-24 Is Caused by the Confluence of Highly Penetrating Enterobacteriaceae Clones and an IncA/C2 Plasmid Containing Tn1696::Tn1 and IS5075-Tn21▿

    PubMed Central

    Novais, Ângela; Baquero, Fernando; Machado, Elisabete; Cantón, Rafael; Peixe, Luísa; Coque, Teresa M.

    2010-01-01

    TEM-24 remains one of the most widespread TEM-type extended-spectrum β-lactamases (ESBLs) among Enterobacteriaceae. To analyze the reasons influencing its spread and persistence, a multilevel population genetics study was carried out on 28 representative TEM-24 producers from Belgium, France, Portugal, and Spain (13 Enterobacter aerogenes isolates, 6 Escherichia coli isolates, 6 Klebsiella pneumoniae isolates, 2 Proteus mirabilis isolates, and 1 Klebsiella oxytoca isolate, from 1998 to 2004). Clonal relatedness (XbaI pulsed-field gel electrophoresis [PFGE] and E. coli phylogroups) and antibiotic susceptibility were determined by standard procedures. Plasmid analysis included determination of the incompatibility group (by PCR, hybridization, and/or sequencing) and comparison of restriction fragment length polymorphism (RFLP) patterns. Characterization of genetic elements conferring antibiotic resistance included integrons (classes 1, 2, and 3) and transposons (Tn3, Tn21, and Tn402). Similar PFGE patterns were identified among E. aerogenes, K. pneumoniae, and P. mirabilis isolates, while E. coli strains were diverse (phylogenetic groups A, B2, and D). Highly related 180-kb IncA/C2 plasmids conferring resistance to kanamycin, tobramycin, chloramphenicol, trimethoprim, and sulfonamides were identified. Each plasmid contained defective In0-Tn402 (dfrA1-aadA1, aacA4, or aacA4-aacC1-orfE-aadA2-cmlA1) and In4-Tn402 (aacA4 or dfrA1-aadA1) variants. These integrons were located within Tn21, Tn1696, or hybrids of these transposons, with IS5075 interrupting their IRtnp and IRmer. In all cases, blaTEM-24 was part of an IS5075-ΔTn1 transposon within tnp1696, mimicking other genetic elements containing blaTEM-2 and blaTEM-3 variants. The international dissemination of TEM-24 is fuelled by an IncA/C2 plasmid acquired by different enterobacterial clones which seem to evolve by gaining diverse genetic elements. This work highlights the risks of a confluence between highly

  11. Validation of enhanced stabilization of municipal solid waste under controlled leachate recirculation using FTIR and XRD.

    PubMed

    Sethi, Sapna; Kothiyal, N C; Nema, Arvind K

    2012-07-01

    Leachate recirculation at neutral PH accompanied with buffer/nutrients addition has been used successfully in earlier stabilization of municipal solid waste in bioreactor landfills. In the present study, efforts were made to enhance the stabilization rate of municipal solid waste (MSW) and organic solid waste (OSW) in simulated landfill bioreactors by controlling the pH of recirculated leachate towards slightly alkaline side in absence of additional buffer and nutrients addition. Enhanced stabilization in waste samples was monitored with the help of analytical tools like Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Predominance of bands assigned to inorganic compounds and comparatively lower intensities of bands for organic compounds in the FTIR spectra of waste samples degraded with leachate recirculation under controlled pH confirmed higher rate of biodegradation and mineralization of waste than the samples degraded without controlled leachate recirculation. XRD spectra also confirmed to a greater extent of mineralization in the waste samples degraded under leachate recirculation with controlled pH. Comparison of XRD spectra of two types of wastes pointed out higher degree of mineralization in organic solid waste as compared to municipal solid waste.

  12. [Study on the vibrational spectra and XRD characters of Huanglong jade from Longling County, Yunnan Province].

    PubMed

    Pei, Jing-cheng; Fan, Lu-wei; Xie, Hao

    2014-12-01

    Based on the conventional test methods, the infrared absorption spectrum, Raman spectrum and X-ray diffraction (XRD) were employed to study the characters of the vibration spectrum and mineral composition of Huanglong jade. The testing results show that Huanglong jade shows typical vibrational spectrum characteristics of quartziferous jade. The main infrared absorption bands at 1162, 1076, 800, 779, 691, 530 and 466 cm(-1) were induced by the asymmetric stretching vibration, symmetrical stretching vibration and bending vibration of Si-O-Si separately. Especially the absorption band near 800 cm(-1) is split, which indicates that Huanglong jade has good crystallinity. In Raman spectrum, the main strong vibration bands at 463 and 355 cm(-1) were attributed to bending vibration of Si-O-Si. XRD test confirmed that Quartz is main mineral composition of Huanglong jade and there is a small amount of hematite in red color samples which induced the red color of Huanglong jade. This is the first report on the infrared, Raman and XRD spectra feature of Huanglong jade. It will provide a scientific basis for the identification, naming and other research for huanglong jade.

  13. Studying dynamic processes in liquids by TEM/STEM/DTEM

    NASA Astrophysics Data System (ADS)

    Abellan, Patricia; Evans, James; Woehl, Taylor; Jungjohann, Katherine; Parent, Lucas; Arslan, Ilke; Ristenpart, William; Browning, Nigel; Mater. Sci. Group Team; Microsc. Group Team; Catal. Sci. Group Collaboration; Ristenpart Res. Group Collaboration

    2013-03-01

    In order to study dynamic phenomena such as corrosion or catalysis, extreme environmental conditions must be reproduced around the specimen - these include high-temperatures, high-pressures, specific oxidizing/reducing atmospheres or a liquid environment. The use of environmental stages specifically designed to fit in any transmission electron microscope (TEM) allows us to apply the distinct capabilities of each instrument to study dynamic processes. Localized gas/fluid conditions are created around the sample and separated from the high vacuum inside the microscope using hermetically sealed windowed-cells. Advanced capabilities of these techniques include spatial resolutions of ~1 Angstrom or better in aberration corrected instruments or temporal resolutions in the microsecond-nanosecond range in a dynamic TEM (DTEM). Here, unique qualities of the DTEM that benefit the in-situ experiments with gas/fluid environmental cells will be discussed. We also present our results with a liquid stage allowing atomic resolution imaging of nanomaterials in a colloidal suspension, core EEL spectra acquisition, continuous flow, controlled growth of nanocrystals and systematic calibration of the effect of the electron dose on silver nuclei formation.

  14. Size Dependent Pore Formation in Germanium Nanowires Undergoing Reversible Delithiation Observed by In Situ TEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaotang; He, Yang; Mao, Scott X.

    Germanium (Ge) nanowires coated with an amorphous silicon (Si) shell undergoing lithiation and delithiation were studied using in situ transmission electron microscopy (TEM). Delithiation creates pores in nanowires with diameters larger than ~25 nm, but not in smaller diameter nanowires. The formation of pores in Ge nanowires undergoing delithiation has been observed before in in situ TEM experiments, but there has been no indication that a critical diameter exists below which pores do not form. Pore formation occurs as a result of fast lithium diffusion compared to vacancy migration. We propose that a short diffusion path for vacancies to themore » nanowire surface plays a role in limiting pore formation even when lithium diffusion is fast.« less

  15. High temperature XRD of Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chetty, Raju, E-mail: rcmallik@physics.iisc.ernet.in; Mallik, Ramesh Chandra, E-mail: rcmallik@physics.iisc.ernet.in

    2014-04-24

    Quaternary compound with chemical composition Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4} is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.

  16. High resolution TEM and 3D imaging of polymer-based and dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Suh, Youngjoon

    Since 1950s, solar energy has been the most attractive energy source as an alternative to fossil fuels including oil and natural gas. However, these types of solar cells have high raw material and manufacturing costs. So, alternative solar cells using low cost materials and manufacturing processes have been actively studied for more than 10 years. The power conversion efficiency of some of the alternative solar cells has been recently improved so much as to be used for real life applications in the near future. However, their relatively short lifetime still remains as a bottleneck in their commercialized use. In this dissertation, we studied cross sections of three types of solar cells using TEM micrographs and TEM related analysis methods; selected area diffraction, energy dispersive spectroscopy, electron tomography, and nanobeam diffraction. A thin Ag layer used for a top metal electrode in an inverted polymer solar cell was broken down into particles. Absorption of water by the PEDOT:PSS layer followed by corrosion of the Ag layer was thought to be the main cause of this phenomenon. The structure and materials of the photoactive layer in hybrid polymer solar cells have an important influence on the performance of the solar cell devices. Three kinds of efforts were made to improve the electrical characteristics of the devices; removal of a dark TiO2 layer at the polymer/TiO2 interface, using bulk heterojunction structures, and coating a fullerene interlayer on the inorganic nanostructure. An optimum concentration of carbon nanotubes (CNTs) combined with Ru could increase the interface area of CNTs, and improve the performances of dye sensitized solar cells. In order to develop plastic solar cell, two different methods of mixing TiO2 particles with either nanoglues or PMMA were tried. Cross-sectional TEM microstructures were examined to come up with optimum processing parameters such as the sintering temperature and the amount of PMMA added into the structure

  17. Synthesis of hollow ZnO microspheres by an integrated autoclave and pyrolysis process.

    PubMed

    Duan, Jinxia; Huang, Xintang; Wang, Enke; Ai, Hanhua

    2006-03-28

    Hollow zinc oxide microspheres have been synthesized from a micro ZnBr2·2H2O precursor obtained by an autoclave process in bromoform steam at 220 °C /2.5 MPa. Field-emission scanning electron microscropy (FE-SEM) and transmission electron microscopy (TEM) show that the products are about 1.0 µm single crystal spherical particles with hollow interiors, partly open surfaces and walls self-assembled by ZnO nanoparticles. X-ray diffraction (XRD) analysis shows that the as-prepared ZnO hollow spheres are of a hexagonal phase structure. A possible formation mechanism is suggested on the basis of the shape evolution of ZnO nanostructures observed by SEM and TEM. The room-temperature photoluminescence (PL) spectrum shows UV emission around 386 nm and weak green emission peaks indicating that there are few defects in the single crystal grains of the ZnO microspheres.

  18. Synthesis of Silver and Gold Nanoparticles Using Antioxidants from Blackberry, Blueberry, Pomegranate, and Turmeric Extracts

    EPA Science Inventory

    Greener synthesis of Ag and Au nanoparticles is described using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. The synthesized particles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HR...

  19. TEM-induced gene mutations at enzyme loci in the mouse.

    PubMed

    Soares, E R

    1979-01-01

    Strain DBA/2J male mice were treated with triethylenemelamine (TEM) and subsequently mated to strain C57BL/6J females. Tissues from F1 progeny produced in these crosses were then examined using starch gel electrophoresis for the presence of presumed induced mutations at a series of 11 specific enzyme loci. In the course of this study, four heritable mutations were identified at the following loci: Es-1, Ldh-1, Pgm-1, and Gpi-1. Of these four, the first two were apparently segregating in parental males and were not TEM-induced. Both of these are viable and fertile in the heterozygous and homozygous condition, and neither confers any readily apparent deleterious effect to the animal. The latter mutations (Pgm-1 and Gpi-1) are presumably induced. Although viable and fertile in the heterozygous state, we have not recovered any offsping homozygous for either of these two mutations.

  20. Mineralogical Composition of the Mexican Ordinary Chondrite Type Meteorite: A Raman, Infrared and XRD Study

    NASA Astrophysics Data System (ADS)

    Ostrooumov, M.

    2016-08-01

    The Raman microprobe (RMP), infrared (IR) and XRD analysis have been applied to the examination of mineralogical composition of seven mexican meteorites: Aldama, Cosina, El Pozo, Escalon, Nuevo Mercurio,Pacula, Zapotitlan Salinas.

  1. Comparative investigation of Fourier Transform Infrared (FT-IR) spectroscopy and X-ray Diffraction (XRD) in the determination of cotton fiber crystallinity

    USDA-ARS?s Scientific Manuscript database

    Despite considerable efforts in developing the curve-fitting protocol to evaluate the crystallinity index (CI) from the X-ray diffraction (XRD) measurement, in its present state XRD procedure can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous po...

  2. [NIR and XRD analysis of drill-hole samples from Zhamuaobao iron-graphite deposit, Inner Mongolia].

    PubMed

    Li, Ying-kui; Cao, Jian-jin; Wu, Zheng-quan; Dai, Dong-le; Lin, Zu-xu

    2015-01-01

    The author analyzed the 4202 drill-hole samples from Zhamuaobao iron-graphite deposit by using near infrared spectroscopy(NIR) and X-ray diffraction(XRD) measuring and testing techniques, and then compared and summarized the results of two kinds of testing technology. The results indicate that some difference of the mineral composition exists among different layers, the lithology from upper to deeper is the clay gravel layer of tertiary and quaternary, mudstone, mica quartz schist, quartz actinolite scarn, skarnization marble, iron ore deposits, graphite deposits and mica quartz schist. The petrogenesis in different depth also shows difference, which may indicate the geological characteristic to some extent. The samples had mainly undergone such processes as oxidization, carbonation, chloritization and skarn alteration. The research results can not only improve the geological feature of the mining area, but also have great importance in ore exploration, mining, mineral processing and so on. What's more, as XRD can provide preliminary information about the mineral composition, NIR can make further judgement on the existence of the minerals. The research integrated the advantages of both NIR and XRD measuring and testing techniques, put forward a method with two kinds of modern testing technology combined with each other, which may improve the accuracy of the mineral composition identification. In the meantime, the NIR will be more wildly used in geography on the basis of mineral spectroscopy.

  3. Dopant concentration dependent growth of Fe:ZnO nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahai, Anshuman; Goswami, Navendu, E-mail: navendugoswami@gmail.com

    2016-05-23

    Systematic investigations of structural properties of 1-10% Fe doped ZnO nanostructure (Fe:ZnO NS) prepared via chemical precipitation method have been reported. Structural properties were probed thoroughly employing scanning electron microscope (SEM) and transmission electron microscope (TEM), energy dispersive X-ray (EDAX) analysis and X-ray diffraction (XRD). Morphological transformation of nanostructures (NS) with Fe incorporation is evident in SEM/TEM images. Nanoparticles (NP) obtained with 1% Fe, evolve to nanorods (NR) for 3% Fe; NR transform to nanocones (NC) (for 5% and 7% Fe) and finally NC transform to nanoflakes (NF) at 10% Fe. Morover, primary phase of Zn{sub 1-x}Fe{sub x}O along withmore » secondary phases of ZnFe{sub 2}O{sub 4} and Fe{sub 2}O{sub 3} were also revealed through XRD measurements. Based on collective XRD, SEM, TEM, and EDAX interpretations, a model for morphological evolution of NS was proposed and the pivotal role of Fe dopant was deciphered.« less

  4. On the structural affinity of macromolecules with different biological properties: molecular dynamics simulations of a series of TEM-1 mutants.

    PubMed

    Giampaolo, Alessia Di; Mazza, Fernando; Daidone, Isabella; Amicosante, Gianfranco; Perilli, Mariagrazia; Aschi, Massimiliano

    2013-07-12

    Molecular Dynamics simulations have been carried out in order to provide a molecular rationalization of the biological and thermodynamic differences observed for a class of TEM β-lactamases. In particular we have considered the TEM-1(wt), the single point mutants TEM-40 and TEM-19 representative of IRT and ESBL classes respectively, and TEM-1 mutant M182T, TEM-32 and TEM-20 which differ from the first three for the additional of M182T mutation. Results indicate that most of the thermodynamic, and probably biological behaviour of these systems arise from subtle effects which, starting from the alterations of the local interactions, produce drastic modifications of the conformational space spanned by the enzymes. The present study suggests that systems showing essentially the same secondary and tertiary structure may differentiate their chemical-biological activity essentially (and probably exclusively) on the basis of the thermal fluctuations occurring in their physiological environment. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    PubMed

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  6. Laser additive manufacturing bulk graphene-copper nanocomposites.

    PubMed

    Hu, Zengrong; Chen, Feng; Lin, Dong; Nian, Qiong; Parandoush, Pedram; Zhu, Xing; Shao, Zhuqiang; Cheng, Gary J

    2017-11-03

    The exceptional mechanical properties of graphene make it an ideal nanofiller for reinforcing metal matrix composites (MMCs). In this work, graphene-copper (Gr-Cu) nanocomposites have been fabricated by a laser additive manufacturing process. Transmission electron microscopy (TEM), x-ray diffraction (XRD) and Raman spectroscopy were utilized to characterize the fabricated nanocomposites. The XRD, Raman spectroscopy, energy dispersive spectroscopy and TEM results demonstrated the feasibility of laser additive manufacturing of Gr-Cu nanocomposites. The microstructures were characterized by high resolution TEM and the results further revealed the interface between the copper matrix and graphene. With the addition of graphene, the mechanical properties of the composites were enhanced significantly. Nanoindentation tests showed that the average modulus value and hardness of the composites were 118.9 GPa and 3 GPa respectively; 17.6% and 50% increases were achieved compared with pure copper, respectively. This work demonstrates a new way to manufacture graphene copper nanocomposites with ultra-strong mechanical properties and provides alternatives for applications in electrical and thermal conductors.

  7. Laser additive manufacturing bulk graphene-copper nanocomposites

    NASA Astrophysics Data System (ADS)

    Hu, Zengrong; Chen, Feng; Lin, Dong; Nian, Qiong; Parandoush, Pedram; Zhu, Xing; Shao, Zhuqiang; Cheng, Gary J.

    2017-11-01

    The exceptional mechanical properties of graphene make it an ideal nanofiller for reinforcing metal matrix composites (MMCs). In this work, graphene-copper (Gr-Cu) nanocomposites have been fabricated by a laser additive manufacturing process. Transmission electron microscopy (TEM), x-ray diffraction (XRD) and Raman spectroscopy were utilized to characterize the fabricated nanocomposites. The XRD, Raman spectroscopy, energy dispersive spectroscopy and TEM results demonstrated the feasibility of laser additive manufacturing of Gr-Cu nanocomposites. The microstructures were characterized by high resolution TEM and the results further revealed the interface between the copper matrix and graphene. With the addition of graphene, the mechanical properties of the composites were enhanced significantly. Nanoindentation tests showed that the average modulus value and hardness of the composites were 118.9 GPa and 3 GPa respectively; 17.6% and 50% increases were achieved compared with pure copper, respectively. This work demonstrates a new way to manufacture graphene copper nanocomposites with ultra-strong mechanical properties and provides alternatives for applications in electrical and thermal conductors.

  8. Landed XRD/XRF analysis of prime targets in the search for past or present Martian life.

    PubMed

    Vaniman, D; Bish, D; Blake, D; Elliott, S T; Sarrazin, P; Collins, S A; Chipera, S

    1998-12-25

    Mars landers seeking evidence for past or present life will be guided by information from orbital mapping and from previous surface exploration. Several target options have been proposed, including sites that may harbor extant life and sites most likely to preserve evidence of past life These sites have specific mineralogic characteristics. Extant life might be gathered around the sinters and associated mineral deposits of rare active fumaroles, or held within brine pockets and inclusions in a few evaporite-mineral deposits. Possibilities for fossilization include deltaic and lake-bottom sediments of once-flooded craters, sinters formed by ancient hot-spring deposits, and the carbonate deposits associated with some evaporite systems. However, the highly varied mineralogy of fossil occurrences on Earth leads to the inference that Mars, an equally complex planet, could host a broad variety of potential fossilizing deposits. The abundance of volcanic systems on Mars and evidence for close associations between volcanism and water release suggest possibilities of organism entrapment and mineralization in volcaniclastic deposits, as found in some instances on Earth. Thus the targets being considered for exploration include a wide variety of unique deposits that would be characterized by silica or various nonsilicate minerals. Beyond these "special" deposits and in the most general case, an ability to distinguish mineralized from uncemented volcanic detritus may be the key to success in finding possible fossil-bearing authigenic mineralogies. A prototype miniaturized X ray diffraction/X ray fluorescence (XRD/XRF) instrument has been evaluated with silica, carbonate, and sulfate minerals and with a basalt, to examine the capabilities of this tool in mineralogic and petrologic exploration for exobiological goals. This instrument. CHEMIN (chemical and mineralogical analyzer), is based on an innovative low-power X ray tube, transmission geometry, and CCD collection and

  9. Data from the Mars Science Laboratory CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Vaniman, David; Blake, David; Bristow, Tom; DesMarais, David; Achilles, Cherie; Anderson, Robert; Crips, Joy; Morookian, John Michael; Spanovich, Nicole; Vasavada, Ashwin; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity uses a Co tube source and a CCD detector to acquire mineralogy from diffracted primary X-rays and chemical information from fluoresced X-rays. CheMin has been operating at the MSL Gale Crater field site since August 5, 2012 and has provided the first X-ray diffraction (XRD) analyses in situ on a body beyond Earth. Data from the first sample collected, the Rocknest eolian soil, identify a basaltic mineral suite, predominantly plagioclase (approx.An50), forsteritic olivine (approx.Fo58), augite and pigeonite, consistent with expectation that detrital grains on Mars would reflect widespread basaltic sources. Minor phases (each <2 wt% of the crystalline component) include sanidine, magnetite, quartz, anhydrite, hematite and ilmenite. Significantly, about a third of the sample is amorphous or poorly ordered in XRD. This amorphous component is attested to by a broad rise in background centered at approx.27deg 2(theta) (Co K(alpha)) and may include volcanic glass, impact glass, and poorly crystalline phases including iron oxyhydroxides; a rise at lower 2(theta) may indicate allophane or hisingerite. Constraints from phase chemistry of the crystalline components, compared with a Rocknest bulk composition from the APXS instrument on Curiosity, indicate that in sum the amorphous or poorly crystalline components are relatively Si, Al, Mg-poor and enriched in Ti, Cr, Fe, K, P, S, and Cl. All of the identified crystalline phases are volatile-free; H2O, SO2 and CO2 volatile releases from a split of this sample analyzed by the SAM instrument on Curiosity are associated with the amorphous or poorly ordered materials. The Rocknest eolian soil may be a mixture of local detritus, mostly crystalline, with a regional or global set of dominantly amorphous or poorly ordered components. The Rocknest sample was targeted by MSL for "first time analysis" to demonstrate that a loose deposit could be scooped, sieved to

  10. X-ray peak profile analysis of zinc oxide nanoparticles formed by simple precipitation method

    NASA Astrophysics Data System (ADS)

    Pelicano, Christian Mark; Rapadas, Nick Joaquin; Magdaluyo, Eduardo

    2017-12-01

    Zinc oxide (ZnO) nanoparticles were successfully synthesized by a simple precipitation method using zinc acetate and tetramethylammonium hydroxide. The synthesized ZnO nanoparticles were characterized by X-ray Diffraction analysis (XRD) and Transmission Electron Microscopy (TEM). The XRD result revealed a hexagonal wurtzite structure for the ZnO nanoparticles. The TEM image showed spherical nanoparticles with an average crystallite size of 6.70 nm. For x-ray peak analysis, Williamson-Hall (W-H) and Size-Strain Plot (SSP) methods were applied to examine the effects of crystallite size and lattice strain on the peak broadening of the ZnO nanoparticles. Based on the calculations, the estimated crystallite sizes and lattice strains obtained are in good agreement with each other.

  11. Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp.

    NASA Astrophysics Data System (ADS)

    Du, Liangwei; Xian, Liang; Feng, Jia-Xun

    2011-03-01

    In this work, the fungus Penicillium was used for rapid extra-/intracellular biosynthesis of gold nanoparticles. AuCl4 - ions reacted with the cell filtrate of Penicillium sp. resulting in extracellular biosynthesis of gold nanoparticles within 1 min. Intracellular biosynthesis of gold nanoparticles was obtained by incubating AuCl4 - solution with fungal biomass for 8 h. The gold nanoparticles were characterized by means of visual observation, UV-Vis absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The extracellular nanoparticles exhibited maximum absorbance at 545 nm in UV-Vis spectroscopy. The XRD spectrum showed Bragg reflections corresponding to the gold nanocrystals. TEM exhibited the formed spherical gold nanoparticles in the size range from 30 to 50 nm with an average size of 45 nm. SEM and TEM revealed that the intracellular gold nanoparticles were well dispersed on the cell wall and within the cell, and they are mostly spherical in shape with an average diameter of 50 nm. The presence of gold was confirmed by EDX analysis.

  12. Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping

    NASA Astrophysics Data System (ADS)

    Arbabzadah, E. A.; Damzen, M. J.

    2016-06-01

    We report the investigation of an Alexandrite laser end-pumped by a fibre-coupled red diode laser module. Power, efficiency, spatial, spectral, and wavelength tuning performance are studied as a function of pump and laser cavity parameters. It is the first demonstration, to our knowledge, of greater than 1 W power and also highest laser slope efficiency (44.2%) in a diode-pumped Alexandrite laser with diffraction-limited TEM00 mode operation. Spatial quality was excellent with beam propagation parameter M 2 ~ 1.05. Wavelength tuning from 737-796 nm was demonstrated using an intracavity birefringent tuning filter. Using a novel double pass end-pumping scheme to get efficient absorption of both polarisation states of the scrambled fibre-delivered diode pump, a total output coupled power of 1.66 W is produced in TEM00 mode with 40% slope efficiency.

  13. Modeling and measurements of XRD spectra of extended solids under high pressure

    NASA Astrophysics Data System (ADS)

    Batyrev, I. G.; Coleman, S. P.; Stavrou, E.; Zaug, J. M.; Ciezak-Jenkins, J. A.

    2017-06-01

    We present results of evolutionary simulations based on density functional calculations of various extended solids: N-Si and N-H using variable and fixed concentration methods of USPEX. Predicted from the evolutionary simulations structures were analyzed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction spectra. Stability of the predicted system was estimated from convex-hull plots. X-ray diffraction spectra were calculated using a virtual diffraction algorithm which computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculations of thousands of XRD spectra were used to search for a structure of extended solids at certain pressures with best fits to experimental data according to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Comparison of Raman and IR spectra calculated for best fitted structures with available experimental data shows reasonable agreement for certain vibration modes. Part of this work was performed by LLNL, Contract DE-AC52-07NA27344. We thank the Joint DoD / DOE Munitions Technology Development Program, the HE C-II research program at LLNL and Advanced Light Source, supported by BES DOE, Contract No. DE-AC02-05CH112.

  14. TEM in situ micropillar compression tests of ion irradiated oxide dispersion strengthened alloy

    NASA Astrophysics Data System (ADS)

    Yano, K. H.; Swenson, M. J.; Wu, Y.; Wharry, J. P.

    2017-01-01

    The growing role of charged particle irradiation in the evaluation of nuclear reactor candidate materials requires the development of novel methods to assess mechanical properties in near-surface irradiation damage layers just a few micrometers thick. In situ transmission electron microscopic (TEM) mechanical testing is one such promising method. In this work, microcompression pillars are fabricated from a Fe2+ ion irradiated bulk specimen of a model Fe-9%Cr oxide dispersion strengthened (ODS) alloy. Yield strengths measured directly from TEM in situ compression tests are within expected values, and are consistent with predictions based on the irradiated microstructure. Measured elastic modulus values, once adjusted for the amount of deformation and deflection in the base material, are also within the expected range. A pillar size effect is only observed in samples with minimum dimension ≤100 nm due to the low inter-obstacle spacing in the as received and irradiated material. TEM in situ micropillar compression tests hold great promise for quantitatively determining mechanical properties of shallow ion-irradiated layers.

  15. Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations.

    PubMed

    Habibi, Mohammad Hossein; Parhizkar, Janan

    2015-11-05

    Cobalt ferrite nano-composite was prepared by hydrothermal route using cobalt nitrate, iron nitrate and ethylene glycol as chelating agent. The nano-composite was coated on glass by Doctor Blade method and annealed at 300 °C. The structural, optical, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy (UV-Vis DRS). Powder XRD analysis confirmed formation of CoFe2O4 spinel phase. The estimated particle size from FESEM data was 50 nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra was 1.3 eV. Photocatalytic degradation of Reactive Red 4 as an azo textile was investigated in aqueous solution under irradiation showed 68.0% degradation of the dye within 100 min. The experimental enhanced activity compare to pure Fe2O3 can be ascribed to the formation of composite, which was mainly attributable to the transfer of electron and hole to the surface of composite and hinder the electron hole recombination. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. TEMs but not DKK1 could serve as complementary biomarkers for AFP in diagnosing AFP-negative hepatocellular carcinoma.

    PubMed

    Mao, Liping; Wang, Yueguo; Wang, Delin; Han, Gang; Fu, Shouzhong; Wang, Jianxin

    2017-01-01

    Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) is prevalent worldwide. Despite its limitations, serum alpha-fetoprotein (AFP) remains the most widely-used biomarker for the diagnosis of HCC. This study aimed to assess whether measurement of peripheral plasma Dickkopf-1 (DKK1) and Tie2-expressing monocytes (TEMs) could overcome the limitations of AFP and improve the diagnostic accuracy of HCC. Plasma DKK1 level and the percentage of TEMs in peripheral CD14+CD16+ monocytes from HCC patients (n = 82), HBV-related liver cirrhosis (LC) patients (n = 29), chronic hepatitis B (CHB) infected patients (n = 28) and healthy volunteers (n = 31) were analyzed by ELISA and flow cytometry. Receiver operating characteristic (ROC) curves were used to analyze a single biomarker, or a combination of two or three biomarkers. Univariate and multivariate analyses were performed to assess the significance of each marker in prediction of HCC and AFP-negative HCC from LC patients. The percentage of TEMs in peripheral CD14+CD16+ monocytes and plasma level of DKK1 in HCC group were significantly higher than those in LC, CHB and healthy control groups (all P-values <0.05). The percentage of TEMs alone was also significantly higher in AFP-negative HCC group than that in LC, CHB and healthy control groups (all P-values <0.05). Plasma DKK1 level alone could not distinguish between AFP-negative HCC and LC patients. ROC curves showed that the optimal diagnostic cutoff value was 550.93 ng/L for DKK1 and 4.95% for TEMs. There was no significant difference in AUC of DKK1, TEMs and AFP in HCC diagnosis between the four groups (all P>0.05). A combination of DKK1, TEMs and AFP measurements increased the AUC for HCC diagnosis as compared with either marker alone (0.833; 95%CI 0.768-0.886). The AUC for TEMs was 0.692 (95% CI 0.564-0.819) in differentiating AFP-negative HCC from LC, with a sensitivity of 80.0% and a specificity of 65.52%. Only TEMs prevailed as a significant predictor for

  17. Evolution of the substructure of a novel 12% Cr steel under creep conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Surya Deo, E-mail: surya.yadav@tugraz.at; Kalácska, Szilvia, E-mail: kalacska@metal.elte.hu; Dománková, Mária, E-mail: maria.domankova@stuba.sk

    2016-05-15

    In this work we study the microstruture evolution of a newly developed 12% Cr martensitic/ferritic steel in as-received condition and after creep at 650 °C under 130 MPa and 80 MPa. The microstructure is described as consisting of mobile dislocations, dipole dislocations, boundary dislocations, precipitates, lath boundaries, block boundaries, packet boundaries and prior austenitic grain boundaries. The material is characterized employing light optical microscopy (LOM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). TEM is used to characterize the dislocations (mobile + dipole) inside the subgrains and XRD measurements are used tomore » the characterize mobile dislocations. Based on the subgrain boundary misorientations obtained from EBSD measurements, the boundary dislocation density is estimated. The total dislocation density is estimated for the as-received and crept conditions adding the mobile, boundary and dipole dislocation densities. Additionally, the subgrain size is estimated from the EBSD measurements. In this publication we propose the use of three characterization techniques TEM, XRD and EBSD as necessary to characterize all type of dislocations and quantify the total dislocation densty in martensitic/ferritic steels. - Highlights: • Creep properties of a novel 12% Cr steel alloyed with Ta • Experimental characterization of different types of dislocations: mobile, dipole and boundary • Characterization and interpretation of the substructure evolution using unique combination of TEM, XRD and EBSD.« less

  18. Characterization and reduction of gradient-induced eddy currents in the RF shield of a TEM resonator.

    PubMed

    Alecci, Marcello; Jezzard, Peter

    2002-08-01

    Radiofrequency (RF) shields that surround MRI transmit/receive coils should provide effective RF screening, without introducing unwanted eddy currents induced by gradient switching. Results are presented from a detailed examination of an effective RF shield design for a prototype transverse electromagnetic (TEM) resonator suitable for use at 3 Tesla. It was found that effective RF shielding and low eddy current sensitivity could be achieved by axial segmentation (gap width = 2.4 mm) of a relatively thick (35 microm) copper shield, etched on a kapton polyimide substrate. This design has two main advantages: first, it makes the TEM less sensitive to the external environment and RF interference; and second, it makes the RF shield mechanically robust and easy to handle and assemble. Copyright 2002 Wiley-Liss, Inc.

  19. LDRD Final Report - In Operando Liquid Cell TEM Characterization of Nickel-Based Electrocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, M. H.

    2016-11-07

    A commercial electrochemistry stage for transmission electron microscopy (TEM) was tested to determine whether to purchase one for the microscopes at Lawrence Livermore National Lab (LLNL). Deposition of a nickel-based electrocatalyst was pursued as a material system for the purpose of testing the stage. The stage was found to be problematic with recurring issues in the electrical connections and vacuum sealing, which has thus far precluded a systematic investigation of the original material system. However, the electrochemical cells purchased through this FS will allow the Lawrence Fellow (Nielsen) to continue testing the stage. Furthermore, discussions with a second vendor, whichmore » released a similar electrochemical TEM stage during the course of this FS, have resulted in an upcoming longterm loan of their stage at Lawrence Berkeley National Lab (LBNL) for testing. In addition, low-loss electron energy-loss spectroscopy (EELS) measurements on nickel-bearing electrolyte solutions led to a broader EELS investigation of solvents and salt solutions. These measurements form the basis of a manuscript in preparation on EELS measurements of the liquid phase.« less

  20. A new oxidation based technique for artifact free TEM specimen preparation of nuclear graphite

    NASA Astrophysics Data System (ADS)

    Johns, Steve; Shin, Wontak; Kane, Joshua J.; Windes, William E.; Ubic, Rick; Karthik, Chinnathambi

    2018-07-01

    Graphite is a key component in designs of current and future nuclear reactors whose in-service lifetimes are dependent upon the mechanical performance of the graphite. Irradiation damage from fast neutrons creates lattice defects which have a dynamic effect on the microstructure and mechanical properties of graphite. Transmission electron microscopy (TEM) can offer real-time monitoring of the dynamic atomic-level response of graphite subjected to irradiation; however, conventional TEM specimen-preparation techniques, such as argon ion milling itself, damage the graphite specimen and introduce lattice defects. It is impossible to distinguish these defects from the ones created by electron or neutron irradiation. To ensure that TEM specimens are artifact-free, a new oxidation-based technique has been developed. Bulk nuclear grades of graphite (IG-110 and NBG-18) and highly oriented pyrolytic graphite (HOPG) were initially mechanically thinned to ∼60 μm. Discs 3 mm in diameter were then oxidized at temperatures between 575 °C and 625 °C in oxidizing gasses using a new jet-polisher-like set-up in order to achieve optimal oxidation conditions to create self-supporting electron-transparent TEM specimens. The quality of these oxidized specimens were established using optical and electron microscopy. Samples oxidized at 575 °C exhibited large areas of electron transparency and the corresponding lattice imaging showed no apparent damage to the graphite lattice.

  1. A new oxidation based technique for artifact free TEM specimen preparation of nuclear graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johns, Steve; Shin, Wontak; Kane, Joshua J.

    Graphite is a key component in designs of current and future nuclear reactors whose in-service lifetimes are dependent upon the mechanical performance of the graphite. Irradiation damage from fast neutrons creates lattice defects which have a dynamic effect on the microstructure and mechanical properties of graphite. Transmission electron microscopy (TEM) can offer real-time monitoring of the dynamic atomic-level response of graphite subjected to irradiation; however, conventional TEM specimen-preparation techniques, such as argon ion milling itself, damage the graphite specimen and introduce lattice defects. It is impossible to distinguish these defects from the ones created by electron or neutron irradiation. Thus,tomore » ensure that TEM specimens are artifact-free, a new oxidation-based technique has been developed. Bulk nuclear grades of graphite (IG-110 and NBG-18) and highly oriented pyrolytic graphite (HOPG) were initially mechanically thinned to ~60μm. Discs 3mm in diameter were then oxidized at temperatures between 575°C and 625°C in oxidizing gasses using a new jet-polisher-like set-up in order to achieve optimal oxidation conditions to create self-supporting electron-transparent TEM specimens. The quality of these oxidized specimens were established using optical and electron microscopy. Samples oxidized at 575°C exhibited large areas of electron transparency and the corresponding lattice imaging showed no apparent damage to the graphite lattice.« less

  2. A new oxidation based technique for artifact free TEM specimen preparation of nuclear graphite

    DOE PAGES

    Johns, Steve; Shin, Wontak; Kane, Joshua J.; ...

    2018-04-03

    Graphite is a key component in designs of current and future nuclear reactors whose in-service lifetimes are dependent upon the mechanical performance of the graphite. Irradiation damage from fast neutrons creates lattice defects which have a dynamic effect on the microstructure and mechanical properties of graphite. Transmission electron microscopy (TEM) can offer real-time monitoring of the dynamic atomic-level response of graphite subjected to irradiation; however, conventional TEM specimen-preparation techniques, such as argon ion milling itself, damage the graphite specimen and introduce lattice defects. It is impossible to distinguish these defects from the ones created by electron or neutron irradiation. Thus,tomore » ensure that TEM specimens are artifact-free, a new oxidation-based technique has been developed. Bulk nuclear grades of graphite (IG-110 and NBG-18) and highly oriented pyrolytic graphite (HOPG) were initially mechanically thinned to ~60μm. Discs 3mm in diameter were then oxidized at temperatures between 575°C and 625°C in oxidizing gasses using a new jet-polisher-like set-up in order to achieve optimal oxidation conditions to create self-supporting electron-transparent TEM specimens. The quality of these oxidized specimens were established using optical and electron microscopy. Samples oxidized at 575°C exhibited large areas of electron transparency and the corresponding lattice imaging showed no apparent damage to the graphite lattice.« less

  3. Influence of a cellulosic ether carrier on the structure of biphasic calcium phosphate ceramic particles in an injectable composite material.

    PubMed

    Dupraz, A; Nguyen, T P; Richard, M; Daculsi, G; Passuti, N

    1999-04-01

    An injectable composite material based on biphasic calcium phosphate (BCP) and a nonionic cellulose ether has been elaborated for use in percutaneous surgery for spine fusion. This paper reports the characterization results of this material by spectroscopic techniques including X-ray diffraction (XRD), infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) fitted with an energy dispersive X-Ray analysis system and high-resolution transmission electron microscopy (HR-TEM). From FTIR and XPS results, it was observed that the adhesion between the polymer and the ceramic might be insured by oxygen bridging developed through an ionic bonding between calcium ions and (C-O) groups of the polymer. Moreover, XPS showed attraction of Ca2+ ions in the polymer matrix, while the ceramic surface was modified in a HPO4(2-) -rich layer. These results suggest a possible dissolution/precipitation process at the interface ceramic/polymer. HR-TEM observations supported this hypothesis, showing a light contrasted fringe at the surface of the ceramic grains in the composite paste. As well, changes in the XRD spectra could indicate a small decrease in the crystal size of the BCP powder through the contact to polymer solution. In addition, SEM observation showed a decrease of the initial BCP granulometry. Aggregates of 80-200 microm seemed to be mostly dissociated in micrograins. The ceramic grains were coated with and bonded between each other by the polymer matrix, which acted as spacer in between the ceramic grains, creating a macroporous-like material structure.

  4. Effectiveness of Shield Termination Techniques Tested with TEM Cell and Bulk Current Injection

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Hare, Richard J.

    2009-01-01

    This paper presents experimental results of the effectiveness of various shield termination techniques. Each termination technique is evaluated by two independent noise injection methods; transverse electromagnetic (TEM) cell operated from 3 MHz 400 MHz, and bulk current injection (BCI) operated from 50 kHz 400 MHz. Both single carrier and broadband injection tests were investigated. Recommendations as to how to achieve the best shield transfer impedance (i.e. reduced coupled noise) are made based on the empirical data. Finally, the noise injection techniques themselves are indirectly evaluated by comparing the results obtained from the TEM Cell to those from BCI.

  5. One-pot green synthesis of zinc oxide nano rice and its application as sonocatalyst for degradation of organic dye and synthesis of 2-benzimidazole derivatives

    NASA Astrophysics Data System (ADS)

    Paul, Bappi; Vadivel, Sethumathavan; Dhar, Siddhartha Sankar; Debbarma, Shyama; Kumaravel, M.

    2017-05-01

    In this paper, we report novel and green approach for one-pot biosynthesis of zinc oxide (ZnO) nanoparticles (NPs). Highly stable and hexagonal phase ZnO nanoparticles were synthesized using seeds extract from the tender pods of Parkia roxburghii and characterized by XRD, FT-IR, EDX, TEM, and N2 adsorption-desorption (BET) studies. The present method of synthesis of ZnO NPs is very efficient and cost effective. The powder XRD pattern furnished evidence for the formation of hexagonal close packing structure of ZnO NPs having average crystallite size 25.6 nm. The TEM image reveals rice shapes ZnO NPs are with an average diameter of 40-60 nm. The as-synthesized ZnO NPs has proved to be an excellent sonocatalysts for degradation of organic dye and synthesis of 2-benzimidazole derivatives.

  6. TEM Pump With External Heat Source And Sink

    NASA Technical Reports Server (NTRS)

    Nesmith, Bill J.

    1991-01-01

    Proposed thermoelectric/electromagnetic (TEM) pump driven by external source of heat and by two or more heat pipe radiator heat sink(s). Thermoelectrics generate electrical current to circulate liquid metal in secondary loop of two-fluid-loop system. Intended for use with space and terrestrial dual loop liquid metal nuclear reactors. Applications include spacecraft on long missions or terrestrial beacons or scientific instruments having to operate in remote areas for long times. Design modified to include multiple radiators, converters, and ducts, as dictated by particular application.

  7. Trace elemental analysis of Indian natural moonstone gems by PIXE and XRD techniques.

    PubMed

    Venkateswara Rao, R; Venkateswarulu, P; Kasipathi, C; Sivajyothi, S

    2013-12-01

    A selected number of Indian Eastern Ghats natural moonstone gems were studied with a powerful nuclear analytical and non-destructive Proton Induced X-ray Emission (PIXE) technique. Thirteen elements, including V, Co, Ni, Zn, Ga, Ba and Pb, were identified in these moonstones and may be useful in interpreting the various geochemical conditions and the probable cause of their inceptions in the moonstone gemstone matrix. Furthermore, preliminary XRD studies of different moonstone patterns were performed. The PIXE technique is a powerful method for quickly determining the elemental concentration of a substance. A 3MeV proton beam was employed to excite the samples. The chemical constituents of moonstones from parts of the Eastern Ghats geological formations of Andhra Pradesh, India were determined, and gemological studies were performed on those gems. The crystal structure and the lattice parameters of the moonstones were estimated using X-Ray Diffraction studies, trace and minor elements were determined using the PIXE technique, and major compositional elements were confirmed by XRD. In the present work, the usefulness and versatility of the PIXE technique for research in geo-scientific methodology is established. © 2013 Elsevier Ltd. All rights reserved.

  8. Cosmic non-TEM radiation and synthetic feed array sensor system in ASIC mixed signal technology

    NASA Astrophysics Data System (ADS)

    Centureli, F.; Scotti, G.; Tommasino, P.; Trifiletti, A.; Romano, F.; Cimmino, R.; Saitto, A.

    2014-08-01

    The paper deals with the opportunity to introduce "Not strictly TEM waves" Synthetic detection Method (NTSM), consisting in a Three Axis Digital Beam Processing (3ADBP), to enhance the performances of radio telescope and sensor systems. Current Radio Telescopes generally use the classic 3D "TEM waves" approximation Detection Method, which consists in a linear tomography process (Single or Dual axis beam forming processing) neglecting the small z component. The Synthetic FEED ARRAY three axis Sensor SYSTEM is an innovative technique using a synthetic detection of the generic "NOT strictly TEM Waves radiation coming from the Cosmo, which processes longitudinal component of Angular Momentum too. Than the simultaneous extraction from radiation of both the linear and quadratic information component, may reduce the complexity to reconstruct the Early Universe in the different requested scales. This next order approximation detection of the observed cosmologic processes, may improve the efficacy of the statistical numerical model used to elaborate the same information acquired. The present work focuses on detection of such waves at carrier frequencies in the bands ranging from LF to MMW. The work shows in further detail the new generation of on line programmable and reconfigurable Mixed Signal ASIC technology that made possible the innovative Synthetic Sensor. Furthermore the paper shows the ability of such technique to increase the Radio Telescope Array Antenna performances.

  9. Powder XRD and dielectric studies of gel grown calcium pyrophosphate crystals

    NASA Astrophysics Data System (ADS)

    Parekh, Bharat; Parikh, Ketan; Joshi, Mihir

    2013-06-01

    Formation of calcium pyrophosphate dihydrate (CPPD) crystals in soft tissues such as cartilage, meniscus and synovial tissue leads to CPPD deposition diseases. The appearance of these crystals in the synovial fluid can give rise to an acute arthritic attack with pain and inflammation of the joints, a condition called pseudo-gout. The growth of CPP crystals has been carried out, in the present study, using the single diffusion gel growth technique, which can broadly mimic in vitro the condition in soft tissues. The crystals were characterized by different techniques. The FTIR study revealed the presence of various functional groups. Powder XRD study was also carried out to verify the crystal structure. The dielectric study was carried out at room temperature by applying field of different frequency from 500 Hz to 1 MHz. The dielectric constant, dielectric loss and a.c. resistivity decreased as frequency increased, whereas the a.c. conductivity increased as frequency increased.

  10. Synthesis and structural properties of Ba(1-x)LaxTiO3 perovskite nanoparticles fabricated by solvothermal synthesis route

    NASA Astrophysics Data System (ADS)

    Puli, Venkata Sreenivas; Adireddy, Shiva; Elupula, Ravinder; Molugu, Sudheer; Shipman, Josh; Chrisey, Douglas B.

    2017-05-01

    We report the successful synthesis and structural characterization of barium lanthanum titanate Ba(1-x)LaxTiO3 (x=0.003,0.006,0.010) nanoparticles. The colloidal nanoparticles were prepared with high yield by a solvothermal method at temperatures as low as 150°C for 24h. The as-prepared nanopowders were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The XRD studies revealed pseudo-cubic crystalline structure, with no impurity phases at room temperature. However ferroelectric tetragonal modes were clearly observed using Raman spectroscopy measurements. From TEM measurements, uniformly sized BLT nanoparticles were observed. Selected area diffraction TEM images revealed polycrystalline perovskite ring patterns, identified as corresponding to the tetragonal phase.

  11. TEM characterization of a silorane composite bonded to enamel/dentin.

    PubMed

    Mine, Atsushi; De Munck, Jan; Van Ende, Annelies; Cardoso, Marcio Vivan; Kuboki, Takuo; Yoshida, Yasuhiro; Van Meerbeek, Bart

    2010-06-01

    The low-shrinking composite composed of combined siloxane-oxirane technology (Filtek Silorane, 3M ESPE, Seefeld, Germany) required the development of a specific adhesive (Silorane System Adhesive, 3M ESPE), in particular because of the high hydrophobicity of the silorane composite. The purpose of this study was to characterize the interfacial ultra-structure at enamel and dentin using transmission electron microscopy (TEM). Non-demineralized/demineralized 70-90 nm sections were prepared following common TEM specimen processing procedures. TEM revealed a typical twofold build-up of the adhesive resin, resulting in a total adhesive layer thickness of 10-20 microm. At bur-cut enamel, a tight interface without distinct dissolution of hydroxyapatite was observed. At bur-cut dentin, a relatively thin hybrid layer of maximum a few hundreds of nanometer was formed without clear surface demineralization. No clear resin tags were formed. At fractured dentin, the interaction appeared very superficial (100-200 nm). Distinct resin tags were formed due to the absence of smear plugs. Silver-nitrate infiltration showed a varying pattern of both spot- and cluster-like appearance of nano-leakage. Traces of Ag were typically detected along some part of the enamel-adhesive interface and/or between the two adhesive resin layers. Substantially more Ag-infiltration was observed along the dentin-adhesive interface of bur-cut dentin, as compared to that of fractured dentin. The nano-interaction of Silorane System Adhesive should be attributed to its relatively high pH of 2.7. The obtained tight interface at both enamel and dentin indicates that the two-step self-etch adhesive effectively bridged the hydrophilic tooth substrate with the hydrophobic silorane composite. Copyright (c) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Direct imaging of nanobubble Ostwald ripening using graphene liquid cell TEM

    NASA Astrophysics Data System (ADS)

    Xu, Cong; Chen, Qian; Granick, Steve

    We directly image the growth, morphology evolution and interaction dynamics of gas nanobubbles in a thin liquid, which are relevant to many materials and electrochemical processes. Using the recently emergent liquid phase transmission electron microscopy (TEM), we resolve the dynamics of nanobubbles in situ at nm resolution in real time. We find that nanobubbles grow through an Ostwald ripening-like process, where adjacent bubbles stochastically fluctuate to disappear or enlarge. Capability of feature tracking enables us to characterize the motions and shape fluctuations of nanobubbles, providing insights into the gas-liquid interfacial fluctuations explored at the nanoscale.

  13. XRD and mineralogical analysis of gypsum dunes at White Sands National Monument, New Mexico and applications to gypsum detection on Mars

    NASA Astrophysics Data System (ADS)

    Lafuente, B.; Bishop, J. L.; Fenton, L. K.; King, S. J.; Blake, D.; Sarrazin, P.; Downs, R.; Horgan, B. H.

    2013-12-01

    A field portable X-ray Diffraction (XRD) instrument was used at White Sands National Monument to perform in-situ measurements followed by laboratory analyses of the gypsum-rich dunes and to determine its modal mineralogy. The field instrument is a Terra XRD (Olympus NDT) based on the technology of the CheMin (Chemistry and Mineralogy) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity which is providing the mineralogical and chemical composition of scooped soil samples and drilled rock powders collected at Gale Crater [1]. Using Terra at White Sands will contribute to 'ground truth' for gypsum-bearing environments on Mars. Together with data provided by VNIR spectra [2], this study clarifies our understanding of the origin and history of gypsum-rich sand dunes discovered near the northern polar region of Mars [3]. The results obtained from the field analyses performed by XRD and VNIR spectroscopy in four dunes at White Sands revealed the presence of quartz and dolomite. Their relative abundance has been estimated using the Reference Intensity Ratio (RIR) method. For this study, particulate samples of pure natural gypsum, quartz and dolomite were used to prepare calibration mixtures of gypsum-quartz and gypsum-dolomite with the 90-150μm size fractions. All single phases and mixtures were analyzed by XRD and RIR factors were calculated. Using this method, the relative abundance of quartz and dolomite has been estimated from the data collected in the field. Quartz appears to be present in low amounts (2-5 wt.%) while dolomite is present at percentages up to 80 wt.%. Samples from four dunes were collected and prepared for subsequent XRD analysis in the lab to estimate their composition and illustrate the changes in mineralogy with respect to location and grain size. Gypsum-dolomite mixtures: The dolomite XRD pattern is dominated by an intense diffraction peak at 2θ≈36 deg. which overlaps a peak of gypsum, This makes low concentrations of dolomite

  14. XRD and EBSD analysis of anisotropic microstructure development in cold rolled F138 stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Vincentis, N.S., E-mail: devincentis@ifir-conic

    The microstructural characteristics of deformation-processed materials highly influence their mechanical properties. For a complete characterization of a microstructure both local and global information must be gathered, which requires the combination of different analysis techniques. X-ray and Electron Backscatter Diffraction were used in the present paper to characterize the deformation induced in a cold rolled F138 austenitic stainless steel sample. The results obtained using laboratory and synchrotron X-ray sources were compared and combined with EBSD quantitative results, allowing the global and local characterization and orientation dependence of the deformation microstructure. A particular behavior was observed in the XRD data corresponding tomore » the planes with < 220 >∥ ND, likely due to a smaller amount of defects accumulated in the crystals with that particular orientation. EBSD was used to separate the scans data into partitions and to calculate misorientation variables and parameters, showing that this behavior can be attributed to a combination of larger grain sizes, lower local boundary misorientations and dislocation densities for crystals having < 220 >∥ ND. Several conclusions, of general validity for the evaluation of microstructure anisotropy, can be extracted from the results. - Highlights: •Combined XRD and EBSD for studying microstructure gave a superb insight on anisotropic accumulation of defects. •W-H and CMWP methods were applied for checking consistency of results. •XRD showed that a smaller accumulation of defects occurred in crystals with < 220 >∥ ND. •High brilliance X-ray beam allowed to study the anisotropy of defect accumulation.« less

  15. Performance of low-voltage STEM/TEM with delta corrector and cold field emission gun.

    PubMed

    Sasaki, Takeo; Sawada, Hidetaka; Hosokawa, Fumio; Kohno, Yuji; Tomita, Takeshi; Kaneyama, Toshikatsu; Kondo, Yukihito; Kimoto, Koji; Sato, Yuta; Suenaga, Kazu

    2010-08-01

    To reduce radiation damage caused by the electron beam and to obtain high-contrast images of specimens, we have developed a highly stabilized transmission electron microscope equipped with a cold field emission gun and spherical aberration correctors for image- and probe-forming systems, which operates at lower acceleration voltages than conventional transmission electron microscopes. A delta-type aberration corrector is designed to simultaneously compensate for third-order spherical aberration and fifth-order 6-fold astigmatism. Both were successfully compensated in both scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) modes in the range 30-60 kV. The Fourier transforms of raw high-angle annular dark field (HAADF) images of a Si[110] sample revealed spots corresponding to lattice spacings of 111 and 96 pm at 30 and 60 kV, respectively, and those of raw TEM images of an amorphous Ge film with gold particles showed spots corresponding to spacings of 91 and 79 pm at 30 and 60 kV, respectively. Er@C(82)-doped single-walled carbon nanotubes, which are carbon-based samples, were successfully observed by HAADF-STEM imaging with an atomic-level resolution.

  16. TEM-187, a new extended-spectrum β-lactamase with weak activity in a Proteus mirabilis clinical strain.

    PubMed

    Corvec, Stéphane; Beyrouthy, Racha; Crémet, Lise; Aubin, Guillaume Ghislain; Robin, Frédéric; Bonnet, Richard; Reynaud, Alain

    2013-05-01

    A Proteus mirabilis clinical strain (7001324) was isolated from urine sample of a patient hospitalized in a long-term-care facility. PCR and cloning experiments performed with this strain identified a novel TEM-type β-lactamase (TEM-187) differing by four amino acid substitutions (Leu21Phe, Arg164His, Ala184Val, and Thr265Met) from TEM-1. This characterization provides further evidence for the diversity of extended-spectrum β-lactamases (ESBL) produced by P. mirabilis and for their potential spread to other Enterobacteriaceae due to a lack of sensitive detection methods used in daily practice.

  17. Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation.

    PubMed

    Cianconi, L; Palopoli, P; Campanella, V; Mancini, M

    2016-12-01

    The aim of this study was to determine the chemical composition and the phases' microstructure of Aureoseal Plus (OGNA, Italy) and ProRoot MTA (Dentsply Tulsa Dental, USA) and to compare their characteristics. Study Design: Comparing Aureoseal Plus and ProRoot MTA microstructure by means of several analyses type. The chemical analysis of the two cements was assessed following the UNI EN ISO 196-2 norm. X-Ray fluorescence (XRF) was used to determine the element composition. The crystalline structure was analysed quantitatively using x-ray diffraction (XRD). Powders morphology was evaluated using a scanning electron microscope (SEM) with backscattering detectors, and a field emission scanning electron microscope (FESEM). Elemental analysis was performed by energy dispersive x-ray analysis (EDS). The semi-quantitative XRF analysis showed the presence of heavy metal oxides in both cements. The XRD spectra of the two cements reported the presence of dicalcium silicate, tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite, bismuth oxide and gypsum. SEM analysis showed that ProRoot MTA powder is less coarse and more homogeneous than Aureoseal. Both powders are formed by particles of different shapes: round, prismatic and oblong. The EDS analysis showed that some ProRoot MTA particles, differently from Aureoseal, contain Ca, Si, Al and Fe. Oblong particles in ProRoot and Aureoseal are rich of bismuth. The strong interest in developing new Portland cement-based endodontic sealers will create materials with increased handling characteristics and physicochemical properties. A thorough investigation on two cement powders was carried out by using XRF, XRD, SEM and EDS analysis. To date there was a lack of studies on Aureoseal Plus. This cement is similar in composition to ProRoot MTA. Despite that it has distinctive elements that could improve its characteristics, resulting in a good alternative to MTA.

  18. In-situ XRD and EDS method study on the oxidation behaviour of Ni-Cu sulphide ore.

    PubMed

    Li, Guangshi; Cheng, Hongwei; Xiong, Xiaolu; Lu, Xionggang; Xu, Cong; Lu, Changyuan; Zou, Xingli; Xu, Qian

    2017-06-12

    The oxidation mechanism of sulfides is the key issue during the sulphide-metallurgy process. In this study, the phase transformation and element migration were clearly demonstrated by in-situ laboratory-based X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS), respectively. The reaction sequence and a four-step oxidation mechanism were proposed and identified. The elemental distribution demonstrated that at a low temperature, the Fe atoms diffused outward and the Ni/Cu atoms migrated toward the inner core, whereas the opposite diffusion processes were observed at a higher temperature. Importantly, the unique visual presentation of the oxidation behaviour provided by the combination of in-situ XRD and EDS might be useful for optimising the process parameters to improve the Ni/Cu extraction efficiency during Ni-Cu sulphide metallurgy.

  19. Synthesis of nano-sized ZnO particles by co-precipitation method with variation of heating time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwaningsih, S. Y., E-mail: sriyanisaputri@gmail.com; Pratapa, S.; Triwikantoro

    Zinc oxide powders have been synthesized by a co-precipitation method at low temperature (85 °C), using zinc acetate dihydrate, ammonia, hydrochloric acid solutions as the reactants. A number of process parameters such as reaction temperature, solution basicity or pH and heating time are the main factors affecting the morphology and physical properties of the ZnO nanostructures. In this work the effect of heating time on the morphology and particles size were studied. The as-synthesized ZnO powders were characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The samples were also analyzed using Fourier transform infrared (FTIR). Rietveld refinementmore » of XRD data confirms that ZnO crystallizes in the hexagonal wurtzite structure with high degree of purity and the (101) plane predominant. The XRD results show that the average crystallite sizes were about 66, 27 and 12 nm for 3, 4 and 5 h of heating times, respectively. The XRD analysis indicated that a fraction of nano-sized ZnO powders were in the form of aggregates, which was also verified by TEM image. The TEM photograph demonstrated that the nano-sized ZnO particles were a pseudo-spherical shape.« less

  20. Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size

    Treesearch

    Umesh P. Agarwal; Sally A. Ralph; Carlos Baez; Richard S. Reiner; Steve P. Verrill

    2017-01-01

    Although X-ray diffraction (XRD) has been the most widely used technique to investigate crystallinity index (CrI) and crystallite size (L200) of cellulose materials, there are not many studies that have taken into account the role of sample moisture on these measurements. The present investigation focuses on a variety of celluloses and cellulose...

  1. New constraints on deformation processes in serpentinite from sub-micron Raman Spectroscopy and TEM

    NASA Astrophysics Data System (ADS)

    Smith, S. A. F.; Tarling, M.; Rooney, J. S.; Gordon, K. C.; Viti, C.

    2017-12-01

    Extensive work has been performed to characterize the mineralogical and mechanical properties of the various serpentine minerals (i.e. antigorite, lizardite, chrysotile, polyhedral and polygonal serpentine). However, correct identification of serpentine minerals is often difficult or impossible using conventional analytical techniques such as optical- and SEM-based microscopy, X-ray diffraction and infrared spectroscopy. Transmission Electron Microscopy (TEM) is the best analytical technique to identify the serpentine minerals, but TEM requires complex sample preparation and typically results in very small analysis areas. Sub-micron confocal Raman spectroscopy mapping of polished thin sections provides a quick and relatively inexpensive way of unambiguously distinguishing the main serpentine minerals within their in-situ microstructural context. The combination of high spatial resolution (with a diffraction-limited system, 366 nm), large-area coverage (up to hundreds of microns in each dimension) and ability to map directly on thin sections allows intricate fault rock textures to be imaged at a sample-scale, which can then form the target of more focused TEM work. The potential of sub-micron Raman Spectroscopy + TEM is illustrated by examining sub-micron-scale mineral intergrowths and deformation textures in scaly serpentinites (e.g. dissolution seams, mineral growth in pressure shadows), serpentinite crack-seal veins and polished fault slip surfaces from a serpentinite-bearing mélange in New Zealand. The microstructural information provided by these techniques has yielded new insights into coseismic dehydration and amorphization processes and the interplay between creep and localised rupture in serpentinite shear zones.

  2. Transrotational Crystals Revealed by TEM in Crystallizing Amorphous Films: New Solid State Order or Novel Extended Imperfection?

    NASA Astrophysics Data System (ADS)

    Kolosov, Vladimir Yu.

    2011-03-01

    Uunusual transrotational structure is presented for crystal growth in thin amorphous films. Experimental results have been obtained for the microcrystals of different chemical nature (oxides, chalcogenides, metals and alloys) grown in thin films prepared by various methods. Basically we used transmission electron microscopy (TEM): our original bend contour technique combined with selected area diffraction (HREM, EDX and CBED used in due cases as well as AFM). The unusual phenomenon (also traced inside TEM in situ) resides in strong (up to the whole rotation per micrometer) regular internal bending of crystal lattice planes (transrotation) in a growing crystal. As a result permanent rotation of the lattice orientation (realized round an axis lying in the film plane) is revealed by TEM. Different geometries of transrotational nanostructures are described: cylindrical, ellipsoidal, etc. Such crystal with transrotational atom periodicity resembles ideal single crystal enclosed in a curved space. Transrotational crystals can be considered as endless 2.5 D analogy of nanotubes, nanonions. Transrotation is strongly increasing as the film gets thinner in the range 100-15 nm. Transrotations supplement well known dislocations (in crystals) and disclinations (in liquid crystals). Support of RF Ministry of Education and Science is acknowledged.

  3. Analysis of Induced Polarization effects in airborne TEM data - a case study from central East Greenland

    NASA Astrophysics Data System (ADS)

    Maack Rasmussen, Thorkild; Brethes, Anaïs; Pierpaolo Guarnieri, Pierpaolo; Bauer, Tobias

    2017-04-01

    Data from a high-resolution airborne SkyTEM time-domain electromagnetic survey conducted in central East Greenland were analysed. An analysis based on utilization of a Self Organizing Map procedure for response curve characterization and analyses based on data inversion and modelling are presented. The survey was flown in 2013 along the eastern margin of the Jameson Land basin with the purpose of base metal exploration and with sulphide mineralization as target. The survey area comprises crystalline basement to the East and layered Early Triassic to Jurassic sediments to the West. The layers are dipping a few degrees towards West. The Triassic sequence is 1 to 2 km thick and mostly of continental origin. The fluviatile Early Triassic arkoses and conglomerates, the Upper Triassic grey limestone and black shale beds and overlying gypsiferous sandstones and mudstones are known to host disseminated sulphides. E-W oriented lines were flown with an average terrain clearance of 30m and a separation of 300m. The data were initially processed and inverted by SkyTEM Aps. The conductivity models showed some conductive layers as well as induced polarization (IP) effects in the data. IP effects in TEM data reflect the relaxation of polarized charges in the ground which can be good indicators of the presence of metallic particles. Some of these locations were drilled during the following field season but unfortunately did not reveal the presence of mineralization. The aim of this study is therefore to understand the possible causes of these IP effects. Electrical charge accumulation in the ground can be related to the presence of sulphides, oxides or graphite or to the presence of clays or fibrous minerals. Permafrost may also cause IP effects and is then expected to be associated with a highly resistive subsurface. Several characteristics of the transient curves (IP indicators) of the SkyTEM survey were extracted and analysed by using the Kohonen Self-Organizing Map (SOM

  4. High temperature XRD of Cu2GeSe3

    NASA Astrophysics Data System (ADS)

    Premkumar D., S.; Chetty, Raju; Malar, P.; Mallik, Ramesh Chandra

    2015-06-01

    The Cu2GeSe3 is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 °C to 450 °C. The reitveld refinement confirms Cu2GeSe3 phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 °C to 400 °C. Decrease in the values of linear expansion coefficients with temperature are observed along a and c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature.

  5. Catalytic activity of Ru-Sn/Al2O3 in reduction reaction of pollutant 4-Nitrophenol

    NASA Astrophysics Data System (ADS)

    Rini, A. S.; Radiman, S.; Yarmo, M. A.

    2018-03-01

    Ru-Sn/Al2O3 bimetallic nanocatalysts have been synthesized by using conventional and microwave impregnation methods. Structure and morphology of the samples were characterized using XRD, XPS, and TEM. XRD and XPS measurement have confirmed the presence of Ru and Sn in the samples. According to TEM results, the morphology of the catalyst strongly depends on the preparation route and stabilizing agent (i.e. PVP). The sample with PVP (polyvinylpyrrolidone) has better nanoparticles distribution over the support. A sample prepared by conventional method has an agglomeration of nanoparticles on the support. Catalytic activities of both samples were examined in the reduction reaction of pollutant, i.e. 4-nitrophenol. Catalytic examination showed that reaction rate of 4-nitrophenol reduction by using microwave-assisted sample has improved 3.5 times faster than conventional impregnation sample.

  6. High-temperature in-situ TEM straining of the interaction with dislocations and particles for Cu-added ferritic stainless steel.

    PubMed

    Kobayashi, Shuhei; Kaneko, Kenji; Yamada, Kazuhiro; Kikuchi, Masao; Kanno, Norihiro; Hamada, Junichi

    2014-11-01

    IntroductionCu is always present in the matrix when ferritic steels were prepared from ferrous scrap. When the ferritic steels are aged thermally, Cu precipitates start appear and disperse finely and homogeneously [1], which may make the steels strengthened by precipitation hardening. In this study, the interaction between Cu precipitates and dislocations was exmined via high-temperature in-situ TEM straining. ExperimentalCu-added ferritic stainless steel (Fe-18.4%Cr-1.5%Cu) was used in the present study. Specimen was aged at1073 K for 360 ks. Samples for TEM observation were prepared by focused ion beam (FIB; Quanta 3D 200i) method. Microstructure of specimen was analyzed by JEM-3200FSK and high-temperature in-situ TEM straining was conducted using JEM-1300NEF. Results and discussionInteraction between Cu precipitates and dislocation is seen from consecutive TEM images acquired by in-situ TEM straining at 1073 K, as shown in Fig.1. The size of Cu precipitates was about 70 nm and several dislocations were present within the field of view. In particular, progressing dislocations contacted with the Cu precipitate at right angle, as indicated by arrows in Fig.1 (b) to (d). This result implies that there is an attractive interaction between dislocations and the Cu precipitate. This is attributed to the fact that Stress field of dislocations was easily relaxed in interface between the Cu precipitate and matrix because of lattice and interface diffusion as well as slip in the interface [2,3]. Furthermore, dislocations pass through the particle after contacting it, so that the interaction with dislocations and particles should be explained by Srolovitz mechanism [4].jmicro;63/suppl_1/i28/DFU083F1F1DFU083F1Fig. 1.TEM images foucused on interaction with dislocations and partticles. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods

    NASA Technical Reports Server (NTRS)

    Dragoi, D.; Kanik, I.; Bar-Cohen, Y.; Sherrit, S.; Tsapin, A.; Kulleck, J.

    2004-01-01

    In this work we describe an analytical method for determining the presence of organic compounds in rocks, limestone, and other composite materials. Our preliminary laboratory experiments on different rocks/limestone show that the organic component in mineralogical matrices is a minor phase on order of hundreds of ppm and can be better detected using high precision liquid chromatography (HPLC). The matrix, which is the major phase, plays an important role in embedding and protecting the organic molecules from the harsh Martian environment. Some rocks bear significant amounts of amino acids therefore, it is possible to identify these phases using powder x-ray diffraction (XRD) by crystallizing the organic. The method of detection/analysis of organics, in particular amino acids, that have been associated with life will be shown in the next section.

  8. Optimized 3D stitching algorithm for whole body SPECT based on transition error minimization (TEM)

    NASA Astrophysics Data System (ADS)

    Cao, Xinhua; Xu, Xiaoyin; Voss, Stephan

    2017-02-01

    Standard Single Photon Emission Computed Tomography (SPECT) has a limited field of view (FOV) and cannot provide a 3D image of an entire long whole body SPECT. To produce a 3D whole body SPECT image, two to five overlapped SPECT FOVs from head to foot are acquired and assembled using image stitching. Most commercial software from medical imaging manufacturers applies a direct mid-slice stitching method to avoid blurring or ghosting from 3D image blending. Due to intensity changes across the middle slice of overlapped images, direct mid-slice stitching often produces visible seams in the coronal and sagittal views and maximal intensity projection (MIP). In this study, we proposed an optimized algorithm to reduce the visibility of stitching edges. The new algorithm computed, based on transition error minimization (TEM), a 3D stitching interface between two overlapped 3D SPECT images. To test the suggested algorithm, four studies of 2-FOV whole body SPECT were used and included two different reconstruction methods (filtered back projection (FBP) and ordered subset expectation maximization (OSEM)) as well as two different radiopharmaceuticals (Tc-99m MDP for bone metastases and I-131 MIBG for neuroblastoma tumors). Relative transition errors of stitched whole body SPECT using mid-slice stitching and the TEM-based algorithm were measured for objective evaluation. Preliminary experiments showed that the new algorithm reduced the visibility of the stitching interface in the coronal, sagittal, and MIP views. Average relative transition errors were reduced from 56.7% of mid-slice stitching to 11.7% of TEM-based stitching. The proposed algorithm also avoids blurring artifacts by preserving the noise properties of the original SPECT images.

  9. Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD.

    PubMed

    Zhang, Jiafu; Wang, Yixun; Zhang, Liye; Zhang, Ruihong; Liu, Guangqing; Cheng, Gang

    2014-01-01

    X-ray diffraction (XRD) was used to understand the interactions of cellulose in lignocellulosic biomass with ionic liquids (ILs). The experiment was designed in such a way that the process of swelling and solubilization of crystalline cellulose in plant cell walls was followed by XRD. Three different feedstocks, switchgrass, corn stover and rice husk, were pretreated using 1-butyl-3-methylimidazolium acetate ([C4mim][OAc]) at temperatures of 50-130°C for 6h. At a 5 wt.% biomass loading, increasing pretreatment temperature led to a drop in biomass crystallinity index (CrI), which was due to swelling of crystalline cellulose. After most of the crystalline cellulose was swollen with IL molecules, a low-order structure was found in the pretreated samples. Upon further increasing temperature, cellulose II structure started to form in the pretreated biomass samples as a result of solubilization of cellulose in [C4mim][OAc] and subsequent regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. TEM Study of Intergranular Fluid Distributions in Rocks at a Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Hiraga, T.; Anderson, I. M.; Kohlstedt, D. L.

    2002-12-01

    The distribution of intergranular fluids in rocks plays an essential role in fluid migration and rock rheology. Structural and chemical analyses with sub-nanometer resolution is possible with transmission and scanning-transmission electron microscopy; therefore, it is possible to perform the fine-scale structural analyses required to determine the presence or absence of very thin fluid films along grain boundaries. For aqueous fluids in crustal rocks, Hiraga et al. (2001) observed a fluid morphology controlled by the relative values of the solid-solid and solid-fluid interfacial energies, which resulted in well-defined dihedral angles. Their high-resolution transmission electron microscopy (TEM) observations demonstrate that grain boundaries are tight even at a nanometer scale, consistent with the absence of aqueous fluid films. For partially molten ultra-mafic rocks, two conflicting conclusions have been reached: nanometer-thick melt films wet grain boundaries (Drury and Fitz Gerald 1996; De Kloe et al. 2000) versus essentially all grain boundaries are melt-free (Vaughan et al. 1982; Kohlstedt 1990). To resolve this conflict, Hiraga et al. (2002) examined grain boundaries in quenched partially molten peridotites. Their observations demonstrate the following: (i) Although a small fraction of the grains are separated by relatively thick (~1 μm) layers of melt, lattice fringe images obtained with a high-resolution TEM reveal that most of the remaining boundaries do not contain a thin amorphous phase. (ii) In addition, the composition of olivine-olivine grain boundaries was analyzed with a nano-beam analytical scanning TEM with a probe size of <2 nm. Although the grain boundaries contained no melt film, the concentration of Ca, Al and Ti were enhanced near the boundaries. The segregation of these elements to the grain boundaries formed enriched regions <7 nm wide. A similar pattern of chemical segregation was detected in subsolidus systems. Creep experiments on the

  11. Development of an antibody to bovine IL-2 reveals multifunctional CD4 T(EM) cells in cattle naturally infected with bovine tuberculosis.

    PubMed

    Whelan, Adam O; Villarreal-Ramos, Bernardo; Vordermeier, H Martin; Hogarth, Philip J

    2011-01-01

    Gaining a better understanding of the T cell mechanisms underlying natural immunity to bovine tuberculosis would help to identify immune correlates of disease progression and facilitate the rational design of improved vaccine and diagnostic strategies. CD4 T cells play an established central role in immunity to TB, and recent interest has focussed on the potential role of multifunctional CD4 T cells expressing IFN-γ, IL-2 and TNF-α. Until now, it has not been possible to assess the contribution of these multifunctional CD4 T cells in cattle due to the lack of reagents to detect bovine IL-2 (bIL-2). Using recombinant phage display technology, we have identified an antibody that recognises biologically active bIL-2. Using this antibody, we have developed a polychromatic flow cytometric staining panel that has allowed the investigation of multifunctional CD4 T-cells responses in cattle naturally infected with M. bovis. Assessment of the frequency of antigen specific CD4 T cell subsets reveals a dominant IFN-γ(+)IL-2(+)TNF-α(+) and IFN-γ(+) TNF-α(+) response in naturally infected cattle. These multifunctional CD4 T cells express a CD44(hi)CD45RO(+)CD62L(lo) T-effector memory (T(EM)) phenotype and display higher cytokine median fluorescence intensities than single cytokine producers, consistent with an enhanced 'quality of response' as reported for multifunctional cells in human and murine systems. Through our development of these novel immunological bovine tools, we provide the first description of multifunctional T(EM) cells in cattle. Application of these tools will improve our understanding of protective immunity in bovine TB and allow more direct comparisons of the complex T cell mediated immune responses between murine models, human clinical studies and bovine TB models in the future. © 2011 Whelan et al.

  12. Thermal stability of helium bubble superlattice in Mo under TEM in-situ heating

    NASA Astrophysics Data System (ADS)

    Gan, Jian; Sun, Cheng; He, Lingfeng; Zhang, Yongfeng; Jiang, Chao; Gao, Yipeng

    2018-07-01

    Although the temperature window of helium ion irradiation for gas bubble superlattice (GBS) formation was found to be in the range of approximately 0.15-0.35 melting point in literature, the thermal stability of He GBS has not been fully investigated. This work reports the experiment using an in-situ heating holder in a transmission electron microscope (TEM). A 3.0 mm TEM disc sample of Mo (99.95% pure) was irradiated with 40 keV He ions at 300 °C to a fluence of 1.0E+17 ions/cm2, corresponding to a peak He concentration of approximately 10 at.%, in order to introduce He GBS. In-situ heating was conducted with a ramp rate of ∼25 °C/min, hold time of ∼30 min, and temperature step of ∼100 °C up to 850 °C (0.39Tm homologous temperature). The result shows good thermal stability of He GBS in Mo with no noticeable change on GBS lattice constant and ordering. The implication of this unique and stable ordered microstructure on mechanistic understanding of GBS and its advanced application are discussed.

  13. In situ TEM observation of FCC Ti formation at elevated temperatures

    DOE PAGES

    Yu, Qian; Kacher, Josh; Gammer, Christoph; ...

    2017-07-04

    Pure Ti traditionally exhibits the hexagonal closed packed (HCP) crystallographic structure under ambient conditions and the body centered cubic (BCC) structure at elevated temperatures. In addition to these typical structures for Ti alloys, the presence of a face centered cubic (FCC) phase associated with thin films, interfaces, or high levels of plastic deformation has occasionally been reported. Here in this paper we show that small FCC precipitates form in freestanding thin foils during in situ transmission electron microscope (TEM) heating and we discuss the potential origins of the FCC phase in light of the in situ observations. This FCC phasemore » was found to be stable upon cooling and under ambient conditions, which allowed us to explore its mechanical properties and stability via nanomechanical in situ TEM testing. It was found that FCC platelets within the HCP matrix phase were stable under mechanical deformation and exhibited similar mechanical deformation behavior as the parent HCP phase.« less

  14. In situ TEM observation of FCC Ti formation at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Qian; Kacher, Josh; Gammer, Christoph

    Pure Ti traditionally exhibits the hexagonal closed packed (HCP) crystallographic structure under ambient conditions and the body centered cubic (BCC) structure at elevated temperatures. In addition to these typical structures for Ti alloys, the presence of a face centered cubic (FCC) phase associated with thin films, interfaces, or high levels of plastic deformation has occasionally been reported. Here in this paper we show that small FCC precipitates form in freestanding thin foils during in situ transmission electron microscope (TEM) heating and we discuss the potential origins of the FCC phase in light of the in situ observations. This FCC phasemore » was found to be stable upon cooling and under ambient conditions, which allowed us to explore its mechanical properties and stability via nanomechanical in situ TEM testing. It was found that FCC platelets within the HCP matrix phase were stable under mechanical deformation and exhibited similar mechanical deformation behavior as the parent HCP phase.« less

  15. High performance Sb2S3/carbon composite with tailored artificial interface as an anode material for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Jeong-Hee; Ha, Chung-Wan; Choi, Hae-Young; Shin, Heon-Cheol; Lee, Sang-Min

    2017-11-01

    The electrochemical comparison between Sb2S3 and its composite with carbon (Sb2S3/C) involved by sodium ion carrier are explained by enhanced kinetics, particularly with respect to improved interfacial conductivity by surface modulation by carbon. Sb2S3 and Sb2S3/C are synthesized by a high energy mechanical milling process. The successful synthesis of these materials is confirmed with X-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy (TEM). As an anode material for sodium ion batteries, Sb2S3 exhibits an initial sodiation/desodiation capacity of 1,021/523 mAh g-1 whereas the Sb2S3/C composite exhibits a higher reversible capacity (642 mAh g-1). Furthermore, the cycle performance and rate capability of the Sb2S3/C composite are estimated to be much better than those of Sb and Sb2S3. Electrochemical impedance spectroscopy analysis shows that the Sb2S3/C composite exhibited charge transfer resistance and surface film resistance much lower than Sb2S3. X-ray photoelectron spectroscopy analyses of both electrodes demonstrate that NaF layer on Sb2S3/C composite electrode leads to the better electrochemical performances. In order to clarify the electrochemical reaction mechanism, ex-situ XRD based on differential capacity plots and ex-situ HR-TEM analyses of the Sb2S3/C composite electrode are carried out and its reaction mechanism was established.

  16. Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.

    PubMed

    Kempgens, Pierre; Britton, Jonathan

    2016-05-01

    Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr  = 2 kHz for TiN, ZrN, and GaN; νr  = 1 kHz for InN) and 'high speed' (νr  = 15 kHz for TiN; νr  = 5 kHz for ZrN; νr  = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Benefits from bremsstrahlung distribution evaluation to get unknown information from specimen in SEM and TEM

    NASA Astrophysics Data System (ADS)

    Eggert, F.; Camus, P. P.; Schleifer, M.; Reinauer, F.

    2018-01-01

    The energy-dispersive X-ray spectrometer (EDS or EDX) is a commonly used device to characterise the composition of investigated material in scanning and transmission electron microscopes (SEM and TEM). One major benefit compared to wavelength-dispersive X-ray spectrometers (WDS) is that EDS systems collect the entire spectrum simultaneously. Therefore, not only are all emitted characteristic X-ray lines in the spectrum, but also the complete bremsstrahlung distribution is included. It is possible to get information about the specimen even from this radiation, which is usually perceived more as a disturbing background. This is possible by using theoretical model knowledge about bremsstrahlung excitation and absorption in the specimen in comparison to the actual measured spectrum. The core aim of this investigation is to present a method for better bremsstrahlung fitting in unknown geometry cases by variation of the geometry parameters and to utilise this knowledge also for characteristic radiation evaluation. A method is described, which allows the parameterisation of the true X-ray absorption conditions during spectrum acquisition. An ‘effective tilt’ angle parameter is determined by evaluation of the bremsstrahlung shape of the measured SEM spectra. It is useful for bremsstrahlung background approximation, with exact calculations of the absorption edges below the characteristic peaks, required for P/B-ZAF model based quantification methods. It can even be used for ZAF based quantification models as a variable input parameter. The analytical results are then much more reliable for the different absorption effects from irregular specimen surfaces because the unknown absorption dependency is considered. Finally, the method is also applied for evaluation of TEM spectra. In this case, the real physical parameter optimisation is with sample thickness (mass thickness), which is influencing the emitted and measured spectrum due to different absorption with TEM

  18. Mineralogical In-situ Investigation of Acid-Sulfate Samples from the Rio Tinto River, Spain, with a Portable XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Ming, D. W.; Morris, R. V.; Fernandez-Remolar, D.; Amils, R.; Arvidson, R. E.; Blake, D.; Bish, D. L.

    2007-01-01

    A field campaign was organized in September 2006 by Centro de Astobiologica (Spain) and Washington University (St Louis, USA) for the geological study of the Rio Tinto river bed sediments using a suite of in-situ instruments comprising an ASD reflectance spectrometer, an emission spectrometer, panoramic and close-up color imaging cameras, a life detection system and NASA's CheMin 4 XRD/XRF prototype. The primary objectives of the field campaign were to study the geology of the site and test the potential of the instrument suite in an astrobiological investigation context for future Mars surface robotic missions. The results of the overall campaign will be presented elsewhere. This paper focuses on the results of the XRD/XRF instrument deployment. The specific objectives of the CheMin 4 prototype in Rio Tinto were to 1) characterize the mineralogy of efflorescent salts in their native environments; 2) analyze the mineralogy of salts and oxides from the modern environment to terraces formed earlier as part of the Rio Tinto evaporative system; and 3) map the transition from hematite-dominated terraces to the mixed goethite/salt-bearing terraces where biosignatures are best preserved.

  19. PROPOSED ASTM METHOD FOR THE DETERMINATION OF ASBESTOS IN AIR BY TEM AND INFORMATION ON INTERFERING FIBERS

    EPA Science Inventory

    The draft of the ASTM Test Method for air entitled: "Airborne Asbestos Concentration in Ambient and Indoor Atmospheres as Determined by Transmission Electron Microscopy Direct Transfer (TEM)" (ASTM Z7077Z) is an adaptation of the International Standard, ISO 10312. It is currently...

  20. Phase transition behavior of (K,Na)NbO3-based high-performance lead-free piezoelectric ceramic composite with different phase compositions depending on Na fraction

    NASA Astrophysics Data System (ADS)

    Yamada, Hideto; Matsuoka, Takayuki; Yamazaki, Masato; Ohbayashi, Kazushige; Ida, Takashi

    2018-01-01

    The structures of the main (K1- x Na x )NbO3 perovskite in a high-performance lead-free piezoelectric ceramic composite (K1- x Na x )0.86Ca0.04Li0.02Nb0.85O3-δ-K0.85Ti0.85Nb1.15O5-BaZrO3-MgO-Fe2O3 (x = 0.52 and 0.70) with trace amounts of LiMgFeTiO4 inverse spinel and (Li,K)2(Mg,Fe,Ti,Nb)6O13 layered structure have been investigated by transmission electron microscopy (TEM) and synchrotron powder X-ray diffractometry (XRD) with varying temperatures. The bright-field TEM images have shown tetragonal 90°-domain contrasts at 80 and 40 °C, and the XRD profile has been simulated by adding an average structure of two differently oriented tetragonal structures bound by a 90°-domain wall for the x = 0.52 sample. Aggregates of tilted NbO6 nanodomains have been observed in a high-resolution TEM image, and the crossover of P4mm-Amm2 features from 60 to 20 °C and diffuse 2 × 2 × 2 superlattice reflections of the tilted NbO6 Imm2 structure have been observed in XRD data for the x = 0.70 sample.

  1. Electronic structure, magnetic and structural properties of Ni doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shalendra, E-mail: shailuphy@gmail.com; Vats, Prashant; Gautam, S.

    Highlights: • XRD, and HR-TEM results show the single phase nature of Ni doped ZnO nanoparticles. • dc magnetization results indicate the RT-FM in Ni doped ZnO nanoparticles. • Ni L{sub 3,2} edge NEXAFS spectra infer that Ni ions are in +2 valence state. • O K edge NEXAFS spectra show that O vacancy increases with Ni doping in ZnO. - Abstract: We report structural, magnetic and electronic structural properties of Ni doped ZnO nanoparticles prepared by auto-combustion method. The prepared nanoparticles were characterized by using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), near edge X-ray absorption finemore » structure (NEXAFS) spectroscopy, and dc magnetization measurements. The XRD and HR-TEM results indicate that Ni doped ZnO nanoparticles have single phase nature with wurtzite lattice and exclude the presence of secondary phase. NEXAFS measurements performed at Ni L{sub 3,2}-edges indicates that Ni ions are in +2 valence state and exclude the presence of Ni metal clusters. O K-edge NEXAFS spectra indicate an increase in oxygen vacancies with Ni-doping, while Zn L{sub 3,2}-edge show the absence of Zn-vacancies. The magnetization measurements performed at room temperature shows that pure and Ni doped ZnO exhibits ferromagnetic behavior.« less

  2. XRD monitoring of α self-irradiation in uranium-americium mixed oxides.

    PubMed

    Horlait, Denis; Lebreton, Florent; Roussel, Pascal; Delahaye, Thibaud

    2013-12-16

    The structural evolution under (241)Am self-irradiation of U(1-x)Am(x)O(2±δ) transmutation fuels (with x ≤ 0.5) was studied by X-ray diffraction (XRD). Samples first underwent a preliminary heat treatment performed under a reducing atmosphere (Ar/H2(4%)) aiming to recover the previously accumulated structural defects. Over all measurements (carried out over up to a full year and for integrated doses up to 1.5 × 10(18) α-decay events·g(-1)), only fluorite U(1-x)Am(x)O(2±δ) solid solutions were observed. Within a few days after the end of the heat treatment, each of the five studied samples was slowly oxidized as a consequence of their move to air atmosphere, which is evidenced by XRD by an initial sharp decrease of the unit cell parameter. For the compounds with x ≤ 0.15, this oxidation occurred without any phase transitions, but for U0.6Am0.4O(2±δ) and U0.5Am0.5O(2±δ), this process is accompanied by a transition from a first fluorite solid solution to a second oxidized one, as the latter is thermodynamically stable in ambient conditions. In the meantime and after the oxidation process, (241)Am α self-irradiation caused a structural swelling up to ∼0.8 vol %, independently of the sample composition. The kinetic constants of swelling were also determined by regression of experimental data and are, as expected, dependent on x and thus on the dose rate. The normalization of these kinetic constants by sample α-activity, however, leads to very close swelling rates among the samples. Finally, evolutions of microstrain and crystallite size were also monitored, but for the considered dose rates and cumulated doses, α self-irradiation was found, within the limits of the diffractometer used, to have almost no impact on these characteristics. Microstrain was found to be influenced instead by the americium content in the materials (i.e., by the impurities associated with americium starting material and the increase of cationic charge heterogeneity with

  3. The Differential Roles of Budding Yeast Tem1p, Cdc15p, and Bub2p Protein Dynamics in Mitotic ExitD⃞V⃞

    PubMed Central

    Molk, Jeffrey N.; Schuyler, Scott C.; Liu, Jenny Y.; Evans, James G.; Salmon, E. D.; Pellman, David; Bloom, Kerry

    2004-01-01

    In the budding yeast Saccharomyces cerevisiae the mitotic spindle must be positioned along the mother-bud axis to activate the mitotic exit network (MEN) in anaphase. To examine MEN proteins during mitotic exit, we imaged the MEN activators Tem1p and Cdc15p and the MEN regulator Bub2p in vivo. Quantitative live cell fluorescence microscopy demonstrated the spindle pole body that segregated into the daughter cell (dSPB) signaled mitotic exit upon penetration into the bud. Activation of mitotic exit was associated with an increased abundance of Tem1p-GFP and the localization of Cdc15p-GFP on the dSPB. In contrast, Bub2p-GFP fluorescence intensity decreased in mid-to-late anaphase on the dSPB. Therefore, MEN protein localization fluctuates to switch from Bub2p inhibition of mitotic exit to Cdc15p activation of mitotic exit. The mechanism that elevates Tem1p-GFP abundance in anaphase is specific to dSPB penetration into the bud and Dhc1p and Lte1p promote Tem1p-GFP localization. Finally, fluorescence recovery after photobleaching (FRAP) measurements revealed Tem1p-GFP is dynamic at the dSPB in late anaphase. These data suggest spindle pole penetration into the bud activates mitotic exit, resulting in Tem1p and Cdc15p persistence at the dSPB to initiate the MEN signal cascade. PMID:14718561

  4. Applying compressive sensing to TEM video: A substantial frame rate increase on any camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Andrew; Kovarik, Libor; Abellan, Patricia

    One of the main limitations of imaging at high spatial and temporal resolution during in-situ transmission electron microscopy (TEM) experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1 ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use of coded aperture compressive sensing (CS) methods to increase the frame rate of any camera with simple, low-cost hardware modifications. The coded aperture approach allows multiple sub-frames to be coded and integratedmore » into a single camera frame during the acquisition process, and then extracted upon readout using statistical CS inversion. Here we describe the background of CS and statistical methods in depth and simulate the frame rates and efficiencies for in-situ TEM experiments. Depending on the resolution and signal/noise of the image, it should be possible to increase the speed of any camera by more than an order of magnitude using this approach.« less

  5. Applying compressive sensing to TEM video: A substantial frame rate increase on any camera

    DOE PAGES

    Stevens, Andrew; Kovarik, Libor; Abellan, Patricia; ...

    2015-08-13

    One of the main limitations of imaging at high spatial and temporal resolution during in-situ transmission electron microscopy (TEM) experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1 ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use of coded aperture compressive sensing (CS) methods to increase the frame rate of any camera with simple, low-cost hardware modifications. The coded aperture approach allows multiple sub-frames to be coded and integratedmore » into a single camera frame during the acquisition process, and then extracted upon readout using statistical CS inversion. Here we describe the background of CS and statistical methods in depth and simulate the frame rates and efficiencies for in-situ TEM experiments. Depending on the resolution and signal/noise of the image, it should be possible to increase the speed of any camera by more than an order of magnitude using this approach.« less

  6. Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates.

    PubMed

    Silva, Chinthaka M; Rosseel, Thomas M; Kirkegaard, Marie C

    2018-03-19

    Quartz single-crystal samples consisting of α-quartz crystal structure were neutron irradiated to fluences of 5 × 10 18 , 4 × 10 19 , and 2 × 10 20 n/cm 2 (E > 0.1 MeV) at two temperatures (52 and 95 °C). The changes in the α-quartz phase as a function of these two conditions (temperature and fluence) were studied using X-ray powder diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM), and the results acquired using these complementary techniques are presented in a single place for the first time. XRD studies showed that the lattice parameters of α-quartz increased with increasing neutron flux. The lattice growth was larger for the samples that were neutron irradiated at 52 °C than at 95 °C. Moreover, an amorphous content was determined in the quartz samples neutron irradiated at 4 × 10 19 n/cm 2 , with the greater amount being in the 52 °C irradiated sample. Complete amorphization of quartz was observed at a fluence of 2 × 10 20 n/cm 2 (E > 0.1 MeV) using XRD and confirmed by TEM characterization and Raman spectroscopic studies. The cause for α-quartz lattice expansion and sample amorphization was also explored using XRD and Raman spectroscopic studies.

  7. Structural characterizaiton and gas reactions of small metal particles by high-resolution, in-situ TEM and TED

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The existing in-situ transmission electron microscopy (TEM) facility was improved by adding a separately pumped mini-specimen chamber. The chamber contains wire-evaporation sources for three metals and a specimen heater for moderate substrate temperatures. A sample introduction device was constructed, installed, and tested, facilitating rapid introduction of a specimen into the mini-chamber while maintaining the background pressure in that chamber in the 10(-9) millibar range. Small particles and clusters of Pd, grown by deposition from the vapor phase in an in-situ TEM facility on amorphous and crystalline support films of alumina and on ultra-thin carbon films, were analyzed by conventional high-resolution TEM and image analysis in terms of detectability, number density, and size distribution. The smallest particles that could be detected and counted contained no more than 6 atoms; size determinations could be made for particles 1 nm in diameter. The influence of various oxygen plasma treatments, annealing treatments, and of increasing the substrate temperature during deposition was investigated. The TEM technique was employed to demonstrate that under otherwise identica l conditions the lattice parameter of Pd particles in the 1 to 2 nm size range and supported in random orientation on ex-situ prepared mica films is expanded by some 3% when compared to 5 nm size particles. It is believed that this expansion is neither a small-particle diffraction effect nor due to pseudomorphism, but that it is due to a annealing-induced transformation of the small as-deposited particles with predominantly composite crystal structures into larger particles with true f.c.c. structure and thus inherently smaller lattice parameter.

  8. Inactivation of TEM-1 by avibactam (NXL-104): insights from quantum mechanics/molecular mechanics metadynamics simulations.

    PubMed

    Sgrignani, Jacopo; Grazioso, Giovanni; De Amici, Marco; Colombo, Giorgio

    2014-08-12

    The fast and constant development of drug-resistant bacteria represents a serious medical emergence. To overcome this problem, the development of drugs with new structures and modes of action is urgently needed. In this context, avibactam represents a promising, innovative inhibitor of beta-lactamases with a novel molecular structure compared to previously developed inhibitors, showing a promising inhibitory activity toward a significant number of beta-lactamase enzymes. In this work, we studied, at the atomistic level, the mechanisms of formation of the covalent complex between avibactam and TEM-1, an experimentally well-characterized class A beta-lactamase, using classical and quantum mechanics/molecular mechanics (QM/MM) simulations combined with metadynamics. Our simulations provide a detailed structural and energetic picture of the molecular steps leading to the formation of the avibactam/TEM-1 covalent adduct. In particular, they support a mechanism in which the rate-determining step is the water-assisted Glu166 deprotonation by Ser70. In this mechanistic framework, the predicted activation energy is in good agreement with experimental kinetic measurements. Additionally, our simulations highlight the important role of Lys73 in assisting the Ser70 and Ser130 deprotonations. While based on the specific case of the avibactam/TEM-1, the simple protocol we present here can be immediately extended and applied to the study of covalent complex formation in different enzyme-inhibitor pairs.

  9. In-situ TEM investigations of graphic-epitaxy and small particles

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1983-01-01

    Palladium was deposited inside a controlled-vacuum specimen chamber of a transmission electron microscope (TEM) onto MgO and alpha-alumina substrate surfaces. Annealing and various effects of gas exposure of the particulate Pd deposits were studied in-situ by high resolution TEM and electron diffraction. Whereas substrate temperatures of 500 C or annealing of room temperature (RT) deposits to 500 C were needed to obtain epitaxy on sapphire, RT deposits on MgO were perfectly epitaxial. For Pd/MgO a lattice expansion of 2 to 4% was noted; the highest values of expansion were found for the smallest particles. The lattice expansion of small Pd particles on alumina substrates was less than 1%. Long-time RT exposure of Pd/MgO in a vacuum yielded some moblity and coalescence events, but notably fewer than for Pd on sapphire. Exposure to air or oxygen greatly enhanced the particle mobility and coalescence and also resulted in the flattening of Pd particles on MgO substrates. Electron-beam irradiation further enhanced this effect. Exposure to air for several tens of hours of Pd/MgO led to strong coalescence.

  10. Experimental investigation of nearly monodispersed ternary Mn_{0.5}Zn_{0.5}Fe_{2}O_{4} magnetic fluid

    NASA Astrophysics Data System (ADS)

    Parekh, K.; Upadhyay, R. V.; Mehta, R. V.; Aswal, V. K.

    2008-03-01

    The experimental investigations of a nearly monodispersed magnetic fluid, containing a ternary Mn_{0.5}Zn_{0.5}Fe_{2}O_{4} (MZ5) magnetic fluid, are carried out using XRD, TEM, Small Angle Neutron Scattering (SANS) and a SQUID magnetometer. The XRD and TEM measurements give the particle size to be 7.5 and 8.4 nm respectively, and confirms the single phase cubic spinel structure. The size distribution retrieved from TEM is found to be very narrow (<10{%}). Room temperature magnetic measurement fits with the Langevin's function modified for the particle size distribution as well as for the particle-particle interaction parameter. M(H)-measurements as a function of field for different temperatures show that the system is superparamagnetic at room temperature and develops coercivity at 5 K. Figs 4, Refs 12.

  11. Microstructural studies of 35 degrees C copper Ni-Ti orthodontic wire and TEM confirmation of low-temperature martensite transformation.

    PubMed

    Brantley, William A; Guo, Wenhua; Clark, William A T; Iijima, Masahiro

    2008-02-01

    Previous temperature-modulated differential scanning calorimetry (TMDSC) study of nickel-titanium orthodontic wires revealed a large exothermic low-temperature peak that was attributed to transformation within martensitic NiTi. The purpose of this study was to use transmission electron microscopy (TEM) to verify this phase transformation in a clinically popular nickel-titanium wire, identify its mechanism and confirm other phase transformations found by TMDSC, and to provide detailed information about the microstructure of this wire. The 35 degrees C Copper nickel-titanium wire (Ormco) with cross-section dimensions of 0.016 in. x 0.022 in. used in the earlier TMDSC investigation was selected. Foils were prepared for TEM analyses by mechanical grinding, polishing, dimpling, ion milling and plasma cleaning. Standard bright-field and dark-field TEM images were obtained, along with convergent-beam electron diffraction patterns. A cryo-stage with the electron microscope (Phillips CM 200) permitted the specimen to be observed at -187, -45, and 50 degrees C, as well as at room temperature. Microstructures were also observed with an optical microscope and a scanning electron microscope. Room temperature microstructures had randomly oriented, elongated grains that were twinned. Electron diffraction patterns confirmed that phase transformations took place over temperature ranges previously found by TMDSC. TEM observations revealed a high dislocation density and fine-scale oxide particles, and that twinning is the mechanism for the low-temperature transformation in martensitic NiTi. TEM confirmed the low-temperature peak and other phase transformations observed by TMDSC, and revealed that twinning in martensite is the mechanism for the low-temperature peak. The high dislocation density and fine-scale oxide particles in the microstructure are the result of the wire manufacturing process.

  12. Exploration of geo-mineral compounds in granite mining soils using XRD pattern data analysis

    NASA Astrophysics Data System (ADS)

    Koteswara Reddy, G.; Yarakkula, Kiran

    2017-11-01

    The purpose of the study was to investigate the major minerals present in granite mining waste and agricultural soils near and away from mining areas. The mineral exploration of representative sub-soil samples are identified by X-Ray Diffractometer (XRD) pattern data analysis. The morphological features and quantitative elementary analysis was performed by Scanning Electron Microscopy-Energy Dispersed Spectroscopy (SEM-EDS).The XRD pattern data revealed that the major minerals are identified as Quartz, Albite, Anorthite, K-Feldspars, Muscovite, Annite, Lepidolite, Illite, Enstatite and Ferrosilite in granite waste. However, in case of agricultural farm soils the major minerals are identified as Gypsum, Calcite, Magnetite, Hematite, Muscovite, K-Feldspars and Quartz. Moreover, the agricultural soils neighbouring mining areas, the minerals are found that, the enriched Mica group minerals (Lepidolite and Illite) the enriched Orthopyroxene group minerals (Ferrosilite and Enstatite). It is observed that the Mica and Orthopyroxene group minerals are present in agricultural farm soils neighbouring mining areas and absent in agricultural farm soils away from mining areas. The study demonstrated that the chemical migration takes place at agricultural farm lands in the vicinity of the granite mining areas.

  13. In situ targeting TEM8 via immune response and polypeptide recognition by wavelength-modulated surface plasmon resonance biosensor

    PubMed Central

    Wang, Yimin; Luo, Zewei; Liu, Kunping; Wang, Jie; Duan, Yixiang

    2016-01-01

    There is an increasing interest in real-time and in situ monitoring of living cell activities in life science and medicine. This paper reports a whole cell sensing protocol over the interface of Au film coupled in a wavelength-modulated surface plasmon resonance (WMSPR) biosensor. With dual parabolic mirrors integrated in the sensor, the compact and miniaturized instrument shows satisfactory refractive index sensitivity (2220 nm/RIU) and a high resolution of resonance wavelength shift of 0.3 nm to liquid samples. The affinity interactions between the biomarker of human tumor endothelial marker 8 (TEM8) and antibody (Ab) or specific polypeptide (PEP) were firstly introduced to WMSPR biosensor analysis. Both the interaction events of Ab-cell and PEP-cell over the Au film interface can be recognized by the sensor and the balance time of interactions is about 20 min. The concentration range of Ab for quantitative monitoring of the TEM8 expression on human colon carcinoma SW620 cells was investigated. The present low-cost and time-saving method provides a time resolution of binding specificity between Ab/PEP and TEM8 for real-time analysis of antigen on living tumor cell surface. PMID:26822761

  14. Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography.

    PubMed

    Yamamoto, Kazuo; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2017-02-08

    All-solid-state Li-ion batteries having incombustible solid electrolytes are promising energy storage devices because they have significant advantages in terms of safety, lifetime and energy density. Electrochemical reactions, namely, Li-ion insertion/extraction reactions, commonly occur around the nanometer-scale interfaces between the electrodes and solid electrolytes. Thus, transmission electron microscopy (TEM) is an appropriate technique to directly observe such reactions, providing important information for understanding the fundamental solid-state electrochemistry and improving battery performance. In this review, we introduce two types of TEM techniques for operando observations of battery reactions, spatially resolved electron energy-loss spectroscopy in a TEM mode for direct detection of the Li concentration profiles and electron holography for observing the electric potential changes due to Li-ion insertion/extraction reactions. We visually show how Li-ion insertion/extractions affect the crystal structures, electronic structures, and local electric potential during the charge-discharge processes in these batteries. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris

    PubMed Central

    Brinza, Loredana; Schofield, Paul F.; Hodson, Mark E.; Weller, Sophie; Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D.; Mosselmans, J. Frederick W.

    2014-01-01

    The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced. PMID:24365942

  16. Influence of smectite suspension structure on sheet orientation in dry sediments: XRD and AFM applications.

    PubMed

    Zbik, Marek S; Frost, Ray L

    2010-06-15

    The structure-building phenomena within clay aggregates are governed by forces acting between clay particles. Measurements of such forces are important to understand in order to manipulate the aggregate structure for applications such as dewatering of mineral processing tailings. A parallel particle orientation is required when conducting XRD investigation on the oriented samples and conduct force measurements acting between basal planes of clay mineral platelets using atomic force microscopy (AFM). To investigate how smectite clay platelets were oriented on silicon wafer substrate when dried from suspension range of methods like SEM, XRD and AFM were employed. From these investigations, we conclude that high clay concentrations and larger particle diameters (up to 5 microm) in suspension result in random orientation of platelets in the substrate. The best possible laminar orientation in the clay dry film, represented in the XRD 001/020 intensity ratio of 47 was obtained by drying thin layers from 0.02 wt.% clay suspensions of the natural pH. Conducted AFM investigations show that smectite studied in water based electrolytes show very long-range repulsive forces lower in strength than electrostatic forces from double-layer repulsion. It was suggested that these forces may have structural nature. Smectite surface layers rehydrate in water environment forms surface gel with spongy and cellular texture which cushion approaching AFM probe. This structural effect can be measured in distances larger than 1000 nm from substrate surface and when probe penetrate this gel layer, structural linkages are forming between substrate and clay covered probe. These linkages prevent subsequently smooth detachments of AFM probe on way back when retrieval. This effect of tearing new formed structure apart involves larger adhesion-like forces measured in retrieval. It is also suggested that these effect may be enhanced by the nano-clay particles interaction. 2010 Elsevier Inc. All

  17. Focused Ion Beam (FIB) combined with SEM (FIB/SEM) and TEM: Advanced tools for nano-analysis in Geosciences

    NASA Astrophysics Data System (ADS)

    Wirth, R.; Morales, L. G.

    2011-12-01

    Focused ion beam (FIB) techniques have been successfully applied to the preparation of site-specific electron transparent membranes for transmission electron microscopy (TEM) investigations in Geosciences since several years. For example, systematic TEM studies of nano-inclusions in diamond foils prepared with FIB have improved our knowledge on diamond formation. However, FIB is not exclusively used for sample preparation for TEM application because it has been proved that one and the same TEM foil can also be used for Synchrotron IR, Synchrotron X-Ray fluorescence (XRF), scanning transmission X-Ray microscopy (STXM) and NanoSIMS analysis. In addition, FIB milling turned out to be very useful for sample preparation of Brillouin scattering experiments and has a strong potential for preparation of highly-polished, micrometer-scale samples. However, a real break through in FIB application was achieved combining a Ga-ion source of the FIB with an electron source of a scanning electron microscope (SEM) in one single instrument. The combination of FIB/SEM renders access to the third dimension of the sample possible. A cavity normal to the sample surface is sputtered with Ga-ions and this newly created inner surface is imaged with the electron beam. Alternating slicing and viewing along these cavities allow the acquisition of a sequence of images that allows the observation in 3 dimensions. Recently, this technique has been successfully applied to image the structure of grain or phase boundaries in metamorphic rocks as well as micro- and nanoporosity in shales, but its applicability goes far beyond these few examples. Combining slicing and viewing with X-Ray and electron backscatter diffraction (EBSD) analysis can provide 3D elemental mapping and 3D crystallographic orientation mapping of crystalline materials. Combined FIB/SEM devices also facilitate the preparation of substantially thinner and cleaner TEM foils (approximately 30 nm) because electron beam imaging

  18. γ-Fe{sub 2}O{sub 3} nanoparticles: An easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Amit Kumar; Maji, Swarup Kumar; Adhikary, Bibhutosh, E-mail: bibhutoshadhikary@yahoo.in

    2014-01-01

    Graphical abstract: - Highlights: • γ-Fe{sub 2}O{sub 3} NPs from a single-source precursor and characterized by XRD, TEM, UV–vis spectra. • The NPs were tested as effective photocatalyst toward degradation of RB and MB dyes. • The possible pathway of the photocatalytic decomposition process has been discussed. • The active species, OH·, was detected by TA photoluminescence probing techniques. - Abstract: γ-Fe{sub 2}O{sub 3} nanoparticles (NPs) were synthesized from a single-source precursor complex [Fe{sub 3}O(C{sub 6}H{sub 5}COO){sub 6}(H{sub 2}O){sub 3}]NO{sub 3} by a simple thermal decomposition process and have been characterized by X-ray diffraction analysis (XRD), transmission electron microscopy (TEM)more » and UV–vis spectroscopic techniques. The NPs were highly pure and well crystallized having hexagonal morphology with an average particle size of 35 nm. The prepared γ-Fe{sub 2}O{sub 3} (maghemite) NPs show effective photo-catalytic activity toward the degradation of rose bengal (RB) and methylene blue (MB) dyes under visible light irradiation and can easily be recoverable in the presence of magnetic field for successive re-uses. The possible photo-catalytic decomposition mechanism is discussed through the detection of hydroxyl radical (OH·) by terephthalic acid photo-luminescence probing technique.« less

  19. Influence of Size on the Microstructure and Mechanical Properties of an AISI 304L Stainless Steel—A Comparison between Bulk and Fibers

    PubMed Central

    Baldenebro-Lopez, Francisco J.; Gomez-Esparza, Cynthia D.; Corral-Higuera, Ramon; Arredondo-Rea, Susana P.; Pellegrini-Cervantes, Manuel J.; Ledezma-Sillas, Jose E.; Martinez-Sanchez, Roberto; Herrera-Ramirez, Jose M.

    2015-01-01

    In this work, the mechanical properties and microstructural features of an AISI 304L stainless steel in two presentations, bulk and fibers, were systematically studied in order to establish the relationship among microstructure, mechanical properties, manufacturing process and effect on sample size. The microstructure was analyzed by XRD, SEM and TEM techniques. The strength, Young’s modulus and elongation of the samples were determined by tensile tests, while the hardness was measured by Vickers microhardness and nanoindentation tests. The materials have been observed to possess different mechanical and microstructural properties, which are compared and discussed. PMID:28787949

  20. Cryo-FIB specimen preparation for use in a cartridge-type cryo-TEM.

    PubMed

    He, Jie; Hsieh, Chyongere; Wu, Yongping; Schmelzer, Thomas; Wang, Pan; Lin, Ying; Marko, Michael; Sui, Haixin

    2017-08-01

    Cryo-electron tomography (cryo-ET) is a well-established technique for studying 3D structural details of subcellular macromolecular complexes and organelles in their nearly native context in the cell. A primary limitation of the application of cryo-ET is the accessible specimen thickness, which is less than the diameters of almost all eukaryotic cells. It has been shown that focused ion beam (FIB) milling can be used to prepare thin, distortion-free lamellae of frozen biological material for high-resolution cryo-ET. Commercial cryosystems are available for cryo-FIB specimen preparation, however re-engineering and additional fixtures are often essential for reliable results with a particular cryo-FIB and cryo-transmission electron microscope (cryo-TEM). Here, we describe our optimized protocol and modified instrumentation for cryo-FIB milling to produce thin lamellae and subsequent damage-free cryotransfer of the lamellae into our cartridge-type cryo-TEM. Published by Elsevier Inc.

  1. In-situ TEM observation of nano-void formation in UO2 under irradiation

    NASA Astrophysics Data System (ADS)

    Sabathier, C.; Martin, G.; Michel, A.; Carlot, G.; Maillard, S.; Bachelet, C.; Fortuna, F.; Kaitasov, O.; Oliviero, E.; Garcia, P.

    2014-05-01

    Transmission electron microscopy (TEM) observations of UO2 polycrystals irradiated in situ with 4 MeV Au ions were performed at room temperature (RT) to better understand the mechanisms of cavity and ultimately fission products nucleation in UO2. Experiments were carried out at the JANNuS Orsay facility that enables in situ ion irradiations inside the microscope to be carried out. The majority of 4 MeV gold ions were transmitted through the thin foil, and the induced radiation defects were investigated by TEM. Observations showed that nano-void formation occurs at ambient temperature in UO2 thin foils irradiated with energetic heavy ions under an essentially nuclear energy loss regime. The diameter and density of nano-objects were measured as a function of the gold irradiation dose at RT. A previous paper has also revealed a similar nano-object population after a Xe implantation performed at 390 keV at 870 K. The nano-object density was modelled using simple concepts derived from Classical Molecular Dynamics simulations. The results are in good agreement, which suggests a mechanism of heterogeneous nucleation induced by energetic cascade overlaps. This indicates that nano-void formation mechanism is controlled by radiation damage. Such nanovoids are likely to act as sinks for mobile fission products during reactor operation.

  2. Thermal decomposition of dolomite under CO2: insights from TGA and in situ XRD analysis.

    PubMed

    Valverde, Jose Manuel; Perejon, Antonio; Medina, Santiago; Perez-Maqueda, Luis A

    2015-11-28

    Thermal decomposition of dolomite in the presence of CO2 in a calcination environment is investigated by means of in situ X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The in situ XRD results suggest that dolomite decomposes directly at a temperature around 700 °C into MgO and CaO. Immediate carbonation of nascent CaO crystals leads to the formation of calcite as an intermediate product of decomposition. Subsequently, decarbonation of this poorly crystalline calcite occurs when the reaction is thermodynamically favorable and sufficiently fast at a temperature depending on the CO2 partial pressure in the calcination atmosphere. Decarbonation of this dolomitic calcite occurs at a lower temperature than limestone decarbonation due to the relatively low crystallinity of the former. Full decomposition of dolomite leads also to a relatively low crystalline CaO, which exhibits a high reactivity as compared to limestone derived CaO. Under CO2 capture conditions in the Calcium-Looping (CaL) process, MgO grains remain inert yet favor the carbonation reactivity of dolomitic CaO especially in the solid-state diffusion controlled phase. The fundamental mechanism that drives the crystallographic transformation of dolomite in the presence of CO2 is thus responsible for its fast calcination kinetics and the high carbonation reactivity of dolomitic CaO, which makes natural dolomite a potentially advantageous alternative to limestone for CO2 capture in the CaL technology as well as SO2in situ removal in oxy-combustion fluidized bed reactors.

  3. TiO2 supported gold nanoparticles: An efficient photocatalyst for oxidation of alcohol to aldehyde and ketone in presence of visible light irradiation

    NASA Astrophysics Data System (ADS)

    Gogoi, Nibedita; Borah, Geetika; Gogoi, Pradip K.; Chetia, Tridip Ranjan

    2018-01-01

    An efficient heterogeneous photocatalyst composed of Au nanoparticle supported on TiO2 (anatase) is prepared by sol-gel method. This prepared nanocomposite showed good catalytic activity in the oxidation of various alcohols to aldehyde and ketone under irradiation of visible light. Various spectroscopic techniques including UV-Visible absorption spectral studies and photoluminescence study are employed to characterize the catalyst. It was also characterized by XRD, TEM, BET, XPS and ICP-AES analysis. In contrast to air and H2O2, use of TBHP as oxidant gave good yield. The reaction conditions with respect to solvent and amount of catalyst are optimized.

  4. Optical and TEM study of shock metamorphism from the Sedan test site

    NASA Technical Reports Server (NTRS)

    Gratz, A. J.

    1992-01-01

    Thus far, detailed petrologic studies of shock metamorphism have been performed on samples recovered from laboratory experiments and on a few natural impactites. The loading history of these samples is quite different: In particular, laboratory experiments spend only a short time (less than 1 microsec) at peak pressure, whereas natural impactites may have stress pulses from 0.1 - 1 ms. On the other hand, laboratory experiments have known stress histories; natural impactites do not. Natural samples are also subjected to thousands or millions of years of postshock annealing and/or weathering. A useful intermediate case is that of nuclear detonation. Stress pulses for these events can reach 0.1 ms or higher, and samples are obtained in pristine condition. All three types of loading produce stresses of hundreds of kilobars. Samples studied were taken from the Sedan nulcear test site, and consist of a coarse-grained granodiorite containing quartz, K-feldspar, cordierite, and hornblende. Samples were studied optically in this section, then were thinned with an ion mill and studied by transmission electron microscopy (TEM). Optically, quartz and K-feldspar displayed numerous sets of planar deformation features (PDF's) identical to the nondecorated PDF's seen in laboratory samples and many natural impactites. TEM study showed that the PDF's in quartz and feldspar corresponded to densely packed wide transformation lamellae identical to those described in laboratory studies. The transformation lamellae in both minerals were amorphous, with no sign of high-pressure phases. In the case of K-feldspar only, narrow sublamellae extended outward from some wide lamellae. Quartz, which was more abundant and studied more extensively, contained no shock-induced dislocations. Some planar features were also seen in cordierite, but could not be identified due to rapid beam damage. No shock defects were seen in hornblende in TEM. The shock-induced defects present at the Sedan site are very

  5. In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research.

    PubMed

    Wu, Jianbo; Shan, Hao; Chen, Wenlong; Gu, Xin; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2016-11-01

    Gas and liquid phase chemical reactions cover a broad range of research areas in materials science and engineering, including the synthesis of nanomaterials and application of nanomaterials, for example, in the areas of sensing, energy storage and conversion, catalysis, and bio-related applications. Environmental transmission electron microscopy (ETEM) provides a unique opportunity for monitoring gas and liquid phase reactions because it enables the observation of those reactions at the ultra-high spatial resolution, which is not achievable through other techniques. Here, the fundamental science and technology developments of gas and liquid phase TEM that facilitate the mechanistic study of the gas and liquid phase chemical reactions are discussed. Combined with other characterization tools integrated in TEM, unprecedented material behaviors and reaction mechanisms are observed through the use of the in situ gas and liquid phase TEM. These observations and also the recent applications in this emerging area are described. The current challenges in the imaging process are also discussed, including the imaging speed, imaging resolution, and data management. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. eV-TEM: Transmission electron microscopy in a low energy cathode lens instrument.

    PubMed

    Geelen, Daniël; Thete, Aniket; Schaff, Oliver; Kaiser, Alexander; van der Molen, Sense Jan; Tromp, Rudolf

    2015-12-01

    We are developing a transmission electron microscope that operates at extremely low electron energies, 0-40 eV. We call this technique eV-TEM. Its feasibility is based on the fact that at very low electron energies the number of energy loss pathways decreases. Hence, the electron inelastic mean free path increases dramatically. eV-TEM will enable us to study elastic and inelastic interactions of electrons with thin samples. With the recent development of aberration correction in cathode lens instruments, a spatial resolution of a few nm appears within range, even for these very low electron energies. Such resolution will be highly relevant to study biological samples such as proteins and cell membranes. The low electron energies minimize adverse effects due to radiation damage. Copyright © 2015. Published by Elsevier B.V.

  7. RBS, TEM and SEM Characterization of Gold Nanoclusters in TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shutthanandan, V; Zhang, Yanwen; Wang, Chong M.

    2004-05-01

    Nucleation of gold nanoclusters in TiO2(110) single crystal using ion implantation and subsequent annealing were studied by Rutherford backscattering spectrometry /channeling (RBS/C), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Approximately 1000 Au2+/nm2 was implanted at room temperature in TiO2(110) substrates. TEM and SEM measurements revel that rounded nanoclusters were formed during the implantation. In contrast subsequent annealing in air for 10 hours at 1275 K promoted the formation of faceted (rectangular shaped) Au nano structures in TiO2. RBS channeling measurements further reveled that Au atoms randomly occupied in the host TiO2 lattice during the implantation. However, some ofmore » the gold atoms were moved into the Ti lattice position after annealing.« less

  8. Synthesis and characterization of CdO nano particles by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Vadgama, V. S.; Vyas, R. P.; Jogiya, B. V.; Joshi, M. J.

    2017-05-01

    Cadmium Oxide (CdO) is an inorganic compound and one of the main precursors to other cadmium compounds. It finds applications in cadmium plating, storage batteries, in transparent conducting film, etc. Here, an attempt is made to synthesize CdO nano particles by sol-gel technique. The gel was prepared using cadmium nitrate tetra hydrate (Cd(NO3)2.4H2O) and aqueous ammonium hydroxide (NH4OH) as a precursor. The synthesized powder is further characterized by techniques like Powder X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and Thermal gravimetric analysis (TGA). Powder XRD analysis suggested the nano-crystalline nature of the sample with the cubic crystal system. Nano scaled particles of spherical morphology with the size ranging from 50-100 nm are observed from TEM images. While, FT-IR study is used to confirm the presence of different functional groups. Thermo-gravimetric analysis suggests the highly thermally stable nature of the samples. The results are discussed.

  9. Development of a National Consensus for Tactical Emergency Medical Support (TEMS) Training Programs--Operators and Medical Providers.

    PubMed

    Schwartz, Richard; Lerner, Brooke; Llwewllyn, Craig; Pennardt, Andre; Wedmore, Ian; Callaway, David; Wightman, John; Casillas, Raymond; Eastman, Alex; Gerold, Kevin; Giebner, Stephen; Davidson, Robert; Kamin, Richard; Piazza, Gina; Bollard, Glenn; Carmona, Phillip; Sonstrom, Ben; Seifarth, William; Nicely, Barbara; Croushorn, John; Carmona, Richard

    2014-01-01

    Tactical teams are at high risk of sustaining injuries. Caring for these casualties in the field involves unique requirements beyond what is provided by traditional civilian emergency medical services (EMS) systems. Despite this need, the training objectives and competencies are not uniformly agreed to or taught. An expert panel was convened that included members from the Departments of Defense, Homeland Security, Justice, and Health and Human Services, as well as federal, state, and local law-enforcement officers who were recruited through requests to stakeholder agencies and open invitations to individuals involved in Tactical Emergency Medical Services (TEMS) or its oversight. Two face-to-face meetings took place. Using a modified Delphi technique, previously published TEMS competencies were reviewed and updated. The original 17 competency domains were modified and the most significant changes were the addition of Tactical Emergency Casualty Care (TECC), Tactical Familiarization, Legal Aspects of TEMS, and Mass Casualty Triage to the competency domains. Additionally, enabling and terminal learning objectives were developed for each competency domain. This project has developed a minimum set of medical competencies and learning objectives for both tactical medical providers and operators. This work should serve as a platform for ensuring minimum knowledge among providers, which will serve enhance team interoperability and improve the health and safety of tactical teams and the public. 2014.

  10. TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry.

    PubMed

    Verleysen, E; Van Doren, E; Waegeneers, N; De Temmerman, P-J; Abi Daoud Francisco, M; Mast, J

    2015-04-08

    Metallic silver is an EU approved food additive referred to as E174. It is generally assumed that silver is only present in bulk form in the food chain. This work demonstrates that a simple treatment with water of "silver pearls", meant for decoration of pastry, results in the release of a subfraction of silver nanoparticles. The number-based size and shape distributions of the single, aggregated, and/or agglomerated particles released from the silver pearls were determined by combining conventional bright-field TEM imaging with semiautomatic particle detection and analysis. In addition, the crystal structure of the particles was studied by electron diffraction and chemical information was obtained by combining HAADF-STEM imaging with EDX spectroscopy and mapping. The TEM results were confirmed by SP-ICP-MS. The representative Ag test nanomaterial NM-300 K was used as a positive control to determine the uncertainty on the measurement of the size and shape of the particles.

  11. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications.

    PubMed

    Kübel, Christian; Voigt, Andreas; Schoenmakers, Remco; Otten, Max; Su, David; Lee, Tan-Chen; Carlsson, Anna; Bradley, John

    2005-10-01

    Electron tomography is a well-established technique for three-dimensional structure determination of (almost) amorphous specimens in life sciences applications. With the recent advances in nanotechnology and the semiconductor industry, there is also an increasing need for high-resolution three-dimensional (3D) structural information in physical sciences. In this article, we evaluate the capabilities and limitations of transmission electron microscopy (TEM) and high-angle-annular-dark-field scanning transmission electron microscopy (HAADF-STEM) tomography for the 3D structural characterization of partially crystalline to highly crystalline materials. Our analysis of catalysts, a hydrogen storage material, and different semiconductor devices shows that features with a diameter as small as 1-2 nm can be resolved in three dimensions by electron tomography. For partially crystalline materials with small single crystalline domains, bright-field TEM tomography provides reliable 3D structural information. HAADF-STEM tomography is more versatile and can also be used for high-resolution 3D imaging of highly crystalline materials such as semiconductor devices.

  12. Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV.

    PubMed

    Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute

    2016-08-12

    Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed C_{c}/C_{s} corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.

  13. Structural, magnetic and electronic structural properties of Mn doped CeO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumari, Kavita; Vij, Ankush; Hashim, Mohd.; Chae, K. H.; Kumar, Shalendra

    2018-05-01

    Nanoparticles of Ce1-xMnxO2, (x=0.0, 0.01, and 0.05) have been synthesized by using co-precipitation method, and then characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), near edge x-ray absorption fine structure (NEXAFS) spectroscopy and dc magnetization measurements. XRD results clearly showed that the all the samples have single phase nature and exclude the presence of any secondary phase. The average particle size calculated using XRD TEM measurements found to decrease with increase in Mn doping in the range of 4.0 - 9.0 nm. The structural parameters such as strain, interplaner distance and lattice parameter is observed to decrease with increase in doping. The morphology of Ce1-xMnxO2 nanoparticles measured using TEM micrographs indicate that nanoparticle have spherical shape morphology. Magnetic hysteresis curve for Ce1-xMnxO2, (x = 0.0, 0.01, and 0.05) confirms the ferromagnetic ordering room temperature. The value of saturation magnetization is observed to decrease with increase in temperature from 10 K to 300 K. The NEXAFS spectra measured at Ce M4,5 edge reveals that Ce-ions are in +4 valance state.

  14. Quantitative assessment of alkali-reactive aggregate mineral content through XRD using polished sections as a supplementary tool to RILEM AAR-1 (petrographic method)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, Nelia, E-mail: nelia.castro@ntnu.no; Sorensen, Bjorn E.; Broekmans, Maarten A.T.M.

    The mineral content of 5 aggregate samples from 4 different countries, including reactive and non-reactive aggregate types, was assessed quantitatively by X-ray diffraction (XRD) using polished sections. Additionally, electron probe microanalyzer (EPMA) mapping and cathodoluminescence (CL) were used to characterize the opal-CT identified in one of the aggregate samples. Critical review of results from polished sections against traditionally powdered specimen has demonstrated that for fine-grained rocks without preferred orientation the assessment of mineral content by XRD using polished sections may represent an advantage over traditional powder specimens. Comparison of data on mineral content and silica speciation with expansion data frommore » PARTNER project confirmed that the presence of opal-CT plays an important role in the reactivity of one of the studied aggregates. Used as a complementary tool to RILEM AAR-1, the methodology suggested in this paper has the potential to improve the strength of the petrographic method.« less

  15. Structural investigations in helium implanted cubic zirconia using grazing incidence XRD and EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuri, G.; Degueldre, C.; Bertsch, J.; Döbeli, M.

    2010-06-01

    The crystal structure and local atom arrangements surrounding Zr atoms were determined for a helium implanted cubic stabilized zirconia (CSZ) using X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively, measured at glancing angles. The implanted specimen was prepared at a helium fluence of 2 × 10 16 cm -2 using He + beams at two energies (2.54 and 2.74 MeV) passing through a 8.0 μm Al absorber foil. XRD results identified the formation of a new rhombohedral phase in the helium embedded layer, attributed to internal stress as a result of expansion of the CSZ-lattice. Zr K-edge EXAFS data suggested loss of crystallinity in the implanted lattice and disorder of the Zr atoms environment. EXAFS Fourier transforms analysis showed that the average first-shell radius of the Zr sbnd O pair in the implanted sample was slightly larger than that of the CSZ standard. Common general disorder features were explained by rhombohedral type short-range ordered clusters. The average structural parameters estimated from the EXAFS data of unimplanted and implanted CSZ are compared and discussed. Potential of EXAFS as a local probe of atomic-scale structural modifications induced by helium implantation in CSZ is demonstrated.

  16. Process monitoring and control with CHEMIN, a miniaturized CCD-based instrument for simultaneous XRD/XRF analysis

    NASA Astrophysics Data System (ADS)

    Vaniman, David T.; Bish, D.; Guthrie, G.; Chipera, S.; Blake, David E.; Collins, S. Andy; Elliott, S. T.; Sarrazin, P.

    1999-10-01

    There is a large variety of mining and manufacturing operations where process monitoring and control can benefit from on-site analysis of both chemical and mineralogic constituents. CHEMIN is a CCD-based instrument capable of both X-ray fluorescence (XRF; chemical) and X-ray diffraction (XRD; mineralogic) analysis. Monitoring and control with an instrument like CHEMIN can be applied to feedstocks, intermediate materials, and final products to optimize production. Examples include control of cement feedstock, of ore for smelting, and of minerals that pose inhalation hazards in the workplace. The combined XRD/XRF capability of CHEMIN can be used wherever a desired commodity is associated with unwanted constituents that may be similar in chemistry or structure but not both (e.g., Ca in both gypsum and feldspar, where only the gypsum is desired to make wallboard). In the mining industry, CHEMIN can determine mineral abundances on the spot and enable more economical mining by providing the means to assay when is being mined, quickly and frequently, at minimal cost. In manufacturing, CHEMIN could be used to spot-check the chemical composition and crystalline makeup of a product at any stage of production. Analysis by CHEMIN can be used as feedback in manufacturing processes where rates of heating, process temperature, mixture of feedstocks, and other variables must be adjusted in real time to correct structure and/or chemistry of the product (e.g., prevention of periclase and alkali sulfate coproduction in cement manufacture).

  17. Properties of TEM standing waves with E||B

    NASA Astrophysics Data System (ADS)

    Zaghloul, H.; Buckmaster, H. A.

    This paper summarizes the known properties of E∥B TEM standing waves and shows that for such waves (i) E and B cannot be linearly polarized, (ii) E ≠ αB where α is a constant (iii) it is impossible to find a Lorentz frame where E>B, (iv) direction of the propagation vector cannot be inferred from the fields at one point of the space, (v) their behaviour under Lorentz, parity, time-reversal and gauge transformations is proper, (vi) both Lorentz invariants E2 - B2 and E·B are nonzero, (vii) the magnetic helicity may be nonzero, (viii) the magnetic field may be force-free, and (ix) kμFμv ≠ 0. It also shows how electromagnetic waves can be classified using Lorentz invariants. Cet article résume les qualités connues des ondes stationnaires E∥B TEM et montre que pour des ondes parallèles (i) E et B ne peuvent pas être polarisées linéairement, (ii) E ≠ αB où a est une constante, (iii) il est impossible de trouver une construction de Lorentz où E>B, (iv) la direction de propagation d'un vecteur ne peut pas être déduite des opérations à un point d'intervalle, (v) leur conduite sous Lorentz, parité, temps inverse et transformations de jauge est propre, (vi) les deux invariants de Lorentz E2 - B2 et E·B sont non nulles (vii) l'hélice magnétique peut être non nulle (viii) l'opération magnétique peut être de force libre et (ix) KμFμ v ≠ 0. Ceci montre aussi comment les ondes électromagnétiques peuvent être classifiées, en employant les invariants de Lorentz.

  18. Effect of Temperature, Precursor Type and Dripping Time on the Crystallite Size of Nano ZnO Obtained by One-Pot Synthesis: 2 k Full Factorial Design Analysis.

    PubMed

    Machado, Morgana de Medeiros; Savi, Bruna Martinello; Perucchi, Mariana Borges; Benedetti, Alessandro; Oliveira, Luis Felipe Silva; Bernardin, Adriano Michael

    2018-06-01

    The aim of this work was to determine the effect of temperature, precursor and dripping time on the crystallite size of ZnO nanoparticles synthesized by controlled precipitation according a 2k full factorial design. ZnCl2, Zn(NO3)2 and NaOH were used as precursors. After synthesis, the nano crystalline powder was characterized by XRD (Cu Kα), UV-Vis, and HR-TEM. The nano ZnO particles presented a crystallite size between 210 and 260 Å (HR-TEM and XRD). The results show that the crystallite size depends on the type of precursor and temperature of synthesis, but not on the dripping time.

  19. Synthesis and characterization of nanocrystalline graphite from coconut shell with heating process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wachid, Frischa M., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Perkasa, Adhi Y., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Prasetya, Fandi A., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id

    Graphite were synthesized and characterized by heating process of coconut shell with varying temperature (400, 800 and 1000°C) and holding time (3 and 5 hours). After heating process, the samples were characterized by X-ray diffraction (XRD) and analyzed by X'pert HighScore Plus Software, Scanning Electron Microcope-Energy Dispersive X-Ray (SEM-EDX) and Transmission Electron Microscope-Energy Dispersive X-Ray (TEM-EDX). Graphite and londsdaelite phase were analyzed by XRD. According to EDX analysis, the sample was heated in 1000°C got the highest content of carbon. The amorphous carbon and nanocrystalline graphite were observed by SEM-EDX and TEM-EDX.

  20. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli

    In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphousmore » LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.« less

  1. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

    NASA Astrophysics Data System (ADS)

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli; Fang, Xin; Liu, Yihang; Zhang, Anyi; Rong, Jiepeng; Wang, Chongmin; Zhou, Chongwu

    2016-08-01

    In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.

  2. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

    PubMed Central

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli; Fang, Xin; Liu, Yihang; Zhang, Anyi; Rong, Jiepeng; Wang, Chongmin; Zhou, Chongwu

    2016-01-01

    In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires. PMID:27571919

  3. Size distribution and volume fraction of T(1) phase precipitates from TEM images: Direct measurements and related correction.

    PubMed

    Dorin, Thomas; Donnadieu, Patricia; Chaix, Jean-Marc; Lefebvre, Williams; Geuser, Frédéric De; Deschamps, Alexis

    2015-11-01

    Transmission Electron Microscopy (TEM) can be used to measure the size distribution and volume fraction of fine scale precipitates in metallic systems. However, such measurements suffer from a number of artefacts that need to be accounted for, related to the finite thickness of the TEM foil and to the projected observation in two dimensions of the microstructure. We present a correction procedure to describe the 3D distribution of disc-like particles and apply this method to the plate-like T1 precipitates in an Al-Li-Cu alloy in two ageing conditions showing different particle morphologies. The precipitates were imaged in a High-Angular Annular Dark Field Microscope (HAADF-STEM). The corrected size distribution is further used to determine the precipitate volume fraction. Atom probe tomography (APT) is finally utilised as an alternative way to measure the precipitate volume fraction and test the validity of the electron microscopy results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. XRD and spectral dataset of the UV-A stable nanotubes of 3,5-bis(trifluoromethyl)benzylamine derivative of tyrosine.

    PubMed

    Govindhan, R; Karthikeyan, B

    2017-10-01

    The data presented in this article are related to the research entitled of UV-A stable nanotubes. The nanotubes have been prepared from 3,5-bis(trifluoromethyl)benzylamine derivative of tyrosine (BTTP). XRD data reveals the size of the nanotubes. As-synthesized nanotubes (BTTPNTs) are characterized by UV-vis optical absorption studies [1] and photo physical degradation kinetics. The resulted dataset is made available to enable critical or extended analyzes of the BTTPNTs as an excellent light resistive materials.

  5. Leonardo da Vinci's drapery studies: characterization of lead white pigments by µ-XRD and 2D scanning XRF

    NASA Astrophysics Data System (ADS)

    Gonzalez, Victor; Calligaro, Thomas; Pichon, Laurent; Wallez, Gilles; Mottin, Bruno

    2015-11-01

    This work focuses on the composition and microstructure of the lead white pigment employed in a set of paintworks, using a combination of µ-XRD and 2D scanning XRF, directly applied on five drapery studies attributed to Leonardo da Vinci (1452-1519) and conserved in the Département des Arts Graphiques, Musée du Louvre and in the Musée des Beaux- Arts de Rennes. Trace elements present in the composition as well as in the lead white highlights were imaged by 2D scanning XRF. Mineral phases were determined in a fully noninvasive way using a special µ-XRD diffractometer. Phase proportions were estimated by Rietveld refinement. The analytical results obtained will contribute to differentiate lead white qualities and to highlight the artist's technique.

  6. Influence of tumor microenvironment on prognosis in colorectal cancer: Tissue architecture-dependent signature of endosialin (TEM-1) and associated proteins

    PubMed Central

    O'Shannessy, Daniel J.; Somers, Elizabeth B.; Chandrasekaran, Lakshmi K.; Nicolaides, Nicholas C.; Bordeaux, Jennifer; Gustavson, Mark D.

    2014-01-01

    Tumor survival is influenced by interactions between tumor cells and the stromal microenvironment. One example is Endosialin (Tumor Endothelial Marker-1 (TEM-1) or CD248), which is expressed primarily by cells of mesenchymal origin and some tumor cells. The expression, as a function of architectural masking, of TEM-1 and its pathway-associated proteins was quantified and examined for association with five-year disease-specific survival on a colorectal cancer (CRC) cohort divided into training (n=330) and validation (n=164) sets. Although stromal expression of TEM-1 had prognostic value, a more significant prognostic signature was obtained through linear combination of five compartment-specific expression scores (TEM-1 Stroma, TEM-1 Tumor Vessel, HIF2α Stromal Vessel, Collagen IV Tumor, and Fibronectin Stroma). This resulted in a single continuous risk score (TAPPS: TEM-1 Associated Pathway Prognostic Signature) which was significantly associated with decreased survival on both the training set [HR=1.76 (95%CI: 1.44-2.15); p<0.001] and validation set [HR=1.38 (95%CI: 1.02-1.88); p=0.04]. Importantly, since prognosis is a critical clinical question in Stage II patients, the TAPPS score also significantly predicted survival in the Stage II patient (n=126) cohort [HR=1.75 (95%CI: 1.22-2.52); p=0.002] suggesting the potential of using the TAPPS score to assess overall risk in CRC patients, and specifically in Stage II patients. PMID:24980818

  7. Recombination-related properties of a-screw dislocations in GaN: A combined CL, EBIC, TEM study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, O. S., E-mail: o.s.medvedev@spbu.ru; Mikhailovskii, V. Yu.; IRC for Nanotechnology, Research Park, St.-Petersburg State University

    2016-06-17

    Cathodoluminescence (CL), electron beam current (EBIC) and transmission electron microscopy (TEM) techniques have been applied to investigate recombination properties and structure of freshly introduced dislocations in low-ohmic GaN crystals. It was confirmed that the only a-screw dislocations exhibited an intense characteristic dislocation-related luminescence (DRL) which persisted up to room temperature and was red-shifted by about 0.3 eV with respect to the band gap energy not only in HVPE but also in MOCVD grown samples. EBIC contrast of the dislocations was found to be temperature independent indicating that the dislocation-related recombination level is situated below 200 meV with respect of conductionmore » band minimum. With the increasing of the magnification of the dislocation TEM cross-sectional images they were found to disappear, probably, due to the recombination enhanced dislocation glide (REDG) under electron beam exposure which was immediately observed in CL investigations on a large scale. The stacking fault ribbon in the core of dissociated a-screw dislocation which form a quantum well for electrons was proposed to play an important role both in DRL spectrum formation and in REDG.« less

  8. EBSD and TEM characterization of high burn-up mixed oxide fuel

    NASA Astrophysics Data System (ADS)

    Teague, Melissa; Gorman, Brian; Miller, Brandon; King, Jeffrey

    2014-01-01

    Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to ∼1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken from the cooler rim region of the fuel pellet had ∼2.5× higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice ∼25 μm cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel.

  9. EBSD and TEM Characterization of High Burn-up Mixed Oxide Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teague, Melissa C.; Gorman, Brian P.; Miller, Brandon D.

    2014-01-01

    Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to approximately 1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken frommore » the cooler rim region of the fuel pellet had approximately 2.5x higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice approximately 25 um cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel.« less

  10. TEM studies of III-V MOSFETs for ultimate CMOS

    NASA Astrophysics Data System (ADS)

    Longo, Paolo

    Over the past half-century electronic industry has enormously grown changing the way people live their lives. Such growth has been driven by the miniaturisation and development of the transistors which are the main components in an integrated circuit (IC) commonly referred as a chip. Until today electronic industry has been based on the use of Si and its native oxide SiO2 in transistors. However, the performance limit of conventional Si based transistors is rapidly being approached and alternatives will soon be required. One of the proposed alternatives is GaAs. n-type GaAs has a mobility 5 times higher than Si. This makes it a suitable candidate for MOSFETs devices. So far, GaAs has not been used for practical MOSFETs because of the difficulties of making a good dielectric oxide layer in terms of leakage current and unpinned Fermi Level. Using processes pioneered by Passlack et al, dielectric gate stacks consisting of a template layer of amorphous Ga2O3 followed by amorphous GdGaO have been grown on GaAs substrates. Careful deposition of Ga2O3 can leave the Fermi Level unpinned. The introduction of Gd is important in order to decrease the leakage of current. The electrical properties of the Ga2O3/Gd[x]Ga[0.4-x]O[0.6] dielectric stack are related to the Gd concentration and the quality of the GaAs/Ga2O3 interface. Over the past years in a unique partnership several research groups from the Physics and the Electronic and Electrical engineering Department have collaboratively worked for the realisation and development of such new generation of GaAs based transistors using the technology described above. The properties of such devices depend on structures at the nanoscale which is only few atoms across. Thus the characterization using the transmission electron microscope (TEM) becomes essential. In this project TEM has been used to study several MBE grown III-V semiconductor nanostructures. In particular most of the thesis is focussed on the chemical characterisation

  11. Thiol-modified MoS2 nanosheets as a functional layer for electrical bistable devices

    NASA Astrophysics Data System (ADS)

    Li, Guan; Tan, Fenxue; Lv, Bokun; Wu, Mengying; Wang, Ruiqi; Lu, Yue; Li, Xu; Li, Zhiqiang; Teng, Feng

    2018-01-01

    Molybdenum disulfide nanosheets have been synthesized by one-pot method using 1-ODT as sulfur source and surfactant. The structure, morphology and optical properties of samples were investigated by XRD, FTIR, Abs spectrum and TEM patterns. The XRD pattern indicated that the as-obtained MoS2 belong to hexagonal system. The as-obtained MoS2 nanosheets blending with PVK could be used to fabricate an electrically bistable devices through a simple spin-coating method and the device exhibited an obvious electrical bistability properties. The charge transport mechanism of the device was discussed based on the filamentary switching models.

  12. Efficient single-mode (TEM{sub 00}) Nd : YVO{sub 4} laser with longitudinal 808-nm diode pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donin, V I; Yakovin, D V; Yakovin, M D

    2013-10-31

    A single-mode Nd : YVO{sub 4} laser with unidirectional longitudinal pumping by laser diodes with λ = 808 nm and a power of 40 W is studied. In the TEM{sub 00} mode, the output laser power is 24 W with the optical efficiency η{sub opt} = 57.1 % (slope efficiency 63.3 %), which, as far as we know, is the best result for Nd{sup 3+} : YVO{sub 4} lasers with longitudinal pumping at λ = 808 nm from one face of the active crystal. Estimates of thermal effects show that, using a Nd : YVO{sub 4} crystal (length 20 mm,more » diameter 3 mm, dopant concentration 0.27 at%) with two undoped ends and bidirectional diode pumping with a total power of 170 W, one can obtain an output power of ∼100 W in the TEM{sub 00} mode from one active element. (lasers)« less

  13. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    PubMed

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  14. Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Chinthaka M.; Rosseel, Thomas M.; Kirkegaard, Marie C.

    Quartz single-crystal samples consisting of α-quartz crystal structure were neutron irradiated to fluences of 5 × 10 18, 4 × 10 19, and 2 × 10 20 n/cm 2 (E > 0.1 MeV) at two temperatures (52 and 95 °C). The changes in the α-quartz phase as a function of these two conditions (temperature and fluence) were studied using X-ray powder diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM), and the results acquired using these complementary techniques are presented in a single place for the first time. XRD studies showed that the lattice parameters of α-quartz increased with increasingmore » neutron flux. The lattice growth was larger for the samples that were neutron irradiated at 52 °C than at 95 °C. Moreover, an amorphous content was determined in the quartz samples neutron irradiated at 4 × 10 19 n/cm 2, with the greater amount being in the 52 °C irradiated sample. Complete amorphization of quartz was observed at a fluence of 2 × 10 20 n/cm 2 (E > 0.1 MeV) using XRD and confirmed by TEM characterization and Raman spectroscopic studies. In conclusion, the cause for α-quartz lattice expansion and sample amorphization was also explored using XRD and Raman spectroscopic studies.« less

  15. Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates

    DOE PAGES

    Silva, Chinthaka M.; Rosseel, Thomas M.; Kirkegaard, Marie C.

    2018-03-07

    Quartz single-crystal samples consisting of α-quartz crystal structure were neutron irradiated to fluences of 5 × 10 18, 4 × 10 19, and 2 × 10 20 n/cm 2 (E > 0.1 MeV) at two temperatures (52 and 95 °C). The changes in the α-quartz phase as a function of these two conditions (temperature and fluence) were studied using X-ray powder diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM), and the results acquired using these complementary techniques are presented in a single place for the first time. XRD studies showed that the lattice parameters of α-quartz increased with increasingmore » neutron flux. The lattice growth was larger for the samples that were neutron irradiated at 52 °C than at 95 °C. Moreover, an amorphous content was determined in the quartz samples neutron irradiated at 4 × 10 19 n/cm 2, with the greater amount being in the 52 °C irradiated sample. Complete amorphization of quartz was observed at a fluence of 2 × 10 20 n/cm 2 (E > 0.1 MeV) using XRD and confirmed by TEM characterization and Raman spectroscopic studies. In conclusion, the cause for α-quartz lattice expansion and sample amorphization was also explored using XRD and Raman spectroscopic studies.« less

  16. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Caitlin; Bufford, Daniel; Muntifering, Brittany

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due tomore » irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2.« less

  17. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    PubMed Central

    Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana; Senor, David; Steckbeck, Mackenzie; Davis, Justin; Doyle, Barney; Buller, Daniel

    2017-01-01

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2. PMID:28961199

  18. A novel approach to TEM preparation with a (7-axis stage) triple-beam FIB-SEM system

    NASA Astrophysics Data System (ADS)

    Clarke, Jamil J.

    2015-10-01

    Preparation of lamellae from bulk to grid for Cs-corrected Transmission Electron Microscope (TEM) observation has mostly become routine work on the latest FIB-SEM systems, with standardized techniques that often are left to automation for the initial steps. The finalization of lamellae however, has mostly become, non-routine, non-repeatable and often driven by user experience level in most cases to produce high quality damage-less cross section. Materials processing of the latest technologies, with ever-shrinking Nano-sized structures pose challenges to modern FIB-SEM systems. This can often lead to specialized techniques and hyper-specific functions for producing ultra-thin high quality lamellae that often are lab specific, preventing practical use of such techniques across multiple materials and applications. Several factors that should be incorporated in processing fine structured materials successfully include how the use of electron and ion scan conditions can affect a thin section during ion milling, the type of ion species applied for material processing during the finalization of lamellae with gallium ions or of a smaller ion species type such as Ar/Xe, sample orientation of the lamella during the thinning process which is linked to ion beam incident angle as a direct relationship in the creation of waterfall effects or curtain effects, and how software can be employed to aid in the reduction of these artifacts with reproducible results regardless of FIB-SEM experience for site-specific lift outs. A traditional TEM preparation was performed of a fine structure specimen in pursuit of a process technique to produce a high quality TEM lamella which would address all of the factors mentioned. These new capabilities have been refined and improved upon during the FIB-SEM design and development stages with an end result of a new approach that yields an improvement in quality by the reduction of common ion milling artifacts such as curtain effects, amorphous

  19. Defect characterization of MOCVD grown AlN/AlGaN films on sapphire substrates by TEM and TKD

    NASA Astrophysics Data System (ADS)

    O'Connell, J. H.; Lee, M. E.; Westraadt, J.; Engelbrecht, J. A. A.

    2018-04-01

    High resolution transmission electron microscopy (TEM) has been used to characterize defects structures in AlN/AlGaN epilayers grown by metal-organic chemical vapour deposition (MOCVD) on c-plane sapphire (Al2O3) substrates. The AlN buffer layer was shown to be epitaxially grown on the sapphire substrate with the two lattices rotated relatively through 30°. The AlN layer had a measured thickness of 20-30 nm and was also shown to contain nano-sized voids. The misfit dislocations in the buffer layer have been shown to be pure edge with a spacing of 1.5 nm. TEM characterization of the AlGaN epilayers was shown to contain a higher than expected threading dislocation density of the order 1010 cm-2 as well as the existence of "nanopipes". TEM analysis of the planar lamella for AlGaN has presented evidence for the possibility of columnar growth. The strain and misorientation mapping in the AlGaN epilayer by transmission Kikuchi diffraction (TKD) using the FIB lamella has also been demonstrated to be complimentary to data obtained by TEM imaging.

  20. Fourier-space TEM reconstructions with symmetry adapted functions for all rotational point groups.

    PubMed

    Trapani, Stefano; Navaza, Jorge

    2013-05-01

    A general-purpose and simple expression for the coefficients of symmetry adapted functions referred to conveniently oriented symmetry axes is given for all rotational point groups. The expression involves the computation of reduced Wigner-matrix elements corresponding to an angle specific to each group and has the computational advantage of leading to Fourier-space TEM (transmission electron microscopy) reconstruction procedures involving only real valued unknowns. Using this expression, a protocol for ab initio view and center assignment and reconstruction so far used for icosahedral particles has been tested with experimental data in other point groups. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. XRF, μ-XRD and μ-spectroscopic techniques for revealing the composition and structure of paint layers on polychrome sculptures after multiple restorations.

    PubMed

    Franquelo, M L; Duran, A; Castaing, J; Arquillo, D; Perez-Rodriguez, J L

    2012-01-30

    This paper presents the novel application of recently developed analytical techniques to the study of paint layers on sculptures that have been restored/repainted several times across centuries. Analyses were performed using portable XRF, μ-XRD and μ-Raman instruments. Other techniques, such as optical microscopy, SEM-EDX and μ-FTIR, were also used. Pigments and other materials including vermilion, minium, red lac, ivory black, lead white, barium white, zinc white (zincite), titanium white (rutile and anatase), lithopone, gold and brass were detected. Pigments from both ancient and modern times were found due to the different restorations/repaintings carried out. μ-Raman was very useful to characterise some pigments that were difficult to determine by μ-XRD. In some cases, pigments identification was only possible by combining results from the different analytical techniques used in this work. This work is the first article devoted to the study of sculpture cross-section samples using laboratory-made μ-XRD systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Degradation product analysis from the photocatalytic oxidation/reduction of 2,4-dichlorophenol in the presence of mesoporous silica encapsulated TiO2 particles and TiO2 dispersions (presentation)

    EPA Science Inventory

    Thin films of Degussa P-25 TiO2 encapsulated in an SBA-15 mesoporous silica matrix were prepared. The TiO2/SBA-15 thin film structure was verified using transmission electron microscopy (TEM) and small angle X-ray diffraction (XRD). During irradiation with 350 nm light, the TiO...

  3. In Situ TEM Study of Interaction between Dislocations and a Single Nanotwin under Nanoindentation.

    PubMed

    Wang, Bo; Zhang, Zhenyu; Cui, Junfeng; Jiang, Nan; Lyu, Jilei; Chen, Guoxin; Wang, Jia; Liu, Zhiduo; Yu, Jinhong; Lin, Chengte; Ye, Fei; Guo, Dongming

    2017-09-06

    Nanotwinned (nt) materials exhibit excellent mechanical properties, and have been attracting much more attention of late. Nevertheless, the fundamental mechanism of interaction between dislocations and a single nanotwin is not understood. In this study, in situ transmission electron microscopy (TEM) nanoindentation is performed, on a specimen of a nickel (Ni) alloy containing a single nanotwin of 89 nm in thickness. The specimen is prepared using focused ion beam (FIB) technique from an nt surface, which is formed by a novel approach under indentation using a developed diamond panel with tips array. The stiffness of the specimen is ten times that of the pristine counterparts during loading. The ultrahigh stiffness is attributed to the generation of nanotwins and the impediment of the single twin to the dislocations. Two peak loads are induced by the activation of a new slip system and the penetration of dislocations over the single nanotwin, respectively. One slip band is parallel to the single nanotwin, indicating the slip of dislocations along the nanotwin. In situ TEM observation of nanoindentation reveals a new insight for the interaction between dislocations and a single nanotwin. This paves the way for design and preparation of high-performance nt surfaces of Ni alloys used for aircraft engines, gas turbines, turbocharger components, ducts, and absorbers.

  4. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli

    Here in this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li 15Si 4 phase while porous Si nanoparticles and nanowiresmore » transform to amorphous Li xSi phase, which is due to the effect of domain size on the stability of Li 15Si 4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.« less

  5. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

    DOE PAGES

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli; ...

    2016-08-30

    Here in this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li 15Si 4 phase while porous Si nanoparticles and nanowiresmore » transform to amorphous Li xSi phase, which is due to the effect of domain size on the stability of Li 15Si 4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.« less

  6. Theoretical analysis and modeling of Thickness-Expansion Mode (TEM) sensors for fluid characterization.

    PubMed

    Elvira, Luis; Resa, Pablo; Castro, Pedro

    2013-03-01

    In this paper, the principles of Thickness-Expansion Mode (TEM) resonators for the characterization of fluids are described. From the measurement of the resonance parameters of a TEM piezoelectric transducer, the compressional acoustic impedance of gases and liquids can be determined. Since the propagation of mechanical waves into the fluid is not necessary, information in a wide range of frequencies can be obtained. Alternatively, these sensors can be driven in combination with other ultrasonic techniques to simultaneously determine the density, speed of sound and viscosity of samples. Some potential applications include the probe monitoring of processes and the characterization of fluids under harsh conditions. The main experimental criteria for the design and construction of high-resolution impedance meters (such as piezoelectric material, protective coating or thermal response) have been studied using equivalent electrical circuit modeling and finite element analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Investigation of composition and structure of spongy and hard bone tissue using FTIR spectroscopy, XRD and SEM

    NASA Astrophysics Data System (ADS)

    Al-Akhras, M.-Ali H.; Hasan Qaseer, M. K.; Albiss, B. A.; Alebrhim, M. Anwar; Gezawa, Umar S.

    2018-02-01

    Valuable structural and chemical features can be obtained for spongy and hard bone by infrared spectroscopy and X-ray diffraction. A better understanding of chemical and structural differences between spongy and hard bone is a very important contributor to bone quality. Our data according to IR data showed that the collagen cross-links occurred to be higher in spongy bone, and crystallinity was lower in spongy bone. Deconvolution of the infrared band near 870 cm-1 reveals evidence for A2-type carbonate substitution on hydroxyapatite of spongy bone in addition to the A and B type carbonate substitution that are also found in hard bone. IR and XRD data confirmed the results of each other since full width at half maximum of 002-apatite pattern of XRD showed that the crystallinity was lower in spongy bone. The microstructure was examined by using scanning electron microscope and the result showed that the lattice of thin threads in spongy bone and is less dense than hard bone.

  8. Hydrometallurgical Extraction of Zinc and Copper A 57Fe-Mössbauer and XRD Approach

    NASA Astrophysics Data System (ADS)

    Mulaba-Bafubiandi, A. F.; Waanders, F. B.

    2005-02-01

    The most commonly used route in the hydrometallurgical extraction of zinc and copper from a sulphide ore is the concentrate roast leach electro winning process. In the present investigation a zinc copper ore from the Maranda mine, located in the Murchison Greenstone Belt, South Africa, containing sphalerite (ZnS) and chalcopyrite (CuFeS2), was studied. The 57Fe-Mössbauer spectrum of the concentrate yielded pyrite, chalcopyrite and clinochlore, consistent with XRD data. Optimal roasting conditions were found to be 900°C for 3 h and the calcine produced contained according to X-ray diffractometry equal amounts of franklinite (ZnFe2O4) and zinc oxide (ZnO) and half the amount of willemite (Zn2SiO4). The Mössbauer spectrum showed predominantly franklinite (59%), hematite (6%) and other Zn- or Cu-depleted ferrites (35%). The latter could not be detected by XRD analyses as peak overlapping with other species occurred. Leaching was done with HCl, H2SO4 and HNO3, to determine which process would result in maximum recovery of Zn and Cu. More than 80% of both were recovered by using either one of the three techniques. From the residue of the leaching, the Fe-compounds were precipitated and <1% of the Zn and Cu was not recovered.

  9. The mandibular ridge oral mucosa model of stromal influences on the endothelial tip cells: an immunohistochemical and TEM study.

    PubMed

    Rusu, Mugurel Constantin; Didilescu, Andreea Cristiana; Stănescu, Ruxandra; Pop, Florinel; Mănoiu, Valentina Mariana; Jianu, Adelina Maria; Vâlcu, Marek

    2013-02-01

    This study aimed to evaluate by immunohistochemistry and transmission electron microscopy (TEM) the morphological features of the oral mucosa endothelial tip cells (ETCs) and to determine the immune and ultrastructural patterns of the stromal nonimmune cells which could influence healing processes. Immune labeling was performed on bioptic samples obtained from six edentulous patients undergoing surgery for dental implants placement; three normal samples were collected from patients prior to the extraction of the third mandibular molar. The antibodies were tested for CD34, CD117(c-kit), platelet derived growth factor receptor-alpha (PDGFR-α), Mast Cell Tryptase, CD44, vimentin, CD45, CD105, alpha-smooth muscle actin, FGF2, Ki67. In light microscopy, while stromal cells (StrCs) of the reparatory and normal oral mucosa, with a fibroblastic appearance, were found positive for a CD34/CD44/CD45/CD105/PDGFR-α/vimentin immune phenotype, the CD117/c-kit labeling led to a positive stromal reaction only in the reparatory mucosa. In TEM, non-immune StrCs presenting particular ultrastructural features were identified as circulating fibrocytes (CFCs). Within the lamina propria CFCs were in close contact with ETCs. Long processes of the ETCs were moniliform, and hook-like collaterals were arising from the dilated segments, suggestive for a different stage migration. Maintenance and healing of oral mucosa are so supported by extensive processes of angiogenesis, guided by ETCs that, in turn, are influenced by the CFCs that populate the stromal compartment both in normal and reparatory states. Therefore, CFCs could be targeted by specific therapies, with pro- or anti-angiogenic purposes. Copyright © 2012 Wiley Periodicals, Inc.

  10. Direct observation of a stacking fault in Si(1 - x)Ge(x) semiconductors by spherical aberration-corrected TEM and conventional ADF-STEM.

    PubMed

    Yamasaki, Jun; Kawai, Tomoyuki; Tanaka, Nobuo

    2004-01-01

    Spherical aberration (C(S))-corrected transmission electron microscopy (TEM) and annular dark-field scanning TEM (ADF-STEM) are applied to high-resolution observation of stacking faults in Si(1 - x)Ge(x) alloy films prepared on a Si(100) buffer layer by the chemical vapor deposition method. Both of the images clarify the individual nature of stacking faults from their directly interpretable image contrast and also by using image simulation in the case of the C(S)-corrected TEM. Positions of the atomic columns obtained in the ADF-STEM images almost agree with a projection of the theoretical model studied by Chou et al. (Phys. Rev. B 32(1985): 7979). Comparison between the C(S)-corrected TEM and ADF-STEM images shows that their resolution is at a similar level, but directly interpretable image contrast is obtained in ultrathin samples for C(S)-corrected TEM and in slightly thicker samples for ADF-STEM.

  11. Stable TEM00-mode Nd:YAG solar laser operation by a twisted fused silica light-guide

    NASA Astrophysics Data System (ADS)

    Bouadjemine, R.; Liang, D.; Almeida, J.; Mehellou, S.; Vistas, C. R.; Kellou, A.; Guillot, E.

    2017-12-01

    To improve the output beam stability of a TEM00-mode solar-pumped laser, a twisted fused silica light-guide was used to achieve uniform pumping along a 3 mm diameter and 50 mm length Nd:YAG rod. The concentrated solar power at the focal spot of a primary parabolic mirror with 1.18 m2 effective collection area was efficiently coupled to the entrance aperture of a 2D-CPC/2V-shaped pump cavity, within which the thin laser rod was pumped. Optimum solar laser design parameters were found through ZEMAX© non-sequential ray-tracing and LASCAD© laser cavity analysis codes. 2.3 W continuous-wave TEM00-mode 1064 nm laser power was measured, corresponding to 1.96 W/m2 collection efficiency and 2.2 W laser beam brightness figure of merit. Excellent TEM00-mode laser beam profile at M2 ≤ 1.05 and very good output power stability of less than 1.6% were achieved. Heliostat orientation error dependent laser power variation was considerably less than previous solar laser pumping schemes.

  12. AAO-based nanoreservoir arrays: A quick and easy support for TEM characterization

    NASA Astrophysics Data System (ADS)

    Mace, M.; Sahaf, H.; Moyen, E.; Bedu, F.; Masson, L.; Hanbücken, M.

    2010-12-01

    Large-scale arrays of calibrated, nanometer sized reservoirs are prepared by adapting the well-established electrochemical method used so far for the preparation of anodic aluminium oxide (AAO) membranes. The bottom plane of the assembly is prepared to be transparent for high-energy electrons, enabling their use as a universal sample support for transmission electron microscopy studies of nanoparticles. The nanoreservoir substrates can be cleaned under ultra-high-vacuum conditions and filled, by evaporating different materials. Filled nanoreservoirs can locally be sealed with a thin carbon layer using focused-ion-beam-induced deposition (FIBID). Nanoparticles, grow at various adsorption places on the walls and bottom planes inside the nanoreservoirs. They can be characterized by transmission electron microscopy (TEM) without further sample preparation in different crystallographic directions. Due to the dense array-arrangement of the reservoirs, very good statistics can already be obtained on one single sample. The controlled fabrication of the nanoreservoir array and first TEM results obtained on Au nanoparticles before and after sealing of the reservoirs, are presented.

  13. Geophysical investigation of a freshwater lens on the island of Langeoog, Germany - Insights from combined HEM, TEM and MRS data

    NASA Astrophysics Data System (ADS)

    Costabel, Stephan; Siemon, Bernhard; Houben, Georg; Günther, Thomas

    2017-01-01

    A multi-method geophysical survey, including helicopter-borne electromagnetics (HEM), transient electromagnetics (TEM), and magnetic resonance sounding (MRS), was conducted to investigate a freshwater lens on the North Sea island of Langeoog, Germany. The HEM survey covers the entire island and gives an overview of the extent of three freshwater lenses that reach depths of up to 45 m. Ground-based TEM and MRS were conducted particularly on the managed western lens to verify the HEM results and to complement the lithological information from existing boreholes. The results of HEM and TEM are in good agreement. Salt- and freshwater-bearing sediments can, as expected, clearly be distinguished due to their individual resistivity ranges. In the resistivity data, a large transition zone between fresh- and saltwater with a thickness of up to 20 m is identified, the existence of which is verified by borehole logging and sampling. Regarding lithological characterisation of the subsurface, the MRS method provides more accurate and reliable results than HEM and TEM. Using a lithological index derived from MRS water content and relaxation time, thin aquitard structures as well as fine and coarse sand aquifers can be distinguished. Complementing the existing borehole data with the lithology information estimated from MRS, we generate a map showing the occurrence of aquitard structures, which significantly improves the hydrogeological model of the island. Moreover, we demonstrate that the estimates of groundwater conductivity in the sand aquifers from geophysical data are in agreement with the fluid conductivity measured in the boreholes.

  14. Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides.

    PubMed

    Mphahlele, Malose Jack; Maluleka, Marole Maria; Rhyman, Lydia; Ramasami, Ponnadurai; Mampa, Richard Mokome

    2017-01-04

    The structures of the mono- and the dihalogenated N -unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (¹H-NMR, UV-Vis, FT-IR, and FT-Raman) and X-ray crystallographic techniques complemented with a density functional theory (DFT) method. The hindered rotation of the C(O)-NH₂ single bond resulted in non-equivalence of the amide protons and therefore two distinct resonances of different chemical shift values in the ¹H-NMR spectra of these compounds were observed. 2-Amino-5-bromobenzamide ( ABB ) as a model confirmed the presence of strong intramolecular hydrogen bonds between oxygen and the amine hydrogen. However, intramolecular hydrogen bonding between the carbonyl oxygen and the amine protons was not observed in the solution phase due to a rapid exchange of these two protons with the solvent and fast rotation of the Ar-NH₂ single bond. XRD also revealed the ability of the amide unit of these compounds to function as a hydrogen bond donor and acceptor simultaneously to form strong intermolecular hydrogen bonding between oxygen of one molecule and the NH moiety of the amine or amide group of the other molecule and between the amine nitrogen and the amide hydrogen of different molecules. DFT calculations using the B3LYP/6-311++G(d,p) basis set revealed that the conformer ( A ) with oxygen and 2-amine on the same side predominates possibly due to the formation of a six-membered intramolecular ring, which is assisted by hydrogen bonding as observed in the single crystal XRD structure.

  15. Use of tourmaline as a potential petrogenetic indicator in the determination of host magma: CRS, XRD and PED-XRF methods

    NASA Astrophysics Data System (ADS)

    Gullu, Bahattin; Kadioglu, Yusuf Kagan

    2017-08-01

    Tourmaline defines a group of complex borosilicate forms as accessory mineral in igneous and metamorphic rocks and they act an important role in the interpretation of the chemical composition changes of the composition of the host fluid of the magma. The variety of tourmaline can be identified by using optical microscopy, X-Ray Diffraction (XRD) and by determining its chemical composition through Polarized Energy Dispersive X-Ray Fluorescence (PED-XRF) methods. However, microscopic investigations and XRD analyses are not quite adequate for detailed determination of tourmaline sub-groups. In addition, the use of chemical composition of tourmaline as a strict indicator of geochemical processes might be a misleading method. In this study, variable tourmaline crystals were collected from three different pegmatitic occurrences in Behrekdag, Yozgat and Karakaya granitic bodies of Central Anatolia to identify their chemical properties through Confocal Raman Spectroscopy (CRS), PED-XRF and XRD analyses. The confocal Raman spectrometry of collected tourmalines from the Behrekdag, Yozgat and Karakaya granites are in the compositions of schorl, schorl and elbaite respectively. The dominant compositional groups of these tourmalines are in the form of schorl. Raman shift values of tourmalines revealed four bands centered at almost 1050, 750, 400 and 300 cm- 1. The first group of the band arises from SiO stretching, the second from Bsbnd O stretching and the other two belong to bending modes of Osbnd Bsbnd O and Bsbnd Osbnd Al with symmetrical deformation of Sisbnd Osbnd Si. The strongest spectra near 360 cm- 1 should belong to the bonding of Alsbnd O. As a result, the confocal Raman studies are more sensitive for identification of tourmaline subgroup compositions and have a quite important in the explaining source of the magma.

  16. Use of tourmaline as a potential petrogenetic indicator in the determination of host magma: CRS, XRD and PED-XRF methods.

    PubMed

    Gullu, Bahattin; Kadioglu, Yusuf Kagan

    2017-08-05

    Tourmaline defines a group of complex borosilicate forms as accessory mineral in igneous and metamorphic rocks and they act an important role in the interpretation of the chemical composition changes of the composition of the host fluid of the magma. The variety of tourmaline can be identified by using optical microscopy, X-Ray Diffraction (XRD) and by determining its chemical composition through Polarized Energy Dispersive X-Ray Fluorescence (PED-XRF) methods. However, microscopic investigations and XRD analyses are not quite adequate for detailed determination of tourmaline sub-groups. In addition, the use of chemical composition of tourmaline as a strict indicator of geochemical processes might be a misleading method. In this study, variable tourmaline crystals were collected from three different pegmatitic occurrences in Behrekdag, Yozgat and Karakaya granitic bodies of Central Anatolia to identify their chemical properties through Confocal Raman Spectroscopy (CRS), PED-XRF and XRD analyses. The confocal Raman spectrometry of collected tourmalines from the Behrekdag, Yozgat and Karakaya granites are in the compositions of schorl, schorl and elbaite respectively. The dominant compositional groups of these tourmalines are in the form of schorl. Raman shift values of tourmalines revealed four bands centered at almost 1050, 750, 400 and 300cm -1 . The first group of the band arises from SiO stretching, the second from BO stretching and the other two belong to bending modes of OBO and BOAl with symmetrical deformation of SiOSi. The strongest spectra near 360cm -1 should belong to the bonding of AlO. As a result, the confocal Raman studies are more sensitive for identification of tourmaline subgroup compositions and have a quite important in the explaining source of the magma. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Characterization using XRD of puzzolanic materials from residual sludge from water treatment

    NASA Astrophysics Data System (ADS)

    Barón, G.; Montaño, A. M.; González, C. P.

    2017-12-01

    The goal of this work is to do mechanical and chemical characterization of puzzolanic materials using compressive strength measurements and X-Ray Diffraction (XRD). These materials are composed of red clay and aluminous sludge produced by the treatment of potable water at Planta Algodonal, Ocaña, Norte de Santander, Colombia. Ceramic bricks were sintered to 1100°C and ten were characterized in their physically, mechanically and chemically properties. The results showed that the relationships with which the Colombian standards according to NTC 4017 (100KGF/cm2) for non-structural bricks are maintained for those containing 10% (105Kgf/cm2) and 20% (102.9Kgf/cm2) of sludge with respect to clay.

  18. To study the effect of doping concentration of silver on structural and optical properties of cadmium oxide (CdO) nanostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajesh, E-mail: rkkaushik06@gmail.com; Dept. of Physics, Vaish College of Engineering, Rohtak-124001, Haryana; Sharma, Ashwani

    The present work deals with study of structural and optical properties of Silver (Ag) doped Cadmium oxide (CdO) nanostructured synthesized by Chemical Co-precipitation Techniques followed by calcinations at small temperature. The doping concentrations were changing from 0.1 to 10 at% respectively. Structural analysis study of these calcined materials is carried out by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The optical properties of calcined samples were investigating by Fourier transformation infrared (FTIR)spectroscopy, UV-Visible Spectroscopy (UV-Vis). The structural properties analysis results revels that crystallite size are in the range of nano region and TEM results aremore » quite in accordance with XRD results.« less

  19. The Mineralogy of Martian Dust: Design and Analysis Considerations for an X-Ray Diffraction/X-Ray Fluorescence (XRD/XRF) Instrument for Exobiological Studies

    NASA Technical Reports Server (NTRS)

    Blake, David; Vaniman, David; Bish, David; Morrison, David (Technical Monitor)

    1994-01-01

    A principal objective of Mars exploration is the search for evidence of past life which may have existed during an earlier clement period of Mars history. We would like to investigate the history of surface water activity (which is a requirement for all known forms of life) by identifying and documenting the distribution of minerals which require water for their formation or distribution. A knowledge of the mineralogy of the present Martian surface would help to identify areas which, due to the early activity of water, might have harbored ancient life. It would be desirable to establish the presence and characterize the distribution of hydrated minerals such as clays, and of minerals which are primarily of sedimentary origin such as carbonates, silica and evaporites. Mineralogy, which is more critical to exobiological exploration than is simple chemical analysis (absent the detection of organics), will remain unknown or will at best be imprecisely constrained unless a technique sensitive to mineral structure such as powder X-ray diffraction (XRD) is employed. Additional information is contained in the original extended abstract.

  20. FTIR, XRD and DSC studies of nanochitosan, cellulose acetate and polyethylene glycol blend ultrafiltration membranes.

    PubMed

    Vinodhini, P Angelin; K, Sangeetha; Thandapani, Gomathi; P N, Sudha; Jayachandran, Venkatesan; Sukumaran, Anil

    2017-11-01

    In the present work, a series of novel nanochitosan/cellulose acetate/polyethylene glycol (NCS/CA/PEG) blend flat sheet membranes were fabricated in different ratios (1:1:1, 1:1:2, 2:1:1, 2:1:2, 1:2:1, 2:2:1) in a polar solvent of N,N'-dimethylformamide (DMF) using the most popular phase inversion method. Nanochitosan was prepared by the ionotropic gelation method and its average particle size has been analyzed using Dynamic Light Scattering (DLS) method. The effect of blending of the three polymers was investigated using FTIR and XRD studies. FTIR results confirmed the formation of well-blended membranes and the XRD analysis revealed enhanced amorphous nature of the membrane ratio 2:1:2. DSC study was conducted to find out the thermal behavior of the blend membranes and the results clearly indicated good thermal stability and single glass transition temperature (T g ) of all the prepared membranes. Asymmetric nature and rough surface morphology was confirmed using SEM analysis. From the results it was evident that the blending of the polymers with higher concentration of nanochitosan can alter the nature of the resulting membranes to a greater extent and thus amorphous membranes were obtained with good miscibility and compatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. TEM heat transport and fluctuations in the HSX stellarator: experiments and comparison with gyrokinetic simulation

    NASA Astrophysics Data System (ADS)

    Smoniewski, J.; Faber, B. J.; Sánchez, E.; Calvo, I.; Pueschel, M. J.; Likin, K. M.; Deng, C. B.; Talmadge, J. N.

    2017-10-01

    The Helically Symmetric eXperiment (HSX) has demonstrated reduced neoclassical transport in the plasma core with quasi-symmetry [Lore Thesis 2010], while outside this region the electron thermal diffusivity is well above the neoclassical level, likely due to the Trapped Electron Mode (TEM) [Weir PoP 2015, Faber PoP 2015]. We compare gyrokinetic simulations of the TEM to experimental heat flux and density fluctuation measurements for two configurations: Quasi-Helical Symmetry (QHS) and broken symmetry (Mirror). Both experiment and simulation show that the heat flux for Mirror is larger than for QHS by about a factor of two. Initial interferometer measurements provide evidence that density-gradient-driven TEMs are driving turbulence. Calculations of the collisionless damping of zonal flows provide another perspective into the difference between geometries. Similar to other stellarators [Monreal PPCF 2016], the zonal flow residual goes to zero at long wavelengths in both configurations. Additionally, the very short time decay of the zonal flow due to neoclassical polarization is constant between configurations. However, the collisionless damping time is longer and the zonal flow oscillation frequency is smaller in QHS than Mirror, consistent with reduced radial particle drifts. Work supported by the US DOE under Grant DE-FG02-93ER54222.

  2. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I 3TEM) offers the unique ability to observe microstructural changes duemore » to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. As a result, this work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO 2.« less

  3. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    DOE PAGES

    Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana; ...

    2017-09-29

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I 3TEM) offers the unique ability to observe microstructural changes duemore » to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. As a result, this work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO 2.« less

  4. Reduction reactions and densification during in situ TEM heating of iron oxide nanochains

    NASA Astrophysics Data System (ADS)

    Bonifacio, Cecile S.; Das, Gautom; Kennedy, Ian M.; van Benthem, Klaus

    2017-12-01

    The reduction reactions and densification of nanochains assembled from γ-Fe2O3 nanoparticles were investigated using in situ transmission electron microscopy (TEM). Morphological changes and reduction of the metal oxide nanochains were observed during in situ TEM annealing through simultaneous imaging and quantitative analysis of the near-edge fine structures of Fe L2,3 absorption edges acquired by spatially resolved electron energy loss spectroscopy. A change in the oxidation states during annealing of the iron oxide nanochains was observed with phase transformations due to continuous reduction from Fe2O3 over Fe3O4, FeO to metallic Fe. Phase transitions during the in situ heating experiments were accompanied with morphological changes in the nanochains, specifically rough-to-smooth surface transitions below 500 °C, neck formation between adjacent particles around 500 °C, and subsequent neck growth. At higher temperatures, coalescence of FeO particles was observed, representing densification.

  5. Fluorescent TEM-1 β-lactamase with wild-type activity as a rapid drug sensor for in vitro drug screening

    PubMed Central

    Cheong, Wing-Lam; Tsang, Ming-San; So, Pui-Kin; Chung, Wai-Hong; Leung, Yun-Chung; Chan, Pak-Ho

    2014-01-01

    We report the development of a novel fluorescent drug sensor from the bacterial drug target TEM-1 β-lactamase through the combined strategy of Val216→Cys216 mutation and fluorophore labelling for in vitro drug screening. The Val216 residue in TEM-1 is replaced with a cysteine residue, and the environment-sensitive fluorophore fluorescein-5-maleimide is specifically attached to the Cys216 residue in the V216C mutant for sensing drug binding at the active site. The labelled V216C mutant has wild-type catalytic activity and gives stronger fluorescence when β-lactam antibiotics bind to the active site. The labelled V216C mutant can differentiate between potent and impotent β-lactam antibiotics and can distinguish active-site binders from non-binders (including aggregates formed by small molecules in aqueous solution) by giving characteristic time-course fluorescence profiles. Mass spectrometric, molecular modelling and trypsin digestion results indicate that drug binding at the active site is likely to cause the fluorescein label to stay away from the active site and experience weaker fluorescence quenching by the residues around the active site, thus making the labelled V216C mutant to give stronger fluorescence in the drug-bound state. Given the ancestor's role of TEM-1 in the TEM family, the fluorescent TEM-1 drug sensor represents a good model to demonstrate the general combined strategy of Val216→Cys216 mutation and fluorophore labelling for fabricating tailor-made fluorescent drug sensors from other clinically significant TEM-type β-lactamase variants for in vitro drug screening. PMID:25074398

  6. Identification of a deleterious phase in photocatalyst based on Cd1 - xZnxS/Zn(OH)2 by simulated XRD patterns.

    PubMed

    Cherepanova, Svetlana; Markovskaya, Dina; Kozlova, Ekaterina

    2017-06-01

    The X-ray diffraction (XRD) pattern of a deleterious phase in the photocatalyst based on Cd 1 - x Zn x S/Zn(OH) 2 contains two relatively intense asymmetric peaks with d-spacings of 2.72 and 1.56 Å. Very small diffraction peaks with interplanar distances of (d) ≃ 8.01, 5.40, 4.09, 3.15, 2.49 and 1.35 Å are characteristic of this phase but not always observed. To identify this phase, the XRD patterns for sheet-like hydroxide β-Zn(OH) 2 and sheet-like hydrozincite Zn 5 (CO 3 ) 2 (OH) 6 as well as for turbostratic hydrozincite were simulated. It is shown that the XRD pattern calculated on the basis of the last model gives the best correspondence with experimental data. Distances between layers in the turbostratically disordered hydrozincite fluctuate around d ≃ 8.01 Å. This average layer-to-layer distance is significantly higher than the interlayer distance 6.77 Å in the ordered Zn 5 (CO 3 ) 2 (OH) 6 probably due to a deficiency of CO 3 2- anions, excess OH - and the presence of water molecules in the interlayers. It is shown by variable-temperature XRD and thermogravimetric analysis (TGA) that the nanocrystalline turbostratic nonstoichiometric hydrozincite-like phase is quite thermostable. It decomposes into ZnO in air above 473 K.

  7. Combined In-Situ XRD and In-Situ XANES Studies on the Reduction Behavior of a Rhenium Promoted Cobalt Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Nitin; Payzant, E Andrew; Jothimurugesan, K

    2011-01-01

    A 10% Co 4% Re/(2% Zr/SiO2) catalyst was prepared by co-impregnation using a silica support modified by 2% Zr. The catalyst was characterized by temperature programmed reduction (TPR), in situ XRD and in situ XANES analysis where it was simultaneously exposed to H2 using a temperature programmed ramp. The results showed the two step reduction of large crystalline Co3O4 with CoO as an intermediate. TPR results showed that the reduction of highly dispersed Co3O4 was facilitated by reduced rhenium by a H2-spillover mechanism. In situ XRD results showed the presence of both, Co-hcp and Co-fcc phases in the reduced catalystmore » at 400 C. However, the Co-hcp phase was more abundant, which is thought to be the more active phase as compared to the Co-fcc phase for CO hydrogenation. CO hydrogenation at 270 C and 5 bar pressure produces no detectable change in the phases during the time of experiment. In situ XANES results showed a decrease in the metallic cobalt in the presence of H2/CO, which can be attributed due to oxidation of the catalyst by reaction under these conditions.« less

  8. An electrochemical sensor based on nitrogen doped carbon material prepared from nitrogen-containing precursors

    NASA Astrophysics Data System (ADS)

    Cui, G. Y.; Wang, C. Y.; Xiang, G. Q.; Zhou, B.

    2018-01-01

    In this work, a nitrogen doped carbon material (NDC) was prepared by using a copper adenine complex as precursor and applied to electrochemical sensing of Vitamin B2 (VB2). The experimental results show that the nitrogen doped carbon material is obtained after calcination at 650 °C under argon atmosphere, afterwards, which were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), fourier transform infrared (FT-IR), and electrochemical method. According to the XRD data, the product was a carbon material, and infrared data demonstrates that there are two kinds of carbonyl nitrogen combination, respectively, C-N and C = N combination of ways. Importantly, we used NDC to construct electrochemical biosensor to detect VB2 by differential pulse voltammetry (DPV). The linear range was 6 × 10-6 - 3.5 × 10-4 M (R=0.9962), the minimum detection limit was 5.4 × 10-6 M, and the sensitivity is better. Consequently, it has better sensing performance.

  9. Enhancement of TEM Data and Noise Characterization by Principal Component Analysis

    DTIC Science & Technology

    2010-05-01

    include simply thresholding a noise level and ignoring any signal below the chosen value ( Pasion and Oldenburg, 2001b), stacking, and median filters...to de-trend the data ( Pasion and Oldenburg, 2001a). To date, there has not been a concentrated research effort focused on separating the various...Negative values not displayed) 27 Magnetic soil at Kaho’olawe (and in general) exhibits a t−1 decay in TEM surveys ( Pasion et al., 2002). This signal

  10. Loosely coupled coaxial TEM applicators for deep-heating.

    PubMed

    Harrison, W H; Storm, F K

    1989-01-01

    The development of a coaxial TEM (transverse electromagnetic) deep-heating, non-contacting applicator employing two axially spaced concentric sleeves is described which has electrostatic characteristics and has been named the ESA. Thermal data obtained with the FDA/CDRH elliptic-shaped human torso phantom (with fat overlay) showed nearly uniform heating (+/- 10%) throughout the inner cross-section. Saline tank measurements on a torso cross-section confirmed similar SAR uniformity. Animal experiments with a pig, both with and without blood flow, verified deep-heating and suggested that some preferential central heating occurred. The absence of excessive surface heating indicated that the major portion of the E-field excitation is axially aligned. The non-contacting applicator does not require a water bolus, and experiments showed that moderate patient movement had minor effect on performance.

  11. Deactivation of TEM-1 β-Lactamase Investigated by Isothermal Batch and Non-Isothermal Continuous Enzyme Membrane Reactor Methods

    PubMed Central

    Rogers, Thomas A.

    2011-01-01

    The thermal deactivation of TEM-1 β-lactamase was examined using two experimental techniques: a series of isothermal batch assays and a single, continuous, non-isothermal assay in an enzyme membrane reactor (EMR). The isothermal batch-mode technique was coupled with the three-state “Equilibrium Model” of enzyme deactivation, while the results of the EMR experiment were fitted to a four-state “molten globule model”. The two methods both led to the conclusions that the thermal deactivation of TEM-1 β-lactamase does not follow the Lumry-Eyring model and that the Teq of the enzyme (the point at which active and inactive states are present in equal amounts due to thermodynamic equilibrium) is at least 10 °C from the Tm (melting temperature), contrary to the idea that the true temperature optimum of a biocatalyst is necessarily close to the melting temperature. PMID:22039393

  12. Methods to Develop the Eye-tem Bank to Measure Ophthalmic Quality of Life.

    PubMed

    Khadka, Jyoti; Fenwick, Eva; Lamoureux, Ecosse; Pesudovs, Konrad

    2016-12-01

    There is an increasing demand for high-standard, comprehensive, and reliable patient-reported outcome (PRO) instruments in all the disciplines of health care including in ophthalmology and optometry. Over the past two decades, a plethora of PRO instruments have been developed to assess the impact of eye diseases and their treatments. Despite this large number of instruments, significant shortcomings exist for the measurement of ophthalmic quality of life (QoL). Most PRO instruments are short-form instruments designed for clinical use, but this limits their content coverage often poorly targeting any study population other than that which they were developed for. Also, existing instruments are static paper and pencil based and unable to be updated easily leading to outdated and irrelevant item content. Scores obtained from different PRO instruments may not be directly comparable. These shortcomings can be addressed using item banking implemented with computer-adaptive testing (CAT). Therefore, we designed a multicenter project (The Eye-tem Bank project) to develop and validate such PROs to enable comprehensive measurement of ophthalmic QoL in eye diseases. Development of the Eye-tem Bank follows four phases: Phase I, Content Development; Phase II, Pilot Testing and Item Calibration; Phase III, Validation; and Phase IV, Evaluation. This project will deliver technologically advanced comprehensive QoL PROs in the form of item banking implemented via a CAT system in eye diseases. Here, we present a detailed methodological framework of this project.

  13. Nanocrystallization in Cu-Zr-Al-Sm Bulk Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Sikan, Fatih; Yasar, Bengisu; Kalay, Ilkay

    2018-04-01

    The effect of rare-earth element (Sm) microalloying on the thermal stability and crystallization kinetics of melt-spun ribbons and suction-cast rods of Zr48Cu38.4Al9.6Sm4 alloy were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), and atom probe tomography (APT). The XRD results of constant heating rate annealing indicated that amorphous Zr48Cu38.4Al9.6Sm4 melt-spun ribbons devitrifies into Cu2Sm at 673 K (400 °C). The sequence continues with the precipitation of Cu10Zr7 and then these two phases coexist. XRD and TEM studies on 1 mm diameter as suction-cast rods indicated the precipitation of 30-nm-mean size Cu2Sm crystals during solidification. TEM investigation of the isothermal crystallization sequence of melt-spun ribbons and 1-mm-diameter suction-cast rods revealed the precipitation of Cu2Sm nanocrystals at the onset of crystallization and the restriction of the growth of these nanocrystals up to 10 nm diameter with further annealing. APT analysis of 1-mm-diameter suction-cast rods showed that the limited growth of Cu2Sm nanocrystals is due to sluggish diffusion of Sm and Al-Zr pile up at the interface.

  14. The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities.

    PubMed

    Hafizovic, Jasmina; Bjørgen, Morten; Olsbye, Unni; Dietzel, Pascal D C; Bordiga, Silvia; Prestipino, Carmelo; Lamberti, Carlo; Lillerud, Karl Petter

    2007-03-28

    MOF-5 is the archetype metal-organic framework and has been subjected to numerous studies the past few years. The focal point of this report is the pitfalls related to the MOF-5 phase identification based on powder XRD data. A broad set of conditions and procedures have been reported for MOF-5 synthesis. These variations have led to materials with substantially different adsorption properties (specific surface areas in the range 700 to 3400 m(2)/g). The relatively low weight loss observed for some as synthesized samples upon solvent removal is also indicative of a low pore volume. Regrettably, these materials have all been described as MOF-5 without any further comments. Furthermore, the reported powder XRD patterns hint at structural differences: The variations in surface area are accompanied by peak splitting phenomena and rather pronounced changes in the relative peak intensities in the powder XRD patterns. In this work, we use single-crystal XRD to investigate structural differences between low and high surface area MOF-5. The low surface area MOF-5 sample had two different classes of crystals. For the dominant phase, Zn(OH)2 species partly occupied the cavities. The presence of Zn species makes the hosting cavity and possibly also adjacent cavities inaccessible and thus efficiently reduces the pore volume of the material. Furthermore, the minor phase consisted of doubly interpenetrated MOF-5 networks, which lowers the adsorption capacity. The presence of Zn species and lattice interpenetration changes the symmetry from cubic to trigonal and explains the peak splitting observed in the powder XRD patterns. Pore-filling effects from the Zn species (and partly the solvent molecules) are also responsible for the pronounced variations in powder XRD peak intensities. This latter conclusion is particularly useful for predicting the adsorption properties of a MOF-5-type material from powder XRD.

  15. Nanoparticles of ZrPO4 for green catalytic applications

    NASA Astrophysics Data System (ADS)

    Sreenivasulu, Peta; Pendem, Chandrasekhar; Viswanadham, Nagabhatla

    2014-11-01

    Here we report the successful room temperature synthesis of zirconium phosphate nanoparticles (ZPNP) using the P123 tri-co-block polymer for the first time. The samples were characterized by SEM, TEM, XRD, TPD, and BET and were employed for fixation of CO2 on aniline to produce pharmaceutically important acetanilide under mild reaction conditions (150 °C and 150 Psi CO2 pressure).Here we report the successful room temperature synthesis of zirconium phosphate nanoparticles (ZPNP) using the P123 tri-co-block polymer for the first time. The samples were characterized by SEM, TEM, XRD, TPD, and BET and were employed for fixation of CO2 on aniline to produce pharmaceutically important acetanilide under mild reaction conditions (150 °C and 150 Psi CO2 pressure). Electronic supplementary information (ESI) available: Experimental details, wide angle XRD, EDX, IR spectra, GC data etc. See DOI: 10.1039/c4nr03209h

  16. Influences of Co doping on the structural and optical properties of ZnO nanostructured

    NASA Astrophysics Data System (ADS)

    Majeed Khan, M. A.; Wasi Khan, M.; Alhoshan, Mansour; Alsalhi, M. S.; Aldwayyan, A. S.

    2010-07-01

    Pure and Co-doped ZnO nanostructured samples have been synthesized by a chemical route. We have studied the structural and optical properties of the samples by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), field-emission transmission electron microscope (FETEM), energy-dispersive X-ray (EDX) analysis and UV-VIS spectroscopy. The XRD patterns show that all the samples are hexagonal wurtzite structures. Changes in crystallite size due to mechanical activation were also determined from X-ray measurements. These results were correlated with changes in particle size followed by SEM and TEM. The average crystallite sizes obtained from XRD were between 20 to 25 nm. The TEM images showed the average particle size of undoped ZnO nanostructure was about 20 nm whereas the smallest average grain size at 3% Co was about 15 nm. Optical parameters such as absorption coefficient ( α), energy band gap ( E g ), the refractive index ( n), and dielectric constants ( σ) have been determined using different methods.

  17. Ion-pairing in aqueous CaCl 2 and RbBr solutions. Simultaneous structural refinement of XAFS and XRD data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Thai V.; Fulton, John L.

    2013-01-22

    We present a new methodology involving the simultaneous refinement of both x-ray absorption and x-ray diffraction spectra (X-ray Absorption/Diffraction Structural Refinement,XADSR), to study hydration and ion pair structure of CaCl 2 and RbBr salts in concentrated aqueous solutions. The XADSR analysis includes the XAFS spectra analysis of both the cation and anion as a probe of their short-range structure with an XRD spectral analysis as a probe of the global structural. Together they deliver a comprehensive picture of the cation and anion hydration, the contact ion pair (CIP) structure and the solvent-separated ion pair (SSIP) structure. XADSR analysis of 6.0more » m aqueous CaCl 2 reveals that there are an insignificant number of Ca 2+-Cl- CIP’s, but there are approximately 3.4 SSIP’s separated by about 4.99 Å. In contrast XADSR analysis of aqueous RbBr yields about 0.7 pair CIP at a bond length 3.51 Å. The present work demonstrates a new approach for a direct co-refinement of XRD and XAFS spectra in a simple and reliable fashion, opening new opportunities for analysis in various disordered and crystalline systems. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the U.S. Department of Energy by Battelle.« less

  18. TEM observations of radiation damage in tungsten irradiated by 20 MeV W ions

    NASA Astrophysics Data System (ADS)

    Ciupiński, Ł.; Ogorodnikova, O. V.; Płociński, T.; Andrzejczuk, M.; Rasiński, M.; Mayer, M.; Kurzydłowski, K. J.

    2013-12-01

    Polycrystalline, recrystallized W targets were subjected to implantation with 20 MeV W6+ ions in order to simulate radiation damage caused by fusion neutrons. Three samples with cumulative damage of 0.01, 0.1 and 0.89 dpa were produced. The near-surface zone of each sample has been analyzed by transmission electron microscopy (TEM). To this end, lamellae oriented perpendicularly to the targets implanted surface were milled out using focused ion beam (FIB). A reference lamella from non-irradiated, recrystallized W target was also prepared to estimate the damage introduced during FIB processing. TEM studies revealed a complex microstructure of the damaged zones as well as its evolution with cumulative damage level. The experimentally observed damage depth agrees very well with the one calculated using the Stopping and Range of Ions in Matter (SRIM) software.

  19. Preparation and characterization of ultrafine nanoparticles of Cu doped lithium tetraborate

    NASA Astrophysics Data System (ADS)

    Khalilzadeh, Nasrin; Saion, Elias Bin; Mirabolghasemi, Hamed; Crouse, Karen A.; Shaari, Abdul Halim Bin; Hashim, Mansor Bin

    This study details an innovative single-step thermal synthesis of nano-sized lithium tetraborate doped with 0.1 %wt copper and its characterization. The heating temperature for the synthesis of the nanoparticle material was optimized by variation between 200 and 850 °C. The optimum amount of polyvinyl pyrrolidone (PVP) the capping agent was determined to be 0.027 mol per 1 g LTB-Cu. The calcination time was 2 h. Characterization of the samples was carried out using Thermogravimetry Analysis (TGA), Derivative Thermogravimetry (DTG), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared (FTIR) Spectroscopy, X-ray diffractometer (XRD), transmission electron microscopy (TEM) and Ultraviolet-Visible (UV-Vis) spectroscopy. The product was thermally stable above 450 °C. FTIR, XRD and TEM results confirmed the formation of pure nano-crystalline copper doped lithium tetraborate between 450 and 750 °C. The optical bandgap was estimated to be 5.02-6.05 eV in the presence of different amounts of PVP at various calcination temperatures.

  20. Synthesis, Optical and Electrochemical Properties of Y2O3 Nanoparticles Prepared by Co-Precipitation Method.

    PubMed

    Saravanan, Thulasingam; Raj, Srinivasan Gokul; Chandar, Nagamuthu Raja Krishna; Jayavel, Ramasamy

    2015-06-01

    Y2O3 nanoparticles were synthesized by co-precipitation route using yttrium nitrate hexahydrate and ammonium hydroxide as precursors. The prepared sample was calcined at 500 degrees C and subjected to various characterization studies like thermal analysis (TG/DTA), X-ray diffraction (XRD), transmission electron microscope (TEM), UV-visible (UV-Vis) and photoluminescence (PL) spectroscopy. The XRD pattern showed the cubic fluorite structure of Y2O3 without any impurity peaks, revealing high purity of the prepared sample. TEM images revealed that the calcined Y2O3 nanoparticles consist of spherical-like morphology with an average particle size of 12 nm. The absorption spectrum of calcined samples shows blue-shift compared to the as-prepared sample, which was further confirmed by PL studies. The possible formation mechanism of Y2O3 nanoparticles has been discussed based on the experimental results. Electrochemical behavior of Y2O3 nanoparticles was studied by cyclic voltammetry to assess their suitability for supercapacitor applications.

  1. Graphene/Ruthenium Active Species Aerogel as Electrode for Supercapacitor Applications

    PubMed Central

    Gigot, Arnaud; Fontana, Marco; Pirri, Candido Fabrizio; Rivolo, Paola

    2017-01-01

    Ruthenium active species containing Ruthenium Sulphide (RuS2) is synthesized together with a self-assembled reduced graphene oxide (RGO) aerogel by a one-pot hydrothermal synthesis. Ruthenium Chloride and L-Cysteine are used as reactants. The hydrothermal synthesis of the innovative hybrid material occurs at 180 °C for 12 h, by using water as solvent. The structure and morphology of the hybrid material are fully characterized by Raman, XRD, XPS, FESEM and TEM. The XRD and diffraction pattern obtained by TEM display an amorphous nanostructure of RuS2 on RGO crystallized flakes. The specific capacitance measured in planar configuration in 1 M NaCl electrolyte at 5 mV s−1 is 238 F g−1. This supercapacitor electrode also exhibits perfect cyclic stability without loss of the specific capacitance after 15,000 cycles. In summary, the RGO/Ruthenium active species hybrid material demonstrates remarkable properties for use as active material for supercapacitor applications. PMID:29301192

  2. Biosynthesis of Silver Nanoparticles Using Brown Marine Macroalga, Sargassum Muticum Aqueous Extract

    PubMed Central

    Azizi, Susan; Namvar, Farideh; Mahdavi, Mahnaz; Ahmad, Mansor Bin; Mohamad, Rosfarizan

    2013-01-01

    Biological synthesis of nanoparticles is a relatively new emerging field of nanotechnology which has economic and eco-friendly benefits over chemical and physical processes of synthesis. In the present work, for the first time, the brown marine algae Sargassum muticum (S. muticum) aqueous extract was used as a reducing agent for the synthesis of nanostructure silver particles (Ag-NPs). Structural, morphological and optical properties of the synthesized nanoparticles have been characterized systematically by using FTIR, XRD, TEM and UV–Vis spectroscopy. The formation of Ag-NPs was confirmed through the presence of an intense absorption peak at 420 nm using a UV–visible spectrophotometer. A TEM image showed that the particles are spherical in shape with size ranging from 5 to 15 nm. The nanoparticles were crystalline in nature. This was confirmed by the XRD pattern. From the FTIR results, it can be seen that the reduction has mostly been carried out by sulphated polysaccharides present in S. muticum. PMID:28788431

  3. Graphene/Ruthenium Active Species Aerogel as Electrode for Supercapacitor Applications.

    PubMed

    Gigot, Arnaud; Fontana, Marco; Pirri, Candido Fabrizio; Rivolo, Paola

    2017-12-30

    Ruthenium active species containing Ruthenium Sulphide (RuS₂) is synthesized together with a self-assembled reduced graphene oxide (RGO) aerogel by a one-pot hydrothermal synthesis. Ruthenium Chloride and L-Cysteine are used as reactants. The hydrothermal synthesis of the innovative hybrid material occurs at 180 °C for 12 h, by using water as solvent. The structure and morphology of the hybrid material are fully characterized by Raman, XRD, XPS, FESEM and TEM. The XRD and diffraction pattern obtained by TEM display an amorphous nanostructure of RuS₂ on RGO crystallized flakes. The specific capacitance measured in planar configuration in 1 M NaCl electrolyte at 5 mV s -1 is 238 F g -1 . This supercapacitor electrode also exhibits perfect cyclic stability without loss of the specific capacitance after 15,000 cycles. In summary, the RGO/Ruthenium active species hybrid material demonstrates remarkable properties for use as active material for supercapacitor applications.

  4. Biosynthesis of Silver Nanoparticles Using Brown Marine Macroalga, Sargassum Muticum Aqueous Extract.

    PubMed

    Azizi, Susan; Namvar, Farideh; Mahdavi, Mahnaz; Ahmad, Mansor Bin; Mohamad, Rosfarizan

    2013-12-18

    Biological synthesis of nanoparticles is a relatively new emerging field of nanotechnology which has economic and eco-friendly benefits over chemical and physical processes of synthesis. In the present work, for the first time, the brown marine algae Sargassum muticum ( S. muticum ) aqueous extract was used as a reducing agent for the synthesis of nanostructure silver particles (Ag-NPs). Structural, morphological and optical properties of the synthesized nanoparticles have been characterized systematically by using FTIR, XRD, TEM and UV-Vis spectroscopy. The formation of Ag-NPs was confirmed through the presence of an intense absorption peak at 420 nm using a UV-visible spectrophotometer. A TEM image showed that the particles are spherical in shape with size ranging from 5 to 15 nm. The nanoparticles were crystalline in nature. This was confirmed by the XRD pattern. From the FTIR results, it can be seen that the reduction has mostly been carried out by sulphated polysaccharides present in S. muticum .

  5. Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica

    NASA Astrophysics Data System (ADS)

    Sett, Arghya; Gadewar, Manoj; Sharma, Pragya; Deka, Manab; Bora, Utpal

    2016-06-01

    In this study, we report a novel method of gold nanoparticle (AuNP) synthesis using aqueous fruit extract of Dillenia indica. The phytochemicals present in the fruit extract act as an effective reducing and capping agent to synthesize AuNPs. The synthesized AuNPs were characterized by spectrophotometry, transmission electron microscopy (TEM), x-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. TEM studies revealed the particles of various sizes and mainly spherical in shape. Selected-area electron diffraction (SAED) patterns and high-resolution transmission electron microscopy (HRTEM) images confirmed the crystallinity of the particles. The XRD patterns showed peaks at (111), (200), (220) which exhibited preferential orientation of the AuNPs as face-centered cubic crystal. FTIR measurements confirmed the coating of phenolic compounds on the AuNPs indicating a possible role of biomolecules for the capping and efficient stabilization of the AuNPs. The synthesized AuNPs did not show any form of cytotoxicity in the normal fibroblast cell line L929.

  6. The structure and transformation of the nanomineral schwertmannite: a synthetic analog representative of field samples

    NASA Astrophysics Data System (ADS)

    French, Rebecca A.; Monsegue, Niven; Murayama, Mitsuhiro; Hochella, Michael F.

    2014-04-01

    The phase transformation of schwertmannite, an iron oxyhydroxide sulfate nanomineral synthesized at room temperature and at 75 °C using H2O2 to drive the precipitation of schwertmannite from ferrous sulfate (Regenspurg et al. in Geochim Cosmochim Acta 68:1185-1197, 2004), was studied using high-resolution transmission electron microscopy. The results of this study suggest that schwertmannite synthesized using this method should not be described as a single phase with a repeating unit cell, but as a polyphasic nanomineral with crystalline areas spanning less than a few nanometers in diameter, within a characteristic `pin-cushion'-like amorphous matrix. The difference in synthesis temperature affected the density of the needles on the schwertmannite surface. The needles on the higher-temperature schwertmannite displayed a dendritic morphology, whereas the needles on the room-temperature schwertmannite were more closely packed. Visible lattice fringes in the schwertmannite samples are consistent with the powder X-ray diffraction (XRD) pattern taken on the bulk schwertmannite and also matched d-spacings for goethite, indicating a close structural relationship between schwertmannite and goethite. The incomplete transformation from schwertmannite to goethite over 24 h at 75 °C was tracked using XRD and TEM. TEM images suggest that the sample collected after 24 h consists of aggregates of goethite nanocrystals. Comparing the synthetic schwertmannite in this study to a study on schwertmannite produced at 85 °C, which used ferric sulfate, reveals that synthesis conditions can result in significant differences in needle crystal structure. The bulk powder XRD patterns for the schwertmannite produced using these two samples were indistinguishable from one another. Future studies using synthetic schwertmannite should account for these differences when determining schwertmannite's structure, reactivity, and capacity to take up elements like arsenic. The schwertmannite

  7. Homology modeling and virtual screening of inhibitors against TEM- and SHV-type-resistant mutants: A multilayer filtering approach.

    PubMed

    Baig, Mohammad H; Balaramnavar, Vishal M; Wadhwa, Gulshan; Khan, Asad U

    2015-01-01

    TEM and SHV are class-A-type β-lactamases commonly found in Escherichia coli and Klebsiella pneumoniae. Previous studies reported S130G and K234R mutations in SHVs to be 41- and 10-fold more resistant toward clavulanic acid than SHV-1, respectively, whereas TEM S130G and R244S also showed the same level of resistance. These selected mutants confer higher level of resistance against clavulanic acid. They also show little susceptibility against other commercially available β-lactamase inhibitors. In this study, we have used docking-based virtual screening approach in order to screen potential inhibitors against some of the major resistant mutants of SHV and TEM types β-lactamase. Two different inhibitor-resistant mutants from SHV and TEM were selected. Moreover, we have retained the active site water molecules within each enzyme. Active site water molecules were placed within modeled structure of the mutant whose structure was unavailable with protein databank. The novelty of this work lies in the use of multilayer virtual screening approach for the prediction of best and accurate results. We are reporting five inhibitors on the basis of their efficacy against all the selected resistant mutants. These inhibitors were selected on the basis of their binding efficacies and pharmacophore features. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  8. Thermoluminescence (TL) properties and x-ray diffraction (XRD) analysis of high purity CaSO4:Dy TL material

    NASA Astrophysics Data System (ADS)

    Kamarudin, Nadira; Abdullah, Wan Saffiey Wan; Hamid, Muhammad Azmi Abdul; Dollah, Mohd Taufik

    2014-09-01

    This paper presents the characterization and TL properties of dysprosium (Dy) doped calcium sulfate (CaSO4) TL material produced by co-precipitation technique with 0.5mol% concentration of dopant. The morphology of the produced TL material was studied using scanning electron microscope (SEM) and the micrograph shows that rectangular parallelepiped shaped crystal with the average of 150 μm in length were produced. The crystallinity of the produced powder was studied using x-ray powder diffraction (XRD). The XRD spectra show that the TL material produced is high purity anhydrite CaSO4 with average crystallite size of 74 nm with orthorhombic crystal system. The TL behavior of produced CaSO4:Dy was studied using a TLD reader after exposure to gamma ray by Co60 source with the doses of 1,5 and 10 Gy. The glow curve shows linear response with glow peak around 230°C which is desired development in the field of radiation dosimetry.

  9. Some critical aspects of FT-IR, TGA, powder XRD, EDAX and SEM studies of calcium oxalate urinary calculi.

    PubMed

    Joshi, Vimal S; Vasant, Sonal R; Bhatt, J G; Joshi, Mihir J

    2014-06-01

    Urinary calculi constitute one of the oldest afflictions of humans as well as animals, which are occurring globally. The calculi vary in shape, size and composition, which influence their clinical course. They are usually of the mixed-type with varying percentages of the ingredients. In medical management of urinary calculi, either the nature of calculi is to be known or the exact composition of calculi is required. In the present study, two selected calculi were recovered after surgery from two different patients for detailed examination and investigated by using Fourier-Transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), powder X-ray diffraction (XRD), scanning electron microscopy and energy dispersive analysis of X-rays (EDAX) techniques. The study demonstrated that the nature of urinary calculi and presence of major phase in mixed calculi could be identified by FT-IR, TGA and powder XRD, however, the exact content of various elements could be found by EDAX only.

  10. BiOBr microspheres for photocatalytic degradation of an anionic dye

    NASA Astrophysics Data System (ADS)

    Mera, Adriana C.; Váldes, Héctor; Jamett, Fabiola J.; Meléndrez, M. F.

    2017-03-01

    BiOBr microspheres were obtained using a solvothermal synthesis route in the presence of ethylene glycol and KBr at 145 °C, for 18 h. BiOBr microspheres were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), nitrogen adsorption-desorption isotherms analysis, diffuse reflectance spectroscopy (DRS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Additionally, the theoretical and experimental isoelectric points (IEP) of BiOBr nanostructured microspheres were determined, and pH's influence on the degradation of an anionic dye (methyl orange) under simulated solar radiation was analyzed. Results show that 97% of methyl orange is removed at pH 2 after 60 min of photocatalytic reaction. Finally, DRIFTS studies permit the proposal of a surface reaction mechanism of the photocatalytic oxidation of MO using BiOBr microspheres.

  11. Molten salt synthesis and luminescent properties of YVO4:Ln (Ln = Eu3+, Dy3+) nanophosphors.

    PubMed

    Liu, Chenglu; Wang, Fang; Jia, Peiyun; Lin, Jun; Zhou, Zhiqiang

    2012-01-01

    Eu3+ and Dy(3+)-doped YVO4 nanocrystallites were successfully prepared at 400 degrees C in equal moles of NaNO3 and KNO3 molten salts. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, transmission electronic microscopy (TEM), photoluminescence (PL) spectrum and lifetime were used to characterize the nanocrystallites. XRD results demonstrate that NaOH concentration and annealing temperature play important roles in phase purity and crystallinity of the nanocrystallites, the optimum NaOH concentration and annealing temperature being 6:40 and 400 degrees C respectively. TEM micrographs show the nanocrystallites are well crystallized with a cubic morphology in an average grain size of about 18 nm. Upon excitation of the vanadate group at 314 nm, YVO4:Eu3+ and YVO4:Dy3+ nanocrystallites exhibit the characteristic emission of Eu3+ and Dy3+, which indicates that there is an energy transfer from the vanadate group to the rare earth ions. Moreover, the structure and luminescent properties of the nanocrystallites were compared with their bulk counterparts with same composition in detail.

  12. A convenient method for X-ray analysis in TEM that measures mass thickness and composition

    NASA Astrophysics Data System (ADS)

    Statham, P.; Sagar, J.; Holland, J.; Pinard, P.; Lozano-Perez, S.

    2018-01-01

    We consider a new approach for quantitative analysis in transmission electron microscopy (TEM) that offers the same convenience as single-standard quantitative analysis in scanning electron microscopy (SEM). Instead of a bulk standard, a thin film with known mass thickness is used as a reference. The procedure involves recording an X-ray spectrum from the reference film for each session of acquisitions on real specimens. There is no need to measure the beam current; the current only needs to be stable for the duration of the session. A new reference standard with a large (1 mm x 1 mm) area of uniform thickness of 100 nm silicon nitride is used to reveal regions of X-ray detector occlusion that would give misleading results for any X-ray method that measures thickness. Unlike previous methods, the new X-ray method does not require an accurate beam current monitor but delivers equivalent accuracy in mass thickness measurement. Quantitative compositional results are also automatically corrected for specimen self-absorption. The new method is tested using a wedge specimen of Inconel 600 that is used to calibrate the high angle angular dark field (HAADF) signal to provide a thickness reference and results are compared with electron energy-loss spectrometry (EELS) measurements. For the new X-ray method, element composition results are consistent with the expected composition for the alloy and the mass thickness measurement is shown to provide an accurate alternative to EELS for thickness determination in TEM without the uncertainty associated with mean free path estimates.

  13. Fe-Cr-Mo based ODS alloys via spark plasma sintering: A combinational characterization study by TEM and APT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Q. Wu; K. N. Allahar; J. Burns

    2013-08-01

    Nanoscale oxides play an important role in oxide dispersion strengthened (ODS) alloys for improved high temperature creep resistance and enhanced radiation damage tolerance. In this study, transmission electron microscopy (TEM) and atom probe tomography (APT) were combined to investigate two novel Fe-16Cr-3Mo (wt.%) based ODS alloys. Spark plasma sintering (SPS) was used to consolidate the ODS alloys from powders that were milled with 0.5 wt.% Y2O3 powder only or with Y2O3 powder and 1 wt.% Ti. TEM characterization revealed that both alloys have a bimodal structure of nanometer-size (~ 100 – 500 nm) and micron-size grains with nanostructured oxide precipitatesmore » formed along and close to grain boundaries with diameters ranging from five to tens of nanometers. APT provides further quantitative analyses of the oxide precipitates, and also reveals Mo segregation at grain boundaries next to oxide precipitates. The alloys with and without Ti are compared based on their microstructures.« less

  14. Effects of uniformities of deposition of respirable particles on filters on determining their quartz contents by using the direct on-filter X-ray diffraction (DOF XRD) method.

    PubMed

    Chen, Ching-Hwa; Tsaia, Perng-Jy; Lai, Chane-Yu; Peng, Ya-Lian; Soo, Jhy-Charm; Chen, Cheng-Yao; Shih, Tung-Sheng

    2010-04-15

    In this study, field samplings were conducted in three workplaces of a foundry plant, including the molding, demolding, and bead blasting, respectively. Three respirable aerosol samplers (including a 25-mm aluminum cyclone, nylon cyclone, and IOSH cyclone) were used side-by-side to collect samples from each selected workplace. For each collected sample, the uniformity of the deposition of respirable dusts on the filter was measured and its free silica content was determined by both the DOF XRD method and NIOSH 7500 XRD method (i.e., the reference method). A same trend in measured uniformities can be found in all selected workplaces: 25-mm aluminum cyclone>nylon cyclone>IOSH cyclone. Even for samples collected by the sampler with the highest uniformity (i.e., 25-mm aluminum cyclone), the use of the DOF XRD method would lead to the measured free silica concentrations 1.15-2.89 times in magnitude higher than that of the reference method. A new filter holder should be developed with the minimum uniformity comparable to that of NIOSH 7500 XRD method (=0.78) in the future. The use of conversion factors for correcting quartz concentrations obtained from the DOF XRD method based on the measured uniformities could be suitable for the foundry industry at this stage. 2009 Elsevier B.V. All rights reserved.

  15. U-Zr alloy: XPS and TEM study of surface passivation

    NASA Astrophysics Data System (ADS)

    Paukov, M.; Tkach, I.; Huber, F.; Gouder, T.; Cieslar, M.; Drozdenko, D.; Minarik, P.; Havela, L.

    2018-05-01

    Surface reactivity of Uranium metal is an important factor limiting its practical applications. Bcc alloys of U with various transition metals are much less reactive than pure Uranium. So as to specify the mechanism of surface protection, we have been studying the U-20 at.% Zr alloy by photoelectron spectroscopy and transmission electron microscopy. The surface was studied in as-obtained state, in various stages of surface cleaning, and during an isochronal annealing cycle. The analysis based on U-4f, Zr-3p, and O-1 s spectra shows that a Zr-rich phase segregates at the surface at temperatures exceeding 550 K, which provides a self-assembled coating. The comparison of oxygen exposure of the stoichiometric and coated surfaces shows that the coating is efficiently preventing the oxidation of uranium even at elevated temperatures. The coating can be associated with the UZr2+x phase. TEM study indicated that the coating is about 20 nm thick. For the clean state, the U-4f core-level lines of the bcc alloy are practically identical to those of α-U, revealing similar delocalization of the 5f electronic states.

  16. Soot Precursor Material: Spatial Location via Simultaneous LIF-LII Imaging and Characterization via TEM

    NASA Technical Reports Server (NTRS)

    VanderWal, Randall L.

    1996-01-01

    The chemical and physical transformation between gaseous fuel pyrolysis products and solid carbonaceous soot represents a critical step in soot formation. In this paper, simultaneous two-dimensional LIF-LII (laser-induced fluorescence - laser-induced incandescence) images identify the spatial location where the earliest identifiable chemical and physical transformation of material towards solid carbonaceous soot occurs along the axial streamline in a normal diffusion flame. The identification of the individual LIF and LII signals is achieved by examining both the excitation wavelength dependence and characteristic temporal decay of each signal. Spatially precise thermophoretic sampling measurements are guided by the LIF-LII images with characterization of the sampled material accomplished via both bright and dark field TEM. Both bright and dark field TEM measurements support the observed changes in photophysical properties which account for conversion of fluorescence to incandescence as fuel pyrolysis products evolve towards solid carbonaceous soot.

  17. Debye temperature of metallic nanowires--an experimental determination from the resistance of metallic nanowires in the temperature range 4.2 K-300 K.

    PubMed

    Bid, Aveek; Bora, Achyut; Raychaudhuri, A K

    2007-06-01

    We have studied the resistance of metallic nanowires (silver and copper) as a function of the wire diameter in the temperature range 4.2 K-300 K. The nanowires with an average diameter of 15 nm-200 nm and length 6 microm were electrochemically deposited using polycarbonate membranes as template from AgNO3 and CuSO4, respectively. The wires after growth were removed from the membranes by dissolving the polymer in dichloromethane and their crystalline nature confirmed by XRD and TEM studies. The TEM study establishes that the nanowires are single crystalline and can have twin in them. The resistivity data was fitted to Bloch-Gruneisen theorem with the values of Debye temperature and the electron-acoustic phonon coupling constant as the two fit variables. The value of the Debye temperature obtained for the Ag wires was seen to match well with that of the bulk while for Cu wires a significant reduction was observed. The observed increase in resistivity with a decrease in the wire diameter could be explained as due to diffuse surface scattering of the conduction electrons.

  18. Morphological, chemical and structural characterisation of deciduous enamel: SEM, EDS, XRD, FTIR and XPS analysis.

    PubMed

    Zamudio-Ortega, C M; Contreras-Bulnes, R; Scougall-Vilchis, R J; Morales-Luckie, R A; Olea-Mejía, O F; Rodríguez-Vilchis, L E

    2014-09-01

    The purpose of this study was to characterise the enamel surface of sound deciduous teeth in terms of morphology, chemical composition, structure and crystalline phases. The enamel of 30 human deciduous teeth was examined by: Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), X-ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS). Chemical differences between incisors and canines were statistically evaluated using the Mann-Whitney U test (p ≤ 0.05). Three enamel patterns were observed by SEM: 'mostly smooth with some groves', 'abundant microporosities' and 'exposed prisms'. The average Ca/P molar ratios were 1.37 and 1.03 by EDS and XPS, respectively. The crystallite size determined by XRD was 210.82 ± 16.78 Å. The mean ratio between Ca bonded to phosphate and Ca bonded to hydroxyl was approximately 10:1. The enamel of sound deciduous teeth showed two main patterns: 'mostly smooth with some groves' and 'abundant microporosities'. 'Exposed prisms' was a secondary pattern. There were slight variations among the Ca/P molar ratios found by EDS and XPS, suggesting differences in the mineral content from the enamel surface to the interior. The crystalline phases found in enamel were hydroxyapatite and carbonate apatite, with major type B than type A carbonate incorporation.

  19. High temperature XRD of Cu{sub 2}GeSe{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Premkumar, D. S.; Malar, P.; Chetty, Raju

    2015-06-24

    The Cu{sub 2}GeSe{sub 3} is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 °C to 450 °C. The reitveld refinement confirms Cu{sub 2}GeSe{sub 3} phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 °C to 400 °C. Decrease in the values of linear expansion coefficients with temperature are observed along a andmore » c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature.« less

  20. In-Situ TEM-STM Observations of SWCNT Ropes/Tubular Transformations

    NASA Technical Reports Server (NTRS)

    Sola, F.; Lebron-Colon, M.; Ferreira, P. J.; Fonseca, L. F.; Meador, M. A.; Marin, C.

    2010-01-01

    Single-walled carbon nanotubes (SWCNTs) prepared by the HiPco process were purified using a modified gas phase purification technique. A TEM-STM holder was used to study the morphological changes of SWCNT ropes as a function of applied voltage. Kink formation, buckling behavior, tubular transformation and eventual breakdown of the system were observed. The tubular formation was attributed to a transformation from SWCNT ropes to multi-walled carbon nanotube (MWCNT) structures. It is likely mediated by the patching and tearing mechanism which is promoted primarily by the mobile vacancies generated due to current-induced heating and, to some extent, by electron irradiation.

  1. Can direct electron detectors outperform phosphor-CCD systems for TEM?

    NASA Astrophysics Data System (ADS)

    Moldovan, G.; Li, X.; Kirkland, A.

    2008-08-01

    A new generation of imaging detectors is being considered for application in TEM, but which device architectures can provide the best images? Monte Carlo simulations of the electron-sensor interaction are used here to calculate the expected modulation transfer of monolithic active pixel sensors (MAPS), hybrid active pixel sensors (HAPS) and double sided Silicon strip detectors (DSSD), showing that ideal and nearly ideal transfer can be obtained using DSSD and MAPS sensors. These results highly recommend the replacement of current phosphor screen and charge coupled device imaging systems with such new directly exposed position sensitive electron detectors.

  2. Interaction of selenite with reduced Fe and/or S species: An XRD and XAS study.

    PubMed

    Finck, Nicolas; Dardenne, Kathy

    2016-05-01

    In this study, we investigated the interaction between selenite and either Fe((II))aq or S((-II))aq in solution, and the results were used to investigate the interaction between Se((IV))aq and FeS in suspension. The reaction products were characterized by a combination of methods (SEM, XRD and XAS) and the reaction mechanisms were identified. In a first experiment, Se((IV))aq was reduced to Se((0)) by interaction with Fe((II))aq which was oxidized to Fe((III)), but the reaction was only partial. Subsequently, some Fe((III)) produced akaganeite (β-FeOOH) and the release of proton during that reaction decreased the pH. The pH decrease changed the Se speciation in solution which hindered further Se((IV)) reduction by Fe((II))aq. In a second experiment, Se((IV))aq was quantitatively reduced to Se((0)) by S((-II))aq and the reaction was fast. Two sulfide species were needed to reduce one Se((IV)), and the observed pH increase was due to a proton consumption. For both experiments, experimental results are consistent with expectations based on the oxidation reduction potential of the various species. Upon interaction with FeS, Se((IV))aq was reduced to Se((0)) and minute amounts of pyrite were detected, a consequence of partial mackinawite oxidation at surface sulfur sites. These results are of prime importance with respect to safe deep disposal of nuclear waste which contains the long-lived radionuclide (79)Se. This study shows that after release of (79)Se((IV)) upon nuclear waste matrix corrosion, selenite can be reduced in the near field to low soluble Se((0)) by interaction with Fe((II))aq and/or S((-II))aq species. Because the solubility of Se((0)) species is significantly lower than that of Se((IV)), selenium will become much less (bio)available and its migration out of deep HLW repositories may be drastically hindered. Copyright © 2016. Published by Elsevier B.V.

  3. Predicting neutron damage using TEM with in situ ion irradiation and computer modeling

    NASA Astrophysics Data System (ADS)

    Kirk, Marquis A.; Li, Meimei; Xu, Donghua; Wirth, Brian D.

    2018-01-01

    We have constructed a computer model of irradiation defect production closely coordinated with TEM and in situ ion irradiation of Molybdenum at 80 °C over a range of dose, dose rate and foil thickness. We have reexamined our previous ion irradiation data to assign appropriate error and uncertainty based on more recent work. The spatially dependent cascade cluster dynamics model is updated with recent Molecular Dynamics results for cascades in Mo. After a careful assignment of both ion and neutron irradiation dose values in dpa, TEM data are compared for both ion and neutron irradiated Mo from the same source material. Using the computer model of defect formation and evolution based on the in situ ion irradiation of thin foils, the defect microstructure, consisting of densities and sizes of dislocation loops, is predicted for neutron irradiation of bulk material at 80 °C and compared with experiment. Reasonable agreement between model prediction and experimental data demonstrates a promising direction in understanding and predicting neutron damage using a closely coordinated program of in situ ion irradiation experiment and computer simulation.

  4. Motorized manipulator for positioning a TEM specimen

    DOEpatents

    Schmid, Andreas Karl; Andresen, Nord

    2010-12-14

    The invention relates to a motorized manipulator for positioning a TEM specimen holder with sub-micron resolution parallel to a y-z plane and rotating the specimen holder in the y-z plane, the manipulator comprising a base (2), and attachment means (30) for attaching the specimen holder to the manipulator, characterized in that the manipulator further comprises at least three nano-actuators (3.sup.a, 3.sup.b, 3.sup.c) mounted on the base, each nano-actuator showing a tip (4.sup.a, 4.sup.b, 4.sup.c), the at least three tips defining the y-z plane, each tip capable of moving with respect to the base in the y-z plane; a platform (5) in contact with the tips of the nano-actuators; and clamping means (6) for pressing the platform against the tips of the nano-actuators; as a result of which the nano-actuators can rotate the platform with respect to the base in the y-z plane and translate the platform parallel to the y-z plane.

  5. Combined TEM and NanoSIMS Analysis of Subgrains in a SiC AB Grain

    NASA Astrophysics Data System (ADS)

    Hynes, K. M.; Amari, S.; Bernatowicz, T. J.; Lebsack, E.; Gyngard, F.; Nittler, L. R.

    2011-03-01

    We report the results of NanoSIMS and TEM analysis, including isotopic, structural, chemical, and subgrain data, on a SiC AB grain. This grain contains the first oldhamite subgrains observed in a presolar grain, as well as TiC- and Fe-rich subgrains.

  6. Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shalendra, E-mail: shailuphy@gmail.com; School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773; Song, T.K., E-mail: tksong@changwon.ac.kr

    Highlights: • XRD and HR-TEM results show the single phase nature of Co doped ZnO nanoparticles. • XMCD and dc magnetization results indicate the RT-FM in Co doped ZnO nanoparticles. • Co L{sub 3,2} NEXAFS spectra infer that Co ions are in 2+ valence state. • O K edge NEXAFS spectra show that O vacancy increases with Co doping in ZnO. - Abstract: We reported structural, magnetic and electronic structure studies of Co doped ZnO nanoparticles. Doping of Co ions in ZnO host matrix has been studied and confirmed using various methods; such as X-ray diffraction (XRD), field emission scanningmore » electron microscopy (FE-SEM), energy dispersed X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, magnetic hysteresis loop measurements and X-ray magnetic circular dichroism (XMCD). From the XRD and HR-TEM results, it is observed that Co doped ZnO nanoparticles have single phase nature with wurtzite structure and exclude the possibility of secondary phase formation. FE-SEM and TEM micrographs show that pure and Co doped nanoparticles are nearly spherical in shape. O K edge NEXAFS spectra indicate that O vacancies increase with Co doping. The Co L{sub 3,2} edge NEXAFS spectra revealed that Co ions are in 2+ valence state. DC magnetization hysteresis loops and XMCD results clearly showed the intrinsic origin of temperature ferromagnetism in Co doped ZnO nanoparticles.« less

  7. Characterizing the Phyllosilicates and Amorphous Phases Found by MSL Using Laboratory XRD and EGA Measurements of Natural and Synthetic Materials

    NASA Technical Reports Server (NTRS)

    Rampe, Elizabeth B.; Morris, Richard V.; Chipera, Steve; Bish, David L.; Bristow, Thomas; Archer, Paul Douglas; Blake, David; Achilles, Cherie; Ming, Douglas W.; Vaniman, David; hide

    2013-01-01

    The Curiosity Rover landed on the Peace Vallis alluvial fan in Gale crater on August 5, 2012. A primary mission science objective is to search for past habitable environments, and, in particular, to assess the role of past water. Identifying the minerals and mineraloids that result from aqueous alteration at Gale crater is essential for understanding past aqueous processes at the MSL landing site and hence for interpreting the site's potential habitability. X-ray diffraction (XRD) data from the CheMin instrument and evolved gas analyses (EGA) from the SAM instrument have helped the MSL science team identify phases that resulted from aqueous processes: phyllosilicates and amorphous phases were measure in two drill samples (John Klein and Cumberland) obtained from the Sheepbed Member, Yellowknife Bay Fm., which is believed to represent a fluvial-lacustrine environment. A third set of analyses was obtained from scoop samples from the Rocknest sand shadow. Chemical data from the APXS instrument have helped constrain the chemical compositions of these secondary phases and suggest that the phyllosilicate component is Mg-enriched and the amorphous component is Fe-enriched, relatively Si-poor, and S- and H-bearing. To refine the phyllosilicate and amorphous components in the samples measured by MSL, we measured XRD and EGA data for a variety of relevant natural terrestrial phyllosilicates and synthetic mineraloids in laboratory testbeds of the CheMin and SAM instruments. Specifically, Mg-saturated smectites and vermiculites were measured with XRD at low relative humidity to understand the behavior of the 001 reflections under Mars-like conditions. Our laboratory XRD measurements suggest that interlayer cation composition affects the hydration state of swelling clays at low RH and, thus, the 001 peak positions. XRD patterns of synthetic amorphous materials, including allophane, ferrihydrite, and hisingerite were used in full-pattern fitting (FULLPAT) models to help

  8. Advantages of TOF-SIMS analysis of hydroxyapatite and fluorapatite in comparison with XRD, HR-TEM and FT-IR.

    PubMed

    Okazaki, Masayuki; Hirata, Isao; Matsumoto, Takuya; Takahashi, Junzo

    2005-12-01

    The chemical analysis of hydroxyapatite and fluorapatite was carried out using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Hydroxyapatite and fluorapatite were synthesized at 80 +/- 1 degrees C and pH 7.4 +/- 0.2. Fluorapatite was better crystallized, with its (300) reflection shifted to a slightly higher angle. High-resolution transmission electron microscopy clearly revealed a typical, regular hexagonal cross section perpendicular to the c-axis for fluorapatite and a flattened hexagonal cross section for hydroxyapatite. FT-IR spectra of fluorapatite confirmed the absence of OH absorption peak--which was seen in hydroxyapatite at about 3570 cm(-1). TOF-SIMS mass spectra showed a peak at 40 amu due to calcium. In addition, a peak at 19 amu due to fluorine could be clearly seen, although the intensities of PO, PO2, and PO3 were very low. It was confirmed that TOF-SIMS clearly showed the differences between positive and negative mass spectra of hydroxyapatite and fluorapatite, especially for F-. We concluded that TOF-SIMS exhibited distinct advantages compared with other methods of analysis.

  9. Combustion synthesis and structural analysis of nanocrystalline nickel ferrite at low temperature regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanmugavel, T., E-mail: gokulrajs@hotmail.com, E-mail: shanmugavelnano@gmail.com; Raj, S. Gokul, E-mail: gokulrajs@hotmail.com, E-mail: shanmugavelnano@gmail.com; Rajarajan, G.

    2015-06-24

    Combustion synthesis of single phase Nickel ferrite was successfully achieved at low temperature regime. The obtained powders were calcinated to increase the crystallinity and their characterization change due to calcinations is investigated in detail. Citric acid used as a chelating agent for the synthesis of nickel ferrite. Pure single phase nickel ferrites were found at this low temperature. The average crystalline sizes were measured by using powder XRD measurements. Surface morphology was investigated through Transmission Electron Microscope (TEM). Particle size calculated in XRD is compared with TEM results. Magnetic behaviour of the samples is analyzed by using Vibrating Sample Magnetometermore » (VSM). Saturation magnetization, coercivity and retentivity are measured and their results are discussed in detail.« less

  10. Synthesis and characterization of Ni doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Gedam, P. P.; Ganorkar, R. P.; Mahure, M. A.; Pahurkar, V. G.; Muley, G. G.

    2018-05-01

    In this paper, we present synthesis of L-valine assisted surface modification of Ni doped ZnO nanoparticles (NPs) using chemical precipitation method. Samples were calcined at 500oC for 2h. Uncalcined and calcined samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) spectroscopy. Ni doped ZnO NPs with average particle size of 8 nm have been successfully obtained using L-valine as surface modifying agent. Increase in the particle size was observed after the calcination. XRD and TEM studies confirmed the purity, surface morphology and hexagonal wurtzite crystal structure of ZnO NPs. UV-vis spectroscopy indicated the blue shift of excitons absorption wavelength and surface modification by L-valine.

  11. Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM

    PubMed Central

    Bittencourt, Carla; Bals, Sara; Van Tendeloo, Gustaaf

    2013-01-01

    Summary Focused-electron-beam-induced deposition (FEBID) is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM) in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature. PMID:23399584

  12. Microstructural studies by TEM of diamond films grown by combustion flame

    NASA Astrophysics Data System (ADS)

    Ma, G.-H. M.; Hirose, Y.; Amanuma, S.; McClure, M.; Prater, J. T.; Glass, J. T.

    Microstructures of diamond films grown in an oxygen-acetylene combustion flame were studied by TEM. The O2/C2H2 gas ratio was fixed and the substrate materials and temperature were varied. High quality diamond films were grown by this method at high growth rates of about 30 micron/hr. A rough surface and high density of secondary nucleation sites and microtwins were observed in the diamond grains grown on molybdenum (Mo) at a substrate temperature of 500 C. When the substrate temperature wass raised to between 500 and 870 C, the defect density was greatly reduced, revealing a low density of stacking faults and dislocations. Diamond films grown on Si substrates did not show the same substrate temperature dependence on defect density, at least not over the same temperature range. However, the same correlation between defect density, secondary nucleation, and surface morphology was observed.

  13. "Rinse and trickle": a protocol for TEM preparation and investigation of inorganic fibers from biological material.

    PubMed

    Vigliaturo, Ruggero; Capella, Silvana; Rinaudo, Caterina; Belluso, Elena

    2016-07-01

    The purpose of this work is to define a sample preparation protocol that allows inorganic fibers and particulate matter extracted from different biological samples to be characterized morphologically, crystallographically and chemically by transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS). The method does not damage or create artifacts through chemical attacks of the target material. A fairly rapid specimen preparation is applied with the aim of performing as few steps as possible to transfer the withdrawn inorganic matter onto the TEM grid. The biological sample is previously digested chemically by NaClO. The salt is then removed through a series of centrifugation and rinse cycles in deionized water, thus drastically reducing the digestive power of the NaClO and concentrating the fibers for TEM analysis. The concept of equivalent hydrodynamic diameter is introduced to calculate the settling velocity during the centrifugation cycles. This technique is applicable to lung tissues and can be extended to a wide range of organic materials. The procedure does not appear to cause morphological damage to the fibers or modify their chemistry or degree of crystallinity. The extrapolated data can be used in interdisciplinary studies to understand the pathological effects caused by inorganic materials.

  14. Epidemiological Survey of Amoxicillin-Clavulanate Resistance and Corresponding Molecular Mechanisms in Escherichia coli Isolates in France: New Genetic Features of blaTEM Genes

    PubMed Central

    Leflon-Guibout, V.; Speldooren, V.; Heym, B.; Nicolas-Chanoine, M.-H.

    2000-01-01

    Amoxicillin-clavulanate resistance (MIC >16 μg/ml) and the corresponding molecular mechanisms were prospectively studied in Escherichia coli over a 3-year period (1996 to 1998) in 14 French hospitals. The overall frequency of resistant E. coli isolates remained stable at about 5% over this period. The highest frequency of resistant isolates (10 to 15%) was observed, independently of the year, among E. coli isolated from lower respiratory tract samples, and the isolation rate of resistant strains was significantly higher in surgical wards than in medical wards in 1998 (7.8 versus 2.8%). The two most frequent mechanisms of resistance for the 3 years were the hyperproduction of the chromosomal class C β-lactamase (48, 38.4, and 39.7%) and the production of inhibitor-resistant TEM (IRT) enzymes (30.4, 37.2, and 41.2%). By using the single-strand conformational polymorphism–PCR technique and sequencing methods, we determined that 59 IRT enzymes corresponded to previously described IRT enzymes whereas 8 were new. Three of these new enzymes derived from TEM-1 by only one amino acid substitution (Ser130Gly, Arg244Gly, and Asn276Asp), whereas three others derived by two amino acid substitutions (Met69Leu and Arg244Ser, Met69Leu and Ile127Val, and Met69Val and Arg275Gln). The two remaining new IRTs showed three amino acid substitutions (Met69Val, Trp165Arg, and Asn276Asp and Met69Ile, Trp165Cys, and Arg275Gln). New genetic features were also found in blaTEM genes, namely, blaTEM-1B with either the promoters Pa and Pb, P4, or a promoter displaying a C→G transversion at position 3 of the −35 consensus sequence and new blaTEM genes, notably one encoding TEM-1 but possessing the silent mutations originally described in blaTEM-2 and then in some blaTEM-encoding IRT enzymes. PMID:10991849

  15. Aquifer characterisation in East Timor, with ground TEM

    NASA Astrophysics Data System (ADS)

    Ley-Cooper, A.

    2011-12-01

    An assessment of Climate Change Impacts on Groundwater Resources in East Timor led by Geosciences Australia is aimed at assisting East Timor's government to better understand and manage their groundwater resources. Form the current known information most aquifers in Timor-Leste are recharged by rainfall during the wet season. There is a concern that without a regular recharge, the stored groundwater capacity will decrease. Timor's population increase has caused a higher demand for groundwater which is currently been met by regulated pumping bores which are taped into deep aquifers, plus the sprouting of unregulated spear point bores in the shallow aquifers . Both groundwater recharge and the aquifers morphology need to be better understood in order to ensure supply and so groundwater can be managed for the future. Current weather patterns are expected to change and this could cause longer periods of drought or more intense rainfall, which in turn, would affect the availability and quality of groundwater. Salt water intrusions pose a threat on the low-lying aquifers as sea level rises. Australia's CSIRO has undertaken a series hydrogeophysical investigations employing ground TEM to assist in the characterisation of three aquifers near Dili, Timor Leste's capital. Interpreting ground water chemistry and dating; jointly with EM data has enhanced the understanding of the aquifers architecture, groundwater quality and helped identify potential risks of seawater intrusions.

  16. Evolution and stabilization of subnanometric metal species in confined space by in situ TEM

    DOE PAGES

    Liu, Lichen; Zakharov, Dmitri N.; Arenal, Raul; ...

    2018-02-08

    Understanding the behavior and dynamic structural transformation of subnanometric metal species under reaction conditions will be helpful for understanding catalytic phenomena and for developing more efficient and stable catalysts based on single atoms and clusters.In this work,the evolution and stabilization of subnanometric Pt species confined in MCM-22 zeolite has been studied by in situ transmission electron microscopy (TEM). By correlating the results from in situ TEM studies and the results obtained in a continuous fix-bed reactor,it has been possible to delimitate the factors that control the dynamic agglomeration and redispersion behavior of metal species under reaction conditions. Here, the dynamicmore » reversible transformation between atomically dispersed Pt species and clusters/nanoparticles during CO oxidation at different temperatures has been elucidated.Ithas also been confirmed that subnanometric Pt clusters can be stabilized in MCM-22 crystallites during NO reduction with CO and H 2.« less

  17. Evolution and stabilization of subnanometric metal species in confined space by in situ TEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lichen; Zakharov, Dmitri N.; Arenal, Raul

    Understanding the behavior and dynamic structural transformation of subnanometric metal species under reaction conditions will be helpful for understanding catalytic phenomena and for developing more efficient and stable catalysts based on single atoms and clusters.In this work,the evolution and stabilization of subnanometric Pt species confined in MCM-22 zeolite has been studied by in situ transmission electron microscopy (TEM). By correlating the results from in situ TEM studies and the results obtained in a continuous fix-bed reactor,it has been possible to delimitate the factors that control the dynamic agglomeration and redispersion behavior of metal species under reaction conditions. Here, the dynamicmore » reversible transformation between atomically dispersed Pt species and clusters/nanoparticles during CO oxidation at different temperatures has been elucidated.Ithas also been confirmed that subnanometric Pt clusters can be stabilized in MCM-22 crystallites during NO reduction with CO and H 2.« less

  18. An alternative method to remove PEO-PPO-PEO template in organic-inorganic mesoporous nanocomposites by sulfuric acid extraction

    NASA Astrophysics Data System (ADS)

    Zhuang, Xin; Qian, Xufang; Lv, Jiahui; Wan, Ying

    2010-06-01

    Sulfuric acid is used as an extraction agent to remove PEO-PPO-PEO templates in the organic-inorganic mesoporous nanocomposites from the triconstituent co-assembly which includes the low-polymerized phenolic resins, TEOS and triblock copolymer F127. The XRD and TEM results show well ordered mesostructure after extraction with sulfuric acid. As followed from the N 2 sorption isotherms the extracted composites possess high surface areas (332-367 m 2/g), large pore volumes (0.66-0.78 cm 3/g), and large pore sizes (about 10.7 nm). The FT-IR analysis reveals almost complete elimination of triblock copolymer F127, and the maintenance of organic groups. This method shows potentials in removing templates from nanocomposites containing functional moieties.

  19. Atmospheric pressure chemical vapor deposition: an alternative route to large-scale MoS2 and WS2 inorganic fullerene-like nanostructures and nanoflowers.

    PubMed

    Li, Xiao-Lin; Ge, Jian-Ping; Li, Ya-Dong

    2004-11-19

    Large-scale MoS2 and WS2 inorganic fullerene-like (IF) nanostructures (onionlike nanoparticles, nanotubes) and elegant three-dimensional nanoflowers (NF) have been selectively prepared through an atmospheric pressure chemical vapor deposition (APCVD) process with the reaction of chlorides and sulfur. The morphologies were controlled by adjusting the deposition position, the deposition temperature, and the flux of the carrier gas. All of the nanostructures have been characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). A reaction mechanism is proposed based on the experimental results. The surface area of MoS2 IF nanoparticles and the field-emission effect of as-prepared WS2 nanoflowers is reported.

  20. Quantitative nanoscopy: Tackling sampling limitations in (S)TEM imaging of polymers and composites.

    PubMed

    Gnanasekaran, Karthikeyan; Snel, Roderick; de With, Gijsbertus; Friedrich, Heiner

    2016-01-01

    Sampling limitations in electron microscopy questions whether the analysis of a bulk material is representative, especially while analyzing hierarchical morphologies that extend over multiple length scales. We tackled this problem by automatically acquiring a large series of partially overlapping (S)TEM images with sufficient resolution, subsequently stitched together to generate a large-area map using an in-house developed acquisition toolbox (TU/e Acquisition ToolBox) and stitching module (TU/e Stitcher). In addition, we show that quantitative image analysis of the large scale maps provides representative information that can be related to the synthesis and process conditions of hierarchical materials, which moves electron microscopy analysis towards becoming a bulk characterization tool. We demonstrate the power of such an analysis by examining two different multi-phase materials that are structured over multiple length scales. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Natrolite zeolite supported copper nanoparticles as an efficient heterogeneous catalyst for the 1,3-diploar cycloaddition and cyanation of aryl iodides under ligand-free conditions.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Rostami-Vartooni, Akbar; Khalaj, Mehdi

    2015-09-01

    In this paper, we report the preparation of Natrolite zeolite supported copper nanoparticles as a heterogeneous catalyst for 1,3-diploar cycloaddition and synthesis aryl nitriles from aryl iodides under ligand-free conditions. The catalyst was characterized using XRD, SEM, TEM, EDS and TG-DTA. The experimental procedure is simple, the products are formed in high yields and the catalyst can be recycled and reused several times without any significant loss of catalytic activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Facile and fast synthesis of SnS2 nanoparticles by pulsed laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D.; Shaji, S.

    2018-03-01

    Nanoparticles (NPs) of tin disulfide (SnS2) were synthesized using pulsed laser ablation in liquid (PLAL) technique. Effects of different liquid media and ablation wavelengths on the morphology and optical properties of the nanoparticles were studied. Nd: YAG laser wavelengths of 532 nm and 1064 nm (frequency 10 Hz and pulse width 10 ns) were used to irradiate SnS2 target immersed in liquid for the synthesis of SnS2 nanoparticles. Here PLAL was a fast synthesis technique, the ablation was only for 30 s. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy were used to characterize the SnS2 NPs. TEM images showed that the liquid medium and laser wavelength influence the morphology of the NPs. SAED patterns and high resolution TEM (HRTEM) images confirmed the crystallinity of the particles. XRD and XPS analyses confirmed that SnS2 NPs were having exact crystalline structure and chemical states as that of the target. Raman analysis also supported the results obtained by XRD and XPS. Optical band gaps of the nanocolloids evaluated from their UV-vis absorption spectra were 2.4-3.05 eV. SnS2 NPs were having luminescence spectra in the blue-green region irrespective of the liquid media and ablation wavelength.

  3. An efficient copper-based magnetic nanocatalyst for the fixation of carbon dioxide at atmospheric pressure.

    PubMed

    Sharma, Rakesh Kumar; Gaur, Rashmi; Yadav, Manavi; Goswami, Anandarup; Zbořil, Radek; Gawande, Manoj B

    2018-01-30

    In the last few decades, the emission of carbon dioxide (CO 2 ) in the environment has caused havoc across the globe. One of the most promising strategies for fixation of CO 2 is the cycloaddition reaction between epoxides and CO 2 to produce cyclic carbonates. For the first time, we have fabricated copper-based magnetic nanocatalyst and have applied for the CO 2 fixation. The prepared catalyst was thoroughly characterized using various techniques including XRD, FT-IR, TEM, FE-SEM, XPS, VSM, ICP-OES and elemental mapping. The reactions proceeded at atmospheric pressure, relatively lower temperature, short reaction time, solvent- less and organic halide free reaction conditions. Additionally, the ease of recovery through an external magnet, reusability of the catalyst and excellent yields of the obtained cyclic carbonates make the present protocol practical and sustainable.

  4. In situ TEM near-field optical probing of nanoscale silicon crystallization.

    PubMed

    Xiang, Bin; Hwang, David J; In, Jung Bin; Ryu, Sang-Gil; Yoo, Jae-Hyuck; Dubon, Oscar; Minor, Andrew M; Grigoropoulos, Costas P

    2012-05-09

    Laser-based processing enables a wide variety of device configurations comprising thin films and nanostructures on sensitive, flexible substrates that are not possible with more traditional thermal annealing schemes. In near-field optical probing, only small regions of a sample are illuminated by the laser beam at any given time. Here we report a new technique that couples the optical near-field of the laser illumination into a transmission electron microscope (TEM) for real-time observations of the laser-materials interactions. We apply this technique to observe the transformation of an amorphous confined Si volume to a single crystal of Si using laser melting. By confinement of the material volume to nanometric dimensions, the entire amorphous precursor is within the laser spot size and transformed into a single crystal. This observation provides a path for laser processing of single-crystal seeds from amorphous precursors, a potentially transformative technique for the fabrication of solar cells and other nanoelectronic devices.

  5. Spectral studies of 2-pyrazoline derivatives: structural elucidation through single crystal XRD and DFT calculations.

    PubMed

    Chinnaraja, D; Rajalakshmi, R; Srinivasan, T; Velmurugan, D; Jayabharathi, J

    2014-04-24

    A series of biologically active N-thiocarbamoyl pyrazoline derivatives have been synthesized using anhydrous potassium carbonate as the catalyst. All the synthesized compounds were characterized by FT-IR, (1)H NMR, (13)C NMR spectral studies, LCMS, CHN Analysis and X-ray diffraction analysis (compound 7). In order to supplement the XRD parameters, molecular modelling was carried out by Gaussian 03W. From the optimized structure, the energy, dipolemoment and HOMO-LUMO energies of all the systems were calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Advanced TEM Sample Preparation Using Low Energy (Preprint)

    DTIC Science & Technology

    2007-11-01

    1.69 C - O 288.95 2.00 C - O - C (=O) - C O 1s 47.99 531.01 2.33 Al2O3 • 0.30 Ga2O3 • 2.68 H2O 532.55 45.66 SiO2 • 0.35 H2O, C - O - C (=O) - C, C - O...Si 2p 24.43 99.09 7.39 Si 103.29 17.04 SiO2 • 0.35 H2O Al 2p 0.67 72.68 0.29 Al 75.59 0.71 Al2O3 • 0.30 Ga2O3 • 2.68 H2O Ga 3d 0.50 18.72 0.29 Ga...21.22 0.21 Al2O3 • 0.30 Ga2O3 • 2.68 H2O Results of subsequent imaging and TEM-EDS analyses before and after low energy Ar milling are shown below

  7. Proton Irradiation Induced Effects in Titanium Carbide and Titanium Nitride: An Evaluation of Microstructures and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Dickerson, Clayton A.

    The materials TiC and TiN have been identified as potential candidate materials for advanced coated nuclear fuel components for the gas-cooled fast reactor (GFR). While a number of their thermal and mechanical properties have been studied, little is known about how these ceramics respond to particle irradiation. The goal of this study was to investigate the radiation effects in TiC and TiN by analyzing the irradiated microstructures and mechanical properties. Irradiations of TiC and TiN were conducted with 2.6 MeV protons at the University of Wisconsin -- Madison to simulate proposed conditions expected in a reactor. Each material was subjected to three incident proton fluences resulting in doses of ˜0.2 dpa to ˜1 dpa at three temperatures, 600°C, 800°C, and 900°C. Post irradiation examination included microstructural analysis via TEM, lattice parameter determinations with XRD, and mechanical property measurements with micro indentation hardness and fracture toughness tests. The predominant irradiation induced aggregate defects found by high resolution TEM and diffraction contrast TEM in both irradiated TiC and TiN were interstitial faulted dislocation loops. Only circular loops were identified in TiC while both circular and triangular loops were present in TiN. The influences on the microstructural evolution from a high inherent density of dislocations and high porosity were also determined. The strains resulting from the development of the defective microstructures were measured with XRD and shown to be highly dependent on the density of dislocation loops. Maximum strains for the irradiated samples were on the order of 0.5%. Measurements of the fracture toughness of Tic samples were made by ion milling the surface of the samples to create micro cantilever beams which were subsequently fractured by nano indentation. The formation of high densities of dislocation loops in the irradiated samples was found to significantly decrease the material's fracture

  8. XRD and XAS structural study of CuAlO2 under high pressure.

    PubMed

    Pellicer-Porres, J; Segura, A; Ferrer-Roca, Ch; Polian, A; Munsch, P; Kim, D

    2013-03-20

    We present the results of x-ray diffraction and x-ray absorption spectroscopy experiments in CuAlO(2) under high pressure. We discuss the polarization dependence of the x-ray absorption near-edge structure at the Cu K-edge. XRD under high pressure evidences anisotropic compression, the a-axis being more compressible than the c-axis. EXAFS yields the copper-oxygen bond length, from which the only internal parameter of the delafossite structure is deduced. The combination of anisotropic compression and the internal parameter decrease results in a regularization of the AlO(6) octahedra. The anisotropic compression is related to the chemical trends observed in the lattice parameters when Al is substituted by other trivalent cations. Both experiments evidence the existence of an irreversible phase transition that clearly manifests at 35 ± 2 GPa. The structure of the high-pressure polymorph could not be determined, but it implies a change of the Cu environment, which remains anisotropic. Precursor effects are observed from the lowest pressures, which are possibly related to crystal breaking at a submicroscopic scale with partial reorientation of the crystallites.

  9. XRD and XAS structural study of CuAlO2 under high pressure

    NASA Astrophysics Data System (ADS)

    Pellicer-Porres, J.; Segura, A.; Ferrer-Roca, Ch; Polian, A.; Munsch, P.; Kim, D.

    2013-03-01

    We present the results of x-ray diffraction and x-ray absorption spectroscopy experiments in CuAlO2 under high pressure. We discuss the polarization dependence of the x-ray absorption near-edge structure at the Cu K-edge. XRD under high pressure evidences anisotropic compression, the a-axis being more compressible than the c-axis. EXAFS yields the copper-oxygen bond length, from which the only internal parameter of the delafossite structure is deduced. The combination of anisotropic compression and the internal parameter decrease results in a regularization of the AlO6 octahedra. The anisotropic compression is related to the chemical trends observed in the lattice parameters when Al is substituted by other trivalent cations. Both experiments evidence the existence of an irreversible phase transition that clearly manifests at 35 ± 2 GPa. The structure of the high-pressure polymorph could not be determined, but it implies a change of the Cu environment, which remains anisotropic. Precursor effects are observed from the lowest pressures, which are possibly related to crystal breaking at a submicroscopic scale with partial reorientation of the crystallites.

  10. Bulk scale production of carbon nanofibers in an economical way

    NASA Astrophysics Data System (ADS)

    Rajarao, Ravindra; Bhat, Badekai Ramachandra

    2012-12-01

    An economical route for the scalable production of carbon nanofibers (CNFs) on a sodium chloride support has been developed. CNFs have been synthesized by chemical vapor deposition (CVD) method by using metal formate as catalyst precursors at 680°C. Products were characterized by SEM, TEM, Raman spectroscopy and XRD method. By thermal analysis, the purity of the as grown products and purified products were determined. This method avoids calcination and reduction process which was employed in commercial catalysts such as metal oxide or nitrate. The problems such as detrimental effect, environmental and even cost have been overcome by using sodium chloride as support. The yield of CNFs up to 7800 wt.% relative to the nickel catalyst has been achieved in the growth time of 15 min. The advantage of this synthesis technique is the simplicity and use of easily available low cost precursors.

  11. Secondary phases in Al xCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal

    DOE PAGES

    Rao, J. C.; Diao, H. Y.; Ocelík, V.; ...

    2017-03-27

    Secondary phases, either introduced by alloying or heat treatment, are commonly present in most high-entropy alloys (HEAs). Understanding the formation of secondary phases at high temperatures, and their effect on mechanical properties, is a critical issue that is undertaken in the present paper, using the Al xCoCrFeNi (x = 0.3, 0.5, and 0.7) as a model alloy. The in-situ transmission-electron-microscopy (TEM) heating observation, an atom-probe-tomography (APT) study for the reference starting materials (Al 0.3 and Al 0.5 alloys), and thermodynamic calculations for all three alloys, are performed to investigate (1) the aluminum effect on the secondary-phase fractions, (2) the annealing-twinningmore » formation in the face-centered-cubic (FCC) matrix, (3) the strengthening effect of the secondary ordered body-centered-cubic (B2) phase, and (4) the nucleation path of the σ secondary phase thoroughly. Finally, the present work will substantially optimize the alloy design of HEAs and facilitate applications of HEAs to a wide temperature range.« less

  12. Secondary phases in Al xCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, J. C.; Diao, H. Y.; Ocelík, V.

    Secondary phases, either introduced by alloying or heat treatment, are commonly present in most high-entropy alloys (HEAs). Understanding the formation of secondary phases at high temperatures, and their effect on mechanical properties, is a critical issue that is undertaken in the present paper, using the Al xCoCrFeNi (x = 0.3, 0.5, and 0.7) as a model alloy. The in-situ transmission-electron-microscopy (TEM) heating observation, an atom-probe-tomography (APT) study for the reference starting materials (Al 0.3 and Al 0.5 alloys), and thermodynamic calculations for all three alloys, are performed to investigate (1) the aluminum effect on the secondary-phase fractions, (2) the annealing-twinningmore » formation in the face-centered-cubic (FCC) matrix, (3) the strengthening effect of the secondary ordered body-centered-cubic (B2) phase, and (4) the nucleation path of the σ secondary phase thoroughly. Finally, the present work will substantially optimize the alloy design of HEAs and facilitate applications of HEAs to a wide temperature range.« less

  13. Synthesis, characterization and visible-light driven photocatalysis by differently structured CdS/ZnS sandwich and core-shell nanocomposites

    NASA Astrophysics Data System (ADS)

    Qutub, Nida; Pirzada, Bilal Masood; Umar, Khalid; Mehraj, Owais; Muneer, M.; Sabir, Suhail

    2015-11-01

    CdS/ZnS sandwich and core-shell nanocomposites were synthesized by a simple and modified Chemical Precipitation method under ambient conditions. The synthesized composites were characterized by XRD, SEM, TEM, EDAX and FTIR. Optical properties were analyzed by UV-vis. Spectroscopy and the photoluminescence study was done to monitor the recombination of photo-generated charge-carriers. Thermal stability of the synthesized composites was analyzed by Thermal Gravimetric Analysis (TGA). XRD revealed the formation of nanocomposites as mixed diffraction peaks were observed in the XRD pattern. SEM and TEM showed the morphology of the nanocomposites particles and their fine particle size. EDAX revealed the appropriate molar ratios exhibited by the constituent elements in the composites and FTIR gave some characteristic peaks which indicated the formation of CdS/ZnS nanocomposites. Electrochemical Impedance Spectroscopy was done to study charge transfer properties along the nanocomposites. Photocatalytic properties of the synthesized composites were monitored by the photocatalytic kinetic study of Acid Blue dye and p-chlorophenol under visible light irradiation. Results revealed the formation of stable core-shell nanocomposites and their efficient photocatalytic properties.

  14. Flower-like morphology of blue and greenish-gray ZnCoxAl2-xO4 nanopigments

    NASA Astrophysics Data System (ADS)

    Wahba, Adel Maher; Imam, N. G.; Mohamed, Mohamed Bakr

    2016-02-01

    In the present work, ZnCoxAl2 - xO4 (x = 0.00-1.50) nanosized pigments were synthesized for the first time by citrate-precursor autocombustion method and heat treatment at 900 °C. In this new nanopigment system the vacancies participate in the spinel structure since the divalent cobalt ions substitute the trivalent Al ions. Structural, microstructural and optical properties were investigated using XRD, FTIR, TEM, HRSEM, XRF, and PL techniques. XRD and FTIR spectra proved the formation of a pure cubic spinel phase. Size of the synthesized nano-crystals ranges from 15 to 60 nm, which is further confirmed with TEM micrographs. HRSEM confirms the microporous nature with flower-like morphology of the prepared nanopigments. Cation distribution has been suggested for the whole samples that matches quite well with XRD and IR experimental data. PL results show that the ZnCoxAl2 - xO4 pigments have good potential for use as a yellow-orange phosphor for displays and/or white light-emitting diodes.

  15. Nanocomposite bulk of mechanically milled Al-Pb samples consolidated pore-free by the high-energy rate forming technique.

    PubMed

    Csanády, Agnes; Sajó, István; Lábár, János L; Szalay, András; Papp, Katalin; Balaton, Géza; Kálmán, Erika

    2005-06-01

    It is shown that pore-free bulk samples were produced by the high-energy rate forming axis-symmetrical powder compaction method for different application purposes in case of the very different, immiscible Al and Pb metal pair. The starting Al-Pb nanocomposites were made by mechanical milling of atomized Al and Pb powders either in a SPEX 9000 or a Fritsch Pulverisette 4 mill. Due to the conditions that milling was carried out in air, the PbO layer, originally existing at the surface of the atomized Pb powder, ruptured and was also dispersed in the composite. The presence of the nano PbO particles was proven by XRD and TEM (BF, DF, SAED). When the energy of milling was high, the PbO crystallites became so small that they could hardly be seen by XRD technique. Local distribution of the PbO nanoparticles was still visible in a TEM, using the process diffraction method. Both XRD and SAED proved to be useful for the evaluation of the results of the milling process and compaction.

  16. Effect of iron doping on structural and microstructural properties of nanocrystalline ZnSnO3 thin films prepared by spray pyrolysis techniques

    NASA Astrophysics Data System (ADS)

    Pathan, Idris G.; Suryawanshi, Dinesh N.; Bari, Anil R.; Patil, Lalchand A.

    2018-05-01

    This work presents the effect of iron doping having different volume ratios (1 ml, 2.5 ml and 5 ml) on the structural, microstructural and electrical properties of zinc stannate thin films, prepared by spray pyrolysis method. These properties were characterized with X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). In our study, XRD pattern indicates that ZnSnO3 has a perovskite phase with face exposed hexahedron structure. The electron diffraction fringes observed are in consistent with the peak observed in XRD patterns. Moreover the sensor reported in our study is cost-effective, user friendly and easy to fabricate.

  17. Resonant optical transmission through sub-wavelength annular apertures caused by a plasmonic transverse electromagnetic (TEM) mode

    NASA Astrophysics Data System (ADS)

    Ndao, A.; Salvi, J.; Salut, R.; Bernal, M.-P.; Alaridhee, T.; Belkhir, A.; Baida, F. I.

    2014-12-01

    We demonstrate enhanced transmission through annular aperture arrays (AAA) by the excitation of the transverse electromagnetic (TEM) guided mode. A complete numerical study is performed to correctly design the structure before it is experimentally characterized. Actually, the challenge was to get efficient TEM-based transmission in the visible range. It turned out to be a hard task because of the strong absorption associated with this guided mode. Nevertheless, we have succeeded to experimentally prove its excitation thanks to the enhanced transmission measured in the far-field. This is the first time we demonstrate experimental evidence of this phenomenon with such AAA structure illuminated at oblique incidence in the visible range. This increases the potential applications of such structures as well, single molecule spectroscopy, photovoltaic, spectral filtering, optical trapping, etc...

  18. Silica functionalized Cu(II) acetylacetonate Schiff base complex: An efficient catalyst for the oxidative condensation reaction of benzyl alcohol with amines

    NASA Astrophysics Data System (ADS)

    Anbarasu, G.; Malathy, M.; Karthikeyan, P.; Rajavel, R.

    2017-09-01

    Silica functionalized Cu(II) acetylacetonate Schiff base complex via the one pot reaction of silica functionalized 3-aminopropyltriethoxysilane with acetyl acetone and copper acetate has been reported. The synthesized material was well characterized by analytical techniques such as FT-IR, UV-DRS, XRD, SEM-EDX, HR-TEM, EPR, ICP-AES and BET analysis. The characterization results confirmed the grafting of Cu(II) Schiff base complex on the silica surface. The catalytic activity of synthesized silica functionalized Cu(II) acetylacetonate Schiff base complex was evaluated through the oxidative condensation reaction of benzyl alcohol to imine.

  19. A Triple Mutant in the Ω-loop of TEM-1 β-Lactamase Changes the Substrate Profile via a Large Conformational Change and an Altered General Base for Catalysis*

    PubMed Central

    Stojanoski, Vlatko; Chow, Dar-Chone; Hu, Liya; Sankaran, Banumathi; Gilbert, Hiram F.; Prasad, B. V. Venkataram; Palzkill, Timothy

    2015-01-01

    β-Lactamases are bacterial enzymes that hydrolyze β-lactam antibiotics. TEM-1 is a prevalent plasmid-encoded β-lactamase in Gram-negative bacteria that efficiently catalyzes the hydrolysis of penicillins and early cephalosporins but not oxyimino-cephalosporins. A previous random mutagenesis study identified a W165Y/E166Y/P167G triple mutant that displays greatly altered substrate specificity with increased activity for the oxyimino-cephalosporin, ceftazidime, and decreased activity toward all other β-lactams tested. Surprisingly, this mutant lacks the conserved Glu-166 residue critical for enzyme function. Ceftazidime contains a large, bulky side chain that does not fit optimally in the wild-type TEM-1 active site. Therefore, it was hypothesized that the substitutions in the mutant expand the binding site in the enzyme. To investigate structural changes and address whether there is an enlargement in the active site, the crystal structure of the triple mutant was solved to 1.44 Å. The structure reveals a large conformational change of the active site Ω-loop structure to create additional space for the ceftazidime side chain. The position of the hydroxyl group of Tyr-166 and an observed shift in the pH profile of the triple mutant suggests that Tyr-166 participates in the hydrolytic mechanism of the enzyme. These findings indicate that the highly conserved Glu-166 residue can be substituted in the mechanism of serine β-lactamases. The results reveal that the robustness of the overall β-lactamase fold coupled with the plasticity of an active site loop facilitates the evolution of enzyme specificity and mechanism. PMID:25713062

  20. Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wasly, H. S.; El-Sadek, M. S. Abd; Henini, Mohamed

    2018-01-01

    Influence of synthesis temperature and reaction time on the structural and optical properties of ZnO nanoparticles synthesized by the hydrothermal method was investigated using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray, Fourier transform infra-red spectroscopy, and UV-visible and fluorescence spectroscopy. The XRD pattern and HR-TEM images confirmed the presence of crystalline hexagonal wurtzite ZnO nanoparticles with average crystallite size in the range 30-40 nm. Their energy gap determined by fluorescence was found to depend on the synthesis temperature and reaction time with values in the range 2.90-3.78 eV. Thermal analysis, thermogravimetric and the differential scanning calorimetry were used to study the thermal reactions and weight loss with heat of the prepared ZnO nanoparticles.

  1. TEM Systems Design: Using Full Maxwell FDTD Modelling to Study the Transient Response of Custom-madeTx and Rx Coils.

    NASA Astrophysics Data System (ADS)

    Chevalier, A.; Rejiba, F.; Schamper, C.; Thiesson, J.; Hovhannissian, G.

    2016-12-01

    From airborne applications to field scale measurements of Transient Electromagnetic Methods(TEM), an accurate knowledge of the sensitivity of the inductive coil sensors (system response) is aprerequisite to interpret the measured transient magnetic flux density into a subsurface distributionof conductivity. The system response is a term that refers to the cumulative effect of inductive andcapacitive couplings (cross-talks) between each component constituting a TEM apparatus and thenearby conductive structures. As a result, the frequency sensitivity of the voltage coil sensor (Rx)along with the emitted current waveform in the current emitting coil (Tx) are controlled by thegeometry and electronic characteristic of the set-up as well as the near surface electromagneticproperties. During the early development of an innovative airborne TEM solutions (French nationalTEMas project), determining the coil geometries and the impedance matching between all parts ofthe transmission link (electronic parts and coils) for various environmental set-ups, has been a majorissue. In this study, we review the required theoretical framework and propose a versatile numericalmethodology to ease the coil design and impedance matching process while extending ourunderstanding of short-time transient that operates from DC to moderately high frequencies (0 to 20Mhz). We used a full Maxwell equations FDTD model along with a semi-analytical 1D modeler to infercoils emitting and receiving properties, for various coil geometries and site-dependent conditions.Results highlight the influence of the environment on the emitting and sensing properties. Theincreasing effects of cross-talks between the Tx and the Rx coils depending on their size is shown.Strategies regarding the impedance adaptation between the electronical components and the coilsensors are then discussed for different geophysical specifications.

  2. Structural phase analysis and photoluminescence properties of Mg-doped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, T.; Ashraf, M. Anas; Ali, S. Asad; Ahmed, Ateeq; Tripathi, P.

    2018-05-01

    In this paper, we report the synthesis, characterization and photoluminescence properties of Mg-doped TiO2 nanoparticles (NPs). The samples were synthesized by sol-gel method and characterized using the standard analytical techniques such as X-ray diffraction (XRD), Transmission electron microscope (TEM), Energy dispersive X-ray spectroscopy (EDX), UV-visible and photoluminescence spectroscopy. The powder XRD spectra revealed that the synthesized samples are pure and crystalline in nature and showing tetragonal anatase phase of TiO2 NPs. UV-visible spectrum illustrates that an absorption edge shifts toward the visible region. This study may provide a new insight for making the nanomaterials which can be used in photocatalytic applications.

  3. Quantitative In Situ TEM Studies of Small-Scale Plasticity in Irradiated and Unirradiated Metals

    NASA Astrophysics Data System (ADS)

    Chisholm, Claire

    In this work, unirradiated and irradiated model body centered cubic (BCC) and face centered cubic (FCC) materials are investigated using advanced electron microscopy techniques to quantitatively measure local stresses and strains around defects, with the overarching goal of obtaining a fundamental understanding of defect physics. Quantitative in-situ transmission electron microscopy (TEM) tensile tests are performed with Molybdenum-alloy nano-fibers, functioning as a model BCC structural material. Local true stress and strain around an active Frank-Read type dislocation source are obtained using quantitative load-displacement data and digital image correlation. A mixed Frank-Read dislocation source, b=a/2[-1-11](112) with a line direction 20° from a screw orientation and length 177 nm, is observed to begin operating at a measured local stress of 1.38 GPa. The measured local true stress values compare very well to estimated stresses using dislocation radius of curvature, and a line-tension model of a large bow-out configuration, with differences of only ˜1%. The degree to which the local true stresses can be measured is highly promising. However, the ultimate failure mode of these fibers, sudden strain softening after dislocation starvation and exhaustion, cannot be captured at the typical camera frame rate of 30 frames per second. Thus, fibers are mechanically tested while under observation with the Gatan K2-IS direct electron detector camera, where the frame rate is an order of magnitude larger at 400 fps. Though the increase in frame rate adds to the overall understanding of the sudden failure, by definitively showing that the nano-fibers break rather than strain soften, the failure mechanism still operates too quickly to be observed. In the final investigation of this BCC model structural alloy, the mechanical behavior of heavily dislocated, but unirradiated, and He1+ and Ni 2+ irradiated nano-fibers are compared. Remarkable similarities are found in the

  4. Coupling Graphene Sheets with Magnetic Nanoparticles for Energy Storage and Microelectronics

    DTIC Science & Technology

    2015-08-13

    sheets obtained from three different synthetic methods: (i) electrochemical exfoliation of highly oriented pyrolytic graphite ( HOPG ) [8], (ii...Figure 8d, the characteristic lattice fringes of ɤ-Fe2O3 nanoparticles in graphene sheet is shown. Typical X-ray diffraction ( XRD ) patterns of the HOPG ...pattern in honey comb crystal lattice, (c) TEM (d) HRTEM image of graphene- PyDop1-MNP hybrid, (e) XRD pattern of the HOPG , exfoliated graphene, PyDop1

  5. Urinary Concentrations of Insecticide and Herbicide Metabolites among Pregnant Women in Rural Ghana: A Pilot Study.

    PubMed

    Wylie, Blair J; Ae-Ngibise, Kenneth A; Boamah, Ellen A; Mujtaba, Mohammed; Messerlian, Carmen; Hauser, Russ; Coull, Brent; Calafat, Antonia M; Jack, Darby; Kinney, Patrick L; Whyatt, Robin; Owusu-Agyei, Seth; Asante, Kwaku P

    2017-03-29

    Use of pesticides by households in rural Ghana is common for residential pest control, agricultural use, and for the reduction of vectors carrying disease. However, few data are available about exposure to pesticides among this population. Our objective was to quantify urinary concentrations of metabolites of organophosphate (OP), pyrethroid, and select herbicides during pregnancy, and to explore exposure determinants. In 2014, 17 pregnant women from rural Ghana were surveyed about household pesticide use and provided weekly first morning urine voids during three visits ( n = 51 samples). A total of 90.1% (46/51) of samples had detectable OP metabolites [geometric mean, GM (95% CI): 3,5,6-trichloro-2-pyridinol 0.54 µg/L (0.36-0.81), para-nitrophenol 0.71 µg/L (0.51-1.00)], 75.5% (37/49) had detectable pyrethroid metabolites [GM: 3-phenoxybenzoic acid 0.23 µg/L (0.17, 0.32)], and 70.5% (36/51) had detectable 2,4-dichlorophenoxyacetic acid levels, a herbicide [GM: 0.46 µg/L (0.29-0.73)]. Concentrations of para-nitrophenol and 2,4-dichlorophenoxyacetic acid in Ghanaian pregnant women appear higher when compared to nonpregnant reproductive-aged women in a reference U.S. Larger studies are necessary to more fully explore predictors of exposure in this population.

  6. Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor.

    PubMed

    Thiruppathiraja, Chinnasamy; Kamatchiammal, Senthilkumar; Adaikkappan, Periyakaruppan; Santhosh, Devakirubakaran Jayakar; Alagar, Muthukaruppan

    2011-10-01

    The present study was aimed at the development and evaluation of a DNA electrochemical biosensor for Mycobacterium sp. genomic DNA detection in a clinical specimen using a signal amplifier as dual-labeled AuNPs. The DNA electrochemical biosensors were fabricated using a sandwich detection strategy involving two kinds of DNA probes specific to Mycobacterium sp. genomic DNA. The probes of enzyme ALP and the detector probe both conjugated on the AuNPs and subsequently hybridized with target DNA immobilized in a SAM/ITO electrode followed by characterization with CV, EIS, and DPV analysis using the electroactive species para-nitrophenol generated by ALP through hydrolysis of para-nitrophenol phosphate. The effect of enhanced sensitivity was obtained due to the AuNPs carrying numerous ALPs per hybridization and a detection limit of 1.25 ng/ml genomic DNA was determined under optimized conditions. The dual-labeled AuNP-facilitated electrochemical sensor was also evaluated by clinical sputum samples, showing a higher sensitivity and specificity and the outcome was in agreement with the PCR analysis. In conclusion, the developed electrochemical sensor demonstrated unique sensitivity and specificity for both genomic DNA and sputum samples and can be employed as a regular diagnostics tool for Mycobacterium sp. monitoring in clinical samples. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition

    NASA Astrophysics Data System (ADS)

    Dou, Peng; Kimura, Akihiko; Kasada, Ryuta; Okuda, Takanari; Inoue, Masaki; Ukai, Shigeharu; Ohnuki, Somei; Fujisawa, Toshiharu; Abe, Fujio; Jiang, Shan; Yang, Zhigang

    2017-03-01

    The nanoparticles in an Al-alloyed high-Cr oxide dispersion strengthened (ODS) ferritic steel with Hf addition, i.e., SOC-16 (Fe-15Cr-2W-0.1Ti-4Al-0.62Hf-0.35Y2O3), have been examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Relative to an Al-alloyed high-Cr ODS ferritic steel without Hf addition, i.e., SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y2O3), the dispersion morphology and coherency of the oxide nanoparticles in SOC-16 were significantly improved. Almost all the small nanoparticles (diameter <10 nm) in SOC-16 were found to be consistent with cubic Y2Hf2O7 oxides with the anion-deficient fluorite structure and coherent with the bcc steel matrix. The larger particles (diameter >10 nm) were also mainly identified as cubic Y2Hf2O7 oxides with the anion-deficient fluorite structure. The results presented here are compared with those of SOC-9 with a brief discussion of the underlying mechanisms of the unusual thermal and irradiation stabilities of the oxides as well as the superior strength, excellent irradiation tolerance and extraordinary corrosion resistance of SOC-16.

  8. Temperature dependent and applied field strength dependent magnetic study of cobalt nickel ferrite nano particles: Synthesized by an environmentally benign method

    NASA Astrophysics Data System (ADS)

    Sontu, Uday Bhasker; G, Narsinga Rao; Chou, F. C.; M, V. Ramana Reddy

    2018-04-01

    Spinel ferrites have come a long way in their versatile applications. The ever growing applications of these materials demand detailed study of material properties and environmental considerations in their synthesis. In this article, we report the effect of temperature and applied magnetic field strength on the magnetic behavior of the cobalt nickel ferrite nano powder samples. Basic structural properties of spinel ferrite nano particles, that are synthesized by an environmentally benign method of auto combustion, are characterized through XRD, TEM, RAMAN spectroscopy. Diffuse Reflectance Spectroscopy (DRS) is done to understand the nickel substitution effect on the optical properties of cobalt ferrite nano particles. Thermo magnetic studies using SQUID in the temperature range 5 K to 400 K and room temperature (300 K) VSM studies are performed on these samples. Fields of 0Oe (no applied field: ZF), 1 kOe (for ZFC and FC curves), 5 kOe (0.5 T), 50 kOe (5T) (for M-H loop study) are used to study the magnetic behavior of these nano particles. The XRD,TEM analysis suggest 40 nm crystallites that show changes in the cation distribution and phase changes in the spinel structure with nickel substitution. Raman micrographs support phase purity changes and cation redistributions with nickel substitution. Diffuse reflectance study on powder samples suggests two band gap values for nickel rich compounds. The Magnetic study of these sample nano particles show varied magnetic properties from that of hard magnetic, positive multi axial anisotropy and single-magnetic-domain structures at 5 K temperature to soft magnetic core shell like structures at 300 K temperature. Nickel substitution effect is non monotonous. Blocking temperature of all the samples is found to be higher than the values suggested in the literature.

  9. Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent.

    PubMed

    Tamboli, Mohaseen S; Kulkarni, Milind V; Patil, Rajendra H; Gade, Wasudev N; Navale, Shalaka C; Kale, Bharat B

    2012-04-01

    Silver-polyaniline (Ag-PANI) nanocomposite was synthesized by in situ polymerization method using ammonium persulfate (APS) as an oxidizing agent in the presence of dodecylbenzene sulfonic acid (DBSA) and silver nitrate (AgNO(3)). The as synthesized Ag-PANI nanocomposite was characterized by using different analytical techniques such as UV-visible (UV-vis) and Fourier transform Infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV-visible spectra of the synthesized nanocomposite showed a sharp peak at ~420 nm corresponding to the surface plasmon resonance (SPR) of the silver nanoparticles (AgNPs) embedded in the polymer matrix which is overlapped by the polaronic peak of polyaniline appearing at that wavelength. Nanowires of Ag-PANI nanocomposite with diameter 50-70 nm were observed in FE-SEM and TEM. TGA has indicated an enhanced thermal stability of nanocomposite as compared to that of pure polymer. The Ag-PANI nanocomposite has shown an antibacterial activity against model organisms, a gram positive Bacillus subtilis NCIM 6633 in Mueller-Hinton (MH) medium, which is hitherto unattempted. The Ag-PANI nanocomposite with monodispersed AgNPs is considered to have potential applications in sensors, catalysis, batteries and electronic devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. The effect of PVP on morphology, optical properties and electron paramagnetic resonance of Zn0.5Co0.5Fe2-xPrxO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Bitar, Z.; El-Said Bakeer, D.; Awad, R.

    2017-07-01

    Zinc Cobalt nano ferrite doped with Praseodymium, Zn0.5Co0.5Fe2-xPrxO4 (0 ≤ x ≤ 0.2), were prepared by co-precipitation method from an aqueous solution containing metal chlorides and two concentrations of poly(vinylpyrrolidone) (PVP) 0 and 30g/L as capping agent. The samples were characterized using X-ray powder diffraction (XRD), Transmission Electron Microscope (TEM), UV-visible optical spectroscopy, Fourier transform infrared (FTIR) and Electron Paramagnetic Resonance (EPR). XRD results display the formation of cubic spinel structure with space group Fd3m and the lattice parameter (a) is slightly decreased for PVP capping samples. The particle size that determined by TEM, decreases for PVP capping samples. The optical band energy Eg increases for PVP capping samples, confirming the variation of energy gap with the particle size. The FTIR results indicate that the metal oxide bands were shifted for the PVP capping samples. EPR data shows that the PVP addition increases the magnetic resonance field and hence decreases the g-factor.

  11. Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm.

    PubMed

    Dhandapani, Perumal; Maruthamuthu, Sundram; Rajagopal, Gopalakrishnan

    2012-05-02

    The nano-TiO(2) was synthesized biologically employing Bacillus subtilis (FJ460362). These nanoparticles were characterized by FTIR, TGA-DTA, UV-Visible spectroscopy, XRD and TEM. FTIR and TGA results confirm that the organic impurities were completely removed while calcinating the resultant products. Band gap value was estimated from the UV-Visible spectrum and anatase crystal phase was confirmed by XRD. TEM images reveal that these particles were agglomerated; mostly spherical in shape with an average particle size of 10-30nm. The synthesized nano-TiO(2) particles were coated on glass slides, biofilm were grown and subjected to irradiation of polychromatic light to understand photocatalytic activity in controlling the aquatic biofilm. The bacterial killing process was established by Epi-fluorescence microscopy. The results reveal that biogenic TiO(2) nanomaterial acts as good photocatalyst by the generation of H(2)O(2) in the vicinity of the TiO(2)-biofilm interfaces to suppress the growth of the aquatic biofilm. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata.

    PubMed

    Joseph, Siby; Mathew, Beena

    2015-02-05

    Herein, we report a simple microwave assisted method for the green synthesis of silver and gold nanoparticles by the reduction of aqueous metal salt solutions using leaf extract of the medicinal plant Aerva lanata. UV-vis., FTIR, XRD, and HR-TEM studies were conducted to assure the formation of nanoparticles. XRD studies clearly confirmed the crystalline nature of the synthesized nanoparticles. From the HR-TEM images, the silver nanoparticles (AgNPs) were found to be more or less spherical and gold nanoparticles (AuNPs) were observed to be of different morphology with an average diameter of 18.62nm for silver and 17.97nm for gold nanoparticles. In order to evaluate the effect of microwave heating upon rate of formation, the synthesis was also conducted under ambient condition without the assistance of microwave radiation and the former method was found to be much faster than the later. The synthesized nanoparticles were used as nanocatalysts in the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Harish, G. S.; Sreedhara Reddy, P.

    2015-09-01

    Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2-3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm-1) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping.

  14. Biosynthesis of Copper Oxide nanoparticles from Drypetes sepiaria Leaf extract and their catalytic activity to dye degradation

    NASA Astrophysics Data System (ADS)

    Narasaiah, Palajonna; Mandal, Badal Kumar; Sarada, N. C.

    2017-11-01

    The synthesis of metal nanoparticles through a green method is a rapid biogenic and offers few advantages over the common chemical and physical procedures, as it is an easy and fast, eco-friendly and does not involve any costly chemicals as well as hazardous chemicals. In this study, we report synthesis of CuO NPs by using Drypetes sepiaria Leaf extract (DSLE). The synthesized CuO NPs was characterization using different technique such as UV, IR, XRD, and TEM. The formation of CuO NPs was confirmed by Surface Plasmon Resonance (SRP) at 298 nm using UV-Vis spectroscopy. Crystallinity of CuO NPs was confirmed by powder XRD and the characteristic functional groups of synthesised CuO NPs were identified by FTIR spectroscopy. The size and shape of the synthesized CuO NPs was determined by transmission electron microscopy (TEM). In addition, we performed photocatalytic activity to examine the photocatalytic degradation efficiency of CuO NPs to Congo Red. The colloidal solutions of CuO NPs showed good catalytic activity.

  15. Surface modification of calcium hydroxyapatite by grafting of etidronic acid

    NASA Astrophysics Data System (ADS)

    Othmani, Masseoud; Aissa, Abdallah; Bac, Christophe Goze; Rachdi, Férid; Debbabi, Mongi

    2013-06-01

    The surface of prepared calcium hydroxyapatite CaHAp has been modified by grafting the etidronic acid (ETD). For that purpose, CaHAp powders have been suspended in an aqueous etidronate solution with different concentrations. The obtained composites CaHAp-(ETD) were characterized by TEM and AFM techniques to determinate morphological properties and were also characterized by XRD, IR, NMR and chemical and thermal analysis to determinate their physico-chemical properties and essentially the nature of the interaction between the inorganic support and the grafted organic ETD. After reaction with ETD, XRD powder analysis shows that the apatitic structure remains unchanged with slight affectation of its crystallinity. The presence of etidronate fragment bounded to hydroxyapatite was confirmed by IR and solid-state NMR spectroscopy. TEM and AFM techniques indicate that the presence of etidronate changes the morphology of the particles. Basing on the obtained results, a reactional mechanism was proposed to explain the formation of covalent Casbnd Osbnd Porg bonds on the hydroxyapatite surface between the superficial hydroxyl groups (tbnd Casbnd OH) of the apatite and phosphonate group (Psbnd OH) of etidronate.

  16. Facile Synthesis of Calcium Borate Nanoparticles and the Annealing Effect on Their Structure and Size

    PubMed Central

    Erfani, Maryam; Saion, Elias; Soltani, Nayereh; Hashim, Mansor; Wan Abdullah, Wan Saffiey B.; Navasery, Manizheh

    2012-01-01

    Calcium borate nanoparticles have been synthesized by a thermal treatment method via facile co-precipitation. Differences of annealing temperature and annealing time and their effects on crystal structure, particle size, size distribution and thermal stability of nanoparticles were investigated. The formation of calcium borate compound was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Thermogravimetry (TGA). The XRD patterns revealed that the co-precipitated samples annealed at 700 °C for 3 h annealing time formed an amorphous structure and the transformation into a crystalline structure only occurred after 5 h annealing time. It was found that the samples annealed at 900 °C are mostly metaborate (CaB2O4) nanoparticles and tetraborate (CaB4O7) nanoparticles only observed at 970 °C, which was confirmed by FTIR. The TEM images indicated that with increasing the annealing time and temperature, the average particle size increases. TGA analysis confirmed the thermal stability of the annealed samples at higher temperatures. PMID:23203073

  17. Hydrothermal-reduction synthesis of manganese oxide nanomaterials for electrochemical supercapacitors.

    PubMed

    Zhang, Xiong; Chen, Yao; Yu, Peng; Ma, Yanwei

    2010-11-01

    In the present work, amorphous manganese oxide nanomaterials have been synthesized by a common hydrothermal method based on the redox reaction between MnO4(-) and Fe(2+) under an acidic condition. The synthesized MnO2 samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electrochemical studies. XRD results showed that amorphous manganese oxide phase was obtained. XPS quantitative analysis revealed that the atomic ratio of Mn to Fe was 3.5 in the MnO2 samples. TEM images showed the porous structure of the samples. Electrochemical properties of the MnO2 electrodes were studied using cyclic voltammetry and galvanostatic charge-discharge cycling in 1 M Na2SO4 aqueous electrolyte, which showed excellent pseudocapacitance properties. A specific capacitance of 192 Fg(-1) at a current density of 0.5 Ag(-1) was obtained at the potential window from -0.1 to 0.9 V (vs. SCE).

  18. Boosted surface acidity in TiO2 and Al2O3-TiO2 nanotubes as catalytic supports

    NASA Astrophysics Data System (ADS)

    Camposeco, R.; Castillo, S.; Mejía-Centeno, Isidro; Navarrete, J.; Nava, N.

    2015-11-01

    In this study, titanate nanotubes (NT) and titanate nanotubes with alumina (NT-Al) were studied as solid acid catalytic supports to show the relationship between the kind of acidity and catalytic activity. The supports were characterized by XRD, TEM, FTIR, XPS, and tested in the SCR-NO with NH3. It was found that the amount of Brönsted acid sites was maintained and the Lewis acid sites were significantly affected by the addition of alumina (1, 3, 5 and 10 wt.%); such acidity was higher than that of the titanate nanotubes (NT) by two-fold. To confirm the formation of titanate nanotubes and titanate nanotubes with alumina, transmission electron microscopy (TEM) was used. X-ray diffraction (XRD) revealed the formation of the H2Ti4O9·H2O phase. All NT and NT-Al supports presented catalytic activity to remove NO with NH3 under lean conditions, confirming the presence of an important amount of Brönsted and Lewis acid sites in both NT and NT-Al supports.

  19. ERDA, RBS, TEM and SEM characterization of microstructural evolution in helium-implanted Hastelloy N alloy

    NASA Astrophysics Data System (ADS)

    Gao, Jie; Bao, Liangman; Huang, Hefei; Li, Yan; Lei, Qiantao; Deng, Qi; Liu, Zhe; Yang, Guo; Shi, Liqun

    2017-05-01

    Hastelloy N alloy was implanted with 30 keV, 5 × 1016 ions/cm2 helium ions at room temperature, and subsequent annealed at 600 °C for 1 h and further annealed at 850 °C for 5 h in vacuum. Using elastic recoil detection analysis (ERDA) and transmission electron microscopy (TEM), the depth profiles of helium concentration and helium bubbles in helium-implanted Hastelloy N alloy were investigated, respectively. The diffusion of helium and molybdenum elements to surface occurred during the vacuum annealing at 850 °C (5 h). It was also observed that bubbles in molybdenum-enriched region were much larger in size than those in deeper region. In addition, it is worth noting that plenty of nano-holes can be observed on the surface of helium-implanted sample after high temperature annealing by scanning electron microscope (SEM). This observation provides the evidence for the occurrence of helium release, which can be also inferred from the results of ERDA and TEM analysis.

  20. Length-Scale-Dependent Phase Transformation of LiFePO4 : An In situ and Operando Study Using Micro-Raman Spectroscopy and XRD.

    PubMed

    Siddique, N A; Salehi, Amir; Wei, Zi; Liu, Dong; Sajjad, Syed D; Liu, Fuqiang

    2015-08-03

    The charge and discharge of lithium ion batteries are often accompanied by electrochemically driven phase-transformation processes. In this work, two in situ and operando methods, that is, micro-Raman spectroscopy and X-ray diffraction (XRD), have been combined to study the phase-transformation process in LiFePO4 at two distinct length scales, namely, particle-level scale (∼1 μm) and macroscopic scale (∼several cm). In situ Raman studies revealed a discrete mode of phase transformation at the particle level. Besides, the preferred electrochemical transport network, particularly the carbon content, was found to govern the sequence of phase transformation among particles. In contrast, at the macroscopic level, studies conducted at four different discharge rates showed a continuous but delayed phase transformation. These findings uncovered the intricate phase transformation in LiFePO4 and potentially offer valuable insights into optimizing the length-scale-dependent properties of battery materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Analytical electron microscopy of Mg-SiO smokes - A comparison with infrared and XRD studies

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.; Nuth, J. A.; Mackinnon, I. D. R.

    1986-01-01

    Analytical electron microscopy conducted for Mg-SiO smokes (experimentally obtained from samples previously characterized by IR spectroscopy) indicates that the microcrystallinity content of unannealed smokes increases with increased annealing for up to 30 hr. The growth of forsterite microcrystallites in the initially nonstoichiometric smokes may give rise to the contemporaneous growth of the SiO polymorph tridymite and MgO; after 4 hr of annealing, these react to form enstatite. It is suggested that XRD analysis and IR spectroscopy should be conducted in conjunction with detailed analytical electron microscopy for the detection of emerging crystallinity in vapor-phase condensates.

  2. Low-stringency selection of TEM1 for BLIP shows interface plasticity and selection for faster binders

    PubMed Central

    Cohen-Khait, Ruth; Schreiber, Gideon

    2016-01-01

    Protein–protein interactions occur via well-defined interfaces on the protein surface. Whereas the location of homologous interfaces is conserved, their composition varies, suggesting that multiple solutions may support high-affinity binding. In this study, we examined the plasticity of the interface of TEM1 β-lactamase with its protein inhibitor BLIP by low-stringency selection of a random TEM1 library using yeast surface display. Our results show that most interfacial residues could be mutated without a loss in binding affinity, protein stability, or enzymatic activity, suggesting plasticity in the interface composition supporting high-affinity binding. Interestingly, many of the selected mutations promoted faster association. Further selection for faster binders was achieved by drastically decreasing the library–ligand incubation time to 30 s. Preequilibrium selection as suggested here is a novel methodology for specifically selecting faster-associating protein complexes. PMID:27956635

  3. Extracellular synthesis of silver nanoparticles using the leaf extract of Coleus amboinicus Lour

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayanan, Kannan Badri; Sakthivel, Natarajan, E-mail: puns2005@gmail.com

    2011-10-15

    Highlights: {yields} Synthesis of AgNPs using the leaf extract of Coleus amboinicus L. was described. {yields} UV-vis absorption spectra showed the formation of isotrophic AgNPs at 437 nm in 6 h. {yields} XRD analysis showed intense peaks corresponding to fcc structure of AgNPs. {yields} HR-TEM analysis revealed the formation of stable anisotrophic and isotrophic AgNPs. -- Abstract: In the present investigation, Coleus amboinicus Lour. leaf extract-mediated green chemistry approach for the synthesis of silver nanoparticles was described. The nanoparticles were characterized by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmissionmore » electron microscopy (TEM). The influence of leaf extract on the control of size and shape of silver nanoparticles is reported. Upon an increase in the concentration of leaf extract, there was a shift in the shape of nanoparticles from anisotrophic nanostructures like triangle, decahedral and hexagonal to isotrophic spherical nanoparticles. Crystalline nature of fcc structured nanoparticles was confirmed by XRD spectrum with peaks corresponding to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes and bright circular spots in the selected-area electron diffraction (SAED). Such environment friendly and sustainable methods are non-toxic, cheap and alternative to hazardous chemical procedures.« less

  4. In situ TEM visualization of superior nanomechanical flexibility of shear-exfoliated phosphorene

    DOE PAGES

    Xu, Feng; Ma, Hongyu; Lei, Shuangying; ...

    2016-06-20

    Recently discovered atomically thin black phosphorus (called phosphorene) holds great promise for applications in flexible nanoelectronic devices. Experimentally identifying and characterizing nanomechanical properties of phosphorene are challenging, but also potentially rewarding. Our work combines for the first time in situ transmission electron microscopy (TEM) imaging and an in situ micro-manipulation system to directly visualize the nanomechanical behaviour of individual phosphorene nanoflakes. Furthermore, we demonstrate that the phosphorene nanoflakes can be easily bent, scrolled, and stretched, showing remarkable mechanical flexibility rather than fracturing. An out-of-plane plate-like bending mechanism and in-plane tensile strain of up to 34% were observed. Moreover, a facilemore » liquid-phase shear exfoliation route has been developed to produce such mono-layer and few-layer phosphorene nanoflakes in organic solvents using only a household kitchen blender. The effects of surface tensions of the applied solvents on the ratio of average length and thickness (L/T) of the nanoflakes were studied systematically. These results reported here will pave the way for potential industrial-scale applications of flexible phosphorene nanoelectronic devices.« less

  5. In situ TEM observation of heterogeneous phase transition of a constrained single-crystalline Ag2Te nanowire.

    PubMed

    In, Juneho; Yoo, Youngdong; Kim, Jin-Gyu; Seo, Kwanyong; Kim, Hyunju; Ihee, Hyotchel; Oh, Sang Ho; Kim, Bongsoo

    2010-11-10

    Laterally epitaxial single crystalline Ag2Te nanowires (NWs) are synthesized on sapphire substrates by the vapor transport method. We observed the phase transitions of these Ag2Te NWs via in situ transmission electron microscopy (TEM) after covering them with Pt layers. The constrained NW shows phase transition from monoclinic to a body-centered cubic (bcc) structure near the interfaces, which is ascribed to the thermal stress caused by differences in the thermal expansion coefficients. Furthermore, we observed the nucleation and growth of bcc phase penetrating into the face-centered cubic matrix at 200 °C by high-resolution TEM in real time. Our results would provide valuable insight into how compressive stresses imposed by overlayers affect behaviors of nanodevices.

  6. Paper-based transparent flexible thin film supercapacitors

    NASA Astrophysics Data System (ADS)

    Gao, Kezheng; Shao, Ziqiang; Wu, Xue; Wang, Xi; Zhang, Yunhua; Wang, Wenjun; Wang, Feijun

    2013-05-01

    Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm-2), and a transmittance of about 56% (at 550 nm).Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm-2), and a transmittance of about 56% (at 550 nm). Electronic supplementary information (ESI) available: Experimental, TEM image, IR spectra, and XRD spectra of cellulose nanofibers, TEM image, and XRD spectra of RGO, graphite, GO nanosheets, CNF paper, and CNF-[RGO]20 hybrid paper, high-resolution C1s spectra of GO, Raman spectra of GO nanosheets, cross-sectional FESEM image of CNF-[RGO]20 hybrid paper and stress-strain curve of T-SC-20. See DOI: 10.1039/c3nr00674c

  7. Thermoluminescence (TL) properties and x-ray diffraction (XRD) analysis of high purity CaSO{sub 4}:Dy TL material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamarudin, Nadira; Abdullah, Wan Saffiey Wan; Dollah, Mohd Taufik

    2014-09-03

    This paper presents the characterization and TL properties of dysprosium (Dy) doped calcium sulfate (CaSO{sub 4}) TL material produced by co-precipitation technique with 0.5mol% concentration of dopant. The morphology of the produced TL material was studied using scanning electron microscope (SEM) and the micrograph shows that rectangular parallelepiped shaped crystal with the average of 150 μm in length were produced. The crystallinity of the produced powder was studied using x-ray powder diffraction (XRD). The XRD spectra show that the TL material produced is high purity anhydrite CaSO{sub 4} with average crystallite size of 74 nm with orthorhombic crystal system. Themore » TL behavior of produced CaSO{sub 4}:Dy was studied using a TLD reader after exposure to gamma ray by Co{sup 60} source with the doses of 1,5 and 10 Gy. The glow curve shows linear response with glow peak around 230°C which is desired development in the field of radiation dosimetry.« less

  8. Microstructural observation of fuel cell catalyst inks by Cryo-SEM and Cryo-TEM.

    PubMed

    Shimanuki, Junichi; Takahashi, Shinichi; Tohma, Hajime; Ohma, Atsushi; Ishihara, Ayumi; Ito, Yoshiko; Nishino, Yuri; Miyazawa, Atsuo

    2017-06-01

    In order to improve the electricity generation performance of fuel cell electric vehicles, it is necessary to optimize the microstructure of the catalyst layer of a polymer electrolyte fuel cell. The catalyst layer is formed by a wet coating process using catalyst inks. Therefore, it is very important to observe the microstructure of the catalyst ink. In this study, the morphology of carbon-supported platinum (Pt/C) particles in catalyst inks with a different solvent composition was investigated by cryogenic scanning electron microscopy (cryo-SEM). In addition, the morphology of the ionomer, which presumably influences the formation of agglomerated Pt/C particles in a catalyst ink, was investigated by cryogenic transmission electron microscopy (cryo-TEM). The results of a cryo-SEM observation revealed that the agglomerated Pt/C particles tended to become coarser with a higher 1-propanol (NPA) weight fraction. The results of a cryo-TEM observation indicated that the actual ionomer dispersion in a catalyst ink formed a network structure different from that of the ionomer in the solvent. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. X-ray diffraction study of the mineralogy of microinclusions in fibrous diamond

    NASA Astrophysics Data System (ADS)

    Smith, Evan; Kopylova, Maya; Dubrovinksy, Leonid

    2010-05-01

    Fibrous diamond, occurring both as cuboids and as coatings over non-fibrous diamond nuclei, is translucent due to the presence of millions of sub-micron-sized mineral and fluid inclusions. Diamond is strong and relatively inert, making it an excellent vessel to preserve trapped materials. These microinclusions represent direct samples of natural diamond-forming mantle fluids, and are critical for our understanding of diamond genesis. Traditionally, infrared spectroscopy, Raman spectroscopy, secondary ion mass spectrometry, electron microprobe, and FIB-TEM techniques have proven to be effective for the study of microinclusions in diamond. The abundance and random orientation of included minerals in fibrous diamond make them amenable to a powder-type X-ray diffraction (XRD) technique. This technique provides an accurate way to identify included minerals. It also has the advantage of analyzing thousands of inclusions simultaneously, rather than analyzing one inclusion at a time, as with common FIB-TEM techniques. XRD provides a bulk analysis, giving a superior measure of relative abundances of included minerals, as well as potentially accounting for small quantities of minerals that might otherwise be overlooked. We studied fibrous cuboid diamonds with microinclusions from the Democratic Republic of Congo (DRC) (23 samples), Brazil (4 samples), Jericho (1 sample), and Wawa conglomerates (9 samples). XRD analysis was performed at the Bayerisches Geoinstitut (BGI), University of Bayreuth, Germany. The unique XRD setup consists of a RIGAKU FR-D high-brilliance source, OSMIC Inc. Confocal Max-Flux optics, and a SMART APEX 4K CCD area detector. Preliminary XRD studies of microinclusions 8 fibrous diamonds from the DRC showed a prevalence of silicates with structural and coordinated H2O. Sheet silicates constituted 9 out of 13 detected minerals, with phlogopite-biotite micas being present in 4 out of 8 samples. Other detected minerals were 2 chlorite minerals, 2 clay

  10. Mesoporous CeO2 nanoparticles synthesized by an inverse miniemulsion technique and their catalytic properties in methane oxidation

    NASA Astrophysics Data System (ADS)

    Nabih, Nermeen; Schiller, Renate; Lieberwirth, Ingo; Kockrick, Emanuel; Frind, Robert; Kaskel, Stefan; Weiss, Clemens K.; Landfester, Katharina

    2011-04-01

    Cerium(IV) oxide nanoparticles were synthesized using an inverse miniemulsion technique with cerium nitrate hexahydrate as precursor. The resulting nanocrystallites are as small as 5 nm with a specific surface area of 158 m2 g - 1 after calcination at 400 °C. With the addition of cetyltrimethylammonium bromide (CTAB) or (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)) triblock copolymers (PEO-PPO-PEO) as template in the miniemulsion droplets, the specific surface area can be increased up to 255 m2 g - 1. The miniemulsions were characterized by dynamic light scattering (DLS) and the obtained oxides were examined by x-ray diffraction (XRD), nitrogen sorption (BET and BJH), and transmission electron microscopy (TEM). The catalytic activity of the resulting ceria was investigated for the temperature-programmed oxidation (TPO) of methane.

  11. Visualising reacting single atoms under controlled conditions: Advances in atomic resolution in situ Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM)

    NASA Astrophysics Data System (ADS)

    Boyes, Edward D.; Gai, Pratibha L.

    2014-02-01

    Advances in atomic resolution Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM) for probing gas-solid catalyst reactions in situ at the atomic level under controlled reaction conditions of gas environment and temperature are described. The recent development of the ESTEM extends the capability of the ETEM by providing the direct visualisation of single atoms and the atomic structure of selected solid state heterogeneous catalysts in their working states in real-time. Atomic resolution E(S)TEM provides a deeper understanding of the dynamic atomic processes at the surface of solids and their mechanisms of operation. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes with substantial economic benefits, improved healthcare, reductions in energy needs and the management of environmental waste generation. xml:lang="fr"

  12. Coupling XRD, EXAFS, and 13C NMR to study the effect of the carbon stoichiometry on the local structure of UC(1±x).

    PubMed

    Carvajal Nuñez, U; Martel, L; Prieur, D; Lopez Honorato, E; Eloirdi, R; Farnan, I; Vitova, T; Somers, J

    2013-10-07

    A series of uranium carbide samples, prepared by arc melting with a C/U ratio ranging from 0.96 to 1.04, has been studied by X-ray diffraction (XRD), (13)C nuclear magnetic resonance (NMR), and extended X-ray absorption fine structure (EXAFS). XRD determines phase uniqueness and the increase of the lattice parameter versus the carbon content. In contrast, (13)C NMR detects the different carbon environments in the lattice and in this study, clearly identifies the presence of discrete peaks for carbon in the octahedral lattice site in UC and an additional peak associated with excess carbon in hyperstoichiometric samples. Two peaks associated with different levels of carbon deficiency are detected for all hypostoichiometric compositions. More than one carbon environment is always detected by (13)C NMR. This exemplifies the difficulty in obtaining a perfect stoichiometric uranium monocarbide UC(1.00). The (13)C MAS spectra of uranium carbides exhibit the effects resulting from the carbon content on both the broadening of the peaks and on the Knight shift. An abrupt spectral change occurs between hypo- and hyperstoichiometric samples. The results obtained by EXAFS highlight subtle differences between the different stoichiometries, and in the hyperstoichiometric samples, the EXAFS results are consistent with the excess carbon atoms being in the tetrahedral interstitial position.

  13. Line-width roughness of advanced semiconductor features by using FIB and planar-TEM as reference metrology

    NASA Astrophysics Data System (ADS)

    Takamasu, Kiyoshi; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami

    2018-03-01

    LER (Line Edge Roughness) and LWR (Line Width Roughness) of the semiconductor device are an important evaluation scale of the performance of the device. Conventionally, LER and LWR is evaluated from CD-SEM (Critical Dimension Scanning Electron Microscope) images. However, CD-SEM measurement has a problem that high frequency random noise is large, and resolution is not sufficiently high. For random noise of CD-SEM measurement, some techniques are proposed. In these methods, it is necessary to set parameters for model and processing, and it is necessary to verify the correctness of these parameters using reference metrology. We have already proposed a novel reference metrology using FIB (Focused Ion Beam) process and planar-TEM (Transmission Electron Microscope) method. In this study, we applied the proposed method to three new samples such as SAQP (Self-Aligned Quadruple Patterning) FinFET device, EUV (Extreme Ultraviolet Lithography) conventional resist, and EUV new material resist. LWR and PSD (Power Spectral Density) of LWR are calculated from the edge positions on planar-TEM images. We confirmed that LWR and PSD of LWR can be measured with high accuracy and evaluated the difference by the proposed method. Furthermore, from comparisons with PSD of the same sample by CD-SEM, the validity of measurement of PSD and LWR by CD-SEM can be verified.

  14. Fast-Turnoff Transient Electromagnetic (TEM) Field Study at the Mars Analog Site of Rio Tinto, Spain

    NASA Astrophysics Data System (ADS)

    Jernsletten, J. A.

    2005-03-01

    This report describes a Fast-Turnoff Transient Electromagnetic (TEM) study at the Peña de Hierro ("Berg of Iron") field area of the Mars Analog Research and Technology Experiment (MARTE), near the towns Rio Tinto and Nerva, Andalucia region, Spain.

  15. Microanalysis (micro-XRF, micro-XANES, and micro-XRD) of a tertiary sediment using microfocused synchrotron radiation.

    PubMed

    Denecke, Melissa A; Somogyi, Andrea; Janssens, Koen; Simon, Rolf; Dardenne, Kathy; Noseck, Ulrich

    2007-06-01

    Micro-focused synchrotron radiation techniques to investigate actinide elements in geological samples are becoming an increasingly used tool in nuclear waste disposal research. In this article, results using mu-focus techniques are presented from a bore core section of a U-rich tertiary sediment collected from Ruprechtov, Czech Republic, a natural analog to nuclear waste repository scenarios in deep geological formations. Different methods are applied to obtain various, complementary information. Elemental and element chemical state distributions are obtained from micro-XRF measurements, oxidation states of As determined from micro-XANES, and the crystalline structure of selected regions are studied by means of micro-XRD. We find that preparation of the thin section created an As oxidation state artifact; it apparently changed the As valence in some regions of the sample. Results support our previously proposed hypothesis of the mechanism for U-enrichment in the sediment. AsFeS coating on framboid Fe nodules in the sediment reduced mobile groundwater-dissolved U(VI) to less-soluble U(IV), thereby immobilizing the uranium in the sediment.

  16. A TEM analysis of nanoparticulates in a Polar ice core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esquivel, E.V.; Murr, L.E

    2004-03-15

    This paper explores the prospect for analyzing nanoparticulates in age-dated ice cores representing times in antiquity to establish a historical reference for atmospheric particulate regimes. Analytical transmission electron microscope (TEM) techniques were utilized to observe representative ice-melt water drops dried down on carbon/formvar or similar coated grids. A 10,000-year-old Greenland ice core was melted, and representative water drops were transferred to coated grids in a clean room environment. Essentially, all particulates observed were aggregates and either crystalline or complex mixtures of nanocrystals. Especially notable was the observation of carbon nanotubes and related fullerene-like nanocrystal forms. These observations are similar withmore » some aspects of contemporary airborne particulates including carbon nanotubes and complex nanocrystal aggregates.« less

  17. High-Resolution AES Mapping and TEM Study of Cu(In,Ga)Se2 Thin Film Growth: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, C. L.; Yan, Y.; Jones, K.

    2001-10-01

    Presented at 2001 NCPV Program Review Meeting: TEM and high-resolution AES mapping data on CIGS samples. The chalcopyrite Cu(In,Ga)Se{sub 2} (CIGS) shows promise as an absorber layer in thin polycrystalline solar cells, however, details of the PVD growth of this complicated material remain in a developing stage. Previous workers have postulated the existence of a thin film of liquid Cu{sub x}Se on the growing CIGS film, and that this layer acts as a reservoir of copper as well as a layer in which rapid mass transport is possible. In this paper we present transmission electron microscopy (TEM) and high resolutionmore » Auger electron spectroscopy (AES) mapping data taken on samples that had their growth interrupted at a stage when Cu{sub x}Se was expected to be present. The AES maps show CIGS grains which are highly enriched in copper relative to the rest of the CIGS film, and that these same areas contain almost no indium, results consistent with the presence of CuxSe. Small-area diffraction analysis and energy dispersive spectroscopy (EDS) performed on these same samples independently confirm the presence of Cu{sub x}Se at the surface of growing CIGS films.« less

  18. Streptomyces sp. TEM 33 possesses high lipolytic activity in solid-state fermentation in comparison with submerged fermentation.

    PubMed

    Cadirci, Bilge Hilal; Yasa, Ihsan; Kocyigit, Ali

    2016-01-01

    Solid-state fermentation (SSF) is a bioprocess that doesn't need an excess of free water, and it offers potential benefits for microbial cultivation for bioprocesses and product development. In comparing the antibiotic production, few detailed reports could be found with lipolytic enzyme production by Streptomycetes in SSF. Taking this knowledge into consideration, we prefer to purify Actinomycetes species as a new source for lipase production. The lipase-producing strain Streptomyces sp. TEM 33 was isolated from soil and lipase production was managed by solid-state fermentation (SSF) in comparison with submerged fermentation (SmF). Bioprocess-affecting factors like initial moisture content, incubation time, and various carbon and nitrogen additives and the other enzymes secreted into the media were optimized. Lipase activity was measured as 1.74 ± 0.0005 U/g dry substrate (gds) by the p-nitrophenylpalmitate (pNPP) method on day 6 of fermentation with 71.43% final substrate moisture content. In order to understand the metabolic priority in SSF, cellulase and xylanase activity of Streptomyces sp. TEM33 was also measured. The microorganism degrades the wheat bran to its usable form by excreting cellulases and xylanases; then it secretes the lipase that is necessary for degrading the oil in the medium.

  19. Practical aspects of the use of the X(2) holder for HRTEM-quality TEM sample preparation by FIB.

    PubMed

    van Mierlo, Willem; Geiger, Dorin; Robins, Alan; Stumpf, Matthias; Ray, Mary Louise; Fischione, Paul; Kaiser, Ute

    2014-12-01

    The X(2) holder enables the effective production of thin, electron transparent samples for high-resolution transmission electron microscopy (HRTEM). Improvements to the X(2) holder for high-quality transmission electron microscopy (TEM) sample preparation are presented in this paper. We discuss the influence of backscattered electrons (BSE) from the sample holder in determining the lamella thickness in situ and demonstrate that a significant improvement in thickness determination can be achieved by comparatively simple means using the relative BSE intensity. We show (using Monte Carlo simulations) that by taking into account the finite collection angle of the electron backscatter detector, an approximately 20% underestimation of the lamella thickness in a silicon sample can be avoided. However, a correct thickness determination for light-element lamellas still remains a problem with the backscatter method; we introduce a more accurate method using the energy dispersive X-ray spectroscopy (EDX) signal for in situ thickness determination. Finally, we demonstrate how to produce a thin lamella with a nearly damage-free surface using the X(2) holder in combination with sub-kV polishing in the Fischione Instruments׳ NanoMill(®) TEM specimen preparation system. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Problems at the Leading Edge of Space Weathering as Revealed by TEM Combined with Surface Science Techniques

    NASA Astrophysics Data System (ADS)

    Christoffersen, R.; Dukes, C. A.; Keller, L. P.; Rahman, Z.; Baragiola, R. A.

    2015-11-01

    Analytical field-emission TEM techniques cross-correlated with surface analyses by X-ray photoelectron spectroscopy (XPS) provides a unique two-prong approach for characterizing how solar wind ion processing contributes to space weathering.

  1. In situ synchrotron XRD analysis of the kinetics of spodumene phase transitions.

    PubMed

    L Moore, Radhika; Mann, Jason P; Montoya, Alejandro; Haynes, Brian S

    2018-04-25

    The phase transition by thermal activation of natural α-spodumene was followed by in situ synchrotron XRD in the temperature range 896 to 940 °C. We observed both β- and γ-spodumene as primary products in approximately equal proportions. The rate of the α-spodumene inversion is first order and highly sensitive to temperature (apparent activation energy ∼800 kJ mol-1). The γ-spodumene product is itself metastable, forming β-spodumene, with the total product mass fraction ratio fγ/fβ decreasing as the conversion of α-spodumene continues. We found the relationship between the product yields and the degree of conversion of α-spodumene to be the same at all temperatures in the range studied. A model incorporating first order kinetics of the α- and γ-phase inversions with invariant rate constant ratio describes the results accurately. Theoretical phonon analysis of the three phases indicates that the γ phase contains crystallographic instabilities, whilst the α and β phases do not.

  2. Size distribution of magnetic iron oxide nanoparticles using Warren-Averbach XRD analysis

    NASA Astrophysics Data System (ADS)

    Mahadevan, S.; Behera, S. P.; Gnanaprakash, G.; Jayakumar, T.; Philip, J.; Rao, B. P. C.

    2012-07-01

    We use the Fourier transform based Warren-Averbach (WA) analysis to separate the contributions of X-ray diffraction (XRD) profile broadening due to crystallite size and microstrain for magnetic iron oxide nanoparticles. The profile shape of the column length distribution, obtained from WA analysis, is used to analyze the shape of the magnetic iron oxide nanoparticles. From the column length distribution, the crystallite size and its distribution are estimated for these nanoparticles which are compared with size distribution obtained from dynamic light scattering measurements. The crystallite size and size distribution of crystallites obtained from WA analysis are explained based on the experimental parameters employed in preparation of these magnetic iron oxide nanoparticles. The variation of volume weighted diameter (Dv, from WA analysis) with saturation magnetization (Ms) fits well to a core shell model wherein it is known that Ms=Mbulk(1-6g/Dv) with Mbulk as bulk magnetization of iron oxide and g as magnetic shell disorder thickness.

  3. Elucidating the Wavelength Dependence of Phonon Scattering in Nanoparticle-Matrix Composites using Phonon Spectroscopy

    DTIC Science & Technology

    2016-07-11

    composites with x - ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectroscopy...RBS), particle-induced x - ray emission (PIXE), and energy dispersive x - ray spectroscopy (EDX). This work complements earlier works on CdSe...sample shows only In2Se3 and CdIn2Se4 XRD peaks (Figure 1.4e), it is stoichiometrically   Figure 1.4. X - ray diffraction patterns of (a) γ-In2Se3

  4. Manganese porphyrin immobilized on magnetic MCM-41 nanoparticles as an efficient and reusable catalyst for alkene oxidations with sodium periodate

    NASA Astrophysics Data System (ADS)

    Hajian, Robabeh; Ehsanikhah, Amin

    2018-01-01

    This study describes the immobilization of tetraphenylporphyrinatomanganese(III) chloride, (MnPor), onto imidazole functionalized MCM-41 with magnetite nanoparticle core (Fe3O4@MCM-41-Im). The resultant material (Fe3O4@MCM-41-Im@MnPor) was characterized by X-ray diffractometry (XRD), Fourier transform infra-red (FT-IR), diffuse reflectance UV-Vis spectrophotometry (DR UV-Vis), field emission scanning electron microscopy (FESEM), Inductively coupled plasma (ICP), analyzer transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) surface area. This new heterogenized catalyst was applied as an efficient catalyst for the epoxidation of a variety of cyclic and linear olefins with NaIO4 under mild conditions. The prepared catalyst can be easily recovered through the application of an external magnet, and reused several times without any significant decrease in activity and magnetic properties.

  5. A Mössbauer spectral study of degradation in La 0.58Sr 0.4Fe 0.5Co 0.5O 3–x after long-term operation in solid oxide electrolysis cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmoud, Abdelfattah; Daroukh, Mahmoud Al; Lipinska-Chwalek, Marta

    Here, degradation processes of oxygen electrodes in solid oxide electrolysis cells (SOECs) were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Mössbauer spectroscopy. La 0.58Sr 0.4Fe 0.5Co 0.5O 3–x (LSCF) anodes (oxygen electrode) were analyzed after different long-term operations durations of 1774, 6100 and 9000 h. The results were compared with a cell in the initial state. Besides the LSCF anode, the SOECs were composed of a Ce 0.8Gd 0.2O 1.9 barrier layer between the anode and electrolyte, yttria-stabilized zirconia (YSZ) as electrolyte and Ni-YSZ as cathode (hydrogen electrode). Mössbauer spectra of the iron-containingmore » anode were acquired in order to determine the alteration of the iron oxidation state and its local environment during operation. Mössbauer spectroscopy yields indirect information about the degradation mechanism, especially in combination with SEM, TEM, and XRD. XRD and TEM revealed the appearance of Co 3O 4 during the SOEC operation and SEM analyses confirmed the formation of SrZrO 3 at the electrode/electrolyte interface. The spectral analysis confirmed the reduction of iron from Fe(IV) to Fe(III) in LSCF after long-term operation. The fraction of Fe(IV) in the electrode decreased with time and 18, 15, 13 and 11% were obtained for 0, 1774, 6100, and 9000 h of operation, respectively.« less

  6. A Mössbauer spectral study of degradation in La 0.58Sr 0.4Fe 0.5Co 0.5O 3–x after long-term operation in solid oxide electrolysis cells

    DOE PAGES

    Mahmoud, Abdelfattah; Daroukh, Mahmoud Al; Lipinska-Chwalek, Marta; ...

    2017-10-21

    Here, degradation processes of oxygen electrodes in solid oxide electrolysis cells (SOECs) were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Mössbauer spectroscopy. La 0.58Sr 0.4Fe 0.5Co 0.5O 3–x (LSCF) anodes (oxygen electrode) were analyzed after different long-term operations durations of 1774, 6100 and 9000 h. The results were compared with a cell in the initial state. Besides the LSCF anode, the SOECs were composed of a Ce 0.8Gd 0.2O 1.9 barrier layer between the anode and electrolyte, yttria-stabilized zirconia (YSZ) as electrolyte and Ni-YSZ as cathode (hydrogen electrode). Mössbauer spectra of the iron-containingmore » anode were acquired in order to determine the alteration of the iron oxidation state and its local environment during operation. Mössbauer spectroscopy yields indirect information about the degradation mechanism, especially in combination with SEM, TEM, and XRD. XRD and TEM revealed the appearance of Co 3O 4 during the SOEC operation and SEM analyses confirmed the formation of SrZrO 3 at the electrode/electrolyte interface. The spectral analysis confirmed the reduction of iron from Fe(IV) to Fe(III) in LSCF after long-term operation. The fraction of Fe(IV) in the electrode decreased with time and 18, 15, 13 and 11% were obtained for 0, 1774, 6100, and 9000 h of operation, respectively.« less

  7. A Survey of Jet Aircraft PM by TEM in APEX III

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.; Bryg, Victoria M.

    2014-01-01

    Based upon field testing during the NASA led APEX III campaign conducted in November 2005 at the NASA Glenn Research Center in coordination with Continental Airlines and Cleveland Hopkins International Airport. This paper reports observations of particulate emissions collected from a suite of jet engine aircraft to assess differences and similarities in soot macro- micro- and nanostructure using transmission electron microscopy (TEM). Aggregates are compact, primary particle sizes varied and nanostructure mixed. Comparisons are made to more familiar laboratory flame-generated soot as a well-studied point of reference. Results are interpreted in terms of turbulence interacting with the different stages of particle formation and growth.

  8. Effects of Plastizers on the Structure and Properties of Starch-Clay Nanocomposites

    USDA-ARS?s Scientific Manuscript database

    Biodegradable nanocomposites were successfully fabricated from corn starch and montmorillonite (MMT) nanoclays by melt extrusion processing. The structure and morphology of the nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and film propertie...

  9. In-situ TEM on the coalescence of birnessite manganese dioxides nanosheets during lithiation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Ke; Kuang, Min; Zhang, Yuxin

    2016-07-15

    Highlights: • Evolution of MnO{sub 2} nanosheets during lithiation was in situ observed. • MnO{sub 2} was reacted with Li to form Mn and LiO{sub 2}. • Nanosheets expanded and aggregated due to lithiation. - Abstract: Nanostructure is believed to produce great benefits for anode materials in lithium ion batteries (LIBs) by enhancing lithium ion transfer, accommodating large volume change and increasing surface area. Whether the nanostructure (especially the porous nanostructure) could be well held during charging/discharging process is one of the most commonly concerned issues in LIBs research. The dynamic evolution of birnessite manganese dioxides nanosheets during lithiation processmore » is investigated by in-situ transmission electron microscopy (TEM) for the first time. The TiO{sub 2}@MnO{sub 2} core-shell nanowires are used as the anode and Li metal as the counter electrode inside the TEM. Interestingly, the lithiation process is confirmed as MnO{sub 2} and Li converting to Li{sub 2}O and Mn. The original porous structure of the nanosheets is hard to preserve during lithiation process due to lithiation-induced contact flattening.« less

  10. A parameter for the assessment of the segmentation of TEM tomography reconstructed volumes based on mutual information.

    PubMed

    Okariz, Ana; Guraya, Teresa; Iturrondobeitia, Maider; Ibarretxe, Julen

    2017-12-01

    A method is proposed and verified for selecting the optimum segmentation of a TEM reconstruction among the results of several segmentation algorithms. The selection criterion is the accuracy of the segmentation. To do this selection, a parameter for the comparison of the accuracies of the different segmentations has been defined. It consists of the mutual information value between the acquired TEM images of the sample and the Radon projections of the segmented volumes. In this work, it has been proved that this new mutual information parameter and the Jaccard coefficient between the segmented volume and the ideal one are correlated. In addition, the results of the new parameter are compared to the results obtained from another validated method to select the optimum segmentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. TEM Study of Manganese Biosorption by Cyanobacterium Synechocystis 6803

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dohnalkova, Alice; Bilskis, Christina L.; Kennedy, David W.

    2006-09-01

    The capture of solar energy and its conversion into chemical energy in photosynthetic organisms involves a series of charge reactions across photosynthetic membranes. Oxygen is generated by a proton-electron coupling in photosystem II (PSII) during a water oxidation process where hydrogen is extracted from water terminally bound to a Mn4Ca1Clx inorganic cluster [1]. Manganese is, therefore, an essential catalytic element for photosynthetic growth in cyanobacteria and plants. Since bioavailability of this micronutrient largely depends on the Mn concentration in natural environments, cells have to manage its uptake in order to endure Mn fluctuations. Previous studies have shown that metal biosorptionmore » in cyanobacteria can occur by passive adsorption to their outer membrane (pool A), and by metabolically mediated internal uptake [2]. The fresh water cyanobacterium Synechocystis 6803 has been widely used as a model organism for studying photosynthetic processes. This Gram-negative organism has an intricate architecture of internal thylakoid membranes where photosynthetic electron transfer takes place. Here we report on the spatial distribution of Mn biosorbed by cells in both external pool A and intracellular pool B, as observed and analyzed by methods of TEM. The Synechocystis 6803 cells were cultured in BG11 medium at 30 C with continuous irradiance and constant air bubbling. To determine the influence of solid or liquid Mn substrate and its oxidation state on the cell biosorption ability, cells were exposed to two Mn substrates: 1mM solution of MnCl2, and 0.5mM suspension of nanocrystalline MnO2. Cells were incubated with the respective Mn solutions for 48 hours, harvested, and processed using a modified protocol for plastic embedding of bacterial samples containing minerals that was developed in our laboratory [3]. In order to preserve the fragile redox conditions within the cells, all the common heavy metal-based fixatives and stains were omitted, resulting

  12. Structure and properties of electrodeposited nanocrystalline Ni and Ni-Fe alloy continuous foils

    NASA Astrophysics Data System (ADS)

    Giallonardo, Jason Derek

    This research work presents the first comprehensive study on nanocrystalline materials produced in bulk quantities using a novel continuous electrodeposition process. A series of nanocrystalline Ni and Ni-Fe alloy continuous foils were produced and an intensive investigation into their structure and various properties was carried out. High-resolution transmission electron microscopy (HR-TEM) revealed the presence of local strain at high and low angle, and twin boundaries. The cause for these local strains was explained based on the interpretation of non-equilibrium grain boundary structures that result when conditions of compatibility are not satisfied. HR-TEM also revealed the presence of twin faults of the growth type, or "growth faults", which increased in density with the addition of Fe. This observation was found to be consistent with a corresponding increase in the growth fault probabilities determined quantitatively using X-ray diffraction (XRD) pattern analysis. Hardness and Young's modulus were measured by nanoindentation. Hardness followed the regular Hall-Petch behaviour down to a grain size of 20 nm after which an inverse trend was observed. Young's modulus was slightly reduced at grain sizes less than 20 nm and found to be affected by texture. Microstrain based on XRD line broadening was measured for these materials and found to increase primarily with a decrease in grain size or an increase in intercrystal defect density (i.e., grain boundaries and triple junctions). This microstrain is associated with the local strains observed at grain boundaries in the HR-TEM image analysis. A contribution to microstrain from the presence of growth faults in the nanocrystalline Ni-Fe alloys was also noted. The macrostresses for these materials were determined from strain measurements using a two-dimensional XRD technique. At grain sizes less than 20 nm, there was a sharp increase in compressive macrostresses which was also owed to the corresponding increase in

  13. Fe K-Edge X-ray absorption near-edge spectroscopy (XANES) and X-ray diffraction (XRD) analyses of LiFePO4 and its base materials

    NASA Astrophysics Data System (ADS)

    Latif, C.; Negara, V. S. I.; Wongtepa, W.; Thamatkeng, P.; Zainuri, M.; Pratapa, S.

    2018-03-01

    XANES analysis has been performed with the aim of knowing the Fe oxidation state in a synthesized LiFePO4 and its base materials. XANES measurements were performed at SLRI on energy around Fe K-edge. An XRD analysis has also been performed with the aim of knowing the phase composition, lattice parameters and crystallite size of the LiFePO4 as well as the base materials. From the XRD analysis, it was found that the dominating phase in the iron sand sample was Fe3O4 and the only phase found after calcination was LiFePO4. The latter phase exhibited crystallite size of 100 nm and lattice parameters a = 10.169916 Å, b = 5.919674 Å, c = 4.627893 Å. Qualitative analysis of XANES data revealed that the oxidation number of Fe in the sample before calcination was greater than that after calcination and Fe in the natural iron sand, indicated by the E0 values of 7129.2 eV, 7120.6 eV and 7124.4 eV respectively.

  14. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: spectral, thermal, XRD and antimicrobial studies.

    PubMed

    Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B

    2014-10-15

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Manuela, E-mail: manuela.stan@itim-cj.ro; Popa, Adriana; Toloman, Dana

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn{sup 2+} ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes andmore » oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.« less

  16. Synthesis and structural characterization of CdS nanoparticles using nitrogen adducts of mixed diisopropylthiourea and dithiolate derivatives of Cd(II) complexes

    NASA Astrophysics Data System (ADS)

    Osuntokun, Jejenija; Ajibade, Peter A.

    2015-07-01

    [Cd(diptu)2(ced)], [Cd(diptu)2(ced)(bpy)], [Cd(diptu)2(ced)(phen)], (where diptu = diisopropyl thiourea; ced = 1-cyano-1-carboethoxylethylene-2,2‧-dithiolate; bpy = 2,2‧-bipyridine and phen = 1,10-phenanthroline) have been prepared and used as single source precursors for the preparation of hexadecylamine capped CdS nanoparticles. The precursor complexes were characterized by elemental analysis, FTIR and TGA. The structural properties of the nanoparticles were investigated using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy techniques (SEM). The optical properties of the nanoparticles were studied using UV-Visible and photoluminescence spectroscopy. The XRD analysis showed that the nanoparticles were indexed to the hexagonal phase of CdS and the TEM results showed CdS nanoparticles with average crystallite sizes of 4.00-8.80 nm.

  17. Stable tetragonal phase and magnetic properties of Fe-doped HfO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Sales, T. S. N.; Cavalcante, F. H. M.; Bosch-Santos, B.; Pereira, L. F. D.; Cabrera-Pasca, G. A.; Freitas, R. S.; Saxena, R. N.; Carbonari, A. W.

    2017-05-01

    In this paper, the effect in structural and magnetic properties of iron doping with concentration of 20% in hafnium dioxide (HfO2) nanoparticles is investigated. HfO2 is a wide band gap oxide with great potential to be used as high-permittivity gate dielectrics, which can be improved by doping. Nanoparticle samples were prepared by sol-gel chemical method and had their structure, morphology, and magnetic properties, respectively, investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with electron back scattering diffraction (EBSD), and magnetization measurements. TEM and SEM results show size distribution of particles in the range from 30 nm to 40 nm with small dispersion. Magnetization measurements show the blocking temperature at around 90 K with a strong paramagnetic contribution. XRD results show a major tetragonal phase (94%).

  18. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    NASA Astrophysics Data System (ADS)

    Stan, Manuela; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut; Vodnar, Dan Cristian; Katona, Gabriel

    2015-12-01

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn2+ ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.

  19. Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.

    2016-06-01

    Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.

  20. Crystal imperfection studies of pure and silicon substituted hydroxyapatite using Raman and XRD.

    PubMed

    Zou, Shuo; Huang, Jie; Best, Serena; Bonfield, William

    2005-12-01

    Hydroxyapatite (HA) is important in biomedical applications because of its chemical similarity to the mineral content of bone and its consequent bioactivity. Silicon substitution into the hydroxyapatite crystal lattice was found to enhance its bioactivity both in vitro and in vivo [1, 2]. However, the mechanism for the enhancement is still not well understood. In this paper, the crystal imperfections introduced by silicon substitution were studied using XRD and Raman spectroscopy. It was found that silicon substitution did not introduce microstrain, but deceased the crystal size in the hk0 direction. Three new vibration modes and peak broadening were observed in Raman spectra following silicon incorporation. The imperfections introduced by silicon substitution may play a role in enhancing bioactivity. A phenomenological relationship between the width of the PO4 v1 peak and crystal size was established.