Sample records for nuclear progesterone-binding protein

  1. Adrenocortical nuclear progesterone-binding protein: Identification by photoaffinity labeling and evidence for deoxyribonucleic acid binding and stimulation by adrenocorticotropin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demura, T.; Driscoll, W.J.; Lee, Y.C.

    1991-01-01

    Nuclei of the guinea pig adrenal cortex contain a protein that specifically binds progesterone and that, biochemically, is clearly distinct from the classical progesterone receptor. The adrenocortical nuclear progesterone-binding protein has now been purified more than 2000-fold by steroid-affinity chromatography with a 75% yield. The purified protein preparation demonstrated three major bands on sodium dodecyl sulfate-polyacrylamide gel of 79K, 74K, and 50K. To determine which of the three might represent the progesterone-binding protein, steroid photoaffinity labeling was performed which resulted in the specific and exclusive labeling of a 50K band. Thus, the adrenocortical nuclear progesterone-binding protein appears to be distinctmore » from the classical progesterone receptor not only biochemically, but also on the basis of molecular size. To test whether the adrenocortical nuclear progesterone-binding protein can be hormonally stimulated, guinea pigs were treated with ACTH. The chronic administration of ACTH caused a 4- to 6-fold increase in the specific progesterone binding capacity without a change in the binding affinity. There appeared to be no significant difference in nuclear progesterone binding between the zona fasciculata and zona reticularis. This finding suggests a mediating role for the progesterone-binding protein in ACTH action. In addition, the nuclear progesterone-binding protein bound to nonspecific DNA sequences, further suggesting a possible transcriptional regulatory role.« less

  2. Nuclear binding of progesterone in hen oviduct. Binding to multiple sites in vitro.

    PubMed Central

    Pikler, G M; Webster, R A; Spelsberg, T C

    1976-01-01

    Steroid hormones, including progesterone, are known to bind with high affinity (Kd approximately 1x10(-10)M) to receptor proteins once they enter target cells. This complex (the progesterone-receptor) then undergoes a temperature-and/or salt-dependent activation which allows it to migrate to the cell nucleus and to bind to the deoxyribonucleoproteins. The present studies demonstrate that binding the hormone-receptor complex in vitro to isolated nuclei from the oviducts of laying hens required the same conditions as do other studies of bbinding in vitro reported previously, e.g. the hormone must be complexed to intact and activated receptor. The assay of the nuclear binding by using multiple concentrations of progesterone receptor reveals the presence of more than one class of binding site in the oviduct nuclei. The affinity of each of these classes of binding sites range from Kd approximately 1x10(-9)-1x10(-8)M. Assays using free steroid (not complexed with receptor) show no binding to these sites. The binding to each of the classes of sites, displays a differential stability to increasing ionic concentrations, suggesting primarily an ionic-type interaction for all classes. Only the highest-affinity class of binding site is capable of binding progesterone receptor under physioligical-saline conditions. This class represent 6000-10000 sites per cell nucleus and resembles the sites detected in vivo (Spelsberg, 1976, Biochem. J. 156, 391-398) which cause maximal transcriptional response when saturated with the progesterone receptor. The multiple binding sites for the progesterone receptor either are not present or are found in limited numbers in the nuclei of non-target organs. Differences in extent of binding to the nuclear material between a target tissue (oviduct) and other tissues (spleen or erythrocyte) are markedly dependent on the ionic conditions, and are probably due to binding to different classes of sites in the nuclei. PMID:182147

  3. Differences in the binding mechanism of RU486 and progesterone to the progesterone receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skafar, D.F.

    1991-11-12

    The binding mechanism of the antagonist RU486 to the progesterone receptor was compared with that of the agonists progesterone and R5020. Both progesterone and RU486 bound to the receptor with a Hill coefficient of 1.2, indicating the binding of each ligand is positive cooperative. However, when each ligand was used to compete with ({sup 3}H)progesterone for binding to the receptor at receptor concentrations near 8 nM, at which the receptor is likely a dimer, the competition curve for RU486 was significantly steeper than the curves for progesterone and R5020. This indicated that a difference in the binding mechanism of RU486more » and progesterone can be detected when both ligands are present. In contrast, at receptor concentrations near 1 nM, at which the receptor is likely a monomer, the competition curves for all three ligands were indistinguishable. These results indicate that RU486 and agonists have different binding mechanisms for the receptor and further suggest that this difference may be related to site-site interactions within the receptor.« less

  4. C/EBPβ (CCAAT/enhancer-binding protein β) mediates progesterone production through transcriptional regulation in co-operation with SF-1 (steroidogenic factor-1).

    PubMed

    Mizutani, Tetsuya; Ju, Yunfeng; Imamichi, Yoshitaka; Osaki, Tsukasa; Yazawa, Takashi; Kawabe, Shinya; Ishikane, Shin; Matsumura, Takehiro; Kanno, Masafumi; Kamiki, Yasue; Kimura, Kohei; Minamino, Naoto; Miyamoto, Kaoru

    2014-06-15

    The transcription factor SF-1 (steroidogenic factor-1) is a master regulator of steroidogenesis. Previously, we have found that SF-1 induces the differentiation of mesenchymal stem cells into steroidogenic cells. To elucidate the molecular mechanisms of SF-1-mediated functions, we attempted to identify protein components of the SF-1 nuclear protein complex in differentiated cells. SF-1 immunoaffinity chromatography followed by MS/MS analysis was performed, and 24 proteins were identified. Among these proteins, we focused on C/EBPβ (CCAAT/enhancer-binding protein β), which is an essential transcription factor for ovulation and luteinization, as the transcriptional mechanisms of C/EBPβ working together with SF-1 are poorly understood. C/EBPβ knockdown attenuated cAMP-induced progesterone production in granulosa tumour-derived KGN cells by altering STAR (steroidogenic acute regulatory protein), CYP11A1 (cytochrome P450, family 11, subfamily A, polypeptide 1) and HSD3B2 (hydroxy-δ-5-steroid dehydrogenase, 3β- and steroid δ-isomerase 2) expression. EMSA and ChIP assays revealed novel C/EBPβ-binding sites in the upstream regions of the HSD3B2 and CYP11A1 genes. These interactions were enhanced by cAMP stimulation. Luciferase assays showed that C/EBPβ-responsive regions were found in each promoter and C/EBPβ is involved in the cAMP-induced transcriptional activity of these genes together with SF-1. These results indicate that C/EBPβ is an important mediator of progesterone production by working together with SF-1, especially under tropic hormone-stimulated conditions.

  5. Selectivity in progesterone and androgen receptor binding of progestagens used in oral contraceptives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kloosterboer, H.J.; Vonk-Noordegraaf, C.A.; Turpijn, E.W.

    1988-09-01

    The relative binding affinities (RBAs) of four progestational compounds (norethisterone, levonorgestrel, 3-keto-desogestrel and gestodene) for the human progesterone and androgen receptors were measured in MCF-7 cytosol and intact MCF-7 cells. For the binding to the progesterone receptor, both Org 2058 and Org 3236 (or 3-keto-desogestrel) were used as labelled ligands. The following ranking (low to high) for the RBA of the nuclear (intact cells) progesterone receptor irrespective of the ligand used is found: norethisterone much less than levonorgestrel less than 3-keto-destogestrel less than gestodene. The difference between the various progestagens is significant with the exception of that between 3-keto-desogestrel andmore » gestodene, when Org 2058 is used as ligand. For the cytosolic progesterone receptor, the same order is found with the exception that similar RBAs are found for gestodene and 3-keto-desogestrel. The four progestagens clearly differ with respect to binding to the androgen receptor using dihydrotestosterone as labelled ligand in intact cells; the ranking (low to high) is: norethisterone less than 3 keto-desogestrel less than levonorgestrel and gestodene. The difference between 3-keto-desogestrel and levonorgestrel or gestodene is significant. The selectivity indices (ratio of the mean RBA for the progesterone receptor to that of androgen receptor) in intact cells are significantly higher for 3-keto-desogestrel and gestodene than for levonorgestrel and norethisterone. From these results we conclude that the introduction of the 18-methyl in norethisterone (levonorgestel) increases both the binding to the progesterone and androgen receptors.« less

  6. X-Ray Crystal Structure of the Ancestral 3-Ketosteroid Receptor-Progesterone-Mifepristone Complex Shows Mifepristone Bound at the Coactivator Binding Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colucci, Jennifer K.; Ortlund, Eric A.

    2013-12-12

    Steroid receptors are a subfamily of nuclear receptors found throughout all metazoans. They are highly important in the regulation of development, inflammation, and reproduction and their misregulation has been implicated in hormone insensitivity syndromes and cancer. Steroid binding to SRs drives a conformational change in the ligand binding domain that promotes nuclear localization and subsequent interaction with coregulator proteins to affect gene regulation. SRs are important pharmaceutical targets, yet most SR-targeting drugs have off-target pharmacology leading to unwanted side effects. A better understanding of the structural mechanisms dictating ligand specificity and the evolution of the forces that created the SR-hormonemore » pairs will enable the design of better pharmaceutical ligands. In order to investigate this relationship, we attempted to crystallize the ancestral 3-ketosteroid receptor (ancSR2) with mifepristone, a SR antagonist. Here, we present the x-ray crystal structure of the ancestral 3-keto steroid receptor (ancSR2)-progesterone complex at a resolution of 2.05 Å. This improves upon our previously reported structure of the ancSR2-progesterone complex, permitting unambiguous assignment of the ligand conformation within the binding pocket. Surprisingly, we find mifepristone, fortuitously docked at the protein surface, poised to interfere with coregulator binding. Recent attention has been given to generating pharmaceuticals that block the coregulator binding site in order to obstruct coregulator binding and achieve tissue-specific SR regulation independent of hormone binding. Mifepristone’s interaction with the coactivator cleft of this SR suggests that it may be a useful molecular scaffold for further coactivator binding inhibitor development.« less

  7. Binding characteristics of the ovine membrane progesterone receptor alpha and expression of the receptor during the estrous cycle

    PubMed Central

    Ashley, Ryan L; Arreguin-Arevalo, J Alejandro; Nett, Terry M

    2009-01-01

    Background Classically, progesterone has been thought to act only through the well-known genomic pathway involving hormone binding to nuclear receptors and subsequent modulation of gene expression. However, there is increasing evidence for rapid, non-genomic effects of progesterone in a variety of mammalian tissues and it is possible that a membrane PR (mPR) is causing these events. We recently isolated and characterized an ovine mPR referred to as mPR-alpha, distinct from the nuclear PR. Based on predicted structural analysis, the ovine mPR-alpha possesses seven transmembrane domains typical of G protein-coupled receptors. Despite the homology to other reported mPRs, information pertaining to the steroid binding characteristics of the ovine mPR-alpha was lacking. Additionally, the ovine mPR-alpha transcript has been identified in the hypothalamus, pituitary, uterus, ovary and corpus luteum, yet changes in expression of the ovine mPR-alpha in these tissues were not known. Consequently, the purpose of this work was to determine the steroid binding characteristics of the ovine mPR-alpha and to investigate possible changes in expression of the ovine mPR-alpha in reproductive tissues throughout the estrous cycle. Methods Binding studies were performed using crude membrane fractions from CHO cells expressing the mPR-alpha. Using quantitative Real-time PCR we determined the expression pattern of mRNA for the ovine mPR-alpha during the ovine estrous cycle in tissues known to express the mPR-alpha. Jugular blood samples were also collected and analyzed for serum concentrations of P4 to ensure ewes were at the appropriate stage of their cycle. Results Only progesterone, 20alpha-hydroxyprogesterone and 17alpha-hydroxyprogesterone were able to displace binding of 3H-P4 (P < 0.001) to membrane fractions from CHO cells expressing ovine mPR-alpha. The average B-max and Kd values for three separate experiments were 624 +/- 119 fmol/micro gram protein and 122 +/- 50 n

  8. Progesterone from maternal circulation binds to progestin receptors in fetal brain.

    PubMed

    Wagner, Christine K; Quadros-Mennella, Princy

    2017-06-01

    Steroid hormones activate nuclear receptors which, as transcription factors, can regulate critical aspects of neural development. Many regions of the rat forebrain, midbrain and hindbrain express progestin receptors (PR) during perinatal life, suggesting that progesterone may play an important role in the development of the brain. An immunohistochemical approach using two antibodies with differential recognition of ligand-bound PR was used to examine whether fetuses are exposed to maternal progesterone during pregnancy and whether progesterone from maternal circulation can bind to PR within the fetal brain. Findings demonstrate that maternal and fetal serum progesterone levels are positively correlated at the end of gestation, suggesting a common source of progesterone in mothers and fetuses (e.g., the maternal ovary). Additional findings suggest that administration of exogenous progesterone to mothers not only increases fetal serum progesterone levels within 2 h, but appears to increase ligand-bound PR in fetal brain. These findings suggest that progesterone of maternal origin may play a previously overlooked role in neural development. In addition, there are implications for the ongoing prophylactic use of synthetic progestins in pregnant women for the prevention of premature birth. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 767-774, 2017. © 2016 Wiley Periodicals, Inc.

  9. Comparison of progesterone and glucocorticoid receptor binding and stimulation of gene expression by progesterone, 17-alpha hydroxyprogesterone caproate (17-OHPC), and related progestins

    PubMed Central

    Attardi, Barbara J.; Zeleznik, Anthony; Simhan, Hyagriv; Chiao, Jye Ping; Mattison, Donald R; Caritis, Steve N

    2007-01-01

    Condensation 17-hydroxyprogesterone caproate is not better than progesterone in binding to progesterone or glucocorticoid receptors or eliciting gene expression in progesterone responsive genes. Comparison of progesterone and glucocorticoid receptor binding and stimulation of gene expression by progesterone, 17-alpha hydroxyprogesterone caproate (17-OHPC), and related progestins. Objective To determine whether the reduction in premature birth attributable to 17-OHPC occurs because of a greater affinity for progesterone (PR) or glucocorticoid (GR) receptors or by enhanced stimulation of progestogen responsive genes when compared with progesterone. Study Design We performed competitive steroid hormone receptor binding assays using cytosols expressing either recombinant human PR-A (rhPR-A) or B (rhPR-B) or rabbit uterine or thymic cytosols. We used four different carcinoma cell lines to assess transactivation of reporter genes or induction of alkaline phosphatase. Results Relative binding affinity of 17-OHPC for rhPR-B, rhPR-A and rabbit PR was 26–30% that of progesterone. Binding of progesterone to rabbit thymic GR was weak. 17-OHPC was comparable to progesterone in eliciting gene expression in all cell lines studied. Conclusions Binding to PR, GR or expression of progesterone-responsive genes is no greater with 17-OHPC than with progesterone. Other mechanisms must account for the beneficial effect of 17-OHPC on preterm birth rates. PMID:18060946

  10. The heat shock protein 60 promotes progesterone synthesis in mitochondria of JEG-3 cells.

    PubMed

    Monreal-Flores, Jessica; Espinosa-García, María Teresa; García-Regalado, Alejandro; Arechavaleta-Velasco, Fabian; Martínez, Federico

    2017-06-01

    Progesterone synthesis in human placenta is essential to maintain pregnancy. The limiting step in placental progesterone synthesis is cholesterol transport from the cytoplasm to the inner mitochondrial membrane. Multiple proteins located in mitochondrial contact sites seem to play a key role in this process. Previously, our group identified the heat shock protein 60 (HSP60) as part of mitochondrial contact sites in human placenta, suggesting its participation in progesterone synthesis. Here, we examined the role of HSP60 in progesterone synthesis. Our results show that over-expression of HSP60 in human placental choriocarcinoma cells (JEG-3) and human embryonic kidney 293 cells (HEK293) promotes progesterone synthesis. Furthermore, incubation of the HSP60 recombinant protein with intact isolated mitochondria from JEG-3 cells also promotes progesterone synthesis in a dose-related fashion. We also show that HSP60 interacts with STARD3 and P450scc proteins from mitochondrial membrane contact sites. Finally, we show that the HSP60 recombinant protein binds cholesterol. Ours results demonstrate that HSP60 participates in mitochondrial progesterone synthesis. These findings provide novel insights into progesterone synthesis in the human placenta and its role in maintaining pregnancy. Copyright © 2017 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. Transcriptional regulation of genes related to progesterone production.

    PubMed

    Mizutani, Tetsuya; Ishikane, Shin; Kawabe, Shinya; Umezawa, Akihiro; Miyamoto, Kaoru

    2015-01-01

    Steroid hormones are synthesized from cholesterol in various tissues, mainly in the adrenal glands and gonads. Because these lipid-soluble steroid hormones immediately diffuse through the cells in which they are produced, their secretion directly reflects the activity of the genes related to their production. Progesterone is important not only for luteinization and maintenance of pregnancy, but also as a substrate for most other steroids. Steroidogenic acute regulatory protein (STAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3β-HSD) are well-known proteins essential for progesterone production. In addition to them, glutathione S-transferase A1-1 and A3-3 are shown to exert Δ(5)-Δ(4) isomerization activity to produce progesterone in a cooperative fashion with 3β-HSD. 5-Aminolevulinic acid synthase 1, ferredoxin 1, and ferredoxin reductase also play a role in steroidogenesis as accessory factors. Members of the nuclear receptor 5A (NR5A) family (steroidogenic factor 1 and liver receptor homolog 1) play a crucial role in the transcriptional regulation of these genes. The NR5A family activates these genes by binding to NR5A responsive elements present within their promoter regions, as well as to the elements far from their promoters. In addition, various NR5A-interacting proteins including peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear receptor subfamily 0, group B, member 1 (DAX-1), and CCAAT/enhancer-binding proteins (C/EBP) are involved in the transcription of NR5A target genes and regulate the transcription either positively or negatively under both basal and tropic hormone-stimulated conditions. In this review, we describe the transcriptional regulation of genes related to progesterone production.

  12. Endometrial estrogen and progesterone receptors within 2-14 days of missed menses in the human.

    PubMed

    Garg, K; Sujata, P; Kumari, G L; Pandey, P K; Padubidri, V; Anand, C

    1993-04-01

    Serial changes in the endometrial levels of estrogen and progesterone receptors (ER and PR) were measured in 50 women from days 2 to 14 of missed menses and correlated with the plasma concentrations of hCG, progesterone and 17 beta-estradiol. Both ER and PR of nuclei were higher than cytosolic proteins, with a shift in the ratio of nER/nPR to nPR from 4th day after missed menses. On Scatchard analysis of the cytosolic and nuclear binding proteins, two classes of proteins, corresponding to Type I and II, were found. While the increasing levels of hCG maintained luteal secretion of progesterone and 17 beta-estradiol at normal mid-luteal phase levels, a gradual increase in 17 beta estradiol from 9th day of missed menses was noted. This delicate balance between circulating levels of progesterone and 17 beta-estradiol and their nuclear receptors at early stages of pregnancy may be of significance.

  13. Temperature-responsive release of cortisol from its binding globulin: a protein thermocouple.

    PubMed

    Cameron, Angus; Henley, David; Carrell, Robin; Zhou, Aiwu; Clarke, Anthony; Lightman, Stafford

    2010-10-01

    Only 5% of circulating cortisol is active and unbound to carrier proteins. Because cortisol levels vary rapidly due to the pulsatile nature of cortisol secretion, the dynamics of cortisol binding are critical determinants of tissue levels of free cortisol and consequent hormonal signaling. The major glucocorticoid carrier protein is corticosteroid binding globulin (CBG), a member of the serpin family that undergoes conformational changes to bind and release hormones. This mechanism has been noted to be temperature responsive, and we have now investigated the effects of temperature on the binding of human CBG to both cortisol and progesterone. Recombinant human CBG was synthesized and used for binding studies with cortisol and progesterone between 34 and 43 C. Binding was monitored by recording the change in intrinsic protein fluorescence. Binding of the steroids to the other major carrier, serum albumin, was measured in a similar manner. There was no effect of temperature on the interaction between human serum albumin and either cortisol or progesterone. The association of both cortisol and progesterone with CBG is more than three orders of magnitude greater than that with HSA, and this interaction was extremely responsive to changes in temperature. The affinity of both cortisol and progesterone for CBG drops approximately 16-fold as temperature increases from 35 to 42 C. This study clearly shows that even within the clinically relevant range of temperatures found in humans, CBG acts as a protein thermocouple that is exquisitely sensitive to temperature change and will release cortisol in response to fever or external sources of heat. This has major implications for our understanding of cortisol regulation in febrile patients.

  14. Progesterone-associated proteins PP12 and PP14 in the human endometrium.

    PubMed

    Rutanen, E M; Koistinen, R; Seppälä, M; Julkunen, M; Suikkari, A M; Huhtala, M L

    1987-01-01

    Two proteins, designated as PP12 and PP14 were originally isolated from soluble extracts of the human placenta and its adjacent membranes. We have shown that they are synthesized by decidualized/secretory endometrium and not by placenta. Both proteins occur at high concentrations in human amniotic fluid, which is therefore an excellent source for purification. PP12 is a 34-kDa glycoprotein, which has an N-terminal amino acid sequence of Ala-Pro-Trp-Gln-Cys-Ala-Pro-Cys-Ser-Ala. This is identical with that of somatomedin-binding protein purified from the amniotic fluid. PP12 too binds somatomedin-C, or IGF-I (insulin-like growth factor-I). Human secretory endometrium synthesizes and secretes PP12, and progesterone stimulates its secretion. PP14 is a 28-kDa glycoprotein. Its N-terminal sequence shows homology to that of beta-lactoglobulins from various species. We have found PP14 in the human endometrium, serum and milk. Immunologically, PP14 is related to progestagen-associated endometrial protein (PEP), alpha-2 pregnancy-associated endometrial protein (alpha-2, PEG), endometrial protein 15 (EP15), alpha-uterine protein (AUP) and chorionic alpha-2 microglobulin (CAG-2). In ovulatory menstrual cycles, the concentration of PP14 increases in endometrial tissue as the secretory changes advance. In serum, the PP14 concentration begins to rise later than the progesterone levels, and high serum PP14 levels are maintained for the first days of the next cycle. By contrast, no elevation of serum PP14 level is seen in anovulatory cycles. Our results show that progesterone-associated proteins are synthesized by the human endometrium and appear in the peripheral circulation, where they can be quantitatively measured using immunochemical techniques.

  15. Progesterone-Mediated Non-Classical Signaling.

    PubMed

    Garg, Deepika; Ng, Sinnie Sin Man; Baig, K Maravet; Driggers, Paul; Segars, James

    2017-09-01

    Progesterone is essential for pregnancy maintenance and menstrual cycle regulation. Hormone action has been primarily ascribed to the well-characterized classical signaling pathway involving ligand binding, activation of nuclear progesterone receptors (PRs), and subsequent activation of genes containing progesterone response elements (PREs). Recent studies have revealed progesterone actions via non-classical signaling pathways, often mediated by non-genomic signaling. Progesterone signaling, in conjunction with growth factor signaling, impacts on the function of growth factors and regulates important physiological actions such as cell growth and remodeling, as well as apoptosis. This review focuses on non-classical progesterone signaling pathways, both including and excluding PR, and highlights how research in this area will provide a better understanding of progesterone actions and may inform novel therapeutic strategies. Copyright © 2017. Published by Elsevier Ltd.

  16. Characterization of R5020 and RU486 binding to progesterone receptor from calf uterus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurd, C.; Moudgil, V.K.

    1988-05-17

    The authors have examined and compared the binding characteristics of the progesterone agonist R5020 (promegestrone, 17,21-dimethylpregna-4,9(10)-diene-3,20-dione) and the progesterone antagonist RU486 (mifepristone, 17..beta..-hydroxy-11..beta..-(4-(dimethylamino)phenyl)-17..cap alpha..-(prop-1-ynyl)-estra-4,9-dien-3-one) in calf uterine cytosol. Both steroids bound cytosol macromolecule(s) with high affinity, exhibiting K/sub d/ values of 5.6 and 3.6 nM for R5020 and RU486 binding, respectively. The binding of the steroids to the macromolecule(s) was rapid at 4/sup 0/C, showing saturation of binding sites at 1-2 h for (/sup 3/H)progesterone and 2-4 h for both (/sup 3/H)R5020 and (/sup 3/H)RU486. Addition of molybdate and glycerol to cytosol increased the extent of (/sup 3/H)R5020 binding. Themore » extent of (/sup 3/H)RU486 binding remained unchanged in the presence of molybdate, whereas glycerol had an inhibitory effect. Molybdate alone or in combination with glycerol stabilized the (/sup 3/H)R5020- and (/sup 3/H)RU486-receptor complexes at 37/sup 0/C. Competitive steroid binding analysis revealed that (/sup 3/H)progesterone, (/sup 3/H)R5020, and (/sup 3/H)RU486 compete for the same site(s) in the uterine cytosol, suggesting that all three bind to the progesterone receptor (PR). Sedimentation rate analysis showed that both steroids were bound to a molecule that sediments in the 8S region. The 8S (/sup 3/H)R5020 and (/sup 3/H)RU486 peaks were abolished by excess radioinert progesterone, RU486, or R5020. The results of this study suggest that, although there are some differences in the nature of their interaction with the PR, both R5020 and RU486 bind to the same 8S receptor in calf uterine cytosol.« less

  17. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitamura, Akira; Nakayama, Yusaku; Kinjo, Masataka, E-mail: kinjo@sci.hokudai.ac.jp

    2015-07-31

    Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLS{sup SV40}) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesismore » takes place. GFP-NLS{sup SV40} in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLS{sup SV40} formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLS{sup SV40} likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLS{sup SV40} can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. - Highlights: • Nuclear localization signal-tagged GFP (GFP-NLS) showed clear nuclear localization. • The GFP-NLS dynamically localized not only in the nucleoplasm, but also to the nucleolus. • The nuclear localization of GFP-NLS results from transient oligomerization mediated via RNA binding. • Our NLS-tagging procedure is ideal for use in artificial sequestration of proteins in the nucleus.« less

  18. Progesterone increases nitric oxide synthesis in human vascular endothelial cells through activation of membrane progesterone receptor-α.

    PubMed

    Pang, Yefei; Dong, Jing; Thomas, Peter

    2015-05-15

    Progesterone exerts beneficial effects on the human cardiovascular system by inducing rapid increases in nitric oxide (NO) production in vascular endothelial cells, but the receptors mediating these nongenomic progesterone actions remain unclear. Using human umbilical vein endothelial cells (HUVECs) as a model, we show that progesterone binds to plasma membranes of HUVECs with the characteristics of membrane progesterone receptors (mPRs). The selective mPR agonist Org OD 02-0 had high binding affinity for the progesterone receptor on HUVEC membranes, whereas nuclear PR (nPR) agonists R5020 and medroxyprogesterone acetate displayed low binding affinities. Immunocytochemical and Western blot analyses confirmed that mPRs are expressed in HUVECs and are localized on their plasma membranes. NO levels increased rapidly after treatment with 20 nM progesterone, Org OD 02-0, and a progesterone-BSA conjugate but not with R5020, suggesting that this progesterone action is at the cell surface and initiated through mPRs. Progesterone and Org OD 02-0 (20 nM) also significantly increased endothelial nitric oxide synthase (eNOS) activity and eNOS phosphorylation. Knockdown of mPRα expression by treatment with small-interfering RNA (siRNA) blocked the stimulatory effects of 20 nM progesterone on NO production and eNOS phosphorylation, whereas knockdown of nPR was ineffective. Treatment with PI3K/Akt and MAP kinase inhibitors blocked the stimulatory effects of progesterone, Org OD 02-0, and progesterone-BSA on NO production and eNOS phosphorylation and also prevented progesterone- and Org OD 02-0-induced increases in Akt and ERK phosphorylation. The results suggest that progesterone stimulation of NO production in HUVECs is mediated by mPRα and involves signaling through PI3K/Akt and MAP kinase pathways. Copyright © 2015 the American Physiological Society.

  19. Evidence that Poly(A) Binding Protein C1 Binds Nuclear Pre-mRNA Poly(A) Tails

    PubMed Central

    Hosoda, Nao; Lejeune, Fabrice; Maquat, Lynne E.

    2006-01-01

    In mammalian cells, poly(A) binding protein C1 (PABP C1) has well-known roles in mRNA translation and decay in the cytoplasm. However, PABPC1 also shuttles in and out of the nucleus, and its nuclear function is unknown. Here, we show that PABPC1, like the major nuclear poly(A) binding protein PABPN1, associates with nuclear pre-mRNAs that are polyadenylated and intron containing. PABPC1 does not bind nonpolyadenylated histone mRNA, indicating that the interaction of PABPC1 with pre-mRNA requires a poly(A) tail. Consistent with this conclusion, UV cross-linking results obtained using intact cells reveal that PABPC1 binds directly to pre-mRNA poly(A) tails in vivo. We also show that PABPC1 immunopurifies with poly(A) polymerase, suggesting that PABPC1 is acquired by polyadenylated transcripts during poly(A) tail synthesis. Our findings demonstrate that PABPC1 associates with polyadenylated transcripts earlier in mammalian mRNA biogenesis than previously thought and offer insights into the mechanism by which PABPC1 is recruited to newly synthesized poly(A). Our results are discussed in the context of pre-mRNA processing and stability and mRNA trafficking and the pioneer round of translation. PMID:16581783

  20. Nuclear actions of insulin-like growth factor binding protein-3.

    PubMed

    Baxter, Robert C

    2015-09-10

    In addition to its actions outside the cell, cellular uptake and nuclear import of insulin-like growth factor binding protein-3 (IGFBP-3) has been recognized for almost two decades, but knowledge of its nuclear actions has been slow to emerge. IGFBP-3 has a functional nuclear localization signal and interacts with the nuclear transport protein importin-β. Within the nucleus IGFBP-3 appears to have a role in transcriptional regulation. It can bind to the nuclear receptor, retinoid X receptor-α and several of its dimerization partners, including retinoic acid receptor, vitamin D receptor (VDR), and peroxisome proliferator-activated receptor-γ (PPARγ). These interactions modulate the functions of these receptors, for example inhibiting VDR-dependent transcription in osteoblasts and PPARγ-dependent transcription in adipocytes. Nuclear IGFBP-3 can be detected by immunohistochemistry in cancer and other tissues, and its presence in the nucleus has been shown in many cell culture studies to be necessary for its pro-apoptotic effect, which may also involve interaction with the nuclear receptor Nur77, and export from the nucleus. IGFBP-3 is p53-inducible and in response to DNA damage, forms a complex with the epidermal growth factor receptor (EGFR), translocating to the nucleus to interact with DNA-dependent protein kinase. Inhibition of EGFR kinase activity or downregulation of IGFBP-3 can inhibit DNA double strand-break repair by nonhomologous end joining. IGFBP-3 thus has the ability to influence many cell functions through its interactions with intranuclear pathways, but the importance of these interactions in vivo, and their potential to be targeted for therapeutic benefit, require further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A Distinct and Parallel Pathway for the Nuclear Import of an mRNA-binding Protein

    PubMed Central

    Pemberton, Lucy F.; Rosenblum, Jonathan S.; Blobel, Günter

    1997-01-01

    Three independent pathways of nuclear import have so far been identified in yeast, each mediated by cognate nuclear transport factors, or karyopherins. Here we have characterized a new pathway to the nucleus, mediated by Mtr10p, a protein first identified in a screen for strains defective in polyadenylated RNA export. Mtr10p is shown to be responsible for the nuclear import of the shuttling mRNA-binding protein Npl3p. A complex of Mtr10p and Npl3p was detected in cytosol, and deletion of Mtr10p was shown to lead to the mislocalization of nuclear Npl3p to the cytoplasm, correlating with a block in import. Mtr10p bound peptide repeat-containing nucleoporins and Ran, suggesting that this import pathway involves a docking step at the nuclear pore complex and is Ran dependent. This pathway of Npl3p import is distinct and does not appear to overlap with another known import pathway for an mRNA-binding protein. Thus, at least two parallel pathways function in the import of mRNA-binding proteins, suggesting the need for the coordination of these pathways. PMID:9412460

  2. Estradiol and progesterone regulate the expression of insulin-like growth factor-I receptor and insulin-like growth factor binding protein-2 in the hypothalamus of adult female rats.

    PubMed

    Cardona-Gómez, G P; Chowen, J A; Garcia-Segura, L M

    2000-06-05

    Gonadal hormones interact with insulin-like growthfactor-I (IGF-I) to regulate synaptic plasticity during the estrous cycle in the rat mediobasal hypothalamus. It has been proposed that tanycytes, specialized glial cells lining the ventral region of the third ventricle, may regulate the availability of IGF-I to hypothalamic neurons. IGF-I levels in tanycytes fluctuate during the estrous cycle. Furthermore, estrogen administration to ovariectomized rats increases IGF-I levels in tanycytes, while progesterone, injected simultaneously with estrogen, blocks the estrogen-induced increase of IGF-I levels in tanycytes. To test whether hormonal regulation of IGF-I receptor (IGF-IR) and IGF binding protein-2 (IGFBP-2) may be involved in the accumulation of IGF-I in tanycytes, we assessed the effect of ovarian hormones on the levels of these molecules in the mediobasal hypothalamus of adult female rats. Ovariectomized animals were treated with either oil, estrogen, progesterone, or estrogen and progesterone simultaneously and then killed 6 or 24 h later. Some neurons, some astrocytes, and many tanycytes in the mediobasal hypothalamus were found by confocal microscopy to be immunoreactive for IGF-IR. IGFBP-2 immunoreactivity was restricted almost exclusively to tanycytes and ependymal cells and was colocalized with IGF-IR immunoreactivity in tanycytes. By electron microscope immunocytochemistry using colloidal gold labeling, IGF-IR and IGFBP-2 immunoreactivities were observed in the microvilli of tanycytes in the lumen of the third ventricle. IGF-IR and IGFBP-2 immunoreactive levels on the apical surface of tanycytes were significantly decreased by the administration of progesterone, either alone or in the presence of estradiol. IGF-IR levels in the mediobasal hypothalamus, measured by Western blotting, were not significantly affected by the separate administration of estradiol or progesterone to ovariectomized rats. However, the simultaneous administration of both hormones

  3. Functional Activity of the Fanconi Anemia Protein FAA Requires FAC Binding and Nuclear Localization

    PubMed Central

    Näf, Dieter; Kupfer, Gary M.; Suliman, Ahmed; Lambert, Kathleen; D’Andrea, Alan D.

    1998-01-01

    Fanconi anemia (FA) is an autosomal recessive disease characterized by genomic instability, cancer susceptibility, and cellular hypersensitivity to DNA-cross-linking agents. Eight complementation groups of FA (FA-A through FA-H) have been identified. Two FA genes, corresponding to complementation groups FA-A and FA-C, have been cloned, but the functions of the encoded FAA and FAC proteins remain unknown. We have recently demonstrated that FAA and FAC interact to form a nuclear complex. In this study, we have analyzed a series of mutant forms of the FAA protein with respect to functional activity, FAC binding, and nuclear localization. Mutation or deletion of the amino-terminal nuclear localization signal (NLS) of FAA results in loss of functional activity, loss of FAC binding, and cytoplasmic retention of FAA. Replacement of the NLS sequence with a heterologous NLS sequence, derived from the simian virus 40 T antigen, results in nuclear localization but does not rescue functional activity or FAC binding. Nuclear localization of the FAA protein is therefore necessary but not sufficient for FAA function. Mutant forms of FAA which fail to bind to FAC also fail to promote the nuclear accumulation of FAC. In addition, wild-type FAC promotes the accumulation of wild-type FAA in the nucleus. Our results suggest that FAA and FAC perform a concerted function in the cell nucleus, required for the maintenance of chromosomal stability. PMID:9742112

  4. Regulation of uterine progesterone receptors by the nonsteroidal anti-androgen hydroxyflutamide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrasekhar, Y.; Armstrong, D.T.

    1991-07-01

    The authors have recently reported that the anti-androgen hydroxyflutamide causes delayed implantation and exhibits antideciduogenic activity in the rat. The present experiments were conducted to examine whether hydroxyflutamide binds to the uterine progesterone receptors and/or alters the progesterone binding sites in the uterus. Cytosol and nuclear fractions from decidualized rat uterus were incubated with (3H)-R5020 without or with increasing concentrations of radioinert R5020, RU486, dihydrotestosterone, or hydroxyflutamide. From the log-dose inhibition curves, the relative binding affinity of both hydroxyflutamide and dihydrotestosterone was less than 0.1% and 2%, compared with R5020 (100%) for displacing (3H)-R5020 bound to uterine cytosol and nuclearmore » fractions, respectively. Injection of estradiol-17 beta (1 microgram/rat) to ovariectomized prepubertal rats induced a 1.85-fold increase in uterine weight by 24 h. Hydroxyflutamide at 2.5 or 5.0 mg did not significantly alter the estrogen-induced increase in uterine weight. Compared to vehicle alone, estrogen induced an approximately 5-fold increase in uterine cytosolic progesterone binding sites. Hydroxyflutamide at both 2.5- and 5.0-mg doses significantly attenuated the estrogen-induced elevation in uterine progesterone binding sites. These studies demonstrate that hydroxyflutamide does not bind with high affinity to progesterone receptors, but suppresses the estrogen-induced elevation in progesterone receptor levels in the uterus.« less

  5. Gadd45a Is an RNA Binding Protein and Is Localized in Nuclear Speckles

    PubMed Central

    Sytnikova, Yuliya A.; Kubarenko, Andriy V.; Schäfer, Andrea; Weber, Alexander N. R.; Niehrs, Christof

    2011-01-01

    Background The Gadd45 proteins play important roles in growth control, maintenance of genomic stability, DNA repair, and apoptosis. Recently, Gadd45 proteins have also been implicated in epigenetic gene regulation by promoting active DNA demethylation. Gadd45 proteins have sequence homology with the L7Ae/L30e/S12e RNA binding superfamily of ribosomal proteins, which raises the question if they may interact directly with nucleic acids. Principal Findings Here we show that Gadd45a binds RNA but not single- or double stranded DNA or methylated DNA in vitro. Sucrose density gradient centrifugation experiments demonstrate that Gadd45a is present in high molecular weight particles, which are RNase sensitive. Gadd45a displays RNase-sensitive colocalization in nuclear speckles with the RNA helicase p68 and the RNA binding protein SC35. A K45A point mutation defective in RNA binding was still active in DNA demethylation. This suggests that RNA binding is not absolutely essential for demethylation of an artificial substrate. A point mutation at G39 impared RNA binding, nuclear speckle localization and DNA demethylation, emphasizing its relevance for Gadd45a function. Significance The results implicate RNA in Gadd45a function and suggest that Gadd45a is associated with a ribonucleoprotein particle. PMID:21249130

  6. Steroid production and estrogen binding in flowers of Gladiolus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, J.H.; Wolfe, G.R.; Janik, J.R.

    1987-04-01

    The bioconversion of /sup 3/H-cholesterol to steroids was examined in excised tissue from the pistils and bracts of Gladiolus. Ovary-ovule and stigma-style tissues produce a compound with chromatographic properties on reverse phase HPLC similar to 17..beta..-estradiol (E/sub 2/). The stigma-style fraction also produced a compound that chromatographed similarly to progesterone. Bracts and the oxidation controls produced no radiolabeled compounds which were chromatographically similar to E/sub 2/. An endogenous E/sub 2/ binding protein was partially characterized from the ovules. The protein binds E/sub 2/, estriol, and diethylstilbesterol whereas testosterone and progesterone do not bind. The total specific binding capacities in themore » cytosolic and nuclear fractions are 1.6 and 2.2 femtomoles of estradiol per mg of tissue. The dissociation constant is 1.1 x 10/sup -9/ M/sup -1/ for both subcellular fractions. The protein-estradiol complex has a sedimentation coefficient of 4.7 +/- 0.1S. The tissue specific biosynthesis of estrogens and the presence of a steroid binding protein similar to a Type 1 estrogen receptor found in mammals is suggestive of a role for steroids in pistil ontogeny.« less

  7. Identification of a maize nucleic acid-binding protein (NBP) belonging to a family of nuclear-encoded chloroplast proteins.

    PubMed Central

    Cook, W B; Walker, J C

    1992-01-01

    A cDNA encoding a nuclear-encoded chloroplast nucleic acid-binding protein (NBP) has been isolated from maize. Identified as an in vitro DNA-binding activity, NBP belongs to a family of nuclear-encoded chloroplast proteins which share a common domain structure and are thought to be involved in posttranscriptional regulation of chloroplast gene expression. NBP contains an N-terminal chloroplast transit peptide, a highly acidic domain and a pair of ribonucleoprotein consensus sequence domains. NBP is expressed in a light-dependent, organ-specific manner which is consistent with its involvement in chloroplast biogenesis. The relationship of NBP to the other members of this protein family and their possible regulatory functions are discussed. Images PMID:1346929

  8. Karyopherin α 3 and karyopherin α 4 proteins mediate the nuclear import of methyl-CpG binding protein 2.

    PubMed

    Baker, Steven Andrew; Lombardi, Laura Marie; Zoghbi, Huda Yahya

    2015-09-11

    Methyl-CpG binding protein 2 (MeCP2) is a nuclear protein with important roles in regulating chromatin structure and gene expression, and mutations in MECP2 cause Rett syndrome (RTT). Within the MeCP2 protein sequence, the nuclear localization signal (NLS) is reported to reside between amino acids 255-271, and certain RTT-causing mutations overlap with the MeCP2 NLS, suggesting that they may alter nuclear localization. One such mutation, R270X, is predicted to interfere with the localization of MeCP2, but recent in vivo studies have demonstrated that this mutant remains entirely nuclear. To clarify the mechanism of MeCP2 nuclear import, we isolated proteins that interact with the NLS and identified karyopherin α 3 (KPNA3 or Kap-α3) and karyopherin α 4 (KPNA4 or Kap-α4) as key binding partners of MeCP2. MeCP2-R270X did not interact with KPNA4, consistent with a requirement for an intact NLS in this interaction. However, this mutant retains binding to KPNA3, accounting for the normal localization of MeCP2-R270X to the nucleus. These data provide a mechanism for MeCP2 nuclear import and have implications for the design of therapeutics aimed at modulating the function of MeCP2 in RTT patients. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Exploring Flexibility of Progesterone Receptor Ligand Binding Domain Using Molecular Dynamics

    PubMed Central

    Zheng, Liangzhen; Mu, Yuguang

    2016-01-01

    Progesterone receptor (PR), a member of nuclear receptor (NR) superfamily, plays a vital role for female reproductive tissue development, differentiation and maintenance. PR ligand, such as progesterone, induces conformation changes in PR ligand binding domain (LBD), thus mediates subsequent gene regulation cascades. PR LBD may adopt different conformations upon an agonist or an antagonist binding. These different conformations would trigger distinct transcription events. Therefore, the dynamics of PR LBD would be of general interest to biologists for a deep understanding of its structure-function relationship. However, no apo-form (non-ligand bound) of PR LBD model has been proposed either by experiments or computational methods so far. In this study, we explored the structural dynamics of PR LBD using molecular dynamics simulations and advanced sampling tools in both ligand-bound and the apo-forms. Resolved by the simulation study, helix 11, helix 12 and loop 895–908 (the loop between these two helices) are quite flexible in antagonistic conformation. Several residues, such as Arg899 and Glu723, could form salt-bridging interaction between helix 11 and helix 3, and are important for the PR LBD dynamics. And we also propose that helix 12 in apo-form PR LBD, not like other NR LBDs, such as human estrogen receptor α (ERα) LBD, may not adopt a totally extended conformation. With the aid of umbrella sampling and metadynamics simulations, several stable conformations of apo-form PR LBD have been sampled, which may work as critical structural models for further large scale virtual screening study to discover novel PR ligands for therapeutic application. PMID:27824891

  10. Detection of potential (anti)progestagenic endocrine disruptors using a recombinant human progesterone receptor binding and transactivation assay.

    PubMed

    Viswanath, Gunda; Halder, Sujata; Divya, Gunda; Majumder, Chandrajeet B; Roy, Partha

    2008-11-25

    The present work describes the identification of (anti)progestin endocrine disrupting chemicals (EDC) using a two step screening system. In the first step a competitive binding assay was developed using recombinant human progesterone receptor (hPR). The tested chemicals were of various classes like insecticides, their metabolites, industrial chemicals and waste water treatment plant (WWTP) effluents. All the tested chemicals demonstrated a high affinity binding for hPR. The average IC50 values of the test chemicals were within the range of 1-25microM. In the second step of screening, a mammalian cell-based hPR transactivation assay was developed where HEK 293 cells were co-transfected with hPR and luciferase reporter gene under the control of progesterone-response element. Stimulation of the cells with progesterone resulted in about 25-fold up regulation of luciferase activity, with EC50 value of 4nM. Potent anti-progesterone, RU486, significantly inhibited progesterone-induced transactivation and non-progestagenic steroids failed to transactivate hPR till 1microM concentrations. The chemicals showing high binding affinities in competitive binding assays were then tested in transactivation assay and all of them were found to be anti-progestative except WWTP effluents. Transactivation assays using extracted water samples from five different WWTP effluents showed that it was rich in progestative compounds. The levels of induction caused by these effluents were in the range of 15-25% of induction by progesterone and they represented about 6ng/l equivalent progesterone activities. In conclusion, we demonstrated that this two step assay provides an efficient screening tool for the detection of (anti)progestative EDC in various samples.

  11. LaRbp38: A Leishmania amazonensis protein that binds nuclear and kinetoplast DNAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lira, C.B.B.; Instituto de Biologia, UNICAMP, Campinas, SP; Siqueira Neto, J.L.

    Leishmania amazonensis causes a wide spectrum of leishmaniasis. There are no vaccines or adequate treatment for leishmaniasis, therefore there is considerable interest in the identification of new targets for anti-leishmania drugs. The central role of telomere-binding proteins in cell maintenance makes these proteins potential targets for new drugs. In this work, we used a combination of purification chromatographies to screen L. amazonensis proteins for molecules capable of binding double-stranded telomeric DNA. This approach resulted in the purification of a 38 kDa polypeptide that was identified by mass spectrometry as Rbp38, a trypanosomatid protein previously shown to stabilize mitochondrial RNA andmore » to associate with nuclear and kinetoplast DNAs. Western blotting and supershift assays confirmed the identity of the protein as LaRbp38. Competition and chromatin immunoprecipitation assays confirmed that LaRbp38 interacted with kinetoplast and nuclear DNAs in vivo and suggested that LaRbp38 may have dual cellular localization and more than one function.« less

  12. Protein Cofactors Are Essential for High-Affinity DNA Binding by the Nuclear Factor κB RelA Subunit.

    PubMed

    Mulero, Maria Carmen; Shahabi, Shandy; Ko, Myung Soo; Schiffer, Jamie M; Huang, De-Bin; Wang, Vivien Ya-Fan; Amaro, Rommie E; Huxford, Tom; Ghosh, Gourisankar

    2018-05-22

    Transcription activator proteins typically contain two functional domains: a DNA binding domain (DBD) that binds to DNA with sequence specificity and an activation domain (AD) whose established function is to recruit RNA polymerase. In this report, we show that purified recombinant nuclear factor κB (NF-κB) RelA dimers bind specific κB DNA sites with an affinity significantly lower than that of the same dimers from nuclear extracts of activated cells, suggesting that additional nuclear cofactors might facilitate DNA binding by the RelA dimers. Additionally, recombinant RelA binds DNA with relatively low affinity at a physiological salt concentration in vitro. The addition of p53 or RPS3 (ribosomal protein S3) increases RelA:DNA binding affinity 2- to >50-fold depending on the protein and ionic conditions. These cofactor proteins do not form stable ternary complexes, suggesting that they stabilize the RelA:DNA complex through dynamic interactions. Surprisingly, the RelA-DBD alone fails to bind DNA under the same solution conditions even in the presence of cofactors, suggesting an important role of the RelA-AD in DNA binding. Reduced RelA:DNA binding at a physiological ionic strength suggests that multiple cofactors might be acting simultaneously to mitigate the electrolyte effect and stabilize the RelA:DNA complex in vivo. Overall, our observations suggest that the RelA-AD and multiple cofactor proteins function cooperatively to prime the RelA-DBD and stabilize the RelA:DNA complex in cells. Our study provides a mechanism for nuclear cofactor proteins in NF-κB-dependent gene regulation.

  13. The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants

    PubMed Central

    Bakó, László; Umeda, Masaaki; Tiburcio, Antonio F.; Schell, Jeff; Koncz, Csaba

    2003-01-01

    The bacterial virulence protein VirD2 plays an important role in nuclear import and chromosomal integration of Agrobacterium-transferred DNA in fungal, plant, animal, and human cells. Here we show that in nuclei of alfalfa cells, VirD2 interacts with and is phosphorylated by CAK2Ms, a conserved plant ortholog of cyclin-dependent kinase-activating kinases. CAK2Ms binds to and phosphorylates the C-terminal regulatory domain of RNA polymerase II largest subunit, which can recruit the TATA box-binding protein. VirD2 is found in tight association with the TATA box-binding protein in vivo. These results indicate that recognition of VirD2 is mediated by widely conserved nuclear factors in eukaryotes. PMID:12900506

  14. Retinoblastoma-binding Protein 4-regulated Classical Nuclear Transport Is Involved in Cellular Senescence*

    PubMed Central

    Tsujii, Akira; Miyamoto, Yoichi; Moriyama, Tetsuji; Tsuchiya, Yuko; Obuse, Chikashi; Mizuguchi, Kenji; Oka, Masahiro; Yoneda, Yoshihiro

    2015-01-01

    Nucleocytoplasmic trafficking is a fundamental cellular process in eukaryotic cells. Here, we demonstrated that retinoblastoma-binding protein 4 (RBBP4) functions as a novel regulatory factor to increase the efficiency of importin α/β-mediated nuclear import. RBBP4 accelerates the release of importin β1 from importin α via competitive binding to the importin β-binding domain of importin α in the presence of RanGTP. Therefore, it facilitates importin α/β-mediated nuclear import. We showed that the importin α/β pathway is down-regulated in replicative senescent cells, concomitant with a decrease in RBBP4 level. Knockdown of RBBP4 caused both suppression of nuclear transport and induction of cellular senescence. This is the first report to identify a factor that competes with importin β1 to bind to importin α, and it demonstrates that the loss of this factor can trigger cellular senescence. PMID:26491019

  15. A New Family of Nuclear Receptor Coregulators That Integrate Nuclear Receptor Signaling through CREB-Binding Protein

    PubMed Central

    Mahajan, Muktar A.; Samuels, Herbert H.

    2000-01-01

    We describe the cloning and characterization of a new family of nuclear receptor coregulators (NRCs) which modulate the function of nuclear hormone receptors in a ligand-dependent manner. NRCs are expressed as alternatively spliced isoforms which may exhibit different intrinsic activities and receptor specificities. The NRCs are organized into several modular structures and contain a single functional LXXLL motif which associates with members of the steroid hormone and thyroid hormone/retinoid receptor subfamilies with high affinity. Human NRC (hNRC) harbors a potent N-terminal activation domain (AD1), which is as active as the herpesvirus VP16 activation domain, and a second activation domain (AD2) which overlaps with the receptor-interacting LXXLL region. The C-terminal region of hNRC appears to function as an inhibitory domain which influences the overall transcriptional activity of the protein. Our results suggest that NRC binds to liganded receptors as a dimer and this association leads to a structural change in NRC resulting in activation. hNRC binds CREB-binding protein (CBP) with high affinity in vivo, suggesting that hNRC may be an important functional component of a CBP complex involved in mediating the transcriptional effects of nuclear hormone receptors. PMID:10866662

  16. Crystal structure of importin-α3 bound to the nuclear localization signal of Ran-binding protein 3.

    PubMed

    Koyama, Masako; Matsuura, Yoshiyuki

    2017-09-23

    Ran-binding protein 3 (RanBP3) is a primarily nuclear Ran-binding protein that functions as an accessory factor in the Ran GTPase system. RanBP3 associates with Ran-specific nucleotide exchange factor RCC1 and enhances its catalytic activity towards Ran. RanBP3 also promotes CRM1-mediated nuclear export as well as CRM1-independent nuclear export of β-catenin, Smad2, and Smad3. Nuclear import of RanBP3 is dependent on the nuclear import adaptor protein importin-α and, RanBP3 is imported more efficiently by importin-α3 than by other members of the importin-α family. Protein kinase signaling pathways control nucleocytoplasmic transport through phosphorylation of RanBP3 at Ser58, immediately C-terminal to the nuclear localization signal (NLS) in the N-terminal region of RanBP3. Here we report the crystal structure of human importin-α3 bound to an N-terminal fragment of human RanBP3 containing the NLS sequence that is necessary and sufficient for nuclear import. The structure reveals that RanBP3 binds to importin-α3 residues that are strictly conserved in all seven isoforms of human importin-α at the major NLS-binding site, indicating that the region of importin-α outside the NLS-binding site, possibly the autoinhibotory importin-β1-binding domain, may be the key determinant for the preferential binding of RanBP3 to importin-α3. Computational docking simulation indicates that phosphorylation of RanBP3 at Ser58 could potentially stabilize the association of RanBP3 with importin-α through interactions between the phosphate moiety of phospho-Ser58 of RanBP3 and a cluster of basic residues (Arg96 and Lys97 in importin-α3) on armadillo repeat 1 of importin-α. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators

    PubMed Central

    Redfern, Andrew D.; Colley, Shane M.; Beveridge, Dianne J.; Ikeda, Naoya; Epis, Michael R.; Li, Xia; Foulds, Charles E.; Stuart, Lisa M.; Barker, Andrew; Russell, Victoria J.; Ramsay, Kerry; Kobelke, Simon J.; Li, Xiaotao; Hatchell, Esme C.; Payne, Christine; Giles, Keith M.; Messineo, Adriana; Gatignol, Anne; Lanz, Rainer B.; O’Malley, Bert W.; Leedman, Peter J.

    2013-01-01

    The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including protein kinase RNA activator (PACT), transactivation response RNA binding protein (TRBP), and Dicer, that process pre-microRNAs into mature microRNAs (miRNAs) that target specific mRNA species for regulation. There is increasing evidence for important functional interactions between the miRNA and nuclear receptor (NR) signaling networks, with recent data showing that estrogen, acting through the estrogen receptor, can modulate initial aspects of nuclear miRNA processing. Here, we show that the cytoplasmic RISC proteins PACT, TRBP, and Dicer are steroid receptor RNA activator (SRA) binding NR coregulators that target steroid-responsive promoters and regulate NR activity and downstream gene expression. Furthermore, each of the RISC proteins, together with Argonaute 2, associates with SRA and specific pre-microRNAs in both the nucleus and cytoplasm, providing evidence for links between NR-mediated transcription and some of the factors involved in miRNA processing. PMID:23550157

  18. RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators.

    PubMed

    Redfern, Andrew D; Colley, Shane M; Beveridge, Dianne J; Ikeda, Naoya; Epis, Michael R; Li, Xia; Foulds, Charles E; Stuart, Lisa M; Barker, Andrew; Russell, Victoria J; Ramsay, Kerry; Kobelke, Simon J; Li, Xiaotao; Hatchell, Esme C; Payne, Christine; Giles, Keith M; Messineo, Adriana; Gatignol, Anne; Lanz, Rainer B; O'Malley, Bert W; Leedman, Peter J

    2013-04-16

    The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including protein kinase RNA activator (PACT), transactivation response RNA binding protein (TRBP), and Dicer, that process pre-microRNAs into mature microRNAs (miRNAs) that target specific mRNA species for regulation. There is increasing evidence for important functional interactions between the miRNA and nuclear receptor (NR) signaling networks, with recent data showing that estrogen, acting through the estrogen receptor, can modulate initial aspects of nuclear miRNA processing. Here, we show that the cytoplasmic RISC proteins PACT, TRBP, and Dicer are steroid receptor RNA activator (SRA) binding NR coregulators that target steroid-responsive promoters and regulate NR activity and downstream gene expression. Furthermore, each of the RISC proteins, together with Argonaute 2, associates with SRA and specific pre-microRNAs in both the nucleus and cytoplasm, providing evidence for links between NR-mediated transcription and some of the factors involved in miRNA processing.

  19. Progesterone suppresses triple-negative breast cancer growth and metastasis to the brain via membrane progesterone receptor α.

    PubMed

    Zhou, Li; Zhou, Wei; Zhang, Hongwei; Hu, Yan; Yu, Lei; Zhang, Yufei; Zhang, Yanli; Wang, Shuang; Wang, Peng; Xia, Wei

    2017-09-01

    Progesterone plays an important role in mammary epithelial cell proliferation and differentiation. Evidence from experimental and clinical studies indicates that progesterone is a risk factor for breast cancer under certain conditions through binding nuclear progesterone receptor (PR). These mechanisms, however, are not applicable to triple-negative breast cancer (TNBC) due to the lack of PR in these cancers. In this study, we demonstrate that membrane progesterone receptor α (mPRα) is expressed in TNBC tissues and the expression level of mPRα is negatively associated with the TNM stage. We found that progesterone suppressed the growth, migration and invasion of mPRα+ human TNBC cells in vitro, which was neither mediated by PR nor by PR membrane component 1 (PGRMCl). Notably, these effects exerted by progesterone were significantly blocked by shRNA specific to mPRα. Moreover, the knockdown of mPRα expression impaired the inhibitory effects of progesterone on mPRα+ tumor growth and metastasis in vivo. These data collectively indicate that progesterone suppresses TNCB growth and metastasis via mPRα, which provides evidence of the anti-neoplastic effects of progesterone-mPRα pathway in the treatment of human TNBC.

  20. Progesterone receptors in the female lower urinary tract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batra, S.C.; Iosif, C.S.

    1987-11-01

    When female estrogenized rabbits were injected i.v. with /sup 3/H-progesterone, the tritium concentration determined after one hour was about two to three times higher in urethra, urinary bladder and vagina than in the heart. High affinity progesterone receptors (KD = 1-2 nM) could be demonstrated in both cytoplasmic and nuclear fractions prepared from estrogenized rabbit urethra, bladder and vagina. The cytosolic receptor concentration in both urethra and bladder was about half of that in the vagina. The concentration of nuclear receptors in urethra was not significantly different from that in the vagina, but in the bladder the concentration was onlymore » about one fourth of that in the vagina or urethra. The mean KD of cytosolic receptors from bladder was significantly higher than the corresponding values in urethra and vagina. Progesterone binding sites in the bladder had a broader hormonal specificity than those in the urethra or vagina. The present demonstration of specific progesterone receptors in the female urethra might provide a possible link between estrogen progesterone interaction and the appearance of urinary incontinence during pregnancy in women.« less

  1. Progesterone inhibits proliferation and modulates expression of proliferation-Related genes in classical progesterone receptor-negative human BxPC3 pancreatic adenocarcinoma cells.

    PubMed

    Goncharov, Alexey I; Maslakova, Aitsana A; Polikarpova, Anna V; Bulanova, Elena A; Guseva, Alexandra A; Morozov, Ivan A; Rubtsov, Petr M; Smirnova, Olga V; Shchelkunova, Tatiana A

    2017-01-01

    Recent studies suggest that progesterone may possess anti-tumorigenic properties. However, a growth-modulatory role of progestins in human cancer cells remains obscure. With the discovery of a new class of membrane progesterone receptors (mPRs) belonging to the progestin and adipoQ receptor gene family, it becomes important to study the effect of this hormone on proliferation of tumor cells that do not express classical nuclear progesterone receptors (nPRs). To identify a cell line expressing high levels of mPRs and lacking nPRs, we examined mRNA levels of nPRs and three forms of mPRs in sixteen human tumor cell lines of different origin. High expression of mPR mRNA has been found in pancreatic adenocarcinoma BxPC3 cells, while nPR mRNA has not been detected in these cells. Western blot analysis confirmed these findings at the protein level. We revealed specific binding of labeled progesterone in these cells with affinity constant similar to that of human mPR expressed in yeast cells. Progesterone at high concentration of 20 μM significantly reduced the mRNA levels of proliferation markers Ki67 and PCNA, as well as of cyclin D1, and increased the mRNA levels of cyclin dependent kinase inhibitors p21 and p27. Progesterone (1 μM and 20 μM) significantly inhibited proliferative activity of BxPC3 cells. These results point to anti-proliferative effects of the progesterone high concentrations on BxPC3 cells and suggest that activation of mPRs may mediate this action. Our data are a starting point for further investigations regarding the application of progesterone in pancreatic cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Metabolite Regulation of Nuclear Localization of Carbohydrate-response Element-binding Protein (ChREBP)

    PubMed Central

    Sato, Shogo; Jung, Hunmin; Nakagawa, Tsutomu; Pawlosky, Robert; Takeshima, Tomomi; Lee, Wan-Ru; Sakiyama, Haruhiko; Laxman, Sunil; Wynn, R. Max; Tu, Benjamin P.; MacMillan, John B.; De Brabander, Jef K.; Veech, Richard L.; Uyeda, Kosaku

    2016-01-01

    The carbohydrate-response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays an essential role in converting excess carbohydrate to fat storage in the liver. In response to glucose levels, ChREBP is regulated by nuclear/cytosol trafficking via interaction with 14-3-3 proteins, CRM-1 (exportin-1 or XPO-1), or importins. Nuclear localization of ChREBP was rapidly inhibited when incubated in branched-chain α-ketoacids, saturated and unsaturated fatty acids, or 5-aminoimidazole-4-carboxamide ribonucleotide. Here, we discovered that protein-free extracts of high fat-fed livers contained, in addition to ketone bodies, a new metabolite, identified as AMP, which specifically activates the interaction between ChREBP and 14-3-3. The crystal structure showed that AMP binds directly to the N terminus of ChREBP-α2 helix. Our results suggest that AMP inhibits the nuclear localization of ChREBP through an allosteric activation of ChREBP/14-3-3 interactions and not by activation of AMPK. AMP and ketone bodies together can therefore inhibit lipogenesis by restricting localization of ChREBP to the cytoplasm during periods of ketosis. PMID:26984404

  3. Functions of Intracellular Retinoid Binding-Proteins.

    PubMed

    Napoli, Joseph L

    Multiple binding and transport proteins facilitate many aspects of retinoid biology through effects on retinoid transport, cellular uptake, metabolism, and nuclear delivery. These include the serum retinol binding protein sRBP (aka Rbp4), the plasma membrane sRBP receptor Stra6, and the intracellular retinoid binding-proteins such as cellular retinol-binding proteins (CRBP) and cellular retinoic acid binding-proteins (CRABP). sRBP transports the highly lipophilic retinol through an aqueous medium. The major intracellular retinol-binding protein, CRBP1, likely enhances efficient retinoid use by providing a sink to facilitate retinol uptake from sRBP through the plasma membrane or via Stra6, delivering retinol or retinal to select enzymes that generate retinyl esters or retinoic acid, and protecting retinol/retinal from excess catabolism or opportunistic metabolism. Intracellular retinoic acid binding-proteins (CRABP1 and 2, and FABP5) seem to have more diverse functions distinctive to each, such as directing retinoic acid to catabolism, delivering retinoic acid to specific nuclear receptors, and generating non-canonical actions. Gene ablation of intracellular retinoid binding-proteins does not cause embryonic lethality or gross morphological defects. Metabolic and functional defects manifested in knockouts of CRBP1, CRBP2 and CRBP3, however, illustrate their essentiality to health, and in the case of CRBP2, to survival during limited dietary vitamin A. Future studies should continue to address the specific molecular interactions that occur between retinoid binding-proteins and their targets and their precise physiologic contributions to retinoid homeostasis and function.

  4. Cellular progesterone receptor phosphorylation in response to ligands activating protein kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, K.V.; Peralta, W.D.; Greene, G.L.

    1987-08-14

    Progesterone receptors were immunoprecipitated with monoclonal antibodies KD68 from lysates of human breast carcinoma T47D cells labelled to steady state specific activity with /sup 32/Pi. The 120 kDa /sup 32/P-labelled progesterone receptor band was resolved by polyacrylamide gel electrophoresis and identified by autoradiography. Phosphoamino acid analysis revealed serine phosphorylation, but no threonine or tyrosine phosphorylation. Treatment of the /sup 32/Pi-labelled cells with EGF, TPA or dibutyryl cAMP had no significant quantitative effect on progesterone receptor phosphorylation, though the EGF receptor and the cAMP-dependent protein kinases have been reported to catalyze phosphorylation of purified avian progesterone receptor preparations in cell freemore » systems. Progesterone receptor phosphorylation on serine residues was increased by 2-fold in cells treated with 10 nM progesterone; EGF had no effect on progesterone-mediated progesterone receptor phosphorylation.« less

  5. Profiles of embryonic nuclear protein binding to the proximal promoter region of the soybean β-conglycinin α subunit gene.

    PubMed

    Yoshino, M; Tsutsumi, K; Kanazawa, A

    2015-01-01

    β-Conglycinin, a major component of seed storage protein in soybean, comprises three subunits: α, α' and β. The expression of genes for these subunits is strictly controlled during embryogenesis. The proximal promoter region up to 245 bp upstream of the transcription start site of the α subunit gene sufficiently confers spatial and temporal control of transcription in embryos. Here, the binding profile of nuclear proteins in the proximal promoter region of the α subunit gene was analysed. DNase I footprinting analysis indicated binding of proteins to the RY element and DNA regions including box I, a region conserved in cognate gene promoters. An electrophoretic mobility shift assay (EMSA) using different portions of box I as a probe revealed that multiple portions of box I bind to nuclear proteins. In addition, an EMSA using nuclear proteins extracted from embryos at different developmental stages indicated that the levels of major DNA-protein complexes on box I increased during embryo maturation. These results are consistent with the notion that box I is important for the transcriptional control of seed storage protein genes. Furthermore, the present data suggest that nuclear proteins bind to novel motifs in box I including 5'-TCAATT-3' rather than to predicted cis-regulatory elements. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Cross-linking of surface Ig receptors on murine B lymphocytes stimulates the expression of nuclear tetradecanoyl phorbol acetate-response element-binding proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiles, T.C.; Liu, J.L.; Rothstein, T.L.

    1991-03-15

    Cross-linking of sIg on primary B lymphocytes leads to increased nuclear DNA-binding activity specific for the tetradecanoyl phorbol acetate-response element (TRE), as judged by gel mobility shift assays. Stimulation of B cells to enter S phase of the cell cycle by treatment with the combination of phorbol ester plus calcium ionophore also stimulated nuclear TRE-binding activity within 2 h, with maximal expression at 4 h; however, phorbol ester and calcium ionophore were not as effective in stimulating binding activity when examined separately. Stimulated nuclear expression of TRE-binding activity appears to require protein synthesis. Fos- and Jun/AP-1-related proteins participate directly inmore » the identified nucleoprotein complex, as shown by the ability of c-fos- and c-jun-specific antisera to either alter or completely abolish electrophoretic migration of the complex in native gels. Further, UV photo-cross-linking studies identified two major TRE-binding protein species, whose sizes correspond to TRE-binding proteins derived from HeLa cell nuclear extracts. The results suggest that in primary B cells nuclear TRE-binding activity represents a downstream signaling event that occurs subsequent to changes in protein kinase C activity and intracellular Ca2+ but that can be triggered physiologically through sIg.« less

  7. Importin α-importin β complex mediated nuclear translocation of insulin-like growth factor binding protein-5.

    PubMed

    Sun, Min; Long, Juan; Yi, Yuxin; Xia, Wei

    2017-10-28

    Insulin-like growth factor-binding protein (IGFBP)-5 is a secreted protein that binds to IGFs and modulates IGF actions, as well as regulates cell proliferation, migration, and apoptosis independent of IGF. Proper cellular localization is critical for the effective function of most signaling molecules. In previous studies, we have shown that the nuclear IGFBP-5 comes from ER-cytosol retro-translocation. In this study, we further investigated the pathway mediating IGFBP-5 nuclear import after it retro-translocation. Importin-α5 was identified as an IGFBP-5-interacting protein with a yeast two-hybrid system, and its interaction with IGFBP-5 was further confirmed by GST pull down and co-immunoprecipitation. Binding affinity of IGFBP-5 and importins were determined by surface plasmon resonance (IGFBP-5/importin-β: K D =2.44e-7, IGFBP-5/importin-α5: K D =3.4e-7). Blocking the importin-α5/importin-β nuclear import pathway using SiRNA or dominant negative impotin-β dramatically inhibited IGFBP-5-EGFP nuclear import, though importin-α5 overexpress does not affect IGFBP-5 nuclear import. Furthermore, nuclear IGFBP-5 was quantified using luciferase report assay. When deleted the IGFBP-5 nuclear localization sequence (NLS), IGFBP-5 ΔNLS loss the ability to translocate into the nucleus and accumulation of IGFBP-5 ΔNLS was visualized in the cytosol. Altogether, our findings provide a substantially evidence showed that the IGFBP-5 nuclear import is mediated by importin-α/importin-β complex, and NLS is critical domain in IGFBP-5 nuclear translocation.

  8. An N-terminal nuclear localization sequence but not the calmodulin-binding domain mediates nuclear localization of nucleomorphin, a protein that regulates nuclear number in Dictyostelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myre, Michael A.; O'Day, Danton H.

    2005-06-24

    Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD ({sup 171}EDVSRFIKGKLLQKQQKIYKDLERF{sup 195}) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patchesmore » at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues {sup 48}KKSYQDPEIIAHSRPRK{sup 64} that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to {sup 48}EF{sup 49} abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the {sup 48}EF{sup 49} construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium.« less

  9. The Molecular Chaperone TRiC/CCT Binds to the Trp-Asp 40 (WD40) Repeat Protein WDR68 and Promotes Its Folding, Protein Kinase DYRK1A Binding, and Nuclear Accumulation*

    PubMed Central

    Miyata, Yoshihiko; Shibata, Takeshi; Aoshima, Masato; Tsubata, Takuichi; Nishida, Eisuke

    2014-01-01

    Trp-Asp (WD) repeat protein 68 (WDR68) is an evolutionarily conserved WD40 repeat protein that binds to several proteins, including dual specificity tyrosine phosphorylation-regulated protein kinase (DYRK1A), MAPK/ERK kinase kinase 1 (MEKK1), and Cullin4-damage-specific DNA-binding protein 1 (CUL4-DDB1). WDR68 affects multiple and diverse physiological functions, such as controlling anthocyanin synthesis in plants, tissue growth in insects, and craniofacial development in vertebrates. However, the biochemical basis and the regulatory mechanism of WDR68 activity remain largely unknown. To better understand the cellular function of WDR68, here we have isolated and identified cellular WDR68 binding partners using a phosphoproteomic approach. More than 200 cellular proteins with wide varieties of biochemical functions were identified as WDR68-binding protein candidates. Eight T-complex protein 1 (TCP1) subunits comprising the molecular chaperone TCP1 ring complex/chaperonin-containing TCP1 (TRiC/CCT) were identified as major WDR68-binding proteins, and phosphorylation sites in both WDR68 and TRiC/CCT were identified. Co-immunoprecipitation experiments confirmed the binding between TRiC/CCT and WDR68. Computer-aided structural analysis suggested that WDR68 forms a seven-bladed β-propeller ring. Experiments with a series of deletion mutants in combination with the structural modeling showed that three of the seven β-propeller blades of WDR68 are essential and sufficient for TRiC/CCT binding. Knockdown of cellular TRiC/CCT by siRNA caused an abnormal WDR68 structure and led to reduction of its DYRK1A-binding activity. Concomitantly, nuclear accumulation of WDR68 was suppressed by the knockdown of TRiC/CCT, and WDR68 formed cellular aggregates when overexpressed in the TRiC/CCT-deficient cells. Altogether, our results demonstrate that the molecular chaperone TRiC/CCT is essential for correct protein folding, DYRK1A binding, and nuclear accumulation of WDR68. PMID

  10. Progesterone-dependent sexual behavior and protein patterns in the ventromedial hypothalamus of the adult female rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montemayor, M.E.; Roy, E.J.; Giometti, C.S.

    1994-09-01

    Controversy exists concerning mechanisms by which progesterone exerts central nervous system effects on behavior. Progesterone may affect behavior by genomic regulation of protein synthesis. Alternatively, it may work through non-genomic mechanisms, consistent with its short latency to act. Recent work suggests that progesterone may elicit its effects on sexual behavior by more than one mechanism in a tissue specific manner. In the present study, we have examined whether progesterone facilitation of sexual behavior is correlated with modification of protein synthesis patterns in the ventromedial hypothalamus (VMH). Ovariectomized rats were divided into three groups: estradiol (4 ug/ka at 0 and 18more » hrs), estradiol (at 0 and 18 hrs) plus progesterone (2 mg/kg at 37 hrs), and vehicle only. {sup 35}S-labeled cysteine and methionine were bilaterally infused into the VMH at 37 hrs (the time of progesterone administration). Following 4 hrs of infusion, animals were tested for sexual behavior and sacrificed. Newly synthesized VMH proteins were separated by two dimensional gel electrophoresis followed by fluorography. Analysis of approximately 660 spots/fluorogram in two independent replications indicated that no protein was completely induced or lost as a result of being treated with progesterone. The abundances of several proteins were significantly altered in response to progesterone treatment in each replication; however, none were changed in abundance in both replications. These findings present no evidence that progesterone causes detectable alterations in VIMH protein patterns between 10-100 kDa in the 4.8-6.7 apparent pI range.« less

  11. Structure of the large FK506-binding protein FKBP51, an Hsp90-binding protein and a component of steroid receptor complexes

    PubMed Central

    Sinars, Cindy R.; Cheung-Flynn, Joyce; Rimerman, Ronald A.; Scammell, Jonathan G.; Smith, David F.; Clardy, Jon

    2003-01-01

    The ability to bind immunosuppressive drugs such as cyclosporin and FK506 defines the immunophilin family of proteins, and the FK506-binding proteins form the FKBP subfamily of immunophilins. Some FKBPs, notably FKBP12 (the 12-kDa FK506-binding protein), have defined roles in regulating ion channels or cell signaling, and well established structures. Other FKBPs, especially the larger ones, participate in important biological processes, but their exact roles and the structural bases for these roles are poorly defined. FKBP51 (the 51-kDa FKBP) associates with heat shock protein 90 (Hsp90) and appears in functionally mature steroid receptor complexes. In New World monkeys, FKBP51 has been implicated in cortisol resistance. We report here the x-ray structures of human FKBP51, to 2.7 Å, and squirrel monkey FKBP51, to 2.8 Å, by using multiwavelength anomalous dispersion phasing. FKBP51 is composed of three domains: two consecutive FKBP domains and a three-unit repeat of the TPR (tetratricopeptide repeat) domain. This structure of a multi-FKBP domain protein clarifies the arrangement of these domains and their possible interactions with other proteins. The two FKBP domains differ by an insertion in the second that affects the formation of the progesterone receptor complex. PMID:12538866

  12. Actin, actin-binding proteins, and actin-related proteins in the nucleus.

    PubMed

    Kristó, Ildikó; Bajusz, Izabella; Bajusz, Csaba; Borkúti, Péter; Vilmos, Péter

    2016-04-01

    Extensive research in the past decade has significantly broadened our view about the role actin plays in the life of the cell and added novel aspects to actin research. One of these new aspects is the discovery of the existence of nuclear actin which became evident only recently. Nuclear activities including transcriptional activation in the case of all three RNA polymerases, editing and nuclear export of mRNAs, and chromatin remodeling all depend on actin. It also became clear that there is a fine-tuned equilibrium between cytoplasmic and nuclear actin pools and that this balance is ensured by an export-import system dedicated to actin. After over half a century of research on conventional actin and its organizing partners in the cytoplasm, it was also an unexpected finding that the nucleus contains more than 30 actin-binding proteins and new classes of actin-related proteins which are not able to form filaments but had evolved nuclear-specific functions. The actin-binding and actin-related proteins in the nucleus have been linked to RNA transcription and processing, nuclear transport, and chromatin remodeling. In this paper, we attempt to provide an overview of the wide range of information that is now available about actin, actin-binding, and actin-related proteins in the nucleus.

  13. Progesterone Modulates a Neuronal Nicotinic Acetylcholine Receptor

    NASA Astrophysics Data System (ADS)

    Valera, S.; Ballivet, M.; Bertrand, D.

    1992-10-01

    The major brain nicotinic acetylcholine receptor is assembled from two subunits termed α 4 and nα 1. When expressed in Xenopus oocytes, these subunits reconstitute a functional acetylcholine receptor that is inhibited by progesterone levels similar to those found in serum. In this report, we show that the steroid interacts with a site located on the extracellular part of the protein, thus confirming that inhibition by progesterone is not due to a nonspecific perturbation of the membrane bilayer or to the activation of second messengers. Because inhibition by progesterone does not require the presence of agonist, is voltage-independent, and does not alter receptor desensitization, we conclude that the steroid is not an open channel blocker. In addition, we show that progesterone is not a competitive inhibitor but may interact with the acetylcholine binding site and that its effect is independent of the ionic permeability of the receptor.

  14. Asymmetric binding of histone H1 stabilizes MMTV nucleosomes and the interaction of progesterone receptor with the exposed HRE.

    PubMed

    Vicent, Guillermo P; Meliá, María J; Beato, Miguel

    2002-11-29

    Packaging of mouse mammary tumor virus (MMTV) promoter sequences in nucleosomes modulates access of DNA binding proteins and influences the interaction among DNA bound transcription factors. Here we analyze the binding of histone H1 to MMTV mononucleosomes assembled with recombinant histones and study its influence on nucleosome structure and stability as well as on progesterone receptor (PR) binding to the hormone responsive elements (HREs). The MMTV nucleosomes can be separated into three main populations, two of which exhibited precise translational positioning. Histone H1 bound preferentially to the 5' distal nucleosomal DNA protecting additional 27-28 nt from digestion by micrococcal nuclease. Binding of histone H1 was unaffected by prior crosslinking of protein and DNA in nucleosomes with formaldehyde. Neither the translational nor the rotational nucleosome positioning was altered by histone H1 binding, but the nucleosomes were stabilized as judged by the kinetics of nuclease cleavage. Unexpectedly, binding of recombinant PR to the exposed distal HRE-I in nucleosomes was enhanced in the presence of histone H1, as demonstrated by band shift and footprinting experiments. This enhanced PR affinity may contribute to the reported positive effect of histone H1 on the hormonal activation of MMTV reporter genes.

  15. SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.

    PubMed

    Brannan, Kristopher W; Jin, Wenhao; Huelga, Stephanie C; Banks, Charles A S; Gilmore, Joshua M; Florens, Laurence; Washburn, Michael P; Van Nostrand, Eric L; Pratt, Gabriel A; Schwinn, Marie K; Daniels, Danette L; Yeo, Gene W

    2016-10-20

    RNA metabolism is controlled by an expanding, yet incomplete, catalog of RNA-binding proteins (RBPs), many of which lack characterized RNA binding domains. Approaches to expand the RBP repertoire to discover non-canonical RBPs are currently needed. Here, HaloTag fusion pull down of 12 nuclear and cytoplasmic RBPs followed by quantitative mass spectrometry (MS) demonstrates that proteins interacting with multiple RBPs in an RNA-dependent manner are enriched for RBPs. This motivated SONAR, a computational approach that predicts RNA binding activity by analyzing large-scale affinity precipitation-MS protein-protein interactomes. Without relying on sequence or structure information, SONAR identifies 1,923 human, 489 fly, and 745 yeast RBPs, including over 100 human candidate RBPs that contain zinc finger domains. Enhanced CLIP confirms RNA binding activity and identifies transcriptome-wide RNA binding sites for SONAR-predicted RBPs, revealing unexpected RNA binding activity for disease-relevant proteins and DNA binding proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. EAST Organizes Drosophila Insulator Proteins in the Interchromosomal Nuclear Compartment and Modulates CP190 Binding to Chromatin

    PubMed Central

    Golovnin, Anton; Melnikova, Larisa; Shapovalov, Igor; Kostyuchenko, Margarita; Georgiev, Pavel

    2015-01-01

    Recent data suggest that insulators organize chromatin architecture in the nucleus. The best studied Drosophila insulator proteins, dCTCF (a homolog of the vertebrate insulator protein CTCF) and Su(Hw), are DNA-binding zinc finger proteins. Different isoforms of the BTB-containing protein Mod(mdg4) interact with Su(Hw) and dCTCF. The CP190 protein is a cofactor for the dCTCF and Su(Hw) insulators. CP190 is required for the functional activity of insulator proteins and is involved in the aggregation of the insulator proteins into specific structures named nuclear speckles. Here, we have shown that the nuclear distribution of CP190 is dependent on the level of EAST protein, an essential component of the interchromatin compartment. EAST interacts with CP190 and Mod(mdg4)-67.2 proteins in vitro and in vivo. Over-expression of EAST in S2 cells leads to an extrusion of the CP190 from the insulator bodies containing Su(Hw), Mod(mdg4)-67.2, and dCTCF. In consistent with the role of the insulator bodies in assembly of protein complexes, EAST over-expression led to a striking decrease of the CP190 binding with the dCTCF and Su(Hw) dependent insulators and promoters. These results suggest that EAST is involved in the regulation of CP190 nuclear localization. PMID:26489095

  17. The actin binding cytoskeletal protein Moesin is involved in nuclear mRNA export.

    PubMed

    Kristó, Ildikó; Bajusz, Csaba; Borsos, Barbara N; Pankotai, Tibor; Dopie, Joseph; Jankovics, Ferenc; Vartiainen, Maria K; Erdélyi, Miklós; Vilmos, Péter

    2017-10-01

    Current models imply that the evolutionarily conserved, actin-binding Ezrin-Radixin-Moesin (ERM) proteins perform their activities at the plasma membrane by anchoring membrane proteins to the cortical actin network. Here we show that beside its cytoplasmic functions, the single ERM protein of Drosophila, Moesin, has a novel role in the nucleus. The activation of transcription by heat shock or hormonal treatment increases the amount of nuclear Moesin, indicating biological function for the protein in the nucleus. The distribution of Moesin in the nucleus suggests a function in transcription and the depletion of mRNA export factors Nup98 or its interacting partner, Rae1, leads to the nuclear accumulation of Moesin, suggesting that the nuclear function of the protein is linked to mRNA export. Moesin localizes to mRNP particles through the interaction with the mRNA export factor PCID2 and knock down of Moesin leads to the accumulation of mRNA in the nucleus. Based on our results we propose that, beyond its well-known, manifold functions in the cytoplasm, the ERM protein of Drosophila is a new, functional component of the nucleus where it participates in mRNA export. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Structural Basis for Activation of Fatty Acid-binding Protein 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillilan,R.; Ayers, S.; Noy, N.

    2007-01-01

    Fatty acid-binding protein 4 (FABP4) delivers ligands from the cytosol to the nuclear receptor PPAR{gamma} in the nucleus, thereby enhancing the transcriptional activity of the receptor. Notably, FABP4 binds multiple ligands with a similar affinity but its nuclear translocation is activated only by specific compounds. To gain insight into the structural features that underlie the ligand-specificity in activation of the nuclear import of FABP4, we solved the crystal structures of the protein complexed with two compounds that induce its nuclear translocation, and compared these to the apo-protein and to FABP4 structures bound to non-activating ligands. Examination of these structures indicatesmore » that activation coincides with closure of a portal loop phenylalanine side-chain, contraction of the binding pocket, a subtle shift in a helical domain containing the nuclear localization signal of the protein, and a resultant change in oligomeric state that exposes the nuclear localization signal to the solution. Comparisons of backbone displacements induced by activating ligands with a measure of mobility derived from translation, libration, screw (TLS) refinement, and with a composite of slowest normal modes of the apo state suggest that the helical motion associated with the activation of the protein is part of the repertoire of the equilibrium motions of the apo-protein, i.e. that ligand binding does not induce the activated configuration but serves to stabilize it. Nuclear import of FABP4 can thus be understood in terms of the pre-existing equilibrium hypothesis of ligand binding.« less

  19. Cyclosporin A and FK-506 both affect DNA binding of regulatory nuclear proteins to the human interleukin-2 promoter.

    PubMed

    Baumann, G; Geisse, S; Sullivan, M

    1991-03-01

    The structurally unrelated immunosuppressive drugs cyclosporin A (Sandimmun) and FK-506 both interfere with the process of T-cell proliferation by blocking the transcription of the T-cell growth factor interleukin-2 (IL-2). Here we demonstrate that the transcriptional activation of this gene requires the binding of regulatory nuclear proteins to a promoter element with sequence similarity to the consensus binding site for NF-kappa B-related transcription factors. We present evidence that the binding by regulatory nuclear proteins to the kappa B element of the IL-2 promoter is affected negatively by cyclosporin A and FK-506 at concentrations paralleling their immunosuppressive activity in vivo. The decrease in DNA-protein complex formation induced by the immunosuppressive drugs correlates with a decrease in IL-2 production. FK-506 is 10 to 100 times more potent than cyclosporin A in its ability to inhibit sequence-specific DNA binding and IL-2 production. Our findings suggest that the actions of both drugs converge at the level of DNA-protein interaction.

  20. Nuclear proteins that bind the human gamma-globin gene promoter: alterations in binding produced by point mutations associated with hereditary persistence of fetal hemoglobin.

    PubMed Central

    Gumucio, D L; Rood, K L; Gray, T A; Riordan, M F; Sartor, C I; Collins, F S

    1988-01-01

    The molecular mechanisms responsible for the human fetal-to-adult hemoglobin switch have not yet been elucidated. Point mutations identified in the promoter regions of gamma-globin genes from individuals with nondeletion hereditary persistence of fetal hemoglobin (HPFH) may mark cis-acting sequences important for this switch, and the trans-acting factors which interact with these sequences may be integral parts in the puzzle of gamma-globin gene regulation. We have used gel retardation and footprinting strategies to define nuclear proteins which bind to the normal gamma-globin promoter and to determine the effect of HPFH mutations on the binding of a subset of these proteins. We have identified five proteins in human erythroleukemia cells (K562 and HEL) which bind to the proximal promoter region of the normal gamma-globin gene. One factor, gamma CAAT, binds the duplicated CCAAT box sequences; the -117 HPFH mutation increases the affinity of interaction between gamma CAAT and its cognate site. Two proteins, gamma CAC1 and gamma CAC2, bind the CACCC sequence. These proteins require divalent cations for binding. The -175 HPFH mutation interferes with the binding of a fourth protein, gamma OBP, which binds an octamer sequence (ATGCAAAT) in the normal gamma-globin promoter. The HPFH phenotype of the -175 mutation indicates that the octamer-binding protein may play a negative regulatory role in this setting. A fifth protein, EF gamma a, binds to sequences which overlap the octamer-binding site. The erythroid-specific distribution of EF gamma a and its close approximation to an apparent repressor-binding site suggest that it may be important in gamma-globin regulation. Images PMID:2468996

  1. Antagonist action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels.

    PubMed

    Johannessen, Molly; Fontanilla, Dominique; Mavlyutov, Timur; Ruoho, Arnold E; Jackson, Meyer B

    2011-02-01

    σ-Receptors are integral membrane proteins that have been implicated in a number of biological functions, many of which involve the modulation of ion channels. A wide range of synthetic ligands activate σ-receptors, but endogenous σ-receptor ligands have proven elusive. One endogenous ligand, dimethyltryptamine (DMT), has been shown to act as a σ-receptor agonist. Progesterone and other steroids bind σ-receptors, but the functional consequences of these interactions are unclear. Here we investigated progesterone binding to σ(1)- and σ(2)-receptors and evaluated its effect on σ-receptor-mediated modulation of voltage-gated Na(+) channels. Progesterone binds both σ-receptor subtypes in liver membranes with comparable affinities and blocks photolabeling of both subtypes in human embryonic kidney 293 cells that stably express the human cardiac Na(+) channel Na(v)1.5. Patch-clamp recording in this cell line tested Na(+) current modulation by the σ-receptor ligands ditolylguanidine, PB28, (+)SKF10047, and DMT. Progesterone inhibited the action of these ligands to varying degrees, and some of these actions were reduced by σ(1)-receptor knockdown with small interfering RNA. Progesterone inhibition of channel modulation by drugs was consistent with stronger antagonism of σ(2)-receptors. By contrast, progesterone inhibition of channel modulation by DMT was consistent with stronger antagonism of σ(1)-receptors. Progesterone binding to σ-receptors blocks σ-receptor-mediated modulation of a voltage-gated ion channel, and this novel membrane action of progesterone may be relevant to changes in brain and cardiovascular function during endocrine transitions.

  2. Antagonist action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels

    PubMed Central

    Johannessen, Molly; Fontanilla, Dominique; Mavlyutov, Timur; Ruoho, Arnold E.

    2011-01-01

    σ-Receptors are integral membrane proteins that have been implicated in a number of biological functions, many of which involve the modulation of ion channels. A wide range of synthetic ligands activate σ-receptors, but endogenous σ-receptor ligands have proven elusive. One endogenous ligand, dimethyltryptamine (DMT), has been shown to act as a σ-receptor agonist. Progesterone and other steroids bind σ-receptors, but the functional consequences of these interactions are unclear. Here we investigated progesterone binding to σ1- and σ2-receptors and evaluated its effect on σ-receptor-mediated modulation of voltage-gated Na+ channels. Progesterone binds both σ-receptor subtypes in liver membranes with comparable affinities and blocks photolabeling of both subtypes in human embryonic kidney 293 cells that stably express the human cardiac Na+ channel Nav1.5. Patch-clamp recording in this cell line tested Na+ current modulation by the σ-receptor ligands ditolylguanidine, PB28, (+)SKF10047, and DMT. Progesterone inhibited the action of these ligands to varying degrees, and some of these actions were reduced by σ1-receptor knockdown with small interfering RNA. Progesterone inhibition of channel modulation by drugs was consistent with stronger antagonism of σ2-receptors. By contrast, progesterone inhibition of channel modulation by DMT was consistent with stronger antagonism of σ1-receptors. Progesterone binding to σ-receptors blocks σ-receptor-mediated modulation of a voltage-gated ion channel, and this novel membrane action of progesterone may be relevant to changes in brain and cardiovascular function during endocrine transitions. PMID:21084640

  3. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen P.

    2006-10-17

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  4. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen

    2000-01-01

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  5. Progesterone Directly and Rapidly Inhibits GnRH Neuronal Activity via Progesterone Receptor Membrane Component 1

    PubMed Central

    Bashour, Nicholas Michael

    2012-01-01

    GnRH neurons are essential for reproduction, being an integral component of the hypothalamic-pituitary-gonadal axis. Progesterone (P4), a steroid hormone, modulates reproductive behavior and is associated with rapid changes in GnRH secretion. However, a direct action of P4 on GnRH neurons has not been previously described. Receptors in the progestin/adipoQ receptor family (PAQR), as well as progesterone receptor membrane component 1 (PgRMC1) and its partner serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1) mRNA binding protein 1 (SERBP1), have been shown to mediate rapid progestin actions in various tissues, including the brain. This study shows that PgRMC1 and SERBP1, but not PAQR, are expressed in prenatal GnRH neurons. Expression of PgRMC1 and SERBP1 was verified in adult mouse GnRH neurons. To investigate the effect of P4 on GnRH neuronal activity, calcium imaging was used on primary GnRH neurons maintained in explants. Application of P4 significantly decreased the activity of GnRH neurons, independent of secretion of gamma-aminobutyric acidergic and glutamatergic input, suggesting a direct action of P4 on GnRH neurons. Inhibition was not blocked by RU486, an antagonist of the classic nuclear P4 receptor. Inhibition was also maintained after uncoupling of the inhibitory regulative G protein (Gi/o), the signal transduction pathway used by PAQR. However, AG-205, a PgRMC1 ligand and inhibitor, blocked the rapid P4-mediated inhibition, and inhibition of protein kinase G, thought to be activated downstream of PgRMC1, also blocked the inhibitory activity of P4. These data show for the first time that P4 can act directly on GnRH neurons through PgRMC1 to inhibit neuronal activity. PMID:22822163

  6. Novel Serum Biomarkers Detected by Protein Array in Polycystic Ovary Syndrome with Low Progesterone Level.

    PubMed

    Zheng, Qin; Zhou, Feifei; Cui, Xinyuan; Liu, Mulin; Li, Yulin; Liu, Shuai; Tan, Jichun; Yan, Qiu

    2018-01-01

    Polycystic ovary syndrome (PCOS), characterized by female infertility and metabolic abnormalities, is one of the most common endocrine disorders. The etiology of PCOS remains unknown. The comprehensive analysis of protein alterations in PCOS patients is meaningful for identifying diagnostic biomarkers of PCOS. Here, we explored the clinical value of serum proteins as novel biomarkers to detect PCOS with low progesterone level. A total of 43 patients with PCOS and 30 healthy women were enrolled. Protein array was used to detect the variations of serum proteins between PCOS patients and healthy women. The level of five serum proteins was further confirmed by ELISA and western blot. The human ovarian granulosa cells (KGN) was cultured to examine the underlying mechanism of PCOS. CCK8 assay and western blot were carried out to evaluate the alterations in proliferative ability, TUNEL assay and DAPI staining to detect the apoptosis of KGN cells. Among the 507 proteins, we identified 76 differentially expressed serum proteins (≧1.5 fold), with 40 elevated and 36 decreased proteins. Moreover, 47 proteins were newly reported in PCOS. The alterations in the five significantly decreased proteins (EREG, inhibin βA, IDE, PDGF-D and KNG1) were further confirmed by ELISA and western blot. The level of these proteins were directly associated with the low progesterone, and the expression could be upregulated by progesterone. EREG and inhibin βA also promoted the proliferation and inhibited the apoptosis of ovarian granulosa cells. The study highlights that serum proteins are differentially expressed in PCOS patients and healthy women, and EREG and inhibin βA levels are upregulated by progesterone, which are correlated with ovarian functions. The study suggests that EREG and inhibin βA may be applied as novel potential biomarkers for PCOS with low progesterone level. © 2018 The Author(s). Published by S. Karger AG, Basel.

  7. A novel progesterone receptor membrane component (PGRMC) in the human and swine parasite Taenia solium: implications to the host-parasite relationship.

    PubMed

    Aguilar-Díaz, Hugo; Nava-Castro, Karen E; Escobedo, Galileo; Domínguez-Ramírez, Lenin; García-Varela, Martín; Del Río-Araiza, Víctor H; Palacios-Arreola, Margarita I; Morales-Montor, Jorge

    2018-03-09

    We have previously reported that progesterone (P 4 ) has a direct in vitro effect on the scolex evagination and growth of Taenia solium cysticerci. Here, we explored the hypothesis that the P 4 direct effect on T. solium might be mediated by a novel steroid-binding parasite protein. By way of using immunofluorescent confocal microscopy, flow cytometry analysis, double-dimension electrophoresis analysis, and sequencing the corresponding protein spot, we detected a novel PGRMC in T. solium. Molecular modeling studies accompanied by computer docking using the sequenced protein, together with phylogenetic analysis and sequence alignment clearly demonstrated that T. solium PGRMC is from parasite origin. Our results show that P 4 in vitro increases parasite evagination and scolex size. Using immunofluorescent confocal microscopy, we detected that parasite cells showed expression of a P 4 -binding like protein exclusively located at the cysticercus subtegumental tissue. Presence of the P 4 -binding protein in cyst cells was also confirmed by flow cytometry. Double-dimension electrophoresis analysis, followed by sequencing the corresponding protein spot, revealed a protein that was previously reported in the T. solium genome belonging to a membrane-associated progesterone receptor component (PGRMC). Molecular modeling studies accompanied by computer docking using the sequenced protein showed that PGRMC is potentially able to bind steroid hormones such as progesterone, estradiol, testosterone and dihydrodrotestosterone with different affinities. Phylogenetic analysis and sequence alignment clearly demonstrated that T. solium PGRMC is related to a steroid-binding protein of Echinoccocus granulosus, both of them being nested within a cluster including similar proteins present in platyhelminths such as Schistocephalus solidus and Schistosoma haematobium. Progesterone may directly act upon T. solium cysticerci probably by binding to PGRMC. This research has implications in the

  8. Interactions of trans-acting factor(s) with the estradiol response element and nuclear factor 1 of the vitellogenin II gene of Japanese quail.

    PubMed

    Gupta, S; Upadhayay, R; Kanungo, M S

    1996-08-01

    This study was directed at achieving an understanding of the mechanisms by which steroid hormones control the synthesis of vitellogenin (VTG) protein in the liver of the Japanese quail. Northern hybridization shows that administration of estradiol alone or with progesterone stimulates the synthesis of VTG mRNA. Gel mobility shift assay of DNA fragments containing the ERE and NF 1 shows that estradiol alone or with progesterone increases the levels of nuclear proteins that bind to these cis-acting elements of the promoter of the VTG gene. The cooperative effect of the two hormones seen at the level of expression of the VTG gene may be due to protein-protein interactions of trans-acting factors that bind to ERE and NF 1.

  9. Progesterone treatment shows greater protection in brain vs. retina in a rat model of middle cerebral artery occlusion: Progesterone receptor levels may play an important role

    PubMed Central

    Allen, Rachael S.; Sayeed, Iqbal; Oumarbaeva, Yuliya; Morrison, Katherine C.; Choi, Paul H.; Pardue, Machelle T.; Stein, Donald G.

    2018-01-01

    Background/Objective To determine whether inflammation increases in retina as it does in brain following middle cerebral artery occlusion (MCAO), and whether the neurosteroid progesterone, shown to have protective effects in both retina and brain after MCAO, reduces inflammation in retina as well as brain. Methods MCAO rats treated systemically with progesterone or vehicle were compared with shams. Protein levels of cytosolic NF-κB, nuclear NF-κB, phosphorylated NF-κB, IL-6, TNF-α, CD11b, progesterone receptor A and B, and pregnane × receptor were assessed in retinas and brains at 24 and 48 h using western blots. Results Following MCAO, significant increases were observed in the following inflammatory markers: pNF-κB and CD11b at 24 h in both brain and retina, nuclear NF-κB at 24 h in brain and 48 h in retina, and TNF-α at 24 h in brain. Progesterone treatment in MCAO animals significantly attenuated levels of the following markers in brain: pNF-κB, nuclear NF-κB, IL-6, TNF-α, and CD11b, with significantly increased levels of cytosolic NF-κB. Retinas from progesterone-treated animals showed significantly reduced levels of nuclear NF-κB and IL-6 and increased levels of cytosolic NF-κB, with a trend for reduction in other markers. Post-MCAO, progesterone receptors A and B were upregulated in brain and downregulated in retina. Conclusion Inflammatory markers increased in both brain and retina after MCAO, with greater increases observed in brain. Progesterone treatment reduced inflammation, with more dramatic reductions observed in brain than retina. This differential effect may be due to differences in the response of progesterone receptors in brain and retina after injury. PMID:27802245

  10. Regulation of the ovarian inflammatory response at ovulation by nuclear progesterone receptor.

    PubMed

    Akison, Lisa K; Robertson, Sarah A; Gonzalez, Macarena B; Richards, JoAnne S; Smith, C Wayne; Russell, Darryl L; Robker, Rebecca L

    2018-06-01

    The nuclear progesterone receptor (PGR) transcription factor is essential for ovulation; however, the exact mechanisms by which PGR controls ovulation are not known. The aim of this study was to determine whether PGR regulates inflammatory mediators in the ovary. Ovaries from mice lacking PGR (PRKO) and heterozygous PR+/- littermates were subjected to microarray analysis of a large panel of inflammatory genes. Immune cell subsets were detected by gene expression; and neutrophils by immunohistochemistry and chemotaxis assay. PRKO ovaries exhibited dysregulated expression of vasodilator (Edn1), cytokine (Il-6, Tgfb1), adhesion receptor (Cd34), apoptotic factor (Bax) and transcription factors (Nfkb2, Socs1, Stat3). Ptgs2 was also reduced in PRKO ovaries, but mRNA and protein were not different in granulosa cells. There were reduced neutrophils in ovaries of PRKO mice at ovulation; however, chemotaxis assays showed PRKO neutrophils migrate normally and that PRKO ovarian extracts exhibit chemotactic properties in vitro. Specific inflammatory mediators are altered in the ovaries of PRKO mice indicating that progesterone regulates features of inflammation at ovulation. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Progesterone Receptor-A and -B Have Opposite Effects on Proinflammatory Gene Expression in Human Myometrial Cells: Implications for Progesterone Actions in Human Pregnancy and Parturition

    PubMed Central

    Tan, Huiqing; Yi, Lijuan; Rote, Neal S.; Hurd, William W.

    2012-01-01

    Context: Progesterone promotes uterine relaxation during pregnancy and its withdrawal induces labor. Progesterone withdrawal in human parturition is mediated in part by changes in the relative levels of the nuclear progesterone receptor isoforms, PR-A and PR-B, in myometrial cells. Parturition also involves myometrial inflammation; however, the functional link between nuclear PR-mediated progesterone actions and inflammation in human myometrial cells is unclear. Objective: Our objective was to determine how PR-A and PR-B regulate progesterone action in human myometrial cells and specifically the expression of genes encoding contraction-associated proteins and proinflammatory mediators. Design: Effects of PR-A and PR-B on the capacity for progesterone to modulate gene expression was determined using an immortalized human myometrial cell line stably transfected with inducible PR-A and PR-B expression transgenes and conditioned to express various PR-A and PR-B levels. Gene expression was assessed by genome wide transcriptome analysis, quantitative RT-PCR and immunoblotting. Results: PR-A and PR-B were each transcriptionally active in response to progesterone and affected the expression of distinct gene cohorts. The capacity for progesterone to affect gene expression was dependent on the PR-A to PR-B ratio. This was especially apparent for the expression of proinflammatory genes. Progesterone decreased proinflammatory gene expression when the PR-A to PR-B ratio favored PR-B and increased proinflammatory gene expression when the ratio favored PR-A. Progesterone via PR-B increased expression of inhibitor-κBα, a repressor of the nuclear factor-κB transcription factor, and inhibited basal and lipopolysaccharide-induced proinflammatory gene expression. Both of those PR-B-mediated effects were inhibited by PR-A. Conclusions: Our data suggest that during most of human pregnancy, when myometrial cells are PR-B dominant, progesterone promotes myometrial quiescence through PR

  12. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    PubMed

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-08-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.

  13. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    PubMed Central

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-01-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded. Images PMID:2823109

  14. Identification and properties of steroid-binding proteins in nesting Chelonia mydas plasma.

    PubMed

    Ikonomopoulou, M P; Bradley, A J; Whittier, J M; Ibrahim, K

    2006-11-01

    We report for the first time the presence of a sex steroid-binding protein in the plasma of green sea turtles Chelonia mydas, which provides an insight into reproductive status. A high affinity, low capacity sex hormone steroid-binding protein was identified in nesting C. mydas and its thermal profile was established. In nesting C. mydas testosterone and oestradiol bind at 4 degrees C with high affinity (K (a) = 1.49 +/- 0.09 x 10(9) M(-1); 0.17 +/- 0.02 x 10(7) M(-1)) and low binding capacity (B (max) = 3.24 +/- 0.84 x 10(-5) M; 0.33 +/- 0.06 x 10(-4) M). The binding affinity and capacity of testosterone at 23 and 36 degrees C, respectively were similar to those determined at 4 degrees C. However, oestradiol showed no binding activity at 36 degrees C. With competition studies we showed that oestradiol and oestrone do not compete for binding sites. Furthermore, in nesting C. mydas plasma no high-affinity binding was observed for adrenocortical steroids (cortisol and corticosterone) and progesterone. Our results indicate that in nesting C. mydas plasma temperature has a minimal effect on the high-affinity binding of testosterone to sex steroid-binding protein, however, the high affinity binding of oestradiol to sex steroid-binding protein is abolished at a hypothetically high (36 degrees C) sea/ambient/body temperature. This suggests that at high core body temperatures most of the oestradiol becomes biologically available to the tissues rather than remaining bound to a high-affinity carrier.

  15. Progesterone treatment shows greater protection in brain vs. retina in a rat model of middle cerebral artery occlusion: Progesterone receptor levels may play an important role.

    PubMed

    Allen, Rachael S; Sayeed, Iqbal; Oumarbaeva, Yuliya; Morrison, Katherine C; Choi, Paul H; Pardue, Machelle T; Stein, Donald G

    2016-11-22

    To determine whether inflammation increases in retina as it does in brain following middle cerebral artery occlusion (MCAO), and whether the neurosteroid progesterone, shown to have protective effects in both retina and brain after MCAO, reduces inflammation in retina as well as brain. MCAO rats treated systemically with progesterone or vehicle were compared with shams. Protein levels of cytosolic NF-κB, nuclear NF-κB, phosphorylated NF-κB, IL-6, TNF-α, CD11b, progesterone receptor A and B, and pregnane X receptor were assessed in retinas and brains at 24 and 48 h using western blots. Following MCAO, significant increases were observed in the following inflammatory markers: pNF-κB and CD11b at 24 h in both brain and retina, nuclear NF-κB at 24 h in brain and 48 h in retina, and TNF-α at 24 h in brain.Progesterone treatment in MCAO animals significantly attenuated levels of the following markers in brain: pNF-κB, nuclear NF-κB, IL-6, TNF-α, and CD11b, with significantly increased levels of cytosolic NF-κB. Retinas from progesterone-treated animals showed significantly reduced levels of nuclear NF-κB and IL-6 and increased levels of cytosolic NF-κB, with a trend for reduction in other markers. Post-MCAO, progesterone receptors A and B were upregulated in brain and downregulated in retina. Inflammatory markers increased in both brain and retina after MCAO, with greater increases observed in brain. Progesterone treatment reduced inflammation, with more dramatic reductions observed in brain than retina. This differential effect may be due to differences in the response of progesterone receptors in brain and retina after injury.

  16. Computational Design of Ligand Binding Proteins with High Affinity and Selectivity

    PubMed Central

    Dou, Jiayi; Doyle, Lindsey; Nelson, Jorgen W.; Schena, Alberto; Jankowski, Wojciech; Kalodimos, Charalampos G.; Johnsson, Kai; Stoddard, Barry L.; Baker, David

    2014-01-01

    The ability to design proteins with high affinity and selectivity for any given small molecule would have numerous applications in biosensing, diagnostics, and therapeutics, and is a rigorous test of our understanding of the physiochemical principles that govern molecular recognition phenomena. Attempts to design ligand binding proteins have met with little success, however, and the computational design of precise molecular recognition between proteins and small molecules remains an “unsolved problem”1. We describe a general method for the computational design of small molecule binding sites with pre-organized hydrogen bonding and hydrophobic interfaces and high overall shape complementary to the ligand, and use it to design protein binding sites for the steroid digoxigenin (DIG). Of 17 designs that were experimentally characterized, two bind DIG; the highest affinity design has the lowest predicted interaction energy and the most pre-organized binding site in the set. A comprehensive binding-fitness landscape of this design generated by library selection and deep sequencing was used to guide optimization of binding affinity to a picomolar level, and two X-ray co-crystal structures of optimized complexes show atomic level agreement with the design models. The designed binder has a high selectivity for DIG over the related steroids digitoxigenin, progesterone, and β-estradiol, which can be reprogrammed through the designed hydrogen-bonding interactions. Taken together, the binding fitness landscape, co-crystal structures, and thermodynamic binding parameters illustrate how increases in binding affinity can result from distal sequence changes that limit the protein ensemble to conformers making the most energetically favorable interactions with the ligand. The computational design method presented here should enable the development of a new generation of biosensors, therapeutics, and diagnostics. PMID:24005320

  17. High-Mobility Group Chromatin Proteins 1 and 2 Functionally Interact with Steroid Hormone Receptors To Enhance Their DNA Binding In Vitro and Transcriptional Activity in Mammalian Cells

    PubMed Central

    Boonyaratanakornkit, Viroj; Melvin, Vida; Prendergast, Paul; Altmann, Magda; Ronfani, Lorenza; Bianchi, Marco E.; Taraseviciene, Laima; Nordeen, Steven K.; Allegretto, Elizabeth A.; Edwards, Dean P.

    1998-01-01

    We previously reported that the chromatin high-mobility group protein 1 (HMG-1) enhances the sequence-specific DNA binding activity of progesterone receptor (PR) in vitro, thus providing the first evidence that HMG-1 may have a coregulatory role in steroid receptor-mediated gene transcription. Here we show that HMG-1 and the highly related HMG-2 stimulate DNA binding by other steroid receptors, including estrogen, androgen, and glucocorticoid receptors, but have no effect on DNA binding by several nonsteroid nuclear receptors, including retinoid acid receptor (RAR), retinoic X receptor (RXR), and vitamin D receptor (VDR). As highly purified recombinant full-length proteins, all steroid receptors tested exhibited weak binding affinity for their optimal palindromic hormone response elements (HREs), and the addition of purified HMG-1 or -2 substantially increased their affinity for HREs. Purified RAR, RXR, and VDR also exhibited little to no detectable binding to their cognate direct repeat HREs but, in contrast to results with steroid receptors, the addition of HMG-1 or HMG-2 had no stimulatory effect. Instead, the addition of purified RXR enhanced RAR and VDR DNA binding through a heterodimerization mechanism and HMG-1 or HMG-2 had no further effect on DNA binding by RXR-RAR or RXR-VDR heterodimers. HMG-1 and HMG-2 (HMG-1/-2) themselves do not bind to progesterone response elements, but in the presence of PR they were detected as part of an HMG-PR-DNA ternary complex. HMG-1/-2 can also interact transiently in vitro with PR in the absence of DNA; however, no direct protein interaction was detected with VDR. These results, taken together with the fact that PR can bend its target DNA and that HMG-1/-2 are non-sequence-specific DNA binding proteins that recognize DNA structure, suggest that HMG-1/-2 are recruited to the PR-DNA complex by the combined effect of transient protein interaction and DNA bending. In transient-transfection assays, coexpression of HMG-1 or HMG-2

  18. Role of adipocyte lipid-binding protein (ALBP) and acyl-coA binding protein (ACBP) in PPAR-mediated transactivation.

    PubMed

    Helledie, Torben; Jørgensen, Claus; Antonius, Marianne; Krogsdam, Ann M; Kratchmarova, Irina; Kristiansen, Karsten; Mandrup, Susanne

    2002-10-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that are activated by a number of fatty acids and fatty acid derivatives. By contrast, we have recently shown that acyl-CoA esters display PPAR antagonistic properties in vitro. We have also shown that the adipocyte lipid binding protein (ALBP), the keratinocyte lipid binding protein (KLBP) and the acyl-CoA binding protein (ACBP) exhibit a prominent nuclear localization in differentiating 3T3-L1 adipocytes. Similarly, ectopic expression of these proteins in CV-1 cells resulted in a primarily nuclear localization. We therefore speculated that FABPs and ACBP might regulate the availability of PPAR agonists and antagonists by affecting not only their esterification in the cytoplasm but also their transport to and availability in the nucleus. We show here that coexpression of ALBP or ACBP exerts a negative effect on ligand-dependent PPAR transactivation, when tetradecylthioacetic (TTA) is used as ligand but not when the thiazolidinedione BRL49653 is used as ligand. The results presented here do not support the hypothesis that ALBP facilitates the transport of the fatty acid-type ligands to the nucleus, rather ALBP appears to sequester or increase the turn-over of the agonist. Similarly, our results are in keeping with a model in which ACBP increase the metabolism of these ligands.

  19. A gata2-dependent transcription network regulates uterine progesterone responsiveness and endometrial function

    USDA-ARS?s Scientific Manuscript database

    Altered progesterone responsiveness leads to female infertility and cancer, but underlying mechanisms remain unclear. Mice with uterine-specific ablation of GATA binding protein 2 (Gata2) are infertile, showing failures in embryo implantation, endometrial decidualization, and uninhibited estrogen si...

  20. Sequence and characterization of cytoplasmic nuclear protein import factor p97

    PubMed Central

    1995-01-01

    Nuclear location sequence-mediated binding of karyophilic proteins to the nuclear pore complexes is one of the earliest steps in nuclear protein import. We previously identified two cytosolic proteins that reconstitute this step in a permeabilized cell assay: the 54/56-kD NLS receptor and p97. A monoclonal antibody to p97 localizes the protein to the cytoplasm and the nuclear envelope. p97 is extracted from nuclear envelopes under the same conditions as the O-glycosylated nucleoporins indicating a tight association with the pore complex. The antibody inhibits import in a permeabilized cell assay but does not affect binding of karyophiles to the nuclear pore complex. Immunodepletion of p97 renders the cytosol inactive for import and identifies at least three other cytosolic proteins that interact with p97. cDNA cloning of p97 shows that it is a unique protein containing 23 cysteine residues. Recombinant p97 binds zinc and a bound metal ion is required for the nuclear envelope binding activity of the protein. PMID:7615630

  1. Progesterone binding nano-carriers based on hydrophobically modified hyperbranched polyglycerols

    NASA Astrophysics Data System (ADS)

    Alizadeh Noghani, M.; Brooks, D. E.

    2016-02-01

    Progesterone (Pro) is a potent neurosteroid and promotes recovery from moderate Traumatic Brain Injury but its clinical application is severely impeded by its poor water solubility. Here we demonstrate that reversibly binding Pro within hydrophobically modified hyperbranched polyglycerol (HPG-Cn-MPEG) enhances its solubility, stability and bioavailability. Synthesis, characterization and Pro loading into HPG-Cn-MPEG is described. The release kinetics are correlated with structural properties and the results of Differential Scanning Calorimetry studies of a family of HPG-Cn-MPEGs of varying molecular weight and alkylation. While the maximum amount of Pro bound correlates well with the amount of alkyl carbon per molecule contributing to its hydrophobicity, the dominant first order rate constant for Pro release correlates strongly with the amount of structured or bound water in the dendritic domain of the polymer. The results provide evidence to justify more detailed studies of interactions with biological systems, both single cells and in animal models.Progesterone (Pro) is a potent neurosteroid and promotes recovery from moderate Traumatic Brain Injury but its clinical application is severely impeded by its poor water solubility. Here we demonstrate that reversibly binding Pro within hydrophobically modified hyperbranched polyglycerol (HPG-Cn-MPEG) enhances its solubility, stability and bioavailability. Synthesis, characterization and Pro loading into HPG-Cn-MPEG is described. The release kinetics are correlated with structural properties and the results of Differential Scanning Calorimetry studies of a family of HPG-Cn-MPEGs of varying molecular weight and alkylation. While the maximum amount of Pro bound correlates well with the amount of alkyl carbon per molecule contributing to its hydrophobicity, the dominant first order rate constant for Pro release correlates strongly with the amount of structured or bound water in the dendritic domain of the polymer. The

  2. A new MIF4G domain-containing protein, CTIF, directs nuclear cap-binding protein CBP80/20-dependent translation

    PubMed Central

    Kim, Kyoung Mi; Cho, Hana; Choi, Kobong; Kim, Jaedong; Kim, Bong-Woo; Ko, Young-Gyu; Jang, Sung Key; Kim, Yoon Ki

    2009-01-01

    During or right after mRNA export via the nuclear pore complex (NPC) in mammalian cells, mRNAs undergo translation mediated by nuclear cap-binding proteins 80 and 20 (CBP80/20). After CBP80/20-dependent translation, CBP80/20 is replaced by cytoplasmic cap-binding protein eIF4E, which directs steady-state translation. Nonsense-mediated mRNA decay (NMD), one of the best-characterized mRNA surveillance mechanisms, has been shown to occur on CBP80/20-bound mRNAs. However, despite the tight link between CBP80/20-dependent translation and NMD, the underlying molecular mechanism and cellular factors that mediate CBP80/20-dependent translation remain obscure. Here, we identify a new MIF4G domain-containing protein, CTIF (CBP80/20-dependent translation initiation factor). CTIF interacts directly with CBP80 and is part of the CBP80/20-dependent translation initiation complex. Depletion of endogenous CTIF from an in vitro translation system selectively blocks the translation of CBP80-bound mRNAs, while addition of purified CTIF restores it. Accordingly, down-regulation of endogenous CTIF abrogates NMD. Confocal microscopy shows that CTIF is localized to the perinuclear region. Our observations demonstrate the existence of CBP80/20-dependent translation and support the idea that CBP80/20-dependent translation is mechanistically different from steady-state translation through identification of a specific cellular protein, CTIF. PMID:19648179

  3. Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.

    1993-01-01

    Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.

  4. Chromatin decompaction by the nucleosomal binding protein HMGN5 impairs nuclear sturdiness

    NASA Astrophysics Data System (ADS)

    Furusawa, Takashi; Rochman, Mark; Taher, Leila; Dimitriadis, Emilios K.; Nagashima, Kunio; Anderson, Stasia; Bustin, Michael

    2015-01-01

    In most metazoan nuclei, heterochromatin is located at the nuclear periphery in contact with the nuclear lamina, which provides mechanical stability to the nucleus. We show that in cultured cells, chromatin decompaction by the nucleosome binding protein HMGN5 decreases the sturdiness, elasticity and rigidity of the nucleus. Mice overexpressing HMGN5, either globally or only in the heart, are normal at birth but develop hypertrophic heart with large cardiomyoctyes, deformed nuclei and disrupted lamina and die of cardiac malfunction. Chromatin decompaction is seen in cardiomyocytes of newborn mice but misshaped nuclei with disrupted lamina are seen only in adult cardiomyocytes, suggesting that loss of heterochromatin diminishes the ability of the nucleus to withstand the mechanical forces of the contracting heart. Thus, heterochromatin enhances the ability of the nuclear lamina to maintain the sturdiness and shape of the eukaryotic nucleus; a structural role for chromatin that is distinct from its genetic functions.

  5. Nuclear relocation of the nephrin and CD2AP-binding protein dendrin promotes apoptosis of podocytes

    PubMed Central

    Asanuma, Katsuhiko; Campbell, Kirk Nicholas; Kim, Kwanghee; Faul, Christian; Mundel, Peter

    2007-01-01

    Kidney podocytes and their slit diaphragms (SDs) form the final barrier to urinary protein loss. There is mounting evidence that SD proteins also participate in intracellular signaling pathways. The SD protein nephrin serves as a component of a signaling complex that directly links podocyte junctional integrity to actin cytoskeletal dynamics. Another SD protein, CD2-associated protein (CD2AP), is an adaptor molecule involved in podocyte homeostasis that can repress proapoptotic TGF-β signaling in podocytes. Here we show that dendrin, a protein originally identified in telencephalic dendrites, is a constituent of the SD complex, where it directly binds to nephrin and CD2AP. In experimental glomerulonephritis, dendrin relocates from the SD to the nucleus of injured podocytes. High-dose, proapoptotic TGF-β1 directly promotes the nuclear import of dendrin, and nuclear dendrin enhances both staurosporine- and TGF-β1-mediated apoptosis. In summary, our results identify dendrin as an SD protein with proapoptotic signaling properties that accumulates in the podocyte nucleus in response to glomerular injury and provides a molecular target to tackle proteinuric kidney diseases. Nuclear relocation of dendrin may provide a mechanism whereby changes in SD integrity could translate into alterations of podocyte survival under pathological conditions. PMID:17537921

  6. Nuclear poly(A)-binding protein aggregates misplace a pre-mRNA outside of SC35 speckle causing its abnormal splicing

    PubMed Central

    Klein, Pierre; Oloko, Martine; Roth, Fanny; Montel, Valérie; Malerba, Alberto; Jarmin, Susan; Gidaro, Teresa; Popplewell, Linda; Perie, Sophie; Lacau St Guily, Jean; de la Grange, Pierre; Antoniou, Michael N.; Dickson, George; Butler-Browne, Gillian; Bastide, Bruno; Mouly, Vincent; Trollet, Capucine

    2016-01-01

    A short abnormal polyalanine expansion in the polyadenylate-binding protein nuclear-1 (PABPN1) protein causes oculopharyngeal muscular dystrophy (OPMD). Mutated PABPN1 proteins accumulate as insoluble intranuclear aggregates in muscles of OPMD patients. While the roles of PABPN1 in nuclear polyadenylation and regulation of alternative poly(A) site choice have been established, the molecular mechanisms which trigger pathological defects in OPMD and the role of aggregates remain to be determined. Using exon array, for the first time we have identified several splicing defects in OPMD. In particular, we have demonstrated a defect in the splicing regulation of the muscle-specific Troponin T3 (TNNT3) mutually exclusive exons 16 and 17 in OPMD samples compared to controls. This splicing defect is directly linked to the SC35 (SRSF2) splicing factor and to the presence of nuclear aggregates. As reported here, PABPN1 aggregates are able to trap TNNT3 pre-mRNA, driving it outside nuclear speckles, leading to an altered SC35-mediated splicing. This results in a decreased calcium sensitivity of muscle fibers, which could in turn plays a role in muscle pathology. We thus report a novel mechanism of alternative splicing deregulation that may play a role in various other diseases with nuclear inclusions or foci containing an RNA binding protein. PMID:27507886

  7. Ran-binding protein 5 (RanBP5) is related to the nuclear transport factor importin-beta but interacts differently with RanBP1.

    PubMed Central

    Deane, R; Schäfer, W; Zimmermann, H P; Mueller, L; Görlich, D; Prehn, S; Ponstingl, H; Bischoff, F R

    1997-01-01

    We report the identification and characterization of a novel 124-kDa Ran binding protein, RanBP5. This protein is related to importin-beta, the key mediator of nuclear localization signal (NLS)-dependent nuclear transport. RanBP5 was identified by two independent methods: it was isolated from HeLa cells by using its interaction with RanGTP in an overlay assay to monitor enrichment, and it was also found by the yeast two-hybrid selection method with RanBP1 as bait. RanBP5 binds to RanBP1 as part of a trimeric RanBP1-Ran-RanBP5 complex. Like importin-beta, RanBP5 strongly binds the GTP-bound form of Ran, stabilizing it against both intrinsic and RanGAP1-induced GTP hydrolysis and also against nucleotide exchange. The GAP resistance of the RanBP5-RanGTP complex can be relieved by RanBP1, which might reflect an in vivo role for RanBP1. RanBP5 is a predominantly cytoplasmic protein that can bind to nuclear pore complexes. We propose that RanBP5 is a mediator of a nucleocytoplasmic transport pathway that is distinct from the importin-alpha-dependent import of proteins with a classical NLS. PMID:9271386

  8. Effect of antiprogestin ZK 98. 734 on the ovarian cycle, early pregnancy, and on its binding to progesterone receptors in the myometrium of marmoset Callithrix jacchus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puri, C.P.; Kholkute, S.D.; Pongubala, J.M.

    1988-04-01

    The antiprogestin ZK 98.734 (11 beta-(4-dimethylaminophenyl-17 beta-hydroxy-17 alpha-(3-hydroxy-prop-1(Z)-enyl-4,9(10)-estradien-3-one) was administered i.m. (5 mg/day) for three consecutive days to two groups of common marmosets. In one group (nonpregnant, n = 6), it was injected during the luteal phase, and to the second group (pregnant, n = 7), it was injected during early pregnancy, on Days 24-26 of the mid-cycle estradiol peak. Administration of ZK 98.734 during the luteal phase caused a sharp drop in plasma progesterone levels. The luteal phase was shortened whether the drug was administered during the early or the late luteal phase. Similarly, administration of ZK 98.734 duringmore » early pregnancy caused a significant drop in progesterone levels, and pregnancy was terminated in all of the animals. The post-treatment cycles in both groups of animals were ovulatory and of normal duration. /sup 3/H-ZK 98.734 showed specific binding to myometrial cytosol fraction. ZK 98.734 also displaced the binding of /sup 3/H-progesterone to progesterone receptors. However, progesterone had higher binding affinity than did ZK 98.734. The antifertility action of ZK 98.734 could be a result either of its luteolytic action or of its blocking the progesterone receptors in the target tissue. This study, therefore, indicates that in the common marmoset ZK 98.734 is a progesterone antagonist with a potential to terminate early pregnancy.« less

  9. The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.

    PubMed

    Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E

    2017-12-05

    Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Anti-Inflammatory Effects of Progesterone in Lipopolysaccharide-Stimulated BV-2 Microglia

    PubMed Central

    Lei, Beilei; Mace, Brian; Dawson, Hana N.; Warner, David S.; Laskowitz, Daniel T.; James, Michael L.

    2014-01-01

    Female sex is associated with improved outcome in experimental brain injury models, such as traumatic brain injury, ischemic stroke, and intracerebral hemorrhage. This implies female gonadal steroids may be neuroprotective. A mechanism for this may involve modulation of post-injury neuroinflammation. As the resident immunomodulatory cells in central nervous system, microglia are activated during acute brain injury and produce inflammatory mediators which contribute to secondary injury including proinflammatory cytokines, and nitric oxide (NO) and prostaglandin E2 (PGE2), mediated by inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively. We hypothesized that female gonadal steroids reduce microglia mediated neuroinflammation. In this study, the progesterone’s effects on tumor necrosis factor alpha (TNF-α), iNOS, and COX-2 expression were investigated in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Further, investigation included nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK) pathways. LPS (30 ng/ml) upregulated TNF-α, iNOS, and COX-2 protein expression in BV-2 cells. Progesterone pretreatment attenuated LPS-stimulated TNF-α, iNOS, and COX-2 expression in a dose-dependent fashion. Progesterone suppressed LPS-induced NF-κB activation by decreasing inhibitory κBα and NF-κB p65 phosphorylation and p65 nuclear translocation. Progesterone decreased LPS-mediated phosphorylation of p38, c-Jun N-terminal kinase and extracellular regulated kinase MAPKs. These progesterone effects were inhibited by its antagonist mifepristone. In conclusion, progesterone exhibits pleiotropic anti-inflammatory effects in LPS-stimulated BV-2 microglia by down-regulating proinflammatory mediators corresponding to suppression of NF-κB and MAPK activation. This suggests progesterone may be used as a potential neurotherapeutic to treat inflammatory components of acute brain injury. PMID:25080336

  11. Negative Effects of SRD5A1 on Nuclear Activity of Progesterone Receptor Isoform B in JEG3 Cells.

    PubMed

    Miao, Zhuo; Sun, Min; Jiang, Feng; Yao, Yuanqing; Li, Yi

    2016-02-01

    Progesterone withdrawal signals labor in mammals. Elevated intracellular metabolism contributes to progesterone functional withdrawal through unknown mechanism, which is thought to act via progesterone receptor (PR). This study aims to investigate molecular mechanisms underlying progesterone withdrawal during pregnancy and labor. We investigated the role of 5α-reductase type I (SRD5A1) in enzymatic catalysis of progesterone and loss of PR function in a human trophoblast choriocarcinoma cell line JEG3. The PR isoform B (PR-B) was robustly expressed in JEG3 cells. The SRD5A1 small-interfering RNA knockdown led to significant increase in PR-B nuclear import, ectopic, whereas SRD5A1 overexpression resulted in remarkable inhibition of nuclear PR-B in P4-treated cells. Repression of SRD5A1 activated PR-B responsive gene, whereas overexpression of SRD5A1 possessed an inhibitory effect. JEG3 cell line is a valuable tool to study mechanisms responsible for loss of PR function and screening of drugs for preterm birth treatment. Our study aims to investigate the molecular mechanisms underlying progesterone withdrawal during pregnancy and labor. © The Author(s) 2015.

  12. Endometrial proteins: a reappraisal.

    PubMed

    Seppälä, M; Julkunen, M; Riittinen, L; Koistinen, R

    1992-06-01

    Uterine factors influence reproduction at the macro-anatomy level, and the effects of hormonal steroids on endometrial morphology are well recognized in the histopathological diagnosis of dysfunctional bleeding and infertility. During the past decade, attention has been paid to endometrial protein synthesis and secretion with respect to endocrine stimuli and implantation, and to the paracrine/autocrine effects of endometrial peptide growth factors, their binding proteins and other factors. The emphasis of this presentation is on protein secretion of the secretory endometrium, in which progesterone plays a pivotal role. Insulin-like growth factors have receptors on the endometrium, and IGF-binding proteins, stimulated by progesterone, modulate the effects of IGFs locally. Also other protein products of the secretory endometrium have been reviewed in this communication, with special emphasis on studies of a progesterone-associated endometrial protein which has many names in the literature, such as PEP, PP14, alpha 2-PEG and AUP. Extensive studies are ongoing in many laboratories to elucidate the regulation, function, interplay at tissue and cellular levels, and clinical significance of these proteins.

  13. Proteomic analysis of the nuclear matrix in the early stages of rat liver carcinogenesis: Identification of differentially expressed and MAR-binding proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barboro, Paola; D'Arrigo, Cristina; Repaci, Erica

    Tumor progression is characterized by definite changes in the protein composition of the nuclear matrix (NM). The interactions of chromatin with the NM occur via specific DNA sequences called MARs (matrix attachment regions). In the present study, we applied a proteomic approach along with a Southwestern assay to detect both differentially expressed and MAR-binding NM proteins, in persistent hepatocyte nodules (PHN) in respect with normal hepatocytes (NH). In PHN, the NM undergoes changes both in morphology and in protein composition. We detected over 500 protein spots in each two dimensional map and 44 spots were identified. Twenty-three proteins were differentiallymore » expressed; among these, 15 spots were under-expressed and 8 spots were over-expressed in PHN compared to NH. These changes were synchronous with several modifications in both NM morphology and the ability of NM proteins to bind nuclear RNA and/or DNA containing MARs sequences. In PHN, we observed a general decrease in the expression of the basic proteins that bound nuclear RNA and the over-expression of two species of Mw 135 kDa and 81 kDa and pI 6.7-7.0 and 6.2-7.4, respectively, which exclusively bind to MARs. These results suggest that the deregulated expression of these species might be related to large-scale chromatin reorganization observed in the process of carcinogenesis by modulating the interaction between MARs and the scaffold structure.« less

  14. Sex hormone-binding globulin and corticosteroid-binding globulin mRNA levels in infertile women with luteal phase deficiency.

    PubMed

    Misao, R; Nakanishi, Y; Fujimoto, J; Tamaya, T

    1995-09-01

    This study was designed to investigate the biological significance in intracellular expression of sex hormone-binding globulin (SHBG) and corticosteroid-binding globulin (CBG) mRNA in uterine endometrium with luteal phase deficiency (designated as out-of-phase endometrium or low serum progesterone level). The levels of such mRNAs were measured by the quantitative reverse transcription-polymerase chain reaction. Under the normal serum 17 beta-estradiol and progesterone levels in the mid-luteal phase, the levels of SHBG and CBG mRNAs in the out-of-phase endometria were not significantly different from those in the normal endometria. On the other hand, SHBG and CBG mRNA levels in the endometria of low serum midluteal progesterone level were significantly (p < 0.05) reduced and raised, respectively, compared with normal levels. These findings suggest that the synthesis of endometrial steroid-binding proteins in the out-of-phase endometrium is conserved, as that in the in-phase endometrium, whereas the decreased progesterone level might up-regulate CBG expression with down-regulation of SHBG expression.

  15. Isolation and characterization of a novel calmodulin-binding protein from potato

    NASA Technical Reports Server (NTRS)

    Reddy, Anireddy S N.; Day, Irene S.; Narasimhulu, S. B.; Safadi, Farida; Reddy, Vaka S.; Golovkin, Maxim; Harnly, Melissa J.

    2002-01-01

    Tuberization in potato is controlled by hormonal and environmental signals. Ca(2+), an important intracellular messenger, and calmodulin (CaM), one of the primary Ca(2+) sensors, have been implicated in controlling diverse cellular processes in plants including tuberization. The regulation of cellular processes by CaM involves its interaction with other proteins. To understand the role of Ca(2+)/CaM in tuberization, we have screened an expression library prepared from developing tubers with biotinylated CaM. This screening resulted in isolation of a cDNA encoding a novel CaM-binding protein (potato calmodulin-binding protein (PCBP)). Ca(2+)-dependent binding of the cDNA-encoded protein to CaM is confirmed by (35)S-labeled CaM. The full-length cDNA is 5 kb long and encodes a protein of 1309 amino acids. The deduced amino acid sequence showed significant similarity with a hypothetical protein from another plant, Arabidopsis. However, no homologs of PCBP are found in nonplant systems, suggesting that it is likely to be specific to plants. Using truncated versions of the protein and a synthetic peptide in CaM binding assays we mapped the CaM-binding region to a 20-amino acid stretch (residues 1216-1237). The bacterially expressed protein containing the CaM-binding domain interacted with three CaM isoforms (CaM2, CaM4, and CaM6). PCBP is encoded by a single gene and is expressed differentially in the tissues tested. The expression of CaM, PCBP, and another CaM-binding protein is similar in different tissues and organs. The predicted protein contained seven putative nuclear localization signals and several strong PEST motifs. Fusion of the N-terminal region of the protein containing six of the seven nuclear localization signals to the reporter gene beta-glucuronidase targeted the reporter gene to the nucleus, suggesting a nuclear role for PCBP.

  16. Gene and protein expression of oestrogen-β and progesterone receptors in facial melasma and adjacent healthy skin in women.

    PubMed

    Tamega, A de A; Miot, H A; Moço, N P; Silva, M G; Marques, M E A; Miot, L D B

    2015-04-01

    Compare gene and protein expression for oestrogen receptor-β (ER-β) and progesterone receptor (PR) in facial melasma and adjacent healthy skin. A cross-sectional study including 42 women with facial melasma, conducted at the Dermatology Service of Botucatu Medical School of São Paulo State University, Brazil. Biopsies of the melasma skin were performed, together with healthy surrounding skin. The gene expression (real-time PCR) of the hormone receptors in the tissue was evaluated. Subsequently, skin fragments were immunostained for nuclear ER-β and PR, evaluated according to their HSCORE (epidermis) and percentage of staining per microscopic field (dermis). Messenger RNA tissue expression for ER-β and PR showed no difference between melasma-affected skin fragments and the healthy perilesional areas (P > 0.2). Median nuclear epithelial expression for ER-β and PR was higher in lesioned skin (HSCORE 157 and 58) than in the healthy perilesional skin (HSCORE 97 and 19; P < 0.01), with no difference in dermal immunostaining. Nuclear histological expression for ER-β was associated to sun-induced melasma and negative familiar background; PR expression was associated to sun-induced melasma and darker phototypes. No difference was observed in gene expression for oestrogen-β and progesterone receptors in melasma-affected skin compared with adjacent healthy skin. However, the higher protein expression of these receptors in melasma-affected epithelia suggests hormonal participation in the pathogenesis of this disease. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  17. A Gata2-Dependent Transcription Network Regulates Uterine Progesterone Responsiveness and Endometrial Function.

    PubMed

    Rubel, Cory A; Wu, San-Pin; Lin, Lin; Wang, Tianyuan; Lanz, Rainer B; Li, Xilong; Kommagani, Ramakrishna; Franco, Heather L; Camper, Sally A; Tong, Qiang; Jeong, Jae-Wook; Lydon, John P; DeMayo, Francesco J

    2016-10-25

    Altered progesterone responsiveness leads to female infertility and cancer, but underlying mechanisms remain unclear. Mice with uterine-specific ablation of GATA binding protein 2 (Gata2) are infertile, showing failures in embryo implantation, endometrial decidualization, and uninhibited estrogen signaling. Gata2 deficiency results in reduced progesterone receptor (PGR) expression and attenuated progesterone signaling, as evidenced by genome-wide expression profiling and chromatin immunoprecipitation. GATA2 not only occupies at and promotes expression of the Pgr gene but also regulates downstream progesterone responsive genes in conjunction with the PGR. Additionally, Gata2 knockout uteri exhibit abnormal luminal epithelia with ectopic TRP63 expressing squamous cells and a cancer-related molecular profile in a progesterone-independent manner. Lastly, we found a conserved GATA2-PGR regulatory network in both human and mice based on gene signature and path analyses using gene expression profiles of human endometrial tissues. In conclusion, uterine Gata2 regulates a key regulatory network of gene expression for progesterone signaling at the early pregnancy stage. Published by Elsevier Inc.

  18. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Disturbances in production of progesterone and their implications in plant studies.

    PubMed

    Janeczko, Anna; Oklestkova, Jana; Novak, Ondrej; Śniegowska-Świerk, Katarzyna; Snaczke, Zuzanna; Pociecha, Ewa

    2015-04-01

    Progesterone is a mammalian hormone that has also been discovered in plants but its physiological function in plants is not explained. Experiments using inhibitors of progesterone synthesis and binding would be useful in studies on the significance of this compound in plants. Until now, trilostane and mifepristone have been used in medical sciences as progesterone biosynthesis and binding inhibitors, respectively. We tested these synthetic steroids for the first time in plants and found that they reduced the content of progesterone in wheat. The aim of further experiments was to answer whether the potential disturbances in the production/binding of progesterone, influence resistance to environmental stress (drought) and the development of wheat. Inhibitors and progesterone were applied to plants via roots in a concentration of 0.25-0.5mg/l water. Both inhibitors lowered the activity of CO2 binding enzyme (Rubisco) in wheat exposed to drought stress and trilostane additionally lowered the chlorophyll content. However, trilostane-treated plants were rescued by treatment with exogenous progesterone. The inhibitors also modulated the development of winter wheat, which indicated the significance of steroid regulators and their receptors in this process. In this study, in addition to progesterone and its inhibitors, brassinosteroid (24-epibrassinolide) and an inhibitor of biosynthesis of brassinosteroids were also applied. Mifepristone inhibited the generative development of wheat (like 24-epibrassinolide), while trilostane (like progesterone and an inhibitor of biosynthesis of brassinosteroids) stimulated the development. We propose a model of steroid-induced regulation of the development of winter wheat, where brassinosteroids act as inhibitors of generative development, while progesterone or other pregnane derivatives act as stimulators. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Identification and characterization of a HeLa nuclear protein that specifically binds to the trans-activation-response (TAR) element of human immunodeficiency virus.

    PubMed Central

    Marciniak, R A; Garcia-Blanco, M A; Sharp, P A

    1990-01-01

    Human immunodeficiency virus type 1 RNAs contain a sequence, trans-activation-response (TAR) element, which is required for tat protein-mediated trans-activation of viral gene expression. We have identified a nuclear protein from extracts of HeLa cells that binds to the TAR element RNA in a sequence-specific manner. The binding of this 68-kDa polypeptide was detected by UV cross-linking proteins to TAR element RNA transcribed in vitro. Competition experiments were performed by using a partially purified preparation of the protein to quantify the relative binding affinities of TAR element RNA mutants. The binding affinity of the TAR mutants paralleled the reported ability of those mutants to support tat trans-activation in vivo. We propose that this cellular protein moderates TAR activity in vivo. Images PMID:2333305

  1. Interaction entropy for protein-protein binding

    NASA Astrophysics Data System (ADS)

    Sun, Zhaoxi; Yan, Yu N.; Yang, Maoyou; Zhang, John Z. H.

    2017-03-01

    Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interaction entropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interaction entropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.

  2. Interaction entropy for protein-protein binding.

    PubMed

    Sun, Zhaoxi; Yan, Yu N; Yang, Maoyou; Zhang, John Z H

    2017-03-28

    Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interactionentropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interactionentropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.

  3. The mammalian RNA-binding protein Staufen2 links nuclear and cytoplasmic RNA processing pathways in neurons.

    PubMed

    Monshausen, Michaela; Gehring, Niels H; Kosik, Kenneth S

    2004-01-01

    Members of the Staufen family of RNA-binding proteins are highly conserved cytoplasmic RNA transporters associated with RNA granules. staufen2 is specifically expressed in neurons where the delivery of RNA to dendrites is thought to have a role in plasticity. We found that Staufen2 interacts with the nuclear pore protein p62, with the RNA export protein Tap and with the exon-exon junction complex (EJC) proteins Y14-Mago. The interaction of Staufen2 with the Y14-Mago heterodimer seems to represent a highly conserved complex as the same proteins are involved in the Staufen-mediated localization of oskar mRNA in Drosophila oocytes. A pool of Staufen2 is present in neuronal nuclei and colocalizes to a large degree with p62 and partly with Tap, Y14, and Mago. We suggest a model whereby a set of conserved genes in the oskar mRNA export pathway may be recruited to direct a dendritic destination for mRNAs originating as a Staufen2 nuclear complex.

  4. Chromatin De-Compaction By The Nucleosomal Binding Protein HMGN5 Impairs Nuclear Sturdiness

    PubMed Central

    Furusawa, Takashi; Rochman, Mark; Taher, Leila; Dimitriadis, Emilios K.; Nagashima, Kunio; Anderson, Stasia; Bustin, Michael

    2014-01-01

    In most metazoan nuclei, heterochromatin is located at the nuclear periphery in contact with the nuclear lamina, which provides mechanical stability to the nucleus. We show that in cultured cells, chromatin de-compaction by the nucleosome binding protein HMGN5 decreases the sturdiness, elasticity, and rigidity of the nucleus. Mice overexpressing HMGN5, either globally or only in the heart, are normal at birth but develop hypertrophic heart with large cardiomyoctyes, deformed nuclei and disrupted lamina, and die of cardiac malfunction. Chromatin de-compaction is seen in cardiomyocytes of newborn mice but misshaped nuclei with disrupted lamina are seen only in adult cardiomyocytes, suggesting that loss of heterochromatin diminishes the ability of the nucleus to withstand the mechanical forces of the contracting heart. Thus, heterochromatin enhances the ability of the nuclear lamina to maintain the sturdiness and shape of the eukaryotic nucleus; a structural role for chromatin that is distinct from its genetic functions. PMID:25609380

  5. Direct /sup 125/I-radioligand assays for serum progesterone compared with assays involving extraction of serum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratcliffe, W.A.; Corrie, J.E.; Dalziel, A.H.

    1982-06-01

    Researchers compared two direct radioimmunoassays for progesterone in 50 microL of unextracted serum or plasma with assays involving extraction of serum. The direct assays include the use of either danazol at pH 7.4 or 8-anilino-1-naphthalenesulfonic acid at pH 4.0 to displace progesterone from serum binding-proteins. Progesterone is then assayed by using an antiserum to a progesterone 11 alpha hemisuccinyl conjugate and the radioligand /sup 125/I-labeled progesterone 11 alpha-glucuronyl tyramine, with separation by double-antibody techniques. Direct assays with either displacing agent gave good analytical recovery of progesterone added to human serum, and progesterone values for patients' specimens correlated well (r greatermore » than 0.96) with results of assays involving extraction of serum. Precision was similar with each displacing agent over the working range 2.5-100 nmol/L and superior to that of extraction assays. Researchers conclude that these direct assays of progesterone are analytically valid and more robust, precise, and technically convenient than many conventional methods involving extraction of serum.« less

  6. Direct /sup 125/I-radioligand assays for serum progesterone compared with assays involving extraction of serum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratcliffe, W.A.; Corrie, J.E.T.; Dalziel, A.H.

    1982-06-01

    Two direct radioimmunoassays for progesterone in 50 ..mu..L of unextracted serum or plasma with assays involving extraction of serum were compared. The direct assays include the use of either danazol at pH 7.4 or 8-anilino-1-naphthalenesulfonic acid at pH 4.0 to displace progesterone from serum binding-proteins. Progesterone is then assayed by using an antiserum to a progesterone 11..cap alpha..-hemisuccinyl conjugate and the radioligand /sup 125/I-labeled progesterone 11..cap alpha..-glucuronyl tyramine, with separation by double-antibody techniques. Direct assays with either displacing agent gave good analytical recovery of progesterone added to human serum, and progesterone values for patients' specimens correlated well (r > 0.96)more » with results of assays involving extraction of serum. Precision was similar with each displacing agent over the working range 2.5-100 nmol/L and superior to that of extraction assays. We conclude that these direct assays of progesterone are analytically valid and more robust, precise, and technically convenient than many conventional methods involving extraction of serum.« less

  7. Genome-Wide Progesterone Receptor Binding: Cell Type-Specific and Shared Mechanisms in T47D Breast Cancer Cells and Primary Leiomyoma Cells

    PubMed Central

    Huang, Lei; Owen, Jonas K.; Xie, Anna; Navarro, Antonia; Monsivais, Diana; Coon V, John S.; Kim, J. Julie; Dai, Yang; Bulun, Serdar E.

    2012-01-01

    Background Progesterone, via its nuclear receptor (PR), exerts an overall tumorigenic effect on both uterine fibroid (leiomyoma) and breast cancer tissues, whereas the antiprogestin RU486 inhibits growth of these tissues through an unknown mechanism. Here, we determined the interaction between common or cell-specific genome-wide binding sites of PR and mRNA expression in RU486-treated uterine leiomyoma and breast cancer cells. Principal Findings ChIP-sequencing revealed 31,457 and 7,034 PR-binding sites in breast cancer and uterine leiomyoma cells, respectively; 1,035 sites overlapped in both cell types. Based on the chromatin-PR interaction in both cell types, we statistically refined the consensus progesterone response element to G•ACA• • •TGT•C. We identified two striking differences between uterine leiomyoma and breast cancer cells. First, the cis-regulatory elements for HSF, TEF-1, and C/EBPα and β were statistically enriched at genomic RU486/PR-targets in uterine leiomyoma, whereas E2F, FOXO1, FOXA1, and FOXF sites were preferentially enriched in breast cancer cells. Second, 51.5% of RU486-regulated genes in breast cancer cells but only 6.6% of RU486-regulated genes in uterine leiomyoma cells contained a PR-binding site within 5 kb from their transcription start sites (TSSs), whereas 75.4% of RU486-regulated genes contained a PR-binding site farther than 50 kb from their TSSs in uterine leiomyoma cells. RU486 regulated only seven mRNAs in both cell types. Among these, adipophilin (PLIN2), a pro-differentiation gene, was induced via RU486 and PR via the same regulatory region in both cell types. Conclusions Our studies have identified molecular components in a RU486/PR-controlled gene network involved in the regulation of cell growth, cell migration, and extracellular matrix function. Tissue-specific and common patterns of genome-wide PR binding and gene regulation may determine the therapeutic effects of antiprogestins in uterine fibroids and

  8. WW domain-binding protein 2: an adaptor protein closely linked to the development of breast cancer.

    PubMed

    Chen, Shuai; Wang, Han; Huang, Yu-Fan; Li, Ming-Li; Cheng, Jiang-Hong; Hu, Peng; Lu, Chuan-Hui; Zhang, Ya; Liu, Na; Tzeng, Chi-Meng; Zhang, Zhi-Ming

    2017-07-19

    The WW domain is composed of 38 to 40 semi-conserved amino acids shared with structural, regulatory, and signaling proteins. WW domain-binding protein 2 (WBP2), as a binding partner of WW domain protein, interacts with several WW-domain-containing proteins, such as Yes kinase-associated protein (Yap), paired box gene 8 (Pax8), WW-domain-containing transcription regulator protein 1 (TAZ), and WW-domain-containing oxidoreductase (WWOX) through its PPxY motifs within C-terminal region, and further triggers the downstream signaling pathway in vitro and in vivo. Studies have confirmed that phosphorylated form of WBP2 can move into nuclei and activate the transcription of estrogen receptor (ER) and progesterone receptor (PR), whose expression were the indicators of breast cancer development, indicating that WBP2 may participate in the progression of breast cancer. Both overexpression of WBP2 and activation of tyrosine phosphorylation upregulate the signal cascades in the cross-regulation of the Wnt and ER signaling pathways in breast cancer. Following the binding of WBP2 to the WW domain region of TAZ which can accelerate migration, invasion and is required for the transformed phenotypes of breast cancer cells, the transformation of epithelial to mesenchymal of MCF10A is activated, suggesting that WBP2 is a key player in regulating cell migration. When WBP2 binds with WWOX, a tumor suppressor, ER transactivation and tumor growth can be suppressed. Thus, WBP2 may serve as a molecular on/off switch that controls the crosstalk between E2, WWOX, Wnt, TAZ, and other oncogenic signaling pathways. This review interprets the relationship between WBP2 and breast cancer, and provides comprehensive views about the function of WBP2 in the regulation of the pathogenesis of breast cancer and endocrine therapy in breast cancer treatment.

  9. Effect of progesterone receptor status on maspin synthesis via nitric oxide production in neutrophils in human breast cancer.

    PubMed

    Ganguly Bhattacharjee, Karabi; Bhattacharyya, Mau; Halder, Umesh Chandra; Jana, Pradipta; Sinha, Asru K

    2014-09-01

    Although progesterone receptor (PR) status, similarly to estrogen receptor status, is of prognostic importance in breast cancer, the involvement of the PR in breast cancer remains obscure. Studies were conducted to determine the function of the PR in neutrophils in the nitric oxide-induced synthesis of maspin, an anti-breast-cancer protein produced in nonmalignant mammary cells and in neutrophils in the circulation. PR status was determined by immunohistochemistry. Maspin synthesis was determined by in-vitro translation of messenger RNA and quantified by enzyme-linked immunosorbent assay. Nitric oxide was determined by the methemoglobin method. It was found that PR status in neutrophils was identical with that in malignant breast tissues. A Scatchard plot for progesterone binding to normal and PR-positive (PR+) neutrophils revealed that whereas normal neutrophils had 11.5 × 10(10) PR sites/cell with K d = 47.619 nM, PR+ neutrophils had 6.6 × 10(10) PR sites/cell with K d = 47.619 nM. The progesterone negative (PR-) neutrophils failed to bind to progesterone. Incubation of normal and PR+ neutrophils with 25 nM progesterone produced 1.317 μM NO and 2.329 nM maspin; the PR+ neutrophils produced 0.72 μM NO and 1.138 nM maspin. The PR- neutrophils failed to produce any NO or maspin in the presence of progesterone. Inhibition of progesterone-induced NO synthesis led to complete inhibition of maspin synthesis in all neutrophils. These results suggest that estrogen and progesterone complement each other in NO-induced maspin synthesis, and do not necessarily antagonize in the synthesis of the anti-breast-cancer protein.

  10. Regulation of Steroid Hormone Receptor Function By the 52-kDa FK506-Binding Protein (FKBP52)

    PubMed Central

    Sivils, Jeffrey C.; Storer, Cheryl L.; Galigniana, Mario D.; Cox, Marc B.

    2011-01-01

    The large FK506-binding protein FKBP52 has been characterized as an important positive regulator of androgen, glucocorticoid and progesterone receptor signaling pathways. FKBP52 associates with receptor-Hsp90 complexes and is proposed to have roles in both receptor hormone binding and receptor subcellular localization. Data from biochemical and cellular studies has been corroborated in whole animal models as fkbp52-deficient male and female mice display characteristics of androgen, glucocorticoid and/or progesterone insensitivity. FKBP52 receptor specificity and the specific phenotypes displayed by the fkbp52-deficient mice have firmly established FKBP52 as a promising target for the treatment of a variety of hormone-dependent diseases. Recent studies demonstrated that the FKBP52 FK1 domain and the proline-rich loop within this domain are functionally important for FKBP52 regulation of receptor function. Based on these data, efforts are currently underway to target the FKBP52 FK1 domain and the proline-rich loop with small molecule inhibitors. PMID:21511531

  11. Progesterone receptor modulates estrogen receptor-α action in breast cancer

    PubMed Central

    Mohammed, Hisham; Russell, I. Alasdair; Stark, Rory; Rueda, Oscar M.; Hickey, Theresa E.; Tarulli, Gerard A.; Serandour, Aurelien A. A.; Birrell, Stephen N.; Bruna, Alejandra; Saadi, Amel; Menon, Suraj; Hadfield, James; Pugh, Michelle; Raj, Ganesh V.; Brown, Gordon D.; D’Santos, Clive; Robinson, Jessica L. L.; Silva, Grace; Launchbury, Rosalind; Perou, Charles M.; Stingl, John; Caldas, Carlos; Tilley, Wayne D.; Carroll, Jason S.

    2015-01-01

    Summary Progesterone receptor (PR) expression is employed as a biomarker of estrogen receptor-α (ERα) function and breast cancer prognosis. We now show that PR is not merely an ERα-induced gene target, but is also an ERα-associated protein that modulates its behaviour. In the presence of agonist ligands, PR associates with ERα to direct ERα chromatin binding events within breast cancer cells, resulting in a unique gene expression programme that is associated with good clinical outcome. Progesterone inhibited estrogen-mediated growth of ERα+ cell line xenografts and primary ERα+ breast tumour explants and had increased anti-proliferative effects when coupled with an ERα antagonist. Copy number loss of PgR is a common feature in ERα+ breast cancers, explaining lower PR levels in a subset of cases. Our findings indicate that PR functions as a molecular rheostat to control ERα chromatin binding and transcriptional activity, which has important implications for prognosis and therapeutic interventions. PMID:26153859

  12. Transcriptional regulation of human MUC4 gene: identification of a novel inhibitory element and its nuclear binding protein.

    PubMed

    Zhang, Jing-Jing; Zhu, Yi; Zhang, Xiong-Fei; Liang, Wen-Biao; Xie, Kun-Ling; Tao, Jin-Qiu; Peng, Yun-Peng; Xu, Ze-Kuan; Miao, Yi

    2013-08-01

    The human mucin 4 (MUC4) is aberrantly expressed in pancreatic adenocarcinoma and tumor cell lines, while remaining undetectable in normal pancreas, indicating its important role in pancreatic cancer development. Although its transcriptional regulation has been investigated in considerable detail, some important elements remain unknown. The aim of the present study was to demonstrate the existence of a novel inhibitory element in the MUC4 promoter and characterize some of its binding proteins. By luciferase reporter assay, we located the inhibitory element between nucleotides -2530 and -2521 in the MUC4 promoter using a series of deletion and mutant reporter constructs. Electrophoretic mobility shift assay (EMSA) with Bxpc-3 cell nuclear extracts revealed that one protein or protein complex bind to this element. The proteins binding to this element were purified and identified as Yin Yang 1 (YY1) by mass spectrometry. Supershift assay and chromatin immunoprecipitation (ChIP) assay confirmed that YY1 binds to this element in vitro and in vivo. Moreover, transient YY1 overexpression significantly inhibited MUC4 promoter activity and endogenous MUC4 protein expression. In conclusion, we reported here a novel inhibitory element in the human MUC4 promoter. This provides additional data on MUC4 gene regulation and indicates that YY1 may be a potential target for abnormal MUC4 expression.

  13. Progesterone receptor isoforms in the mammary gland of cats and dogs.

    PubMed

    Gracanin, A; de Gier, J; Zegers, K; Bominaar, M; Rutteman, G R; Schaefers-Okkens, A C; Kooistra, H S; Mol, J A

    2012-12-01

    Progesterone exerts its effect by binding to specific progesterone receptors (PR) within the cell. In dogs and cats, no data are available on PR isoforms as found in other species. We therefore investigated the sequence of the PR gene and encoded protein in dogs and cats, the expression of PR isoforms in mammary tissue using Western blots and the presence of PR in mammary tissue using immunohistochemistry. Comparison of the amino acid sequence of the canine and feline PR with human PR revealed major differences in the PR-B-specific upstream segment (BUS). However, the essential activation function 3 (AF3) domain was intact in the cat but mutated in the dog. The DNA and ligand-binding domains were highly similar among the species. In cats with fibroadenomatous hyperplasia (FAH), high expression of PR mRNA together with growth hormone (GH), GH receptor (GHR) and IGF-I mRNA was found in comparison with feline mammary carcinomas. Immunohistochemical analysis showed strong nuclear as well as cytoplasmic staining for PR in FAH. Western blot analysis revealed expression of the PR-A and PR-B isoforms in the feline mammary gland. In canine mammary tissue, the most abundant PR staining was found in proliferative zones of the mammary gland. Western blot analyses showed mainly staining for PR-A with lower PR-B staining. It is concluded that in dogs and cats both PR isoforms are expressed. The role of mutations found in the canine PR-B is discussed. © 2012 Blackwell Verlag GmbH.

  14. Prostate Androgen-Regulated Mucin-Like protein 1: A Novel Regulator of Progesterone Metabolism

    PubMed Central

    Park, Ji Yeon; Jang, Hyein; Curry, Thomas E.; Sakamoto, Aiko

    2013-01-01

    The LH surge reprograms preovulatory follicular cells to become terminally differentiated luteal cells which produce high levels of progesterone and become resistant to apoptosis. PARM1 (prostate androgen regulated mucin-like protein 1) has been implicated in cell differentiation and cell survival in nonovarian cells, but little is known about PARM1 in the ovary. This study demonstrated that the LH surge induced a dramatic increase in Parm1 expression in periovulatory follicles and newly forming CL in both cycling and immature rat models. We further demonstrated that hCG increases Parm1 expression in granulosa cell cultures. The in vitro up-regulation of Parm1 expression was mediated by hCG-activated multiple signaling pathways and transcriptional activation of this gene. Parm1 knockdown increased the viability of cultured granulosa cells but resulted in a decrease in progesterone levels. The inhibitory effect of Parm1 silencing on progesterone was reversed by adenoviral mediated add-back expression of Parm1. Parm1 silencing had little effect on the expression of genes involved in progesterone biosynthesis and metabolism such as Scarb1, Ldlr, Vldlr, Scp2, Star, Cyp11a1, Hsd3b, and Srd5a1, while decreasing the expression of Akr1c3. Analyses of culture media steroid levels revealed that Parm1 knockdown had no effect on pregnenolone levels, while resulting in time-dependent decreases in progesterone and 20α-dihydroprogesterone and accelerated accumulation of 5α-pregnanediol. This study revealed that the up-regulation of Parm1 expression promotes progesterone and 20α-dihydroprogesterone accumulation in luteinizing granulosa cells by inhibiting progesterone catabolism to 5α-pregnanediol. PARM1 contributes to ovulation and/or luteal function by acting as a novel regulator of progesterone metabolism. PMID:24085821

  15. Recrystallization inhibition in ice due to ice binding protein activity detected by nuclear magnetic resonance.

    PubMed

    Brown, Jennifer R; Seymour, Joseph D; Brox, Timothy I; Skidmore, Mark L; Wang, Chen; Christner, Brent C; Luo, Bing-Hao; Codd, Sarah L

    2014-09-01

    Liquid water present in polycrystalline ice at the interstices between ice crystals results in a network of liquid-filled veins and nodes within a solid ice matrix, making ice a low porosity porous media. Here we used nuclear magnetic resonance (NMR) relaxation and time dependent self-diffusion measurements developed for porous media applications to monitor three dimensional changes to the vein network in ices with and without a bacterial ice binding protein (IBP). Shorter effective diffusion distances were detected as a function of increased irreversible ice binding activity, indicating inhibition of ice recrystallization and persistent small crystal structure. The modification of ice structure by the IBP demonstrates a potential mechanism for the microorganism to enhance survivability in ice. These results highlight the potential of NMR techniques in evaluation of the impact of IBPs on vein network structure and recrystallization processes; information useful for continued development of ice-interacting proteins for biotechnology applications.

  16. Regulation of RNA-binding proteins affinity to export receptors enables the nuclear basket proteins to distinguish and retain aberrant mRNAs

    PubMed Central

    Soheilypour, M.; Mofrad, M. R. K.

    2016-01-01

    Export of messenger ribonucleic acids (mRNAs) into the cytoplasm is a fundamental step in gene regulation processes, which is meticulously quality controlled by highly efficient mechanisms in eukaryotic cells. Yet, it remains unclear how the aberrant mRNAs are recognized and retained inside the nucleus. Using a new modelling approach for complex systems, namely the agent-based modelling (ABM) approach, we develop a minimal model of the mRNA quality control (QC) mechanism. Our results demonstrate that regulation of the affinity of RNA-binding proteins (RBPs) to export receptors along with the weak interaction between the nuclear basket protein (Mlp1 or Tpr) and RBPs are the minimum requirements to distinguish and retain aberrant mRNAs. Our results show that the affinity between Tpr and RBPs is optimized to maximize the retention of aberrant mRNAs. In addition, we demonstrate how the length of mRNA affects the QC process. Since longer mRNAs spend more time in the nuclear basket to form a compact conformation and initiate their export, nuclear basket proteins could more easily capture and retain them inside the nucleus. PMID:27805000

  17. Regulation of RNA-binding proteins affinity to export receptors enables the nuclear basket proteins to distinguish and retain aberrant mRNAs.

    PubMed

    Soheilypour, M; Mofrad, M R K

    2016-11-02

    Export of messenger ribonucleic acids (mRNAs) into the cytoplasm is a fundamental step in gene regulation processes, which is meticulously quality controlled by highly efficient mechanisms in eukaryotic cells. Yet, it remains unclear how the aberrant mRNAs are recognized and retained inside the nucleus. Using a new modelling approach for complex systems, namely the agent-based modelling (ABM) approach, we develop a minimal model of the mRNA quality control (QC) mechanism. Our results demonstrate that regulation of the affinity of RNA-binding proteins (RBPs) to export receptors along with the weak interaction between the nuclear basket protein (Mlp1 or Tpr) and RBPs are the minimum requirements to distinguish and retain aberrant mRNAs. Our results show that the affinity between Tpr and RBPs is optimized to maximize the retention of aberrant mRNAs. In addition, we demonstrate how the length of mRNA affects the QC process. Since longer mRNAs spend more time in the nuclear basket to form a compact conformation and initiate their export, nuclear basket proteins could more easily capture and retain them inside the nucleus.

  18. PRIC320, a transcription coactivator, isolated from peroxisome proliferator-binding protein complex.

    PubMed

    Surapureddi, Sailesh; Viswakarma, Navin; Yu, Songtao; Guo, Dongsheng; Rao, M Sambasiva; Reddy, Janardan K

    2006-05-05

    Ciprofibrate, a potent peroxisome proliferator, induces pleiotropic responses in liver by activating peroxisome proliferator-activated receptor alpha (PPARalpha), a nuclear receptor. Transcriptional regulation by liganded nuclear receptors involves the participation of coregulators that form multiprotein complexes possibly to achieve cell and gene specific transcription. SDS-PAGE and matrix-assisted laser desorption/ionization reflection time-of-flight mass spectrometric analyses of ciprofibrate-binding proteins from liver nuclear extracts obtained using ciprofibrate-Sepharose affinity matrix resulted in the identification of a new high molecular weight nuclear receptor coactivator, which we designated PRIC320. The full-length human cDNA encoding this protein has an open-reading frame that codes for a 320kDa protein containing 2882 amino acids. PRIC320 contains five LXXLL signature motifs that mediate interaction with nuclear receptors. PRIC320 binds avidly to nuclear receptors PPARalpha, CAR, ERalpha, and RXR, but only minimally with PPARgamma. PRIC320 also interacts with transcription cofactors CBP, PRIP, and PBP. Immunoprecipitation-immunoblotting as well as cellular localization studies confirmed the interaction between PPARalpha and PRIC320. PRIC320 acts as a transcription coactivator by stimulating PPARalpha-mediated transcription. We conclude that ciprofibrate, a PPARalpha ligand, binds a multiprotein complex and PRIC320 cloned from this complex functions as a nuclear receptor coactivator.

  19. Specific binding of a HeLa cell nuclear protein to RNA sequences in the human immunodeficiency virus transactivating region.

    PubMed Central

    Gaynor, R; Soultanakis, E; Kuwabara, M; Garcia, J; Sigman, D S

    1989-01-01

    The transactivator protein, tat, encoded by the human immunodeficiency virus is a key regulator of viral transcription. Activation by the tat protein requires sequences downstream of the transcription initiation site called the transactivating region (TAR). RNA derived from the TAR is capable of forming a stable stem-loop structure and the maintenance of both the stem structure and the loop sequences located between +19 and +44 is required for complete in vivo activation by tat. Gel retardation assays with RNA from both wild-type and mutant TAR constructs generated in vitro with SP6 polymerase indicated specific binding of HeLa nuclear proteins to the TAR. To characterize this RNA-protein interaction, a method of chemical "imprinting" has been developed using photoactivated uranyl acetate as the nucleolytic agent. This reagent nicks RNA under physiological conditions at all four nucleotides in a reaction that is independent of sequence and secondary structure. Specific interaction of cellular proteins with TAR RNA could be detected by enhanced cleavages or imprints surrounding the loop region. Mutations that either disrupted stem base-pairing or extensively changed the primary sequence resulted in alterations in the cleavage pattern of the TAR RNA. Structural features of the TAR RNA stem-loop essential for tat activation are also required for specific binding of the HeLa cell nuclear protein. Images PMID:2544877

  20. Isolation and characterizations of oxalate-binding proteins in the kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roop-ngam, Piyachat; Chaiyarit, Sakdithep; Pongsakul, Nutkridta

    Highlights: Black-Right-Pointing-Pointer The first large-scale characterizations of oxalate-binding kidney proteins. Black-Right-Pointing-Pointer The recently developed oxalate-conjugated EAH Sepharose 4B beads were applied. Black-Right-Pointing-Pointer 38 forms of 26 unique oxalate-binding kidney proteins were identified. Black-Right-Pointing-Pointer 25/26 (96%) of identified proteins had 'L-x(3,5)-R-x(2)-[AGILPV]' domain. -- Abstract: Oxalate-binding proteins are thought to serve as potential modulators of kidney stone formation. However, only few oxalate-binding proteins have been identified from previous studies. Our present study, therefore, aimed for large-scale identification of oxalate-binding proteins in porcine kidney using an oxalate-affinity column containing oxalate-conjugated EAH Sepharose 4B beads for purification followed by two-dimensional gel electrophoresis (2-DE) tomore » resolve the recovered proteins. Comparing with those obtained from the controlled column containing uncoupled EAH-Sepharose 4B (to subtract the background of non-specific bindings), a total of 38 protein spots were defined as oxalate-binding proteins. These protein spots were successfully identified by quadrupole time-of-flight mass spectrometry (MS) and/or tandem MS (MS/MS) as 26 unique proteins, including several nuclear proteins, mitochondrial proteins, oxidative stress regulatory proteins, metabolic enzymes and others. Identification of oxalate-binding domain using the PRATT tool revealed 'L-x(3,5)-R-x(2)-[AGILPV]' as a functional domain responsible for oxalate-binding in 25 of 26 (96%) unique identified proteins. We report herein, for the first time, large-scale identification and characterizations of oxalate-binding proteins in the kidney. The presence of positively charged arginine residue in the middle of this functional domain suggested its significance for binding to the negatively charged oxalate. These data will enhance future stone research, particularly on stone

  1. Loss of intracellular lipid binding proteins differentially impacts saturated fatty acid uptake and nuclear targeting in mouse hepatocytes

    PubMed Central

    Storey, Stephen M.; McIntosh, Avery L.; Huang, Huan; Martin, Gregory G.; Landrock, Kerstin K.; Landrock, Danilo; Payne, H. Ross; Kier, Ann B.

    2012-01-01

    The liver expresses high levels of two proteins with high affinity for long-chain fatty acids (LCFAs): liver fatty acid binding protein (L-FABP) and sterol carrier protein-2 (SCP-2). Real-time confocal microscopy of cultured primary hepatocytes from gene-ablated (L-FABP, SCP-2/SCP-x, and L-FABP/SCP-2/SCP-x null) mice showed that the loss of L-FABP reduced cellular uptake of 12-N-methyl-(7-nitrobenz-2-oxa-1,3-diazo)-aminostearic acid (a fluorescent-saturated LCFA analog) by ∼50%. Importantly, nuclear targeting of the LCFA was enhanced when L-FABP was upregulated (SCP-2/SCP-x null) but was significantly reduced when L-FABP was ablated (L-FABP null), thus impacting LCFA nuclear targeting. These effects were not associated with a net decrease in expression of key membrane proteins involved in LCFA or glucose transport. Since hepatic LCFA uptake and metabolism are closely linked to glucose uptake, the effect of glucose on L-FABP-mediated LCFA uptake and nuclear targeting was examined. Increasing concentrations of glucose decreased cellular LCFA uptake and even more extensively decreased LCFA nuclear targeting. Loss of L-FABP exacerbated the decrease in LCFA nuclear targeting, while loss of SCP-2 reduced the glucose effect, resulting in enhanced LCFA nuclear targeting compared with control. Simply, ablation of L-FABP decreases LCFA uptake and even more extensively decreases its nuclear targeting. PMID:22859366

  2. Possible involvement of G-proteins and cAMP in the induction of progesterone hydroxylating enzyme system in the vascular wilt fungus Fusarium oxysporum.

    PubMed

    Poli, Anna; Di Pietro, Antonio; Zigon, Dusan; Lenasi, Helena

    2009-02-01

    Fungi present the ability to hydroxylate steroids. In some filamentous fungi, progesterone induces an enzyme system which converts the compound into a less toxic hydroxylated product. We investigated the progesterone response in the vascular wilt pathogen Fusarium oxysporum, using mass spectrometry and high performance liquid chromatography (HPLC). Progesterone was mainly transformed into 15alpha-hydroxyprogesterone, which was found predominantly in the extracellular medium. The role of two conserved fungal signaling cascades in the induction of the progesterone-transforming enzyme system was studied, using knockout mutants lacking the mitogen-activated protein kinase Fmk1 or the heterotrimeric G-protein beta subunit Fgb1 functioning upstream of the cyclic adenosine monophosphate (cAMP) pathway. No steroid hydroxylation was induced in the Deltafgb1 strain, suggesting a role for the G-protein beta subunit in progesterone signaling. Exogenous cAMP restored the induction of progesterone-transforming activity in the Deltafgb1 strain, suggesting that steroid signaling in F. oxysporum is mediated by the cAMP-PKA pathway.

  3. Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd, Richard E., E-mail: rlloyd@bcm.edu

    Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizesmore » recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. - Highlights: • Nuclear shuttling host proteins are commonly hijacked by RNA viruses to support replication. • A limited group of ubiquitous RNA binding proteins are commonly hijacked by a broad range of viruses. • Key virus proteins alter roles of RNA binding proteins in different stages of virus replication.« less

  4. Conformational selection in protein binding and function

    PubMed Central

    Weikl, Thomas R; Paul, Fabian

    2014-01-01

    Protein binding and function often involves conformational changes. Advanced nuclear magnetic resonance (NMR) experiments indicate that these conformational changes can occur in the absence of ligand molecules (or with bound ligands), and that the ligands may “select” protein conformations for binding (or unbinding). In this review, we argue that this conformational selection requires transition times for ligand binding and unbinding that are small compared to the dwell times of proteins in different conformations, which is plausible for small ligand molecules. Such a separation of timescales leads to a decoupling and temporal ordering of binding/unbinding events and conformational changes. We propose that conformational-selection and induced-change processes (such as induced fit) are two sides of the same coin, because the temporal ordering is reversed in binding and unbinding direction. Conformational-selection processes can be characterized by a conformational excitation that occurs prior to a binding or unbinding event, while induced-change processes exhibit a characteristic conformational relaxation that occurs after a binding or unbinding event. We discuss how the ordering of events can be determined from relaxation rates and effective on- and off-rates determined in mixing experiments, and from the conformational exchange rates measured in advanced NMR or single-molecule fluorescence resonance energy transfer experiments. For larger ligand molecules such as peptides, conformational changes and binding events can be intricately coupled and exhibit aspects of conformational-selection and induced-change processes in both binding and unbinding direction. PMID:25155241

  5. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.

  6. Metabolite Regulation of Nuclear Localization of Carbohydrate-response Element-binding Protein (ChREBP): ROLE OF AMP AS AN ALLOSTERIC INHIBITOR.

    PubMed

    Sato, Shogo; Jung, Hunmin; Nakagawa, Tsutomu; Pawlosky, Robert; Takeshima, Tomomi; Lee, Wan-Ru; Sakiyama, Haruhiko; Laxman, Sunil; Wynn, R Max; Tu, Benjamin P; MacMillan, John B; De Brabander, Jef K; Veech, Richard L; Uyeda, Kosaku

    2016-05-13

    The carbohydrate-response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays an essential role in converting excess carbohydrate to fat storage in the liver. In response to glucose levels, ChREBP is regulated by nuclear/cytosol trafficking via interaction with 14-3-3 proteins, CRM-1 (exportin-1 or XPO-1), or importins. Nuclear localization of ChREBP was rapidly inhibited when incubated in branched-chain α-ketoacids, saturated and unsaturated fatty acids, or 5-aminoimidazole-4-carboxamide ribonucleotide. Here, we discovered that protein-free extracts of high fat-fed livers contained, in addition to ketone bodies, a new metabolite, identified as AMP, which specifically activates the interaction between ChREBP and 14-3-3. The crystal structure showed that AMP binds directly to the N terminus of ChREBP-α2 helix. Our results suggest that AMP inhibits the nuclear localization of ChREBP through an allosteric activation of ChREBP/14-3-3 interactions and not by activation of AMPK. AMP and ketone bodies together can therefore inhibit lipogenesis by restricting localization of ChREBP to the cytoplasm during periods of ketosis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. A calmodulin-like protein (LCALA) is a new Leishmania amazonensis candidate for telomere end-binding protein.

    PubMed

    Morea, Edna G O; Viviescas, Maria Alejandra; Fernandes, Carlos A H; Matioli, Fabio F; Lira, Cristina B B; Fernandez, Maribel F; Moraes, Barbara S; da Silva, Marcelo S; Storti, Camila B; Fontes, Marcos R M; Cano, Maria Isabel N

    2017-11-01

    Leishmania spp. telomeres are composed of 5'-TTAGGG-3' repeats associated with proteins. We have previously identified LaRbp38 and LaRPA-1 as proteins that bind the G-rich telomeric strand. At that time, we had also partially characterized a protein: DNA complex, named LaGT1, but we could not identify its protein component. Using protein-DNA interaction and competition assays, we confirmed that LaGT1 is highly specific to the G-rich telomeric single-stranded DNA. Three protein bands, with LaGT1 activity, were isolated from affinity-purified protein extracts in-gel digested, and sequenced de novo using mass spectrometry analysis. In silico analysis of the digested peptide identified them as a putative calmodulin with sequences identical to the T. cruzi calmodulin. In the Leishmania genome, the calmodulin ortholog is present in three identical copies. We cloned and sequenced one of the gene copies, named it LCalA, and obtained the recombinant protein. Multiple sequence alignment and molecular modeling showed that LCalA shares homology to most eukaryotes calmodulin. In addition, we demonstrated that LCalA is nuclear, partially co-localizes with telomeres and binds in vivo the G-rich telomeric strand. Recombinant LCalA can bind specifically and with relative affinity to the G-rich telomeric single-strand and to a 3'G-overhang, and DNA binding is calcium dependent. We have described a novel candidate component of Leishmania telomeres, LCalA, a nuclear calmodulin that binds the G-rich telomeric strand with high specificity and relative affinity, in a calcium-dependent manner. LCalA is the first reported calmodulin that binds in vivo telomeric DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Activation of Peroxisome Proliferator-activated Receptor γ (PPARγ) and CD36 Protein Expression: THE DUAL PATHOPHYSIOLOGICAL ROLES OF PROGESTERONE.

    PubMed

    Yang, Xiaoxiao; Zhang, Wenwen; Chen, Yuanli; Li, Yan; Sun, Lei; Liu, Ying; Liu, Mengyang; Yu, Miao; Li, Xiaoju; Han, Jihong; Duan, Yajun

    2016-07-15

    Progesterone or its analog, one of components of hormone replacement therapy, may attenuate the cardioprotective effects of estrogen. However, the underlying mechanisms have not been fully elucidated. Expression of CD36, a receptor for oxidized LDL (oxLDL) that enhances macrophage/foam cell formation, is activated by the transcription factor peroxisome proliferator-activated receptor γ (PPARγ). CD36 also functions as a fatty acid transporter to influence fatty acid metabolism and the pathophysiological status of several diseases. In this study, we determined that progesterone induced macrophage CD36 expression, which is related to progesterone receptor (PR) activity. Progesterone enhanced cellular oxLDL uptake in a CD36-dependent manner. Mechanistically, progesterone increased PPARγ expression and PPARγ promoter activity in a PR-dependent manner and the binding of PR with the progesterone response element in the PPARγ promoter. Specific deletion of macrophage PPARγ (MφPPARγ KO) expression in mice abolished progesterone-induced macrophage CD36 expression and cellular oxLDL accumulation. We also determined that, associated with gestation and increased serum progesterone levels, CD36 and PPARγ expression in mouse adipose tissue, skeletal muscle, and peritoneal macrophages were substantially activated. Taken together, our study demonstrates that progesterone can play dual pathophysiological roles by activating PPARγ expression, in which progesterone increases macrophage CD36 expression and oxLDL accumulation, a negative effect on atherosclerosis, and enhances the PPARγ-CD36 pathway in adipose tissue and skeletal muscle, a protective effect on pregnancy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. The amino-terminal region of the retinoblastoma gene product binds a novel nuclear matrix protein that co-localizes to centers for RNA processing

    PubMed Central

    1994-01-01

    The tumor suppressing capacity of the retinoblastoma protein (p110RB) is dependent on interactions made with cellular proteins through its carboxy-terminal domains. How the p110RB amino-terminal region contributes to this activity is unclear, though evidence now indicates it is important for both growth suppression and regulation of the full- length protein. We have used the yeast two-hybrid system to screen for cellular proteins which bind to the first 300 amino acids of p110RB. The only gene isolated from this screen encodes a novel 84-kD nuclear matrix protein that localizes to subnuclear regions associated with RNA processing. This protein, p84, requires a structurally defined domain in the amino terminus of p110RB for binding. Furthermore, both in vivo and in vitro experiments demonstrate that p84 binds preferentially to the functionally active, hypophosphorylated form of p110RB. Thus, the amino terminus of p110RB may function in part to facilitate the binding of growth promoting factors at subnuclear regions actively involved in RNA metabolism. PMID:7525595

  10. New Aspects of Progesterone Interactions with the Actin Cytoskeleton and Neurosteroidogenesis in the Cerebellum and the Neuronal Growth Cone

    PubMed Central

    Wessel, Lisa; Olbrich, Laura; Brand-Saberi, Beate

    2014-01-01

    The impact of progesterone on neuronal tissues in the central (CNS) and peripheral (PNS) nervous system is of significant scientific and therapeutic interest. Glial and neuronal cells of vertebrates express steroidogenic enzymes, and are able to synthesize progesterone de novo from cholesterol. Progesterone is described to have neuroprotective, neuroreparative, anti-degenerative, and anti-apoptotic effects in the CNS and the PNS. Thus, the first clinical studies promise new therapeutic options using progesterone in the treatment of patients with traumatic brain injury. Additionally, experimental data from different animal models suggest further positive effects of progesterone on neurological diseases such as cerebral ischemia, peripheral nerve injury and amyothropic lateral sclerosis. In regard to this future clinical use of progesterone, we discuss in this review the underlying physiological principles of progesterone effects in neuronal tissues. Mechanisms leading to morphological reorganizations of neurons in the CNS and PNS affected by progesterone are addressed, with special focus on the actin cytoskeleton. Furthermore, new aspects of a progesterone-dependent regulation of neurosteroidogenesis mediated by the recently described progesterone binding protein PGRMC1 in the nervous system are discussed. PMID:25141866

  11. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.; Reddy, V. S.; Golovkin, M.

    2000-01-01

    Calmodulin (CaM), a key calcium sensor in all eukaryotes, regulates diverse cellular processes by interacting with other proteins. To isolate CaM binding proteins involved in ethylene signal transduction, we screened an expression library prepared from ethylene-treated Arabidopsis seedlings with 35S-labeled CaM. A cDNA clone, EICBP (Ethylene-Induced CaM Binding Protein), encoding a protein that interacts with activated CaM was isolated in this screening. The CaM binding domain in EICBP was mapped to the C-terminus of the protein. These results indicate that calcium, through CaM, could regulate the activity of EICBP. The EICBP is expressed in different tissues and its expression in seedlings is induced by ethylene. The EICBP contains, in addition to a CaM binding domain, several features that are typical of transcription factors. These include a DNA-binding domain at the N terminus, an acidic region at the C terminus, and nuclear localization signals. In database searches a partial cDNA (CG-1) encoding a DNA-binding motif from parsley and an ethylene up-regulated partial cDNA from tomato (ER66) showed significant similarity to EICBP. In addition, five hypothetical proteins in the Arabidopsis genome also showed a very high sequence similarity with EICBP, indicating that there are several EICBP-related proteins in Arabidopsis. The structural features of EICBP are conserved in all EICBP-related proteins in Arabidopsis, suggesting that they may constitute a new family of DNA binding proteins and are likely to be involved in modulating gene expression in the presence of ethylene.

  12. The hrp23 Protein in the Balbiani Ring Pre-mRNP Particles Is Released Just before or at the Binding of the Particles to the Nuclear Pore Complex

    PubMed Central

    Sun, Xin; Alzhanova-Ericsson, Alla T.; Visa, Neus; Aissouni, Youssef; Zhao, Jian; Daneholt, Bertil

    1998-01-01

    Balbiani ring (BR) pre-mRNP particles reside in the nuclei of salivary glands of the dipteran Chironomus tentans and carry the message for giant-sized salivary proteins. In the present study, we identify and characterize a new protein component in the BR ribonucleoprotein (RNP) particles, designated hrp23. The protein with a molecular mass of 20 kD has a single RNA-binding domain and a glycine-arginine-serine–rich auxiliary domain. As shown by immunoelectron microscopy, the hrp23 protein is added to the BR transcript concomitant with transcription, is still present in the BR particles in the nucleoplasm, but is absent from the BR particles that are bound to the nuclear pore complex or are translocating through the central channel of the complex. Thus, hrp23 is released just before or at the binding of the particles to the nuclear pore complex. It is noted that hrp23 behaves differently from two other BR RNP proteins earlier studied: hrp36 and hrp45. These proteins both reach the nuclear pore complex, and hrp36 even accompanies the RNA into the cytoplasm. It is concluded that each BR RNA-binding protein seems to have a specific flow pattern, probably related to the particular role of the protein in gene expression. PMID:9732280

  13. Humoral markers of active Epstein-Barr virus infection associate with anti-extractable nuclear antigen autoantibodies and plasma galectin-3 binding protein in systemic lupus erythematosus.

    PubMed

    Rasmussen, N S; Nielsen, C T; Houen, G; Jacobsen, S

    2016-12-01

    We investigated if signs of active Epstein-Barr virus and cytomegalovirus infections associate with certain autoantibodies and a marker of type I interferon activity in patients with systemic lupus erythematosus. IgM and IgG plasma levels against Epstein-Barr virus early antigen diffuse and cytomegalovirus pp52 were applied as humoral markers of ongoing/recently active Epstein-Barr virus and cytomegalovirus infections, respectively. Plasma galectin-3 binding protein served as a surrogate marker of type I interferon activity. The measurements were conducted in 57 systemic lupus erythematosus patients and 29 healthy controls using ELISAs. Regression analyses and univariate comparisons were performed for associative evaluation between virus serology, plasma galectin-3 binding protein and autoantibodies, along with other clinical and demographic parameters. Plasma galectin-3 binding protein concentrations were significantly higher in systemic lupus erythematosus patients (P = 0.009) and associated positively with Epstein-Barr virus early antigen diffuse-directed antibodies and the presence of autoantibodies against extractable nuclear antigens in adjusted linear regressions (B = 2.02 and 2.02, P = 0.02 and P = 0.002, respectively). Furthermore, systemic lupus erythematosus patients with anti-extractable nuclear antigens had significantly higher antibody levels against Epstein-Barr virus early antigen diffuse (P = 0.02). Our study supports a link between active Epstein-Barr virus infections, positivity for anti-extractable nuclear antigens and increased plasma galectin-3 binding protein concentrations/type I interferon activity in systemic lupus erythematosus patients. © The Author(s) 2016.

  14. Induction of cyclooxygenase-2 by ginsenoside Rd via activation of CCAAT-enhancer binding proteins and cyclic AMP response binding protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Hye Gwang; Pokharel, Yuba Raj; Han, Eun Hee

    2007-07-20

    Panax ginseng is a widely used herbal medicine in East Asia and is reported to have a variety of pharmacological effects against cardiovascular diseases and cancers. Here we show a unique effect of ginsenoside Rd (Rd) on cyclooxygenase-2 (COX-2) expression in RAW264.7 macrophages. Rd (100 {mu}g/ml), but not other ginsenosides induced COX-2 and increased prostaglandin E{sub 2} production. Gel shift and Western blot analyses using nuclear fractions revealed that Rd increased both the DNA binding of and the nuclear levels of CCAAT/enhancer binding protein (C/EBP){alpha}/{beta} and cyclic AMP response element binding protein (CREB), but not of p65, in RAW264.7 cells.more » Moreover, Rd increased the luciferase reporter gene activity in cells transfected with a 574-bp mouse COX-2 promoter construct. Site-specific mutation analyses confirmed that Rd-mediated transcriptional activation of COX-2 gene was regulated by C/EBP and CREB. These results provide evidence that Rd activated C/EBP and CREB, and that the activation of C/EBP and CREB appears to be essential for induction of COX-2 in RAW264.7 cells.« less

  15. BindML/BindML+: Detecting Protein-Protein Interaction Interface Propensity from Amino Acid Substitution Patterns.

    PubMed

    Wei, Qing; La, David; Kihara, Daisuke

    2017-01-01

    Prediction of protein-protein interaction sites in a protein structure provides important information for elucidating the mechanism of protein function and can also be useful in guiding a modeling or design procedures of protein complex structures. Since prediction methods essentially assess the propensity of amino acids that are likely to be part of a protein docking interface, they can help in designing protein-protein interactions. Here, we introduce BindML and BindML+ protein-protein interaction sites prediction methods. BindML predicts protein-protein interaction sites by identifying mutation patterns found in known protein-protein complexes using phylogenetic substitution models. BindML+ is an extension of BindML for distinguishing permanent and transient types of protein-protein interaction sites. We developed an interactive web-server that provides a convenient interface to assist in structural visualization of protein-protein interactions site predictions. The input data for the web-server are a tertiary structure of interest. BindML and BindML+ are available at http://kiharalab.org/bindml/ and http://kiharalab.org/bindml/plus/ .

  16. Role of nuclear progesterone receptor isoforms in uterine pathophysiology

    PubMed Central

    Patel, Bansari; Elguero, Sonia; Thakore, Suruchi; Dahoud, Wissam; Bedaiwy, Mohamed; Mesiano, Sam

    2015-01-01

    BACKGROUND Progesterone is a key hormonal regulator of the female reproductive system. It plays a major role to prepare the uterus for implantation and in the establishment and maintenance of pregnancy. Actions of progesterone on the uterine tissues (endometrium, myometrium and cervix) are mediated by the combined effects of two progesterone receptor (PR) isoforms, designated PR-A and PR-B. Both receptors function primarily as ligand-activated transcription factors. Progesterone action on the uterine tissues is qualitatively and quantitatively determined by the relative levels and transcriptional activities of PR-A and PR-B. The transcriptional activity of the PR isoforms is affected by specific transcriptional coregulators and by PR post-translational modifications that affect gene promoter targeting. In this context, appropriate temporal and cell-specific expression and function of PR-A and PR-B are critical for normal uterine function. METHODS Relevant studies describing the role of PRs in uterine physiology and pathology (endometriosis, uterine leiomyoma, endometrial cancer, cervical cancer and recurrent pregnancy loss) were comprehensively searched using PubMed, Cochrane Library, Web of Science, and Google Scholar and critically reviewed. RESULTS Progesterone, acting through PR-A and PR-B, regulates the development and function of the endometrium and induces changes in cells essential for implantation and the establishment and maintenance of pregnancy. During pregnancy, progesterone via the PRs promotes myometrial relaxation and cervical closure. Withdrawal of PR-mediated progesterone signaling triggers menstruation and parturition. PR-mediated progesterone signaling is anti-mitogenic in endometrial epithelial cells, and as such, mitigates the tropic effects of estrogen on eutopic normal endometrium, and on ectopic implants in endometriosis. Similarly, ligand-activated PRs function as tumor suppressors in endometrial cancer cells through inhibition of key

  17. Esophageal cancer alters the expression of nuclear pore complex binding protein Hsc70 and eIF5A-1.

    PubMed

    Moghanibashi, Mehdi; Rastgar Jazii, Ferdous; Soheili, Zahra-Soheila; Zare, Maryam; Karkhane, Aliasghar; Parivar, Kazem; Mohamadynejad, Parisa

    2013-06-01

    Nuclear pore complex (NPC) is the only corridor for macromolecules exchange between nucleus and cytoplasm. NPC and its components, nucleoporins, play important role in the diverse physiological processes including macromolecule exchange, chromosome segregation, apoptosis and gene expression. Recent reports also suggest involvement of nucleoporins in carcinogenesis. Applying proteomics, we analyzed expression pattern of the NPC components in a newly established esophageal cancer cell line from Persia (Iran), the high-risk region for esophageal cancer. Our results indicate overexpression of Hsc70 and downregulation of subunit alpha type-3 of proteasome, calpain small subunit 1, and eIF5A-1. Among these proteins, Hsc70 and eIF5A-1 are in direct interaction with NPC and involved in the nucleocytoplasmic exchange. Hsc70 plays a critical role as a chaperone in the formation of a cargo-receptor complex in nucleocytoplasmic transport. On the other hand, it is an NPC-associated protein that binds to nucleoporins and contributes in recycling of the nucleocytoplasmic transport receptors in mammals and affects transport of proteins between nucleus and cytoplasm. The other nuclear pore interacting protein: eIF5A-1 binds to the several nucleoporins and participates in nucleocytoplasmic transport. Altered expression of Hsc70 and eIF5A-1 may cause defects in nucleocytoplasmic transport and play a role in esophageal carcinogenesis.

  18. Nuclear poly(A) binding protein 1 (PABPN1) and Matrin3 interact in muscle cells and regulate RNA processing.

    PubMed

    Banerjee, Ayan; Vest, Katherine E; Pavlath, Grace K; Corbett, Anita H

    2017-10-13

    The polyadenylate binding protein 1 (PABPN1) is a ubiquitously expressed RNA binding protein vital for multiple steps in RNA metabolism. Although PABPN1 plays a critical role in the regulation of RNA processing, mutation of the gene encoding this ubiquitously expressed RNA binding protein causes a specific form of muscular dystrophy termed oculopharyngeal muscular dystrophy (OPMD). Despite the tissue-specific pathology that occurs in this disease, only recently have studies of PABPN1 begun to explore the role of this protein in skeletal muscle. We have used co-immunoprecipitation and mass spectrometry to identify proteins that interact with PABPN1 in mouse skeletal muscles. Among the interacting proteins we identified Matrin 3 (MATR3) as a novel protein interactor of PABPN1. The MATR3 gene is mutated in a form of distal myopathy and amyotrophic lateral sclerosis (ALS). We demonstrate, that like PABPN1, MATR3 is critical for myogenesis. Furthermore, MATR3 controls critical aspects of RNA processing including alternative polyadenylation and intron retention. We provide evidence that MATR3 also binds and regulates the levels of long non-coding RNA (lncRNA) Neat1 and together with PABPN1 is required for normal paraspeckle function. We demonstrate that PABPN1 and MATR3 are required for paraspeckles, as well as for adenosine to inosine (A to I) RNA editing of Ctn RNA in muscle cells. We provide a functional link between PABPN1 and MATR3 through regulation of a common lncRNA target with downstream impact on paraspeckle morphology and function. We extend our analysis to a mouse model of OPMD and demonstrate altered paraspeckle morphology in the presence of endogenous levels of alanine-expanded PABPN1. In this study, we report protein-binding partners of PABPN1, which could provide insight into novel functions of PABPN1 in skeletal muscle and identify proteins that could be sequestered with alanine-expanded PABPN1 in the nuclear aggregates found in OPMD. © The Author

  19. Nuclear poly(A) binding protein 1 (PABPN1) and Matrin3 interact in muscle cells and regulate RNA processing

    PubMed Central

    Banerjee, Ayan; Vest, Katherine E.

    2017-01-01

    Abstract The polyadenylate binding protein 1 (PABPN1) is a ubiquitously expressed RNA binding protein vital for multiple steps in RNA metabolism. Although PABPN1 plays a critical role in the regulation of RNA processing, mutation of the gene encoding this ubiquitously expressed RNA binding protein causes a specific form of muscular dystrophy termed oculopharyngeal muscular dystrophy (OPMD). Despite the tissue-specific pathology that occurs in this disease, only recently have studies of PABPN1 begun to explore the role of this protein in skeletal muscle. We have used co-immunoprecipitation and mass spectrometry to identify proteins that interact with PABPN1 in mouse skeletal muscles. Among the interacting proteins we identified Matrin 3 (MATR3) as a novel protein interactor of PABPN1. The MATR3 gene is mutated in a form of distal myopathy and amyotrophic lateral sclerosis (ALS). We demonstrate, that like PABPN1, MATR3 is critical for myogenesis. Furthermore, MATR3 controls critical aspects of RNA processing including alternative polyadenylation and intron retention. We provide evidence that MATR3 also binds and regulates the levels of long non-coding RNA (lncRNA) Neat1 and together with PABPN1 is required for normal paraspeckle function. We demonstrate that PABPN1 and MATR3 are required for paraspeckles, as well as for adenosine to inosine (A to I) RNA editing of Ctn RNA in muscle cells. We provide a functional link between PABPN1 and MATR3 through regulation of a common lncRNA target with downstream impact on paraspeckle morphology and function. We extend our analysis to a mouse model of OPMD and demonstrate altered paraspeckle morphology in the presence of endogenous levels of alanine-expanded PABPN1. In this study, we report protein-binding partners of PABPN1, which could provide insight into novel functions of PABPN1 in skeletal muscle and identify proteins that could be sequestered with alanine-expanded PABPN1 in the nuclear aggregates found in OPMD. PMID

  20. Efficient identification of tubby-binding proteins by an improved system of T7 phage display.

    PubMed

    Caberoy, Nora B; Zhou, Yixiong; Jiang, Xiaoyu; Alvarado, Gabriela; Li, Wei

    2010-01-01

    Mutation in the tubby gene causes adult-onset obesity, progressive retinal, and cochlear degeneration with unknown mechanism. In contrast, mutations in tubby-like protein 1 (Tulp1), whose C-terminus is highly homologous to tubby, only lead to retinal degeneration. We speculate that their diverse N-terminus may define their distinct disease profile. To elucidate the binding partners of tubby, we used tubby N-terminus (tubby-N) as bait to identify unknown binding proteins with open-reading-frame (ORF) phage display. T7 phage display was engineered with three improvements: high-quality ORF phage display cDNA library, specific phage elution by protease cleavage, and dual phage display for sensitive high throughput screening. The new system is capable of identifying unknown bait-binding proteins in as fast as approximately 4-7 days. While phage display with conventional cDNA libraries identifies high percentage of out-of-frame unnatural short peptides, all 28 tubby-N-binding clones identified by ORF phage display were ORFs. They encode 16 proteins, including 8 nuclear proteins. Fourteen proteins were analyzed by yeast two-hybrid assay and protein pull-down assay with ten of them independently verified. Comparative binding analyses revealed several proteins binding to both tubby and Tulp1 as well as one tubby-specific binding protein. These data suggest that tubby-N is capable of interacting with multiple nuclear and cytoplasmic protein binding partners. These results demonstrated that the newly-engineered ORF phage display is a powerful technology to identify unknown protein-protein interactions. (c) 2009 John Wiley & Sons, Ltd.

  1. Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages

    PubMed Central

    Liang, Xue-hai; Sun, Hong; Shen, Wen; Crooke, Stanley T.

    2015-01-01

    Although the RNase H-dependent mechanism of inhibition of gene expression by chemically modified antisense oligonucleotides (ASOs) has been well characterized, little is known about the interactions between ASOs and intracellular proteins that may alter cellular localization and/or potency of ASOs. Here, we report the identification of 56 intracellular ASO-binding proteins using multi-step affinity selection approaches. Many of the tested proteins had no significant effect on ASO activity; however, some proteins, including La/SSB, NPM1, ANXA2, VARS and PC4, appeared to enhance ASO activities, likely through mechanisms related to subcellular distribution. VARS and ANXA2 co-localized with ASOs in endocytic organelles, and reduction in the level of VARS altered lysosome/ASO localization patterns, implying that these proteins may facilitate ASO release from the endocytic pathway. Depletion of La and NPM1 reduced nuclear ASO levels, suggesting potential roles in ASO nuclear accumulation. On the other hand, Ku70 and Ku80 proteins inhibited ASO activity, most likely by competition with RNase H1 for ASO/RNA duplex binding. Our results demonstrate that phosphorothioate-modified ASOs bind a set of cellular proteins that affect ASO activity via different mechanisms. PMID:25712094

  2. NMR studies reveal the role of biomembranes in modulating ligand binding and release by intracellular bile acid binding proteins.

    PubMed

    Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette

    2009-12-18

    Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted.

  3. Solution Structure and Backbone Dynamics of Human Liver Fatty Acid Binding Protein: Fatty Acid Binding Revisited

    PubMed Central

    Cai, Jun; Lücke, Christian; Chen, Zhongjing; Qiao, Ye; Klimtchuk, Elena; Hamilton, James A.

    2012-01-01

    Liver fatty acid binding protein (L-FABP), a cytosolic protein most abundant in liver, is associated with intracellular transport of fatty acids, nuclear signaling, and regulation of intracellular lipolysis. Among the members of the intracellular lipid binding protein family, L-FABP is of particular interest as it can i), bind two fatty acid molecules simultaneously and ii), accommodate a variety of bulkier physiological ligands such as bilirubin and fatty acyl CoA. To better understand the promiscuous binding and transport properties of L-FABP, we investigated structure and dynamics of human L-FABP with and without bound ligands by means of heteronuclear NMR. The overall conformation of human L-FABP shows the typical β-clam motif. Binding of two oleic acid (OA) molecules does not alter the protein conformation substantially, but perturbs the chemical shift of certain backbone and side-chain protons that are involved in OA binding according to the structure of the human L-FABP/OA complex. Comparison of the human apo and holo L-FABP structures revealed no evidence for an “open-cap” conformation or a “swivel-back” mechanism of the K90 side chain upon ligand binding, as proposed for rat L-FABP. Instead, we postulate that the lipid binding process in L-FABP is associated with backbone dynamics. PMID:22713574

  4. Yrb4p, a yeast ran-GTP-binding protein involved in import of ribosomal protein L25 into the nucleus.

    PubMed Central

    Schlenstedt, G; Smirnova, E; Deane, R; Solsbacher, J; Kutay, U; Görlich, D; Ponstingl, H; Bischoff, F R

    1997-01-01

    Gsp1p, the essential yeast Ran homologue, is a key regulator of transport across the nuclear pore complex (NPC). We report the identification of Yrb4p, a novel Gsp1p binding protein. The 123 kDa protein was isolated from Saccharomyces cerevisiae cells and found to be related to importin-beta, the mediator of nuclear localization signal (NLS)-dependent import into the nucleus, and to Pse1p. Like importin-beta, Yrb4p and Pse1p specifically bind to Gsp1p-GTP, protecting it from GTP hydrolysis and nucleotide exchange. The GTPase block of Gsp1p complexed to Yrb4p or Pse1p is released by Yrb1p, which contains a Gsp1p binding domain distinct from that of Yrb4p. This might reflect an in vivo function for Yrb1p. Cells disrupted for YRB4 are defective in nuclear import of ribosomal protein L25, but show no defect in the import of proteins containing classical NLSs. Expression of a Yrb4p mutant deficient in Gsp1p-binding is dominant-lethal and blocks bidirectional traffic across the NPC in wild-type cells. L25 binds to Yrb4p and Pse1p and is released by Gsp1p-GTP. Consistent with its putative role as an import receptor for L25-like proteins, Yrb4p localizes to the cytoplasm, the nucleoplasm and the NPC. PMID:9321403

  5. Acetyllysine-binding and function of bromodomain-containing proteins in chromatin.

    PubMed

    Dyson, M H; Rose, S; Mahadevan, L C

    2001-08-01

    Acetylated histones are generally associated with active chromatin. The bromodomain has recently been identified as a protein module capable of binding to acetylated lysine residues, and hence is able to mediate the recruitment of factors to acetylated chromatin. Functional studies of bromodomain-containing proteins indicate how this domain contributes to the activity of a number of nuclear factors including histone acetyltransferases and chromatin remodelling complexes. Here, we review the characteristics of acetyllysine-binding by bromodomains, discuss associated domains found in these proteins, and address the function of the bromodomain in the context of chromatin. Finally, the modulation of bromodomain binding by neighbouring post-translational modifications within histone tails might provide a mechanism through which combinations of covalent marks could exert control on chromatin function.

  6. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    NASA Technical Reports Server (NTRS)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  7. NXT1, a Novel Influenza A NP Binding Protein, Promotes the Nuclear Export of NP via a CRM1-Dependent Pathway.

    PubMed

    Chutiwitoonchai, Nopporn; Aida, Yoko

    2016-07-28

    Influenza remains a serious worldwide public health problem. After infection, viral genomic RNA is replicated in the nucleus and packed into viral ribonucleoprotein, which will then be exported to the cytoplasm via a cellular chromosome region maintenance 1 (CRM1)-dependent pathway for further assembly and budding. However, the nuclear export mechanism of influenza virus remains controversial. Here, we identify cellular nuclear transport factor 2 (NTF2)-like export protein 1 (NXT1) as a novel binding partner of nucleoprotein (NP) that stimulates NP-mediated nuclear export via the CRM1-dependent pathway. NXT1-knockdown cells exhibit decreased viral replication kinetics and nuclear accumulated viral RNA and NP. By contrast, NXT1 overexpression promotes nuclear export of NP in a CRM1-dependent manner. Pull-down assays suggest the formation of an NXT1, NP, and CRM1 complex, and demonstrate that NXT1 binds to the C-terminal region of NP. These findings reveal a distinct mechanism for nuclear export of the influenza virus and identify the NXT1/NP interaction as a potential target for antiviral drug development.

  8. Characterization of the DNA binding properties of polyomavirus capsid protein

    NASA Technical Reports Server (NTRS)

    Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.

  9. Effects of progesterone administered after MPTP on dopaminergic neurons of male mice.

    PubMed

    Litim, Nadhir; Morissette, Marc; Di Paolo, Thérèse

    2017-05-01

    Progesterone neuroprotection of striatal dopamine (DA) in male mice lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was previously reported when administered before MPTP or an hour after. A dose of MPTP to induce a partial lesion was used to model early stages or prodromal Parkinson. We hypothesized that brain DA can be restored by progesterone administered early (24 h) or later (5 days) after MPTP. Male mice received 4 injections of MPTP (8 mg/kg) and progesterone (8 mg/kg) once daily for 5 days started 24 h or 5 days after MPTP. The lesion decreased striatal DA and its metabolites but not serotonin contents. MPTP mice treated with progesterone starting 24 h but not 5 days after MPTP had higher striatal DA and its metabolites content than vehicle-treated MPTP mice. Striatal DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) specific binding decreased in lesioned mice and were corrected with progesterone treatment starting 24 h but not 5 days after MPTP. Striatal glial fibrillary acidic protein (GFAP) levels, a marker of activated astrocytes, were elevated by the MPTP lesion and were corrected with progesterone treatment starting 24 h after MPTP. Striatal brain derived neurotrophic factor (BDNF) levels were decreased by the MPTP lesion and were prevented by progesterone treatments whereas no change of Akt, GSK3β, ERK1 and 2 and their phosphorylated forms were observed. Thus, progesterone administered after MPTP in mice protected dopaminergic neurons through modulation of neuroinflammation and BDNF. In humans, progesterone could possibly be used as a disease-modifying drug in prodromal Parkinson. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes.

    PubMed

    Boulo, Sébastien; Akarsu, Hatice; Ruigrok, Rob W H; Baudin, Florence

    2007-03-01

    Influenza virus is a negative strand RNA virus and is one of the rare RNA viruses to replicate in the nucleus. The viral RNA is associated with 4 viral proteins to form ribonucleoprotein particles (RNPs). After cell entry the RNPs are dissociated from the viral matrix protein in the low pH of the endosome and are actively imported into the cell nucleus. After translation of viral mRNAs, the proteins necessary for the assembly of new RNPs (the nucleoprotein and the three subunits of the polymerase complex) are also imported into the nucleus. Apart from these four proteins, part of the newly made matrix protein is also imported and the nuclear export protein (NEP) enters the nucleus probably through diffusion. Finally, NS1 also enters the nucleus in order to regulate a number of nuclear processes. The nuclear localization signals on all these viral proteins and their interaction with the cellular transport system are discussed. In the nucleus, the matrix protein binds to the newly assembled RNPs and NEP then binds to the matrix protein. NEP contains the nuclear export signal necessary for transport of the RNPs to the cytoplasm, necessary for the budding of new virus particles. There appears to be a intricate ballet in exposing and hiding nuclear transport signals which leads to a unidirectional transport of the RNPs to the nucleus at the start of the infection process and an opposite unidirectional export of RNPs at the end of the infection.

  11. Progesterone as a bone-trophic hormone.

    PubMed

    Prior, J C

    1990-05-01

    Experimental, epidemiological, and clinical data indicate that progesterone is active in bone metabolism. Progesterone appears to act directly on bone by engaging an osteoblast receptor or indirectly through competition for a glucocorticoid osteoblast receptor. Progesterone seems to promote bone formation and/or increase bone turnover. It is possible, through estrogen-stimulated increased progesterone binding to the osteoblast receptor, that progesterone plays a role in the coupling of bone resorption with bone formation. A model of the interdependent actions of progesterone and estrogen on appropriately-"ready" cells in each bone multicellular unit can be tied into the integrated secretions of these hormones within the ovulatory cycle. Figure 5 is an illustration of this concept. It shows the phases of the bone remodeling cycle in parallel with temporal changes in gonadal steroids across a stylized ovulatory cycle. Increasing estrogen production before ovulation may reverse the resorption occurring in a "sensitive" bone multicellular unit while gonadal steroid levels are low at the time of menstrual flow. The bone remodeling unit would then be ready to begin a phase of formation as progesterone levels peaked in the midluteal phase. From this perspective, the normal ovulatory cycle looks like a natural bone-activating, coherence cycle. Critical analysis of the reviewed data indicate that progesterone meets the necessary criteria to play a causal role in mineral metabolism. This review provides the preliminary basis for further molecular, genetic, experimental, and clinical investigation of the role(s) of progesterone in bone remodeling. Much further data are needed about the interrelationships between gonadal steroids and the "life cycle" of bone. Feldman et al., however, may have been prophetic when he commented; "If this anti-glucocorticoid effect of progesterone also holds true in bone, then postmenopausal osteoporosis may be, in part, a progesterone deficiency

  12. Inflammatory Stimuli Increase Progesterone Receptor-A Stability and Transrepressive Activity in Myometrial Cells

    PubMed Central

    Peters, Gregory A.; Yi, Lijuan; Skomorovska-Prokvolit, Yelenna; Patel, Bansari; Amini, Peyvand; Tan, Huiqing

    2017-01-01

    The steroid hormone progesterone acting via the nuclear progesterone receptor (PR) isoforms, progesterone receptor A (PR-A) and progesterone receptor B (PR-B), is essential for the maintenance of uterine quiescence during pregnancy. Inhibition of PR signaling augments uterine contractility and induces labor. Human parturition is thought to be triggered by modulation of PR signaling in myometrial cells to induce a functional progesterone withdrawal. One mechanism for functional progesterone withdrawal is increased abundance of PR-A, which decreases progesterone responsiveness by inhibiting the transcriptional activity of PR-B. Human parturition also involves tissue-level inflammation within the myometrium. This study examined the control of PR-A abundance and transrepressive activity in myometrial cells and the role of the inflammatory stimuli in the form of interleukin-1β (IL-1β) and lipopolysaccharide (LPS) in these processes. We found that abundance of PR-A was markedly increased by progesterone and by exposure to IL-1β and LPS via posttranslational mechanisms involving increased PR-A protein stability. In contrast, progesterone decreased abundance of PR-B by increasing its rate of degradation. Together, progesterone and proinflammatory stimuli induced a PR-A–dominant state in myometrial cells similar to that observed in term laboring myometrium. IL-1β and LPS also increased the capacity for PR-A to inhibit the transcriptional activity of PR-B. Taken together, our data suggest that proinflammatory stimuli increase the steady-state levels of PR-A and its transrepressive activity in myometrial cells and support the hypothesis that tissue-level inflammation triggers parturition by inducing PR-A–mediated functional progesterone withdrawal. PMID:27886516

  13. Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages.

    PubMed

    Liang, Xue-hai; Sun, Hong; Shen, Wen; Crooke, Stanley T

    2015-03-11

    Although the RNase H-dependent mechanism of inhibition of gene expression by chemically modified antisense oligonucleotides (ASOs) has been well characterized, little is known about the interactions between ASOs and intracellular proteins that may alter cellular localization and/or potency of ASOs. Here, we report the identification of 56 intracellular ASO-binding proteins using multi-step affinity selection approaches. Many of the tested proteins had no significant effect on ASO activity; however, some proteins, including La/SSB, NPM1, ANXA2, VARS and PC4, appeared to enhance ASO activities, likely through mechanisms related to subcellular distribution. VARS and ANXA2 co-localized with ASOs in endocytic organelles, and reduction in the level of VARS altered lysosome/ASO localization patterns, implying that these proteins may facilitate ASO release from the endocytic pathway. Depletion of La and NPM1 reduced nuclear ASO levels, suggesting potential roles in ASO nuclear accumulation. On the other hand, Ku70 and Ku80 proteins inhibited ASO activity, most likely by competition with RNase H1 for ASO/RNA duplex binding. Our results demonstrate that phosphorothioate-modified ASOs bind a set of cellular proteins that affect ASO activity via different mechanisms. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Multivalent binding of formin-binding protein 21 (FBP21)-tandem-WW domains fosters protein recognition in the pre-spliceosome.

    PubMed

    Klippel, Stefan; Wieczorek, Marek; Schümann, Michael; Krause, Eberhard; Marg, Berenice; Seidel, Thorsten; Meyer, Tim; Knapp, Ernst-Walter; Freund, Christian

    2011-11-04

    The high abundance of repetitive but nonidentical proline-rich sequences in spliceosomal proteins raises the question of how these known interaction motifs recruit their interacting protein domains. Whereas complex formation of these adaptors with individual motifs has been studied in great detail, little is known about the binding mode of domains arranged in tandem repeats and long proline-rich sequences including multiple motifs. Here we studied the interaction of the two adjacent WW domains of spliceosomal protein FBP21 with several ligands of different lengths and composition to elucidate the hallmarks of multivalent binding for this class of recognition domains. First, we show that many of the proteins that define the cellular proteome interacting with FBP21-WW1-WW2 contain multiple proline-rich motifs. Among these is the newly identified binding partner SF3B4. Fluorescence resonance energy transfer (FRET) analysis reveals the tandem-WW domains of FBP21 to interact with splicing factor 3B4 (SF3B4) in nuclear speckles where splicing takes place. Isothermal titration calorimetry and NMR shows that the tandem arrangement of WW domains and the multivalency of the proline-rich ligands both contribute to affinity enhancement. However, ligand exchange remains fast compared with the NMR time scale. Surprisingly, a N-terminal spin label attached to a bivalent ligand induces NMR line broadening of signals corresponding to both WW domains of the FBP21-WW1-WW2 protein. This suggests that distinct orientations of the ligand contribute to a delocalized and semispecific binding mode that should facilitate search processes within the spliceosome.

  15. Effects of RU486 and indomethacin on meiotic maturation, formation of extracellular matrix, and progesterone production by porcine oocyte-cumulus complexes.

    PubMed

    Nagyova, E; Scsukova, S; Kalous, J; Mlynarcikova, A

    2014-07-01

    This study was designed to determine whether inhibition of either cyclooxygenase-2 (COX-2) by indomethacin or progesterone receptor (PR) by PR antagonist, RU486, affects oocyte maturation, progesterone production, and covalent binding between hyaluronan (HA) and heavy chains of inter-α trypsin inhibitor, as well as expression of cumulus expansion-associated proteins (HA-binding protein, tumor necrosis factor α-induced protein 6, pentraxin 3) in oocyte-cumulus complexes (OCCs). The experiments were based on freshly isolated porcine OCC cultures in which the consequences of PR and COX-2 inhibition on the final processes of oocyte maturation were determined. Granulosa cells (GCs) and OCCs were cultured in medium supplemented with FSH/LH (both 100 ng/mL) in the presence/absence of RU486 or indomethacin. Western blot analysis, (3)H-glucosamine hydrochloride assay, immunofluorescence, and radioimmunoassay were performed. Only treatment with RU486 (25 μM) caused a decrease in the number of oocytes that reached germinal vesicle breakdown and metaphase II stage compared with indomethacin (100 μM) or FSH/LH treatment alone after 44 h. All treated OCCs synthesized an almost equal amount of HA. Heavy chains (of inter-α trypsin inhibitor)-HA covalent complexes were formed during in vitro FSH/LH-stimulated expansion in RU486- or indomethacin-treated OCCs. Follicle-stimulating hormone/LH-induced progesterone production by OCCs was increased in the presence of RU486 after 44 h. In contrast, a decrease of FSH/LH-stimulated progesterone production by GCs was detected in the presence of either RU486 or indomethacin after 72 h. We suggest that the PR-dependent pathway may be involved in the regulation of oocyte maturation. Both PR and COX-2 regulate FSH/LH-stimulated progesterone production by OCCs and GCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. How Proteins Bind Macrocycles

    PubMed Central

    Villar, Elizabeth A.; Beglov, Dmitri; Chennamadhavuni, Spandan; Porco, John A.; Kozakov, Dima; Vajda, Sandor; Whitty, Adrian

    2014-01-01

    The potential utility of synthetic macrocycles as drugs, particularly against low druggability targets such as protein-protein interactions, has been widely discussed. There is little information, however, to guide the design of macrocycles for good target protein-binding activity or bioavailability. To address this knowledge gap we analyze the binding modes of a representative set of macrocycle-protein complexes. The results, combined with consideration of the physicochemical properties of approved macrocyclic drugs, allow us to propose specific guidelines for the design of synthetic macrocycles libraries possessing structural and physicochemical features likely to favor strong binding to protein targets and also good bioavailability. We additionally provide evidence that large, natural product derived macrocycles can bind to targets that are not druggable by conventional, drug-like compounds, supporting the notion that natural product inspired synthetic macrocycles can expand the number of proteins that are druggable by synthetic small molecules. PMID:25038790

  17. Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity[S

    PubMed Central

    Bindesbøll, Christian; Fan, Qiong; Nørgaard, Rikke C.; MacPherson, Laura; Ruan, Hai-Bin; Wu, Jing; Pedersen, Thomas Å.; Steffensen, Knut R.; Yang, Xiaoyong; Matthews, Jason; Mandrup, Susanne; Nebb, Hilde I.; Grønning-Wang, Line M.

    2015-01-01

    Liver X receptor (LXR)α and LXRβ play key roles in hepatic de novo lipogenesis through their regulation of lipogenic genes, including sterol regulatory element-binding protein (SREBP)-1c and carbohydrate responsive element-binding protein (ChREBP). LXRs activate lipogenic gene transcription in response to feeding, which is believed to be mediated by insulin. We have previously shown that LXRs are targets for glucose-hexosamine-derived O-linked β-N-acetylglucosamine (O-GlcNAc) modification enhancing their ability to regulate SREBP-1c promoter activity in vitro. To elucidate insulin-independent effects of feeding on LXR-mediated lipogenic gene expression in vivo, we subjected control and streptozotocin-treated LXRα/β+/+ and LXRα/β−/− mice to a fasting-refeeding regime. We show that under hyperglycemic and hypoinsulinemic conditions, LXRs maintain their ability to upregulate the expression of glycolytic and lipogenic enzymes, including glucokinase (GK), SREBP-1c, ChREBPα, and the newly identified shorter isoform ChREBPβ. Furthermore, glucose-dependent increases in LXR/retinoid X receptor-regulated luciferase activity driven by the ChREBPα promoter was mediated, at least in part, by O-GlcNAc transferase (OGT) signaling in Huh7 cells. Moreover, we show that LXR and OGT interact and colocalize in the nucleus and that loss of LXRs profoundly reduced nuclear O-GlcNAc signaling and ChREBPα promoter binding activity in vivo. In summary, our study provides evidence that LXRs act as nutrient and glucose metabolic sensors upstream of ChREBP by modulating GK expression, nuclear O-GlcNAc signaling, and ChREBP expression and activity. PMID:25724563

  18. Nuclear translocation of proteins and the effect of phosphatidic acid.

    PubMed

    Yao, Hongyan; Wang, Geliang; Wang, Xuemin

    2014-01-01

    Transport of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors called importins, typically dimmers of a cargo-binding α-subunit and a β-subunit that mediates translocation through the nuclear pore complexes (NPCs). However, how proteins without canonical NLS move into the nucleus is not well understood. Recent results indicate that phospholipids, such as phosphatidic acid, play important roles in the intracellular translocation of proteins between the nucleus and cytoplasm.

  19. Atrazine enhances progesterone production through activation of multiple signaling pathways in FSH-stimulated rat granulosa cells: evidence for premature luteinization.

    PubMed

    Pogrmic-Majkic, Kristina; Samardzija, Dragana; Fa, Svetlana; Hrubik, Jelena; Glisic, Branka; Kaisarevic, Sonja; Andric, Nebojsa

    2014-11-01

    Premature luteinization is a possible cause of infertility in women. It is currently unknown whether environmental chemicals can induce changes associated with premature luteinization. Using rat granulosa cells (GC) in vitro, we demonstrated that exposure to atrazine (ATR), a widely used herbicide, causes GC phenotype that resembles that of human premature luteinization. At the end of the 48-h stimulation with FSH, ATR-exposed GC showed (1) higher levels of progesterone, (2) overexpression of luteal markers (Star and Cyp11a1), and (3) an increase in progesterone:estradiol ratio above 1. Mechanistic experiments were conducted to understand the signaling events engaged by ATR that lead to this phenotype. Western blot analysis revealed prolonged phosphorylation of protein kinase B (AKT) and cAMP response element-binding protein (CREB) in ATR- and FSH-exposed GC. An increased level of ERK1/2-dependent transcriptional factor CCATT/enhancer-binding protein beta (CEBPB) was observed after 4 h of ATR exposure. Inhibitors of PI3K (wortmannin) and MEK (U0126) prevented ATR-induced rise in progesterone level and expression of luteal markers in FSH-stimulated GC. Atrazine intensified AKT and CEBPB signaling and caused Star overexpression in forskolin-stimulated GC but not in epidermal growth factor (EGF)-stimulated GC. In the presence of rolipram, a specific inhibitor of phosphodiesterase 4 (PDE4), ATR was not able to further elevate AKT phosphorylation, CEBPB protein level, and Star mRNA in FSH-stimulated GC, suggesting that ATR inhibits PDE4. Overall, this study showed that ATR acts as a FSH sensitizer leading to enhanced cAMP, AKT, and CEBPB signaling and progesterone biosynthesis, which promotes premature luteinization phenotype in GC. © 2014 by the Society for the Study of Reproduction, Inc.

  20. Studies on the mechanism of functional cooperativity between progesterone and estrogen receptors.

    PubMed

    Bradshaw, M S; Tsai, S Y; Leng, X H; Dobson, A D; Conneely, O M; O'Malley, B W; Tsai, M J

    1991-09-05

    Steroid response elements (SREs) cooperate with many different cis-acting elements including NF-1 sites, CACCC boxes, and other SREs to induce target gene expression (Schule, R., Muller, M., Otsuka-Murakami, H., and Renkawitz, R. (1988) Nature 332, 87-90; Strahle, U., Schmid, W., and Schutz, G. (1988) EMBO J. 7, 3389-3395). Induction of gene expression can be additive or synergistic with respect to the level of activation by either transactivators. Two mechanisms have been proposed for how synergism occurs: 1) cooperative binding of transcriptional activators to DNA or 2) simultaneous interaction of individually bound activators with a common target protein. We have shown previously that cooperative binding of receptors is important for synergism between two progesterone response elements (PREs). Here we showed that an estrogen response element (ERE) and a PRE can also functionally cooperate and this synergism between an ERE and a PRE is not contributed by cooperative DNA binding. Furthermore, we have demonstrated that the activation domains of the progesterone receptor (PR) (C1Act) are required for synergism between two PREs and sufficient for confirming cooperative binding. However these two activation domains of PR are not sufficient for synergism between an ERE and a PRE. Additional regions within the NH2-terminal and COOH-terminal domains are also required for synergistic interaction between two heterologous SREs.

  1. Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization

    PubMed Central

    Xu, Tao; Johnson, Cole A; Gestwicki, Jason E; Kumar, Anuj

    2016-01-01

    We present here a protocol to conditionally control the nuclear trafficking of target proteins in yeast. In this system, rapamycin is used to heterodimerize two chimeric proteins. one chimera consists of a FK506-binding protein (FKBp12) fused to a cellular ‘address’ (nuclear localization signal or nuclear export sequence). the second chimera consists of a target protein fused to a fluorescent protein and the FKBp12-rapamycin-binding (FrB) domain from FKBp-12-rapamycin associated protein 1 (Frap1, also known as mtor). rapamycin induces dimerization of the FKBp12- and FrB-containing chimeras; these interactions selectively place the target protein under control of the cell address, thereby directing the protein into or out of the nucleus. By chemical-induced dimerization, protein mislocalization is reversible and enables the identification of conditional loss-of-function and gain-of-function phenotypes, in contrast to other systems that require permanent modification of the targeted protein. Yeast strains for this analysis can be constructed in 1 week, and the technique allows protein mislocalization within 15 min after drug treatment. PMID:21030958

  2. Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization.

    PubMed

    Xu, Tao; Johnson, Cole A; Gestwicki, Jason E; Kumar, Anuj

    2010-11-01

    We present here a protocol to conditionally control the nuclear trafficking of target proteins in yeast. In this system, rapamycin is used to heterodimerize two chimeric proteins. One chimera consists of a FK506-binding protein (FKBP12) fused to a cellular 'address' (nuclear localization signal or nuclear export sequence). The second chimera consists of a target protein fused to a fluorescent protein and the FKBP12-rapamycin-binding (FRB) domain from FKBP-12-rapamycin associated protein 1 (FRAP1, also known as mTor). Rapamycin induces dimerization of the FKBP12- and FRB-containing chimeras; these interactions selectively place the target protein under control of the cell address, thereby directing the protein into or out of the nucleus. By chemical-induced dimerization, protein mislocalization is reversible and enables the identification of conditional loss-of-function and gain-of-function phenotypes, in contrast to other systems that require permanent modification of the targeted protein. Yeast strains for this analysis can be constructed in 1 week, and the technique allows protein mislocalization within 15 min after drug treatment.

  3. Polynucleotides encoding TRF1 binding proteins

    DOEpatents

    Campisi, Judith; Kim, Sahn-Ho

    2002-01-01

    The present invention provides a novel telomere associated protein (Trf1-interacting nuclear protein 2 "Tin2") that hinders the binding of Trf1 to its specific telomere repeat sequence and mediates the formation of a Tin2-Trf1-telomeric DNA complex that limits telomerase access to the telomere. Also included are the corresponding nucleic acids that encode the Tin2 of the present invention, as well as mutants of Tin2. Methods of making, purifying and using Tin2 of the present invention are described. In addition, drug screening assays to identify drugs that mimic and/or complement the effect of Tin2 are presented.

  4. UV damage-specific DNA-binding protein in xeroderma pigmentosum complementation group E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataoka, H.; Fujiwara, Y.

    1991-03-29

    The gel mobility shift assay method revealed a specifically ultraviolet (UV) damage recognizing, DNA-binding protein in nuclear extracts of normal human cells. The resulted DNA/protein complexes caused the two retarded mobility shifts. Four xeroderma pigmentosum complementation group E (XPE) fibroblast strains derived from unrelated Japanese families were not deficient in such a DNA damage recognition/binding protein because of the normal complex formation and gel mobility shifts, although we confirmed the reported lack of the protein in the European XPE (XP2RO and XP3RO) cells. Thus, the absence of this binding protein is not always commonly observed in all the XPE strains,more » and the partially repair-deficient and intermediately UV-hypersensitive phenotype of XPE cells are much similar whether or not they lack the protein.« less

  5. RNA-binding proteins of the NXF (nuclear export factor) family and their connection with the cytoskeleton.

    PubMed

    Mamon, L A; Ginanova, V R; Kliver, S F; Yakimova, A O; Atsapkina, A A; Golubkova, E V

    2017-04-01

    The mutual relationship between mRNA and the cytoskeleton can be seen from two points of view. On the one hand, the cytoskeleton is necessary for mRNA trafficking and anchoring to subcellular domains. On the other hand, cytoskeletal growth and rearrangement require the translation of mRNAs that are connected to the cytoskeleton. β-actin mRNA localization may influence dynamic changes in the actin cytoskeleton. In the cytoplasm, long-lived mRNAs exist in the form of RNP (ribonucleoprotein) complexes, where they interact with RNA-binding proteins, including NXF (Nuclear eXport Factor). Dm NXF1 is an evolutionarily conserved protein in Drosophila melanogaster that has orthologs in different animals. The universal function of nxf1 genes is the nuclear export of different mRNAs in various organisms. In this mini-review, we briefly discuss the evidence demonstrating that Dm NXF1 fulfils not only universal but also specialized cytoplasmic functions. This protein is detected not only in the nucleus but also in the cytoplasm. It is a component of neuronal granules. Dm NXF1 marks nuclear division spindles during early embryogenesis and the dense body on one side of the elongated spermatid nuclei. The characteristic features of sbr mutants (sbr 10 and sbr 5 ) are impairment of chromosome segregation and spindle formation anomalies during female meiosis. sbr 12 mutant sterile males with immobile spermatozoa exhibit disturbances in the axoneme, mitochondrial derivatives and cytokinesis. These data allow us to propose that the Dm NXF1 proteins transport certain mRNAs in neurites and interact with localized mRNAs that are necessary for dynamic changes of the cytoskeleton. © 2017 Wiley Periodicals, Inc.

  6. Detecting cis-regulatory binding sites for cooperatively binding proteins

    PubMed Central

    van Oeffelen, Liesbeth; Cornelis, Pierre; Van Delm, Wouter; De Ridder, Fedor; De Moor, Bart; Moreau, Yves

    2008-01-01

    Several methods are available to predict cis-regulatory modules in DNA based on position weight matrices. However, the performance of these methods generally depends on a number of additional parameters that cannot be derived from sequences and are difficult to estimate because they have no physical meaning. As the best way to detect cis-regulatory modules is the way in which the proteins recognize them, we developed a new scoring method that utilizes the underlying physical binding model. This method requires no additional parameter to account for multiple binding sites; and the only necessary parameters to model homotypic cooperative interactions are the distances between adjacent protein binding sites in basepairs, and the corresponding cooperative binding constants. The heterotypic cooperative binding model requires one more parameter per cooperatively binding protein, which is the concentration multiplied by the partition function of this protein. In a case study on the bacterial ferric uptake regulator, we show that our scoring method for homotypic cooperatively binding proteins significantly outperforms other PWM-based methods where biophysical cooperativity is not taken into account. PMID:18400778

  7. Nuclear translocation of proteins and the effect of phosphatidic acid

    PubMed Central

    Yao, Hongyan; Wang, Geliang; Wang, Xuemin

    2014-01-01

    Transport of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors called importins, typically dimmers of a cargo-binding α-subunit and a β-subunit that mediates translocation through the nuclear pore complexes (NPCs). However, how proteins without canonical NLS move into the nucleus is not well understood. Recent results indicate that phospholipids, such as phosphatidic acid, play important roles in the intracellular translocation of proteins between the nucleus and cytoplasm. PMID:25482760

  8. Multivalent Binding of Formin-binding Protein 21 (FBP21)-Tandem-WW Domains Fosters Protein Recognition in the Pre-spliceosome*

    PubMed Central

    Klippel, Stefan; Wieczorek, Marek; Schümann, Michael; Krause, Eberhard; Marg, Berenice; Seidel, Thorsten; Meyer, Tim; Knapp, Ernst-Walter; Freund, Christian

    2011-01-01

    The high abundance of repetitive but nonidentical proline-rich sequences in spliceosomal proteins raises the question of how these known interaction motifs recruit their interacting protein domains. Whereas complex formation of these adaptors with individual motifs has been studied in great detail, little is known about the binding mode of domains arranged in tandem repeats and long proline-rich sequences including multiple motifs. Here we studied the interaction of the two adjacent WW domains of spliceosomal protein FBP21 with several ligands of different lengths and composition to elucidate the hallmarks of multivalent binding for this class of recognition domains. First, we show that many of the proteins that define the cellular proteome interacting with FBP21-WW1-WW2 contain multiple proline-rich motifs. Among these is the newly identified binding partner SF3B4. Fluorescence resonance energy transfer (FRET) analysis reveals the tandem-WW domains of FBP21 to interact with splicing factor 3B4 (SF3B4) in nuclear speckles where splicing takes place. Isothermal titration calorimetry and NMR shows that the tandem arrangement of WW domains and the multivalency of the proline-rich ligands both contribute to affinity enhancement. However, ligand exchange remains fast compared with the NMR time scale. Surprisingly, a N-terminal spin label attached to a bivalent ligand induces NMR line broadening of signals corresponding to both WW domains of the FBP21-WW1-WW2 protein. This suggests that distinct orientations of the ligand contribute to a delocalized and semispecific binding mode that should facilitate search processes within the spliceosome. PMID:21917930

  9. La Piedad Michoacán Mexico Virus V protein antagonizes type I interferon response by binding STAT2 protein and preventing STATs nuclear translocation

    PubMed Central

    Pisanelli, Giuseppe; Laurent-Rolle, Maudry; Manicassamy, Balaji; Belicha-Villanueva, Alan; Morrison, Juliet; Lozano-Dubernard, Bernardo; Castro-Peralta, Felipa; Iovane, Giuseppe; García-Sastre, Adolfo

    2017-01-01

    La Piedad Michoacán Mexico Virus (LPMV) is a member of the Rubulavirus genus within the Paramyxoviridae family. LPMV is the etiologic agent of “blue eye disease”, causing a significant disease burden in swine in Mexico with long-term implications for the agricultural industry. This virus mainly affects piglets and is characterized by meningoencephalitis and respiratory distress. It also affects adult pigs, causing reduced fertility and abortions in females, and orchitis and epididymitis in males. Viruses of the Paramyxoviridae family evade the innate immune response by targeting components of the interferon (IFN) signaling pathway. The V protein, expressed by most paramyxoviruses, is a well-characterized IFN signaling antagonist. Until now, there were no reports on the role of the LPMV-V protein in inhibiting the IFN response. In this study we demonstrate that LPMV-V protein antagonizes type I but not type II IFN signaling by binding STAT2, a component of the type I IFN cascade. Our results indicate that the last 18 amino acids of LPMV-V protein are required for binding to STAT2 in human and swine cells. While LPMV-V protein does not affect the protein levels of STAT1 or STAT2, it does prevent the IFN-induced phosphorylation and nuclear translocation of STAT1 and STAT2 thereby inhibiting cellular responses to IFN α/β PMID:26546155

  10. Monomeric Yeast Frataxin is an Iron-Binding Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook,J.; Bencze, K.; Jankovic, A.

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50 000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly)more » share requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron.« less

  11. Progesterone action in breast, uterine, and ovarian cancers

    PubMed Central

    Diep, Caroline H.; Daniel, Andrea R.; Mauro, Laura J.; Knutson, Todd P.; Lange, Carol A.

    2015-01-01

    Progesterone and progesterone receptors (PR) are essential for the development and cyclical regulation of hormone-responsive tissues including the breast and reproductive tract. Altered functions of PR isoforms contribute to the pathogenesis of tumors that arise in these tissues. In the breast, progesterone acts in concert with estrogen to promote proliferative and pro-survival gene programs. In sharp contrast, progesterone inhibits estrogen-driven growth in the uterus and protects the ovary from neoplastic transformation. Progesterone-dependent actions and associated biology in diverse tissues and tumors are mediated by two progesterone receptor isoforms, PR-A and PR-B. These isoforms are subject to altered transcriptional activity or expression levels, differential cross-talk with growth factor signaling pathways, and distinct post-translational modifications and cofactor binding partners. Herein, we summarize and discuss the recent literature focused on progesterone and PR isoform-specific actions in breast, uterine, and ovarian cancers. Understanding the complexity of context-dependent PR actions in these tissues is critical to developing new models that will allow us to advance our knowledge base with the goal of revealing novel and efficacious therapeutic regimens for these hormone-responsive diseases. PMID:25587053

  12. Characterization of the Binding of a Potent Synthetic Androgen, Methyltrienolone, to Human Tissues

    PubMed Central

    Menon, Mani; Tananis, Catherine E.; Hicks, L. Louise; Hawkins, Edward F.; McLoughlin, Martin G.; Walsh, Patrick C.

    1978-01-01

    The potent synthetic androgen methytrienolone (R 1881), which does not bind to serum proteins, was utilized to characterize binding to receptors in human androgen responsive tissues. Cytosol extracts prepared from hypertrophic prostates (BPH) were utilized as the source of receptor for the initial studies. High affinity binding was detected in the cytosol of 29 of 30 samples of BPH (average number of binding sites, 45.8±4.7 fmol/mg of protein; dissociation constant, 0.9±0.2 nM). This binding had the characteristics of a receptor: heat lability, precipitability by 0-33% ammonium sulfate and by protamine sulfate, and 8S sedimentation coefficient. High affinity binding was also detected in cytosol prepared from seminal vesicle, epididymis, and genital skin but not in non-genital skin or muscle. However, similar binding was demonstrated in the cytosol of human uterus. The steroid specificities of binding to the cytosol of male tissues of accessory reproduction and of uterus were similar in that progestational agents were more effective competitors than natural androgens. Binding specificities in cytosol prepared from genital skin were distinctly different and were similar to those of ventral prostate from the castrated rat in that dihydrotestosterone was much more potent than progestins in competition. Thus binding of R 1881 to the cytosol of prostate, epididymis, and seminal vesicle has some characteristics of binding to a progesterone receptor. When the nuclear extract from BPH was analyzed, high affinity binding was demonstrated that conformed to the specificities of binding to an androgen receptor. Here dihydrotestosterone was a more potent competitor than progestational agents. Similar patterns of binding were detected in the crude nuclear extracts from seminal vesicle, epididymis, and genital skin but not in uterus, muscle, or non-genital skin. We conclude that the androgen receptor is not demonstrable in the cytosol of prostate, epididymis, or seminal vesicle

  13. Imparting albumin-binding affinity to a human protein by mimicking the contact surface of a bacterial binding protein.

    PubMed

    Oshiro, Satoshi; Honda, Shinya

    2014-04-18

    Attachment of a bacterial albumin-binding protein module is an attractive strategy for extending the plasma residence time of protein therapeutics. However, a protein fused with such a bacterial module could induce unfavorable immune reactions. To address this, we designed an alternative binding protein by imparting albumin-binding affinity to a human protein using molecular surface grafting. The result was a series of human-derived 6 helix-bundle proteins, one of which specifically binds to human serum albumin (HSA) with adequate affinity (KD = 100 nM). The proteins were designed by transferring key binding residues of a bacterial albumin-binding module, Finegoldia magna protein G-related albumin-binding domain (GA) module, onto the human protein scaffold. Despite 13-15 mutations, the designed proteins maintain the original secondary structure by virtue of careful grafting based on structural informatics. Competitive binding assays and thermodynamic analyses of the best binders show that the binding mode resembles that of the GA module, suggesting that the contacting surface of the GA module is mimicked well on the designed protein. These results indicate that the designed protein may act as an alternative low-risk binding module to HSA. Furthermore, molecular surface grafting in combination with structural informatics is an effective approach for avoiding deleterious mutations on a target protein and for imparting the binding function of one protein onto another.

  14. Involvement of purines and phosphoinositides in spontaneous and progesterone-induced nuclear maturation of Bufo arenarum oocytes.

    PubMed

    Zelarayán, L; Oterino, J; Sánchez Toranzo, G; Bühler, M I

    2000-07-01

    Although progesterone is the established maturation inducer in amphibia, it has been demonstrated that Bufo arenarum oocytes resume meiosis with no need of an exogenous hormonal stimulus if deprived of their enveloping follicle cells, a phenomenon called "spontaneous maturation." The present studies were designed to evaluate the participation of purines and phosphoinositides in the spontaneous and progesterone-induced maturation in Bufo arenarum full-grown oocytes. The presented data demonstrate that high intracellular levels of purines such as cAMP or guanosine can inhibit both spontaneous and progesterone-induced maturation in full-grown denuded Bufo arenarum oocytes. Moreover, the fact that the mycophenolic acid was able to induce maturation in denuded oocytes obtained during the nonreproductive period in a manner similar to that of the progesterone and also to increase the percentages of spontaneous maturation suggests that in Bufo arenarum, inosine monophosphate dehydrogenase inhibition is an important step in the resumption of meiosis. Inhibition of the phosphatidylinositol 4,5 bisphosphate hydrolysis by treatment of denuded oocytes with neomycin totally blocks spontaneous and progesterone-induced maturation, suggesting that the products of this hydrolysis (1,2 diacylglycerol and inositol 1,4,5 trisphosphate) may be involved in the maturation process of Bufo. In addition, our results indicate that the activation of protein kinase C is also involved in both types of maturation.

  15. Progesterone augments cell susceptibility to HIV-1 and HIV-1/HSV-2 co-infections.

    PubMed

    Ragupathy, Viswanath; Xue, Wang; Tan, Ji; Devadas, Krishnakumar; Gao, Yamei; Hewlett, Indira

    2016-10-01

    In human immunodeficiency virus type 1 (HIV-1)-infected women, oral or injectable progesterone containing contraceptive pills may enhance HIV-1 acquisition in vivo, and the mechanism by which this occurs is not fully understood. In developing countries, Herpes simplex virus type-2 (HSV-2) co-infection has been shown to be a risk for increase of HIV-1 acquisition and, if co-infected women use progesterone pills, infections may increase several fold. In this study, we used an in vitro cell culture system to study the effects of progesterone on HIV-1 replication and to explore the molecular mechanism of progesterone effects on infected cells. In our in vitro model, CEMss cells (lymphoblastoid cell line) were infected with either HIV-1 alone or co-infected with HSV-2. HIV-1 viral load was measured with and without sex hormone treatment. Progesterone-treated cells showed an increase in HIV-1 viral load (1411.2 pg/mL) compared with cells without progesterone treatment (993.1 pg/mL). Increased cell death was noted with HSV-2 co-infection and in progesterone-treated cells. Similar observations were noted in peripheral blood mononuclear cells (PBMC) cells derived from three female donors. Progesterone-treated cells also showed reduced antiviral efficacy. Inflammatory cytokines and associations with biomarkers of disease progression were explored. Progesterone upregulated inflammatory cytokines and chemokines conversely and downregulated anti-apoptotic Bcl-2 expression. Nuclear protein analysis by electrophoretic mobility shift assay showed the association of progesterone with progesterone response element (PRE), which may lead to downregulation of Bcl-2. These data indicate that progesterone treatment enhances HIV-1 replication in infected cells and co-infection with HSV-2 may further fuel this process. © 2016 Society for Endocrinology.

  16. Inhalation of progesterone inhibits chronic airway inflammation of mice exposed to ozone.

    PubMed

    Fei, Xia; Bao, Wuping; Zhang, Pengyu; Zhang, Xue; Zhang, Guoqing; Zhang, Yingying; Zhou, Xin; Zhang, Min

    2017-05-01

    Chronic ozone exposure leads to a model of mice with lung inflammation, emphysema and oxidative stress. Progesterone plays an important role in attenuating the neuroinflammation. We assume that progesterone will reduce the chronic airway inflammation exposed to ozone and evaluate whether combination of progesterone with glucocorticoids results in synergistic effects. C57/BL6 mice were exposed to ozone (2.5ppm, 3h) 12 times over 6 weeks, and were administered with progesterone (0.03 or 0.3mg/L; inhaled) alone or combined with budesonide (BUD) (0.2g/L) after each exposure until the tenth week. Mice were studied 24h after final exposure, cells and inflammatory mediators were assessed in bronchoalveolar lavage fluid (BALF) and lungs used for evaluation of glucocorticoids receptors (GR), p38 mitogen-activated protein kinase (MAPK) phosphorylation and nuclear transcription factor κB (NF-κB) activation. Exposure to ozone resulted in a marked lung neutrophilia. Moreover, in ozone-exposed group, the levels of oxidative stress-related interleukin (IL)-1β, IL-6, IL-8, IL-17A, activated NF-κB and p38MAPK, airway inflammatory cells infiltration density, mean linear intercept (Lm) were greatly increased, FEV 25 and glucocorticoids receptors (GR) were markedly decreased. Comparable to BUD, progesterone treatment dose-dependently led to a significant reduction of IL-1β, IL-6, IL-8, IL-17A, activated NF-κB and p38MAPK, and an increase of FEV 25 and GR. Progesterone combined with BUD resulted in dramatic changes, compared to monotherapy of BUD or progesterone. Therefore, these results demonstrate that chronic ozone exposure has profound airway inflammatory effects counteracted by progesterone and progesterone acts synergistically with glucocorticoids in attenuating the airway inflammation dose-dependently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Oestradiol and progesterone differentially alter cytoskeletal protein expression and flame cell morphology in Taenia crassiceps.

    PubMed

    Ambrosio, Javier R; Ostoa-Saloma, Pedro; Palacios-Arreola, M Isabel; Ruíz-Rosado, Azucena; Sánchez-Orellana, Pedro L; Reynoso-Ducoing, Olivia; Nava-Castro, Karen E; Martínez-Velázquez, Nancy; Escobedo, Galileo; Ibarra-Coronado, Elizabeth G; Valverde-Islas, Laura; Morales-Montor, Jorge

    2014-09-01

    We examined the effects of oestradiol (E2) and progesterone (P4) on cytoskeletal protein expression in the helminth Taenia crassiceps - specifically actin, tubulin and myosin. These proteins assemble into flame cells, which constitute the parasite excretory system. Total protein extracts were obtained from E2- and P4-treated T. crassiceps cysticerci and untreated controls, and analysed by one- and two-dimensional protein electrophoresis, flow cytometry, immunofluorescence and videomicroscopy. Exposure of T. crassiceps cysticerci to E2 and P4 induced differential protein expression patterns compared with untreated controls. Changes in actin, tubulin and myosin expression were confirmed by flow cytometry of parasite cells and immunofluorescence. In addition, parasite morphology was altered in response to E2 and P4 versus controls. Flame cells were primarily affected at the level of the ciliary tuft, in association with the changes in actin, tubulin and myosin. We conclude that oestradiol and progesterone act directly on T. crassiceps cysticerci, altering actin, tubulin and myosin expression and thus affecting the assembly and function of flame cells. Our results increase our understanding of several aspects of the molecular crosstalk between host and parasite, which might be useful in designing anthelmintic drugs that exclusively impair parasitic proteins which mediate cell signaling and pathogenic reproduction and establishment. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  18. [Regulatory effect and mechanism of RNA binding motif protein 38 on the expression of progesterone receptor in human breast cancer ZR-75-1 cells].

    PubMed

    Lou, P P; Li, C L; Xia, T S; Shi, L; Wu, J; Zhou, X J; Wang, Y; Ding, Q

    2016-06-23

    To investigate the regulatory mechanism of RNA binding motif protein 38 (RNPC1) on the expression of progesterone receptor (PR) in breast cancer cell line ZR-75-1. Lentiviral vector was used to induce overexpression of RNPC1 in ZR-75-1 cells. qRT-PCR and Western blot were used to assess the regulatory effect of RNPC1 on PR expression. Actinomycin was used to detect the regulatory mechanism involved. Immunohistochemical (IHC) staining was used to determine the protein expression of RNPC1 and PR in 80 breast cancer tissues. IHC staining showed that the expression of RNPC1 was significantly higher in the PR positive breast cancer tissues than that in the PR negative breast cancer tissues (P<0.05). The qRT-PCR results showed that overexpression of RNPC1 in ZR-75-1 cells significantly upregulated the mRNA level of PR (1.764±0.028 vs. 1.001±0.037, P<0.01), whereas knockdown of RNPC1 did the opposite (0.579± 0.007 vs. 1.000±0.002, P<0.01). The Western blot results also showed that overexpression of RNPC1 up-regulated PR levels, while knockdown of RNPC1 resulted in down-regulation of PR levels in the ZR-75-1 cells.The actinomycin assay showed that overexpression of RNPC1 increased the mRNA stability of PR. The half-life of PR mRNA was increased from 4.0 h to 6.5 h. Knockdown of RNPC1 decreased the mRNA stability of PR and the half-life of PR transcript was decreased from 4.1 h to 3.0 h. RNPC1 plays a crucial role in regulating the expression of PR in breast cancer ZR-75-1 cells.

  19. Paxillin associates with poly(A)-binding protein 1 at the dense endoplasmic reticulum and the leading edge of migrating cells.

    PubMed

    Woods, Alison J; Roberts, Marnie S; Choudhary, Jyoti; Barry, Simon T; Mazaki, Yuichi; Sabe, Hisataka; Morley, Simon J; Critchley, David R; Norman, Jim C

    2002-02-22

    Using mass spectrometry we have identified proteins which co-immunoprecipitate with paxillin, an adaptor protein implicated in the integrin-mediated signaling pathways of cell motility. A major component of paxillin immunoprecipitates was poly(A)-binding protein 1, a 70-kDa mRNA-binding protein. Poly(A)-binding protein 1 associated with both the alpha and beta isoforms of paxillin, and this was unaffected by RNase treatment consistent with a protein-protein interaction. The NH(2)-terminal region of paxillin (residues 54-313) associated directly with poly(A)-binding protein 1 in cell lysates, and with His-poly(A)-binding protein 1 immobilized in microtiter wells. Binding was specific, saturable and of high affinity (K(d) of approximately 10 nm). Cell fractionation studies showed that at steady state, the bulk of paxillin and poly(A)-binding protein 1 was present in the "dense" polyribosome-associated endoplasmic reticulum. However, inhibition of nuclear export with leptomycin B caused paxillin and poly(A)-binding protein 1 to accumulate in the nucleus, indicating that they shuttle between the nuclear and cytoplasmic compartments. When cells migrate, poly(A)-binding protein 1 colocalized with paxillin-beta at the tips of lamellipodia. Our results suggest a new mechanism whereby a paxillin x poly(A)-binding protein 1 complex facilitates transport of mRNA from the nucleus to sites of protein synthesis at the endoplasmic reticulum and the leading lamella during cell migration.

  20. The high mobility group protein 1 enhances binding of the estrogen receptor DNA binding domain to the estrogen response element.

    PubMed

    Romine, L E; Wood, J R; Lamia, L A; Prendergast, P; Edwards, D P; Nardulli, A M

    1998-05-01

    We have examined the ability of the high-mobility group protein 1 (HMG1) to alter binding of the estrogen receptor DNA-binding domain (DBD) to the estrogen response element (ERE). HMG1 dramatically enhanced binding of purified, bacterially expressed DBD to the consensus vitellogenin A2 ERE in a dose-dependent manner. The ability of HMG1 to stabilize the DBD-ERE complex resulted in part from a decrease in the dissociation rate of the DBD from the ERE. Antibody supershift experiments demonstrated that HMG1 was also capable of forming a ternary complex with the ERE-bound DBD in the presence of HMG1-specific antibody. HMG1 did not substantially affect DBD-ERE contacts as assessed by methylation interference assays, nor did it alter the ability of the DBD to induce distortion in ERE-containing DNA fragments. Because HMG1 dramatically enhanced estrogen receptor DBD binding to the ERE, and the DBD is the most highly conserved region among the nuclear receptor superfamily members, HMG1 may function to enhance binding of other nuclear receptors to their respective response elements and act in concert with coactivator proteins to regulate expression of hormone-responsive genes.

  1. Protein unfolding as a switch from self-recognition to high-affinity client binding

    PubMed Central

    Groitl, Bastian; Horowitz, Scott; Makepeace, Karl A. T.; Petrotchenko, Evgeniy V.; Borchers, Christoph H.; Reichmann, Dana; Bardwell, James C. A.; Jakob, Ursula

    2016-01-01

    Stress-specific activation of the chaperone Hsp33 requires the unfolding of a central linker region. This activation mechanism suggests an intriguing functional relationship between the chaperone's own partial unfolding and its ability to bind other partially folded client proteins. However, identifying where Hsp33 binds its clients has remained a major gap in our understanding of Hsp33's working mechanism. By using site-specific Fluorine-19 nuclear magnetic resonance experiments guided by in vivo crosslinking studies, we now reveal that the partial unfolding of Hsp33's linker region facilitates client binding to an amphipathic docking surface on Hsp33. Furthermore, our results provide experimental evidence for the direct involvement of conditionally disordered regions in unfolded protein binding. The observed structural similarities between Hsp33's own metastable linker region and client proteins present a possible model for how Hsp33 uses protein unfolding as a switch from self-recognition to high-affinity client binding. PMID:26787517

  2. Long noncoding RNA H19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis.

    PubMed

    Liu, Chune; Yang, Zhihong; Wu, Jianguo; Zhang, Li; Lee, Sangmin; Shin, Dong-Ju; Tran, Melanie; Wang, Li

    2018-05-01

    H19 is an imprinted long noncoding RNA abundantly expressed in embryonic liver and repressed after birth. We show that H19 serves as a lipid sensor by synergizing with the RNA-binding polypyrimidine tract-binding protein 1 (PTBP1) to modulate hepatic metabolic homeostasis. H19 RNA interacts with PTBP1 to facilitate its association with sterol regulatory element-binding protein 1c mRNA and protein, leading to increased stability and nuclear transcriptional activity. H19 and PTBP1 are up-regulated by fatty acids in hepatocytes and in diet-induced fatty liver, which further augments lipid accumulation. Ectopic expression of H19 induces steatosis and pushes the liver into a "pseudo-fed" state in response to fasting by promoting sterol regulatory element-binding protein 1c protein cleavage and nuclear translocation. Deletion of H19 or knockdown of PTBP1 abolishes high-fat and high-sucrose diet-induced steatosis. Our study unveils an H19/PTBP1/sterol regulatory element-binding protein 1 feedforward amplifying signaling pathway to exacerbate the development of fatty liver. (Hepatology 2018;67:1768-1783). © 2017 by the American Association for the Study of Liver Diseases.

  3. Binding Rate Constants Reveal Distinct Features of Disordered Protein Domains.

    PubMed

    Dogan, Jakob; Jonasson, Josefin; Andersson, Eva; Jemth, Per

    2015-08-04

    Intrinsically disordered proteins (IDPs) are abundant in the proteome and involved in key cellular functions. However, experimental data about the binding kinetics of IDPs as a function of different environmental conditions are scarce. We have performed an extensive characterization of the ionic strength dependence of the interaction between the molten globular nuclear co-activator binding domain (NCBD) of CREB binding protein and five different protein ligands, including the intrinsically disordered activation domain of p160 transcriptional co-activators (SRC1, TIF2, ACTR), the p53 transactivation domain, and the folded pointed domain (PNT) of transcription factor ETS-2. Direct comparisons of the binding rate constants under identical conditions show that the association rate constant, kon, for interactions between NCBD and disordered protein domains is high at low salt concentrations (90-350 × 10(6) M(-1) s(-1) at 4 °C) but is reduced significantly (10-30-fold) with an increasing ionic strength and reaches a plateau around physiological ionic strength. In contrast, the kon for the interaction between NCBD and the folded PNT domain is only 7 × 10(6) M(-1) s(-1) (4 °C and low salt) and displays weak ionic strength dependence, which could reflect a distinctly different association that relies less on electrostatic interactions. Furthermore, the basal rate constant (in the absence of electrostatic interactions) is high for the NCBD interactions, exceeding those typically observed for folded proteins. One likely interpretation is that disordered proteins have a large number of possible collisions leading to a productive on-pathway encounter complex, while folded proteins are more restricted in terms of orientation. Our results highlight the importance of electrostatic interactions in binding involving IDPs and emphasize the significance of including ionic strength as a factor in studies that compare the binding properties of IDPs to those of ordered proteins.

  4. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.

    PubMed

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua

    2014-10-01

    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets. © 2014 Wiley Periodicals, Inc.

  5. Automodification of PARP-1 mediates its tight binding to the nuclear matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaalishvili, Giorgi, E-mail: giozaal@gmail.com; Margiani, Dina; Kutalia, Ketevan

    2010-02-26

    Poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme that catalyzes the NAD{sup +}-dependent addition of ADP-ribose polymers on a variety of nuclear proteins, has been shown to be associated with the nuclear matrix. As yet, the properties and conditions of this association are unclear. Here, we show the existence of two PARP-1 pools associated with the nuclear matrix of rat liver and the ability of PARP-1 automodification to facilitate its binding to the nuclear matrix.

  6. FAAP20: a novel ubiquitin-binding FA nuclear core-complex protein required for functional integrity of the FA-BRCA DNA repair pathway

    PubMed Central

    Ali, Abdullah Mahmood; Pradhan, Arun; Singh, Thiyam Ramsingh; Du, Changhu; Li, Jie; Wahengbam, Kebola; Grassman, Elke; Auerbach, Arleen D.; Pang, Qishen

    2012-01-01

    Fanconi anemia (FA) nuclear core complex is a multiprotein complex required for the functional integrity of the FA-BRCA pathway regulating DNA repair. This pathway is inactivated in FA, a devastating genetic disease, which leads to hematologic defects and cancer in patients. Here we report the isolation and characterization of a novel 20-kDa FANCA-associated protein (FAAP20). We show that FAAP20 is an integral component of the FA nuclear core complex. We identify a region on FANCA that physically interacts with FAAP20, and show that FANCA regulates stability of this protein. FAAP20 contains a conserved ubiquitin-binding zinc-finger domain (UBZ), and binds K-63–linked ubiquitin chains in vitro. The FAAP20-UBZ domain is not required for interaction with FANCA, but is required for DNA-damage–induced chromatin loading of FANCA and the functional integrity of the FA pathway. These findings reveal critical roles for FAAP20 in the FA-BRCA pathway of DNA damage repair and genome maintenance. PMID:22343915

  7. In Situ Protein Binding Assay Using Fc-Fusion Proteins.

    PubMed

    Padmanabhan, Nirmala; Siddiqui, Tabrez J

    2017-01-01

    This protocol describes an in situ protein-protein interaction assay between tagged recombinant proteins and cell-surface expressed synaptic proteins. The assay is arguably more sensitive than other traditional protein binding assays such as co-immunoprecipitation and pull-downs and provides a visual readout for binding. This assay has been widely used to determine the dissociation constant of binding of trans-synaptic adhesion proteins. The step-wise description in the protocol should facilitate the adoption of this method in other laboratories.

  8. La Piedad Michoacán Mexico Virus V protein antagonizes type I interferon response by binding STAT2 protein and preventing STATs nuclear translocation.

    PubMed

    Pisanelli, Giuseppe; Laurent-Rolle, Maudry; Manicassamy, Balaji; Belicha-Villanueva, Alan; Morrison, Juliet; Lozano-Dubernard, Bernardo; Castro-Peralta, Felipa; Iovane, Giuseppe; García-Sastre, Adolfo

    2016-02-02

    La Piedad Michoacán Mexico Virus (LPMV) is a member of the Rubulavirus genus within the Paramyxoviridae family. LPMV is the etiologic agent of "blue eye disease", causing a significant disease burden in swine in Mexico with long-term implications for the agricultural industry. This virus mainly affects piglets and is characterized by meningoencephalitis and respiratory distress. It also affects adult pigs, causing reduced fertility and abortions in females, and orchitis and epididymitis in males. Viruses of the Paramyxoviridae family evade the innate immune response by targeting components of the interferon (IFN) signaling pathway. The V protein, expressed by most paramyxoviruses, is a well-characterized IFN signaling antagonist. Until now, there were no reports on the role of the LPMV-V protein in inhibiting the IFN response. In this study we demonstrate that LPMV-V protein antagonizes type I but not type II IFN signaling by binding STAT2, a component of the type I IFN cascade. Our results indicate that the last 18 amino acids of LPMV-V protein are required for binding to STAT2 in human and swine cells. While LPMV-V protein does not affect the protein levels of STAT1 or STAT2, it does prevent the IFN-induced phosphorylation and nuclear translocation of STAT1 and STAT2 thereby inhibiting cellular responses to IFN α/β. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Opposite nuclear level and binding activity of STAT5B and STAT3 proteins with rat haptoglobin gene under normal and turpentine induced acute phase conditions.

    PubMed

    Grigorov, I; Lazić, T; Cvetković, I; Milosavljević, T; Petrović, M

    2001-01-01

    Transcription of the rat gene encoding haptoglobin (Hp) is highly induced during acute phase (AP) response which has been previously shown to be mediated by inducible STAT3 member of the Signal Transducer and Activators of Transcription (STATs) family proteins. In this study, we observed that under normal but not in the turpentine induced AP conditions, another member of the STAT family proteins, STAT5b is expressed and binds to the hormone regulatory element (HRE) of the rat Hp gene. We found that the nuclear amounts of constitutively active STAT5b in rat liver decreased significantly with time of turpentine treatment as opposed to that of cytosol STAT5b, suggesting possible export of constitutive STAT5b from the nucleus. Nuclear accumulation and binding of inducible STAT3 proteins to the rat Hp gene HRE following turpentine treatment implicated that STAT5b negatively regulates Hp gene expression during normal conditions.

  10. A Protein Preparation Method for the High-throughput Identification of Proteins Interacting with a Nuclear Cofactor Using LC-MS/MS Analysis.

    PubMed

    Tsuchiya, Megumi; Karim, M Rezaul; Matsumoto, Taro; Ogawa, Hidesato; Taniguchi, Hiroaki

    2017-01-24

    Transcriptional coregulators are vital to the efficient transcriptional regulation of nuclear chromatin structure. Coregulators play a variety of roles in regulating transcription. These include the direct interaction with transcription factors, the covalent modification of histones and other proteins, and the occasional chromatin conformation alteration. Accordingly, establishing relatively quick methods for identifying proteins that interact within this network is crucial to enhancing our understanding of the underlying regulatory mechanisms. LC-MS/MS-mediated protein binding partner identification is a validated technique used to analyze protein-protein interactions. By immunoprecipitating a previously-identified member of a protein complex with an antibody (occasionally with an antibody for a tagged protein), it is possible to identify its unknown protein interactions via mass spectrometry analysis. Here, we present a method of protein preparation for the LC-MS/MS-mediated high-throughput identification of protein interactions involving nuclear cofactors and their binding partners. This method allows for a better understanding of the transcriptional regulatory mechanisms of the targeted nuclear factors.

  11. Nuclear localized protein-1 (Nulp1) increases cell death of human osteosarcoma cells and binds the X-linked inhibitor of apoptosis protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steen, Hakan; Lindholm, Dan; Minerva Institute for Medical Research, Biomedicum Helsinki, Helsinki

    2008-02-08

    Nuclear localized protein-1 (Nulp1) is a recently identified gene expressed in mouse and human tissues particularly during embryonic development. Nulp1 belongs to the family of basic helix-loop-helix (bHLH) proteins that are important in development. The precise function of Nulp1 in cells is however not known. We observed that overexpression of Nulp1 induces a large increase in cell death of human osteosarcoma Saos2 cells with DNA fragmentation. In mouse N2A neuroblastoma cells Nulp1 affected cell proliferation and sensitized cells towards death induced by staurosporine. Staining using a novel antibody localized Nulp1 mainly to the cell nucleus and to some extent tomore » the cytoplasm. Nulp1 binds the X-linked inhibitor of apoptosis protein (XIAP) and this interaction was increased during cell death. These results indicate that Nulp1 plays a role in cell death control and may influence tumor growth.« less

  12. Predicting protein-binding RNA nucleotides with consideration of binding partners.

    PubMed

    Tuvshinjargal, Narankhuu; Lee, Wook; Park, Byungkyu; Han, Kyungsook

    2015-06-01

    In recent years several computational methods have been developed to predict RNA-binding sites in protein. Most of these methods do not consider interacting partners of a protein, so they predict the same RNA-binding sites for a given protein sequence even if the protein binds to different RNAs. Unlike the problem of predicting RNA-binding sites in protein, the problem of predicting protein-binding sites in RNA has received little attention mainly because it is much more difficult and shows a lower accuracy on average. In our previous study, we developed a method that predicts protein-binding nucleotides from an RNA sequence. In an effort to improve the prediction accuracy and usefulness of the previous method, we developed a new method that uses both RNA and protein sequence data. In this study, we identified effective features of RNA and protein molecules and developed a new support vector machine (SVM) model to predict protein-binding nucleotides from RNA and protein sequence data. The new model that used both protein and RNA sequence data achieved a sensitivity of 86.5%, a specificity of 86.2%, a positive predictive value (PPV) of 72.6%, a negative predictive value (NPV) of 93.8% and Matthews correlation coefficient (MCC) of 0.69 in a 10-fold cross validation; it achieved a sensitivity of 58.8%, a specificity of 87.4%, a PPV of 65.1%, a NPV of 84.2% and MCC of 0.48 in independent testing. For comparative purpose, we built another prediction model that used RNA sequence data alone and ran it on the same dataset. In a 10 fold-cross validation it achieved a sensitivity of 85.7%, a specificity of 80.5%, a PPV of 67.7%, a NPV of 92.2% and MCC of 0.63; in independent testing it achieved a sensitivity of 67.7%, a specificity of 78.8%, a PPV of 57.6%, a NPV of 85.2% and MCC of 0.45. In both cross-validations and independent testing, the new model that used both RNA and protein sequences showed a better performance than the model that used RNA sequence data alone in

  13. Identification of Nuclear Phosphatidylinositol 4,5-Bisphosphate-Interacting Proteins by Neomycin Extraction*

    PubMed Central

    Lewis, Aurélia E.; Sommer, Lilly; Arntzen, Magnus Ø.; Strahm, Yvan; Morrice, Nicholas A.; Divecha, Nullin; D'Santos, Clive S.

    2011-01-01

    Considerable insight into phosphoinositide-regulated cytoplasmic functions has been gained by identifying phosphoinositide-effector proteins. Phosphoinositide-regulated nuclear functions however are fewer and less clear. To address this, we established a proteomic method based on neomycin extraction of intact nuclei to enrich for nuclear phosphoinositide-effector proteins. We identified 168 proteins harboring phosphoinositide-binding domains. Although the vast majority of these contained lysine/arginine-rich patches with the following motif, K/R-(Xn = 3–7)-K-X-K/R-K/R, we also identified a smaller subset of known phosphoinositide-binding proteins containing pleckstrin homology or plant homeodomain modules. Proteins with no prior history of phosphoinositide interaction were identified, some of which have functional roles in RNA splicing and processing and chromatin assembly. The remaining proteins represent potentially other novel nuclear phosphoinositide-effector proteins and as such strengthen our appreciation of phosphoinositide-regulated nuclear functions. DNA topology was exemplar among these: Biochemical assays validated our proteomic data supporting a direct interaction between phosphatidylinositol 4,5-bisphosphate and DNA Topoisomerase IIα. In addition, a subset of neomycin extracted proteins were further validated as phosphatidyl 4,5-bisphosphate-interacting proteins by quantitative lipid pull downs. In summary, data sets such as this serve as a resource for a global view of phosphoinositide-regulated nuclear functions. PMID:21048195

  14. The identification of FANCD2 DNA binding domains reveals nuclear localization sequences.

    PubMed

    Niraj, Joshi; Caron, Marie-Christine; Drapeau, Karine; Bérubé, Stéphanie; Guitton-Sert, Laure; Coulombe, Yan; Couturier, Anthony M; Masson, Jean-Yves

    2017-08-21

    Fanconi anemia (FA) is a recessive genetic disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. The FA pathway consists of at least 21 FANC genes (FANCA-FANCV), and the encoded protein products interact in a common cellular pathway to gain resistance against DNA interstrand crosslinks. After DNA damage, FANCD2 is monoubiquitinated and accumulates on chromatin. FANCD2 plays a central role in the FA pathway, using yet unidentified DNA binding regions. By using synthetic peptide mapping and DNA binding screen by electromobility shift assays, we found that FANCD2 bears two major DNA binding domains predominantly consisting of evolutionary conserved lysine residues. Furthermore, one domain at the N-terminus of FANCD2 bears also nuclear localization sequences for the protein. Mutations in the bifunctional DNA binding/NLS domain lead to a reduction in FANCD2 monoubiquitination and increase in mitomycin C sensitivity. Such phenotypes are not fully rescued by fusion with an heterologous NLS, which enable separation of DNA binding and nuclear import functions within this domain that are necessary for FANCD2 functions. Collectively, our results enlighten the importance of DNA binding and NLS residues in FANCD2 to activate an efficient FA pathway. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization.

    PubMed

    Roux, Kyle J; Crisp, Melissa L; Liu, Qian; Kim, Daein; Kozlov, Serguei; Stewart, Colin L; Burke, Brian

    2009-02-17

    Nucleocytoplasmic coupling is mediated by outer nuclear membrane (ONM) nesprin proteins and inner nuclear membrane Sun proteins. Interactions spanning the perinuclear space create nesprin-Sun complexes connecting the cytoskeleton to nuclear components. A search for proteins displaying a conserved C-terminal sequence present in nesprins 1-3 identified nesprin 4 (Nesp4), a new member of this family. Nesp4 is a kinesin-1-binding protein that displays Sun-dependent localization to the ONM. Expression of Nesp4 is associated with dramatic changes in cellular organization involving relocation of the centrosome and Golgi apparatus relative to the nucleus. These effects can be accounted for entirely by Nesp4's kinesin-binding function. The implication is that Nesp4 may contribute to microtubule-dependent nuclear positioning.

  16. Fatty Acid-binding Proteins 1 and 2 Differentially Modulate the Activation of Peroxisome Proliferator-activated Receptor α in a Ligand-selective Manner*

    PubMed Central

    Hughes, Maria L. R.; Liu, Bonan; Halls, Michelle L.; Wagstaff, Kylie M.; Patil, Rahul; Velkov, Tony; Jans, David A.; Bunnett, Nigel W.; Scanlon, Martin J.; Porter, Christopher J. H.

    2015-01-01

    Nuclear hormone receptors (NHRs) regulate the expression of proteins that control aspects of reproduction, development and metabolism, and are major therapeutic targets. However, NHRs are ubiquitous and participate in multiple physiological processes. Drugs that act at NHRs are therefore commonly restricted by toxicity, often at nontarget organs. For endogenous NHR ligands, intracellular lipid-binding proteins, including the fatty acid-binding proteins (FABPs), can chaperone ligands to the nucleus and promote NHR activation. Drugs also bind FABPs, raising the possibility that FABPs similarly regulate drug activity at the NHRs. Here, we investigate the ability of FABP1 and FABP2 (intracellular lipid-binding proteins that are highly expressed in tissues involved in lipid metabolism, including the liver and intestine) to influence drug-mediated activation of the lipid regulator peroxisome proliferator-activated receptor (PPAR) α. We show by quantitative fluorescence imaging and gene reporter assays that drug binding to FABP1 and FABP2 promotes nuclear localization and PPARα activation in a drug- and FABP-dependent manner. We further show that nuclear accumulation of FABP1 and FABP2 is dependent on the presence of PPARα. Nuclear accumulation of FABP on drug binding is driven largely by reduced nuclear egress rather than an increased rate of nuclear entry. Importin binding assays indicate that nuclear access occurs via an importin-independent mechanism. Together, the data suggest that specific drug-FABP complexes can interact with PPARα to effect nuclear accumulation of FABP and NHR activation. Because FABPs are expressed in a regionally selective manner, this may provide a means to tailor the patterns of NHR drug activation in a tissue-specific manner. PMID:25847235

  17. Growth differentiation factor 9 reverses activin A suppression of steroidogenic acute regulatory protein expression and progesterone production in human granulosa-lutein cells.

    PubMed

    Shi, Feng-Tao; Cheung, Anthony P; Klausen, Christian; Huang, He-Feng; Leung, Peter C K

    2010-10-01

    We have reported that growth differentiation factor 9 (GDF9) can enhance activin A (β(A)β(A))-induced inhibin B (αβ(B)) secretion in human granulosa-lutein (hGL) cells, but its effects on steroidogenic acute regulatory protein (StAR), ovarian steroidogenic enzymes, and progesterone production are unknown. We undertook this study to further evaluate GDF9 in this regard. hGL cells from women undergoing in vitro fertilization treatment were cultured with and without small interfering RNA (siRNA) transfection targeted at inhibin α-subunit or GDF9 before treatment with GDF9, activin A, FSH, or combinations. We compared StAR, P450 side-chain cleavage enzyme, and 3β-hydroxysteroid dehydrogenase expression in hGL cells and progesterone levels in culture media after these treatments. mRNA, protein, and hormone levels were assessed with real-time RT-PCR, immunoblotting, and ELISA, respectively. Data were analyzed by ANOVA followed by Tukey's test. Activin A alone reduced basal and FSH-induced progesterone production by decreasing the expression of StAR protein, which regulates the rate-limiting step in steroidogenesis but not P450 side-chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase. GDF9 attenuated these activin A effects on StAR and progesterone. After transfection of α-subunit siRNA, activin A level increased (P < 0.001), whereas basal and activin A-induced inhibin B levels (with and without GDF9) decreased. Furthermore, the effects of GDF9 in reversing activin A suppression of progesterone production were attenuated (P < 0.001). Transfection of GDF9 siRNA decreased GDF9 as expected and led to lower StAR expression and progesterone secretion than those observed with activin A treatment alone. GDF9 attenuates the suppressive effects of activin A on StAR expression and progesterone production by increasing the expression of inhibin B, which acts as an activin A competitor.

  18. TRPV1 channels and the progesterone receptor Sig-1R interact to regulate pain.

    PubMed

    Ortíz-Rentería, Miguel; Juárez-Contreras, Rebeca; González-Ramírez, Ricardo; Islas, León D; Sierra-Ramírez, Félix; Llorente, Itzel; Simon, Sidney A; Hiriart, Marcia; Rosenbaum, Tamara; Morales-Lázaro, Sara L

    2018-02-13

    The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed in nociceptors where, when activated by chemical or thermal stimuli, it functions as an important transducer of painful and itch-related stimuli. Although the interaction of TRPV1 with proteins that regulate its function has been previously explored, their modulation by chaperones has not been elucidated, as is the case for other mammalian TRP channels. Here we show that TRPV1 physically interacts with the Sigma 1 Receptor (Sig-1R), a chaperone that binds progesterone, an antagonist of Sig-1R and an important neurosteroid associated to the modulation of pain. Antagonism of Sig-1R by progesterone results in the down-regulation of TRPV1 expression in the plasma membrane of sensory neurons and, consequently, a decrease in capsaicin-induced nociceptive responses. This is observed both in males treated with a synthetic antagonist of Sig-1R and in pregnant females where progesterone levels are elevated. This constitutes a previously undescribed mechanism by which TRPV1-dependent nociception and pain can be regulated.

  19. The pure estrogen receptor antagonist ICI 182,780 promotes a novel interaction of estrogen receptor-alpha with the 3',5'-cyclic adenosine monophosphate response element-binding protein-binding protein/p300 coactivators.

    PubMed

    Jaber, Basem M; Gao, Tong; Huang, Luping; Karmakar, Sudipan; Smith, Carolyn L

    2006-11-01

    Estrogen receptor-alpha (ERalpha) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. Abundant evidence demonstrates that ERalpha agonists promote, whereas antagonists inhibit, receptor binding to coactivators. In this report we demonstrate that binding of the ICI 182,780 (ICI) pure antiestrogen to ERalpha promotes its interaction with the cAMP response element-binding protein-binding protein (CBP)/p300 but not the p160 family of coactivators, demonstrating the specificity of this interaction. Amino acid mutations within the coactivator binding surface of the ERalpha ligand-binding domain revealed that CBP binds to this region of the ICI-liganded receptor. The carboxy-terminal cysteine-histidine rich domain 3 of CBP, rather than its amino-terminal nuclear interacting domain, shown previously to mediate agonist-dependent interactions of CBP with nuclear receptors, is required for binding to ICI-liganded ERalpha. Chromatin immunoprecipitation assays revealed that ICI but not the partial agonist/antagonist 4-hydroxytamoxifen is able to recruit CBP to the pS2 promoter, and this distinguishes ICI from this class of antiestrogens. Chromatin immunoprecipitation assays for pS2 and cytochrome P450 1B1 promoter regions revealed that ICI-dependent recruitment of CBP, but not receptor, to ERalpha targets is gene specific. ICI treatment did not recruit the steroid receptor coactivator 1 to the pS2 promoter, and it failed to induce the expression of this gene. Taken together, these data indicate that recruitment of the CBP coactivator/cointegrator without steroid receptor coactivator 1 to ERalpha is insufficient to promote transcription of ERalpha target genes.

  20. Poly(A)-binding proteins and mRNA localization: who rules the roost?

    PubMed

    Gray, Nicola K; Hrabálková, Lenka; Scanlon, Jessica P; Smith, Richard W P

    2015-12-01

    RNA-binding proteins are often multifunctional, interact with a variety of protein partners and display complex localizations within cells. Mammalian cytoplasmic poly(A)-binding proteins (PABPs) are multifunctional RNA-binding proteins that regulate multiple aspects of mRNA translation and stability. Although predominantly diffusely cytoplasmic at steady state, they shuttle through the nucleus and can be localized to a variety of cytoplasmic foci, including those associated with mRNA storage and localized translation. Intriguingly, PABP sub-cellular distribution can alter dramatically in response to cellular stress or viral infection, becoming predominantly nuclear and/or being enriched in induced cytoplasmic foci. However, relatively little is known about the mechanisms that govern this distribution/relocalization and in many cases PABP functions within specific sites remain unclear. Here we discuss the emerging evidence with respect to these questions in mammals. © 2015 Authors; published by Portland Press Limited.

  1. Protective actions of progesterone in the cardiovascular system: potential role of membrane progesterone receptors (mPRs) in mediating rapid effects.

    PubMed

    Thomas, Peter; Pang, Yefei

    2013-06-01

    The protective functions of progesterone in the cardiovascular system have received little attention even though evidence has accumulated that progesterone lowers blood pressure, inhibits coronary hyperactivity and has powerful vasodilatory and natriuretic effects. One possible reason why potential beneficial actions of progesterone on cardiovascular functions have not been extensively studied is that divergent effects to those of progesterone have been observed in many clinical trials with synthetic progestins such as medroxyprogesterone acetate which are associated with increased risk of coronary disease. Evidence that progesterone exerts protective effects on cardiovascular functions is briefly reviewed. The finding that progesterone administration decreases blood vessel vasoconstriction in several animal models within a few minutes suggests that rapid, nongenomic progesterone mechanisms are of physiological importance in regulating vascular tone. Rapid activation of second messenger pathways by progesterone has been observed in vascular endothelial and smooth muscle cells, resulting in alterations in endothelial nitric oxide synthase (eNOS) activity and calcium influx, respectively. Both nuclear progesterone receptors (PRs) and novel membrane progesterone receptors (mPRs) are candidates for the intermediaries in these rapid, cell-surface initiated progesterone actions in endothelial and smooth muscle vascular cells. PRs have been detected in both cell types. New data are presented showing mPRα, mPRβ and mPRγ are also present in human endothelial and smooth muscle vascular cells. Preliminary evidence suggests mPRs mediate rapid progestin signaling in these endothelial cells, resulting in down-regulation of cAMP production and increased nitric oxide synthesis. The role of mPRs in progesterone regulation of cardiovascular functions warrants further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. JAB1 regulates unphosphorylated STAT3 DNA-binding activity through protein–protein interaction in human colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimoto, Arata, E-mail: anishimo@yamaguchi-u.ac.jp; Kugimiya, Naruji; Hosoyama, Toru

    2013-08-30

    Highlights: •JAB1 interacted with unphosphorylated STAT3 in the nucleus. •JAB1 knockdown tended to increase nuclear STAT3 expression. •JAB1 knockdown significantly decreased unphosphorylated STAT3 DNA-binding activity. •JAB1 knockdown significantly decreased MDR1, NANOG, and VEGF expressions. •Nuclear JAB1, but not nuclear STAT3, correlated with STAT3 DNA-binding activity. -- Abstract: Recent studies have revealed that unphosphorylated STAT3 forms a dimer, translocates to the nucleus, binds to the STAT3 binding site, and activates the transcription of STAT3 target genes, thereby playing an important role in oncogenesis in addition to phosphorylated STAT3. Among signaling steps of unphosphorylated STAT3, nuclear translocation and target DNA-binding are themore » critical steps for its activation. Therefore, elucidating the regulatory mechanism of these signaling steps of unphosphorylated STAT3 is a potential step in the discovery of a novel cancer drug. However, the mechanism of unphosphorylated STAT3 binding to the promoter of target genes remains unclear. In this study, we focused on Jun activation domain-binding protein 1 (JAB1) as a candidate protein that regulates unphosphorylated STAT3 DNA-binding activity. Initially, we observed that both unphosphorylated STAT3 and JAB1 existed in the nucleus of human colon cancer cell line COLO205 at the basal state (no cytokine stimulation). On the other hand, phosphorylated STAT3 did not exist in the nucleus of COLO205 cells at the basal state. Immunoprecipitation using nuclear extract of COLO205 cells revealed that JAB1 interacted with unphosphorylated STAT3. To investigate the effect of JAB1 on unphosphorylated STAT3 activity, RNAi studies were performed. Although JAB1 knockdown tended to increase nuclear STAT3 expression, it significantly decreased unphosphorylated STAT3 DNA-binding activity. Subsequently, JAB1 knockdown significantly decreased the expression levels of MDR1, NANOG, and VEGF, which are STAT3

  3. Calcium-binding proteins and development

    NASA Technical Reports Server (NTRS)

    Beckingham, K.; Lu, A. Q.; Andruss, B. F.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intracellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.

  4. Engineered proteins as specific binding reagents.

    PubMed

    Binz, H Kaspar; Plückthun, Andreas

    2005-08-01

    Over the past 30 years, monoclonal antibodies have become the standard binding proteins and currently find applications in research, diagnostics and therapy. Yet, monoclonal antibodies now face strong competition from synthetic antibody libraries in combination with powerful library selection technologies. More recently, an increased understanding of other natural binding proteins together with advances in protein engineering, selection and evolution technologies has also triggered the exploration of numerous other protein architectures for the generation of designed binding molecules. Valuable protein-binding scaffolds have been obtained and represent promising alternatives to antibodies for biotechnological and, potentially, clinical applications.

  5. Role of Electrostatics in Protein-RNA Binding: The Global vs the Local Energy Landscape.

    PubMed

    Ghaemi, Zhaleh; Guzman, Irisbel; Gnutt, David; Luthey-Schulten, Zaida; Gruebele, Martin

    2017-09-14

    U1A protein-stem loop 2 RNA association is a basic step in the assembly of the spliceosomal U1 small nuclear ribonucleoprotein. Long-range electrostatic interactions due to the positive charge of U1A are thought to provide high binding affinity for the negatively charged RNA. Short range interactions, such as hydrogen bonds and contacts between RNA bases and protein side chains, favor a specific binding site. Here, we propose that electrostatic interactions are as important as local contacts in biasing the protein-RNA energy landscape toward a specific binding site. We show by using molecular dynamics simulations that deletion of two long-range electrostatic interactions (K22Q and K50Q) leads to mutant-specific alternative RNA bound states. One of these states preserves short-range interactions with aromatic residues in the original binding site, while the other one does not. We test the computational prediction with experimental temperature-jump kinetics using a tryptophan probe in the U1A-RNA binding site. The two mutants show the distinct predicted kinetic behaviors. Thus, the stem loop 2 RNA has multiple binding sites on a rough RNA-protein binding landscape. We speculate that the rough protein-RNA binding landscape, when biased to different local minima by electrostatics, could be one way that protein-RNA interactions evolve toward new binding sites and novel function.

  6. STMN1 Promotes Progesterone Production Via StAR Up-regulation in Mouse Granulosa Cells.

    PubMed

    Dou, Yun-De; Zhao, Han; Huang, Tao; Zhao, Shi-Gang; Liu, Xiao-Man; Yu, Xiao-Chen; Ma, Zeng-Xiang; Zhang, Yu-Chao; Liu, Tao; Gao, Xuan; Li, Lei; Lu, Gang; Chan, Wai-Yee; Gao, Fei; Liu, Hong-Bin; Chen, Zi-Jiang

    2016-06-08

    Stathmin 1 (STMN1) is a biomarker in several types of neoplasms. It plays an important role in cell cycle progression, mitosis, signal transduction and cell migration. In ovaries, STMN1 is predominantly expressed in granulosa cells (GCs). However, little is known about the role of STMN1 in ovary. In this study, we demonstrated that STMN1 is overexpressed in GCs in patients with polycystic ovary syndrome (PCOS). In mouse primary GCs, the overexpression of STMN1 stimulated progesterone production, whereas knockdown of STMN1 decreased progesterone production. We also found that STMN1 positively regulates the expression of Star (steroidogenic acute regulatory protein) and Cyp11a1 (cytochrome P450 family 11 subfamily A member 1). Promoter and ChIP assays indicated that STMN1 increased the transcriptional activity of Star and Cyp11a1 by binding to their promoter regions. The data suggest that STMN1 mediates the progesterone production by modulating the promoter activity of Star and Cyp11a1. Together, our findings provide novel insights into the molecular mechanisms of STMN1 in ovary GC steroidogenesis. A better understanding of this potential interaction between STMN1 and Star in progesterone biosynthesis in GCs will facilitate the discovery of new therapeutic targets in PCOS.

  7. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which oftenmore » takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.« less

  8. Leishmania replication protein A-1 binds in vivo single-stranded telomeric DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neto, J.L. Siqueira; Instituto de Biologia, UNICAMP, Campinas, SP; Lira, C.B.B.

    Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in different events of DNA metabolism. In yeast, subunits 1 (RPA-1) and 2 (RPA-2) work also as telomerase recruiters and, in humans, the complex unfolds G-quartet structures formed by the 3' G-rich telomeric strand. In most eukaryotes, RPA-1 and RPA-2 bind DNA using multiple OB fold domains. In trypanosomatids, including Leishmania, RPA-1 has a canonical OB fold and a truncated RFA-1 structural domain. In Leishmania amazonensis, RPA-1 alone can form a complex in vitro with the telomeric G-rich strand. In this work, we show that LaRPA-1 ismore » a nuclear protein that associates in vivo with Leishmania telomeres. We mapped the boundaries of the OB fold DNA-binding domain using deletion mutants. Since Leishmania and other trypanosomatids lack homologues of known telomere end binding proteins, our results raise questions about the function of RPA-1 in parasite telomeres.« less

  9. Nuclear size is sensitive to NTF2 protein levels in a manner dependent on Ran binding

    PubMed Central

    Vuković, Lidija D.; Jevtić, Predrag; Zhang, Zhaojie; Stohr, Bradley A.; Levy, Daniel L.

    2016-01-01

    ABSTRACT Altered nuclear size is associated with many cancers, and determining whether cancer-associated changes in nuclear size contribute to carcinogenesis necessitates an understanding of mechanisms of nuclear size regulation. Although nuclear import rates generally positively correlate with nuclear size, NTF2 levels negatively affect nuclear size, despite the role of NTF2 (also known as NUTF2) in nuclear recycling of the import factor Ran. We show that binding of Ran to NTF2 is required for NTF2 to inhibit nuclear expansion and import of large cargo molecules in Xenopus laevis egg and embryo extracts, consistent with our observation that NTF2 reduces the diameter of the nuclear pore complex (NPC) in a Ran-binding-dependent manner. Furthermore, we demonstrate that ectopic NTF2 expression in Xenopus embryos and mammalian tissue culture cells alters nuclear size. Finally, we show that increases in nuclear size during melanoma progression correlate with reduced NTF2 expression, and increasing NTF2 levels in melanoma cells is sufficient to reduce nuclear size. These results show a conserved capacity for NTF2 to impact on nuclear size, and we propose that NTF2 might be a new cancer biomarker. PMID:26823604

  10. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, Gisela K.

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  11. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  12. Search for protein partners of mitochondrial single-stranded DNA-binding protein Rim1p using a yeast two-hybrid system.

    PubMed

    Kucejová, B; Foury, F

    2003-01-01

    RIM1 is a nuclear gene of the yeast Saccharomyces cerevisiae coding for a protein with single-stranded DNA-binding activity that is essential for mitochondrial genome maintenance. No protein partners of Rim1p have been described so far in yeast. To better understand the role of this protein in mitochondrial DNA replication and recombination, a search for protein interactors by the yeast two-hybrid system was performed. This approach led to the identification of several candidates, including a putative transcription factor, Azf1p, and Mph1p, a protein with an RNA helicase domain which is known to influence the mutation rate of nuclear and mitochondrial genomes.

  13. Lysosomes are involved in induction of steroidogenic acute regulatory protein (StAR) gene expression and progesterone synthesis through low-density lipoprotein in cultured bovine granulosa cells.

    PubMed

    Zhang, Jin-You; Wu, Yi; Zhao, Shuan; Liu, Zhen-Xing; Zeng, Shen-Ming; Zhang, Gui-Xue

    2015-09-15

    Progesterone is an important steroid hormone in the regulation of the bovine estrous cycle. The steroidogenic acute regulatory protein (StAR) is an indispensable component for transporting cholesterol to the inner mitochondrial membrane, which is one of the rate-limiting steps for progesterone synthesis. Low-density lipoprotein (LDL) supplies cholesterol precursors for progesterone formation, and the lysosomal degradation pathway of LDL is essential for progesterone biosynthesis in granulosa cells after ovulation. However, it is currently unknown how LDL and lysosomes coordinate the expression of the StAR gene and progesterone production in bovine granulosa cells. Here, we investigated the role of lysosomes in LDL-treated bovine granulosa cells. Our results reported that LDL induced expression of StAR messenger RNA and protein as well as expression of cholesterol side-chain cleavage cytochrome P-450 (CYP11A1) messenger RNA and progesterone production in cultured bovine granulosa cells. The number of lysosomes in the granulosa cells was also significantly increased by LDL; whereas the lysosomal inhibitor, chloroquine, strikingly abolished these LDL-induced effects. Our results indicate that LDL promotes StAR expression, synthesis of progesterone, and formation of lysosomes in bovine granulosa cells, and lysosomes participate in the process by releasing free cholesterol from hydrolyzed LDL. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization

    PubMed Central

    Roux, Kyle J.; Crisp, Melissa L.; Liu, Qian; Kim, Daein; Kozlov, Serguei; Stewart, Colin L.; Burke, Brian

    2009-01-01

    Nucleocytoplasmic coupling is mediated by outer nuclear membrane (ONM) nesprin proteins and inner nuclear membrane Sun proteins. Interactions spanning the perinuclear space create nesprin–Sun complexes connecting the cytoskeleton to nuclear components. A search for proteins displaying a conserved C-terminal sequence present in nesprins 1–3 identified nesprin 4 (Nesp4), a new member of this family. Nesp4 is a kinesin-1-binding protein that displays Sun-dependent localization to the ONM. Expression of Nesp4 is associated with dramatic changes in cellular organization involving relocation of the centrosome and Golgi apparatus relative to the nucleus. These effects can be accounted for entirely by Nesp4's kinesin-binding function. The implication is that Nesp4 may contribute to microtubule-dependent nuclear positioning. PMID:19164528

  15. Fatty Acid-binding Proteins 1 and 2 Differentially Modulate the Activation of Peroxisome Proliferator-activated Receptor α in a Ligand-selective Manner.

    PubMed

    Hughes, Maria L R; Liu, Bonan; Halls, Michelle L; Wagstaff, Kylie M; Patil, Rahul; Velkov, Tony; Jans, David A; Bunnett, Nigel W; Scanlon, Martin J; Porter, Christopher J H

    2015-05-29

    Nuclear hormone receptors (NHRs) regulate the expression of proteins that control aspects of reproduction, development and metabolism, and are major therapeutic targets. However, NHRs are ubiquitous and participate in multiple physiological processes. Drugs that act at NHRs are therefore commonly restricted by toxicity, often at nontarget organs. For endogenous NHR ligands, intracellular lipid-binding proteins, including the fatty acid-binding proteins (FABPs), can chaperone ligands to the nucleus and promote NHR activation. Drugs also bind FABPs, raising the possibility that FABPs similarly regulate drug activity at the NHRs. Here, we investigate the ability of FABP1 and FABP2 (intracellular lipid-binding proteins that are highly expressed in tissues involved in lipid metabolism, including the liver and intestine) to influence drug-mediated activation of the lipid regulator peroxisome proliferator-activated receptor (PPAR) α. We show by quantitative fluorescence imaging and gene reporter assays that drug binding to FABP1 and FABP2 promotes nuclear localization and PPARα activation in a drug- and FABP-dependent manner. We further show that nuclear accumulation of FABP1 and FABP2 is dependent on the presence of PPARα. Nuclear accumulation of FABP on drug binding is driven largely by reduced nuclear egress rather than an increased rate of nuclear entry. Importin binding assays indicate that nuclear access occurs via an importin-independent mechanism. Together, the data suggest that specific drug-FABP complexes can interact with PPARα to effect nuclear accumulation of FABP and NHR activation. Because FABPs are expressed in a regionally selective manner, this may provide a means to tailor the patterns of NHR drug activation in a tissue-specific manner. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. [Glutamate-binding membrane proteins from human platelets].

    PubMed

    Gurevich, V S; Popov, Iu G; Gorodinskiĭ, A I; Dambinova, S A

    1991-09-01

    Solubilization of the total membrane fraction of human platelets in a 2% solution of sodium deoxycholate and subsequent affinity chromatography on glutamate agarose resulted in two protein fractions possessing a glutamate-binding activity. As can be evidenced from radioligand binding data, the first fraction contains two types of binding sites (Kd1 = 1 microM, Bmax 1 = 100 pmol/mg of protein; Kd2 = 9.3 microMm Bmax2 = 395 pmol/mg of protein). The second fraction has only one type of binding sites (Kd = 1 microM, Bmax = = 110 pmol/mg of protein). SDS-PAAG electrophoresis revealed the presence in the first fraction of proteins with Mr of 14, 24, 56 and 155 kDa, whereas the second fraction was found to contain 14, 46, 71 and 155 kDa proteins. Solid phase immunoenzymatic analysis using poly- and monoclonal specific antibodies against mammalian brain glutamate-binding proteins revealed a marked immunochemical similarity of the isolated protein fractions with human brain synaptic membrane glutamate-binding proteins.

  17. Protein Binding: Do We Ever Learn?▿

    PubMed Central

    Zeitlinger, Markus A.; Derendorf, Hartmut; Mouton, Johan W.; Cars, Otto; Craig, William A.; Andes, David; Theuretzbacher, Ursula

    2011-01-01

    Although the influence of protein binding (PB) on antibacterial activity has been reported for many antibiotics and over many years, there is currently no standardization for pharmacodynamic models that account for the impact of protein binding of antimicrobial agents in vitro. This might explain the somewhat contradictory results obtained from different studies. Simple in vitro models which compare the MIC obtained in protein-free standard medium versus a protein-rich medium are prone to methodological pitfalls and may lead to flawed conclusions. Within in vitro test systems, a range of test conditions, including source of protein, concentration of the tested antibiotic, temperature, pH, electrolytes, and supplements may influence the impact of protein binding. As new antibiotics with a high degree of protein binding are in clinical development, attention and action directed toward the optimization and standardization of testing the impact of protein binding on the activity of antibiotics in vitro become even more urgent. In addition, the quantitative relationship between the effects of protein binding in vitro and in vivo needs to be established, since the physiological conditions differ. General recommendations for testing the impact of protein binding in vitro are suggested. PMID:21537013

  18. Nuclear size is sensitive to NTF2 protein levels in a manner dependent on Ran binding.

    PubMed

    Vuković, Lidija D; Jevtić, Predrag; Zhang, Zhaojie; Stohr, Bradley A; Levy, Daniel L

    2016-03-15

    Altered nuclear size is associated with many cancers, and determining whether cancer-associated changes in nuclear size contribute to carcinogenesis necessitates an understanding of mechanisms of nuclear size regulation. Although nuclear import rates generally positively correlate with nuclear size, NTF2 levels negatively affect nuclear size, despite the role of NTF2 (also known as NUTF2) in nuclear recycling of the import factor Ran. We show that binding of Ran to NTF2 is required for NTF2 to inhibit nuclear expansion and import of large cargo molecules in Xenopus laevis egg and embryo extracts, consistent with our observation that NTF2 reduces the diameter of the nuclear pore complex (NPC) in a Ran-binding-dependent manner. Furthermore, we demonstrate that ectopic NTF2 expression in Xenopus embryos and mammalian tissue culture cells alters nuclear size. Finally, we show that increases in nuclear size during melanoma progression correlate with reduced NTF2 expression, and increasing NTF2 levels in melanoma cells is sufficient to reduce nuclear size. These results show a conserved capacity for NTF2 to impact on nuclear size, and we propose that NTF2 might be a new cancer biomarker. © 2016. Published by The Company of Biologists Ltd.

  19. Systematic discovery of Xist RNA binding proteins

    PubMed Central

    Chu, Ci; Zhang, Qiangfeng Cliff; da Rocha, Simão Teixeira; Flynn, Ryan A.; Bharadwaj, Maheetha; Calabrese, J. Mauro; Magnuson, Terry; Heard, Edith; Chang, Howard Y.

    2015-01-01

    Summary Noncoding RNAs (ncRNAs) function with associated proteins to effect complex structural and regulatory outcomes. To reveal the composition and dynamics of specific noncoding RNA- protein complexes (RNPs) in vivo, we developed comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS). ChIRP-MS analysis of four ncRNAs captures key protein interactors, including a U1-specific link to the 3′ RNA processing machinery. Xist, an essential lncRNA for X-chromosome inactivation (XCI), interacts with 81 proteins from chromatin modification, nuclear matrix, and RNA remodeling pathways. The Xist RNA-protein particle assembles in two steps coupled with the transition from pluripotency to differentiation. Specific interactors include HnrnpK that participates in Xist-mediated gene silencing and histone modifications, but not Xist localization and Drosophila Split ends homolog Spen that interacts via the A-repeat domain of Xist and is required for gene silencing. Thus, Xist lncRNA engages with proteins in a modular and developmentally controlled manner to coordinate chromatin spreading and silencing. PMID:25843628

  20. Identification of AOSC-binding proteins in neurons

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Nie, Qin; Xin, Xianliang; Geng, Meiyu

    2008-11-01

    Acidic oligosaccharide sugar chain (AOSC), a D-mannuronic acid oligosaccharide, derived from brown algae polysaccharide, has been completed Phase I clinical trial in China as an anti-Alzheimer’s Disease (AD) drug candidate. The identification of AOSC-binding protein(s) in neurons is very important for understanding its action mechanism. To determine the binding protein(s) of AOSC in neurons mediating its anti-AD activities, confocal microscopy, affinity chromatography, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used. Confocal microscopy analysis shows that AOSC binds to SH-SY5Y cells in concentration-, time-, and temperature-dependent fashions. The AOSC binding proteins were purified by affinity chromatography and identified by LC-MS/MS analysis. The results showed that there are 349 proteins binding AOSC, including clathrin, adaptor protein-2 (AP-2) and amyloid precursor protein (APP). These results suggest that the binding/entrance of AOSC to neurons is probably responsible for anti-AD activities.

  1. Monoclonal antibodies to human vitamin D-binding protein.

    PubMed Central

    Pierce, E A; Dame, M C; Bouillon, R; Van Baelen, H; DeLuca, H F

    1985-01-01

    Monoclonal antibodies to vitamin D-binding protein isolated from human serum have been produced. The antibodies obtained have been shown to be specific for human vitamin D-binding protein by three independent assays. The antibodies recognize human vitamin D-binding protein specifically in an enzyme-linked immunosorbent assay. Human vitamin D-binding protein is detected specifically in both pure and crude samples by a radiometric immunosorbent assay (RISA) and by an immunoprecipitation assay. The anti-human vitamin D-binding protein antibodies cross-react with monkey and pig vitamin D-binding protein, but not with vitamin D-binding protein from rat, mouse, or chicken, as determined by the RISA and immunoprecipitation assays. Images PMID:3936035

  2. Double-stranded telomeric DNA binding proteins: Diversity matters.

    PubMed

    Červenák, Filip; Juríková, Katarína; Sepšiová, Regina; Neboháčová, Martina; Nosek, Jozef; Tomáška, L'ubomír

    2017-01-01

    Telomeric sequences constitute only a small fraction of the whole genome yet they are crucial for ensuring genomic stability. This function is in large part mediated by protein complexes recruited to telomeric sequences by specific telomere-binding proteins (TBPs). Although the principal tasks of nuclear telomeres are the same in all eukaryotes, TBPs in various taxa exhibit a surprising diversity indicating their distinct evolutionary origin. This diversity is especially pronounced in ascomycetous yeasts where they must have co-evolved with rapidly diversifying sequences of telomeric repeats. In this article we (i) provide a historical overview of the discoveries leading to the current list of TBPs binding to double-stranded (ds) regions of telomeres, (ii) describe examples of dsTBPs highlighting their diversity in even closely related species, and (iii) speculate about possible evolutionary trajectories leading to a long list of various dsTBPs fulfilling the same general role(s) in their own unique ways.

  3. Acute exposure to progesterone attenuates cardiac contraction by modifying myofilament calcium sensitivity in the female mouse heart

    PubMed Central

    Feridooni, Hirad A.; MacDonald, Jennifer K.; Ghimire, Anjali; Pyle, W. Glen

    2017-01-01

    Acute application of progesterone attenuates cardiac contraction, although the underlying mechanisms are unclear. We investigated whether progesterone modified contraction in isolated ventricular myocytes and identified the Ca2+ handling mechanisms involved in female C57BL/6 mice (6–9 mo; sodium pentobarbital anesthesia). Cells were field-stimulated (4 Hz; 37°C) and exposed to progesterone (0.001–10.0 μM) or vehicle (35 min). Ca2+ transients (fura-2) and cell shortening were recorded simultaneously. Maximal concentrations of progesterone inhibited peak contraction by 71.4% (IC50 = 160 ± 50 nM; n = 12) and slowed relaxation by 75.4%. By contrast, progesterone had no effect on amplitudes or time courses of underlying Ca2+ transients. Progesterone (1 µM) also abbreviated action potential duration. When the duration of depolarization was controlled by voltage-clamp, progesterone attenuated contraction and slowed relaxation but did not affect Ca2+ currents, Ca2+ transients, sarcoplasmic reticulum (SR) content, or fractional release of SR Ca2+. Actomyosin MgATPase activity was assayed in myofilaments from hearts perfused with progesterone (1 μM) or vehicle (35 min). While maximal responses to Ca2+ were not affected by progesterone, myofilament Ca2+ sensitivity was reduced (EC50 = 0.94 ± 0.01 µM for control, n = 7 vs. 1.13 ± 0.05 μM for progesterone, n = 6; P < 0.05) and progesterone increased phosphorylation of myosin binding protein C. The effects on contraction were inhibited by lonaprisan (progesterone receptor antagonist) and levosimendan (Ca2+ sensitizer). Unlike results in females, progesterone had no effect on contraction or myofilament Ca2+ sensitivity in age-matched male mice. These data indicate that progesterone reduces myofilament Ca2+ sensitivity in female hearts, which may exacerbate manifestations of cardiovascular disease late in pregnancy when progesterone levels are high. NEW & NOTEWORTHY We investigated myocardial effects of acute

  4. Modeling Ionization Events iduced by Protein Protein Binding

    NASA Astrophysics Data System (ADS)

    Mitra, Rooplekha; Shyam, Radhey; Alexov, Emil

    2009-11-01

    The association of two or more biological macromolecules dramatically change the environment of the amino acids situated at binding interface and could change ionization states of titratable groups. The change of ionization due to the binding results in proton uptake/release and causes pH-dependence of the binding free energy. We apply computational method, as implemented in Multi Conformation Continuum Electrostatics (MCCE) algorithm, to study protonation evens on a large set of protein-protein complexes. Our results indicate that proton uptake/release is a common phenomena in protein binding since in vast majority of the cases (70%) the binding caused at least 0.5 units proton change. The proton uptake/release was further investigated with respect to interfacial area and charges of the monomers and it was found that macroscopic characteristics are not important determinants. Instead, charge complementarity across the interface and the number of unpaired ionizable groups at the interface are the primary source of proton uptake/release.

  5. Plant nuclear hormone receptors: a role for small molecules in protein-protein interactions.

    PubMed

    Lumba, Shelley; Cutler, Sean; McCourt, Peter

    2010-01-01

    Plant hormones are a group of chemically diverse small molecules that direct processes ranging from growth and development to biotic and abiotic stress responses. Surprisingly, genome analyses suggest that classic animal nuclear hormone receptor homologs do not exist in plants. It now appears that plants have co-opted several protein families to perceive hormones within the nucleus. In one solution to the problem, the hormones auxin and jasmonate (JA) act as “molecular glue” that promotes protein-protein interactions between receptor F-boxes and downstream corepressor targets. In another solution, gibberellins (GAs) bind and elicit a conformational change in a novel soluble receptor family related to hormone-sensitive lipases. Abscisic acid (ABA), like GA, also acts through an allosteric mechanism involving a START-domain protein. The molecular identification of plant nuclear hormone receptors will allow comparisons with animal nuclear receptors and testing of fundamental questions about hormone function in plant development and evolution.

  6. LINC Complexes Form by Binding of Three KASH Peptides to Domain Interfaces of Trimeric SUN Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosa, Brian A.; Rothballer, Andrea; Kutay, Ulrike

    Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the nuclear envelope and are composed of KASH and SUN proteins residing in the outer and inner nuclear membrane, respectively. LINC formation relies on direct binding of KASH and SUN in the perinuclear space. Thereby, molecular tethers are formed that can transmit forces for chromosome movements, nuclear migration, and anchorage. We present crystal structures of the human SUN2-KASH1/2 complex, the core of the LINC complex. The SUN2 domain is rigidly attached to a trimeric coiled coil that prepositions it to bind three KASH peptides. The peptides bind in three deep and expansivemore » grooves formed between adjacent SUN domains, effectively acting as molecular glue. In addition, a disulfide between conserved cysteines on SUN and KASH covalently links both proteins. The structure provides the basis of LINC complex formation and suggests a model for how LINC complexes might arrange into higher-order clusters to enhance force-coupling.« less

  7. Alternative splicing and the progesterone receptor in breast cancer

    PubMed Central

    Cork, David MW; Lennard, Thomas WJ; Tyson-Capper, Alison J

    2008-01-01

    Progesterone receptor status is a marker for hormone responsiveness and disease prognosis in breast cancer. Progesterone receptor negative tumours have generally been shown to have a poorer prognosis than progesterone receptor positive tumours. The observed loss of progesterone receptor could be through a range of mechanisms, including the generation of alternatively spliced progesterone receptor variants that are not detectable by current screening methods. Many progesterone receptor mRNA variants have been described with deletions of various whole, multiple or partial exons that encode differing protein functional domains. These variants may alter the progestin responsiveness of a tissue and contribute to the abnormal growth associated with breast cancer. Absence of specific functional domains from these spliced variants may also make them undetectable or indistinguishable from full length progesterone receptor by conventional antibodies. A comprehensive investigation into the expression profile and activity of progesterone receptor spliced variants in breast cancer is required to advance our understanding of tumour hormone receptor status. This, in turn, may aid the development of new biomarkers of disease prognosis and improve adjuvant treatment decisions. PMID:18557990

  8. Odorant-binding proteins from a primitive termite.

    PubMed

    Ishida, Yuko; Chiang, Vicky P; Haverty, Michael I; Leal, Walter S

    2002-09-01

    Hitherto, odorant-binding proteins (OBPs) have been identified from insects belonging to more highly evolved insect orders (Lepidoptera, Coleoptera, Diptera, Hymenoptera, and Hemiptera), whereas only chemosensory proteins have been identified from more primitive species, such as orthopteran and phasmid species. Here, we report for the first time the isolation and cloning of odorant-binding proteins from a primitive termite species, the dampwood termite. Zootermopsis nevadensis nevadensis (Isoptera: Termopsidae). A major antennae-specific protein was detected by native PAGE along with four other minor proteins, which were also absent in the extract from control tissues (hindlegs). Multiple cDNA cloning led to the full characterization of the major antennae-specific protein (ZnevOBP1) and to the identification of two other antennae-specific cDNAs, encoding putative odorant-binding proteins (ZnevOBP2 and ZnevOBP3). N-terminal amino acid sequencing of the minor antennal bands and cDNA cloning showed that olfaction in Z. n. nevadensis may involve multiple odorant-binding proteins. Database searches suggest that the OBPs from this primitive termite are homologues of the pheromone-binding proteins from scarab beetles and antennal-binding proteins from moths.

  9. U1 small nuclear ribonucleoprotein particle-specific proteins interact with the first and second stem-loops of U1 RNA, with the A protein binding directly to the RNA independently of the 70K and Sm proteins.

    PubMed Central

    Patton, J R; Habets, W; van Venrooij, W J; Pederson, T

    1989-01-01

    The U1 small nuclear ribonucleoprotein particle (U1 snRNP), a cofactor in pre-mRNA splicing, contains three proteins, termed 70K, A, and C, that are not present in the other spliceosome-associated snRNPs. We studied the binding of the A and C proteins to U1 RNA, using a U1 snRNP reconstitution system and an antibody-induced nuclease protection technique. Antibodies that reacted with the A and C proteins induced nuclease protection of the first two stem-loops of U1 RNA in reconstituted U1 snRNP. Detailed analysis of the antibody-induced nuclease protection patterns indicated the existence of relatively long-range protein-protein interactions in the U1 snRNP, with the 5' end of U1 RNA and its associated specific proteins interacting with proteins bound to the Sm domain near the 3' end. UV cross-linking experiments in conjunction with an A-protein-specific antibody demonstrated that the A protein bound directly to the U1 RNA rather than assembling in the U1 snRNP exclusively via protein-protein interactions. This conclusion was supported by additional experiments revealing that the A protein could bind to U1 RNA in the absence of bound 70K and Sm core proteins. Images PMID:2529425

  10. Computational search for aflatoxin binding proteins

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Jinfeng; Zhang, Lujia; He, Xiao; Zhang, John Z. H.

    2017-10-01

    Aflatoxin is one of the mycotoxins that contaminate various food products. Among various aflatoxin types (B1, B2, G1, G2 and M1), aflatoxin B1 is the most important and the most toxic one. In this study, through computational screening, we found that several proteins may bind specifically with different type of aflatoxins. Combination of theoretical methods including target fishing, molecular docking, molecular dynamics (MD) simulation, MM/PBSA calculation were utilized to search for new aflatoxin B1 binding proteins. A recently developed method for calculating entropic contribution to binding free energy called interaction entropy (IE) was employed to compute the binding free energy between the protein and aflatoxin B1. Through comprehensive comparison, three proteins, namely, trihydroxynaphthalene reductase, GSK-3b, and Pim-1 were eventually selected as potent aflatoxin B1 binding proteins. GSK-3b and Pim-1 are drug targets of cancers or neurological diseases. GSK-3b is the strongest binder for aflatoxin B1.

  11. Discriminating binding mechanisms of an intrinsically disordered protein via a multi-state coarse-grained model

    NASA Astrophysics Data System (ADS)

    Knott, Michael; Best, Robert B.

    2014-05-01

    Many proteins undergo a conformational transition upon binding to their cognate binding partner, with intrinsically disordered proteins (IDPs) providing an extreme example in which a folding transition occurs. However, it is often not clear whether this occurs via an "induced fit" or "conformational selection" mechanism, or via some intermediate scenario. In the first case, transient encounters with the binding partner favour transitions to the bound structure before the two proteins dissociate, while in the second the bound structure must be selected from a subset of unbound structures which are in the correct state for binding, because transient encounters of the incorrect conformation with the binding partner are most likely to result in dissociation. A particularly interesting situation involves those intrinsically disordered proteins which can bind to different binding partners in different conformations. We have devised a multi-state coarse-grained simulation model which is able to capture the binding of IDPs in alternate conformations, and by applying it to the binding of nuclear coactivator binding domain (NCBD) to either ACTR or IRF-3 we are able to determine the binding mechanism. By all measures, the binding of NCBD to either binding partner appears to occur via an induced fit mechanism. Nonetheless, we also show how a scenario closer to conformational selection could arise by choosing an alternative non-binding structure for NCBD.

  12. Selective progesterone receptor modulators 1: use during pregnancy.

    PubMed

    Benagiano, Giuseppe; Bastianelli, Carlo; Farris, Manuela

    2008-10-01

    A large number of synthetic compounds known as selective progesterone receptor modulators can bind to progesterone receptors: the ligands exhibit a spectrum of activities ranging from pure antagonism to a mixture of agonism and antagonism. Only a dozen or so selective progesterone receptor modulators have been tested to any significant extent: among them are mifepristone (RU 486), asoprisnil (J867), onapristone (ZK 98 299), ulipristal (CDB 2914), Proellex() (CDB 4124), ORG 33628 and ORG 31710. Their clinical applications during pregnancy are discussed. A careful evaluation of existing major review papers and recently published articles was carried out focusing on mifepristone, the most widely studied selective progesterone receptor modulator, which was first used for the voluntary interruption of an early gestation. Other selective progesterone receptor modulators, especially those with partial agonist action, have shown little activity during pregnancy in animal models. Besides early and late voluntary interruption of gestation, selective progesterone receptor modulators have been tested in a variety of obstetrical situations: to obtain a ripening of the cervix, for the medical management of early embryonic loss and foetal death, for the induction of labour at term and for the medical treatment of extra-uterine pregnancies. The only applications that seem worthy of large-scale utilisation during pregnancy are voluntary interruption of early and late gestation, medical management of early delayed miscarriage and late foetal demise.

  13. Selective progesterone receptor modulators 2: use in reproductive medicine.

    PubMed

    Benagiano, Giuseppe; Bastianelli, Carlo; Farris, Manuela

    2008-10-01

    Synthetic compounds can bind to progesterone receptors and these progesterone receptor ligands exhibit a spectrum of activities ranging from pure antagonism to a mixture of agonism and antagonism. These substances have been classified as antiprogestins or as selective progesterone receptor modulators. There are several hundred selective progesterone receptor modulators available, although only a dozen or so have been evaluated to any significant extent. The best-known selective progesterone receptor modulators are mifepristone (RU 486), asoprisnil (J 867), onapristone (ZK 98299), ulipristal (CDB 2914), Proellex() (CDB 4124), ORG 33628 and ORG 31710. A careful evaluation of existing major review papers and of recently published articles was carried out for the indications under review, focusing not only on mifepristone, but also on those other selective progesterone receptor modulators for which data are available. Outside pregnancy, selective progesterone receptor modulators are used or have been tested clinically for a number of indications in reproductive medicine: as oral contraceptives, alone or in combination with a progestin, to improve cycle control in users of progestin-only contraceptives, as emergency contraceptives, for the medical treatment of uterine fibroids, in cases of endometriosis and premenstrual syndrome and to improve ovarian stimulation prior to in vitro fertilisation. In the authors' opinion, as of today, few applications outside pregnancy seem worthy of large-scale use: emergency contraception and long-term medical management of uterine fibroids and possibly of endometriosis.

  14. Progesterone Receptors: Form and Function in Brain

    PubMed Central

    Brinton, Roberta Diaz; Thompson, Richard F.; Foy, Michael R.; Baudry, Michel; Wang, JunMing; Finch, Caleb E; Morgan, Todd E.; Stanczyk, Frank Z.; Pike, Christian J.; Nilsen, Jon

    2008-01-01

    Emerging data indicate that progesterone has multiple non-reproductive functions in the central nervous system to regulate cognition, mood, inflammation, mitochondrial function, neurogenesis and regeneration, myelination and recovery from traumatic brain injury. Progesterone-regulated neural responses are mediated by an array of progesterone receptors (PR) that include the classic nuclear PRA and PRB receptors and splice variants of each, the seven transmembrane domain 7TMPRβ and the membrane-associated 25-Dx PR (PGRMC1). These PRs induce classic regulation of gene expression while also transducing signaling cascades that originate at the cell membrane and ultimately activate transcription factors. Remarkably, PRs are broadly expressed throughout the brain and can be detected in every neural cell type. The distribution of PRs beyond hypothalamic borders, suggests a much broader role of progesterone in regulating neural function. Despite the large body of evidence regarding progesterone regulation of reproductive behaviors and estrogen-inducible responses as well as effects of progesterone metabolite neurosteroids, much remains to be discovered regarding the functional outcomes resulting from activation of the complex array of PRs in brain by gonadally and / or glial derived progesterone. Moreover, the impact of clinically used progestogens and developing selective PR modulators for targeted outcomes in brain is a critical avenue of investigation as the non-reproductive functions of PRs have far-reaching implications for hormone therapy to maintain neurological health and function throughout menopausal aging. PMID:18374402

  15. Somatomedin-1 binding protein-3: insulin-like growth factor-1 binding protein-3, insulin-like growth factor-1 carrier protein.

    PubMed

    2003-01-01

    Somatomedin-1 binding protein-3 [insulin-like growth factor-1 binding protein-3, SomatoKine] is a recombinant complex of insulin-like growth factor-1 (rhIGF-1) and binding protein-3 (IGFBP-3), which is the major circulating somatomedin (insulin-like growth factor) binding protein; binding protein-3 regulates the delivery of somatomedin-1 to target tissues. Somatomedin-1 binding protein-3 has potential as replacement therapy for somatomedin-1 which may become depleted in indications such as major surgery, organ damage/failure and traumatic injury, resulting in catabolism. It also has potential for the treatment of osteoporosis; diseases associated with protein wasting including chronic renal failure, cachexia and severe trauma; and to attenuate cardiac dysfunction in a variety of disease states, including after severe burn trauma. Combined therapy with somatomedin-1 and somatomedin-1 binding protein-3 would prolong the duration of action of somatomedin-1 and would reduce or eliminate some of the undesirable effects associated with somatomedin-1 monotherapy. Somatomedin-1 is usually linked to binding protein-3 in the normal state of the body, and particular proteases clip them apart in response to stresses and release somatomedin-1 as needed. Therefore, somatomedin-1 binding protein-3 is a self-dosing system and SomatoKine would augment the natural supply of these linked compounds. Somatomedin-1 binding protein-3 was developed by Celtrix using its proprietary recombinant protein production technology. Subsequently, Celtrix was acquired by Insmed Pharmaceuticals on June 1 2000. Insmed and Avecia, UK, have signed an agreement for the manufacturing of SomatoKine and its components, IGF-1 and binding protein-3. CGMP clinical production of SomatoKine and its components will be done in Avecia's Advanced Biologics Centre, Billingham, UK, which manufactures recombinant-based medicines and vaccines with a capacity of up to 1000 litres. In 2003, manufacturing of SomatoKine is

  16. C/EBPβ LIP and c-Jun synergize to regulate expression of the murine progesterone receptor.

    PubMed

    Wang, Weizhong; Do, Han Ngoc; Aupperlee, Mark D; Durairaj, Srinivasan; Flynn, Emily E; Miksicek, Richard J; Haslam, Sandra Z; Schwartz, Richard C

    2018-06-02

    CCAAT/enhancer binding protein β (C/EBPβ) is required for murine mammary ductal morphogenesis and alveologenesis. Progesterone is critical for proliferation and alveologenesis in adult mammary glands, and there is a similar requirement for progesterone receptor isoform B (PRB) in alveologenesis. We examined C/EBPβ regulation of PR expression. All three C/EBPβ isoforms, including typically inhibitory LIP, transactivated the PR promoter. LIP, particularly, strongly synergized with c-Jun to drive PR transcription. Endogenous C/EBPβ and c-Jun stimulated a PR promoter-reporter and these two factors showed promoter occupancy on the endogenous PR gene. Additionally, LIP overexpression elevated endogenous PR protein expression. In pregnancy, both PRB and the relative abundance of LIP among C/EBPβ isoforms increase. Consistent with a role in PRB expression, in vivo C/EBPβ and PR isoform A expression showed mutually exclusive localization in mammary epithelium, while C/EBPβ and PRB largely co-localized. We suggest a critical role for C/EBPβ, particularly LIP, in PRB expression. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Tighter Ligand Binding Can Compensate for Impaired Stability of an RNA-Binding Protein.

    PubMed

    Wallis, Christopher P; Richman, Tara R; Filipovska, Aleksandra; Rackham, Oliver

    2018-06-15

    It has been widely shown that ligand-binding residues, by virtue of their orientation, charge, and solvent exposure, often have a net destabilizing effect on proteins that is offset by stability conferring residues elsewhere in the protein. This structure-function trade-off can constrain possible adaptive evolutionary changes of function and may hamper protein engineering efforts to design proteins with new functions. Here, we present evidence from a large randomized mutant library screen that, in the case of PUF RNA-binding proteins, this structural relationship may be inverted and that active-site mutations that increase protein activity are also able to compensate for impaired stability. We show that certain mutations in RNA-protein binding residues are not necessarily destabilizing and that increased ligand-binding can rescue an insoluble, unstable PUF protein. We hypothesize that these mutations restabilize the protein via thermodynamic coupling of protein folding and RNA binding.

  18. Interaction of glucocorticoids and progesterone derivatives with human serum albumin.

    PubMed

    Abboud, Rola; Akil, Mohammad; Charcosset, Catherine; Greige-Gerges, Hélène

    2017-10-01

    Glucocorticoids (GCs) and progesterone derivatives (PGDs) are steroid hormones with well-known biological activities. Their interaction with human serum albumin (HSA) may control their distribution. Their binding to albumin is poorly studied in literature. This paper deals with the interaction of a series of GCs (cortisol, cortisone, prednisolone, prednisone, 6-methylprednisolone and 9-fluorocortisol acetate) and PGDs (progesterone, hydroxylated PGDs, methylated PGDs and dydrogesterone) with HSA solution (pH 7.4) at molar ratios steroid to HSA varying from 0 to 10. Similar titrations were conducted using Trp aqueous solution. Fluorescence titration method and Fourier transform infrared spectroscopy (FTIR) are used. PGDs (except dydrogesterone), cortisone and 9-fluorocortisol acetate affected weakly the fluorescence of Trp in buffer solution while they decreased in a dose-dependent manner that of HSA. Their binding constants to HSA were then calculated. Moreover, displacement experiment was performed using bilirubin as a site marker. The binding constant of bilirubin to albumin was determined in the absence and presence of a steroid at a molar ratio steroid to HSA of 1. The results indicate that the steroids bind to HSA at site I in a pocket different from that of bilirubin. Furthermore, the peak positions of amide I and amide II bands of HSA were shifted in the presence of progesterone, dydrogesterone and GCs. Also a variation was observed in amide I region indicating the formation of hydrogen bonding between albumin and steroids. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Nuclear export of ubiquitinated proteins via the UBIN-POST system

    PubMed Central

    Sugihara, Munechika; Morito, Daisuke; Iemura, Shun-ichiro; Natsume, Tohru; Nagata, Kazuhiro

    2018-01-01

    Although mechanisms for protein homeostasis in the cytosol have been studied extensively, those in the nucleus remain largely unknown. Here, we identified that a protein complex mediates export of polyubiquitinated proteins from the nucleus to the cytosol. UBIN, a ubiquitin-associated (UBA) domain-containing protein, shuttled between the nucleus and the cytosol in a CRM1-dependent manner, despite the lack of intrinsic nuclear export signal (NES). Instead, the UBIN binding protein polyubiquitinated substrate transporter (POST) harboring an NES shuttled UBIN through nuclear pores. UBIN bound to polyubiquitin chain through its UBA domain, and the UBIN-POST complex exported them from the nucleus to the cytosol. Ubiquitinated proteins accumulated in the cytosol in response to proteasome inhibition, whereas cotreatment with CRM1 inhibitor led to their accumulation in the nucleus. Our results suggest that ubiquitinated proteins are exported from the nucleus to the cytosol in the UBIN-POST complex-dependent manner for the maintenance of nuclear protein homeostasis. PMID:29666234

  20. Nuclear export of ubiquitinated proteins via the UBIN-POST system.

    PubMed

    Hirayama, Shoshiro; Sugihara, Munechika; Morito, Daisuke; Iemura, Shun-Ichiro; Natsume, Tohru; Murata, Shigeo; Nagata, Kazuhiro

    2018-05-01

    Although mechanisms for protein homeostasis in the cytosol have been studied extensively, those in the nucleus remain largely unknown. Here, we identified that a protein complex mediates export of polyubiquitinated proteins from the nucleus to the cytosol. UBIN, a ubiquitin-associated (UBA) domain-containing protein, shuttled between the nucleus and the cytosol in a CRM1-dependent manner, despite the lack of intrinsic nuclear export signal (NES). Instead, the UBIN binding protein polyubiquitinated substrate transporter (POST) harboring an NES shuttled UBIN through nuclear pores. UBIN bound to polyubiquitin chain through its UBA domain, and the UBIN-POST complex exported them from the nucleus to the cytosol. Ubiquitinated proteins accumulated in the cytosol in response to proteasome inhibition, whereas cotreatment with CRM1 inhibitor led to their accumulation in the nucleus. Our results suggest that ubiquitinated proteins are exported from the nucleus to the cytosol in the UBIN-POST complex-dependent manner for the maintenance of nuclear protein homeostasis. Copyright © 2018 the Author(s). Published by PNAS.

  1. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Qi-Wang; Zou, Jin-Feng; Wang, Xin

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1-17 and 18-36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNAmore » binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome.« less

  2. Neonatal Progesterone Programs Adult Uterine Responses to Progesterone and Susceptibility to Uterine Dysfunction

    PubMed Central

    Rumi, M. A. Karim; Kubota, Kaiyu; Chakraborty, Damayanti; Chien, Jeremy; Roby, Katherine F.

    2015-01-01

    In this report, we investigated the consequences of neonatal progesterone exposure on adult rat uterine function. Female pups were subcutaneously injected with vehicle or progesterone from postnatal days 3 to 9. Early progesterone exposure affected endometrial gland biogenesis, puberty, decidualization, and fertility. Because decidualization and pregnancy success are directly linked to progesterone action on the uterus, we investigated the responsiveness of the adult uterus to progesterone. We first identified progesterone-dependent uterine gene expression using RNA sequencing and quantitative RT-PCR in Holtzman Sprague-Dawley rats and progesterone-resistant Brown Norway rats. The impact of neonatal progesterone treatment on adult uterine progesterone responsiveness was next investigated using quantitative RT-PCR. Progesterone resistance affected the spectrum and total number of progesterone-responsive genes and the magnitude of uterine responses for a subset of progesterone targets. Several progesterone-responsive genes in adult uterus exhibited significantly dampened responses in neonatally progesterone-treated females compared with those of vehicle-treated controls, whereas other progesterone-responsive transcripts did not differ between female rats exposed to vehicle or progesterone as neonates. The organizational actions of progesterone on the uterus were dependent on signaling through the progesterone receptor but not estrogen receptor 1. To summarize, neonatal progesterone exposure leads to disturbances in endometrial gland biogenesis, progesterone resistance, and uterine dysfunction. Neonatal progesterone effectively programs adult uterine responsiveness to progesterone. PMID:26204463

  3. RNA buffers the phase separation behavior of prion-like RNA binding proteins.

    PubMed

    Maharana, Shovamayee; Wang, Jie; Papadopoulos, Dimitrios K; Richter, Doris; Pozniakovsky, Andrey; Poser, Ina; Bickle, Marc; Rizk, Sandra; Guillén-Boixet, Jordina; Franzmann, Titus M; Jahnel, Marcus; Marrone, Lara; Chang, Young-Tae; Sterneckert, Jared; Tomancak, Pavel; Hyman, Anthony A; Alberti, Simon

    2018-05-25

    Prion-like RNA binding proteins (RBPs) such as TDP43 and FUS are largely soluble in the nucleus but form solid pathological aggregates when mislocalized to the cytoplasm. What keeps these proteins soluble in the nucleus and promotes aggregation in the cytoplasm is still unknown. We report here that RNA critically regulates the phase behavior of prion-like RBPs. Low RNA/protein ratios promote phase separation into liquid droplets, whereas high ratios prevent droplet formation in vitro. Reduction of nuclear RNA levels or genetic ablation of RNA binding causes excessive phase separation and the formation of cytotoxic solid-like assemblies in cells. We propose that the nucleus is a buffered system in which high RNA concentrations keep RBPs soluble. Changes in RNA levels or RNA binding abilities of RBPs cause aberrant phase transitions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. De novo design of RNA-binding proteins with a prion-like domain related to ALS/FTD proteinopathies.

    PubMed

    Mitsuhashi, Kana; Ito, Daisuke; Mashima, Kyoko; Oyama, Munenori; Takahashi, Shinichi; Suzuki, Norihiro

    2017-12-04

    Aberrant RNA-binding proteins form the core of the neurodegeneration cascade in spectrums of disease, such as amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD). Six ALS-related molecules, TDP-43, FUS, TAF15, EWSR1, heterogeneous nuclear (hn)RNPA1 and hnRNPA2 are RNA-binding proteins containing candidate mutations identified in ALS patients and those share several common features, including harboring an aggregation-prone prion-like domain (PrLD) containing a glycine/serine-tyrosine-glycine/serine (G/S-Y-G/S)-motif-enriched low-complexity sequence and rich in glutamine and/or asparagine. Additinally, these six molecules are components of RNA granules involved in RNA quality control and become mislocated from the nucleus to form cytoplasmic inclusion bodies (IBs) in the ALS/FTD-affected brain. To reveal the essential mechanisms involved in ALS/FTD-related cytotoxicity associated with RNA-binding proteins containing PrLDs, we designed artificial RNA-binding proteins harboring G/S-Y-G/S-motif repeats with and without enriched glutamine residues and nuclear-import/export-signal sequences and examined their cytotoxicity in vitro. These proteins recapitulated features of ALS-linked molecules, including insoluble aggregation, formation of cytoplasmic IBs and components of RNA granules, and cytotoxicity instigation. These findings indicated that these artificial RNA-binding proteins mimicked features of ALS-linked molecules and allowed the study of mechanisms associated with gain of toxic functions related to ALS/FTD pathogenesis.

  5. RNF38 encodes a nuclear ubiquitin protein ligase that modifies p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheren, Jamie E.; Kassenbrock, C. Kenneth, E-mail: ken.kassenbrock@ucdenver.edu; Department of Biology, Colorado State University, Fort Collins, CO 80523-1878

    2013-11-01

    Highlights: •RNF38 is shown to be a nuclear protein with a bipartite nuclear localization signal. •RNF38 protein is purified and shown to have ubiquitin protein ligase (E3) activity. •We show that RNF38 binds p53 and can ubiquitinate p53 in vitro. •Overexpression of RNF38 increases p53 ubiquitination in HEK293T cells. •Overexpression of RNF38 in HEK293T cells alters p53 localization. -- Abstract: The RNF38 gene encodes a RING finger protein of unknown function. Here we demonstrate that RNF38 is a functional ubiquitin protein ligase (E3). We show that RNF38 isoform 1 is localized to the nucleus by a bipartite nuclear localization sequencemore » (NLS). We confirm that RNF38 is a binding partner of p53 and demonstrate that RNF38 can ubiquitinate p53 in vitro and in vivo. Finally, we show that overexpression of RNF38 in HEK293T cells results in relocalization of p53 to discrete foci associated with PML nuclear bodies. These results suggest RNF38 is an E3 ubiquitin ligase that may play a role in regulating p53.« less

  6. Solution Model of the Intrinsically Disordered Polyglutamine Tract-Binding Protein-1

    PubMed Central

    Rees, Martin; Gorba, Christian; de Chiara, Cesira; Bui, Tam T.T.; Garcia-Maya, Mitla; Drake, Alex F.; Okazawa, Hitoshi; Pastore, Annalisa; Svergun, Dmitri; Chen, Yu Wai

    2012-01-01

    Polyglutamine tract-binding protein-1 (PQBP-1) is a 265-residue nuclear protein that is involved in transcriptional regulation. In addition to its role in the molecular pathology of the polyglutamine expansion diseases, mutations of the protein are associated with X-linked mental retardation. PQBP-1 binds specifically to glutamine repeat sequences and proline-rich regions, and interacts with RNA polymerase II and the spliceosomal protein U5-15kD. In this work, we obtained a biophysical characterization of this protein by employing complementary structural methods. PQBP-1 is shown to be a moderately compact but largely disordered molecule with an elongated shape, having a Stokes radius of 3.7 nm and a maximum molecular dimension of 13 nm. The protein is monomeric in solution, has residual β-structure, and is in a premolten globule state that is unaffected by natural osmolytes. Using small-angle x-ray scattering data, we were able to generate a low-resolution, three-dimensional model of PQBP-1. PMID:22500761

  7. Rat leucine-rich protein binds and activates the promoter of the beta isoform of Ca2+/calmodulin-dependent protein kinase II gene.

    PubMed

    Ochiai, Nagahiro; Masumoto, Shuji; Sakagami, Hiroyuki; Yoshimura, Yoshiyuki; Yamauchi, Takashi

    2007-05-01

    We previously found the neuronal cell-type specific promoter and binding partner of the beta isoform of Ca(2+)/calmodulin-dependent protein kinase II (beta CaM kinase II) in rat brain [Donai, H., Morinaga, H., Yamauchi, T., 2001. Genomic organization and neuronal cell type specific promoter activity of beta isoform of Ca(2+)/calmodulin-dependent protein kinase II of rat brain. Mol. Brain Res. 94, 35-47]. In the present study, we purified a protein that binds specifically a promoter region of beta CaM kinase II gene from a nuclear extract of the rat cerebellum using DEAE-cellulose column chromatography, ammonium sulfate fractionation, gel filtration and polyacrylamide gel electrophoresis. The purified protein was identified as rat leucine-rich protein 157 (rLRP157) using tandem mass spectrometry. Then, we prepared its cDNA by reverse transcriptase-polymerase chain reaction (RT-PCR) from poly(A)(+)RNA of rat cerebellum. The rLRP157 cDNA was introduced into mouse neuroblastomaxrat glioma hybrid NG108-15 cells, and cells stably expressing rLRP157 (NG/LRP cells) were isolated. Binding of rLRP157 with the promoter sequence was confirmed by electrophoretic mobility shift assay using nuclear extract of NG/LRP cells. A luciferase reporter gene containing a promoter of beta CaM kinase II was transiently expressed in NG/LRP cells. Under the conditions, the promoter activity was enhanced about 2.6-fold in NG/LRP cells as compared with wild-type cells. The expression of rLRP157 mRNA was paralleled with that of beta CaM kinase II in the adult and embryo rat brain detected by in situ hybridization. Nuclear localization of rLRP157 was confirmed using GFP-rLRP157 fusion protein investigated under a confocal microscope. These results indicate that rLRP157 is one of the proteins binding to, and regulating the activity of, the promoter of beta CaM kinase II.

  8. Structural determinants of nuclear export signal orientation in binding to exportin CRM1

    DOE PAGES

    Fung, Ho Yee Joyce; Fu, Szu -Chin; Brautigam, Chad A.; ...

    2015-09-08

    The Chromosome Region of Maintenance 1 (CRM1) protein mediates nuclear export of hundreds of proteins through recognition of their nuclear export signals (NESs), which are highly variable in sequence and structure. The plasticity of the CRM1-NES interaction is not well understood, as there are many NES sequences that seem incompatible with structures of the NES-bound CRM1 groove. Crystal structures of CRM1 bound to two different NESs with unusual sequences showed the NES peptides binding the CRM1 groove in the opposite orientation (minus) to that of previously studied NESs (plus). A comparison of minus and plus NESs identified structural and sequencemore » determinants for NES orientation. The binding of NESs to CRM1 in both orientations results in a large expansion in NES consensus patterns and therefore a corresponding expansion of potential NESs in the proteome.« less

  9. Clinical role of protein binding of quinolones.

    PubMed

    Bergogne-Bérézin, Eugénie

    2002-01-01

    Protein binding of antibacterials in plasma and tissues has long been considered a component of their pharmacokinetic parameters, playing a potential role in distribution, excretion and therapeutic effectiveness. Since the beginning of the 'antibacterial era', this factor has been extensively analysed for all antibacterial classes, showing that wide variations of the degree of protein binding occur even in the same antibacterial class, as with beta-lactams. As the understanding of protein binding grew, the complexity of the binding system was increasingly perceived and its dynamic character described. Studies of protein binding of the fluoroquinolones have shown that the great majority of these drugs exhibit low protein binding, ranging from approximately 20 to 40% in plasma, and that they are bound predominantly to albumin. The potential role in pharmacokinetics-pharmacodynamics of binding of fluoroquinolones to plasma, tissue and intracellular proteins has been analysed, but it has not been established that protein binding has any significant direct or indirect impact on therapeutic effectiveness. Regarding the factors influencing the tissue distribution of antibacterials, physicochemical characteristics and the small molecular size of fluoroquinolones permit a rapid penetration into extravascular sites and intracellularly, with a rapid equilibrium being established between intravascular and extravascular compartments. The high concentrations of these drugs achieved in tissues, body fluids and intracellularly, in addition to their wide antibacterial spectrum, mean that fluoroquinolones have therapeutic effectiveness in a large variety of infections. The tolerability of quinolones has generally been reported as good, based upon long experience in using pefloxacin, ciprofloxacin and ofloxacin in clinical practice. Among more recently developed molecules, good tolerability has been reported for levofloxacin, moxifloxacin and gatifloxacin, but certain other new

  10. Conservation of Matrix Attachment Region-Binding Filament-Like Protein 1 among Higher Plants1

    PubMed Central

    Harder, Patricia A.; Silverstein, Rebecca A.; Meier, Iris

    2000-01-01

    The interaction of chromatin with the nuclear matrix via matrix attachment regions (MARs) on the DNA is considered to be of fundamental importance for higher-order chromatin organization and the regulation of gene expression. We have previously isolated a novel nuclear matrix-localized protein (MFP1) from tomato (Lycopersicon esculentum) that preferentially binds to MAR DNA. Tomato MFP1 has a predicted filament-protein-like structure and is associated with the nuclear envelope via an N-terminal targeting domain. Based on the antigenic relationship, we report here that MFP1 is conserved in a large number of dicot and monocot species. Several cDNAs were cloned from tobacco (Nicotiana tabacum) and shown to correspond to two tobacco MFP1 genes. Comparison of the primary and predicted secondary structures of MFP1 from tomato, tobacco, and Arabidopsis indicates a high degree of conservation of the N-terminal targeting domain, the overall putative coiled-coil structure of the protein, and the C-terminal DNA-binding domain. In addition, we show that tobacco MFP1 is regulated in an organ-specific and developmental fashion, and that this regulation occurs at the level of transcription or RNA stability. PMID:10631266

  11. The complexity of minocycline serum protein binding.

    PubMed

    Zhou, Jian; Tran, Brian T; Tam, Vincent H

    2017-06-01

    Serum protein binding is critical for understanding the pharmacology of antimicrobial agents. Tigecycline and eravacycline were previously reported to have atypical non-linear protein binding; the percentage of free fraction decreased with increasing total concentration. In this study, we extended the investigation to other tetracyclines and examined the factors that might impact protein binding. Different minocycline concentrations (0.5-50 mg/L) and perfusion media (saline, 0.1 M HEPES buffer and 0.1 and 1 M PBS) were examined by in vitro microdialysis. After equilibration, two dialysate samples were taken from each experiment and the respective antimicrobial agent concentrations were analysed by validated LC-MS/MS methods. For comparison, the serum protein bindings of doxycycline and levofloxacin were also determined. The free fraction of minocycline decreased with increasing total concentration, and the results depended on the perfusion media used. The trends of minocycline protein binding in mouse and human sera were similar. In addition, serum protein binding of doxycycline showed the same concentration-dependent trend as minocycline, while the results of levofloxacin were concentration independent. The serum protein bindings of minocycline and doxycycline are negatively correlated with their total concentrations. It is possible that all tetracyclines share the same pharmacological property. Moreover, the specific perfusion media used could also impact the results of microdialysis. Additional studies are warranted to understand the mechanism(s) and clinical implications of serum protein binding of tetracyclines. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Rational design of orally-active, pyrrolidine-based progesterone receptor partial agonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Scott K.; Washburn, David G.; Frazee, James S.

    2010-09-03

    Using the X-ray crystal structure of an amide-based progesterone receptor (PR) partial agonist bound to the PR ligand binding domain, a novel PR partial agonist class containing a pyrrolidine ring was designed. Members of this class of N-alkylpyrrolidines demonstrate potent and highly selective partial agonism of the progesterone receptor, and one of these analogs was shown to be efficacious upon oral dosing in the OVX rat model of estrogen opposition.

  13. Surface expression of heterogeneous nuclear RNA binding protein M4 on Kupffer cell relates to its function as a carcinoembryonic antigen receptor.

    PubMed

    Bajenova, Olga; Stolper, Eugenia; Gapon, Svetlana; Sundina, Natalia; Zimmer, Regis; Thomas, Peter

    2003-11-15

    Elevated concentrations of carcinoembryonic antigen (CEA) in the blood are associated with the development of hepatic metastases from colorectal cancers. Clearance of circulating CEA occurs through endocytosis by liver macrophages, Kupffer cells. Previously we identified heterogeneous nuclear ribonucleoproteins M4 (hnRNP M4) as a receptor (CEAR) for CEA. HnRNP M4 has two isoform proteins (p80, p76), the full-length hnRNP M4 (CEARL) and a truncated form (CEARS) with a deletion of 39 amino acids between RNA binding domains 1 and 2, generated by alternative splicing. The present study was undertaken to clarify any isoform-specific differences in terms of their function as CEA receptor and localization. We develop anti-CEAR isoform-specific antibodies and show that both CEAR splicing isoforms are expressed on the surface of Kupffer cells and can function as CEA receptor. Alternatively, in P388D1 macrophages CEARS protein has nuclear and CEARL has cytoplasmic localization. In MIP101 colon cancer and HeLa cells the CEARS protein is localized to the nucleus and CEARL to the cytoplasm. These findings imply that different functions are assigned to CEAR isoforms depending on the cell type. The search of 39 amino acids deleted region against the Prosite data base revealed the presence of N-myristylation signal PGGPGMITIP that may be involved in protein targeting to the plasma membrane. Overall, this report demonstrates that the cellular distribution, level of expression, and relative amount of CEARL and CEARS isoforms determine specificity for CEA binding and the expression of alternative spliced forms of CEAR is regulated in a tissue-specific manner.

  14. Special AT-rich sequence binding protein 1 promotes tumor growth and metastasis of esophageal squamous cell carcinoma.

    PubMed

    Ma, Jun; Wu, Kaiming; Zhao, Zhenxian; Miao, Rong; Xu, Zhe

    2017-03-01

    Esophageal squamous cell carcinoma is one of the most aggressive malignancies worldwide. Special AT-rich sequence binding protein 1 is a nuclear matrix attachment region binding protein which participates in higher order chromatin organization and tissue-specific gene expression. However, the role of special AT-rich sequence binding protein 1 in esophageal squamous cell carcinoma remains unknown. In this study, western blot and quantitative real-time polymerase chain reaction analysis were performed to identify differentially expressed special AT-rich sequence binding protein 1 in a series of esophageal squamous cell carcinoma tissue samples. The effects of special AT-rich sequence binding protein 1 silencing by two short-hairpin RNAs on cell proliferation, migration, and invasion were assessed by the CCK-8 assay and transwell assays in esophageal squamous cell carcinoma in vitro. Special AT-rich sequence binding protein 1 was significantly upregulated in esophageal squamous cell carcinoma tissue samples and cell lines. Silencing of special AT-rich sequence binding protein 1 inhibited the proliferation of KYSE450 and EC9706 cells which have a relatively high level of special AT-rich sequence binding protein 1, and the ability of migration and invasion of KYSE450 and EC9706 cells was distinctly suppressed. Special AT-rich sequence binding protein 1 could be a potential target for the treatment of esophageal squamous cell carcinoma and inhibition of special AT-rich sequence binding protein 1 may provide a new strategy for the prevention of esophageal squamous cell carcinoma invasion and metastasis.

  15. Surface properties of adipocyte lipid-binding protein: Response to lipid binding, and comparison with homologous proteins.

    PubMed

    LiCata, V J; Bernlohr, D A

    1998-12-01

    Adipocyte lipid-binding protein (ALBP) is one of a family of intracellular lipid-binding proteins (iLBPs) that bind fatty acids, retinoids, and other hydrophobic ligands. The different members of this family exhibit a highly conserved three-dimensional structure; and where structures have been determined both with (holo) and without (apo) bound lipid, observed conformational changes are extremely small (Banaszak, et al., 1994, Adv. Prot. Chem. 45, 89; Bernlohr, et al., 1997, Annu. Rev. Nutr. 17, 277). We have examined the electrostatic, hydrophobic, and water accessible surfaces of ALBP in the apo form and of holo forms with a variety of bound ligands. These calculations reveal a number of previously unrecognized changes between apo and holo ALBP, including: 1) an increase in the overall protein surface area when ligand binds, 2) expansion of the binding cavity when ligand is bound, 3) clustering of individual residue exposure increases in the area surrounding the proposed ligand entry portal, and 4) ligand-binding dependent variation in the topology of the electrostatic potential in the area surrounding the ligand entry portal. These focused analyses of the crystallographic structures thus reveal a number of subtle but consistent conformational and surface changes that might serve as markers for differential targeting of protein-lipid complexes within the cell. Most changes are consistent from ligand to ligand, however there are some ligand-specific changes. Comparable calculations with intestinal fatty-acid-binding protein and other vertebrate iLBPs show differences in the electrostatic topology, hydrophobic topology, and in localized changes in solvent exposure near the ligand entry portal. These results provide a basis toward understanding the functional and mechanistic differences among these highly structurally homologous proteins. Further, they suggest that iLBPs from different tissues exhibit one of two predominant end-state structural distributions of the

  16. WINGLESS (WNT) signaling is a progesterone target for rat uterine stromal cell proliferation

    PubMed Central

    Talbott, Alex; Bhusri, Anuradha; Krumsick, Zach; Foster, Sierra; Wormington, Joshua; Kimler, Bruce F

    2016-01-01

    Preparation of mammalian uterus for embryo implantation requires a precise sequence of cell proliferation. In rodent uterus, estradiol stimulates proliferation of epithelial cells. Progesterone operates as a molecular switch and redirects proliferation to the stroma by down-regulating glycogen synthase kinase-3β (GSK-3β) and stimulating β-catenin accumulation in the periluminal stromal cells. In this study, the WNT signal involved in the progesterone-dependent proliferative switch was investigated. Transcripts of four candidate Wnt genes were measured in the uteri from ovariectomized (OVX) rats, progesterone-pretreated (3 days of progesterone, 2mg/daily) rats, and progesterone-pretreated rats given a single dose (0.2µg) of estradiol. The spatial distribution of the WNT proteins was determined in the uteri after the same treatments. Wnt5a increased in response to progesterone and the protein emerged in the periluminal stromal cells of progesterone-pretreated rat uteri. To investigate whether WNT5A was required for proliferation, uterine stromal cell lines were stimulated with progesterone (1µM) and fibroblast growth factor (FGF, 50ng/mL). Proliferating stromal cells expressed a two-fold increase in WNT5A protein at 12h post stimulation. Stimulated stromal cells were cultured with actinomycin D (25µg/mL) to inhibit new RNA synthesis. Relative Wnt5a expression increased at 4 and 6 h of culture, suggesting that progesterone plus FGF preferentially increased Wnt5a mRNA stability. Knockdown of Wnt5a in uterine stromal cell lines inhibited stromal cell proliferation and decreased Wnt5a mRNA. The results indicate that progesterone initiates and synchronizes uterine stromal cell proliferation by increasing WNT5A expression and signaling. PMID:26975616

  17. Sterol Carrier Protein-2: Binding Protein for Endocannabinoids

    PubMed Central

    Liedhegner, Elizabeth Sabens; Vogt, Caleb D.; Sem, Daniel S.; Cunningham, Christopher W.

    2015-01-01

    The endocannabinoid (eCB) system, consisting of eCB ligands and the type 1 cannabinoid receptor (CB1R), subserves retrograde, activity-dependent synaptic plasticity in the brain. eCB signaling occurs “on-demand,” thus the processes regulating synthesis, mobilization and degradation of eCBs are also primary mechanisms for the regulation of CB1R activity. The eCBs, N-arachidonylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are poorly soluble in water. We hypothesize that their aqueous solubility, and, therefore, their intracellular and transcellular distribution, are facilitated by protein binding. Using in silico docking studies, we have identified the nonspecific lipid binding protein, sterol carrier protein 2 (SCP-2), as a potential AEA binding protein. The docking studies predict that AEA and AM404 associate with SCP-2 at a putative cholesterol binding pocket with ΔG values of −3.6 and −4.6 kcal/mol, respectively. These values are considerably higher than cholesterol (−6.62 kcal/mol) but consistent with a favorable binding interaction. In support of the docking studies, SCP-2-mediated transfer of cholesterol in vitro is inhibited by micromolar concentrations of AEA; and heterologous expression of SCP-2 in HEK 293 cells increases time-related accumulation of AEA in a temperature-dependent fashion. These results suggest that SCP-2 facilitates cellular uptake of AEA. However, there is no effect of SCP-2 transfection on the cellular accumulation of AEA determined at equilibrium or the IC50 values for AEA, AM404 or 2-AG to inhibit steady state accumulation of radiolabelled AEA. We conclude that SCP-2 is a low affinity binding protein for AEA that can facilitate its cellular uptake but does not contribute significantly to intracellular sequestration of AEA. PMID:24510313

  18. Equine Myxovirus Resistance Protein 2 Restricts Lentiviral Replication by Blocking Nuclear Uptake of Capsid Protein.

    PubMed

    Ji, Shuang; Na, Lei; Ren, Huiling; Wang, Yujie; Wang, Xiaojun

    2018-05-09

    Human Myxovirus resistance 2 (huMxB) has been shown to be a determinant type I interferon-induced host factor involved in the inhibition of HIV-1 as well as many other primate lentiviruses. This blocking occurs after the reverse transcription of viral RNA and ahead of the integration into the host DNA, which is closely connected to the ability of the protein to bind the viral capsid. To date, Mx2s derived from non-primate animals have shown no capacity for HIV-1 suppression. In this study, we examined the restrictive effect of equine Mx2 (eqMx2) on both the equine infectious anemia virus (EIAV) and HIV-1 and investigated possible mechanisms for its specific function. We demonstrated that IFNα/β upregulates the expression of eqMx2 in equine monocyte-derived macrophages (eMDMs). Overexpression of eqMx2 significantly suppresses the replication of EIAV, HIV-1, and SIVs, but not that of MLV. Knockdown of eqMx2 transcription weakens the inhibition of EIAV replication by type I interferon. Interestingly, immunofluorescence assays suggest that the subcellular localization of eqMx2 changes following virus infection, from being dispersed in the cytoplasm to being accumulated at the nuclear envelope. Furthermore, eqMx2 blocks the nuclear uptake of the proviral genome by binding to the viral capsid. The N-truncated mutant of eqMx2 lost the ability to bind the viral capsid as well as the restriction effect for lentiviruses. These results improve our understanding of the Mx2 protein in non-primate animals. IMPORTANCE Previous research has shown that the antiviral ability of Mx2s is confined to primates, particularly humans. EIAV has been shown to be insensitive to the restriction by human MxB. Here, we described the function of equine Mx2. This protein plays an important role in the suppression of EIAV, HIV-1, and SIVs. The antiviral activity of eqMx2 depends on its subcellular location as well as its capsid binding capacity. Our results showed that following viral infection

  19. Structure and Function of Lipopolysaccharide Binding Protein

    NASA Astrophysics Data System (ADS)

    Schumann, Ralf R.; Leong, Steven R.; Flaggs, Gail W.; Gray, Patrick W.; Wright, Samuel D.; Mathison, John C.; Tobias, Peter S.; Ulevitch, Richard J.

    1990-09-01

    The primary structure of lipopolysaccharide binding protein (LBP), a trace plasma protein that binds to the lipid A moiety of bacterial lipopolysaccharides (LPSs), was deduced by sequencing cloned complementary DNA. LBP shares sequence identity with another LPS binding protein found in granulocytes, bactericidal/permeability-increasing protein, and with cholesterol ester transport protein of the plasma. LBP may control the response to LPS under physiologic conditions by forming high-affinity complexes with LPS that bind to monocytes and macrophages, which then secrete tumor necrosis factor. The identification of this pathway for LPS-induced monocyte stimulation may aid in the development of treatments for diseases in which Gram-negative sepsis or endotoxemia are involved.

  20. Roles of Copper-Binding Proteins in Breast Cancer.

    PubMed

    Blockhuys, Stéphanie; Wittung-Stafshede, Pernilla

    2017-04-20

    Copper ions are needed in several steps of cancer progression. However, the underlying mechanisms, and involved copper-binding proteins, are mainly elusive. Since most copper ions in the body (in and outside cells) are protein-bound, it is important to investigate what copper-binding proteins participate and, for these, how they are loaded with copper by copper transport proteins. Mechanistic information for how some copper-binding proteins, such as extracellular lysyl oxidase (LOX), play roles in cancer have been elucidated but there is still much to learn from a biophysical molecular viewpoint. Here we provide a summary of copper-binding proteins and discuss ones reported to have roles in cancer. We specifically focus on how copper-binding proteins such as mediator of cell motility 1 (MEMO1), LOX, LOX-like proteins, and secreted protein acidic and rich in cysteine (SPARC) modulate breast cancer from molecular and clinical aspects. Because of the importance of copper for invasion/migration processes, which are key components of cancer metastasis, further insights into the actions of copper-binding proteins may provide new targets to combat cancer.

  1. Expression of human peroxisome proliferator-activated receptors ligand binding domain-maltose binding protein fusion protein in Escherichia coli: a convenient and reliable method for preparing receptor for screening ligands.

    PubMed

    Li, Changqing; Tian, Mi; Yuan, Ye; Zhou, Qinxin

    2008-12-01

    Human peroxisome proliferator-activated receptors (hPPARs) are ligand-activated transcription factors and are the target for the treatment of many diseases. Screening of their ligands is mainly based on assays of ligand binding to the ligand binding domain (LBD) of hPPARs.However, such assays are difficult because of the preparation of hPPARs LBD. In order to yield functional hPPARs LBD for screening ligands, hPPARs LBD was fused with maltose-binding protein(MBP) using the pMAL-p2x expression system through the gene engineering technique. The radioligand binding assay showed that MBP did not affect ligand binding with hPPARs LBD in the fusion proteins, which means that MBP-hPPARs LBD can be used instead of hPPARs LBD in ligand screening work. The results show that the new strategy using MBP as a fusion tag for preparing hPPARs LBD for screening ligands is a convenient and reliable method. It may be used to easily obtain the other nuclear receptors.

  2. Progesterone protects normative anxiety-like responding among ovariectomized female mice that conditionally express the HIV-1 regulatory protein, Tat, in the CNS.

    PubMed

    Paris, Jason J; Fenwick, Jason; McLaughlin, Jay P

    2014-05-01

    Increased anxiety is co-morbid with human immunodeficiency virus (HIV) infection. Actions of the neurotoxic HIV-1 regulatory protein, Tat, may contribute to affective dysfunction. We hypothesized that Tat expression would increase anxiety-like behavior of female GT-tg bigenic mice that express HIV-1 Tat protein in the brain in a doxycycline-dependent manner. Furthermore, given reports that HIV-induced anxiety may occur at lower rates among women, and that the neurotoxic effects of Tat are ameliorated by sex steroids in vitro, we hypothesized that 17β-estradiol and/or progesterone would ameliorate Tat-induced anxiety-like effects. Among naturally-cycling proestrous and diestrous mice, Tat-induction via 7days of doxycycline treatment significantly increased anxiety-like responding in an open field, elevated plus maze and a marble-burying task, compared to treatment with saline. Proestrous mice demonstrated less anxiety-like behavior than diestrous mice in the open field and elevated plus maze, but these effects did not significantly interact with Tat-induction. Among ovariectomized mice, doxycycline-induced Tat protein significantly increased anxiety-like behavior in an elevated plus maze and a marble burying task compared to saline-treated mice, but not an open field (where anxiety-like responding was already maximal). Co-administration of progesterone (4mg/kg), but not 17β-estradiol (0.09mg/kg), with doxycycline significantly ameliorated anxiety-like responding in the elevated plus maze and marble burying tasks. When administered together, 17β-estradiol partially antagonized the protective effects of progesterone on Tat-induced anxiety-like behavior. These findings support evidence of steroid-protection over HIV-1 proteins, and extend them by demonstrating the protective capacity of progesterone on Tat-induced anxiety-like behavior of ovariectomized female mice. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Progesterone regulation of primordial follicle assembly in bovine fetal ovaries.

    PubMed

    Nilsson, Eric E; Skinner, Michael K

    2009-12-10

    Fertility in mammals is dependant on females having an adequate primordial follicle pool to supply oocytes for fertilization. The formation of primordial follicles is called ovarian follicular assembly. In rats and mice progesterone and estradiol have been shown to inhibit follicle assembly with assembly occurring after birth when the pups are removed from the high-steroid maternal environment. In contrast, primordial follicle assembly in other species, such as cattle and humans, occurs during fetal development before birth. The objective of the current study is to determine if progesterone levels regulate primordial follicle assembly in fetal bovine ovaries. Ovaries and blood were collected from bovine fetuses. Interestingly, ovarian progesterone and estradiol concentrations were found to decrease with increasing fetal age and correlated to increased primordial follicle assembly. Microarray analysis of fetal ovary RNA suggests that progesterone membrane receptor and estrogen nuclear receptor are expressed. Treatment of fetal bovine ovary cultures with a higher progesterone concentration significantly decreased primordial follicle assembly. Observations indicate that progesterone affects ovarian primordial follicle assembly in cattle, as it does in rats and mice.

  4. Progesterone Regulation of Primordial Follicle Assembly In Bovine Fetal Ovaries

    PubMed Central

    Nilsson, Eric E.; Skinner, Michael K.

    2009-01-01

    Fertility in mammals is dependant on females having an adequate primordial follicle pool to supply oocytes for fertilization. The formation of primordial follicles is called ovarian follicular assembly. In rats and mice progesterone and estradiol have been shown to inhibit follicle assembly with assembly occurring after birth when the pups are removed from the high-steroid maternal environment. In contrast, primordial follicle assembly in other species, such as cattle and humans, occurs during fetal development before birth. The objective of the current study is to determine if progesterone levels regulate primordial follicle assembly in fetal bovine ovaries. Ovaries and blood were collected from bovine fetuses. Interestingly, ovarian progesterone and estradiol concentrations were found to decrease with increasing fetal age and correlated to increased primordial follicle assembly. Microarray analysis of fetal ovary RNA suggests that progesterone membrane receptor and estrogen nuclear receptor are expressed. Treatment of fetal bovine ovary cultures with a higher progesterone concentration significantly decreased primordial follicle assembly. Observations indicate that progesterone affects ovarian primordial follicle assembly in cattle, as it does in rats and mice. PMID:19747959

  5. Dynamic factors affecting gaseous ligand binding in an artificial oxygen transport protein.

    PubMed

    Zhang, Lei; Andersen, Eskil M E; Khajo, Abdelahad; Magliozzo, Richard S; Koder, Ronald L

    2013-01-22

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7, this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities, and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime that may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when exposed to oxygen. Compared to that of HP7, the distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off rate. Electron paramagnetic resonance comparison of these ferric hemoproteins demonstrates that the mutation increases the level of disorder at the heme binding site. Nuclear magnetic resonance-detected deuterium exchange demonstrates that the mutation greatly increases the degree of penetration of water into the protein core. The inability of the mutant protein to bind oxygen may be due to an increased level of water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together, these data underline the importance of the control of protein dynamics in the design of functional artificial proteins.

  6. The Puf family of RNA-binding proteins in plants: phylogeny, structural modeling, activity and subcellular localization

    PubMed Central

    2010-01-01

    Background Puf proteins have important roles in controlling gene expression at the post-transcriptional level by promoting RNA decay and repressing translation. The Pumilio homology domain (PUM-HD) is a conserved region within Puf proteins that binds to RNA with sequence specificity. Although Puf proteins have been well characterized in animal and fungal systems, little is known about the structural and functional characteristics of Puf-like proteins in plants. Results The Arabidopsis and rice genomes code for 26 and 19 Puf-like proteins, respectively, each possessing eight or fewer Puf repeats in their PUM-HD. Key amino acids in the PUM-HD of several of these proteins are conserved with those of animal and fungal homologs, whereas other plant Puf proteins demonstrate extensive variability in these amino acids. Three-dimensional modeling revealed that the predicted structure of this domain in plant Puf proteins provides a suitable surface for binding RNA. Electrophoretic gel mobility shift experiments showed that the Arabidopsis AtPum2 PUM-HD binds with high affinity to BoxB of the Drosophila Nanos Response Element I (NRE1) RNA, whereas a point mutation in the core of the NRE1 resulted in a significant reduction in binding affinity. Transient expression of several of the Arabidopsis Puf proteins as fluorescent protein fusions revealed a dynamic, punctate cytoplasmic pattern of localization for most of these proteins. The presence of predicted nuclear export signals and accumulation of AtPuf proteins in the nucleus after treatment of cells with leptomycin B demonstrated that shuttling of these proteins between the cytosol and nucleus is common among these proteins. In addition to the cytoplasmically enriched AtPum proteins, two AtPum proteins showed nuclear targeting with enrichment in the nucleolus. Conclusions The Puf family of RNA-binding proteins in plants consists of a greater number of members than any other model species studied to date. This, along with the

  7. Translation initiation mediated by nuclear cap-binding protein complex.

    PubMed

    Ryu, Incheol; Kim, Yoon Ki

    2017-04-01

    In mammals, cap-dependent translation of mRNAs is initiated by two distinct mechanisms: cap-binding complex (CBC; a heterodimer of CBP80 and 20)-dependent translation (CT) and eIF4E-dependent translation (ET). Both translation initiation mechanisms share common features in driving cap- dependent translation; nevertheless, they can be distinguished from each other based on their molecular features and biological roles. CT is largely associated with mRNA surveillance such as nonsense-mediated mRNA decay (NMD), whereas ET is predominantly involved in the bulk of protein synthesis. However, several recent studies have demonstrated that CT and ET have similar roles in protein synthesis and mRNA surveillance. In a subset of mRNAs, CT preferentially drives the cap-dependent translation, as ET does, and ET is responsible for mRNA surveillance, as CT does. In this review, we summarize and compare the molecular features of CT and ET with a focus on the emerging roles of CT in translation. [BMB Reports 2017; 50(4): 186-193].

  8. Progesterone receptor membrane component-1 (PGRMC1) is the mediator of progesterone's antiapoptotic action in spontaneously immortalized granulosa cells as revealed by PGRMC1 small interfering ribonucleic acid treatment and functional analysis of PGRMC1 mutations.

    PubMed

    Peluso, John J; Romak, Jonathan; Liu, Xiufang

    2008-02-01

    Progesterone (P4) receptor membrane component-1 (PGRMC1) and its binding partner, plasminogen activator inhibitor 1 RNA binding protein (PAIRBP1) are thought to form a complex that functions as membrane receptor for P4. The present investigations confirm PGRMC1's role in this membrane receptor complex by demonstrating that depleting PGMRC1 with PGRMC1 small interfering RNA results in a 60% decline in [(3)H]P4 binding and the loss of P4's antiapoptotic action. Studies conducted on partially purified GFP-PGRMC1 fusion protein indicate that [(3)H]P4 specifically binds to PGRMC1 at a single site with an apparent K(d) of about 35 nm. In addition, experiments using various deletion mutations reveal that the entire PGRMC1 molecule is required for maximal [(3)H]P4 binding and P4 responsiveness. Analysis of the binding data also suggests that the P4 binding site is within a segment of PGRMC1 that is composed of the transmembrane domain and the initial segment of the C terminus. Interestingly, PAIRBP1 appears to bind to the C terminus between amino acids 70-130, which is distal to the putative P4 binding site. Taken together, these data provide compelling evidence that PGRMC1 is the P4 binding protein that mediates P4's antiapoptotic action. Moreover, the deletion mutation studies indicate that each domain of PGRMC1 plays an essential role in modulating PGRMC1's capacity to both bind and respond to P4. Additional studies are required to more precisely delineate the role of each PGRMC1 domain in transducing P4's antiapoptotic action.

  9. Isolation from genomic DNA of sequences binding specific regulatory proteins by the acceleration of protein electrophoretic mobility upon DNA binding.

    PubMed

    Subrahmanyam, S; Cronan, J E

    1999-01-21

    We report an efficient and flexible in vitro method for the isolation of genomic DNA sequences that are the binding targets of a given DNA binding protein. This method takes advantage of the fact that binding of a protein to a DNA molecule generally increases the rate of migration of the protein in nondenaturing gel electrophoresis. By the use of a radioactively labeled DNA-binding protein and nonradioactive DNA coupled with PCR amplification from gel slices, we show that specific binding sites can be isolated from Escherichia coli genomic DNA. We have applied this method to isolate a binding site for FadR, a global regulator of fatty acid metabolism in E. coli. We have also isolated a second binding site for BirA, the biotin operon repressor/biotin ligase, from the E. coli genome that has a very low binding efficiency compared with the bio operator region.

  10. New Binding Mode to TNF-Alpha Revealed by Ubiquitin-Based Artificial Binding Protein

    PubMed Central

    Hoffmann, Andreas; Kovermann, Michael; Lilie, Hauke; Fiedler, Markus; Balbach, Jochen; Rudolph, Rainer; Pfeifer, Sven

    2012-01-01

    A variety of approaches have been employed to generate binding proteins from non-antibody scaffolds. Utilizing a beta-sheet of the human ubiquitin for paratope creation we obtained binding proteins against tumor necrosis factor (TNF)-alpha. The bioactive form of this validated pharmacological target protein is a non-covalently linked homo-trimer. This structural feature leads to the observation of a certain heterogeneity concerning the binding mode of TNF-alpha binding molecules, for instance in terms of monomer/trimer specificity. We analyzed a ubiquitin-based TNF-alpha binder, selected by ribosome display, with a particular focus on its mode of interaction. Using enzyme-linked immunosorbent assays, specific binding to TNF-alpha with nanomolar affinity was observed. In isothermal titration calorimetry we obtained comparable results regarding the affinity and detected an exothermic reaction with one ubiquitin-derived binding molecule binding one TNF-alpha trimer. Using NMR spectroscopy and other analytical methods the 1∶3 stoichiometry could be confirmed. Detailed binding analysis showed that the interaction is affected by the detergent Tween-20. Previously, this phenomenon was reported only for one other type of alternative scaffold-derived binding proteins – designed ankyrin repeat proteins – without further investigation. As demonstrated by size exclusion chromatography and NMR spectroscopy, the presence of the detergent increases the association rate significantly. Since the special architecture of TNF-alpha is known to be modulated by detergents, the access to the recognized epitope is indicated to be restricted by conformational transitions within the target protein. Our results suggest that the ubiquitin-derived binding protein targets a new epitope on TNF-alpha, which differs from the epitopes recognized by TNF-alpha neutralizing antibodies. PMID:22363609

  11. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    PubMed

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  12. IL-1β Upregulates StAR and Progesterone Production Through the ERK1/2- and p38-Mediated CREB Signaling Pathways in Human Granulosa-Lutein Cells.

    PubMed

    Dang, Xuan; Zhu, Qinling; He, Yaqiong; Wang, Yuan; Lu, Yao; Li, Xiaoxue; Qi, Jia; Wu, Hasiximuke; Sun, Yun

    2017-10-01

    The proinflammatory cytokine interleukin-1β (IL-1β) may be involved in several ovulation-associated events, such as protease synthesis, prostaglandin production, and steroidogenesis in granulosa cells. However, the exact effect of IL-1β on progesterone synthesis in granulosa cells and the underlying mechanism remain unclear. By using cultured granulosa-lutein cells collected from women undergoing in vitro fertilization or intracytoplasmic sperm injection, we found that IL-1β upregulated steroidogenic acute regulatory protein (StAR) expression and progesterone synthesis in granulosa-lutein cells, which was comparable with luteinizing hormone effect and could be abolished by an IL-1 receptor antagonist. Moreover, IL-1β activated the phosphorylation of cyclic adenosine monophosphate response element-binding protein (CREB), and knockdown of CREB attenuated the induction of StAR expression and progesterone synthesis by IL-1β in granulosa-lutein cells. Furthermore, IL-1β activated the extracellular signal-regulated kinase (ERK)1/2 and p38 pathways and inhibition of the ERK1/2 and p38 pathways attenuated the IL-1β-induced phosphorylation of CREB, StAR expression, and progesterone synthesis in granulosa-lutein cells. In conclusion, IL-1β could upregulate StAR expression and stimulate progesterone biosynthesis through increase in CREB phosphorylation via activating the ERK1/2 and p38 pathways in human granulosa-lutein cells. Copyright © 2017 Endocrine Society.

  13. Factor VII and protein C are phosphatidic acid-binding proteins.

    PubMed

    Tavoosi, Narjes; Smith, Stephanie A; Davis-Harrison, Rebecca L; Morrissey, James H

    2013-08-20

    Seven proteins in the human blood clotting cascade bind, via their GLA (γ-carboxyglutamate-rich) domains, to membranes containing exposed phosphatidylserine (PS), although with membrane binding affinities that vary by 3 orders of magnitude. Here we employed nanodiscs of defined phospholipid composition to quantify the phospholipid binding specificities of these seven clotting proteins. All bound preferentially to nanobilayers in which PS headgroups contained l-serine versus d-serine. Surprisingly, however, nanobilayers containing phosphatidic acid (PA) bound substantially more of two of these proteins, factor VIIa and activated protein C, than did equivalent bilayers containing PS. Consistent with this finding, liposomes containing PA supported higher proteolytic activity by factor VIIa and activated protein C toward their natural substrates (factors X and Va, respectively) than did PS-containing liposomes. Moreover, treating activated human platelets with phospholipase D enhanced the rates of factor X activation by factor VIIa in the presence of soluble tissue factor. We hypothesize that factor VII and protein C bind preferentially to the monoester phosphate of PA because of its accessibility and higher negative charge compared with the diester phosphates of most other phospholipids. We further found that phosphatidylinositol 4-phosphate, which contains a monoester phosphate attached to its myo-inositol headgroup, also supported enhanced enzymatic activity of factor VIIa and activated protein C. We conclude that factor VII and protein C bind preferentially to monoester phosphates, which may have implications for the function of these proteases in vivo.

  14. Metal-binding proteins as metal pollution indicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hennig, H.F.

    1986-03-01

    The fact that metal-binding proteins are a consequence of elevated metal concentration in organisms is well known. What has been overlooked is that the presence of these proteins provides a unique opportunity to reformulate the criteria of metal pollution. The detoxification effect of metal-binding proteins in animals from polluted areas has been cited, but there have been only very few studies relating metal-binding proteins to pollution. This lack is due partly to the design of most experiments, which were aimed at isolation of metal-binding proteins and hence were of too short duration to allow for correlation to adverse physiological effectsmore » on the organism. In this study metal-binding proteins were isolated and characterized from five different marine animals (rock lobster, Jasus lalandii; hermit crab, Diogenes brevirostris; sandshrimp, Palaemon pacificus; black mussel, Choromytilus meridionalis; and limpet, Patella granularis). These animals were kept under identical metal-enriched conditions, hence eliminating differences in method and seasons. The study animals belonged to different phyla; varied in size, mass, age, behavior, food requirements and life stages; and accumulated metals at different rates. It is possible to link unseasonal moulting in crustacea, a known physiological effect due to a metal-enriched environment, to the production of the metal-binding protein without evidence of obvious metal body burden. Thus a new concept of pollution is defined: the presence of metal-binding proteins confirms toxic metal pollution. This concept was then tested under field conditions in the whelk Bullia digitalis and in metal-enriched grass.« less

  15. Phage display of engineered binding proteins.

    PubMed

    Levisson, Mark; Spruijt, Ruud B; Winkel, Ingrid Nolla; Kengen, Servé W M; van der Oost, John

    2014-01-01

    In current purification processes optimization of the capture step generally has a large impact on cost reduction. At present, valuable biomolecules are often produced in relatively low concentrations and, consequently, the eventual selective separation from complex mixtures can be rather inefficient. A separation technology based on a very selective high-affinity binding may overcome these problems. Proteins in their natural environment manifest functionality by interacting specifically and often with relatively high affinity with other molecules, such as substrates, inhibitors, activators, or other proteins. At present, antibodies are the most commonly used binding proteins in numerous applications. However, antibodies do have limitations, such as high production costs, low stability, and a complex patent landscape. A novel approach is therefore to use non-immunoglobulin engineered binding proteins in affinity purification. In order to obtain engineered binders with a desired specificity, a large mutant library of the new to-be-developed binding protein has to be created and screened for potential binders. A powerful technique to screen and select for proteins with desired properties from a large pool of variants is phage display. Here, we indicate several criteria for potential binding protein scaffolds and explain the principle of M13 phage display. In addition, we describe experimental protocols for the initial steps in setting up a M13 phage display system based on the pComb3X vector, including construction of the phagemid vector, production of phages displaying the protein of interest, and confirmation of display on the M13 phage.

  16. Antifreeze Protein Binds Irreversibly to Ice

    NASA Astrophysics Data System (ADS)

    Braslavsky, I.; Pertaya, N.; di Prinzio, C. L.; Wilen, L.; Thomson, E.; Wettlaufer, J. S.; Marshall, C. B.; Davies, P. L.

    2006-03-01

    Many organisms are protected from freezing by antifreeze proteins (AFPs), which bind to ice and prevent its growth by a mechanism not completely understood. Although it has been postulated that AFPs would have to bind irreversibly to arrest the growth of an ice crystal bathed in excess liquid water, the binding forces seem insufficient to support such a tight interaction. By putting a fluorescent tag on a fish AFP, we were able to visualize AFP binding to ice and demonstrate, by lack of recovery after photo-bleaching, that it is indeed irreversible. Because even the most avid protein/ligand interactions exhibit reversibility, this finding is key to understanding the mechanism of antifreeze proteins, which are becoming increasingly valuable in cryopreservation and improving the frost tolerance of crops.

  17. The role of progesterone signaling in the pathogenesis of uterine leiomyoma

    PubMed Central

    Kim, J. Julie; Sefton, Elizabeth C.

    2011-01-01

    Uterine leiomyomas are benign tumors that originate from the myometrium. Evidence points to ovarian steroid hormones, in particular, progesterone as major promoters of leiomyoma development and growth. While progesterone action in leiomyomas involves the classical nuclear receptor effects on gene regulation, there is growing evidence that signaling pathways are directly activated by the progesterone receptor (PR) and that PR can interact with growth factor signaling systems to promote proliferation and survival of leiomyomas. Studies investigating the genomic and non-genomic actions of PR and its role in leiomyoma growth are summarized here. Studies testing various selective progesterone receptor modulators for the treatment of leiomyomas are also highlighted. An increased understanding of the mechanisms associated with progesterone-driven growth of leiomyomas is critical in order to develop more efficient and targeted therapies for this prevalent disease. PMID:21672608

  18. Progesterone Is Essential for Protecting against LPS-Induced Pregnancy Loss. LIF as a Potential Mediator of the Anti-inflammatory Effect of Progesterone

    PubMed Central

    Aisemberg, Julieta; Vercelli, Claudia A.; Bariani, María V.; Billi, Silvia C.; Wolfson, Manuel L.; Franchi, Ana M.

    2013-01-01

    Lipopolysaccharide (LPS) administration to mice on day 7 of gestation led to 100% embryonic resorption after 24 h. In this model, nitric oxide is fundamental for the resorption process. Progesterone may be responsible, at least in part, for a Th2 switch in the feto-maternal interface, inducing active immune tolerance against fetal antigens. Th2 cells promote the development of T cells, producing leukemia inhibitory factor (LIF), which seems to be important due to its immunomodulatory action during early pregnancy. Our aim was to evaluate the involvement of progesterone in the mechanism of LPS-induced embryonic resorption, and whether LIF can mediate hormonal action. Using in vivo and in vitro models, we provide evidence that circulating progesterone is an important component of the process by which infection causes embryonic resorption in mice. Also, LIF seems to be a mediator of the progesterone effect under inflammatory conditions. We found that serum progesterone fell to very low levels after 24 h of LPS exposure. Moreover, progesterone supplementation prevented embryonic resorption and LPS-induced increase of uterine nitric oxide levels in vivo. Results show that LPS diminished the expression of the nuclear progesterone receptor in the uterus after 6 and 12 h of treatment. We investigated the expression of LIF in uterine tissue from pregnant mice and found that progesterone up-regulates LIF mRNA expression in vitro. We observed that LIF was able to modulate the levels of nitric oxide induced by LPS in vitro, suggesting that it could be a potential mediator of the inflammatory action of progesterone. Our observations support the view that progesterone plays a critical role in a successful pregnancy as an anti-inflammatory agent, and that it could have possible therapeutic applications in the prevention of early reproductive failure associated with inflammatory disorders. PMID:23409146

  19. Advanced Running Performance by Genetic Predisposition in Male Dummerstorf Marathon Mice (DUhTP) Reveals Higher Sterol Regulatory Element-Binding Protein (SREBP) Related mRNA Expression in the Liver and Higher Serum Levels of Progesterone

    PubMed Central

    Brenmoehl, Julia; Walz, Christina; Ponsuksili, Siriluck; Schwerin, Manfred; Fuellen, Georg; Hoeflich, Andreas

    2016-01-01

    Long-term-selected DUhTP mice represent a non-inbred model for inborn physical high-performance without previous training. Abundance of hepatic mRNA in 70-day male DUhTP and control mice was analyzed using the Affymetrix mouse array 430A 2.0. Differential expression analysis with PLIER corrected data was performed using AltAnalyze. Searching for over-representation in biochemical pathways revealed cholesterol metabolism being most prominently affected in DUhTP compared to unselected control mice. Furthermore, pathway analysis by AltAnalyze plus PathVisio indicated significant induction of glycolysis, fatty acid synthesis and cholesterol biosynthesis in the liver of DUhTP mice versus unselected control mice. In contrast, gluconeogenesis was partially inactivated as judged from the analysis of hepatic mRNA transcript abundance in DUhTP mice. Analysis of mRNA transcripts related to steroid hormone metabolism inferred elevated synthesis of progesterone and reduced levels of sex steroids. Abundance of steroid delta isomerase-5 mRNA (Hsd3b5, FC 4.97) was increased and steroid 17-alpha-monooxygenase mRNA (Cyp17a1, FC -11.6) was massively diminished in the liver of DUhTP mice. Assessment of steroid profiles by LC-MS revealed increased levels of progesterone and decreased levels of sex steroids in serum from DUhTP mice versus controls. Analysis of hepatic mRNA transcript abundance indicates that sterol regulatory element-binding protein-1 (SREBP-1) may play a major role in metabolic pathway activation in the marathon mouse model DUhTP. Thus, results from bioinformatics modeling of hepatic mRNA transcript abundance correlated with direct steroid analysis by mass spectrometry and further indicated functions of SREBP-1 and steroid hormones for endurance performance in DUhTP mice. PMID:26799318

  20. Theoretical studies of protein-protein and protein-DNA binding rates

    NASA Astrophysics Data System (ADS)

    Alsallaq, Ramzi A.

    Proteins are folded chains of amino acids. Some of the amino acids (e.g. Lys, Arg, His, Asp, and Glu) carry charges under physiological conditions. Proteins almost always function through binding to other proteins or ligands, for example barnase is a ribonuclease protein, found in the bacterium Bacillus amyloliquefaceus. Barnase degrades RNA by hydrolysis. For the bacterium to inhibit the potentially lethal action of Barnase within its own cell it co-produces another protein called barstar which binds quickly, and tightly, to barnase. The biological function of this binding is to block the active site of barnase. The speeds (rates) at which proteins associate are vital to many biological processes. They span a wide range (from less than 103 to 108 M-1s-1 ). Rates greater than ˜ 106 M -1s-1 are typically found to be manifestations of enhancements by long-range electrostatic interactions between the associating proteins. A different paradigm appears in the case of protein binding to DNA. The rate in this case is enhanced through attractive surface potential that effectively reduces the dimensionality of the available search space for the diffusing protein. This thesis presents computational and theoretical models on the rate of association of ligands/proteins to other proteins or DNA. For protein-protein association we present a general strategy for computing protein-protein rates of association. The main achievements of this strategy is the ability to obtain a stringent reaction criteria based on the landscape of short-range interactions between the associating proteins, and the ability to compute the effect of the electrostatic interactions on the rates of association accurately using the best known solvers for Poisson-Boltzmann equation presently available. For protein-DNA association we present a mathematical model for proteins targeting specific sites on a circular DNA topology. The main achievements are the realization that a linear DNA with reflecting ends

  1. A comparison of progestin and androgen receptor binding using the CoMFA technique

    NASA Astrophysics Data System (ADS)

    Loughney, Deborah A.; Schwender, Charles F.

    1992-12-01

    A series of 48 steroids has been studied with the SYBYL QSAR module using Relative Binding Affinities (RBAs) to progesterone and androgen receptors obtained from the literature. Models for the progesterone and androgen data were developed. Both models show regions where sterics and electrostatics correlate to binding affinity but are different for androgen and progesterone which suggests differences possibly important for receptor selectivity. The progesterone model is more predictive than the androgen (predictive r2 of 0.725 vs. 0.545 for progesterone and androgen, respectively).

  2. The nuclear import of ribosomal proteins is regulated by mTOR

    PubMed Central

    Kazyken, Dubek; Kaz, Yelimbek; Kiyan, Vladimir; Zhylkibayev, Assylbek A.; Chen, Chien-Hung; Agarwal, Nitin K.; Sarbassov, Dos D.

    2014-01-01

    Mechanistic target of rapamycin (mTOR) is a central component of the essential signaling pathway that regulates cell growth and proliferation by controlling anabolic processes in cells. mTOR exists in two distinct mTOR complexes known as mTORC1 and mTORC2 that reside mostly in cytoplasm. In our study, the biochemical characterization of mTOR led to discovery of its novel localization on nuclear envelope where it associates with a critical regulator of nuclear import Ran Binding Protein 2 (RanBP2). We show that association of mTOR with RanBP2 is dependent on the mTOR kinase activity that regulates the nuclear import of ribosomal proteins. The mTOR kinase inhibitors within thirty minutes caused a substantial decrease of ribosomal proteins in the nuclear but not cytoplasmic fraction. Detection of a nuclear accumulation of the GFP-tagged ribosomal protein rpL7a also indicated its dependence on the mTOR kinase activity. The nuclear abundance of ribosomal proteins was not affected by inhibition of mTOR Complex 1 (mTORC1) by rapamycin or deficiency of mTORC2, suggesting a distinctive role of the nuclear envelope mTOR complex in the nuclear import. Thus, we identified that mTOR in association with RanBP2 mediates the active nuclear import of ribosomal proteins. PMID:25294810

  3. Lactoferrin-binding proteins in Shigella flexneri.

    PubMed Central

    Tigyi, Z; Kishore, A R; Maeland, J A; Forsgren, A; Naidu, A S

    1992-01-01

    The ability of Shigella flexneri to interact with lactoferrin (Lf) was examined with a 125I-labeled protein-binding assay. The percent binding of human lactoferrin (HLf) and bovine lactoferrin (BLf) to 45 S. flexneri strains was 19 +/- 3 and 21 +/- 3 (mean +/- standard error of the mean), respectively. 125I-labeled HLf and BLf binding to strain M90T reached an equilibrium within 2 h. Unlabeled HLf and BLf displaced the 125I-HLf-bacteria interaction in a dose-dependent manner. The Lf-bacterium complex was uncoupled by KSCN or urea, but not by NaCl. The interaction was specific, and approximately 4,800 HLf binding sites (affinity constant [Ka], 690 nM) or approximately 5,700 BLf binding sites (Ka, 104 nM) per cell were estimated in strain M90T by a Scatchard plot analysis. The native cell envelope (CE) and outer membrane (OM) did not reveal Lf-binding components in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, after being boiled, the CE and OM preparations showed three distinct horseradish peroxidase-Lf reactive bands of about 39, 22, and 16 kDa. The 39-kDa component was also reactive to a monoclonal antibody specific for porin (PoI) proteins of members of the family Enterobacteriaceae. The Lf-binding protein pattern was similar with BLf or HLf, for Crb+ and Crb- strains. The protein-Lf complex was dissociable by KSCN or urea and was stable after treatment with NaCl. Variation (loss) in the O chain of lipopolysaccharide (LPS) markedly enhanced the Lf-binding capacity in the isogenic rough strain SFL1070-15 compared with its smooth parent strain, SFL1070. These data establish that Lf binds to specific components in the bacterial OM; the heat-modifiable, anti-PoI-reactive, and LPS-associated properties suggested that the Lf-binding proteins are porins in S. flexneri. Images PMID:1319403

  4. Mapping of ligand-binding cavities in proteins.

    PubMed

    Andersson, C David; Chen, Brian Y; Linusson, Anna

    2010-05-01

    The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterize and map the ligand-binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity, and charge). This approach can provide valuable information on the similarities and dissimilarities, of binding cavities due to mutations, between-species differences and flexibility upon ligand-binding. The presented results show that information on ligand-binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand-binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterization and mapping of "orphan structures", selection of protein structures for docking studies in structure-based design, and identification of proteins for selectivity screens in drug design programs. 2009 Wiley-Liss, Inc.

  5. Mapping of Ligand-Binding Cavities in Proteins

    PubMed Central

    Andersson, C. David; Chen, Brian Y.; Linusson, Anna

    2010-01-01

    The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterise and map the ligand-binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity and charge). This approach can provide valuable information on the similarities, and dissimilarities, of binding cavities due to mutations, between-species differences and flexibility upon ligand-binding. The presented results show that information on ligand-binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand-binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterisation and mapping of “orphan structures”, selection of protein structures for docking studies in structure-based design and identification of proteins for selectivity screens in drug design programs. PMID:20034113

  6. Sequence-Based Prediction of RNA-Binding Residues in Proteins.

    PubMed

    Walia, Rasna R; El-Manzalawy, Yasser; Honavar, Vasant G; Dobbs, Drena

    2017-01-01

    Identifying individual residues in the interfaces of protein-RNA complexes is important for understanding the molecular determinants of protein-RNA recognition and has many potential applications. Recent technical advances have led to several high-throughput experimental methods for identifying partners in protein-RNA complexes, but determining RNA-binding residues in proteins is still expensive and time-consuming. This chapter focuses on available computational methods for identifying which amino acids in an RNA-binding protein participate directly in contacting RNA. Step-by-step protocols for using three different web-based servers to predict RNA-binding residues are described. In addition, currently available web servers and software tools for predicting RNA-binding sites, as well as databases that contain valuable information about known protein-RNA complexes, RNA-binding motifs in proteins, and protein-binding recognition sites in RNA are provided. We emphasize sequence-based methods that can reliably identify interfacial residues without the requirement for structural information regarding either the RNA-binding protein or its RNA partner.

  7. Rapid regulation of nuclear proteins by rapamycin-induced translocation in fission yeast

    PubMed Central

    Ding, Lin; Laor, Dana; Weisman, Ronit; Forsburg, Susan L

    2014-01-01

    Genetic analysis of protein function requires a rapid means of inactivating the gene under study. Typically this exploits temperature sensitive mutations, or promoter shut-off techniques. We report the adaptation to Schizosaccharomyces pombe of the Anchor Away technique, originally designed in budding yeast (Haruki et al., 2008a). This method relies on a rapamycin-mediated interaction between the FRB and FKBP12 binding domains, to relocalize nuclear proteins of interest to the cytoplasm. We demonstrate a rapid nuclear depletion of abundant proteins as proof-of-principle. PMID:24733494

  8. The fanconi anemia proteins FANCA and FANCG stabilize each other and promote the nuclear accumulation of the Fanconi anemia complex.

    PubMed

    Garcia-Higuera, I; Kuang, Y; Denham, J; D'Andrea, A D

    2000-11-01

    Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with 8 complementation groups. Four of the FA genes have been cloned, and at least 3 of the encoded proteins, FANCA, FANCC, and FANCG/XRCC9, interact in a multisubunit protein complex. The FANCG protein binds directly to the amino terminal nuclear localization sequence (NLS) of FANCA, suggesting that FANCG plays a role in regulating FANCA nuclear accumulation. In the current study the functional consequences of FANCG/FANCA binding were examined. Correction of an FA-G cell line with the FANCG complementary DNA (cDNA) resulted in FANCA/FANCG binding, prolongation of the cellular half-life of FANCA, and an increase in the nuclear accumulation of the FA protein complex. Similar results were obtained upon correction of an FA-A cell line, with a reciprocal increase in the half-life of FANCG. Patient-derived mutant forms of FANCA, containing an intact NLS sequence but point mutations in the carboxy-terminal leucine zipper region, bound FANCG in the cytoplasm. The mutant forms failed to translocate to the nucleus of transduced cells, thereby suggesting a model of coordinated binding and nuclear translocation. These results demonstrate that the FANCA/FANCG interaction is required to maintain the cellular levels of both proteins. Moreover, at least one function of FANCG and FANCA is to regulate the nuclear accumulation of the FA protein complex. Failure to accumulate the nuclear FA protein complex results in the characteristic spectrum of clinical and cellular abnormalities observed in FA.

  9. Endocrine disruption: In silico interactions between phthalate plasticizers and corticosteroid binding globulin.

    PubMed

    Sheikh, Ishfaq A; Beg, Mohd A

    2017-12-01

    Endocrine disruption is a phenomenon when a man-made or natural compound interferes with normal hormone function in human or animal body systems. Endocrine-disrupting compounds (EDCs) have assumed considerable importance as a result of industrial activity, mass production of synthetic chemicals and environmental pollution. Phthalate plasticizers are a group of chemicals used widely and diversely in industry especially in the plastic industry, and many of the phthalate compounds have endocrine-disrupting properties. Increasing evidence indicates that steroid nuclear receptors and steroid binding proteins are the main targets of endocrine disruption. Corticosteroid-binding globulin (CBG) is a steroid binding protein that binds and transports cortisol in the blood circulation and is a potential target for endocrine disruption. An imbalance of cortisol in the body leads to many health problems. Induced fit docking of nine important and environmentally relevant phthalate plasticizers (DMP, BBP, DBP, DIBP, DnHP, DEHP, DINP, DnOP, DIDP) showed interactions with 10-19 amino acid residues of CBG. Comparison of the interacting residues of CBG with phthalate ligands and cortisol showed an overlapping of the majority (53-82%) of residues for each phthalate. Five of nine phthalate compounds and cortisol shared a hydrogen bonding interaction with the Arg-252 residue of CBG. Long-chain phthalates, such as DEHP, DINP, DnOP and DIDP displayed a higher binding affinity and formed a number of interactions with CBG in comparison to short-chain phthalates. The similarity in structural binding characteristics of phthalate compounds and native ligand cortisol suggested potential competitive conflicts in CBG-cortisol binding function and possible disruption of cortisol and progesterone homeostasis. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Seasonal changes in plasma androgens, glucocorticoids and glucocorticoid-binding proteins in the marsupial sugar glider Petaurus breviceps.

    PubMed

    Bradley, A J; Stoddart, D M

    1992-01-01

    An investigation spanning two breeding seasons was carried out to examine endocrine changes associated with reproduction in a wild population of the marsupial sugar glider Petaurus breviceps, a small arboreal gliding possum. Using techniques of equilibrium dialysis and polyacrylamide gel electrophoresis at steady-state conditions, a high-affinity, low-capacity glucocorticoid-binding protein was demonstrated in the plasma of Petaurus breviceps. Equilibrium dialysis at 36 degrees C using cortisol gave a high-affinity binding constant of 95 +/- 5.2 litres/mumol for a presumed corticosteroid-binding globulin (CBG) while the binding constant for the cortisol-albumin interaction was 3.5 +/- 0.4 litres/mmol. There was no difference between the sexes in the affinity of binding of cortisol to CBG; however, the cortisol-binding capacity underwent seasonal variation in both sexes. Progesterone was bound strongly to the presumed CBG while neither oestradiol nor aldosterone appeared to be bound with high affinity to P. breviceps plasma. In the males, peaks in the plasma concentration of testosterone coincided with the July-September breeding season in both years. A significant inverse relationship was shown to exist between the plasma testosterone concentration and the CBG-binding capacity. In both sexes an increase occurred in the plasma concentration of free cortisol during the first breeding season, a pattern which was not repeated in the subsequent breeding season, possibly due to a lower population density in that year.

  11. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  12. Progesterone Treatment in Two Rat Models of Ocular Ischemia

    PubMed Central

    Allen, Rachael S.; Olsen, Timothy W.; Sayeed, Iqbal; Cale, Heather A.; Morrison, Katherine C.; Oumarbaeva, Yuliya; Lucaciu, Irina; Boatright, Jeffrey H.; Pardue, Machelle T.; Stein, Donald G.

    2015-01-01

    Purpose. To determine whether the neurosteroid progesterone, shown to have protective effects in animal models of traumatic brain injury, stroke, and spinal cord injury, is also protective in ocular ischemia animal models. Methods. Progesterone treatment was tested in two ocular ischemia models in rats: a rodent anterior ischemic optic neuropathy (rAION) model, which induces permanent monocular optic nerve stroke, and the middle cerebral artery occlusion (MCAO) model, which causes transient ischemia in both the retina and brain due to an intraluminal filament that blocks the ophthalmic and middle cerebral arteries. Visual function and retinal histology were assessed to determine whether progesterone attenuated retinal injury in these models. Additionally, behavioral testing and 2% 2,3,5-triphenyltetrazolium chloride (TTC) staining in brains were used to compare progesterone's neuroprotective effects in both retina and brain using the MCAO model. Results. Progesterone treatment showed no effect on visual evoked potential (VEP) reduction and retinal ganglion cell loss in the permanent rAION model. In the transient MCAO model, progesterone treatment reduced (1) electroretinogram (ERG) deficits, (2) MCAO-induced upregulation of glutamine synthetase (GS) and glial fibrillary acidic protein (GFAP), and (3) retinal ganglion cell loss. As expected, progesterone treatment also had significant protective effects in behavioral tests and a reduction in infarct size in the brain. Conclusions. Progesterone treatment showed protective effects in the retina following MCAO but not rAION injury, which may result from mechanistic differences with injury type and the therapeutic action of progesterone. PMID:26024074

  13. Interplay between binding affinity and kinetics in protein-protein interactions.

    PubMed

    Cao, Huaiqing; Huang, Yongqi; Liu, Zhirong

    2016-07-01

    To clarify the interplay between the binding affinity and kinetics of protein-protein interactions, and the possible role of intrinsically disordered proteins in such interactions, molecular simulations were carried out on 20 protein complexes. With bias potential and reweighting techniques, the free energy profiles were obtained under physiological affinities, which showed that the bound-state valley is deep with a barrier height of 12 - 33 RT. From the dependence of the affinity on interface interactions, the entropic contribution to the binding affinity is approximated to be proportional to the interface area. The extracted dissociation rates based on the Arrhenius law correlate reasonably well with the experimental values (Pearson correlation coefficient R = 0.79). For each protein complex, a linear free energy relationship between binding affinity and the dissociation rate was confirmed, but the distribution of the slopes for intrinsically disordered proteins showed no essential difference with that observed for ordered proteins. A comparison with protein folding was also performed. Proteins 2016; 84:920-933. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Efficient nuclear export of p65-IkappaBalpha complexes requires 14-3-3 proteins.

    PubMed

    Aguilera, Cristina; Fernández-Majada, Vanessa; Inglés-Esteve, Julia; Rodilla, Verónica; Bigas, Anna; Espinosa, Lluís

    2006-09-01

    IkappaB are responsible for maintaining p65 in the cytoplasm under non-stimulating conditions and promoting the active export of p65 from the nucleus following NFkappaB activation to terminate the signal. We now show that 14-3-3 proteins regulate the NFkappaB signaling pathway by physically interacting with p65 and IkappaBalpha proteins. We identify two functional 14-3-3 binding domains in the p65 protein involving residues 38-44 and 278-283, and map the interaction region of IkappaBalpha in residues 60-65. Mutation of these 14-3-3 binding domains in p65 or IkappaBalpha results in a predominantly nuclear distribution of both proteins. TNFalpha treatment promotes recruitment of 14-3-3 and IkappaBalpha to NFkappaB-dependent promoters and enhances the binding of 14-3-3 to p65. Disrupting 14-3-3 activity by transfection with a dominant-negative 14-3-3 leads to the accumulation of nuclear p65-IkappaBalpha complexes and the constitutive association of p65 with the chromatin. In this situation, NFkappaB-dependent genes become unresponsive to TNFalpha stimulation. Together our results indicate that 14-3-3 proteins facilitate the nuclear export of IkappaBalpha-p65 complexes and are required for the appropriate regulation of NFkappaB signaling.

  15. Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus.

    PubMed

    Masutani, Hiroshi; Yoshihara, Eiji; Masaki, So; Chen, Zhe; Yodoi, Junji

    2012-01-01

    Thioredoxin binding protein -2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein -2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein -2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein -2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein -2 in metabolic control. Enhancement of thioredoxin binding protein -2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein -2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein -2-like inducible membrane protein/ arrestin domain containing 3 regulates endocytosis of receptors such as the β(2)-adrenergic receptor. The α-arrestin family possesses PPXY motifs and may function as an adaptor/scaffold for NEDD family ubiquitin ligases. Elucidation of the molecular mechanisms of α-arrestin proteins would provide a new pharmacological basis for developing approaches against cancer and type 2 diabetes mellitus.

  16. Abnormal regulation for progesterone production in placenta with prenatal cocaine exposure in rats.

    PubMed

    Wu, L; Yan, J; Qu, S C; Feng, Y Q; Jiang, X L

    2012-12-01

    Cocaine abuse in pregnant women is currently a significant public hygiene problem and is tightly associated with elevated risk for preterm delivery. Placental steroidogenesis especially progesterone production was essential for success and maintenance of pregnancy in humans and rodents. In the present study, we determined the impact of prenatal cocaine exposure on pathways of placental progesterone synthesis in rats. Pregnant rats were treated cocaine twice daily (15 mg/kg/day) during the third trimester, and the maternal and fetal plasma progesterone and pregnenolone concentrations were detected. We also examined both the protein and mRNA expression of some key enzymes and regulators for progesterone production in placenta. Results showed that, after maternal cocaine use during pregnancy, progesterone and pregnenolone concentrations in both maternal and fetal rats were significantly decreased. Although prenatal cocaine exposure had no effects on placental 3β-hydroxysteroid dehydrogenase type 1 (3βHSD1) expression, protein and mRNA expression of the cholesterol side-chain cleavage enzyme (P450scc/CYP11a) in placenta was significantly inhibited. Moreover, protein and mRNA expressions of MLN64 that regulating cholesterol transport and activating protein 2γ (AP2γ/Tfap2c) that controlling P450scc/CYP11a gene expression in placenta were both decreased following maternal cocaine use in pregnancy. Collectively, this study suggested that prenatal cocaine exposure could insult the placental progesterone production in rats possibly associated with the high risk for preterm delivery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...

  18. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...

  19. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...

  20. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...

  1. Nuclear Proteins Hijacked by Mammalian Cytoplasmic Plus Strand RNA Viruses

    PubMed Central

    Lloyd, Richard E.

    2015-01-01

    Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizes recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. PMID:25818028

  2. An Arabidopsis Ran-binding protein, AtRanBP1c, is a co-activator of Ran GTPase-activating protein and requires the C-terminus for its cytoplasmic localization

    NASA Technical Reports Server (NTRS)

    Kim, Soo-Hwan; Roux, Stanley J.

    2003-01-01

    Ran-binding proteins (RanBPs) are a group of proteins that bind to Ran (Ras-related nuclear small GTP-binding protein), and thus either control the GTP/GDP-bound states of Ran or help couple the Ran GTPase cycle to a cellular process. AtRanBP1c is a Ran-binding protein from Arabidopsis thaliana (L.) Heynh. that was recently shown to be critically involved in the regulation of auxin-induced mitotic progression [S.-H. Kim et al. (2001) Plant Cell 13:2619-2630]. Here we report that AtRanBP1c inhibits the EDTA-induced release of GTP from Ran and serves as a co-activator of Ran-GTPase-activating protein (RanGAP) in vitro. Transient expression of AtRanBP1c fused to a beta-glucuronidase (GUS) reporter reveals that the protein localizes primarily to the cytosol. Neither the N- nor C-terminus of AtRanBP1c, which flank the Ran-binding domain (RanBD), is necessary for the binding of PsRan1-GTP to the protein, but both are needed for the cytosolic localization of GUS-fused AtRanBP1c. These findings, together with a previous report that AtRanBP1c is critically involved in root growth and development, imply that the promotion of GTP hydrolysis by the Ran/RanGAP/AtRanBP1c complex in the cytoplasm, and the resulting concentration gradient of Ran-GDP to Ran-GTP across the nuclear membrane could be important in the regulation of auxin-induced mitotic progression in root tips of A. thaliana.

  3. Importin α5 negatively regulates importin β1-mediated nuclear import of Newcastle disease virus matrix protein and viral replication and pathogenicity in chicken fibroblasts.

    PubMed

    Duan, Zhiqiang; Xu, Haixu; Ji, Xinqin; Zhao, Jiafu; Xu, Houqiang; Hu, Yan; Deng, Shanshan; Hu, Shunlin; Liu, Xiufan

    2018-12-31

    The matrix (M) protein of Newcastle disease virus (NDV) is demonstrated to localize in the nucleus via intrinsic nuclear localization signal (NLS), but cellular proteins involved in the nuclear import of NDV M protein and the role of M's nuclear localization in the replication and pathogenicity of NDV remain unclear. In this study, importin β1 was screened to interact with NDV M protein by yeast two-hybrid screening. This interaction was subsequently confirmed by co-immunoprecipitation and pull-down assays. In vitro binding studies indicated that the NLS region of M protein and the amino acids 336-433 of importin β1 that belonged to the RanGTP binding region were important for binding. Importantly, a recombinant virus with M/NLS mutation resulted in a pathotype change of NDV and attenuated viral replication and pathogenicity in chicken fibroblasts and SPF chickens. In agreement with the binding data, nuclear import of NDV M protein in digitonin-permeabilized HeLa cells required both importin β1 and RanGTP. Interestingly, importin α5 was verified to interact with M protein through binding importin β1. However, importin β1 or importin α5 depletion by siRNA resulted in different results, which showed the obviously cytoplasmic or nuclear accumulation of M protein and the remarkably decreased or increased replication ability and pathogenicity of NDV in chicken fibroblasts, respectively. Our findings therefore demonstrate for the first time the nuclear import mechanism of NDV M protein and the negative regulation role of importin α5 in importin β1-mediated nuclear import of M protein and the replication and pathogenicity of a paramyxovirus.

  4. FRET-detectable interactions between the ARE binding proteins, HuR and p37AUF1

    PubMed Central

    David, Pamela S.; Tanveer, Rasheeda; Port, J. David

    2007-01-01

    A number of highly regulated gene classes are regulated post-transcriptionally at the level of mRNA stability. A central feature in these mRNAs is the presence of A+U-rich elements (ARE) within their 3′ UTRs. Two ARE binding proteins, HuR and AUF1, are associated with mRNA stabilization and destabilization, respectively. Previous studies have demonstrated homomultimerization of each protein and the capacity to bind simultaneous or competitively to a single ARE. To investigate this possibility further, cell biological and biophysical approaches were undertaken. Protein–protein interaction was monitored by fluorescence resonance energy transfer (FRET) and by immunocytochemistry in live and fixed cells using fluorescently labeled CFP/YFP fusion proteins of HuR and p37AUF1. Strong nuclear FRET between HuR/HuR and AUF1/AUF1 homodimers as well as HuR/AUF1 heterodimers was observed. Treatment with the MAP kinase activator, anisomycin, which commonly stabilizes ARE-containing mRNAs, caused rapid nuclear to cytoplasmic shuttling of HuR. AUF1 also underwent shuttling, but on a longer time scale. After shuttling, HuR/HuR, AUF1/AUF1, and HuR/AUF1, FRET was also observed in the cytoplasm. In further studies, arsenite rapidly induced the formation of stress granules containing HuR and TIA-1 but not AUF1. The current studies demonstrate that two mRNA binding proteins, HuR and AUF1, are colocalized and are capable of functional interaction in both the nucleus and cytoplasm. FRET-based detection of AUF1/HuR interaction may serve as a basis of opening up new dimensions in delineating the functional interaction of mRNA binding proteins with RNA turnover. PMID:17626845

  5. Control of eIF4E cellular localization by eIF4E-binding proteins, 4E-BPs.

    PubMed

    Rong, Liwei; Livingstone, Mark; Sukarieh, Rami; Petroulakis, Emmanuel; Gingras, Anne-Claude; Crosby, Katherine; Smith, Bradley; Polakiewicz, Roberto D; Pelletier, Jerry; Ferraiuolo, Maria A; Sonenberg, Nahum

    2008-07-01

    Eukaryotic initiation factor (eIF) 4E, the mRNA 5'-cap-binding protein, mediates the association of eIF4F with the mRNA 5'-cap structure to stimulate cap-dependent translation initiation in the cytoplasm. The assembly of eIF4E into the eIF4F complex is negatively regulated through a family of repressor proteins, called the eIF4E-binding proteins (4E-BPs). eIF4E is also present in the nucleus, where it is thought to stimulate nuclear-cytoplasmic transport of certain mRNAs. eIF4E is transported to the nucleus via its interaction with 4E-T (4E-transporter), but it is unclear how it is retained in the nucleus. Here we show that a sizable fraction (approximately 30%) of 4E-BP1 is localized to the nucleus, where it binds eIF4E. In mouse embryo fibroblasts (MEFs) subjected to serum starvation and/or rapamycin treatment, nuclear 4E-BPs sequester eIF4E in the nucleus. A dramatic loss of nuclear 4E-BP1 occurs in c-Ha-Ras-expressing MEFs, which fail to show starvation-induced nuclear accumulation of eIF4E. Therefore, 4E-BP1 is a regulator of eIF4E cellular localization.

  6. Control of eIF4E cellular localization by eIF4E-binding proteins, 4E-BPs

    PubMed Central

    Rong, Liwei; Livingstone, Mark; Sukarieh, Rami; Petroulakis, Emmanuel; Gingras, Anne-Claude; Crosby, Katherine; Smith, Bradley; Polakiewicz, Roberto D.; Pelletier, Jerry; Ferraiuolo, Maria A.; Sonenberg, Nahum

    2008-01-01

    Eukaryotic initiation factor (eIF) 4E, the mRNA 5′-cap-binding protein, mediates the association of eIF4F with the mRNA 5′-cap structure to stimulate cap-dependent translation initiation in the cytoplasm. The assembly of eIF4E into the eIF4F complex is negatively regulated through a family of repressor proteins, called the eIF4E-binding proteins (4E-BPs). eIF4E is also present in the nucleus, where it is thought to stimulate nuclear-cytoplasmic transport of certain mRNAs. eIF4E is transported to the nucleus via its interaction with 4E-T (4E-transporter), but it is unclear how it is retained in the nucleus. Here we show that a sizable fraction (∼30%) of 4E-BP1 is localized to the nucleus, where it binds eIF4E. In mouse embryo fibroblasts (MEFs) subjected to serum starvation and/or rapamycin treatment, nuclear 4E-BPs sequester eIF4E in the nucleus. A dramatic loss of nuclear 4E-BP1 occurs in c-Ha-Ras–expressing MEFs, which fail to show starvation-induced nuclear accumulation of eIF4E. Therefore, 4E-BP1 is a regulator of eIF4E cellular localization. PMID:18515545

  7. Progesterone production is affected by unfolded protein response (UPR) signaling during the luteal phase in mice.

    PubMed

    Park, Hyo-Jin; Park, Sun-Ji; Koo, Deog-Bon; Lee, Sang-Rae; Kong, Il-Keun; Ryoo, Jae-Woong; Park, Young-Il; Chang, Kyu-Tae; Lee, Dong-Seok

    2014-09-15

    We examined whether the three unfolded protein response (UPR) signaling pathways, which are activated in response to endoplasmic reticulum (ER)-stress, are involved in progesterone production in the luteal cells of the corpus luteum (CL) during the mouse estrous cycle. The luteal phase of C57BL/6 female mice (8 weeks old) was divided into two stages: the functional stage (16, 24, and 48 h) and the regression stage (72 and 96 h). Western blotting and reverse transcription (RT)-PCR were performed to analyze UPR protein/gene expression levels in each stage. We investigated whether ER stress affects the progesterone production by using Tm (0.5 μg/g BW) or TUDCA (0.5 μg/g BW) through intra-peritoneal injection. Our results indicate that expressions of Grp78/Bip, p-eIF2α/ATF4, p50ATF6, and p-IRE1/sXBP1 induced by UPR activation were predominantly maintained in functional and early regression stages of the CL. Furthermore, the expression of p-JNK, CHOP, and cleaved caspase3 as ER-stress mediated apoptotic factors increased during the regression stage. Cleaved caspase3 levels increased in the late-regression stage after p-JNK and CHOP expression in the early-regression stage. Additionally, although progesterone secretion and levels of steroidogenic enzymes decreased following intra-peritoneal injection of Tunicamycin, an ER stress inducer, the expression of Grp78/Bip, p50ATF6, and CHOP dramatically increased. These results suggest that the UPR signaling pathways activated in response to ER stress may play important roles in the regulation of the CL function. Furthermore, our findings enhance the understanding of the basic mechanisms affecting the CL life span. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus

    PubMed Central

    Masutani, Hiroshi; Yoshihara, Eiji; Masaki, So; Chen, Zhe; Yodoi, Junji

    2012-01-01

    Thioredoxin binding protein −2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein −2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein −2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein −2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein −2 in metabolic control. Enhancement of thioredoxin binding protein −2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein −2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein −2-like inducible membrane protein/ arrestin domain containing 3 regulates endocytosis of receptors such as the β2-adrenergic receptor. The α-arrestin family possesses PPXY motifs and may function as an adaptor/scaffold for NEDD family ubiquitin ligases. Elucidation of the molecular mechanisms of α-arrestin proteins would provide a new pharmacological basis for developing approaches against cancer and type 2 diabetes mellitus. PMID:22247597

  9. Progesterone inhibits contraction and increases TREK-1 potassium channel expression in late pregnant rat uterus

    PubMed Central

    Yin, Zongzhi; Li, Yun; He, Wenzhu; Li, Dan; Li, Hongyan; Yang, Yuanyuan; Shen, Bing; Wang, Xi; Cao, Yunxia; Khalil, Raouf A.

    2018-01-01

    Objective The aim of this study was to investigate the effect and mechanism by which progesterone regulates uterine contraction in late pregnant rats Results Progesterone caused concentration-dependent relaxation of uterine strips that was enhanced compared with control nontreated uterine strips. Uterine strips incubated with progesterone showed a significant increase in TREK-1 mRNA expression and protein level. TREK-1 inhibitor L-methionine partly reversed uterine relaxation caused by the progesterone, while TREK-1 activator arachidonic acid did not cause significant change in progesterone-induced relaxation. Conclusions Progesterone inhibits uterine contraction and induces uterine relaxation in late pregnancy. The progesterone-induced inhibition of uterine contraction appears to partly involve increased potassium channel TREK-1 expression/activity. Materials and Methods Uterus from late-pregnant rats (gestational day 19) was isolated, and uterine strips were prepared for isometric contraction measurement. Oxytocin-induced contraction was compared in uterine strips pretreated with different concentration of progesterone. TREK-1 potassium channel inhibitor L-methionine and TREK-1 agonist arachidonic acid were used to determine whether the changes caused by progesterone involve changes in TREK-1 activity. The mRNA and protein expression of TREK-1 in uterine tissues were measured using qPCR and Western blot. PMID:29416642

  10. Effect of triptolide on progesterone production from cultured rat granulosa cells.

    PubMed

    Zhang, J; Jiang, Z; Mu, X; Wen, J; Su, Y; Zhang, L

    2012-06-01

    Triptolide(CAS 38748-32-2), a major active component of Tripterygium wilfordii Hook F (TWHF), is known to have multiple pharmacological activities. However, studies have also shown that triptolide is highly disrupt to the reproductive system by disrupting normal steroid hormone signaling. In the present study, we investigated the effect of triptolide (5, 10, or 20 nM for 24 h) on progesterone production by rat granulosa cells. Triptolide inhibited both basal and human chorionic gonadotropin (HCG)- and 8-bromo-cAMP-stimulated progesterone production as revealed by RIA assay. Furthermore, the HCG-evoked increase in cellular cAMP content was also inhibited by triptolide, indicating that disruption of the cAMP/PKA signaling pathway may mediate the deleterious effects of triptolide on progesterone regulation. In addition, triptolide inhibited 25-OH-cholesterol-stimulated progesterone production, suggesting that activity of the P450 side chain cleavage (P450scc) enzyme was also be inhibited by triptolide. Western blot and quantitative real-time PCR (qRT-PCR) assays further revealed that triptolide decreased mRNA and protein expression of P450scc and the steroidogenic regulatory (StAR) protein in granulosa cells. In contrast, cell viability tests using 3-(4,5-dimethyl-thiazol-2-yl)-2,5- diphenyl-tetrazolium bromide (MTT) indicated that triptolide did not cause measurable cell death at doses that suppressed steroidogenesis. The reproductive toxicity of triptolide may be caused by disruption of cAMP/PKA-mediated expression of a number of progesterone synthesis enzymes or regulatory proteins, leading to reduced progesterone synthesis and reproductive dysfunction. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Progesterone down-regulates SLIT/ROBO expression in mouse corpus luteum.

    PubMed

    Zhang, Xuejing; Mi, Meiyan; Hao, Weili; Fan, Qiongying; Gao, Bulang

    2017-09-01

    Progesterone produced by the corpus luteum (CL) is essential for preparation, implantation and maintenance of gestation. Furthermore, progesterone plays a protective role against luteolysis in rodents. It has been reported that Slit/Robo family members expressed in the CL and involved in prostaglandin F 2α (PGF 2α ) induced luteolysis. However, the interactions between progesterone and Slits/Robos in CL are not clear. This study was designed to examine whether or not luteolysis is regulated by the interaction of progesterone and Slits/Robos in mouse CL. In the current study, we used Real-time PCR to identify the effect of progesterone on Slit2/Robo1 expression in cultured luteal cells in vitro, and the exogenous progesterone injection on mouse luteolysis and Slit/Robo expression in vivo was studied via Real-time PCR and Western bolt. Our in vitro experiment revealed that 1μM progesterone significantly decreased Slit2/Robo1 mRNA levels at 6h, 12h and 24h. Our in vivo experiment showed that the mRNA and protein levels of Slit2 and Robo1 decreased significantly 7days after progesterone supplement. These findings indicate that progesterone maintains CL function and resists luteolysis possibly through down-regulating Slit/Robo signaling pathway in the CL. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. The MTA family proteins as novel histone H3 binding proteins.

    PubMed

    Wu, Meng; Wang, Lina; Li, Qian; Li, Jiwen; Qin, Jun; Wong, Jiemin

    2013-01-03

    The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail.

  13. The MTA family proteins as novel histone H3 binding proteins

    PubMed Central

    2013-01-01

    Background The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. Results In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Conclusions Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail. PMID:23286669

  14. Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties.

    PubMed

    Putta, Priya; Rankenberg, Johanna; Korver, Ruud A; van Wijk, Ringo; Munnik, Teun; Testerink, Christa; Kooijman, Edgar E

    2016-11-01

    Phosphatidic acid (PA) is a crucial membrane phospholipid involved in de novo lipid synthesis and numerous intracellular signaling cascades. The signaling function of PA is mediated by peripheral membrane proteins that specifically recognize PA. While numerous PA-binding proteins are known, much less is known about what drives specificity of PA-protein binding. Previously, we have described the ionization properties of PA, summarized in the electrostatic-hydrogen bond switch, as one aspect that drives the specific binding of PA by PA-binding proteins. Here we focus on membrane curvature stress induced by phosphatidylethanolamine and show that many PA-binding proteins display enhanced binding as a function of negative curvature stress. This result is corroborated by the observation that positive curvature stress, induced by lyso phosphatidylcholine, abolishes PA binding of target proteins. We show, for the first time, that a novel plant PA-binding protein, Arabidopsis Epsin-like Clathrin Adaptor 1 (ECA1) displays curvature-dependence in its binding to PA. Other established PA targets examined in this study include, the plant proteins TGD2, and PDK1, the yeast proteins Opi1 and Spo20, and, the mammalian protein Raf-1 kinase and the C2 domain of the mammalian phosphatidylserine binding protein Lact as control. Based on our observations, we propose that liposome binding assays are the preferred method to investigate lipid binding compared to the popular lipid overlay assays where membrane environment is lost. The use of complex lipid mixtures is important to elucidate further aspects of PA binding proteins. Copyright © 2016. Published by Elsevier B.V.

  15. NR4A orphan nuclear receptors influence retinoic acid and docosahexaenoic acid signaling via up-regulation of fatty acid binding protein 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volakakis, Nikolaos; Joodmardi, Eliza; Perlmann, Thomas, E-mail: thomas.perlmann@licr.ki.se

    2009-12-25

    The orphan nuclear receptor (NR) Nurr1 is expressed in the developing and adult nervous system and is also induced as an immediate early gene in a variety of cell types. In silico analysis of human promoters identified fatty acid binding protein 5 (FABP5), a protein shown to enhance retinoic acid-mediated PPAR{beta}/{delta} signaling, as a potential Nurr1 target gene. Nurr1 has previously been implicated in retinoid signaling via its heterodimerization partner RXR. Since NRs are commonly involved in cross-regulatory control we decided to further investigate the regulatory relationship between Nurr1 and FABP5. FABP5 expression was up-regulated by Nurr1 and other NR4Amore » NRs in HEK293 cells, and Nurr1 was shown to activate and bind to the FABP5 promoter, supporting that FABP5 is a direct downstream target of NR4A NRs. We also show that the RXR ligand docosahexaenoic acid (DHA) can induce nuclear translocation of FABP5. Moreover, via up-regulation of FABP5 Nurr1 can enhance retinoic acid-induced signaling of PPAR{beta}/{delta} and DHA-induced activation of RXR. We also found that other members of the NR4A orphan NRs can up-regulate FABP5. Thus, our findings suggest that NR4A orphan NRs can influence signaling events of other NRs via control of FABP5 expression levels.« less

  16. A brave new world of RNA-binding proteins.

    PubMed

    Hentze, Matthias W; Castello, Alfredo; Schwarzl, Thomas; Preiss, Thomas

    2018-05-01

    RNA-binding proteins (RBPs) are typically thought of as proteins that bind RNA through one or multiple globular RNA-binding domains (RBDs) and change the fate or function of the bound RNAs. Several hundred such RBPs have been discovered and investigated over the years. Recent proteome-wide studies have more than doubled the number of proteins implicated in RNA binding and uncovered hundreds of additional RBPs lacking conventional RBDs. In this Review, we discuss these new RBPs and the emerging understanding of their unexpected modes of RNA binding, which can be mediated by intrinsically disordered regions, protein-protein interaction interfaces and enzymatic cores, among others. We also discuss the RNA targets and molecular and cellular functions of the new RBPs, as well as the possibility that some RBPs may be regulated by RNA rather than regulate RNA.

  17. Femtosecond studies of protein-ligand hydrophobic binding and dynamics: human serum albumin.

    PubMed

    Zhong, D; Douhal, A; Zewail, A H

    2000-12-19

    In this contribution, we report studies of the nature of the dynamics and hydrophobic binding in protein-ligand complexes of human serum albumin with 2-(2'-hydroxyphenyl)-4-methyloxazole. With femtosecond time resolution, we examined the orientational motion of the ligand, its intrinsic nuclear motions, and the lifetime changes in the hydrophobic phase. For comparisons, with similar but chemical nanocavities, we also studied the same ligand in micelles and cyclodextrins. The hydrophobic interactions in the binding crevice are much stronger than those observed in cyclodextrins and micelles. The confined geometry restrains the nonradiative decay and significantly lengthens the excited-state lifetime. The observed dynamics over the femtosecond-to-nanosecond time scale indicate that the binding structure is rigid and the local motions of the ligand are nearly "frozen" in the protein. Another major finding is the elucidation of the directed dynamics by the protein. Proton transfer and intramolecular twisting of 2-(2'-hydroxyphenyl)-4-methyloxazole were observed to evolve along two routes: one involves the direct stretching motion in the molecular plane (approximately 200 fs) and is not sensitive to the environment; the second, less dominant, is related to the twisting motion (approximately 3 ps) of the two heterocyclic rings and drastically slows down in the protein hydrophobic pocket.

  18. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.

    PubMed

    Miao, Yinglong; McCammon, J Andrew

    2018-03-20

    Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M 2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M 2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.

  19. Human mRNA polyadenylate binding protein: evolutionary conservation of a nucleic acid binding motif.

    PubMed Central

    Grange, T; de Sa, C M; Oddos, J; Pictet, R

    1987-01-01

    We have isolated a full length cDNA (cDNA) coding for the human poly(A) binding protein. The cDNA derived 73 kd basic translation product has the same Mr, isoelectric point and peptidic map as the poly(A) binding protein. DNA sequence analysis reveals a 70,244 dalton protein. The N terminal part, highly homologous to the yeast poly(A) binding protein, is sufficient for poly(A) binding activity. This domain consists of a four-fold repeated unit of approximately 80 amino acids present in other nucleic acid binding proteins. In the C terminal part there is, as in the yeast protein, a sequence of approximately 150 amino acids, rich in proline, alanine and glutamine which together account for 48% of the residues. A 2,9 kb mRNA corresponding to this cDNA has been detected in several vertebrate cell types and in Drosophila melanogaster at every developmental stage including oogenesis. Images PMID:2885805

  20. Solution structure, backbone dynamics and chitin binding of the anti-fungal protein from Streptomyces tendae TU901.

    PubMed

    Campos-Olivas, R; Hörr, I; Bormann, C; Jung, G; Gronenborn, A M

    2001-05-11

    AFP1 is a recently discovered anti-fungal, chitin-binding protein from Streptomyces tendae Tü901. Mature AFP1 comprises 86 residues and exhibits limited sequence similarity to the cellulose-binding domains of bacterial cellulases and xylanases. No similarity to the Cys and Gly-rich domains of plant chitin-binding proteins (e.g. agglutinins, lectins, hevein) is observed. AFP1 is the first chitin-binding protein from a bacterium for which anti-fungal activity was shown. Here, we report the three-dimensional solution structure of AFP1, determined by nuclear magnetic resonance spectroscopy. The protein contains two antiparallel beta-sheets (five and four beta-strands each), that pack against each other in a parallel beta-sandwich. This type of architecture is conserved in the functionally related family II of cellulose-binding domains, albeit with different connectivity. A similar fold is also observed in other unrelated proteins (spore coat protein from Myxococcus xanthus, beta-B2 and gamma-B crystallins from Bos taurus, canavalin from Jack bean). AFP1 is therefore classified as a new member of the betagamma-crystallin superfamily. The dynamics of the protein was characterized by NMR using amide 15N relaxation and solvent exchange data. We demonstrate that the protein exhibits an axially symmetric (oblate-like) rotational diffusion tensor whose principal axis coincides to within 15 degrees with that of the inertial tensor. After completion of the present structure of AFP1, an identical fold was reported for a Streptomyces killer toxin-like protein. Based on sequence comparisons and clustering of conserved residues on the protein surface for different cellulose and chitin-binding proteins, we postulate a putative sugar-binding site for AFP1. The inability of the protein to bind short chitin fragments suggests that certain particular architectural features of the solid chitin surface are crucial for the interaction. Copyright 2001 Academic Press.

  1. Carbene footprinting accurately maps binding sites in protein-ligand and protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Manzi, Lucio; Barrow, Andrew S.; Scott, Daniel; Layfield, Robert; Wright, Timothy G.; Moses, John E.; Oldham, Neil J.

    2016-11-01

    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation.

  2. The LIM Protein Zyxin Binds CARP-1 and Promotes Apoptosis

    PubMed Central

    Hervy, Martial; Hoffman, Laura M.; Jensen, Christopher C.; Smith, Mark; Beckerle, Mary C.

    2010-01-01

    Zyxin is a dual-function LIM domain protein that regulates actin dynamics in response to mechanical stress and shuttles between focal adhesions and the cell nucleus. Here we show that zyxin contributes to UV-induced apoptosis. Exposure of wild-type fibroblasts to UV-C irradiation results in apoptotic cell death, whereas cells harboring a homozygous disruption of the zyxin gene display a statistically significant survival advantage. To gain insight into the molecular mechanism by which zyxin promotes apoptotic signaling, we expressed an affinity-tagged zyxin variant in zyxin-null cells and isolated zyxin-associated proteins from cell lysates under physiological conditions. A 130-kDa protein that was co-isolated with zyxin was identified by microsequence analysis as the Cell Cycle and Apoptosis Regulator Protein-1 (CARP-1). CARP-1 associates with the LIM region of zyxin. Zyxin lacking the CARP-1 binding region shows reduced proapoptotic activity in response to UV-C irradiation. We demonstrate that CARP-1 is a nuclear protein. Zyxin is modified by phosphorylation in cells exposed to UV-C irradiation, and nuclear accumulation of zyxin is induced by UV-C exposure. These findings highlight a novel mechanism for modulating the apoptotic response to UV irradiation. PMID:20852740

  3. Novel image analysis approach for quantifying expression of nuclear proteins assessed by immunohistochemistry: application to measurement of oestrogen and progesterone receptor levels in breast cancer.

    PubMed

    Rexhepaj, Elton; Brennan, Donal J; Holloway, Peter; Kay, Elaine W; McCann, Amanda H; Landberg, Goran; Duffy, Michael J; Jirstrom, Karin; Gallagher, William M

    2008-01-01

    Manual interpretation of immunohistochemistry (IHC) is a subjective, time-consuming and variable process, with an inherent intra-observer and inter-observer variability. Automated image analysis approaches offer the possibility of developing rapid, uniform indicators of IHC staining. In the present article we describe the development of a novel approach for automatically quantifying oestrogen receptor (ER) and progesterone receptor (PR) protein expression assessed by IHC in primary breast cancer. Two cohorts of breast cancer patients (n = 743) were used in the study. Digital images of breast cancer tissue microarrays were captured using the Aperio ScanScope XT slide scanner (Aperio Technologies, Vista, CA, USA). Image analysis algorithms were developed using MatLab 7 (MathWorks, Apple Hill Drive, MA, USA). A fully automated nuclear algorithm was developed to discriminate tumour from normal tissue and to quantify ER and PR expression in both cohorts. Random forest clustering was employed to identify optimum thresholds for survival analysis. The accuracy of the nuclear algorithm was initially confirmed by a histopathologist, who validated the output in 18 representative images. In these 18 samples, an excellent correlation was evident between the results obtained by manual and automated analysis (Spearman's rho = 0.9, P < 0.001). Optimum thresholds for survival analysis were identified using random forest clustering. This revealed 7% positive tumour cells as the optimum threshold for the ER and 5% positive tumour cells for the PR. Moreover, a 7% cutoff level for the ER predicted a better response to tamoxifen than the currently used 10% threshold. Finally, linear regression was employed to demonstrate a more homogeneous pattern of expression for the ER (R = 0.860) than for the PR (R = 0.681). In summary, we present data on the automated quantification of the ER and the PR in 743 primary breast tumours using a novel unsupervised image analysis algorithm. This novel

  4. Molecular cloning, structural analysis, and expression of a human IRLB, MYC promoter-binding protein: new DENN domain-containing protein family emerges.

    PubMed

    Semova, Natalia; Kapanadze, Bagrat; Corcoran, Martin; Kutsenko, Alexei; Baranova, Ancha; Semov, Alexandre

    2003-09-01

    IRLB was originally identified as a partial cDNA clone, encoding a 191-aa protein binding the interferon-stimulated response element (ISRE) in the P2 promoter of human MYC. Here, we cloned the full-size IRLB using different bioinformatics tools and an RT-PCR approach. The full-size gene encompasses 131 kb within chromosome 15q22 and consists of 32 exons. IRLB is transcribed as a 6.6-kb mRNA encoding a protein of 1865 aa. IRLB is ubiquitously expressed and its expression is regulated in a growth- and cell cycle-dependent manner. In addition to the ISRE-binding domain IRLB contains a tripartite DENN domain, a nuclear localization signal, two PPRs, and a calmodulin-binding domain. The presence of DENN domains predicts possible interactions of IRLB with GTPases from the Rab family or regulation of growth-induced MAPKs. Strongly homologous proteins were identified in all available vertebrate genomes as well as in Caenorhabditis elegans and Drosophila melanogaster. In human and mouse a family of IRLB proteins exists, consisting of at least three members.

  5. The methoxychlor metabolite, HPTE, inhibits rat luteal cell progesterone production.

    PubMed

    Akgul, Yucel; Derk, Raymond C; Meighan, Terence; Rao, K Murali Krishna; Murono, Eisuke P

    2011-07-01

    The methoxychlor metabolite, HPTE, was shown to inhibit P450-cholesterol side-chain cleavage (P450scc) activity resulting in decreased progesterone production by cultured ovarian follicular cells in previous studies. It is not known whether HPTE has any effect on progesterone formation by the corpus luteum. Exposure to 100 nM HPTE reduced progesterone production by luteal cells with progressive declines to <22% of control at 500 nM HPTE. Similarly, HPTE progressively inhibited progesterone formation and P450scc catalytic activity of hCG- or 8 Br-cAMP-stimulated luteal cells. However, HPTE did not alter mRNA and protein levels of P450scc. Compounds acting as estrogen (17 β-estradiol, bisphenol-A or octylphenol), antiestrogen (ICI) or antiandrogen (monobutyl phthalate, flutamide or M-2) added alone to luteal cells did not mimic the action of HPTE on progesterone and P450scc activity. These results suggest that HPTE directly inhibits P450scc catalytic activity resulting in reduced progesterone formation, and this action was not mediated through estrogen or androgen receptors. Published by Elsevier Inc.

  6. RNA-Binding Proteins in Female Reproductive Pathologies.

    PubMed

    Khalaj, Kasra; Miller, Jessica E; Fenn, Christian R; Ahn, SooHyun; Luna, Rayana L; Symons, Lindsey; Monsanto, Stephany P; Koti, Madhuri; Tayade, Chandrakant

    2017-06-01

    RNA-binding proteins are key regulatory molecules involved primarily in post-transcriptional gene regulation of RNAs. Post-transcriptional gene regulation is critical for adequate cellular growth and survival. Recent reports have shown key interactions between these RNA-binding proteins and other regulatory elements, such as miRNAs and long noncoding RNAs, either enhancing or diminishing their response to RNA stabilization. Many RNA-binding proteins have been reported to play a functional role in mediation of cytokines involved in inflammation and immune dysfunction, and some have been classified as global post-transcriptional regulators of inflammation. The ubiquitous expression of RNA-binding proteins in a wide variety of cell types and their unique mechanisms of degradative action provide evidence that they are involved in reproductive tract pathologies. Aberrant inflammation and immune dysfunction are major contributors to the pathogenesis and disease pathophysiology of many reproductive pathologies, including ovarian and endometrial cancers in the female reproductive tract. Herein, we discuss various RNA-binding proteins and their unique contributions to female reproductive pathologies with a focus on those mediated by aberrant inflammation and immune dysfunction. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    ERIC Educational Resources Information Center

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  8. Calcyclin Binding Protein/Siah-1 Interacting Protein Is a Hsp90 Binding Chaperone

    PubMed Central

    Góral, Agnieszka; Bieganowski, Paweł; Prus, Wiktor; Krzemień-Ojak, Łucja; Kądziołka, Beata; Fabczak, Hanna; Filipek, Anna

    2016-01-01

    The Hsp90 chaperone activity is tightly regulated by interaction with many co-chaperones. Since CacyBP/SIP shares some sequence homology with a known Hsp90 co-chaperone, Sgt1, in this work we performed a set of experiments in order to verify whether CacyBP/SIP can interact with Hsp90. By applying the immunoprecipitation assay we have found that CacyBP/SIP binds to Hsp90 and that the middle (M) domain of Hsp90 is responsible for this binding. Furthermore, the proximity ligation assay (PLA) performed on HEp-2 cells has shown that the CacyBP/SIP-Hsp90 complexes are mainly localized in the cytoplasm of these cells. Using purified proteins and applying an ELISA we have shown that Hsp90 interacts directly with CacyBP/SIP and that the latter protein does not compete with Sgt1 for the binding to Hsp90. Moreover, inhibitors of Hsp90 do not perturb CacyBP/SIP-Hsp90 binding. Luciferase renaturation assay and citrate synthase aggregation assay with the use of recombinant proteins have revealed that CacyBP/SIP exhibits chaperone properties. Also, CacyBP/SIP-3xFLAG expression in HEp-2 cells results in the appearance of more basic Hsp90 forms in 2D electrophoresis, which may indicate that CacyBP/SIP dephosphorylates Hsp90. Altogether, the obtained results suggest that CacyBP/SIP is involved in regulation of the Hsp90 chaperone machinery. PMID:27249023

  9. Hyaluronate-binding proteins of murine brain.

    PubMed

    Marks, M S; Chi-Rosso, G; Toole, B P

    1990-01-01

    The distribution of hyaluronate-binding activity was determined in the soluble and membrane fractions derived from adult mouse brain by sonication in low-ionic-strength buffer. Approximately 60% of the total activity was recovered in the soluble fraction and 33% in membrane fractions. In both cases, the hyaluronate-binding activities were found to be of high affinity (KD = 10(-9) M), specific for hyaluronate, and glycoprotein in nature. Most of the hyaluronate-binding activity from the soluble fraction chromatographed in the void volume of Sepharose CL-4B and CL-6B. Approximately 50% of this activity was highly negatively charged, eluting from diethylaminoethyl (DEAE)-cellulose in 0.5 M NaCl, and contained chondroitin sulfate chains. This latter material also reacted with antibodies raised against cartilage link protein and the core protein of cartilage proteoglycan. Thus, the binding and physical characteristics of this hyaluronate-binding activity are consistent with those of a chondroitin sulfate proteoglycan aggregate similar to that found in cartilage. A 500-fold purification of this proteoglycan-like, hyaluronate-binding material was achieved by wheat germ agglutinin affinity chromatography, molecular sieve chromatography on Sepharose CL-6B, and ion exchange chromatography on DEAE-cellulose. Another class of hyaluronate-binding material (25-50% of that recovered) eluted from DEAE with 0.24 M NaCl; this material had the properties of a complex glycoprotein, did not contain chondroitin sulfate, and did not react with the antibodies against cartilage link protein and proteoglycan. Thus, adult mouse brain contains at least three different forms of hyaluronate-binding macromolecules. Two of these have properties similar to the link protein and proteoglycan of cartilage proteoglycan aggregates; the third is distinguishable from these entities.

  10. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei.

    PubMed

    Esteves, Adriana; Knoll-Gellida, Anja; Canclini, Lucia; Silvarrey, Maria Cecilia; André, Michèle; Babin, Patrick J

    2016-02-01

    Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC(12) but not BODIPY-FLC(5) to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC(12) to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC(12) was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  11. Progesterone bioavailability with a progesterone-releasing silicone vaginal ring in IVF candidates.

    PubMed

    Dragonas, C; Maltaris, T; Binder, H; Kat, M; Mueller, A; Cupisti, S; Hoffmann, I; Beckmann, M W; Dittrich, Ralf

    2007-06-27

    A vaginal ring made of silicone polymers and barium sulfate, and containing 1 g of pure micronized progesterone, was developed for luteal supplementation in women undergoing cycles of in vitro fertilization (IVF). The ring, modeled on the Estring, was designed as a means of providing continuous intravaginal delivery of progesterone. Bioavailability of progesterone in the blood was demonstrated for 24 hours in IVF candidates who had an endogenous progesterone deficiency after treatment with gonadotropin-releasing hormone (GnRH) analogues. After the first 4 h of increasing release of progesterone from the ring (with mean serum levels of 1.39 +/- 0.8 ng/ml after 4 h), only a slight increase in serum progesterone levels (with a mean peak of 1.5 +/- 0.45 ng/ml after 24 h) was observed during the rest of the test period. Gonadotropin levels were not affected after insertion of the ring. The ring was well tolerated by the patients. The maximum serum progesterone level was lower in comparison with other forms of progesterone application, but it should be sufficiently high, due to the uterine first-pass effect. This study demonstrated that progesterone administration through a silicone ring for luteal support is feasible in IVF treatment. As the vaginal ring is very well tolerated by the patients, these findings may encourage the pharmaceutical industry to design an appropriate progesterone ring for luteal support.

  12. Phosphorylation of a conserved serine in the deoxyribonucleic acid binding domain of nuclear receptors alters intracellular localization.

    PubMed

    Sun, Kai; Montana, Vedrana; Chellappa, Karthikeyani; Brelivet, Yann; Moras, Dino; Maeda, Yutaka; Parpura, Vladimir; Paschal, Bryce M; Sladek, Frances M

    2007-06-01

    Nuclear receptors (NRs) are a superfamily of transcription factors whose genomic functions are known to be activated by lipophilic ligands, but little is known about how to deactivate them or how to turn on their nongenomic functions. One obvious mechanism is to alter the nuclear localization of the receptors. Here, we show that protein kinase C (PKC) phosphorylates a highly conserved serine (Ser) between the two zinc fingers of the DNA binding domain of orphan receptor hepatocyte nuclear factor 4alpha (HNF4alpha). This Ser (S78) is adjacent to several positively charged residues (Arg or Lys), which we show here are involved in nuclear localization of HNF4alpha and are conserved in nearly all other NRs, along with the Ser/threonine (Thr). A phosphomimetic mutant of HNF4alpha (S78D) reduced DNA binding, transactivation ability, and protein stability. It also impaired nuclear localization, an effect that was greatly enhanced in the MODY1 mutant Q268X. Treatment of the hepatocellular carcinoma cell line HepG2 with PKC activator phorbol 12-myristate 13-acetate also resulted in increased cytoplasmic localization of HNF4alpha as well as decreased endogenous HNF4alpha protein levels in a proteasome-dependent fashion. We also show that PKC phosphorylates the DNA binding domain of other NRs (retinoic acid receptor alpha, retinoid X receptor alpha, and thyroid hormone receptor beta) and that phosphomimetic mutants of the same Ser/Thr result in cytoplasmic localization of retinoid X receptor alpha and peroxisome proliferator-activated receptor alpha. Thus, phosphorylation of this conserved Ser between the two zinc fingers may be a common mechanism for regulating the function of NRs.

  13. Clinical relevance of drug binding to plasma proteins

    NASA Astrophysics Data System (ADS)

    Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana

    2014-12-01

    Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.

  14. Molecular beacons for DNA binding proteins: an emerging technology for detection of DNA binding proteins and their ligands.

    PubMed

    Dummitt, Benjamin; Chang, Yie-Hwa

    2006-06-01

    Quantitation of the level or activity of specific proteins is one of the most commonly performed experiments in biomedical research. Protein detection has historically been difficult to adapt to high throughput platforms because of heavy reliance upon antibodies for protein detection. Molecular beacons for DNA binding proteins is a recently developed technology that attempts to overcome such limitations. Protein detection is accomplished using inexpensive, easy-to-synthesize oligonucleotides, accompanied by a fluorescence readout. Importantly, detection of the protein and reporting of the signal occur simultaneously, allowing for one-step protocols and increased potential for use in high throughput analysis. While the initial iteration of the technology allowed only for the detection of sequence-specific DNA binding proteins, more recent adaptations allow for the possibility of development of beacons for any protein, independent of native DNA binding activity. Here, we discuss the development of the technology, the mechanism of the reaction, and recent improvements and modifications made to improve the assay in terms of sensitivity, potential for multiplexing, and broad applicability.

  15. Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Zhang, S.; Lockshin, C.; Herbert, A.; Winter, E.; Rich, A.

    1992-01-01

    A putative Z-DNA binding protein, named zuotin, was purified from a yeast nuclear extract by means of a Z-DNA binding assay using [32P]poly(dG-m5dC) and [32P]oligo(dG-Br5dC)22 in the presence of B-DNA competitor. Poly(dG-Br5dC) in the Z-form competed well for the binding of a zuotin containing fraction, but salmon sperm DNA, poly(dG-dC) and poly(dA-dT) were not effective. Negatively supercoiled plasmid pUC19 did not compete, whereas an otherwise identical plasmid pUC19(CG), which contained a (dG-dC)7 segment in the Z-form was an excellent competitor. A Southwestern blot using [32P]poly(dG-m5dC) as a probe in the presence of MgCl2 identified a protein having a molecular weight of 51 kDa. The 51 kDa zuotin was partially sequenced at the N-terminal and the gene, ZUO1, was cloned, sequenced and expressed in Escherichia coli; the expressed zuotin showed similar Z-DNA binding activity, but with lower affinity than zuotin that had been partially purified from yeast. Zuotin was deduced to have a number of potential phosphorylation sites including two CDC28 (homologous to the human and Schizosaccharomyces pombe cdc2) phosphorylation sites. The hexapeptide motif KYHPDK was found in zuotin as well as in several yeast proteins, DnaJ of E.coli, csp29 and csp32 proteins of Drosophila and the small t and large T antigens of the polyoma virus. A 60 amino acid segment of zuotin has similarity to several histone H1 sequences. Disruption of ZUO1 in yeast resulted in a slow growth phenotype.

  16. Substrate-Triggered Exosite Binding: Synergistic Dendrimer/Folic Acid Action for Achieving Specific, Tight-Binding to Folate Binding Protein.

    PubMed

    Chen, Junjie; van Dongen, Mallory A; Merzel, Rachel L; Dougherty, Casey A; Orr, Bradford G; Kanduluru, Ananda Kumar; Low, Philip S; Marsh, E Neil G; Banaszak Holl, Mark M

    2016-03-14

    Polymer-ligand conjugates are designed to bind proteins for applications as drugs, imaging agents, and transport scaffolds. In this work, we demonstrate a folic acid (FA)-triggered exosite binding of a generation five poly(amidoamine) (G5 PAMAM) dendrimer scaffold to bovine folate binding protein (bFBP). The protein exosite is a secondary binding site on the protein surface, separate from the FA binding pocket, to which the dendrimer binds. Exosite binding is required to achieve the greatly enhanced binding constants and protein structural change observed in this study. The G5Ac-COG-FA1.0 conjugate bound tightly to bFBP, was not displaced by a 28-fold excess of FA, and quenched roughly 80% of the initial fluorescence. Two-step binding kinetics were measured using the intrinsic fluorescence of the FBP tryptophan residues to give a KD in the low nanomolar range for formation of the initial G5Ac-COG-FA1.0/FBP* complex, and a slow conversion to the tight complex formed between the dendrimer and the FBP exosite. The extent of quenching was sensitive to the choice of FA-dendrimer linker chemistry. Direct amide conjugation of FA to G5-PAMAM resulted in roughly 50% fluorescence quenching of the FBP. The G5Ac-COG-FA, which has a longer linker containing a 1,2,3-triazole ring, exhibited an ∼80% fluorescence quenching. The binding of the G5Ac-COG-FA1.0 conjugate was compared to poly(ethylene glycol) (PEG) conjugates of FA (PEGn-FA). PEG2k-FA had a binding strength similar to that of FA, whereas other PEG conjugates with higher molecular weight showed weaker binding. However, no PEG conjugates gave an increased degree of total fluorescence quenching.

  17. A chimeric protein composed of NuMA fused to the DNA binding domain of LANA is sufficient for the ori-P-dependent DNA replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohsaki, Eriko; Ueda, Keiji, E-mail: kueda@virus.me

    The Kaposi's sarcoma-associated herpesvirus (KSHV) genome is stably maintained in KSHV-infected PEL cell lines during cell division. We previously showed that accumulation of LANA in the nuclear matrix fraction could be important for the latent DNA replication, and that the functional significance of LANA should be its recruitment of ori-P to the nuclear matrix. Here, we investigated whether the forced localization of the LANA-DNA binding domain (DBD) to the nuclear matrix facilitated ori-P-containing plasmid replication. We demonstrated that chimeric proteins constructed by fusion of LANA DBD with the nuclear mitotic apparatus protein (NuMA), which is one of the components ofmore » the nuclear matrix, could bind with ori-P and enhance replication of an ori-P-containing plasmid, compared with that in the presence of DBD alone. These results further suggested that the ori-P recruitment to the nuclear matrix through the binding with DBD is important for latent viral DNA replication. - Highlights: •KSHV replication in latency depends on LANA localization to the nuclear matrix. •LANA DBD was fused with NuMA, a nuclear matrix protein, at the N- and C-terminus. •NuMA-DBD was in the nuclear matrix and supported the ori-P dependent replication. •LANA in the nuclear matrix should be important for the KSHV replication in latency.« less

  18. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    PubMed

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  19. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    EPA Science Inventory

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  20. An antifungal protein from Ginkgo biloba binds actin and can trigger cell death.

    PubMed

    Gao, Ningning; Wadhwani, Parvesh; Mühlhäuser, Philipp; Liu, Qiong; Riemann, Michael; Ulrich, Anne S; Nick, Peter

    2016-07-01

    Ginkbilobin is a short antifungal protein that had been purified and cloned from the seeds of the living fossil Ginkgo biloba. Homologues of this protein can be detected in all seed plants and the heterosporic fern Selaginella and are conserved with respect to domain structures, peptide motifs, and specific cysteine signatures. To get insight into the cellular functions of these conserved motifs, we expressed green fluorescent protein fusions of full-length and truncated ginkbilobin in tobacco BY-2 cells. We show that the signal peptide confers efficient secretion of ginkbilobin. When this signal peptide is either cleaved or masked, ginkbilobin binds and visualizes the actin cytoskeleton. This actin-binding activity of ginkbilobin is mediated by a specific subdomain just downstream of the signal peptide, and this subdomain can also coassemble with actin in vitro. Upon stable overexpression of this domain, we observe a specific delay in premitotic nuclear positioning indicative of a reduced dynamicity of actin. To elucidate the cellular response to the binding of this subdomain to actin, we use chemical engineering based on synthetic peptides comprising different parts of the actin-binding subdomain conjugated with the cell-penetrating peptide BP100 and with rhodamine B as a fluorescent reporter. Binding of this synthetic construct to actin efficiently induces programmed cell death. We discuss these findings in terms of a working model, where ginkbilobin can activate actin-dependent cell death.

  1. Regulation of Bacteria-Induced Intercellular Adhesion Molecule-1 by CCAAT/Enhancer Binding Proteins

    PubMed Central

    Manzel, Lori J.; Chin, Cecilia L.; Behlke, Mark A.; Look, Dwight C.

    2009-01-01

    Direct interaction between bacteria and epithelial cells may initiate or amplify the airway response through induction of epithelial defense gene expression by nuclear factor-κB (NF-κB). However, multiple signaling pathways modify NF-κB effects to modulate gene expression. In this study, the effects of CCAAT/enhancer binding protein (C/EBP) family members on induction of the leukocyte adhesion glycoprotein intercellular adhesion molecule-1 (ICAM-1) was examined in primary cultures of human tracheobronchial epithelial cells incubated with nontypeable Haemophilus influenzae. Increased ICAM-1 gene transcription in response to H. influenzae required gene sequences located at −200 to −135 in the 5′-flanking region that contain a C/EBP-binding sequence immediately upstream of the NF-κB enhancer site. Constitutive C/EBPβ was found to have an important role in epithelial cell ICAM-1 regulation, while the adjacent NF-κB sequence binds the RelA/p65 and NF-κB1/p50 members of the NF-κB family to induce ICAM-1 expression in response to H. influenzae. The expression of C/EBP proteins is not regulated by p38 mitogen-activated protein kinase activation, but p38 affects gene transcription by increasing the binding of TATA-binding protein to TATA-box–containing gene sequences. Epithelial cell ICAM-1 expression in response to H. influenzae was decreased by expressing dominant-negative protein or RNA interference against C/EBPβ, confirming its role in ICAM-1 regulation. Although airway epithelial cells express multiple constitutive and inducible C/EBP family members that bind C/EBP sequences, the results indicate that C/EBPβ plays a central role in modulation of NF-κB–dependent defense gene expression in human airway epithelial cells after exposure to H. influenzae. PMID:18703796

  2. Intersectin goes nuclear: secret life of an endocytic protein.

    PubMed

    Alvisi, Gualtiero; Paolini, Lucia; Contarini, Andrea; Zambarda, Chiara; Di Antonio, Veronica; Colosini, Antonella; Mercandelli, Nicole; Timmoneri, Martina; Palù, Giorgio; Caimi, Luigi; Ricotta, Doris; Radeghieri, Annalisa

    2018-04-27

    Intersectin 1-short (ITSN1-s) is a 1220 amino acid ubiquitously expressed scaffold protein presenting a multidomain structure that allows to spatiotemporally regulate the functional interaction of a plethora of proteins. Besides its well-established role in endocytosis, ITSN1-s is involved in the regulation of cell signaling and is implicated in tumorigenesis processes, although the signaling pathways involved are still poorly understood. Here, we identify ITSN1-s as a nucleocytoplasmic trafficking protein. We show that, by binding to importin (IMP)α, a small fraction of ITSN1-s localizes in the cell nucleus at the steady state, where it preferentially associates with the nuclear envelope and interacts with lamin A/C. However, upon pharmacological ablation of chromosome region maintenance 1 (CRM-1)-dependent nuclear export pathway, the protein accumulates into the nucleus, thus revealing its moonlighting nature. Analysis of deletion mutants revealed that the coiled coil (CC) and Src homology (SH3) regions play the major role in its nucleocytoplasmic shuttling. While no evidence of nuclear localization signal (NLS) was detected in the CC region, a functional bipartite NLS was identified within the SH3D region of ITSN1-s (RKKNPGGWWEGELQARGKKRQIGW-1127), capable of conferring energy-dependent nuclear accumulation to reporter proteins and whose mutational ablation affects nuclear import of the whole SH3 region. Thus, ITSN1-s is an endocytic protein, which shuttles between the nucleus and the cytoplasm in a CRM-1- and IMPα-dependent fashion. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. Solanum tuberosum ZPR1 encodes a light-regulated nuclear DNA-binding protein adjusting the circadian expression of StBBX24 to light cycle.

    PubMed

    Kiełbowicz-Matuk, Agnieszka; Czarnecka, Jagoda; Banachowicz, Ewa; Rey, Pascal; Rorat, Tadeusz

    2017-03-01

    ZPR1 proteins belong to the C4-type of zinc finger coordinators known in animal cells to interact with other proteins and participate in cell growth and proliferation. In contrast, the current knowledge regarding plant ZPR1 proteins is very scarce. Here, we identify a novel potato nuclear factor belonging to this family and named StZPR1. StZPR1 is specifically expressed in photosynthetic organs during the light period, and the ZPR1 protein is located in the nuclear chromatin fraction. From modelling and experimental analyses, we reveal the StZPR1 ability to bind the circadian DNA cis motif 'CAACAGCATC', named CIRC and present in the promoter of the clock-controlled double B-box StBBX24 gene, the expression of which peaks in the middle of the day. We found that transgenic lines silenced for StZPR1 expression still display a 24 h period for the oscillation of StBBX24 expression but delayed by 4 h towards the night. Importantly, other BBX genes exhibit altered circadian regulation in these lines. Our data demonstrate that StZPR1 allows fitting of the StBBX24 circadian rhythm to the light period and provide evidence that ZPR1 is a novel clock-associated protein in plants necessary for the accurate rhythmic expression of specific circadian-regulated genes. © 2016 John Wiley & Sons Ltd.

  4. Isolation of copper-binding proteins from activated sludge culture.

    PubMed

    Fukushi, K; Kato, S; Antsuki, T; Omura, T

    2001-01-01

    Six copper-binding microbial proteins were isolated from activated sludge cultures grown on media containing copper at various concentrations. Molecular weights among isolated proteins were ranged from 1.3k to 1 74k dalton. Isolated proteins were compared for their copper binding capabilities. Proteins isolated from cultures grown in the presence of copper in the growth media exhibited higher copper binding capabilities than those isolated from the culture grown in the absence of copper. The highest metal uptake of 61.23 (mol copper/mol protein) was observed by a protein isolated from a culture grown with copper at a concentration of 0.25 mM. This isolated protein (CBP2) had a molecular weight of 24k dalton. Other protein exhibited copper binding capability of 4.8-32.5 (mol copper/mol protein).

  5. The Oncogenic Fusion Proteins SET-Nup214 and Sequestosome-1 (SQSTM1)-Nup214 Form Dynamic Nuclear Bodies and Differentially Affect Nuclear Protein and Poly(A)+ RNA Export.

    PubMed

    Port, Sarah A; Mendes, Adélia; Valkova, Christina; Spillner, Christiane; Fahrenkrog, Birthe; Kaether, Christoph; Kehlenbach, Ralph H

    2016-10-28

    Genetic rearrangements are a hallmark of several forms of leukemia and can lead to oncogenic fusion proteins. One example of an affected chromosomal region is the gene coding for Nup214, a nucleoporin that localizes to the cytoplasmic side of the nuclear pore complex (NPC). We investigated two such fusion proteins, SET-Nup214 and SQSTM1 (sequestosome)-Nup214, both containing C-terminal portions of Nup214. SET-Nup214 nuclear bodies containing the nuclear export receptor CRM1 were observed in the leukemia cell lines LOUCY and MEGAL. Overexpression of SET-Nup214 in HeLa cells leads to the formation of similar nuclear bodies that recruit CRM1, export cargo proteins, and certain nucleoporins and concomitantly affect nuclear protein and poly(A) + RNA export. SQSTM1-Nup214, although mostly cytoplasmic, also forms nuclear bodies and inhibits nuclear protein but not poly(A) + RNA export. The interaction of the fusion proteins with CRM1 is RanGTP-dependent, as shown in co-immunoprecipitation experiments and binding assays. Further analysis revealed that the Nup214 parts mediate the inhibition of nuclear export, whereas the SET or SQSTM1 part determines the localization of the fusion protein and therefore the extent of the effect. SET-Nup214 nuclear bodies are highly mobile structures, which are in equilibrium with the nucleoplasm in interphase and disassemble during mitosis or upon treatment of cells with the CRM1-inhibitor leptomycin B. Strikingly, we found that nucleoporins can be released from nuclear bodies and reintegrated into existing NPC. Our results point to nuclear bodies as a means of preventing the formation of potentially insoluble and harmful protein aggregates that also may serve as storage compartments for nuclear transport factors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. The Oncogenic Fusion Proteins SET-Nup214 and Sequestosome-1 (SQSTM1)-Nup214 Form Dynamic Nuclear Bodies and Differentially Affect Nuclear Protein and Poly(A)+ RNA Export*

    PubMed Central

    Port, Sarah A.; Mendes, Adélia; Valkova, Christina; Spillner, Christiane; Fahrenkrog, Birthe; Kaether, Christoph; Kehlenbach, Ralph H.

    2016-01-01

    Genetic rearrangements are a hallmark of several forms of leukemia and can lead to oncogenic fusion proteins. One example of an affected chromosomal region is the gene coding for Nup214, a nucleoporin that localizes to the cytoplasmic side of the nuclear pore complex (NPC). We investigated two such fusion proteins, SET-Nup214 and SQSTM1 (sequestosome)-Nup214, both containing C-terminal portions of Nup214. SET-Nup214 nuclear bodies containing the nuclear export receptor CRM1 were observed in the leukemia cell lines LOUCY and MEGAL. Overexpression of SET-Nup214 in HeLa cells leads to the formation of similar nuclear bodies that recruit CRM1, export cargo proteins, and certain nucleoporins and concomitantly affect nuclear protein and poly(A)+ RNA export. SQSTM1-Nup214, although mostly cytoplasmic, also forms nuclear bodies and inhibits nuclear protein but not poly(A)+ RNA export. The interaction of the fusion proteins with CRM1 is RanGTP-dependent, as shown in co-immunoprecipitation experiments and binding assays. Further analysis revealed that the Nup214 parts mediate the inhibition of nuclear export, whereas the SET or SQSTM1 part determines the localization of the fusion protein and therefore the extent of the effect. SET-Nup214 nuclear bodies are highly mobile structures, which are in equilibrium with the nucleoplasm in interphase and disassemble during mitosis or upon treatment of cells with the CRM1-inhibitor leptomycin B. Strikingly, we found that nucleoporins can be released from nuclear bodies and reintegrated into existing NPC. Our results point to nuclear bodies as a means of preventing the formation of potentially insoluble and harmful protein aggregates that also may serve as storage compartments for nuclear transport factors. PMID:27613868

  7. Characterization of a protein that binds multiple sequences in mammalian type C retrovirus enhancers.

    PubMed Central

    Sun, W; O'Connell, M; Speck, N A

    1993-01-01

    Mammalian type C retrovirus enhancer factor 1 (MCREF-1) is a nuclear protein that binds several directly repeated sequences (CNGGN6CNGG) in the Moloney and Friend murine leukemia virus (MLV) enhancers (N. R. Manley, M. O'Connell, W. Sun, N. A. Speck, and N. Hopkins, J. Virol. 67:1967-1975, 1993). In this paper, we describe the partial purification of MCREF-1 from calf thymus nuclei and further characterize the binding properties of MCREF-1. MCREF-1 binds four sites in the Moloney MLV enhancer and three sites in the Friend MLV enhancer. Ethylation interference analysis suggests that the MCREF-1 binding site spans two adjacent minor grooves of DNA. Images PMID:8445719

  8. Protein-protein binding before and after photo-modification of albumin

    NASA Astrophysics Data System (ADS)

    Rozinek, Sarah C.; Glickman, Randolph D.; Thomas, Robert J.; Brancaleon, Lorenzo

    2016-03-01

    Bioeffects of directed-optical-energy encompass a wide range of applications. One aspect of photochemical interactions involves irradiating a photosensitizer with visible light in order to induce protein unfolding and consequent changes in function. In the past, irradiation of several dye-protein combinations has revealed effects on protein structure. Beta lactoglobulin, human serum albumin (HSA) and tubulin have all been photo-modified with meso-tetrakis(4- sulfonatophenyl)porphyrin (TSPP) bound, but only in the case of tubulin has binding caused a verified loss of biological function (loss of ability to form microtubules) as a result of this light-induced structural change. The current work questions if the photo-induced structural changes that occur to HSA, are sufficient to disable its biological function of binding to osteonectin. The albumin-binding protein, osteonectin, is about half the molecular weight of HSA, so the two proteins and their bound product can be separated and quantified by size exclusion high performance liquid chromatography. TSPP was first bound to HSA and irradiated, photo-modifying the structure of HSA. Then native HSA or photo-modified HSA (both with TSPP bound) were compared, to assess loss in HSA's innate binding ability as a result of light-induced structure modification.

  9. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein.

    PubMed

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J

    2000-08-01

    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  10. Sequence-Based Prediction of RNA-Binding Residues in Proteins

    PubMed Central

    Walia, Rasna R.; EL-Manzalawy, Yasser; Honavar, Vasant G.; Dobbs, Drena

    2017-01-01

    Identifying individual residues in the interfaces of protein–RNA complexes is important for understanding the molecular determinants of protein–RNA recognition and has many potential applications. Recent technical advances have led to several high-throughput experimental methods for identifying partners in protein–RNA complexes, but determining RNA-binding residues in proteins is still expensive and time-consuming. This chapter focuses on available computational methods for identifying which amino acids in an RNA-binding protein participate directly in contacting RNA. Step-by-step protocols for using three different web-based servers to predict RNA-binding residues are described. In addition, currently available web servers and software tools for predicting RNA-binding sites, as well as databases that contain valuable information about known protein–RNA complexes, RNA-binding motifs in proteins, and protein-binding recognition sites in RNA are provided. We emphasize sequence-based methods that can reliably identify interfacial residues without the requirement for structural information regarding either the RNA-binding protein or its RNA partner. PMID:27787829

  11. Binding Mode Analysis of Zerumbone to Key Signal Proteins in the Tumor Necrosis Factor Pathway

    PubMed Central

    Fatima, Ayesha; Abdul, Ahmad Bustamam Hj.; Abdullah, Rasedee; Karjiban, Roghayeh Abedi; Lee, Vannajan Sanghiran

    2015-01-01

    Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF) α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL) death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ) and the Nuclear factor κB (NF-κB) component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis. PMID:25629232

  12. Characterization of binding of N'-nitrosonornicotine to protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, M.F.

    1986-01-01

    The NADPH-dependent activation of the carcinogenic nitrosamine, N'-nitrosonornicotine (NNN) to a reactive intermediate which binds covalently to protein was assessed using male Sprague-Dawley rat liver and lung microsomes. The NADPH-dependent covalent binding of (/sup 14/C)NNN to liver and lung microsomes was linear with time up to 90 and 45 min, respectively and was also linear with protein concentrations up to 3.0 and 2.0 mg/ml, respectively. The apparent K/sub m/ and V/sub max/ of the NADPH-dependent binding to liver microsomes were determined from the initial velocities. Addition of the thiols glutathione, cystein, N-acetylcysteine or 2-mercapthoethanol significantly decreased the non-NADPH-dependent binding tomore » liver microsomal protein, but did not affect the NADPH-dependent binding. Glutathione was required in order to observe any NADPH-dependent binding to lung microsomal protein. In lung microsomes, SKF-525A significantly decreased the NADPH-dependent binding by 79%. Replacement of an air atmosphere with N/sub 2/ or CO:O/sub 2/ (8:2) significantly decreased the NADPH-dependent binding of (/sup 14/C)NNN to liver microsomal protein by 40% or 27% respectively. Extensive covalent binding of (/sup 14/C)NNN to liver and muscle microsomal protein occurred in the absence of an NADPH-generating system, in the presence of 50% methanol and also to bovine serum albumin, indicating a nonenzymatic reaction. These data indicate that cytochrome P-450 is at least in part responsible for the metabolic activation of the carcinogen NNN, but also suggest additional mechanisms of activation.« less

  13. Dissecting the Binding between Glutamine Synthetase and Its Two Natively Unfolded Protein Inhibitors.

    PubMed

    Pantoja-Uceda, David; Neira, José L; Saelices, Lorena; Robles-Rengel, Rocío; Florencio, Francisco J; Muro-Pastor, M Isabel; Santoro, Jorge

    2016-06-21

    Ammonium is incorporated into carbon skeletons by the sequential action of glutamine synthetase (GS) and glutamate synthase (GOGAT) in cyanobacteria. The activity of Synechocystis sp. PCC 6803 GS type I is controlled by protein-protein interactions with two intrinsically disordered inactivating factors (IFs): the 65-residue (IF7) and the 149-residue one (IF17). In this work, we studied both IF7 and IF17 by nuclear magnetic resonance (NMR), and we described their binding to GS by using NMR and biolayer interferometry. We assigned the backbone nuclei of all residues of IF7. Analyses of chemical shifts and the (15)N-{(1)H} NOEs at two field strengths suggest that IF7 region Thr3-Arg13 and a few residues around Ser27 and Phe41 populated helical conformations (although the percentage is smaller around Phe41). The two-dimensional (1)H-(15)N HSQC and CON experiments suggest that IF17 populated several conformations. We followed the binding between GS and IF7 by NMR at physiological pH, and the residues interacting first with IF7 were Gln6 and Ser27, belonging to those regions that appeared to be ordered in the isolated protein. We also determined the kon values and koff values for the binding of both IF7 and IF17 to GS, where the GS protein was bound to a biosensor. The measurements of the kinetic constants for the binding of IF7 to GS suggest that: (i) binding does not follow a kinetic two-state model ([Formula: see text]), (ii) there is a strong electrostatic component in the determined kon, and (iii) the binding is not diffusion-limited.

  14. The 87-kD A gamma-globin enhancer-binding protein is a product of the HOXB2(HOX2H) locus.

    PubMed

    Sengupta, P K; Lavelle, D E; DeSimone, J

    1994-03-01

    Developmental regulation of globin gene expression may be controlled by developmental stage-specific nuclear proteins that influence interactions between the locus control region and local regulatory sequences near individual globin genes. We previously isolated an 87-kD nuclear protein from K562 cells that bound to DNA sequences in the beta-globin locus control region, gamma-globin promoter, and A gamma-globin enhancer. The presence of this protein in fetal globin-expressing cells and its absence in adult globin-expressing cells suggested that it may be a developmental stage-specific factor. A lambda gt11 K562 cDNA clone encoding a portion of the HOXB2 (formerly HOX2H) homeobox gene was isolated on the basis of the ability of its beta-galactosidase fusion protein to bind to the same DNA sequences as the 87-kD K562 protein. Because no other relationship had been established between the 87-kD K562 protein and the HOXB2 protein other than their ability to bind ot the same DNA sequences, we have investigated whether the two proteins are related antigenically. Our data show that antisera produced against the HOXB2-beta-gal fusion protein and a synthetic HOXB2 decapeptide react specifically with an 87-kD protein from K562 nuclear extract, showing that the 87-kD K562 nuclear protein is a product of the HOXB2 locus, and is the first demonstration of cellular HOXB2 protein.

  15. Lipids and lipid binding proteins: a perfect match.

    PubMed

    Glatz, Jan F C

    2015-02-01

    Lipids serve a great variety of functions, ranging from structural components of biological membranes to signaling molecules affecting various cellular functions. Several of these functions are related to the unique physico-chemical properties shared by all lipid species, i.e., their hydrophobicity. The latter, however, is accompanied by a poor solubility in an aqueous environment and thus a severe limitation in the transport of lipids in aqueous compartments such as blood plasma and the cellular soluble cytoplasm. Specific proteins which can reversibly and non-covalently associate with lipids, designated as lipid binding proteins or lipid chaperones, greatly enhance the aqueous solubility of lipids and facilitate their transport between tissues and within tissue cells. Importantly, transport of lipids across biological membranes also is facilitated by specific (membrane-associated) lipid binding proteins. Together, these lipid binding proteins determine the bio-availability of their ligands, and thereby markedly influence the subsequent processing, utilization, or signaling effect of lipids. The bio-availability of specific lipid species thus is governed by the presence of specific lipid binding proteins, the affinity of these proteins for distinct lipid species, and the presence of competing ligands (including pharmaceutical compounds). Recent studies suggest that post-translational modifications of lipid binding proteins may have great impact on lipid-protein interactions. As a result, several levels of regulation exist that together determine the bio-availability of lipid species. This short review discusses the significance of lipid binding proteins and their potential application as targets for therapeutic intervention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Construction of genetically engineered M13K07 helper phage for simultaneous phage display of gold binding peptide 1 and nuclear matrix protein 22 ScFv antibody.

    PubMed

    Fatemi, Farnaz; Amini, Seyed Mohammad; Kharrazi, Sharmin; Rasaee, Mohammad Javad; Mazlomi, Mohammad Ali; Asadi-Ghalehni, Majid; Rajabibazl, Masoumeh; Sadroddiny, Esmaeil

    2017-11-01

    The most common techniques of antibody phage display are based on the use of M13 filamentous bacteriophages. This study introduces a new genetically engineered M13K07 helper phage displaying multiple copies of a known gold binding peptide on p8 coat proteins. The recombinant helper phages were used to rescue a phagemid vector encoding the p3 coat protein fused to the nuclear matrix protein 22 (NMP22) ScFv antibody. Transmission electron microscopy (TEM), UV-vis absorbance spectroscopy, and field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDX) analysis revealed that the expression of gold binding peptide 1 (GBP1) on major coat protein p8 significantly enhances the gold-binding affinity of M13 phages. The recombinant bacteriophages at concentrations above 5×10 4 pfu/ml red-shifted the UV-vis absorbance spectra of gold nanoparticles (AuNPs); however, the surface plasmon resonance of gold nanoparticles was not changed by the wild type bacteriophages at concentrations up to 10 12 pfu/ml. The phage ELISA assay demonstrated the high affinity binding of bifunctional bacteriophages to NMP22 antigen at concentrations of 10 5 and 10 6 pfu/ml. Thus, the p3 end of the bifunctional bacteriophages would be able to bind to specific target antigen, while the AuNPs were assembled along the coat of virus for signal generation. Our results indicated that the complex of antigen-bacteriophages lead to UV-vis spectral changes of AuNPs and NMP22 antigen in concentration range of 10-80μg/ml can be detected by bifunctional bacteriophages at concentration of 10 4 pfu/ml. The ability of bifunctional bacteriophages to bind to antigen and generate signal at the same time, makes this approach applicable for identifying different antigens in immunoassay techniques. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. DNA-binding activity of TNF-{alpha} inducing protein from Helicobacter pylori

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzuhara, T.; Suganuma, M.; Oka, K.

    2007-11-03

    Tumor necrosis factor-{alpha} (TNF-{alpha}) inducing protein (Tip{alpha}) is a carcinogenic factor secreted from Helicobacter pylori (H. pylori), mediated through both enhanced expression of TNF-{alpha} and chemokine genes and activation of nuclear factor-{kappa}B. Since Tip{alpha} enters gastric cancer cells, the Tip{alpha} binding molecules in the cells should be investigated. The direct DNA-binding activity of Tip{alpha} was observed by pull down assay using single- and double-stranded genomic DNA cellulose. The surface plasmon resonance assay, indicating an association between Tip{alpha} and DNA, revealed that the affinity of Tip{alpha} for (dGdC)10 is 2400 times stronger than that of del-Tip{alpha}, an inactive Tip{alpha}. This suggestsmore » a strong correlation between DNA-binding activity and carcinogenic activity of Tip{alpha}. And the DNA-binding activity of Tip{alpha} was first demonstrated with a molecule secreted from H. pylori.« less

  18. Ice-shell purification of ice-binding proteins.

    PubMed

    Marshall, Craig J; Basu, Koli; Davies, Peter L

    2016-06-01

    Ice-affinity purification is a simple and efficient method of purifying to homogeneity both natural and recombinant ice-binding proteins. The purification involves the incorporation of ice-binding proteins into slowly-growing ice and the exclusion of other proteins and solutes. In previous approaches, the ice was grown around a hollow brass finger through which coolant was circulated. We describe here an easily-constructed apparatus that employs ice affinity purification that not only shortens the time for purification from 1-2 days to 1-2 h, but also enhances yield and purity. In this apparatus, the surface area for the separation was increased by extracting the ice-binding proteins into an ice-shell formed inside a rotating round-bottom flask partially submerged in a sub-zero bath. In principle, any ice-binding compound can be recovered from liquid solution, and the method is readily scalable. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Temporal expression of the human alcohol dehydrogenase gene family during liver development correlates with differential promoter activation by hepatocyte nuclear factor 1, CCAAT/enhancer-binding protein alpha, liver activator protein, and D-element-binding protein.

    PubMed Central

    van Ooij, C; Snyder, R C; Paeper, B W; Duester, G

    1992-01-01

    The human class I alcohol dehydrogenase (ADH) gene family consists of ADH1, ADH2, and ADH3, which are sequentially activated in early fetal, late fetal, and postnatal liver, respectively. Analysis of ADH promoters revealed differential activation by several factors previously shown to control liver transcription. In cotransfection assays, the ADH1 promoter, but not the ADH2 or ADH3 promoter, was shown to respond to hepatocyte nuclear factor 1 (HNF-1), which has previously been shown to regulate transcription in early liver development. The ADH2 promoter, but not the ADH1 or ADH3 promoter, was shown to respond to CCAAT/enhancer-binding protein alpha (C/EBP alpha), a transcription factor particularly active during late fetal liver and early postnatal liver development. The ADH1, ADH2, and ADH3 promoters all responded to the liver transcription factors liver activator protein (LAP) and D-element-binding protein (DBP), which are most active in postnatal liver. For all three promoters, the activation by LAP or DBP was higher than that seen by HNF-1 or C/EBP alpha, and a significant synergism between C/EBP alpha and LAP was noticed for the ADH2 and ADH3 promoters when both factors were simultaneously cotransfected. A hierarchy of ADH promoter responsiveness to C/EBP alpha and LAP homo- and heterodimers is suggested. In all three ADH genes, LAP bound to the same four sites previously reported for C/EBP alpha (i.e., -160, -120, -40, and -20 bp), but DBP bound strongly only to the site located at -40 bp relative to the transcriptional start. Mutational analysis of ADH2 indicated that the -40 bp element accounts for most of the promoter regulation by the bZIP factors analyzed. These studies suggest that HNF-1 and C/EBP alpha help establish ADH gene family transcription in fetal liver and that LAP and DBP help maintain high-level ADH gene family transcription in postnatal liver. Images PMID:1620113

  20. Progesterone and calcitriol reduce invasive potential of endometrial cancer cells by targeting ARF6, NEDD9 and MT1-MMP.

    PubMed

    Waheed, Sana; Dorjbal, Batsukh; Hamilton, Chad A; Maxwell, G Larry; Rodriguez, Gustavo C; Syed, Viqar

    2017-12-26

    Previously, we have demonstrated that progesterone and calcitriol synergistically inhibit growth of endometrial and ovarian cancer by enhancing apoptosis and causing cell cycle arrest. Metastasis is the main reason of mortality in cancer patients. Activation of ADP-Ribosylation Factor 6 (ARF6), Neural Precursor cell expressed Developmentally Downregulated 9 (NEDD9), and Membrane-Type-1 Matrix Metalloproteinase (MT1-MMP) have been implicated in promoting tumor growth and metastasis. We examined the effects of progesterone, calcitriol and progesterone-calcitriol combination on metastasis promoting proteins in endometrial cancer. Expression of ARF6, NEDD9, and MT1-MMP was enhanced in advanced-stage endometrial tumors and in cancer cell lines compared to normal tissues and immortalized EM-E6/E7-TERT endometrial epithelial cells. Knockdown of these proteins significantly inhibited the invasiveness of the cancer cells. The expression levels of all three proteins was reduced with progesterone and progesterone-calcitriol combination treatment, whereas calcitriol alone showed no effect on their expression but moderately decreased MT1-MMP activity. Fluorescence microscopy showed membrane expression of MT1-MMP in vehicle and calcitriol-treated endometrial cancer cells. However, progesterone and calcitriol-progesterone combination treatment revealed MT1-MMP in the cytoplasm. Furthermore, progesterone and calcitriol reduced the activity of MT1-MMP, MMP-9, and MMP-2. In addition, invadopodia regulatory proteins were attenuated in both progesterone and progesterone-calcitriol combination treated cells as well as in MT1-MMP knockdown cells. Thus, targeting the aberrant MT1-MMP signaling with progesterone-calcitriol may be a novel approach to impede MT1-MMP mediated cancer dissemination and may have therapeutic benefits for endometrial cancer patients.

  1. Progesterone and calcitriol reduce invasive potential of endometrial cancer cells by targeting ARF6, NEDD9 and MT1-MMP

    PubMed Central

    Waheed, Sana; Dorjbal, Batsukh; Hamilton, Chad A.; Maxwell, G. Larry; Rodriguez, Gustavo C.; Syed, Viqar

    2017-01-01

    Previously, we have demonstrated that progesterone and calcitriol synergistically inhibit growth of endometrial and ovarian cancer by enhancing apoptosis and causing cell cycle arrest. Metastasis is the main reason of mortality in cancer patients. Activation of ADP-Ribosylation Factor 6 (ARF6), Neural Precursor cell expressed Developmentally Downregulated 9 (NEDD9), and Membrane-Type-1 Matrix Metalloproteinase (MT1-MMP) have been implicated in promoting tumor growth and metastasis. We examined the effects of progesterone, calcitriol and progesterone-calcitriol combination on metastasis promoting proteins in endometrial cancer. Expression of ARF6, NEDD9, and MT1-MMP was enhanced in advanced-stage endometrial tumors and in cancer cell lines compared to normal tissues and immortalized EM-E6/E7-TERT endometrial epithelial cells. Knockdown of these proteins significantly inhibited the invasiveness of the cancer cells. The expression levels of all three proteins was reduced with progesterone and progesterone-calcitriol combination treatment, whereas calcitriol alone showed no effect on their expression but moderately decreased MT1-MMP activity. Fluorescence microscopy showed membrane expression of MT1-MMP in vehicle and calcitriol-treated endometrial cancer cells. However, progesterone and calcitriol-progesterone combination treatment revealed MT1-MMP in the cytoplasm. Furthermore, progesterone and calcitriol reduced the activity of MT1-MMP, MMP-9, and MMP-2. In addition, invadopodia regulatory proteins were attenuated in both progesterone and progesterone-calcitriol combination treated cells as well as in MT1-MMP knockdown cells. Thus, targeting the aberrant MT1-MMP signaling with progesterone-calcitriol may be a novel approach to impede MT1-MMP mediated cancer dissemination and may have therapeutic benefits for endometrial cancer patients. PMID:29371931

  2. 70-kDa Heat Shock Cognate Protein hsc70 Mediates Calmodulin-dependent Nuclear Import of the Sex-determining Factor SRY*

    PubMed Central

    Kaur, Gurpreet; Lieu, Kim G.; Jans, David A.

    2013-01-01

    We recently showed that the developmentally important family of SOX (SRY (sex determining region on the Y chromosome)-related high mobility group (HMG) box) proteins require the calcium-binding protein calmodulin (CaM) for optimal nuclear accumulation, with clinical mutations in SRY that specifically impair nuclear accumulation via this pathway resulting in XY sex reversal. However, the mechanism by which CaM facilitates nuclear accumulation is unknown. Here, we show, for the first time, that the 70-kDa heat shock cognate protein hsc70 plays a key role in CaM-dependent nuclear import of SRY. Using a reconstituted nuclear import assay, we show that antibodies to hsc70 significantly reduce nuclear accumulation of wild type SRY and mutant derivatives thereof that retain CaM-dependent nuclear import, with an increased rate of nuclear accumulation upon addition of both CaM and hsc70, in contrast to an SRY mutant derivative with impaired CaM binding. siRNA knockdown of hsc70 in intact cells showed similar results, indicating clear dependence upon hsc70 for CaM-dependent nuclear import. Analysis using the technique of fluorescence recovery after photobleaching indicated that hsc70 is required for the maximal rate of SRY nuclear import in living cells but has no impact upon SRY nuclear retention/nuclear dynamics. Finally, we demonstrate direct binding of hsc70 to the SRY·CaM complex, with immunoprecipitation experiments from cell extracts showing association of hsc70 with wild type SRY, but not with a mutant derivative with impaired CaM binding, dependent on Ca2+. Our novel findings strongly implicate hsc70 in CaM-dependent nuclear import of SRY. PMID:23235156

  3. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins.

    PubMed

    Arroyo-Maya, Izlia J; Campos-Terán, José; Hernández-Arana, Andrés; McClements, David Julian

    2016-12-15

    In this study, the interaction between the flavonoid pelargonidin and dairy proteins: β-lactoglobulin (β-LG), whey protein (WPI), and caseinate (CAS) was investigated. Fluorescence experiments demonstrated that pelargonidin quenched milk proteins fluorescence strongly. However, the protein secondary structure was not significantly affected by pelargonidin, as judged from far-UV circular dichroism. Analysis of fluorescence data indicated that pelargonidin-induced quenching does not arise from a dynamical mechanism, but instead is due to protein-ligand binding. Therefore, quenching data were analyzed using the model of independent binding sites. Both β-LG and CAS, but not WPI, showed hyperbolic binding isotherms indicating that these proteins firmly bound pelargonidin at both pH 7.0 and 3.0 (binding constants ca. 1.0×10(5) at 25.0°C). To investigate the underlying thermodynamics, binding constants were determined at 25.0, 35.0, and 45.0°C. These results pointed to binding processes that depend on the structural conformation of the milk proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Mutation of Hip’s Carboxy-Terminal Region Inhibits a Transitional Stage of Progesterone Receptor Assembly

    PubMed Central

    Prapapanich, Viravan; Chen, Shiying; Smith, David F.

    1998-01-01

    Steroid receptor complexes are assembled through an ordered, multistep pathway involving multiple components of the cytoplasmic chaperone machinery. Two of these components are Hsp70-binding proteins, Hip and Hop, that have some limited homology in their C-terminal regions, outside the sequences mapped for Hsp70 binding. Within this region of Hip is a DPEV sequence that occurs twice; in Hop, one DPEV sequence plus a partial second sequence occurs. In an effort to better understand Hip function as it relates to assembly of progesterone receptor complexes, the DPEV region of Hip was targeted for mutations. Each DPEV sequence was mutated to an APAV sequence, singly or in combination. The combined mutation, APAV2, was further combined with a deletion of Hip’s tetratricopeptide repeat region that is required for Hsp70 binding or with a deletion of Hip’s GGMP repeat. An additional mutant was prepared by truncation of Hip’s DPEV-containing C terminus. By comparing interactions of various Hip forms with Hsp70, it was determined that mutation of the DPEV sequences created a dominant inhibitory form of Hip. The mutant Hip-Hsp70 complex was not prevented from interacting with progesterone receptor, but the mutant caused a dose-dependent inhibition of receptor assembly with Hsp90. The behavior of the Hip mutant is consistent with a model in which Hip and Hop are required to facilitate the transition from an early receptor complex with Hsp70 into later complexes containing Hsp90. PMID:9447991

  5. SSB-1 of the yeast Saccharomyces cerevisiae is a nucleolar-specific, silver-binding protein that is associated with the snR10 and snR11 small nuclear RNAs

    PubMed Central

    1990-01-01

    SSB-1, the yeast single-strand RNA-binding protein, is demonstrated to be a yeast nucleolar-specific, silver-binding protein. In double-label immunofluorescence microscopy experiments antibodies to two other nucleolar proteins, RNA Pol I 190-kD and fibrillarin, were used to reveal the site of rRNA transcription; i.e., the fibrillar region of the nucleolus. SSB-1 colocalized with fibrillarin in a double-label immunofluorescence mapping experiment to the yeast nucleolus. SSB-1 is located, though, over a wider region of the nucleolus than the transcription site marker. Immunoprecipitations of yeast cell extracts with the SSB-1 antibody reveal that in 150 mM NaCl SSB-1 is bound to two small nuclear RNAs (snRNAs). These yeast snRNAs are snR10 and snR11, with snR10 being predominant. Since snR10 has been implicated in pre-rRNA processing, the association of SSB-1 and snR10 into a nucleolar snRNP particle indicates SSB-1 involvement in rRNA processing as well. Also, another yeast protein, SSB-36-kD, isolated by single- strand DNA chromatography, is shown to bind silver under the conditions used for nucleolar-specific staining. It is, most likely, another yeast nucleolar protein. PMID:2121740

  6. A Potential Role for Endoplasmic Reticulum Stress in Progesterone Deficiency in Obese Women.

    PubMed

    Takahashi, Nozomi; Harada, Miyuki; Hirota, Yasushi; Zhao, Lin; Azhary, Jerilee M K; Yoshino, Osamu; Izumi, Gentaro; Hirata, Tetsuya; Koga, Kaori; Wada-Hiraike, Osamu; Fujii, Tomoyuki; Osuga, Yutaka

    2017-01-01

    Obesity in reproductive-aged women is associated with a shorter luteal phase and lower progesterone levels. Lipid accumulation in follicles of obese women compromises endoplasmic reticulum (ER) function, activating ER stress in granulosa cells. We hypothesized that ER stress activation in granulosa-lutein cells (GLCs) would modulate progesterone production and contribute to obesity-associated progesterone deficiency. Pretreatment with an ER stress inducer, tunicamycin or thapsigargin, inhibited human chorionic gonadotropin (hCG)-stimulated progesterone production in cultured human GLCs. Pretreatment of human GLCs with tunicamycin inhibited hCG-stimulated expression of steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) messenger RNAs (mRNAs) without affecting expression of cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), as determined by real-time quantitative polymerase chain reaction. Pretreatment with tunicamycin also inhibited hCG-stimulated expression of StAR protein and 3β-HSD enzyme activity in cultured human GLCs, as determined by Western blot analysis and an enzyme immunoassay, respectively, but did not affect hCG-induced intracellular 3',5'-cyclic adenosine monophosphate accumulation. Furthermore, tunicamycin attenuated hCG-induced protein kinase A and extracellular signal-regulated kinase activation, as determined by Western blot analysis. In vivo administration of tunicamycin to pregnant mare serum gonadotropin-treated immature mice prior to hCG treatment inhibited the hCG-stimulated increase in serum progesterone levels and hCG-induced expression of StAR and 3β-HSD mRNA in the ovary without affecting serum estradiol levels or the number of corpora lutea. Our findings indicate that ER stress in the follicles of obese women contributes to progesterone deficiency by inhibiting hCG-induced progesterone production in granulosa cells. Copyright © 2017 by the Endocrine Society.

  7. BPF-1, a pathogen-induced DNA-binding protein involved in the plant defense response.

    PubMed

    da Costa e Silva, O; Klein, L; Schmelzer, E; Trezzini, G F; Hahlbrock, K

    1993-07-01

    The mechanisms by which plants restrict the growth of pathogens include transient activation of numerous defense-related genes. Box P is a putative cis-acting element of a distinct group of such genes, including those encoding the enzyme phenylalanine ammonialyase (PAL). A DNA-binding activity to Box P was identified in nuclear extracts from cultured parsley cells and a cDNA encoding the protein BPF-1 (Box P-binding Factor) partially characterized. BPF-1 binds to this element with specificity similar to that of the binding activity in nuclear extracts. BPF-1 mRNA accumulates rapidly in elicitor-treated parsley cells and around fungal infection sites on parsley leaves. This accumulation is, at least partly, due to a rapid and transient increase in the transcription rate of BPF-1. Moreover, tight correlation between the relative amounts of BPF-1 and PAL mRNAs was observed in different organs of a parsley plant. These results are consistent with the hypothesis that BPF-1 is involved in disease resistance by modulating plant defense gene expression.

  8. Progesterone and Neuroprotection

    PubMed Central

    Singh, Meharvan; Su, Chang

    2012-01-01

    Summary Numerous studies aimed at identifying the role of estrogen on the brain have used the ovariectomized rodent as the experimental model. And while estrogen intervention in these animals have, at least partially, restored cholinergic, neurotrophin and cognitive deficits seen in the ovariectomized animal, it is worth considering that the removal of the ovaries results in the loss of not only circulating estrogen but of circulating progesterone as well. As such, the various deficits associated with ovariectomy may be attributed to the loss of progesterone as well. Similarly, one must also consider the fact that the human menopause results in the precipitous decline of not just circulating estrogens, but in circulating progesterone as well and as such, the increased risk for diseases such as Alzheimer’s disease during the postmenopausal period could also be contributed by this loss of progesterone. In fact, progesterone has been shown to exert neuroprotective effects, both in cell models, animal models and in humans. Here, we review the evidence that supports the neuroprotective effects of progesterone and discuss the various mechanisms that are thought to mediate these protective effects. We also discuss the receptor pharmacology of progesterone’s neuroprotective effects and present a conceptual model of progesterone action that supports the complementary effects of membrane-associated and classical intracellular progesterone receptors. In addition, we discuss fundamental differences in the neurobiology of progesterone and the clinically used, synthetic progestin, medroxyprogesterone acetate that may offer an explanation for the negative findings of the combined estrogen/progestin arm of the Women’s Health Initiative-Memory Study (WHIMS) and suggest that the type of progestin used may dictate the outcome of either pre-clinical or clinical studies that addresses brain function. PMID:22732134

  9. Four nucleocytoplasmic-shuttling proteins and p53 interact specifically with the YB-NLS and are involved in anticancer reagent-induced nuclear localization of YB-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Toru; Ohashi, Sachiyo; Kobayashi, Shunsuke

    In cancer cells, anticancer reagents often trigger nuclear accumulation of YB-1, which participates in the progression of cancer malignancy. YB-1 has a non-canonical nuclear localization signal (YB-NLS). Here we found that four nucleocytoplasmic-shuttling RNA-binding proteins and p53 interact specifically with the YB-NLS and co-accumulate with YB-1 in the nucleus of actinomycin D-treated cells. To elucidate the roles of these YB-NLS-binding proteins, we performed a dominant-negative experiment in which a large excess of YB-NLS interacts with the YB-NLS-binding proteins, and showed inhibitory effects on actinomycin D-induced nuclear transport of endogenous YB-1 and subsequent MDR1 gene expression. Furthermore, the YB-NLS-expressing cells weremore » also found to show increased drug sensitivity. Our results suggest that these YB-NLS-associating proteins are key factors for nuclear translocation/accumulation of YB-1 in cancer cells. - Highlights: • Four nucleocytoplasmic-shuttling proteins and p53 associate with YB-NLS. • They showed nuclear co-accumulation with YB-1 in actinomycin D-treated cells. • Overexpression of YB-NLS was carried out to take YB-NLS-binding proteins from YB-1. • YB-NLS inhibited actinomycin D-induced nuclear localization of endogenous YB-1. • YB-NLS suppressed actinomycin D-induced expression of MDR1.« less

  10. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei[S

    PubMed Central

    Esteves, Adriana; Knoll-Gellida, Anja; Canclini, Lucia; Silvarrey, Maria Cecilia; André, Michèle; Babin, Patrick J.

    2016-01-01

    Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC12 but not BODIPY-FLC5 to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC12 to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC12 was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity. PMID:26658423

  11. MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions.

    PubMed

    Li, Minghui; Simonetti, Franco L; Goncearenco, Alexander; Panchenko, Anna R

    2016-07-08

    Proteins engage in highly selective interactions with their macromolecular partners. Sequence variants that alter protein binding affinity may cause significant perturbations or complete abolishment of function, potentially leading to diseases. There exists a persistent need to develop a mechanistic understanding of impacts of variants on proteins. To address this need we introduce a new computational method MutaBind to evaluate the effects of sequence variants and disease mutations on protein interactions and calculate the quantitative changes in binding affinity. The MutaBind method uses molecular mechanics force fields, statistical potentials and fast side-chain optimization algorithms. The MutaBind server maps mutations on a structural protein complex, calculates the associated changes in binding affinity, determines the deleterious effect of a mutation, estimates the confidence of this prediction and produces a mutant structural model for download. MutaBind can be applied to a large number of problems, including determination of potential driver mutations in cancer and other diseases, elucidation of the effects of sequence variants on protein fitness in evolution and protein design. MutaBind is available at http://www.ncbi.nlm.nih.gov/projects/mutabind/. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Trans‐acting translational regulatory RNA binding proteins

    PubMed Central

    Harvey, Robert F.; Smith, Tom S.; Mulroney, Thomas; Queiroz, Rayner M. L.; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa

    2018-01-01

    The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans‐acting regulatory RNA‐binding proteins (RBPs) are necessary to provide mRNA‐specific translation, and these interact with 5′ and 3′ untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans‐acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans‐acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans‐acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: 1RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes2Translation > Translation Regulation3Translation > Translation Mechanisms PMID:29341429

  13. Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets

    PubMed Central

    Farazi, Thalia A.; Leonhardt, Carl S.; Mukherjee, Neelanjan; Mihailovic, Aleksandra; Li, Song; Max, Klaas E.A.; Meyer, Cindy; Yamaji, Masashi; Cekan, Pavol; Jacobs, Nicholas C.; Gerstberger, Stefanie; Bognanni, Claudia; Larsson, Erik; Ohler, Uwe; Tuschl, Thomas

    2014-01-01

    Recent studies implicated the RNA-binding protein with multiple splicing (RBPMS) family of proteins in oocyte, retinal ganglion cell, heart, and gastrointestinal smooth muscle development. These RNA-binding proteins contain a single RNA recognition motif (RRM), and their targets and molecular function have not yet been identified. We defined transcriptome-wide RNA targets using photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) in HEK293 cells, revealing exonic mature and intronic pre-mRNA binding sites, in agreement with the nuclear and cytoplasmic localization of the proteins. Computational and biochemical approaches defined the RNA recognition element (RRE) as a tandem CAC trinucleotide motif separated by a variable spacer region. Similar to other mRNA-binding proteins, RBPMS family of proteins relocalized to cytoplasmic stress granules under oxidative stress conditions suggestive of a support function for mRNA localization in large and/or multinucleated cells where it is preferentially expressed. PMID:24860013

  14. Dynamic regulation of GDP binding to G proteins revealed by magnetic field-dependent NMR relaxation analyses

    PubMed Central

    Toyama, Yuki; Kano, Hanaho; Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2017-01-01

    Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation. PMID:28223697

  15. Dynamic regulation of GDP binding to G proteins revealed by magnetic field-dependent NMR relaxation analyses.

    PubMed

    Toyama, Yuki; Kano, Hanaho; Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2017-02-22

    Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation.

  16. Molecular simulations of multimodal ligand-protein binding: elucidation of binding sites and correlation with experiments.

    PubMed

    Freed, Alexander S; Garde, Shekhar; Cramer, Steven M

    2011-11-17

    Multimodal chromatography, which employs more than one mode of interaction between ligands and proteins, has been shown to have unique selectivity and high efficacy for protein purification. To test the ability of free solution molecular dynamics (MD) simulations in explicit water to identify binding regions on the protein surface and to shed light on the "pseudo affinity" nature of multimodal interactions, we performed MD simulations of a model protein ubiquitin in aqueous solution of free ligands. Comparisons of MD with NMR spectroscopy of ubiquitin mutants in solutions of free ligands show a good agreement between the two with regard to the preferred binding region on the surface of the protein and several binding sites. MD simulations also identify additional binding sites that were not observed in the NMR experiments. "Bound" ligands were found to be sufficiently flexible and to access a number of favorable conformations, suggesting only a moderate loss of ligand entropy in the "pseudo affinity" binding of these multimodal ligands. Analysis of locations of chemical subunits of the ligand on the protein surface indicated that electrostatic interaction units were located on the periphery of the preferred binding region on the protein. The analysis of the electrostatic potential, the hydrophobicity maps, and the binding of both acetate and benzene probes were used to further study the localization of individual ligand moieties. These results suggest that water-mediated electrostatic interactions help the localization and orientation of the MM ligand to the binding region with additional stability provided by nonspecific hydrophobic interactions.

  17. Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity

    PubMed Central

    Korkuć, Paula; Walther, Dirk

    2015-01-01

    To better understand and ultimately predict both the metabolic activities as well as the signaling functions of metabolites, a detailed understanding of the physical interactions of metabolites with proteins is highly desirable. Focusing in particular on protein binding specificity vs. promiscuity, we performed a comprehensive analysis of the physicochemical properties of compound-protein binding events as reported in the Protein Data Bank (PDB). We compared the molecular and structural characteristics obtained for metabolites to those of the well-studied interactions of drug compounds with proteins. Promiscuously binding metabolites and drugs are characterized by low molecular weight and high structural flexibility. Unlike reported for drug compounds, low rather than high hydrophobicity appears associated, albeit weakly, with promiscuous binding for the metabolite set investigated in this study. Across several physicochemical properties, drug compounds exhibit characteristic binding propensities that are distinguishable from those associated with metabolites. Prediction of target diversity and compound promiscuity using physicochemical properties was possible at modest accuracy levels only, but was consistently better for drugs than for metabolites. Compound properties capturing structural flexibility and hydrogen-bond formation descriptors proved most informative in PLS-based prediction models. With regard to diversity of enzymatic activities of the respective metabolite target enzymes, the metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan, succinate, and glutathione were identified to possess broad enzymatic reaction scopes. Promiscuous metabolites were found to mainly serve as general energy currency compounds, but were identified to also be involved in signaling processes and to appear in diverse organismal systems (digestive and nervous

  18. Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity.

    PubMed

    Korkuć, Paula; Walther, Dirk

    2015-01-01

    To better understand and ultimately predict both the metabolic activities as well as the signaling functions of metabolites, a detailed understanding of the physical interactions of metabolites with proteins is highly desirable. Focusing in particular on protein binding specificity vs. promiscuity, we performed a comprehensive analysis of the physicochemical properties of compound-protein binding events as reported in the Protein Data Bank (PDB). We compared the molecular and structural characteristics obtained for metabolites to those of the well-studied interactions of drug compounds with proteins. Promiscuously binding metabolites and drugs are characterized by low molecular weight and high structural flexibility. Unlike reported for drug compounds, low rather than high hydrophobicity appears associated, albeit weakly, with promiscuous binding for the metabolite set investigated in this study. Across several physicochemical properties, drug compounds exhibit characteristic binding propensities that are distinguishable from those associated with metabolites. Prediction of target diversity and compound promiscuity using physicochemical properties was possible at modest accuracy levels only, but was consistently better for drugs than for metabolites. Compound properties capturing structural flexibility and hydrogen-bond formation descriptors proved most informative in PLS-based prediction models. With regard to diversity of enzymatic activities of the respective metabolite target enzymes, the metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan, succinate, and glutathione were identified to possess broad enzymatic reaction scopes. Promiscuous metabolites were found to mainly serve as general energy currency compounds, but were identified to also be involved in signaling processes and to appear in diverse organismal systems (digestive and nervous

  19. The structure of myristoylated Mason-Pfizer monkey virus matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in its membrane binding.

    PubMed

    Prchal, Jan; Srb, Pavel; Hunter, Eric; Ruml, Tomáš; Hrabal, Richard

    2012-10-26

    We determined the solution structure of myristoylated Mason-Pfizer monkey virus matrix protein by NMR spectroscopy. The myristoyl group is buried inside the protein and causes a slight reorientation of the helices. This reorientation leads to the creation of a binding site for phosphatidylinositols. The interaction between the matrix protein and phosphatidylinositols carrying C(8) fatty acid chains was monitored by observation of concentration-dependent chemical shift changes of the affected amino acid residues, a saturation transfer difference experiment and changes in (31)P chemical shifts. No differences in the binding mode or affinity were observed with differently phosphorylated phosphatidylinositols. The structure of the matrix protein-phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] complex was then calculated with HADDOCK software based on the intermolecular nuclear Overhauser enhancement contacts between the ligand and the matrix protein obtained from a (13)C-filtered/(13)C-edited nuclear Overhauser enhancement spectroscopy experiment. PI(4,5)P(2) binding was not strong enough for triggering of the myristoyl-switch. The structural changes of the myristoylated matrix protein were also found to result in a drop in the oligomerization capacity of the protein. Copyright © 2012. Published by Elsevier Ltd.

  20. Binding free energy analysis of protein-protein docking model structures by evERdock.

    PubMed

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-14

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  1. Binding free energy analysis of protein-protein docking model structures by evERdock

    NASA Astrophysics Data System (ADS)

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-01

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  2. Progesterone-induced miR-133a inhibits the proliferation of endometrial epithelial cells.

    PubMed

    Pan, J-L; Yuan, D-Z; Zhao, Y-B; Nie, L; Lei, Y; Liu, M; Long, Y; Zhang, J-H; Blok, L J; Burger, C W; Yue, L-M

    2017-03-01

    This study aimed to understand the role of miR-133a in progesterone actions, explore the regulative mechanism of the progesterone receptor, and investigate the effects of miR-133a on the progesterone-inhibited proliferation of mouse endometrial epithelial cells. The expression of miR-133a induced by progesterone was detected by quantitative real-time PCR both in vivo and in vitro. Ishikawa subcell lines stably transfected with progesterone receptor subtypes were used to determine the receptor mechanism of progesterone inducing miR-133a. Specific miR-133a mimics or inhibitors were transfected into mouse uteri and primary cultured endometrial epithelial cells to overexpress or downregulate the miR-133a. The roles of miR-133a in the cell cycle and proliferation of endometrial epithelial cells were analysed by flow cytometry and Edu incorporation analysis. The protein levels of cyclinD2 in uterine tissue sections and primary cultured endometrial epithelial cells were determined by immunohistochemistry and Western blot analysis. Progesterone could induce miR-133a expression in a PRB-dependent manner in endometrial epithelial cells. miR-133a inhibited endometrial epithelial cell proliferation by arresting cell cycle at the G 1 -S transition. Moreover, miR-133a acted as an inhibitor in downregulating cyclinD2 in endometrial epithelial cells. We showed for the first time that progesterone-induced miR-133a inhibited the proliferation of endometrial epithelial cells by downregulating cyclinD2. Our research indicated an important mechanism for progesterone inhibiting the proliferation of endometrial epithelial cells by inducing special miRNAs to inhibit positive regulatory proteins in the cell cycle. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  3. The PROGINS polymorphism of the human progesterone receptor diminishes the response to progesterone.

    PubMed

    Romano, Andrea; Delvoux, Bert; Fischer, Dagmar-Christiane; Groothuis, Patrick

    2007-02-01

    The human progesterone receptor (PR) is a ligand-dependent transcription factor and two isoforms, (PRA and PRB), can be distinguished. PROGINS, a PR polymorphic variant, affects PRA and PRB and acts as a risk-modulating factor in several gynaecological disorders. Little is known about the functional consequences of this variant. Here, we characterise the properties of PROGINS with respect to transcription, mRNA maturation, protein activity and proliferation. PROGINS is characterised by a 320 bp PV/HS-1 Alu insertion in intron G and two point mutations, V660L in exon 4 and H770H (silent substitution) in exon 5. The Alu element contains a half oestrogen-response element/Sp1-binding site (Alu-ERE/Sp1), which acts as an in-cis intronic enhancer leading to increased transcription of the PROGINS allele in response to 17beta-oestradiol. Moreover, Alu insertions in the human genome are frequently methylated. Our data indicate that the PROGINS-Alu does not affect gene transcription due to DNA methylation. However, the Alu element reduced the stability of the PROGINS transcript compared with the CP allele and does not generate splice variants. The amino acid substitution (V600L) in exon 4 leads to differences in PR phosphorylation and degradation in the two PR variants upon ligand binding, most likely as a result of differences in the three-dimensional structures of the two PR variants. As a consequence, the PR-L660 (PROGINS) variant (1) displays decreased transactivation activity in a luciferase reporter system and (2) is less efficient in opposing cell proliferation in hamster ovarian cells expressing human PRA, when compared with the PR-V660 (most common variant). Taken together, our results indicate that the PROGINS variant of PR is less responsive to progestin compared with the most common PR because of (i) reduced amounts of gene transcript and (ii) decreased protein activity.

  4. Targeting progesterone metabolism in breast cancer with l-proline derived new 14-azasteroids.

    PubMed

    Singh, Jyotsana; Singh, Ritesh; Gupta, Preeti; Rai, Smita; Ganesher, Asha; Badrinarayan, Preethi; Sastry, G Narahari; Konwar, Rituraj; Panda, Gautam

    2017-08-15

    Breast cancer cell proliferation is promoted by a variety of mitogenic signals. Classically estrogen is considered as most predominant mitogenic signal in hormone-dependent breast cancer and progesterone is primarily considered to have protective effect. However, it is suggested that some progesterone metabolite may promote breast cancer and progesterone metabolites like 5α-pregnane and 4-pregnene could serve as regulators of estrogen-responsiveness of breast cancer cells. Here, we estimated the potential of alternate targeting of breast cancer via progesterone signalling. l-Proline derived novel 14-azasteroid compounds were screened against MCF-7 and MDA-MB-231 cell lines using MTT assay. In silico studies, cell cycle, Annexin-V-FITC/PI, JC-1 mitochondrial assay, ROS analysis were performed to analyse the impact of hit compound 3b on breast cancer cells. Further, we analysed the impact of hit 3b on the progesterone, its metabolites and enzymes responsible for the conversion of progesterone and its metabolites using ELISA. Data suggests that compound 3b binds and down regulates of 5α-reductase by specifically inhibiting production of progesterone metabolites that are capable of promoting breast cancer proliferation, epithelial mesenchymal transition and migration. This study establishes the proof of concept and generation of new leads for additional targeting of breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effects of mutation at the D-JH junction on affinity, specificity, and idiotypy of anti-progesterone antibody DB3.

    PubMed

    He, Mingyue; Hamon, Maureen; Liu, Hong; Corper, Adam L; Taussig, Michael J

    2006-09-01

    The crystal structures of the Fab' fragment of the anti-progesterone monoclonal antibody DB3 and its complexes with steroid haptens have shown that the D-JH junctional residue TrpH100 is a key contributor to binding site interactions with ligands. The indole group of TrpH100 also undergoes a significant conformational change between the bound and unliganded states, effectively opening and closing the combining site pocket. In order to explore the effect of substitutions at this position on steroid recognition, we have carried out mutagenesis on a construct encoding a three-domain single-chain fragment (VH/K) of DB3 expressed in Escherichia coli. TrpH100 was replaced by 13 different amino acids or deleted, and the functional and antigenic properties of the mutated fragments were analyzed. Most substitutions, including small, hydrophobic, hydrophilic, neutral, and negatively charged side chains, were reduced or abolished binding to free progesterone, although binding to progesterone-BSA was partially retained. The reduction in antigen binding was paralleled by alteration of the idiotype associated with the DB3 combining site. In contrast, the replacement of TrpH100 by Arg produced a mutant that retained wild-type antibody affinity and idiotype, but with altered specificity. Significant changes in this mutant included increased relative affinities of 10(4)-fold for progesterone-3-carboxymethyloxime and 10-fold for aetiocholanolone. Our results demonstrate an essential role for the junctional residue H100 in determining steroid-binding specificity and combining site idiotype and show that these properties can be changed by a single amino acid substitution at this position.

  6. A pollen-specific novel calmodulin-binding protein with tetratricopeptide repeats

    NASA Technical Reports Server (NTRS)

    Safadi, F.; Reddy, V. S.; Reddy, A. S.

    2000-01-01

    Calcium is essential for pollen germination and pollen tube growth. A large body of information has established a link between elevation of cytosolic Ca(2+) at the pollen tube tip and its growth. Since the action of Ca(2+) is primarily mediated by Ca(2+)-binding proteins such as calmodulin (CaM), identification of CaM-binding proteins in pollen should provide insights into the mechanisms by which Ca(2+) regulates pollen germination and tube growth. In this study, a CaM-binding protein from maize pollen (maize pollen calmodulin-binding protein, MPCBP) was isolated in a protein-protein interaction-based screening using (35)S-labeled CaM as a probe. MPCBP has a molecular mass of about 72 kDa and contains three tetratricopeptide repeats (TPR) suggesting that it is a member of the TPR family of proteins. MPCBP protein shares a high sequence identity with two hypothetical TPR-containing proteins from Arabidopsis. Using gel overlay assays and CaM-Sepharose binding, we show that the bacterially expressed MPCBP binds to bovine CaM and three CaM isoforms from Arabidopsis in a Ca(2+)-dependent manner. To map the CaM-binding domain several truncated versions of the MPCBP were expressed in bacteria and tested for their ability to bind CaM. Based on these studies, the CaM-binding domain was mapped to an 18-amino acid stretch between the first and second TPR regions. Gel and fluorescence shift assays performed with CaM and a CaM-binding synthetic peptide further confirmed MPCBP binding to CaM. Western, Northern, and reverse transcriptase-polymerase chain reaction analysis have shown that MPCBP expression is specific to pollen. MPCBP was detected in both soluble and microsomal proteins. Immunoblots showed the presence of MPCBP in mature and germinating pollen. Pollen-specific expression of MPCBP, its CaM-binding properties, and the presence of TPR motifs suggest a role for this protein in Ca(2+)-regulated events during pollen germination and growth.

  7. RanGTPase regulates the interaction between the inner nuclear membrane proteins, Samp1 and Emerin.

    PubMed

    Vijayaraghavan, Balaje; Figueroa, Ricardo A; Bergqvist, Cecilia; Gupta, Amit J; Sousa, Paulo; Hallberg, Einar

    2018-06-01

    Samp1, spindle associated membrane protein 1, is a type II integral membrane protein localized in the inner nuclear membrane. Recent studies have shown that the inner nuclear membrane protein, Emerin and the small monomeric GTPase, Ran are direct binding partners of Samp1. Here we addressed the question whether Ran could regulate the interaction between Samp1 and Emerin in the inner nuclear membrane. To investigate the interaction between Samp1 and Emerin in live cells, we performed FRAP experiments in cells overexpressing YFP-Emerin. We compared the mobility of YFP-Emerin in Samp1 knock out cells and cells overexpressing Samp1. The results showed that the mobility of YFP-Emerin was higher in Samp1 knock out cells and lower in cells overexpressing Samp1, suggesting that Samp1 significantly attenuates the mobility of Emerin in the nuclear envelope. FRAP experiments using tsBN2 cells showed that the mobility of Emerin depends on RanGTP. Consistently, in vitro binding experiments showed that the affinity between Samp1 and Emerin is decreased in the presence of Ran, suggesting that Ran attenuates the interaction between Samp1 and Emerin. This is the first demonstration that Ran can regulate the interaction between two proteins in the nuclear envelope. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Aspects of Protein, Chemistry, Part II: Oxygen-Binding Proteins

    ERIC Educational Resources Information Center

    Nixon, J. E.

    1977-01-01

    Compares differences in function and behavior of two oxygen-binding proteins, myoglobin found in muscle and hemoglobin found in blood. Describes the mechanism of oxygen-binding and allosteric effect in hemoglobin; also describes the effect of pH on the affinity of hemoglobin for oxygen. (CS)

  9. Mechanistic events underlying odorant binding protein chemoreception.

    PubMed

    Golebiowski, Jérôme; Antonczak, Serge; Fiorucci, Sébastien; Cabrol-Bass, Daniel

    2007-05-01

    Odorant binding proteins (OBP's) are small hydrophilic proteins, belonging to the lipocalin family dedicated to bind and transport small hydrophobic ligands. Despite many works, the mechanism of ligand binding, together with the functional role of these proteins remains a topic of debate and little is known at the atomic level. The present work reports a computational study of odorants capture and release by an OBP, using both constrained and unconstrained simulations, giving a glimpse on the molecular mechanism of chemoreception. The residues at the origin of the regulation of the protein door opening are identified and a tyrosine amino-acid together with other nearby residues appear to play a crucial role in allowing this event to occur. The simulations reveal that this tyrosine and the protein's L5 loop are implicated in the ligand contact with the protein and act as an anchoring point for the ligand. The protein structural features required for the ligand entry are highly conserved among many transport proteins, suggesting that this mechanism could somewhat be extended to some members of the larger family of lipocalin. (c) 2007 Wiley-Liss, Inc.

  10. Unconventional RNA-binding proteins: an uncharted zone in RNA biology.

    PubMed

    Albihlal, Waleed S; Gerber, André P

    2018-06-16

    RNA-binding proteins play essential roles in the post-transcriptional regulation of gene expression. While hundreds of RNA-binding proteins can be predicted computationally, the recent introduction of proteome-wide approaches has dramatically expanded the repertoire of proteins interacting with RNA. Besides canonical RNA-binding proteins that contain characteristic RNA-binding domains, many proteins that lack such domains but have other well-characterised cellular functions were identified; including metabolic enzymes, heat shock proteins, kinases, as well as transcription factors and chromatin-associated proteins. In the context of these recently published RNA-protein interactome datasets obtained from yeast, nematodes, flies, plants and mammalian cells, we discuss examples for seemingly evolutionary conserved "unconventional" RNA-binding proteins that act in central carbon metabolism, stress response or regulation of transcription. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. The intranuclear mobility of messenger RNA binding proteins is ATP dependent and temperature sensitive

    PubMed Central

    Calapez, Alexandre; Pereira, Henrique M.; Calado, Angelo; Braga, José; Rino, José; Carvalho, Célia; Tavanez, João Paulo; Wahle, Elmar; Rosa, Agostinho C.; Carmo-Fonseca, Maria

    2002-01-01

    fAter being released from transcription sites, messenger ribonucleoprotein particles (mRNPs) must reach the nuclear pore complexes in order to be translocated to the cytoplasm. Whether the intranuclear movement of mRNPs results largely from Brownian motion or involves molecular motors remains unknown. Here we have used quantitative photobleaching techniques to monitor the intranuclear mobility of protein components of mRNPs tagged with GFP. The results show that the diffusion coefficients of the poly(A)-binding protein II (PABP2) and the export factor TAP are significantly reduced when these proteins are bound to mRNP complexes, as compared with nonbound proteins. The data further show that the mobility of wild-type PABP2 and TAP, but not of a point mutant variant of PABP2 that fails to bind to RNA, is significantly reduced when cells are ATP depleted or incubated at 22°C. Energy depletion has only minor effects on the intranuclear mobility of a 2,000-kD dextran (which corresponds approximately in size to 40S mRNP particles), suggesting that the reduced mobility of PABP2 and TAP is not caused by a general alteration of the nuclear environment. Taken together, the data suggest that the mobility of mRNPs in the living cell nucleus involves a combination of passive diffusion and ATP-dependent processes. PMID:12473688

  12. Interactions between Human Liver Fatty Acid Binding Protein and Peroxisome Proliferator Activated Receptor Selective Drugs

    PubMed Central

    Velkov, Tony

    2013-01-01

    Fatty acid binding proteins (FABPs) act as intracellular shuttles for fatty acids as well as lipophilic xenobiotics to the nucleus, where these ligands are released to a group of nuclear receptors called the peroxisome proliferator activated receptors (PPARs). PPAR mediated gene activation is ultimately involved in maintenance of cellular homeostasis through the transcriptional regulation of metabolic enzymes and transporters that target the activating ligand. Here we show that liver- (L-) FABP displays a high binding affinity for PPAR subtype selective drugs. NMR chemical shift perturbation mapping and proteolytic protection experiments show that the binding of the PPAR subtype selective drugs produces conformational changes that stabilize the portal region of L-FABP. NMR chemical shift perturbation studies also revealed that L-FABP can form a complex with the PPAR ligand binding domain (LBD) of PPARα. This protein-protein interaction may represent a mechanism for facilitating the activation of PPAR transcriptional activity via the direct channeling of ligands between the binding pocket of L-FABP and the PPARαLBD. The role of L-FABP in the delivery of ligands directly to PPARα via this channeling mechanism has important implications for regulatory pathways that mediate xenobiotic responses and host protection in tissues such as the small intestine and the liver where L-FABP is highly expressed. PMID:23476633

  13. Behind the scenes of vitamin D binding protein: more than vitamin D binding.

    PubMed

    Delanghe, Joris R; Speeckaert, Reinhart; Speeckaert, Marijn M

    2015-10-01

    Although being discovered in 1959, the number of published papers in recent years reveals that vitamin D binding protein (DBP), a member of the albuminoid superfamily, is a hot research topic. Besides the three major phenotypes (DBP1F, DBP1S and DBP2), more than 120 unique variants have been described of this polymorphic protein. The presence of DBP has been demonstrated in different body fluids (serum, urine, breast milk, ascitic fluid, cerebrospinal fluid, saliva and seminal fluid) and organs (brain, heart, lungs, kidneys, placenta, spleen, testes and uterus). Although the major function is binding, solubilization and transport of vitamin D and its metabolites, the name of this glycoprotein hides numerous other important biological functions. In this review, we will focus on the analytical aspects of the determination of DBP and discuss in detail the multifunctional capacity [actin scavenging, binding of fatty acids, chemotaxis, binding of endotoxins, influence on T cell response and influence of vitamin D binding protein-macrophage activating factor (DBP-MAF) on bone metabolism and cancer] of this abundant plasma protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Growth regulation by estrogen in breast cancer 1 (GREB1) is a novel progesterone-responsive gene required for human endometrial stromal decidualization.

    PubMed

    Camden, Alison J; Szwarc, Maria M; Chadchan, Sangappa B; DeMayo, Francesco J; O'Malley, Bert W; Lydon, John P; Kommagani, Ramakrishna

    2017-09-01

    Is Growth Regulation by Estrogen in Breast Cancer 1 (GREB1) required for progesterone-driven endometrial stromal cell decidualization? GREB1 is a novel progesterone-responsive gene required for progesterone-driven human endometrial stromal cell (HESC) decidualization. Successful establishment of pregnancy requires HESCs to transform from fibroblastic to epithelioid cells in a process called decidualization. This process depends on the hormone progesterone, but the molecular mechanisms by which it occurs have not been determined. Primary and transformed HESCs in which GREB1 expression was knocked down were decidualized in culture for up to 6 days. Wild-type and progesterone receptor (PR) knockout mice were treated with progesterone, and their uteri were assessed for levels of GREB1 expression. Analysis of previous data included data mining of expression profile data sets and in silico transcription factor-binding analysis. Endometrial biopsies obtained from healthy women of reproductive age during the proliferative phase (Days 8-12) of their menstrual cycle were used for isolating HESCs. Experiments were carried out with early passage (no more than four passages) HESCs isolated from at least three subjects. Transcript levels of decidualization markers prolactin (PRL) and insulin-like growth factor-binding protein-1 (IGFBP-1) were detected by quantitative RT-PCR as readouts for HESC decidualization. Cells were also imaged by phase-contrast microscopy. To assess the requirement for GREB1, PR and SRC-2, cells were transfected with specifically targeted small interfering RNAs. Results are shown as mean and SE from three replicates of one representative patient-derived primary endometrial cell line. Experiments were also conducted with transformed HESCs. Progesterone treatment of mice and transformed HESCs led to an ~5-fold (5.6 ± 0.81, P < 0.05, and 5.2 ± 0.26, P < 0.01, respectively) increase in GREB1 transcript levels. This increase was significantly reduced in the

  15. Multivalent DNA-binding properties of the HMG-1 proteins.

    PubMed Central

    Maher, J F; Nathans, D

    1996-01-01

    HMG-I proteins are DNA-binding proteins thought to affect the formation and function of transcription complexes. Each protein contains three DNA-binding motifs, known as AT-hooks, that bind in the minor groove of AT tracts in DNA. Multiple AT-hooks within a polypeptide chain should contact multiple AT tracts, but the rules governing these interactions have not been defined. In this study, we demonstrate that high-affinity binding uses two or three appropriately spaced AT tracts as a single multivalent binding site. These principles have implications for binding to regulatory elements such as the interferon beta enhancer, TATA boxes, and serum response elements. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8692884

  16. Mapping the nuclear localization signal in the matrix protein of potato yellow dwarf virus.

    PubMed

    Anderson, Gavin; Jang, Chanyong; Wang, Renyuan; Goodin, Michael

    2018-05-01

    The ability of the matrix (M) protein of potato yellow dwarf virus (PYDV) to remodel nuclear membranes is controlled by a di-leucine motif located at residues 223 and 224 of its primary structure. This function can be uncoupled from that of its nuclear localization signal (NLS), which is controlled primarily by lysine and arginine residues immediately downstream of the LL motif. In planta localization of green fluorescent protein fusions, bimolecular fluorescence complementation assays with nuclear import receptor importin-α1 and yeast-based nuclear import assays provided three independent experimental approaches to validate the authenticity of the M-NLS. The carboxy terminus of M is predicted to contain a nuclear export signal, which is belived to be functional, given the ability of M to bind the Arabidopsis nuclear export receptor 1 (XPO1). The nuclear shuttle activity of M has implications for the cell-to-cell movement of PYDV nucleocapsids, based upon its interaction with the N and Y proteins.

  17. SCOWLP classification: Structural comparison and analysis of protein binding regions

    PubMed Central

    Teyra, Joan; Paszkowski-Rogacz, Maciej; Anders, Gerd; Pisabarro, M Teresa

    2008-01-01

    Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs) might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions. The hierarchical

  18. Trans-acting translational regulatory RNA binding proteins.

    PubMed

    Harvey, Robert F; Smith, Tom S; Mulroney, Thomas; Queiroz, Rayner M L; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa; Lilley, Kathryn S; Willis, Anne E

    2018-05-01

    The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans-acting regulatory RNA-binding proteins (RBPs) are necessary to provide mRNA-specific translation, and these interact with 5' and 3' untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans-acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans-acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans-acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Translation Regulation Translation > Translation Mechanisms. © 2018 Medical Research Council and University of Cambridge. WIREs RNA published by Wiley Periodicals, Inc.

  19. Calculations of the binding affinities of protein-protein complexes with the fast multipole method

    NASA Astrophysics Data System (ADS)

    Kim, Bongkeun; Song, Jiming; Song, Xueyu

    2010-09-01

    In this paper, we used a coarse-grained model at the residue level to calculate the binding free energies of three protein-protein complexes. General formulations to calculate the electrostatic binding free energy and the van der Waals free energy are presented by solving linearized Poisson-Boltzmann equations using the boundary element method in combination with the fast multipole method. The residue level model with the fast multipole method allows us to efficiently investigate how the mutations on the active site of the protein-protein interface affect the changes in binding affinities of protein complexes. Good correlations between the calculated results and the experimental ones indicate that our model can capture the dominant contributions to the protein-protein interactions. At the same time, additional effects on protein binding due to atomic details are also discussed in the context of the limitations of such a coarse-grained model.

  20. Mechanisms of protein kinase C signaling in the modulation of 3',5'-cyclic adenosine monophosphate-mediated steroidogenesis in mouse gonadal cells.

    PubMed

    Manna, Pulak R; Huhtaniemi, Ilpo T; Stocco, Douglas M

    2009-07-01

    The protein kinase C (PKC) signaling pathway plays integral roles in the expression of the steroidogenic acute regulatory (StAR) protein that regulates steroid biosynthesis in steroidogenic cells. PKC can modulate the activity of cAMP/protein kinase A signaling involved in steroidogenesis; however, its mechanism remains obscure. In the present study, we demonstrate that activation of the PKC pathway, by phorbol 12-myristate 13-acetate (PMA), was capable of potentiating dibutyryl cAMP [(Bu)(2)cAMP]-stimulated StAR expression, StAR phosphorylation, and progesterone synthesis in both mouse Leydig (MA-10) and granulosa (KK-1) tumor cells. The steroidogenic potential of PMA and (Bu)(2)cAMP was linked with phosphorylation of ERK 1/2; however, inhibition of the latter demonstrated varying effects on steroidogenesis. Transcriptional activation of the StAR gene by PMA and (Bu)(2)cAMP was influenced by several factors, its up-regulation being dependent on phosphorylation of the cAMP response element binding protein (CREB). An oligonucleotide probe containing a CREB/activating transcription factor binding region in the StAR promoter was found to bind nuclear proteins in PMA and (Bu)(2)cAMP-treated MA-10 and KK-1 cells. Chromatin immunoprecipitation studies revealed that the induction of phosphorylated CREB was tightly correlated with in vivo protein-DNA interactions and recruitment of CREB binding protein to the StAR promoter. Ectopic expression of CREB binding protein enhanced CREB-mediated transcription of the StAR gene, an event that was markedly repressed by the adenovirus E1A oncoprotein. Further studies demonstrated that the activation of StAR expression and steroid synthesis by PMA and (Bu)(2)cAMP was associated with expression of the nuclear receptor Nur77, indicating its essential role in hormone-regulated steroidogenesis. Collectively, these findings provide insight into the mechanisms by which PKC modulates cAMP/protein kinase A responsiveness involved in

  1. Progesterone Inhibition of Neuronal Calcium Signaling Underlies Aspects of Progesterone-Mediated Neuroprotection

    PubMed Central

    Luoma, Jessie I; Stern, Christopher M; Mermelstein, Paul G.

    2011-01-01

    Progesterone is being utilized as a therapeutic means to ameliorate neuron loss and cognitive dysfunction following traumatic brain injury Although there have been numerous attempts to determine the means by which progesterone exerts neuroprotective effects, studies describing the underlying molecular mechanisms are lacking What has become clear, however, is the notion that progesterone can thwart several physiological processes that are detrimental to neuron function and survival, including inflammation, edema, demyelination and excitotoxicity One clue regarding the means by which progesterone has restorative value comes from the notion that these aforementioned biological processes all share the common theme of eliciting pronounced increases in intracellular calcium. Thus, we propose the hypothesis that progesterone regulation of calcium signaling underlies its ability to mitigate these cellular insults, ultimately leading to neuroprotection. Further, we describe recent findings that indicate neuroprotection is achieved via progesterone block of voltage-gated calcium channels, although additional outcomes may arise from blockade of various other ion channels and neurotransmitter receptors. PMID:22101209

  2. Compartmentalization and Functionality of Nuclear Disorder: Intrinsic Disorder and Protein-Protein Interactions in Intra-Nuclear Compartments

    PubMed Central

    Meng, Fanchi; Na, Insung; Kurgan, Lukasz; Uversky, Vladimir N.

    2015-01-01

    The cell nucleus contains a number of membrane-less organelles or intra-nuclear compartments. These compartments are dynamic structures representing liquid-droplet phases which are only slightly denser than the bulk intra-nuclear fluid. They possess different functions, have diverse morphologies, and are typically composed of RNA (or, in some cases, DNA) and proteins. We analyzed 3005 mouse proteins localized in specific intra-nuclear organelles, such as nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML) nuclear bodies, nuclear lamina, nuclear pores, and perinuclear compartment and compared them with ~29,863 non-nuclear proteins from mouse proteome. Our analysis revealed that intrinsic disorder is enriched in the majority of intra-nuclear compartments, except for the nuclear pore and lamina. These compartments are depleted in proteins that lack disordered domains and enriched in proteins that have multiple disordered domains. Moonlighting proteins found in multiple intra-nuclear compartments are more likely to have multiple disordered domains. Protein-protein interaction networks in the intra-nuclear compartments are denser and include more hubs compared to the non-nuclear proteins. Hubs in the intra-nuclear compartments (except for the nuclear pore) are enriched in disorder compared with non-nuclear hubs and non-nuclear proteins. Therefore, our work provides support to the idea of the functional importance of intrinsic disorder in the cell nucleus and shows that many proteins associated with sub-nuclear organelles in nuclei of mouse cells are enriched in disorder. This high level of disorder in the mouse nuclear proteins defines their ability to serve as very promiscuous binders, possessing both large quantities of potential disorder-based interaction sites and the ability of a single such site to be involved in a large number of interactions. PMID:26712748

  3. Concentration-dependent Cu(II) binding to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2008-03-01

    The prion protein plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The normal function of the prion protein is unknown, but it has been linked to its ability to bind copper ions. Experimental evidence suggests that copper can be bound in three distinct modes depending on its concentration, but only one of those binding modes has been fully characterized experimentally. Using a newly developed hybrid DFT/DFT method [1], which combines Kohn-Sham DFT with orbital-free DFT, we have examined all the binding modes and obtained their detailed binding geometries and copper ion binding energies. Our results also provide explanation for experiments, which have found that when the copper concentration increases the copper binding mode changes, surprisingly, from a stronger to a weaker one. Overall, our results indicate that prion protein can function as a copper buffer. 1. Hodak, Lu, Bernholc, JCP, in press.

  4. Influence of structural variation on nuclear localization of DNA-binding polyamide-fluorophore conjugates.

    PubMed

    Edelson, Benjamin S; Best, Timothy P; Olenyuk, Bogdan; Nickols, Nicholas G; Doss, Raymond M; Foister, Shane; Heckel, Alexander; Dervan, Peter B

    2004-01-01

    A pivotal step forward in chemical approaches to controlling gene expression is the development of sequence-specific DNA-binding molecules that can enter live cells and traffic to nuclei unaided. DNA-binding polyamides are a class of programmable, sequence-specific small molecules that have been shown to influence a wide variety of protein-DNA interactions. We have synthesized over 100 polyamide-fluorophore conjugates and assayed their nuclear uptake profiles in 13 mammalian cell lines. The compiled dataset, comprising 1300 entries, establishes a benchmark for the nuclear localization of polyamide-dye conjugates. Compounds in this series were chosen to provide systematic variation in several structural variables, including dye composition and placement, molecular weight, charge, ordering of the aromatic and aliphatic amino-acid building blocks and overall shape. Nuclear uptake does not appear to be correlated with polyamide molecular weight or with the number of imidazole residues, although the positions of imidazole residues affect nuclear access properties significantly. Generally negative determinants for nuclear access include the presence of a beta-Ala-tail residue and the lack of a cationic alkyl amine moiety, whereas the presence of an acetylated 2,4-diaminobutyric acid-turn is a positive factor for nuclear localization. We discuss implications of these data on the design of polyamide-dye conjugates for use in biological systems.

  5. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein

    NASA Technical Reports Server (NTRS)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  6. Microsomal receptor for steroid hormones: functional implications for nuclear activity.

    PubMed

    Muldoon, T G; Watson, G H; Evans, A C; Steinsapir, J

    1988-01-01

    Target tissues for steroid hormones are responsive by virtue of and to the extent of their content of functional intracellular receptors. Recent years have seen a shift in considerations of the cellular dynamics and distribution of these receptors, with current views favoring predominant intranuclear localization in the intact cell. This paper summarizes our analyses of the microsomal estrogen and androgen binding capability of rat uterine and ventral prostate tissue, respectively; these studies have revealed a set of high affinity sites that may act as a conduit for estrogen traversing the cell en route to the nucleus. These sites have many properties in common with cytosolic receptors, with the salient difference of a failure to activate to a more avid DNA-binding form under conditions which permit such activation of cytosolic receptors. The microsomal estrogen-binding proteins also have appreciable affinity for progesterone, another distinction from other known cellular estrogen receptor species. Various experimental approaches were employed to demonstrate that the microsomal receptors were not simply cytosol contaminants; the most convincing evidence is the recent successful separation of the cytosolic and microsomal forms by differential ammonium sulfate precipitation. Discrete subfractionation of subcellular components on successive sucrose gradients, with simultaneous assessments of binding capability and marker enzyme concentrations, indicates that the major portion of the binding is localized within the vesicles of the endoplasmic reticulum free of significant plasma membrane contamination. The microsomal receptors are readily solubilized by extraction with high- or low-salt-containing buffers or with steroid. The residual microsomes following such extraction have the characteristics of saturable acceptor sites for cytosolic estrogen-receptor complexes. The extent to which these sites will accept the cytosolic complexes is equal to the concentration of

  7. The modular architecture of protein-protein binding interfaces.

    PubMed

    Reichmann, D; Rahat, O; Albeck, S; Meged, R; Dym, O; Schreiber, G

    2005-01-04

    Protein-protein interactions are essential for life. Yet, our understanding of the general principles governing binding is not complete. In the present study, we show that the interface between proteins is built in a modular fashion; each module is comprised of a number of closely interacting residues, with few interactions between the modules. The boundaries between modules are defined by clustering the contact map of the interface. We show that mutations in one module do not affect residues located in a neighboring module. As a result, the structural and energetic consequences of the deletion of entire modules are surprisingly small. To the contrary, within their module, mutations cause complex energetic and structural consequences. Experimentally, this phenomenon is shown on the interaction between TEM1-beta-lactamase and beta-lactamase inhibitor protein (BLIP) by using multiple-mutant analysis and x-ray crystallography. Replacing an entire module of five interface residues with Ala created a large cavity in the interface, with no effect on the detailed structure of the remaining interface. The modular architecture of binding sites, which resembles human engineering design, greatly simplifies the design of new protein interactions and provides a feasible view of how these interactions evolved.

  8. EMSA Analysis of DNA Binding By Rgg Proteins.

    PubMed

    LaSarre, Breah; Federle, Michael J

    2013-08-20

    In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function ( e.g. interruption of DNA-binding in some cases).

  9. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Retinol-binding protein immunological test system...

  10. Progesterone production requires activation of caspase-3 in preovulatory granulosa cells in a serum starvation model.

    PubMed

    An, Li-Sha; Yuan, Xiao-Hua; Hu, Ying; Shi, Zi-Yun; Liu, Xiao-Qin; Qin, Li; Wu, Gui-Qing; Han, Wei; Wang, Ya-Qin; Ma, Xu

    2012-11-01

    Granulosa cells proliferate, differentiate, and undergo apoptosis throughout follicular development. Previous studies have demonstrated that stimulation of progesterone production is accompanied by caspase-3 activation. Moreover, we previously reported that arsenic enhanced caspase-3 activity coupled with progesterone production. Inhibition of caspase-3 activity can significantly inhibit progesterone production induced by arsenic or follicle-stimulating hormone (FSH). Here, we report that serum starvation induces caspase-3 activation coupled with augmentation of progesterone production. Serum starvation also increased the levels of cytochrome P450 cholesterol side chain cleavage enzyme (P450scc) and steroidogenic acute regulatory (StAR) protein, both of which may contribute to progesterone synthesis in preovulatory granulosa cells. Inhibition of caspase-3 activity resulted in a decrease in progesterone production. Deactivation of caspase-3 activity by caspase-3 specific inhibitor also resulted in decreases in P450scc and StAR expression, which may partly contribute to the observed decrease in progesterone production. Our study demonstrates for the first time that progesterone production in preovulatory granulosa cells is required for caspase-3 activation in a serum starvation model. Inhibition of caspase-3 activity can result in decreased expression of the steroidogenic proteins P450scc and StAR. Our work provides further details on the relationship between caspase-3 activation and steroidogenesis and indicates that caspase-3 plays a critical role in progesterone production by granulosa cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Identification of transactivation-responsive DNA-binding protein 43 (TARDBP43; TDP-43) as a novel factor for TNF-α expression upon lipopolysaccharide stimulation in human monocytes.

    PubMed

    Murata, H; Hattori, T; Maeda, H; Takashiba, S; Takigawa, M; Kido, J; Nagata, T

    2015-08-01

    Tumor necrosis factor alpha (TNF-α) is a major cytokine implicated in various inflammatory diseases. The nature of the nuclear factors associated with human TNF-α gene regulation is not well elucidated. We previously identified a novel region located from -550 to -487 in human TNF-α promoter that did not contain the reported binding sites for nuclear factor kappa B (NF-κB) but showed lipopolysaccharide (LPS)-induced transcriptional activity. The purpose of this study is to identify novel factors that bind to the promoter region and regulate TNF-α expression. To identify DNA-binding proteins that bound to the target region of TNF-α promoter, a cDNA library from LPS-stimulated human monocytic cell line THP-1 was screened using a yeast one-hybrid system. Cellular localizations of the DNA-binding protein in the cells were examined by subcellular immunocytochemistry. Nuclear amounts of the protein in LPS-stimulated THP-1 cells were identified by western blot analysis. Expression of mRNA of the protein in the cells was quantified by real-time polymerase chain reaction. Electrophoretic mobility shift assays were performed to confirm the DNA-binding profile. Overexpression of the protein and knockdown of the gene were also performed to investigate the role for TNF-α expression. Several candidates were identified from the cDNA library and transactivation-responsive DNA-binding protein 43 (TARDBP43; TDP-43) was focused on. Western blot analysis revealed that nuclear TDP-43 protein was increased in the LPS-stimulated THP-1 cells. Expression of TDP-43 mRNA was already enhanced before TNF-α induction by LPS. Electrophoretic mobility shift assay analysis showed that nuclear extracts obtained by overexpressing FLAG-tagged TDP-43 bound to the -550 to -487 TNF-α promoter fragments. Overexpression of TDP-43 in THP-1 cells resulted in an increase of TNF-α expression. Knockdown of TDP-43 in THP-1 cells downregulated TNF-α expression. We identified TDP-43 as one of the novel

  12. Discovering amino acid patterns on binding sites in protein complexes

    PubMed Central

    Kuo, Huang-Cheng; Ong, Ping-Lin; Lin, Jung-Chang; Huang, Jen-Peng

    2011-01-01

    Discovering amino acid (AA) patterns on protein binding sites has recently become popular. We propose a method to discover the association relationship among AAs on binding sites. Such knowledge of binding sites is very helpful in predicting protein-protein interactions. In this paper, we focus on protein complexes which have protein-protein recognition. The association rule mining technique is used to discover geographically adjacent amino acids on a binding site of a protein complex. When mining, instead of treating all AAs of binding sites as a transaction, we geographically partition AAs of binding sites in a protein complex. AAs in a partition are treated as a transaction. For the partition process, AAs on a binding site are projected from three-dimensional to two-dimensional. And then, assisted with a circular grid, AAs on the binding site are placed into grid cells. A circular grid has ten rings: a central ring, the second ring with 6 sectors, the third ring with 12 sectors, and later rings are added to four sectors in order. As for the radius of each ring, we examined the complexes and found that 10Å is a suitable range, which can be set by the user. After placing these recognition complexes on the circular grid, we obtain mining records (i.e. transactions) from each sector. A sector is regarded as a record. Finally, we use the association rule to mine these records for frequent AA patterns. If the support of an AA pattern is larger than the predetermined minimum support (i.e. threshold), it is called a frequent pattern. With these discovered patterns, we offer the biologists a novel point of view, which will improve the prediction accuracy of protein-protein recognition. In our experiments, we produced the AA patterns by data mining. As a result, we found that arginine (arg) most frequently appears on the binding sites of two proteins in the recognition protein complexes, while cysteine (cys) appears the fewest. In addition, if we discriminate the shape

  13. Purification of Proteins Fused to Maltose-Binding Protein.

    PubMed

    Lebendiker, Mario; Danieli, Tsafi

    2017-01-01

    Maltose-Binding Protein (MBP) is one of the most popular fusion partners being used for producing recombinant proteins in bacterial cells. MBP allows the use of a simple capture affinity step on Amylose-Agarose or Dextrin-Sepharose columns, resulting in a protein that is often 70-90 % pure in a single step. In addition to protein isolation applications, MBP provides a high degree of translation, and facilitates the proper folding and solubility of the target protein. This paper describes efficient procedures for isolating highly purified MBP target proteins. Special attention is given to considerations for downstream applications such as structural determination studies, protein activity assays, and assessing the chemical characteristics of the target protein.

  14. RNA-binding proteins in plants: the tip of an iceberg?

    NASA Technical Reports Server (NTRS)

    Fedoroff, Nina V.; Federoff, N. V. (Principal Investigator)

    2002-01-01

    RNA-binding proteins, which are involved in the synthesis, processing, transport, translation, and degradation of RNA, are emerging as important, often multifunctional, cellular regulatory proteins. Although relatively few RNA-binding proteins have been studied in plants, they are being identified with increasing frequency, both genetically and biochemically. RNA-binding proteins that regulate chloroplast mRNA stability and translation in response to light and that have been elegantly analyzed in Clamydomonas reinhardtii have counterparts with similar functions in higher plants. Several recent reports describe mutations in genes encoding RNA-binding proteins that affect plant development and hormone signaling.

  15. Nuclear cartography: patterns in binding energies and subatomic structure

    NASA Astrophysics Data System (ADS)

    Simpson, E. C.; Shelley, M.

    2017-11-01

    Nuclear masses and binding energies are some of the first nuclear properties met in high school physics, and can be used to introduce radioactive decays, fusion, and fission. With relatively little extension, they can also illustrate fundamental concepts in nuclear physics, such as shell structure and pairing, and to discuss how the elements around us were formed in stars. One way of visualising these nuclear properties is through the nuclide chart, which maps all nuclides as a function of their proton and neutron numbers. Here we use the nuclide chart to illustrate various aspects of nuclear physics, and present 3D visualisations of it produced as part of the binding blocks project.

  16. Mechanism of Protein Denaturation: Partial Unfolding of the P22 Coat Protein I-Domain by Urea Binding.

    PubMed

    Newcomer, Rebecca L; Fraser, LaTasha C R; Teschke, Carolyn M; Alexandrescu, Andrei T

    2015-12-15

    The I-domain is an insertion domain of the bacteriophage P22 coat protein that drives rapid folding and accounts for over half of the stability of the full-length protein. We sought to determine the role of hydrogen bonds (H-bonds) in the unfolding of the I-domain by examining (3)JNC' couplings transmitted through H-bonds, the temperature and urea-concentration dependence of (1)HN and (15)N chemical shifts, and native-state hydrogen exchange at urea concentrations where the domain is predominantly folded. The native-state hydrogen-exchange data suggest that the six-stranded β-barrel core of the I-domain is more stable against unfolding than a smaller subdomain comprised of a short α-helix and three-stranded β-sheet. H-bonds, separately determined from solvent protection and (3)JNC' H-bond couplings, are identified with an accuracy of 90% by (1)HN temperature coefficients. The accuracy is improved to 95% when (15)N temperature coefficients are also included. In contrast, the urea dependence of (1)HN and (15)N chemical shifts is unrelated to H-bonding. The protein segments with the largest chemical-shift changes in the presence of urea show curved or sigmoidal titration curves suggestive of direct urea binding. Nuclear Overhauser effects to urea for these segments are also consistent with specific urea-binding sites in the I-domain. Taken together, the results support a mechanism of urea unfolding in which denaturant binds to distinct sites in the I-domain. Disordered segments bind urea more readily than regions in stable secondary structure. The locations of the putative urea-binding sites correlate with the lower stability of the structure against solvent exchange, suggesting that partial unfolding of the structure is related to urea accessibility. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Mechanism of Protein Denaturation: Partial Unfolding of the P22 Coat Protein I-Domain by Urea Binding

    PubMed Central

    Newcomer, Rebecca L.; Fraser, LaTasha C.R.; Teschke, Carolyn M.; Alexandrescu, Andrei T.

    2015-01-01

    The I-domain is an insertion domain of the bacteriophage P22 coat protein that drives rapid folding and accounts for over half of the stability of the full-length protein. We sought to determine the role of hydrogen bonds (H-bonds) in the unfolding of the I-domain by examining 3JNC’ couplings transmitted through H-bonds, the temperature and urea-concentration dependence of 1HN and 15N chemical shifts, and native-state hydrogen exchange at urea concentrations where the domain is predominantly folded. The native-state hydrogen-exchange data suggest that the six-stranded β-barrel core of the I-domain is more stable against unfolding than a smaller subdomain comprised of a short α-helix and three-stranded β-sheet. H-bonds, separately determined from solvent protection and 3JNC’ H-bond couplings, are identified with an accuracy of 90% by 1HN temperature coefficients. The accuracy is improved to 95% when 15N temperature coefficients are also included. In contrast, the urea dependence of 1HN and 15N chemical shifts is unrelated to H-bonding. The protein segments with the largest chemical-shift changes in the presence of urea show curved or sigmoidal titration curves suggestive of direct urea binding. Nuclear Overhauser effects to urea for these segments are also consistent with specific urea-binding sites in the I-domain. Taken together, the results support a mechanism of urea unfolding in which denaturant binds to distinct sites in the I-domain. Disordered segments bind urea more readily than regions in stable secondary structure. The locations of the putative urea-binding sites correlate with the lower stability of the structure against solvent exchange, suggesting that partial unfolding of the structure is related to urea accessibility. PMID:26682823

  18. Characterization of calcineurin-dependent response element binding protein and its involvement in copper-metallothionein gene expression in Neurospora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Kalari Satish; Ravi Kumar, B.; Siddavattam, Dayananda

    2006-07-07

    In continuation of our recent observations indicating the presence of a lone calcineurin-dependent response element (CDRE) in the -3730 bp upstream region of copper-induced metallothionein (CuMT) gene of Neurospora [K.S. Kumar, S. Dayananda, C. Subramanyam, Copper alone, but not oxidative stress, induces copper-metallothionein gene in Neurospora crassa, FEMS Microbiol. Lett. 242 (2005) 45-50], we isolated and characterized the CDRE-binding protein. The cloned upstream region of CuMT gene was used as the template to specifically amplify CDRE element, which was immobilized on CNBr-activated Sepharose 4B for use as the affinity matrix to purify the CDRE binding protein from nuclear extracts obtainedmore » from Neurospora cultures grown in presence of copper. Two-dimensional gel electrophoresis of the affinity purified protein revealed the presence of a single 17 kDa protein, which was identified and characterized by MALDI-TOF. Peptide mass finger printing of tryptic digests and analysis of the 17 kDa protein matched with the regulatory {beta}-subunit of calcineurin (Ca{sup 2+}-calmodulin dependent protein phosphatase). Parallel identification of nuclear localization signals in this protein by in silico analysis suggests a putative role for calcineurin in the regulation of CuMT gene expression.« less

  19. FK506-Binding Proteins and Their Diverse Functions.

    PubMed

    Tong, Mingming; Jiang, Yu

    2015-01-01

    FK506 binding proteins (FKBPs) are a family of highly conserved proteins in eukaryotes. The prototype of this protein family, FKBP12, is the binding partner for immunosuppressive drugs FK506 and rapamycin. FKBP12 functions as a cis/trans peptidyl prolyl isomerase (PPIase) that catalyzes interconversion between prolyl cis/trans conformations. Members of the FKBP family contain one or several PPIase domains, which do not always exhibit PPIase activity yet are all essential for their function. FKBPs are involved in diverse cellular functions including protein folding, cellular signaling, apoptosis and transcription. They elicit their function through direct binding and altering conformation of their target proteins, hence acting as molecular switches. In this review, we provide a general summary for the structures and diverse functions of FKBPs found in mammalian cells.

  20. Dominant Alcohol-Protein Interaction via Hydration-Enabled Enthalpy-Driven Binding Mechanism

    PubMed Central

    Chong, Yuan; Kleinhammes, Alfred; Tang, Pei; Xu, Yan; Wu, Yue

    2015-01-01

    Water plays an important role in weak associations of small drug molecules with proteins. Intense focus has been on binding-induced structural changes in the water network surrounding protein binding sites, especially their contributions to binding thermodynamics. However, water is also tightly coupled to protein conformations and dynamics, and so far little is known about the influence of water-protein interactions on ligand binding. Alcohols are a type of low-affinity drugs, and it remains unclear how water affects alcohol-protein interactions. Here, we present alcohol adsorption isotherms under controlled protein hydration using in-situ NMR detection. As functions of hydration level, Gibbs free energy, enthalpy, and entropy of binding were determined from the temperature dependence of isotherms. Two types of alcohol binding were found. The dominant type is low-affinity nonspecific binding, which is strongly dependent on temperature and the level of hydration. At low hydration levels, this nonspecific binding only occurs above a threshold of alcohol vapor pressure. An increased hydration level reduces this threshold, with it finally disappearing at a hydration level of h~0.2 (g water/g protein), gradually shifting alcohol binding from an entropy-driven to an enthalpy-driven process. Water at charged and polar groups on the protein surface was found to be particularly important in enabling this binding. Although further increase in hydration has smaller effects on the changes of binding enthalpy and entropy, it results in significant negative change in Gibbs free energy due to unmatched enthalpy-entropy compensation. These results show the crucial role of water-protein interplay in alcohol binding. PMID:25856773

  1. Evolutionarily conserved heterogeneous nuclear ribonucleoprotein (hnRNP) A/B proteins functionally interact with human and Drosophila TAR DNA-binding protein 43 (TDP-43).

    PubMed

    Romano, Maurizio; Buratti, Emanuele; Romano, Giulia; Klima, Raffaella; Del Bel Belluz, Lisa; Stuani, Cristiana; Baralle, Francisco; Feiguin, Fabian

    2014-03-07

    Human TDP-43 represents the main component of neuronal inclusions found in patients with neurodegenerative diseases, especially frontotemporal lobar degeneration and amyotrophic lateral sclerosis. In vitro and in vivo studies have shown that the TAR DNA-binding protein 43 (TDP-43) Drosophila ortholog (TBPH) can biochemically and functionally overlap the properties of the human factor. The recent direct implication of the human heterogeneous nuclear ribonucleoproteins (hnRNPs) A2B1 and A1, known TDP-43 partners, in the pathogenesis of multisystem proteinopathy and amyotrophic lateral sclerosis supports the hypothesis that the physical and functional interplay between TDP-43 and hnRNP A/B orthologs might play a crucial role in the pathogenesis of neurodegenerative diseases. To test this hypothesis and further validate the fly system as a useful model to study this type of diseases, we have now characterized human TDP-43 and Drosophila TBPH similarity in terms of protein-protein interaction pathways. In this work we show that TDP-43 and TBPH share the ability to associate in vitro with Hrp38/Hrb98DE/CG9983, the fruit fly ortholog of the human hnRNP A1/A2 factors. Interestingly, the protein regions of TDP-43 and Hrp38 responsible for reciprocal interactions are conserved through evolution. Functionally, experiments in HeLa cells demonstrate that TDP-43 is necessary for the inhibitory activity of Hrp38 on splicing. Finally, Drosophila in vivo studies show that Hrp38 deficiency produces locomotive defects and life span shortening in TDP-43 with and without animals. These results suggest that hnRNP protein levels can play a modulatory role on TDP-43 functions.

  2. EMSA Analysis of DNA Binding By Rgg Proteins

    PubMed Central

    LaSarre, Breah; Federle, Michael J.

    2016-01-01

    In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function (e.g. interruption of DNA-binding in some cases). PMID:27430004

  3. Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA.

    PubMed

    Banerjee, Pubali; DeJesus, Rowena; Gjoerup, Ole; Schaffhausen, Brian S

    2013-10-01

    Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.

  4. Unique and shared functions of nuclear lamina LEM domain proteins in Drosophila.

    PubMed

    Barton, Lacy J; Wilmington, Shameika R; Martin, Melinda J; Skopec, Hannah M; Lovander, Kaylee E; Pinto, Belinda S; Geyer, Pamela K

    2014-06-01

    The nuclear lamina is an extensive protein network that contributes to nuclear structure and function. LEM domain (LAP2, emerin, MAN1 domain, LEM-D) proteins are components of the nuclear lamina, identified by a shared ∼45-amino-acid motif that binds Barrier-to-autointegration factor (BAF), a chromatin-interacting protein. Drosophila melanogaster has three nuclear lamina LEM-D proteins, named Otefin (Ote), Bocksbeutel (Bocks), and dMAN1. Although these LEM-D proteins are globally expressed, loss of either Ote or dMAN1 causes tissue-specific defects in adult flies that differ from each other. The reason for such distinct tissue-restricted defects is unknown. Here, we generated null alleles of bocks, finding that loss of Bocks causes no overt adult phenotypes. Next, we defined phenotypes associated with lem-d double mutants. Although the absence of individual LEM-D proteins does not affect viability, loss of any two proteins causes lethality. Mutant phenotypes displayed by lem-d double mutants differ from baf mutants, suggesting that BAF function is retained in animals with a single nuclear lamina LEM-D protein. Interestingly, lem-d double mutants displayed distinct developmental and cellular mutant phenotypes, suggesting that Drosophila LEM-D proteins have developmental functions that are differentially shared with other LEM-D family members. This conclusion is supported by studies showing that ectopically produced LEM-D proteins have distinct capacities to rescue the tissue-specific phenotypes found in single lem-d mutants. Our findings predict that cell-specific mutant phenotypes caused by loss of LEM-D proteins reflect both the constellation of LEM-D proteins within the nuclear lamina and the capacity of functional compensation of the remaining LEM-D proteins. Copyright © 2014 by the Genetics Society of America.

  5. Unique and Shared Functions of Nuclear Lamina LEM Domain Proteins in Drosophila

    PubMed Central

    Barton, Lacy J.; Wilmington, Shameika R.; Martin, Melinda J.; Skopec, Hannah M.; Lovander, Kaylee E.; Pinto, Belinda S.; Geyer, Pamela K.

    2014-01-01

    The nuclear lamina is an extensive protein network that contributes to nuclear structure and function. LEM domain (LAP2, emerin, MAN1 domain, LEM-D) proteins are components of the nuclear lamina, identified by a shared ∼45-amino-acid motif that binds Barrier-to-autointegration factor (BAF), a chromatin-interacting protein. Drosophila melanogaster has three nuclear lamina LEM-D proteins, named Otefin (Ote), Bocksbeutel (Bocks), and dMAN1. Although these LEM-D proteins are globally expressed, loss of either Ote or dMAN1 causes tissue-specific defects in adult flies that differ from each other. The reason for such distinct tissue-restricted defects is unknown. Here, we generated null alleles of bocks, finding that loss of Bocks causes no overt adult phenotypes. Next, we defined phenotypes associated with lem-d double mutants. Although the absence of individual LEM-D proteins does not affect viability, loss of any two proteins causes lethality. Mutant phenotypes displayed by lem-d double mutants differ from baf mutants, suggesting that BAF function is retained in animals with a single nuclear lamina LEM-D protein. Interestingly, lem-d double mutants displayed distinct developmental and cellular mutant phenotypes, suggesting that Drosophila LEM-D proteins have developmental functions that are differentially shared with other LEM-D family members. This conclusion is supported by studies showing that ectopically produced LEM-D proteins have distinct capacities to rescue the tissue-specific phenotypes found in single lem-d mutants. Our findings predict that cell-specific mutant phenotypes caused by loss of LEM-D proteins reflect both the constellation of LEM-D proteins within the nuclear lamina and the capacity of functional compensation of the remaining LEM-D proteins. PMID:24700158

  6. Characterization of a unique motif in LIM mineralization protein-1 that interacts with jun activation-domain-binding protein 1.

    PubMed

    Sangadala, Sreedhara; Yoshioka, Katsuhito; Enyo, Yoshio; Liu, Yunshan; Titus, Louisa; Boden, Scott D

    2014-01-01

    Development and repair of the skeletal system and other organs are highly dependent on precise regulation of the bone morphogenetic protein (BMP) pathway. The use of BMPs clinically to induce bone formation has been limited in part by the requirement of much higher doses of recombinant proteins in primates than were needed in cell culture or rodents. Therefore, increasing cellular responsiveness to BMPs has become our focus. We determined that an osteogenic LIM mineralization protein, LMP-1 interacts with Smurf1 (Smad ubiquitin regulatory factor 1) and prevents ubiquitination of Smads resulting in potentiation of BMP activity. In the region of LMP-1 responsible for bone formation, there is a motif that directly interacts with the Smurf1 WW2 domain and thus effectively competes for binding with Smad1 and Smad5, key signaling proteins in the BMP pathway. Here we show that the same region also contains a motif that interacts with Jun activation-domain-binding protein 1 (Jab1) which targets a common Smad, Smad4, shared by both the BMP and transforming growth factor-β (TGF-β) pathways, for proteasomal degradation. Jab1 was first identified as a coactivator of the transcription factor c-Jun. Jab1 binds to Smad4, Smad5, and Smad7, key intracellular signaling molecules of the TGF-β superfamily, and causes ubiquitination and/or degradation of these Smads. We confirmed a direct interaction of Jab1 with LMP-1 using recombinantly expressed wild-type and mutant proteins in slot-blot-binding assays. We hypothesized that LMP-1 binding to Jab1 prevents the binding and subsequent degradation of these Smads causing increased accumulation of osteogenic Smads in cells. We identified a sequence motif in LMP-1 that was predicted to interact with Jab1 based on the MAME/MAST sequence analysis of several cellular signaling molecules that are known to interact with Jab-1. We further mutated the potential key interacting residues in LMP-1 and showed loss of binding to Jab1 in binding

  7. A verotoxin 1 B subunit-lambda CRO chimeric protein specifically binds both DNA and globotriaosylceramide (Gb(3)) to effect nuclear targeting of exogenous DNA in Gb(3) positive cells.

    PubMed

    Facchini, L M; Lingwood, C A

    2001-09-10

    Inefficient nuclear incorporation of foreign DNA remains a critical roadblock in the development of effective nonviral gene delivery systems. DNA delivered by traditional protocols remains within endosomal/lysosomal vesicles, or is rapidly degraded in the cytoplasm. Verotoxin I (VT), an AB(5) subunit toxin produced by enterohaemorrhagic Escherichia coli, binds to the cell surface glycolipid, globotriaosylceramide (Gb(3)) and is internalized into preendosomes. VT is then retrograde transported to the Golgi, endoplasmic reticulum (ER), and nucleus of highly VT-sensitive cells. We have utilized this nuclear targeting of VT to design a unique delivery system which transports exogenous DNA via vesicular traffic to the nucleus. The nontoxic VT binding subunit (VTB) was fused to the lambda Cro DNA-binding repressor, generating a 14-kDa VTB-Cro chimera. VTB-Cro binds specifically via the Cro domain to a 25-bp DNA fragment containing the consensus Cro operator. VTB-Cro demonstrates simultaneous specific binding to Gb(3). Treatment of Vero cells with fluorescent-labeled Cro operator DNA in the presence of VTB-Cro, results in DNA internalization to the Golgi, ER, and nucleus, whereas fluorescent DNA alone is incorporated poorly and randomly within the cytoplasm. VTB-Cro mediated nuclear DNA transport is prevented by brefeldin A, consistent with Golgi/ER intracellular routing. Pretreatment with filipin had no effect, indicating that caveoli are not involved. This novel VTB-Cro shuttle protein may find practical applications in the fields of intracellular targeting, gene delivery, and gene therapy. Copyright 2001 Academic Press.

  8. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding.

    PubMed

    Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A

    2013-06-14

    Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.

  9. Phosphoinositide-binding proteins in autophagy.

    PubMed

    Lystad, Alf Håkon; Simonsen, Anne

    2016-08-01

    Phosphoinositides represent a very small fraction of membrane phospholipids, having fast turnover rates and unique subcellular distributions, which make them perfect for initiating local temporal effects. Seven different phosphoinositide species are generated through reversible phosphorylation of the inositol ring of phosphatidylinositol (PtdIns). The negative charge generated by the phosphates provides specificity for interaction with various protein domains that commonly contain a cluster of basic residues. Examples of domains that bind phosphoinositides include PH domains, WD40 repeats, PX domains, and FYVE domains. Such domains often display specificity toward a certain species or subset of phosphoinositides. Here we will review the current literature of different phosphoinositide-binding proteins involved in autophagy. © 2016 Federation of European Biochemical Societies.

  10. The mouse mismatch repair protein, MSH3, is a nucleoplasmic protein that aggregates into denser nuclear bodies under conditions of stress.

    PubMed

    Holt, Ian; Thanh Lam, Le; Tomé, Stéphanie; Wansink, Derick G; Te Riele, Hein; Gourdon, Geneviève; Morris, Glenn E

    2011-06-01

    The mismatch repair protein, MSH3, together with MSH2, forms the MutSβ heterodimer which recognizes and repairs base pair mismatches and larger insertion/deletion loops in DNA. Lack of specific antibodies against mouse MSH3 has hampered studies of its expression and localization. Mouse MSH3 is not immunogenic in normal mice. This problem was overcome by immunizing msh3-knockout mice and generating a panel of ten monoclonal antibodies, two of which localize MSH3 specifically in cultured mouse cells and bind to an epitope containing amino-acids 33-37. The panel also includes two antibodies that recognise both mouse and human MSH3 and bind to a conserved epitope containing amino-acids 187-194. The mouse MSH3-specific antibodies show that MSH3 is a nuclear protein with a finely-granular nucleoplasmic distribution, largely absent from areas of condensed heterochromatin. Specificity of the localization was demonstrated by absence of immunostaining in a cell line from the msh3-knockout mouse. Furthermore, we show for the first time that stress treatment of mouse cells with ethanol or hydrogen peroxide caused the re-distribution of MSH3 into nuclear bodies containing the proliferating cell nuclear antigen (PCNA), a known binding partner of MutSβ. Copyright © 2011 Wiley-Liss, Inc.

  11. Ion Binding Energies Determining Functional Transport of ClC Proteins

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Guo, Xu; Zou, Xian-Wu; Sang, Jian-Ping

    2014-06-01

    The ClC-type proteins, a large family of chloride transport proteins ubiquitously expressed in biological organisms, have been extensively studied for decades. Biological function of ClC proteins can be reflected by analyzing the binding situation of Cl- ions. We investigate ion binding properties of ClC-ec1 protein with the atomic molecular dynamics simulation approach. The calculated electrostatic binding energy results indicate that Cl- at the central binding site Scen has more binding stability than the internal binding site Sint. Quantitative comparison between the latest experimental heat release data isothermal titration calorimetry (ITC) and our calculated results demonstrates that chloride ions prefer to bind at Scen than Sint in the wild-type ClC-ec1 structure and prefer to bind at Sext and Scen than Sint in mutant E148A/E148Q structures. Even though the chloride ions make less contribution to heat release when binding to Sint and are relatively unstable in the Cl- pathway, they are still part contributors for the Cl- functional transport. This work provides a guide rule to estimate the importance of Cl- at the binding sites and how chloride ions have influences on the function of ClC proteins.

  12. Protein Binding Capacity of Different Forages Tannin

    NASA Astrophysics Data System (ADS)

    Yusiati, L. M.; Kurniawati, A.; Hanim, C.; Anas, M. A.

    2018-02-01

    Eight forages of tannin sources(Leucaena leucocephala, Arachis hypogaea, Mimosa pudica, Morus alba L, Swietenia mahagoni, Manihot esculenta, Gliricidia sepium, and Bauhinia purpurea)were evaluated their tannin content and protein binding capacity. The protein binding capacity of tannin were determined using precipitation of bovine serum albumin (BSA). Swietenia mahagonihas higest total tannin level and condensed tannin (CT) compared with other forages (P<0.01). The Leucaena leucocephala has highest hydrolysable tannin (HT) level (P<0.01). The total and condensed tannin content of Swietenia mahagoni were 11.928±0.04 mg/100 mg and 9.241±0.02mg/100mg dry matter (DM) of leaves. The hydrolysable tannin content of Leucaena leucocephala was 5.338±0.03 mg/100 mg DM of leaves. Binding capacity was highest in Swietenia mahagoni and Leucaena leucocephala compared to the other forages (P<0.01). The optimum binding of BSA to tannin in Leucaena leucocephala and Swietenia mahagoniwere1.181±0.44 and 1.217±0.60mg/mg dry matter of leaves. The present study reports that Swietenia mahagoni has highest of tannin content and Leucaena leucocephala and Swietenia mahagoni capacity of protein binding.

  13. DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues.

    PubMed

    Ma, Xin; Guo, Jing; Sun, Xiao

    2016-01-01

    DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.

  14. Protein interactions and ligand binding: from protein subfamilies to functional specificity.

    PubMed

    Rausell, Antonio; Juan, David; Pazos, Florencio; Valencia, Alfonso

    2010-02-02

    The divergence accumulated during the evolution of protein families translates into their internal organization as subfamilies, and it is directly reflected in the characteristic patterns of differentially conserved residues. These specifically conserved positions in protein subfamilies are known as "specificity determining positions" (SDPs). Previous studies have limited their analysis to the study of the relationship between these positions and ligand-binding specificity, demonstrating significant yet limited predictive capacity. We have systematically extended this observation to include the role of differential protein interactions in the segregation of protein subfamilies and explored in detail the structural distribution of SDPs at protein interfaces. Our results show the extensive influence of protein interactions in the evolution of protein families and the widespread association of SDPs with protein interfaces. The combined analysis of SDPs in interfaces and ligand-binding sites provides a more complete picture of the organization of protein families, constituting the necessary framework for a large scale analysis of the evolution of protein function.

  15. 21 CFR 556.540 - Progesterone.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Progesterone. 556.540 Section 556.540 Food and... Residues of New Animal Drugs § 556.540 Progesterone. (a) [Reserved] (b) Tolerances. Residues of progesterone are not permitted in excess of the following increments above the concentrations of progesterone...

  16. 21 CFR 556.540 - Progesterone.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Progesterone. 556.540 Section 556.540 Food and... Residues of New Animal Drugs § 556.540 Progesterone. (a) [Reserved] (b) Tolerances. Residues of progesterone are not permitted in excess of the following increments above the concentrations of progesterone...

  17. 21 CFR 556.540 - Progesterone.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Progesterone. 556.540 Section 556.540 Food and... Residues of New Animal Drugs § 556.540 Progesterone. (a) [Reserved] (b) Tolerances. Residues of progesterone are not permitted in excess of the following increments above the concentrations of progesterone...

  18. Structural Analysis of Semi-specific Oligosaccharide Recognition by a Cellulose-binding Protein of Thermotoga maritima Reveals Adaptations for Functional Diversification of the Oligopeptide Periplasmic Binding Protein Fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, Matthew J.; Beese, Lorena S.; Hellinga, Homme W.

    Periplasmic binding proteins (PBPs) constitute a protein superfamily that binds a wide variety of ligands. In prokaryotes, PBPs function as receptors for ATP-binding cassette or tripartite ATP-independent transporters and chemotaxis systems. In many instances, PBPs bind their cognate ligands with exquisite specificity, distinguishing, for example, between sugar epimers or structurally similar anions. By contrast, oligopeptide-binding proteins bind their ligands through interactions with the peptide backbone but do not distinguish between different side chains. The extremophile Thermotoga maritima possesses a remarkable array of carbohydrate-processing metabolic systems, including the hydrolysis of cellulosic polymers. Here, we present the crystal structure of a T.more » maritima cellobiose-binding protein (tm0031) that is homologous to oligopeptide-binding proteins. T. maritima cellobiose-binding protein binds a variety of lengths of {beta}(1 {yields} 4)-linked glucose oligomers, ranging from two rings (cellobiose) to five (cellopentaose). The structure reveals that binding is semi-specific. The disaccharide at the nonreducing end binds specifically; the other rings are located in a large solvent-filled groove, where the reducing end makes several contacts with the protein, thereby imposing an upper limit of the oligosaccharides that are recognized. Semi-specific recognition, in which a molecular class rather than individual species is selected, provides an efficient solution for the uptake of complex mixtures.« less

  19. Structural basis of redox-dependent substrate binding of protein disulfide isomerase

    PubMed Central

    Yagi-Utsumi, Maho; Satoh, Tadashi; Kato, Koichi

    2015-01-01

    Protein disulfide isomerase (PDI) is a multidomain enzyme, operating as an essential folding catalyst, in which the b′ and a′ domains provide substrate binding sites and undergo an open–closed domain rearrangement depending on the redox states of the a′ domain. Despite the long research history of this enzyme, three-dimensional structural data remain unavailable for its ligand-binding mode. Here we characterize PDI substrate recognition using α-synuclein (αSN) as the model ligand. Our nuclear magnetic resonance (NMR) data revealed that the substrate-binding domains of PDI captured the αSN segment Val37–Val40 only in the oxidized form. Furthermore, we determined the crystal structure of an oxidized form of the b′–a′ domains in complex with an undecapeptide corresponding to this segment. The peptide-binding mode observed in the crystal structure with NMR validation, was characterized by hydrophobic interactions on the b′ domain in an open conformation. Comparison with the previously reported crystal structure indicates that the a′ domain partially masks the binding surface of the b′ domain, causing steric hindrance against the peptide in the reduced form of the b′–a′ domains that exhibits a closed conformation. These findings provide a structural basis for the mechanism underlying the redox-dependent substrate binding of PDI. PMID:26350503

  20. The human protein PRR14 tethers heterochromatin to the nuclear lamina during interphase and mitotic exit.

    PubMed

    Poleshko, Andrey; Mansfield, Katelyn M; Burlingame, Caroline C; Andrake, Mark D; Shah, Neil R; Katz, Richard A

    2013-10-31

    The nuclear lamina is a protein meshwork that lies under the inner nuclear membrane of metazoan cells. One function of the nuclear lamina is to organize heterochromatin at the inner nuclear periphery. However, very little is known about how heterochromatin attaches to the nuclear lamina and how such attachments are restored at mitotic exit. Here, we show that a previously unstudied human protein, PRR14, functions to tether heterochromatin to the nuclear periphery during interphase, through associations with heterochromatin protein 1 (HP1) and the nuclear lamina. During early mitosis, PRR14 is released from the nuclear lamina and chromatin and remains soluble. Strikingly, at the onset of anaphase, PRR14 is incorporated rapidly into chromatin through HP1 binding. Finally, in telophase, PRR14 relocalizes to the reforming nuclear lamina. This stepwise reassembly of PRR14 suggests a function in the selection of HP1-bound heterochromatin for reattachment to the nuclear lamina as cells exit mitosis.

  1. The Human Protein PRR14 Tethers Heterochromatin to the Nuclear Lamina During Interphase and Mitotic Exit

    PubMed Central

    Poleshko, Andrey; Mansfield, Katelyn M.; Burlingame, Caroline C.; Andrake, Mark D.; Shah, Neil R.; Katz, Richard A.

    2013-01-01

    SUMMARY The nuclear lamina is a protein meshwork that lies under the inner nuclear membrane of metazoan cells. One function of the nuclear lamina is to organize heterochromatin at the inner nuclear periphery. However, very little is known about how heterochromatin attaches to the nuclear lamina and how such attachments are restored at mitotic exit. Here we show that a previously unstudied human protein, PRR14, functions to tether heterochromatin to the nuclear periphery during interphase, through associations with heterochromatin protein 1 (HP1) and the nuclear lamina. During early mitosis, PRR14 is released from the nuclear lamina and chromatin, and remains soluble. Strikingly, at the onset of anaphase, PRR14 is incorporated rapidly into chromatin through HP1 binding. Finally, in telophase, PRR14 relocalizes to the reforming nuclear lamina. This stepwise reassembly of PRR14 suggests a novel function in the selection of HP1–bound heterochromatin for reattachment to the nuclear lamina as cells exit mitosis. PMID:24209742

  2. Progesterone alters biliary flow dynamics.

    PubMed

    Tierney, S; Nakeeb, A; Wong, O; Lipsett, P A; Sostre, S; Pitt, H A; Lillemoe, K D

    1999-02-01

    To test the hypothesis that progesterone alters sphincter of Oddi and gallbladder function and, therefore, bile flow dynamics. Although the effects of progesterone on the biliary tract have been implicated in the increased incidence of gallstones among women, the specific effects of prolonged elevation of progesterone levels, such as occurs with contraceptive progesterone implants and during pregnancy, on the sphincter of Oddi and biliary flow dynamics are still incompletely understood. Adult female prairie dogs were randomly assigned to receive subcutaneous implants containing either progesterone or inactive pellet matrix only. Hepatic bile partitioning and gallbladder emptying were determined 14 days later using 99mTc-Mebrofenin cholescintigraphy. Significantly less hepatic bile partitioned into the gallbladder in progesterone-treated than in control animals. The gallbladder ejection fraction was significantly reduced from 73+/-6% in controls to 59+/-3% in the progesterone-treated animals. The rate of gallbladder emptying was significantly reduced from 3.6+/-0.3%/minute to 2.9+/-0.1%/minute. Progesterone administered as subcutaneous implants alters partitioning of hepatic bile between gallbladder and small intestine and, therefore, gallbladder filling. Progesterone also significantly impairs gallbladder emptying in response to cholecystokinin. The effects of progesterone on the sphincter of Oddi and the gallbladder may contribute to the greater prevalence of gallstones and biliary motility disorders among women.

  3. The brain-specific double-stranded RNA-binding protein Staufen2: nucleolar accumulation and isoform-specific exportin-5-dependent export.

    PubMed

    Macchi, Paolo; Brownawell, Amy M; Grunewald, Barbara; DesGroseillers, Luc; Macara, Ian G; Kiebler, Michael A

    2004-07-23

    The mammalian double-stranded RNA-binding proteins Staufen (Stau1 and Stau2) are involved in RNA localization in polarized neurons. In contrast to the more ubiquitously expressed Stau1, Stau2 is mainly expressed in the nervous system. In Drosophila, the third double-stranded RNA-binding domain (RBD3) of Staufen is essential for RNA interaction. When conserved amino acids within the RBD3 of Stau2 were mutated to render Stau2 defective for RNA binding, the mutant Stau2 proteins accumulate predominantly in the nucleolus. This is in contrast to wild type Stau2 that mostly localizes in the cytosol. The nuclear import is dependent on a nuclear localization signal in close proximity to the RBD3. The nuclear export of Stau2 is not dependent on CRM1 but rather on Exportin-5. We show that Exportin-5 interacts with the RBD3 of wild type Stau2 in an RNA-dependent manner in vitro but not with mutant Stau2. When Exportin-5 is down-regulated by RNA interference, only the largest isoform of Stau2 (Stau2(62)) preferentially accumulates in the nucleolus. It is tempting to speculate that Stau2(62) binds RNA in the nucleus and assembles into ribonucleoparticles, which are then exported via the Exportin-5 pathway to their final destination.

  4. Method for estimating protein binding capacity of polymeric systems.

    PubMed

    Sharma, Vaibhav; Blackwood, Keith A; Haddow, David; Hook, Lilian; Mason, Chris; Dye, Julian F; García-Gareta, Elena

    2015-01-01

    Composite biomaterials made from synthetic and protein-based polymers are extensively researched in tissue engineering. To successfully fabricate a protein-polymer composite, it is critical to understand how strongly the protein binds to the synthetic polymer, which occurs through protein adsorption. Currently, there is no cost-effective and simple method for characterizing this interfacial binding. To characterize this interfacial binding, we introduce a simple three-step method that involves: 1) synthetic polymer surface characterisation, 2) a quick, inexpensive and robust novel immuno-based assay that uses protein extraction compounds to characterize protein binding strength followed by 3) an in vitro 2D model of cell culture to confirm the results of the immuno-based assay. Fibrinogen, precursor of fibrin, was adsorbed (test protein) on three different polymeric surfaces: silicone, poly(acrylic acid)-coated silicone and poly(allylamine)-coated silicone. Polystyrene surface was used as a reference. Characterisation of the different surfaces revealed different chemistry and roughness. The novel immuno-based assay showed significantly stronger binding of fibrinogen to both poly(acrylic acid) and poly(allylamine) coated silicone. Finally, cell studies showed that the strength of the interaction between the protein and the polymer had an effect on cell growth. This novel immuno-based assay is a valuable tool in developing composite biomaterials of synthetic and protein-based polymers with the potential to be applied in other fields of research where protein adsorption onto surfaces plays an important role.

  5. Lipid-binding proteins modulate ligand-dependent trans-activation by peroxisome proliferator-activated receptors and localize to the nucleus as well as the cytoplasm.

    PubMed

    Helledie, T; Antonius, M; Sorensen, R V; Hertzel, A V; Bernlohr, D A; Kølvraa, S; Kristiansen, K; Mandrup, S

    2000-11-01

    Peroxisome proliferator-activated receptors (PPARs) are activated by a variety of fatty acids, eicosanoids, and hypolipidemic and insulin-sensitizing drugs. Many of these compounds bind avidly to members of a family of small lipid-binding proteins, the fatty acid-binding proteins (FABPs). Fatty acids are activated to CoA esters, which bind with high affinity to the acyl-CoA-binding protein (ACBP). Thus, the availability of known and potential PPAR ligands may be regulated by lipid-binding proteins. In this report we show by transient transfection of CV-1 cells that coexpression of ACBP and adipocyte lipid-binding protein (ALBP) exerts a ligand- and PPAR subtype-specific attenuation of PPAR-mediated trans-activation, suggesting that lipid-binding proteins, when expressed at high levels, may function as negative regulators of PPAR activation by certain ligands. Expression of ACBP, ALBP, and keratinocyte lipid-binding protein (KLBP) is induced during adipocyte differentiation, a process during which PPARgamma plays a prominent role. We present evidence that endogenous ACBP, ALBP, and KLBP not only localize to the cytoplasm but also exhibit a prominent nuclear localization in 3T3-L1 adipocytes. In addition, forced expression of ACBP, ALBP, and KLBP in CV-1 cells resulted in a substantial accumulation of all three proteins in the nucleus. These results suggest that lipid-binding proteins, contrary to the general assumption, may exert their action in the nucleus as well as in the cytoplasm.

  6. A tool for calculating binding-site residues on proteins from PDB structures.

    PubMed

    Hu, Jing; Yan, Changhui

    2009-08-03

    In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB) that consists of the protein of interest and its interacting partner(s) and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. The developed tool is very useful for the research on protein binding site analysis and prediction.

  7. The Epstein–Barr virus nuclear protein SM is both a post-transcriptional inhibitor and activator of gene expression

    PubMed Central

    Ruvolo, Vivian; Wang, Eryu; Boyle, Sarah; Swaminathan, Sankar

    1998-01-01

    The Epstein–Barr virus (EBV) nuclear protein BS-MLF1 (SM) is expressed early after entry of EBV into the lytic cycle. SM transactivates reporter gene constructs driven by a wide variety of promoters, but the mechanism of SM action is poorly understood. In this study, we demonstrate that the SM protein inhibits expression of intron-containing genes and activates expression of intron-less genes. We demonstrate that SM has the predicted inhibitory effect on expression of a spliced EBV gene but activates an unspliced early EBV gene. SM inhibited gene expression at the post-transcriptional level by preventing the accumulation of nuclear and cytoplasmic RNA transcripts. Conversely, SM led to increased accumulation of nuclear mRNA from intron-less genes without affecting the rate of transcription, indicating that SM enhances nuclear RNA stability. The ratio of cytoplasmic to nuclear polyadenylated mRNA was increased in the presence of SM, suggesting that SM also enhances nucleo-cytoplasmic mRNA transport. The degree of transactivation by SM was dependent on the sequence of the 3′-untranslated region of the target mRNA. Finally, we demonstrate that the amino-terminal portion of SM fused to glutathione-S-transferase binds radioactively labeled RNA in vitro, indicating that SM is a single-stranded RNA binding protein. Importantly, the latent and immediate-early genes of EBV contain introns whereas many early and late genes do not. Thus, SM may down-regulate synthesis of host cell proteins and latent EBV proteins while simultaneously enhancing expression of specific lytic EBV genes by binding to mRNA and modulating its stability and transport. PMID:9671768

  8. The Epstein-Barr virus nuclear protein SM is both a post-transcriptional inhibitor and activator of gene expression.

    PubMed

    Ruvolo, V; Wang, E; Boyle, S; Swaminathan, S

    1998-07-21

    The Epstein-Barr virus (EBV) nuclear protein BS-MLF1 (SM) is expressed early after entry of EBV into the lytic cycle. SM transactivates reporter gene constructs driven by a wide variety of promoters, but the mechanism of SM action is poorly understood. In this study, we demonstrate that the SM protein inhibits expression of intron-containing genes and activates expression of intron-less genes. We demonstrate that SM has the predicted inhibitory effect on expression of a spliced EBV gene but activates an unspliced early EBV gene. SM inhibited gene expression at the post-transcriptional level by preventing the accumulation of nuclear and cytoplasmic RNA transcripts. Conversely, SM led to increased accumulation of nuclear mRNA from intron-less genes without affecting the rate of transcription, indicating that SM enhances nuclear RNA stability. The ratio of cytoplasmic to nuclear polyadenylated mRNA was increased in the presence of SM, suggesting that SM also enhances nucleo-cytoplasmic mRNA transport. The degree of transactivation by SM was dependent on the sequence of the 3'-untranslated region of the target mRNA. Finally, we demonstrate that the amino-terminal portion of SM fused to glutathione-S-transferase binds radioactively labeled RNA in vitro, indicating that SM is a single-stranded RNA binding protein. Importantly, the latent and immediate-early genes of EBV contain introns whereas many early and late genes do not. Thus, SM may down-regulate synthesis of host cell proteins and latent EBV proteins while simultaneously enhancing expression of specific lytic EBV genes by binding to mRNA and modulating its stability and transport.

  9. A polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction

    PubMed Central

    Karlsson, Thomas; Altankhuyag, Altanchimeg; Dobrovolska, Olena; Turcu, Diana C.; Lewis, Aurélia E.

    2016-01-01

    Polyphosphoinositides (PPIns) are present in the nucleus where they participate in crucial nuclear processes, such as chromatin remodelling, transcription and mRNA processing. In a previous interactomics study, aimed to gain further insight into nuclear PPIns functions, we identified ErbB3 binding protein 1 (EBP1) as a potential nuclear PPIn-binding protein in a lipid pull-down screen. EBP1 is a ubiquitous and conserved protein, located in both the cytoplasm and nucleolus, and associated with cell proliferation and survival. In the present study, we show that EBP1 binds directly to several PPIns via two distinct PPIn-binding sites consisting of clusters of lysine residues and positioned at the N- and C-termini of the protein. Using interaction mutants, we show that the C-terminal PPIn-binding motif contributes the most to the localization of EBP1 in the nucleolus. Importantly, a K372N point mutation, located within the C-terminal motif and found in endometrial tumours, is sufficient to alter the nucleolar targeting of EBP1. Our study reveals also the presence of the class I phosphoinositide 3-kinase (PI3K) catalytic subunit p110β and its product PtdIns(3,4,5)P3 together with EBP1 in the nucleolus. Using NMR, we further demonstrate an association between EBP1 and PtdIns(3,4,5)P3 via both electrostatic and hydrophobic interactions. Taken together, these results show that EBP1 interacts directly with PPIns and associate with PtdIns(3,4,5)P3 in the nucleolus. The presence of p110β and PtdIns(3,4,5)P3 in the nucleolus indicates their potential role in regulating nucleolar processes, at least via EBP1. PMID:27118868

  10. The Fanconi anemia associated protein FAAP24 uses two substrate specific binding surfaces for DNA recognition

    PubMed Central

    Wienk, Hans; Slootweg, Jack C.; Speerstra, Sietske; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E.

    2013-01-01

    To maintain the integrity of the genome, multiple DNA repair systems exist to repair damaged DNA. Recognition of altered DNA, including bulky adducts, pyrimidine dimers and interstrand crosslinks (ICL), partially depends on proteins containing helix-hairpin-helix (HhH) domains. To understand how ICL is specifically recognized by the Fanconi anemia proteins FANCM and FAAP24, we determined the structure of the HhH domain of FAAP24. Although it resembles other HhH domains, the FAAP24 domain contains a canonical hairpin motif followed by distorted motif. The HhH domain can bind various DNA substrates; using nuclear magnetic resonance titration experiments, we demonstrate that the canonical HhH motif is required for double-stranded DNA (dsDNA) binding, whereas the unstructured N-terminus can interact with single-stranded DNA. Both DNA binding surfaces are used for binding to ICL-like single/double-strand junction-containing DNA substrates. A structural model for FAAP24 bound to dsDNA has been made based on homology with the translesion polymerase iota. Site-directed mutagenesis, sequence conservation and charge distribution support the dsDNA-binding model. Analogous to other HhH domain-containing proteins, we suggest that multiple FAAP24 regions together contribute to binding to single/double-strand junction, which could contribute to specificity in ICL DNA recognition. PMID:23661679

  11. Calcium binding to Procambarus clarkii sarcoplasmic calcium binding protein splice variants.

    PubMed

    Rohrback, Suzanne E; Wheatly, Michele G; Gillen, Christopher M

    2015-01-01

    Sarcoplasmic calcium binding protein (SCP) is a high-affinity calcium buffering protein expressed in muscle of crayfish and other invertebrates. In previous work, we identified three splice variants of Procambarus clarkii SCP (pcSCP1a, pcSCP1b, and pcSCP1c) that differ in a 37 amino acid region that lies mainly between the 2nd and 3ed EF-hand calcium binding domain. To evaluate the function of the proteins encoded by the pcSCP1 transcripts, we produced recombinant pcSCP1 and used tryptophan fluorescence to characterize calcium binding. Tryptophan fluorescence of pcSCP1a decreased in response to increased calcium, while tryptophan fluorescence of the pcSCP1b and pcSCP1c variants increased. We estimated calcium binding constants and Hill coefficients with two different equations: the standard Hill equation and a modified Hill equation that accounts for contributions from two different tryptophans. The approaches gave similar results. Steady-state calcium binding constants (Kd) ranged from 2.7±0.7×10(-8)M to 5.6±0.1×10(-7)M, consistent with previous work. Variants displayed significantly different apparent calcium affinities, which were decreased in the presence of magnesium. Calcium Kd was lowest for pcSCP1a and highest for pcSCP1c. Site-directed mutagenesis of pcSCP1c residues to the amino acids of pcSCP1b decreased the calcium Kd, identifying residues outside the EF-hand domains that contribute to calcium binding in crayfish SCP. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Spatial Analysis and Quantification of the Thermodynamic Driving Forces in Protein-Ligand Binding: Binding Site Variability

    PubMed Central

    Raman, E. Prabhu; MacKerell, Alexander D.

    2015-01-01

    The thermodynamic driving forces behind small molecule-protein binding are still not well understood, including the variability of those forces associated with different types of ligands in different binding pockets. To better understand these phenomena we calculate spatially resolved thermodynamic contributions of the different molecular degrees of freedom for the binding of propane and methanol to multiple pockets on the proteins Factor Xa and p38 MAP kinase. Binding thermodynamics are computed using a statistical thermodynamics based end-point method applied on a canonical ensemble comprising the protein-ligand complexes and the corresponding free states in an explicit solvent environment. Energetic and entropic contributions of water and ligand degrees of freedom computed from the configurational ensemble provides an unprecedented level of detail into the mechanisms of binding. Direct protein-ligand interaction energies play a significant role in both non-polar and polar binding, which is comparable to water reorganization energy. Loss of interactions with water upon binding strongly compensates these contributions leading to relatively small binding enthalpies. For both solutes, the entropy of water reorganization is found to favor binding in agreement with the classical view of the “hydrophobic effect”. Depending on the specifics of the binding pocket, both energy-entropy compensation and reinforcement mechanisms are observed. Notable is the ability to visualize the spatial distribution of the thermodynamic contributions to binding at atomic resolution showing significant differences in the thermodynamic contributions of water to the binding of propane versus methanol. PMID:25625202

  13. Abnormal expression and functional characteristics of cyclic adenosine monophosphate response element binding protein in postmortem brain of suicide subjects.

    PubMed

    Dwivedi, Yogesh; Rao, Jagadeesh Sridhara; Rizavi, Hooriyah S; Kotowski, Jacek; Conley, Robert R; Roberts, Rosalinda C; Tamminga, Carol A; Pandey, Ghanshyam N

    2003-03-01

    Cyclic adenosine monophosphate response element binding protein (CREB) is a transcription factor that, on phosphorylation by protein kinases, is activated, and in response, regulates the transcription of many neuronally expressed genes. In view of the recent observations that catalytic properties and/or expression of many kinases that mediate their physiological responses through the activation of CREB are altered in the postmortem brain of subjects who commit suicide (hereafter referred to as suicide subjects), we examined the status of CREB in suicidal behavior. These studies were performed in Brodmann area (BA) 9 and hippocampus obtained from 26 suicide subjects and 20 nonpsychiatric healthy control subjects. Messenger RNA levels of CREB and neuron-specific enolase were determined in total RNA by means of quantitative reverse transcriptase-polymerase chain reaction. Protein levels and the functional characteristics of CREB were determined in nuclear fractions by means of Western blot and cyclic adenosine monophosphate response element (CRE)-DNA binding activity, respectively. In the same nuclear fraction, we determined the catalytic activity of cyclic adenosine monophosphate-stimulated protein kinase A by means of enzymatic assay. We observed a significant reduction in messenger RNA and protein levels of CREB, CRE-DNA binding activity, and basal and cyclic adenosine monophosphate-stimulated protein kinase A activity in BA 9 and hippocampus of suicide subjects, without any change in messenger RNA levels of neuron-specific enolase in BA 9. Except for protein kinase A activity, changes in CREB expression and CRE-DNA binding activity were present in all suicide subjects, irrespective of diagnosis. These changes were unrelated to postmortem intervals, age, sex, or antidepressant treatment. Given the significance of CREB in mediating various physiological functions through gene transcription, our results of decreased expression and functional characteristics of CREB

  14. Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins.

    PubMed

    Chen, Eileen; Joseph, Simpson

    2015-07-01

    Translational control is a common mechanism used to regulate gene expression and occur in bacteria to mammals. Typically in translational control, an RNA-binding protein binds to a unique sequence in the mRNA to regulate protein synthesis by the ribosomes. Alternatively, a protein may bind to or modify a translation factor to globally regulate protein synthesis by the cell. Here, we review translational control by the fragile X mental retardation protein (FMRP), the absence of which causes the neurological disease, fragile X syndrome (FXS). Copyright © 2015 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  15. A mammalian germ cell-specific RNA-binding protein interacts with ubiquitously expressed proteins involved in splice site selection

    NASA Astrophysics Data System (ADS)

    Elliott, David J.; Bourgeois, Cyril F.; Klink, Albrecht; Stévenin, James; Cooke, Howard J.

    2000-05-01

    RNA-binding motif (RBM) genes are found on all mammalian Y chromosomes and are implicated in spermatogenesis. Within human germ cells, RBM protein shows a similar nuclear distribution to components of the pre-mRNA splicing machinery. To address the function of RBM, we have used protein-protein interaction assays to test for possible physical interactions between these proteins. We find that RBM protein directly interacts with members of the SR family of splicing factors and, in addition, strongly interacts with itself. We have mapped the protein domains responsible for mediating these interactions and expressed the mouse RBM interaction region as a bacterial fusion protein. This fusion protein can pull-down several functionally active SR protein species from cell extracts. Depletion and add-back experiments indicate that these SR proteins are the only splicing factors bound by RBM which are required for the splicing of a panel of pre-mRNAs. Our results suggest that RBM protein is an evolutionarily conserved mammalian splicing regulator which operates as a germ cell-specific cofactor for more ubiquitously expressed pre-mRNA splicing activators.

  16. Progesterone and Nestorone promote myelin regeneration in chronic demyelinating lesions of corpus callosum and cerebral cortex

    PubMed Central

    el-Etr, Martine; Rame, Marion; Boucher, Celine; Ghoumari, Abdel; Kumar, Narender; Liere, Philippe; Pianos, Antoine; Schumacher, Michael; Sitruk-Ware, Regine

    2014-01-01

    Multiple Sclerosis affects mainly women and consists in intermittent or chronic damages to the myelin sheaths, focal inflammation and axonal degeneration. Current therapies are limited to immunomodulators and anti-inflammatory drugs, but there is no efficient treatment for stimulating the endogenous capacity of myelin repair. Progesterone and synthetic progestins have been shown in animal models of demyelination to attenuate myelin loss, reduce clinical symptoms severity, modulate inflammatory responses and partially reverse the age-dependent decline in remyelination. Moreover, progesterone has been demonstrated to promote myelin formation in organotypic cultures of cerebellar slices. In the present study, we show that progesterone and the synthetic 19-nor-progesterone derivative Nestorone® promote the repair of severe chronic demyelinating lesions induced by feeding cuprizone to female mice for up to 12 weeks. Progesterone and Nestorone increase the density of NG2+ oligodendrocyte progenitor cells and CA II+ mature oligodendrocytes and enhance the formation of myelin basic protein (MBP)- and proteolipid protein (PLP)-immunoreactive myelin. However, while demyelination in response to cuprizone was less marked in corpus callosum than in cerebral cortex, remyelination appeared earlier in the former. The remyelinating effect of progesterone was progesterone receptor (PR)-dependent, as it was absent in PR knockout mice. Progesterone and Nestorone also decreased (but did not suppress) neuroinflammatory responses, specifically astrocyte and microglial cell activation. Therefore, some progestogens are promising therapeutic candidates for promoting the regeneration of myelin. PMID:25092805

  17. Progesterone and human cognition.

    PubMed

    Henderson, V W

    2018-06-01

    Progesterone is a neurosteroid and a neuroactive steroid, produced primarily by the corpus luteum and the placenta. In some animal models, progesterone affects cognitive performance, and its potential role in human cognition is especially germane to women. This role can be investigated through associations between peripheral concentrations of progesterone in blood or saliva and neuropsychological test results, through differences in cognitive profiles between women using menopausal hormone therapy with and without a progestogen, and through clinical trials. In naturally cycling reproductive-age women and pregnant women, there is no consistent relation between progesterone levels and cognition. In postmenopausal women within 6 years of menopause and not using hormone therapy, progesterone levels are positively associated with verbal memory and global cognition, but reported associations in older postmenopausal women are null. Some observational studies of postmenopausal women using hormone therapy raise concern of a small deleterious cognitive effect of progestogen (medroxyprogesterone acetate was most often reported in these studies), but this association may due to confounding factors. Small, short-term clinical trials of progesterone show no meaningful effect on cognition. The quality of evidence is low, but overall findings do not reveal consistent, clinically important effects of progesterone on cognitive function in women.

  18. 17-OH progesterone

    MedlinePlus

    17-hydroxyprogesterone; Progesterone - 17-OH ... A high level of 17-OH progesterone may be due to: Tumors of the adrenal gland Congenital adrenal hyperplasia (CAH) In infants with CAH, the 17-OHP level ranges ...

  19. Progesterone alters biliary flow dynamics.

    PubMed Central

    Tierney, S; Nakeeb, A; Wong, O; Lipsett, P A; Sostre, S; Pitt, H A; Lillemoe, K D

    1999-01-01

    OBJECTIVE: To test the hypothesis that progesterone alters sphincter of Oddi and gallbladder function and, therefore, bile flow dynamics. SUMMARY BACKGROUND DATA: Although the effects of progesterone on the biliary tract have been implicated in the increased incidence of gallstones among women, the specific effects of prolonged elevation of progesterone levels, such as occurs with contraceptive progesterone implants and during pregnancy, on the sphincter of Oddi and biliary flow dynamics are still incompletely understood. METHODS: Adult female prairie dogs were randomly assigned to receive subcutaneous implants containing either progesterone or inactive pellet matrix only. Hepatic bile partitioning and gallbladder emptying were determined 14 days later using 99mTc-Mebrofenin cholescintigraphy. RESULTS: Significantly less hepatic bile partitioned into the gallbladder in progesterone-treated than in control animals. The gallbladder ejection fraction was significantly reduced from 73+/-6% in controls to 59+/-3% in the progesterone-treated animals. The rate of gallbladder emptying was significantly reduced from 3.6+/-0.3%/minute to 2.9+/-0.1%/minute. CONCLUSIONS: Progesterone administered as subcutaneous implants alters partitioning of hepatic bile between gallbladder and small intestine and, therefore, gallbladder filling. Progesterone also significantly impairs gallbladder emptying in response to cholecystokinin. The effects of progesterone on the sphincter of Oddi and the gallbladder may contribute to the greater prevalence of gallstones and biliary motility disorders among women. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:10024101

  20. A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Il Hwan; Pham, Van; Jablonka, Willy

    Juvenile hormone (JH) is a key regulator of insect development and reproduction. In adult mosquitoes, it is essential for maturation of the ovary and normal male reproductive behavior, but how JH distribution and activity is regulated after secretion is unclear. Here, we report a new type of specific JH-binding protein, given the name mosquito juvenile hormone-binding protein (mJHBP), which circulates in the hemolymph of pupal and adult Aedes aegypti males and females. mJHBP is a member of the odorant-binding protein (OBP) family, and orthologs are present in the genomes of Aedes, Culex, and Anopheles mosquito species. Using isothermal titration calorimetry,more » we show that mJHBP specifically binds JH II and JH III but not eicosanoids or JH derivatives. mJHBP was crystallized in the presence of JH III and found to have a double OBP domain structure reminiscent of salivary “long” D7 proteins of mosquitoes. We observed that a single JH III molecule is contained in the N-terminal domain binding pocket that is closed in an apparent conformational change by a C-terminal domain-derived α-helix. The electron density for the ligand indicated a high occupancy of the natural 10R enantiomer of JH III. Of note, mJHBP is structurally unrelated to hemolymph JHBP from lepidopteran insects. A low level of expression of mJHBP in Ae. aegypti larvae suggests that it is primarily active during the adult stage where it could potentially influence the effects of JH on egg development, mating behavior, feeding, or other processes.« less

  1. A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone.

    PubMed

    Kim, Il Hwan; Pham, Van; Jablonka, Willy; Goodman, Walter G; Ribeiro, José M C; Andersen, John F

    2017-09-15

    Juvenile hormone (JH) is a key regulator of insect development and reproduction. In adult mosquitoes, it is essential for maturation of the ovary and normal male reproductive behavior, but how JH distribution and activity is regulated after secretion is unclear. Here, we report a new type of specific JH-binding protein, given the name mosquito juvenile hormone-binding protein (mJHBP), which circulates in the hemolymph of pupal and adult Aedes aegypti males and females. mJHBP is a member of the odorant-binding protein (OBP) family, and orthologs are present in the genomes of Aedes , Culex , and Anopheles mosquito species. Using isothermal titration calorimetry, we show that mJHBP specifically binds JH II and JH III but not eicosanoids or JH derivatives. mJHBP was crystallized in the presence of JH III and found to have a double OBP domain structure reminiscent of salivary "long" D7 proteins of mosquitoes. We observed that a single JH III molecule is contained in the N-terminal domain binding pocket that is closed in an apparent conformational change by a C-terminal domain-derived α-helix. The electron density for the ligand indicated a high occupancy of the natural 10 R enantiomer of JH III. Of note, mJHBP is structurally unrelated to hemolymph JHBP from lepidopteran insects. A low level of expression of mJHBP in Ae. aegypti larvae suggests that it is primarily active during the adult stage where it could potentially influence the effects of JH on egg development, mating behavior, feeding, or other processes.

  2. Odorant-Binding Protein: Localization to Nasal Glands and Secretions

    NASA Astrophysics Data System (ADS)

    Pevsner, Jonathan; Sklar, Pamela B.; Snyder, Solomon H.

    1986-07-01

    An odorant-binding protein (OBP) was isolated from bovine olfactory and respiratory mucosa. We have produced polyclonal antisera to this protein and report its immunohistochemical localization to mucus-secreting glands of the olfactory and respiratory mucosa. Although OBP was originally isolated as a pyrazine binding protein, both rat and bovine OBP also bind the odorants [3H]methyldihydrojasmonate and 3,7-dimethyl-octan-1-ol as well as 2-isobutyl-3-[3H]methoxypyrazine. We detect substantial odorant-binding activity attributable to OBP in secreted rat nasal mucus and tears but not in saliva, suggesting a role for OBP in transporting or concentrating odorants.

  3. Coupled binding-bending-folding: The complex conformational dynamics of protein-DNA binding studied by atomistic molecular dynamics simulations.

    PubMed

    van der Vaart, Arjan

    2015-05-01

    Protein-DNA binding often involves dramatic conformational changes such as protein folding and DNA bending. While thermodynamic aspects of this behavior are understood, and its biological function is often known, the mechanism by which the conformational changes occur is generally unclear. By providing detailed structural and energetic data, molecular dynamics simulations have been helpful in elucidating and rationalizing protein-DNA binding. This review will summarize recent atomistic molecular dynamics simulations of the conformational dynamics of DNA and protein-DNA binding. A brief overview of recent developments in DNA force fields is given as well. Simulations have been crucial in rationalizing the intrinsic flexibility of DNA, and have been instrumental in identifying the sequence of binding events, the triggers for the conformational motion, and the mechanism of binding for a number of important DNA-binding proteins. Molecular dynamics simulations are an important tool for understanding the complex binding behavior of DNA-binding proteins. With recent advances in force fields and rapid increases in simulation time scales, simulations will become even more important for future studies. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014. Published by Elsevier B.V.

  4. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    PubMed

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  5. Progesterone Reduces Secondary Damage, Preserves White Matter, and Improves Locomotor Outcome after Spinal Cord Contusion

    PubMed Central

    Garcia-Ovejero, Daniel; González, Susana; Paniagua-Torija, Beatriz; Lima, Analía; Molina-Holgado, Eduardo; De Nicola, Alejandro F.

    2014-01-01

    Abstract Progesterone is an anti-inflammatory and promyelinating agent after spinal cord injury, but its effectiveness on functional recovery is still controversial. In the current study, we tested the effects of chronic progesterone administration on tissue preservation and functional recovery in a clinically relevant model of spinal cord lesion (thoracic contusion). Using magnetic resonance imaging, we observed that progesterone reduced both volume and rostrocaudal extension of the lesion at 60 days post-injury. In addition, progesterone increased the number of total mature oligodendrocytes, myelin basic protein immunoreactivity, and the number of axonal profiles at the epicenter of the lesion. Further, progesterone treatment significantly improved motor outcome as assessed using the Basso-Bresnahan-Beattie scale for locomotion and CatWalk gait analysis. These data suggest that progesterone could be considered a promising therapeutical candidate for spinal cord injury. PMID:24460450

  6. Characterizing protein domain associations by Small-molecule ligand binding

    PubMed Central

    Li, Qingliang; Cheng, Tiejun; Wang, Yanli; Bryant, Stephen H.

    2012-01-01

    Background Protein domains are evolutionarily conserved building blocks for protein structure and function, which are conventionally identified based on protein sequence or structure similarity. Small molecule binding domains are of great importance for the recognition of small molecules in biological systems and drug development. Many small molecules, including drugs, have been increasingly identified to bind to multiple targets, leading to promiscuous interactions with protein domains. Thus, a large scale characterization of the protein domains and their associations with respect to small-molecule binding is of particular interest to system biology research, drug target identification, as well as drug repurposing. Methods We compiled a collection of 13,822 physical interactions of small molecules and protein domains derived from the Protein Data Bank (PDB) structures. Based on the chemical similarity of these small molecules, we characterized pairwise associations of the protein domains and further investigated their global associations from a network point of view. Results We found that protein domains, despite lack of similarity in sequence and structure, were comprehensively associated through binding the same or similar small-molecule ligands. Moreover, we identified modules in the domain network that consisted of closely related protein domains by sharing similar biochemical mechanisms, being involved in relevant biological pathways, or being regulated by the same cognate cofactors. Conclusions A novel protein domain relationship was identified in the context of small-molecule binding, which is complementary to those identified by traditional sequence-based or structure-based approaches. The protein domain network constructed in the present study provides a novel perspective for chemogenomic study and network pharmacology, as well as target identification for drug repurposing. PMID:23745168

  7. Protein F, a fibronectin-binding protein, is an adhesin of the group A streptococcus Streptococcus pyogenes.

    PubMed

    Hanski, E; Caparon, M

    1992-07-01

    Binding to fibronectin has been suggested to play an important role in adherence of the group A streptococcus Streptococcus pyrogenes to host epithelial cells; however, the identity of the streptococcal fibronectin receptor has been elusive. Here we demonstrate that the fibronectin-binding property of S. pyogenes is mediated by protein F, a bacterial surface protein that binds fibronectin at high affinity. The gene encoding protein F (prtF) produced a functional fibronectin-binding protein in Escherichia coli. Insertional mutagenesis of the cloned gene generated a mutation that resulted in the loss of fibronectin-binding activity. When this mutation was introduced into the S. pyrogenes chromosome by homologous recombination with the wild-type allele, the resulting strains no longer produced protein F and lost their ability to bind fibronectin. The mutation could be complemented by prtF introduced on a plasmid. Mutants lacking protein F had a much lower capacity to adhere to respiratory epithelial cells. These results demonstrate that protein F is an important adhesin of S. pyogenes.

  8. Phage display selection of peptides that target calcium-binding proteins.

    PubMed

    Vetter, Stefan W

    2013-01-01

    Phage display allows to rapidly identify peptide sequences with binding affinity towards target proteins, for example, calcium-binding proteins (CBPs). Phage technology allows screening of 10(9) or more independent peptide sequences and can identify CBP binding peptides within 2 weeks. Adjusting of screening conditions allows selecting CBPs binding peptides that are either calcium-dependent or independent. Obtained peptide sequences can be used to identify CBP target proteins based on sequence homology or to quickly obtain peptide-based CBP inhibitors to modulate CBP-target interactions. The protocol described here uses a commercially available phage display library, in which random 12-mer peptides are displayed on filamentous M13 phages. The library was screened against the calcium-binding protein S100B.

  9. Simulation of Reversible Protein–Protein Binding and Calculation of Binding Free Energies Using Perturbed Distance Restraints

    PubMed Central

    2017-01-01

    Virtually all biological processes depend on the interaction between proteins at some point. The correct prediction of biomolecular binding free-energies has many interesting applications in both basic and applied pharmaceutical research. While recent advances in the field of molecular dynamics (MD) simulations have proven the feasibility of the calculation of protein–protein binding free energies, the large conformational freedom of proteins and complex free energy landscapes of binding processes make such calculations a difficult task. Moreover, convergence and reversibility of resulting free-energy values remain poorly described. In this work, an easy-to-use, yet robust approach for the calculation of standard-state protein–protein binding free energies using perturbed distance restraints is described. In the binding process the conformations of the proteins were restrained, as suggested earlier. Two approaches to avoid end-state problems upon release of the conformational restraints were compared. The method was evaluated by practical application to a small model complex of ubiquitin and the very flexible ubiquitin-binding domain of human DNA polymerase ι (UBM2). All computed free energy differences were closely monitored for convergence, and the calculated binding free energies had a mean unsigned deviation of only 1.4 or 2.5 kJ·mol–1 from experimental values. Statistical error estimates were in the order of thermal noise. We conclude that the presented method has promising potential for broad applicability to quantitatively describe protein–protein and various other kinds of complex formation. PMID:28898077

  10. UO₂²⁺ uptake by proteins: understanding the binding features of the super uranyl binding protein and design of a protein with higher affinity.

    PubMed

    Odoh, Samuel O; Bondarevsky, Gary D; Karpus, Jason; Cui, Qiang; He, Chuan; Spezia, Riccardo; Gagliardi, Laura

    2014-12-17

    The capture of uranyl, UO2(2+), by a recently engineered protein (Zhou et al. Nat. Chem. 2014, 6, 236) with high selectivity and femtomolar sensitivity has been examined by a combination of density functional theory, molecular dynamics, and free-energy simulations. It was found that UO2(2+) is coordinated to five carboxylate oxygen atoms from four amino acid residues of the super uranyl binding protein (SUP). A network of hydrogen bonds between the amino acid residues coordinated to UO2(2+) and residues in its second coordination sphere also affects the protein's uranyl binding affinity. Free-energy simulations show how UO2(2+) capture is governed by the nature of the amino acid residues in the binding site, the integrity and strength of the second-sphere hydrogen bond network, and the number of water molecules in the first coordination sphere. Alteration of any of these three factors through mutations generally results in a reduction of the binding free energy of UO2(2+) to the aqueous protein as well as of the difference between the binding free energies of UO2(2+) and other ions (Ca(2+), Cu(2+), Mg(2+), and Zn(2+)), a proxy for the protein's selectivity over these ions. The results of our free-energy simulations confirmed the previously reported experimental results and allowed us to discover a mutant of SUP, specifically the GLU64ASP mutant, that not only binds UO2(2+) more strongly than SUP but that is also more selective for UO2(2+) over other ions. The predictions from the computations were confirmed experimentally.

  11. Progesterone signaling mediated through progesterone receptor membrane component-1 in ovarian cells with special emphasis on ovarian cancer.

    PubMed

    Peluso, John J

    2011-08-01

    Various ovarian cell types including granulosa cells and ovarian surface epithelial cells express the progesterone (P4) binding protein, progesterone receptor membrane component-1 (PGRMC1). PGRMC1 is also expressed in ovarian tumors. PGRMC1 plays an essential role in promoting the survival of both normal and cancerous ovarian cell in vitro. Given the clinical significance of factors that regulate the viability of ovarian cancer, this review will focus on the role of PGRMC1 in ovarian cancer, while drawing insights into the mechanism of PGRMC1's action from cell lines derived from healthy ovaries as well as ovarian tumors. Studies using PGRMC1siRNA demonstrated that P4's ability to inhibit ovarian cells from undergoing apoptosis in vitro is dependent on PGRMC1. To confirm the importance of PGRMC1, the ability of PGRMC1-deplete ovarian cancer cell lines to form tumors in intact nude mice was assessed. Compared to PGRMC1-expressing ovarian cancer cells, PGRMC1-deplete ovarian cancer cells formed tumors in fewer mice (80% compared to 100% for controls). Moreover, the number of tumors derived from PGRMC1-deplete ovarian cancer cells was 50% of that observed in controls. Finally, the tumors that formed from PGRMC1-deplete ovarian cancer cells were about a fourth the size of tumors derived from ovarian cancer cells with normal levels of PGRMC1. One reason for PGRMC1-deplete tumors being smaller is that they had a poorly developed microvasculature system. How PGRMC1 regulates cell viability and in turn tumor growth is not known but part of the mechanism likely involves the regulation of genes that promote cell survival and inhibit apoptosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Predicting protein-binding regions in RNA using nucleotide profiles and compositions.

    PubMed

    Choi, Daesik; Park, Byungkyu; Chae, Hanju; Lee, Wook; Han, Kyungsook

    2017-03-14

    Motivated by the increased amount of data on protein-RNA interactions and the availability of complete genome sequences of several organisms, many computational methods have been proposed to predict binding sites in protein-RNA interactions. However, most computational methods are limited to finding RNA-binding sites in proteins instead of protein-binding sites in RNAs. Predicting protein-binding sites in RNA is more challenging than predicting RNA-binding sites in proteins. Recent computational methods for finding protein-binding sites in RNAs have several drawbacks for practical use. We developed a new support vector machine (SVM) model for predicting protein-binding regions in mRNA sequences. The model uses sequence profiles constructed from log-odds scores of mono- and di-nucleotides and nucleotide compositions. The model was evaluated by standard 10-fold cross validation, leave-one-protein-out (LOPO) cross validation and independent testing. Since actual mRNA sequences have more non-binding regions than protein-binding regions, we tested the model on several datasets with different ratios of protein-binding regions to non-binding regions. The best performance of the model was obtained in a balanced dataset of positive and negative instances. 10-fold cross validation with a balanced dataset achieved a sensitivity of 91.6%, a specificity of 92.4%, an accuracy of 92.0%, a positive predictive value (PPV) of 91.7%, a negative predictive value (NPV) of 92.3% and a Matthews correlation coefficient (MCC) of 0.840. LOPO cross validation showed a lower performance than the 10-fold cross validation, but the performance remains high (87.6% accuracy and 0.752 MCC). In testing the model on independent datasets, it achieved an accuracy of 82.2% and an MCC of 0.656. Testing of our model and other state-of-the-art methods on a same dataset showed that our model is better than the others. Sequence profiles of log-odds scores of mono- and di-nucleotides were much more powerful

  13. Probing binding hot spots at protein-RNA recognition sites.

    PubMed

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-29

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Grafting odorant binding proteins on diamond bio-MEMS.

    PubMed

    Manai, R; Scorsone, E; Rousseau, L; Ghassemi, F; Possas Abreu, M; Lissorgues, G; Tremillon, N; Ginisty, H; Arnault, J-C; Tuccori, E; Bernabei, M; Cali, K; Persaud, K C; Bergonzo, P

    2014-10-15

    Odorant binding proteins (OBPs) are small soluble proteins found in olfactory systems that are capable of binding several types of odorant molecules. Cantilevers based on polycrystalline diamond surfaces are very promising as chemical transducers. Here two methods were investigated for chemically grafting porcine OBPs on polycrystalline diamond surfaces for biosensor development. The first approach resulted in random orientation of the immobilized proteins over the surface. The second approach based on complexing a histidine-tag located on the protein with nickel allowed control of the proteins' orientation. Evidence confirming protein grafting was obtained using electrochemical impedance spectroscopy, fluorescence imaging and X-ray photoelectron spectroscopy. The chemical sensing performances of these OBP modified transducers were assessed. The second grafting method led to typically 20% more sensitive sensors, as a result of better access of ligands to the proteins active sites and also perhaps a better yield of protein immobilization. This new grafting method appears to be highly promising for further investigation of the ligand binding properties of OBPs in general and for the development of arrays of non-specific biosensors for artificial olfaction applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A Single Rainbow Trout Cobalamin-binding Protein Stands in for Three Human Binders

    PubMed Central

    Greibe, Eva; Fedosov, Sergey; Sorensen, Boe S.; Højrup, Peter; Poulsen, Steen S.; Nexo, Ebba

    2012-01-01

    Cobalamin uptake and transport in mammals are mediated by three cobalamin-binding proteins: haptocorrin, intrinsic factor, and transcobalamin. The nature of cobalamin-binding proteins in lower vertebrates remains to be elucidated. The aim of this study was to characterize the cobalamin-binding proteins of the rainbow trout (Oncorhynchus mykiss) and to compare their properties with those of the three human cobalamin-binding proteins. High cobalamin-binding capacity was found in trout stomach (210 pmol/g), roe (400 pmol/g), roe fluid (390 nmol/liter), and plasma (2500 nmol/liter). In all cases, it appeared to be the same protein based on analysis of partial sequences and immunological responses. The trout cobalamin-binding protein was purified from roe fluid, sequenced, and further characterized. Like haptocorrin, the trout cobalamin-binding protein was stable at low pH and had a high binding affinity for the cobalamin analog cobinamide. Like haptocorrin and transcobalamin, the trout cobalamin-binding protein was present in plasma and recognized ligands with altered nucleotide moiety. Like intrinsic factors, the trout cobalamin-binding protein was present in the stomach and resisted degradation by trypsin and chymotrypsin. It also resembled intrinsic factor in the composition of conserved residues in the primary cobalamin-binding site in the C terminus. The trout cobalamin-binding protein was glycosylated and displayed spectral properties comparable with those of haptocorrin and intrinsic factor. In conclusion, only one soluble cobalamin-binding protein was identified in the rainbow trout, a protein that structurally behaves like an intermediate between the three human cobalamin-binding proteins. PMID:22872637

  16. The pathogen-related yeast protein Pry1, a member of the CAP protein superfamily, is a fatty acid-binding protein

    PubMed Central

    Darwiche, Rabih; Mène-Saffrané, Laurent; Gfeller, David; Asojo, Oluwatoyin A.; Schneiter, Roger

    2017-01-01

    Members of the CAP superfamily (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins), also known as SCP superfamily (sperm-coating proteins), have been implicated in many physiological processes, including immune defenses, venom toxicity, and sperm maturation. Their mode of action, however, remains poorly understood. Three proteins of the CAP superfamily, Pry1, -2, and -3 (pathogen related in yeast), are encoded in the Saccharomyces cerevisiae genome. We have shown previously that Pry1 binds cholesterol in vitro and that Pry function is required for sterol secretion in yeast cells, indicating that members of this superfamily may generally bind sterols or related small hydrophobic compounds. On the other hand, tablysin-15, a CAP protein from the horsefly Tabanus yao, has been shown to bind leukotrienes and free fatty acids in vitro. Therefore, here we assessed whether the yeast Pry1 protein binds fatty acids. Computational modeling and site-directed mutagenesis indicated that the mode of fatty acid binding is conserved between tablysin-15 and Pry1. Pry1 bound fatty acids with micromolar affinity in vitro, and its function was essential for fatty acid export in cells lacking the acyl-CoA synthetases Faa1 and Faa4. Fatty acid binding of Pry1 is independent of its capacity to bind sterols, and the two sterol- and fatty acid-binding sites are nonoverlapping. These results indicate that some CAP family members, such as Pry1, can bind different lipids, particularly sterols and fatty acids, at distinct binding sites, suggesting that the CAP domain may serve as a stable, secreted protein domain that can accommodate multiple ligand-binding sites. PMID:28365570

  17. Relationship between Hot Spot Residues and Ligand Binding Hot Spots in Protein-Protein Interfaces

    PubMed Central

    Zerbe, Brandon S.; Hall, David R.

    2013-01-01

    In the context of protein-protein interactions, the term “hot spot” refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening. PMID:22770357

  18. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.

    PubMed

    Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima

    2012-08-27

    In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.

  19. Assessing the potential of atomistic molecular dynamics simulations to probe reversible protein-protein recognition and binding

    PubMed Central

    Abriata, Luciano A.; Dal Peraro, Matteo

    2015-01-01

    Protein-protein recognition and binding are governed by diffusion, noncovalent forces and conformational flexibility, entangled in a way that only molecular dynamics simulations can dissect at high resolution. Here we exploited ubiquitin’s noncovalent dimerization equilibrium to assess the potential of atomistic simulations to reproduce reversible protein-protein binding, by running submicrosecond simulations of systems with multiple copies of the protein at millimolar concentrations. The simulations essentially fail because they lead to aggregates, yet they reproduce some specificity in the binding interfaces as observed in known covalent and noncovalent ubiquitin dimers. Following similar observations in literature we hint at electrostatics and water descriptions as the main liable force field elements, and propose that their optimization should consider observables relevant to multi-protein systems and unfolded proteins. Within limitations, analysis of binding events suggests salient features of protein-protein recognition and binding, to be retested with improved force fields. Among them, that specific configurations of relative direction and orientation seem to trigger fast binding of two molecules, even over 50 Å distances; that conformational selection can take place within surface-to-surface distances of 10 to 40 Å i.e. well before actual intermolecular contact; and that establishment of contacts between molecules further locks their conformations and relative orientations. PMID:26023027

  20. Immunologic analysis of human breast cancer progesterone receptors. 1. Immunonaffinity purification of transformed receptors and production of monoclonal antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estes, P.A.; Suba, E.J.; Lawler-Heavner, J.

    1987-09-22

    A monoclonal antibody (MAb), designated PR-6, produced against chick oviduct progesterone receptors cross-reacts with the M/sub r/ 120,000 human B receptors. An immunomatrix prepared with PR-6 was used to purify progesterone receptors (PR) from T47D human breast cancer cells. Single-step immunoaffinity chromatography results in enrichment of B receptors (identified by immunoblot with PR-6 and by photoaffinity labeling with (/sup 3/H)promegestone) to a specific activity of 1915 pmol/mg of protein (or 23% purity) and with 27% yield. Purity and yields as judged by gel electrophoresis and densitometric scanning of the B protein were approximately 1.7-fold higher due to partial loss inmore » hormone binding activity at the elution step. B receptors purified under these conditions are transformed and biologically active. They were maintained as undergraded 120-kDa doublets and retained both hormone and DNA binding activities. These purified B receptors were used as immunogen for production of four monoclonal antibodies against human PR. Three of the MAbs, designated as B-30 (IgG/sub 1/), B-64 (IgG/sub 1/), and B-11 (IgM), are specific for B receptors. The fourth MAb, A/B-52 (IgG/sub 1/), reacts with both A and B receptors. The IgG MAbs are monospecific for human PR since they recognize and absorb native receptor-hormone complexes, displace the sedimentation of 4S receptors on salt containing sucrose gradients, and, by immunoblot assay of crude T47D cytosol, react only with receptor polypeptides. Although mice were injected with B receptors only, production of A/B-52 which recognized both A and B receptors provides evidence that these two proteins share regions of structural homology.« less

  1. Competition between Ski and CREB-binding protein for binding to Smad proteins in transforming growth factor-beta signaling.

    PubMed

    Chen, Weijun; Lam, Suvana S; Srinath, Hema; Schiffer, Celia A; Royer, William E; Lin, Kai

    2007-04-13

    The family of Smad proteins mediates transforming growth factor-beta (TGF-beta) signaling in cell growth and differentiation. Smads repress or activate TGF-beta signaling by interacting with corepressors (e.g. Ski) or coactivators (e.g. CREB-binding protein (CBP)), respectively. Specifically, Ski has been shown to interfere with the interaction between Smad3 and CBP. However, it is unclear whether Ski competes with CBP for binding to Smads and whether they can interact with Smad3 at the same binding surface on Smad3. We investigated the interactions among purified constructs of Smad, Ski, and CBP in vitro by size-exclusion chromatography, isothermal titration calorimetry, and mutational studies. Here, we show that Ski-(16-192) interacted directly with a homotrimer of receptor-regulated Smad protein (R-Smad), e.g. Smad2 or Smad3, to form a hexamer; Ski-(16-192) interacted with an R-Smad.Smad4 heterotrimer to form a pentamer. CBP-(1941-1992) was also found to interact directly with an R-Smad homotrimer to form a hexamer and with an R-Smad.Smad4 heterotrimer to form a pentamer. Moreover, these domains of Ski and CBP competed with each other for binding to Smad3. Our mutational studies revealed that domains of Ski and CBP interacted with Smad3 at a portion of the binding surface of the Smad anchor for receptor activation. Our results suggest that Ski negatively regulates TGF-beta signaling by replacing CBP in R-Smad complexes. Our working model suggests that Smad protein activity is delicately balanced by Ski and CBP in the TGF-beta pathway.

  2. CCAAT/enhancer-binding protein delta activates insulin-like growth factor-I gene transcription in osteoblasts. Identification of a novel cyclic AMP signaling pathway in bone

    NASA Technical Reports Server (NTRS)

    Umayahara, Y.; Ji, C.; Centrella, M.; Rotwein, P.; McCarthy, T. L.

    1997-01-01

    Insulin-like growth factor-I (IGF-I) plays a key role in skeletal growth by stimulating bone cell replication and differentiation. We previously showed that prostaglandin E2 (PGE2) and other cAMP-activating agents enhanced IGF-I gene transcription in cultured primary rat osteoblasts through promoter 1, the major IGF-I promoter, and identified a short segment of the promoter, termed HS3D, that was essential for hormonal regulation of IGF-I gene expression. We now demonstrate that CCAAT/enhancer-binding protein (C/EBP) delta is a major component of a PGE2-stimulated DNA-protein complex involving HS3D and find that C/EBPdelta transactivates IGF-I promoter 1 through this site. Competition gel shift studies first indicated that a core C/EBP half-site (GCAAT) was required for binding of a labeled HS3D oligomer to osteoblast nuclear proteins. Southwestern blotting and UV-cross-linking studies showed that the HS3D probe recognized a approximately 35-kDa nuclear protein, and antibody supershift assays indicated that C/EBPdelta comprised most of the PGE2-activated gel-shifted complex. C/EBPdelta was detected by Western immunoblotting in osteoblast nuclear extracts after treatment of cells with PGE2. An HS3D oligonucleotide competed effectively with a high affinity C/EBP site from the rat albumin gene for binding to osteoblast nuclear proteins. Co-transfection of osteoblast cell cultures with a C/EBPdelta expression plasmid enhanced basal and PGE2-activated IGF-I promoter 1-luciferase activity but did not stimulate a reporter gene lacking an HS3D site. By contrast, an expression plasmid for the related protein, C/EBPbeta, did not alter basal IGF-I gene activity but did increase the response to PGE2. In osteoblasts and in COS-7 cells, C/EBPdelta, but not C/EBPbeta, transactivated a reporter gene containing four tandem copies of HS3D fused to a minimal promoter; neither transcription factor stimulated a gene with four copies of an HS3D mutant that was unable to bind osteoblast

  3. Elucidation of Motifs in Ribosomal Protein S9 That Mediate Its Nucleolar Localization and Binding to NPM1/Nucleophosmin

    PubMed Central

    Lindström, Mikael S.

    2012-01-01

    Biogenesis of eukaryotic ribosomes occurs mainly in a specific subnuclear compartment, the nucleolus, and involves the coordinated assembly of ribosomal RNA and ribosomal proteins. Identification of amino acid sequences mediating nucleolar localization of ribosomal proteins may provide important clues to understand the early steps in ribosome biogenesis. Human ribosomal protein S9 (RPS9), known in prokaryotes as RPS4, plays a critical role in ribosome biogenesis and directly binds to ribosomal RNA. RPS9 is targeted to the nucleolus but the regions in the protein that determine its localization remains unknown. Cellular expression of RPS9 deletion mutants revealed that it has three regions capable of driving nuclear localization of a fused enhanced green fluorescent protein (EGFP). The first region was mapped to the RPS9 N-terminus while the second one was located in the proteins C-terminus. The central and third region in RPS9 also behaved as a strong nucleolar localization signal and was hence sufficient to cause accumulation of EGFP in the nucleolus. RPS9 was previously shown to interact with the abundant nucleolar chaperone NPM1 (nucleophosmin). Evaluating different RPS9 fragments for their ability to bind NPM1 indicated that there are two binding sites for NPM1 on RPS9. Enforced expression of NPM1 resulted in nucleolar accumulation of a predominantly nucleoplasmic RPS9 mutant. Moreover, it was found that expression of a subset of RPS9 deletion mutants resulted in altered nucleolar morphology as evidenced by changes in the localization patterns of NPM1, fibrillarin and the silver stained nucleolar organizer regions. In conclusion, RPS9 has three regions that each are competent for nuclear localization, but only the central region acted as a potent nucleolar localization signal. Interestingly, the RPS9 nucleolar localization signal is residing in a highly conserved domain corresponding to a ribosomal RNA binding site. PMID:23285058

  4. Selenoprotein W enhances skeletal muscle differentiation by inhibiting TAZ binding to 14-3-3 protein.

    PubMed

    Jeon, Yeong Ha; Park, Yong Hwan; Lee, Jea Hwang; Hong, Jeong-Ho; Kim, Ick Young

    2014-07-01

    Selenoprotein W (SelW) is expressed in various tissues, particularly in skeletal muscle. We have previously reported that SelW is up-regulated during C2C12 skeletal muscle differentiation and inhibits binding of 14-3-3 to its target proteins. 14-3-3 reduces myogenic differentiation by inhibiting nuclear translocation of transcriptional co-activator with PDZ-binding motif (TAZ). Phosphorylation of TAZ at Ser89 is required for binding to 14-3-3, leading to cytoplasmic retention of TAZ and a delay in myogenic differentiation. Here, we show that myogenic differentiation was delayed in SelW-knockdown C2C12 cells. Down-regulation of SelW also increased TAZ binding to 14-3-3, which eventually resulted in decreasing translocation of TAZ to the nucleus. However, phosphorylation of TAZ at Ser89 was not affected. Although phosphorylation of TAZ at Ser89 was sustained by the phosphatase inhibitor okadaic acid, nuclear translocation of TAZ was increased by ectopic expression of SelW. This result was due to decreased binding of TAZ to 14-3-3. We also found that the interaction between TAZ and MyoD was increased by ectopic expression of SelW. Taken together, these findings strongly demonstrate that SelW enhances C2C12 cell differentiation by inhibiting TAZ binding to 14-3-3. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Progesterone treatment modulates mRNA OF neurosteroidogenic enzymes in a murine model of multiple sclerosis.

    PubMed

    Garay, Laura; Gonzalez Giqueaux, Paula; Guennoun, Rachida; Schumacher, Michael; Gonzalez Deniselle, Maria Claudia; De Nicola, Alejandro F

    2017-01-01

    Previous studies of experimental autoimmune encephalomyelitis (EAE) have shown that progesterone decreases inflammatory cell infiltration and proinflammatory factors, increases myelination and attenuates clinical grade of EAE mice. To elucidate potential mediators of these effects, we analyzed the mRNA expression of neurosteroidogenic enzymes in the spinal cord, in view of the protective role of steroids in EAE. We also analyzed mitochondrial morphology and dynamics (fusion and fission proteins), considering the role of mitochondria in neurosteroidogenesis. EAE was induced in C57Bl6 mice using MOG 40-54 and killed on day 16 after induction. Using qPCR, we found in steroid-untreated EAE mice decreased mRNAs for the steroidogenic acute regulatory protein (Star), voltage-dependent anion channel (VDAC), P450scc (cholesterol side-chain cleavage), 5α-reductase, 3α-hydroxysteroid dehydrogenase (3α-HSD) and aromatase, whereas levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) showed a large intra-group variance. We also found increased mRNA expression of 18Kd translocator protein (TSPO), which likely resulted from the reactive microgliosis in this model. EAE mice also showed pathological mitochondrial morphology and reduced expression of fission and fusion protein mRNAs. Most importantly, pretreatment with progesterone a week before EAE induction increased Star,VDAC, P450scc, 5α-reductase type I, 3α-HSD and aromatase mRNAs and did not modify 3β-HSD. TSPO mRNA was decreased, consequent with the inhibition of microgliosis. Mitochondrial morphology was improved and fission/fusion protein mRNAs were enhanced by progesterone treatment. Furthermore, progesterone protective effects on mitochondrial and endoplasmic reticulum may allow the recovery of neurosteroidogenesis. In this way, endogenously synthesized neurosteroids may reinforce the beneficial effects of exogenous progesterone previously shown in MS mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Nuclear Protein Sam68 Interacts with the Enterovirus 71 Internal Ribosome Entry Site and Positively Regulates Viral Protein Translation.

    PubMed

    Zhang, Hua; Song, Lei; Cong, Haolong; Tien, Po

    2015-10-01

    Enterovirus 71 (EV71) recruits various cellular factors to assist in the replication and translation of its genome. Identification of the host factors involved in the EV71 life cycle not only will enable a better understanding of the infection mechanism but also has the potential to be of use in the development of antiviral therapeutics. In this study, we demonstrated that the cellular factor 68-kDa Src-associated protein in mitosis (Sam68) acts as an internal ribosome entry site (IRES) trans-acting factor (ITAF) that binds specifically to the EV71 5' untranslated region (5'UTR). Interaction sites in both the viral IRES (stem-loops IV and V) and the heterogeneous nuclear ribonucleoprotein K homology (KH) domain of Sam68 protein were further mapped using an electrophoretic mobility shift assay (EMSA) and biotin RNA pulldown assay. More importantly, dual-luciferase (firefly) reporter analysis suggested that overexpression of Sam68 positively regulated IRES-dependent translation of virus proteins. In contrast, both IRES activity and viral protein translation significantly decreased in Sam68 knockdown cells compared with the negative-control cells treated with short hairpin RNA (shRNA). However, downregulation of Sam68 did not have a significant inhibitory effect on the accumulation of the EV71 genome. Moreover, Sam68 was redistributed from the nucleus to the cytoplasm and interacts with cellular factors, such as poly(rC)-binding protein 2 (PCBP2) and poly(A)-binding protein (PABP), during EV71 infection. The cytoplasmic relocalization of Sam68 in EV71-infected cells may be involved in the enhancement of EV71 IRES-mediated translation. Since Sam68 is known to be a RNA-binding protein, these results provide direct evidence that Sam68 is a novel ITAF that interacts with EV71 IRES and positively regulates viral protein translation. The nuclear protein Sam68 is found as an additional new host factor that interacts with the EV71 IRES during infection and could potentially

  7. Identification of Nuclear Protein Targets for Six Leukemogenic Tyrosine Kinases Governed by Post-Translational Regulation

    PubMed Central

    Pierce, Andrew; Williamson, Andrew; Jaworska, Ewa; Griffiths, John R.; Taylor, Sam; Walker, Michael; O’Dea, Mark Aspinall; Spooncer, Elaine; Unwin, Richard D.; Poolman, Toryn; Ray, David; Whetton, Anthony D.

    2012-01-01

    Mutated tyrosine kinases are associated with a number of different haematological malignancies including myeloproliferative disorders, lymphoma and acute myeloid leukaemia. The potential commonalities in the action of six of these leukemogenic proteins on nuclear proteins were investigated using systematic proteomic analysis. The effects on over 3600 nuclear proteins and 1500 phosphopeptide sites were relatively quantified in seven isogenic cell lines. The effects of the kinases were diverse although some commonalities were found. Comparison of the nuclear proteomic data with transcriptome data and cytoplasmic proteomic data indicated that the major changes are due to post-translational mechanisms rather than changes in mRNA or protein distribution. Analysis of the promoter regions of genes whose protein levels changed in response to the kinases showed the most common binding site found was that for NFκB whilst other sites such as those for the glucocorticoid receptor were also found. Glucocorticoid receptor levels and phosphorylation were decreased by all 6 PTKs. Whilst Glucocorticoid receptor action can potentiate NFκB action those proteins where genes have NFκB binding sites were in often regulated post-translationally. However all 6 PTKs showed evidence of NFkB pathway modulation via activation via altered IkB and NFKB levels. Validation of a common change was also undertaken with PMS2, a DNA mismatch repair protein. PMS2 nuclear levels were decreased in response to the expression of all 6 kinases, with no concomitant change in mRNA level or cytosolic protein level. Response to thioguanine, that requires the mismatch repair pathway, was modulated by all 6 oncogenic kinases. In summary common targets for 6 oncogenic PTKs have been found that are regulated by post-translational mechanisms. They represent potential new avenues for therapies but also demonstrate the post-translational regulation is a key target of leukaemogenic kinases. PMID:22745689

  8. Discrete persistent-chain model for protein binding on DNA.

    PubMed

    Lam, Pui-Man; Zhen, Yi

    2011-04-01

    We describe and solve a discrete persistent-chain model of protein binding on DNA, involving an extra σ(i) at a site i of the DNA. This variable takes the value 1 or 0, depending on whether or not the site is occupied by a protein. In addition, if the site is occupied by a protein, there is an extra energy cost ɛ. For a small force, we obtain analytic expressions for the force-extension curve and the fraction of bound protein on the DNA. For higher forces, the model can be solved numerically to obtain force-extension curves and the average fraction of bound proteins as a function of applied force. Our model can be used to analyze experimental force-extension curves of protein binding on DNA, and hence deduce the number of bound proteins in the case of nonspecific binding. ©2011 American Physical Society

  9. Electrostatic contribution to the binding stability of protein-protein complexes.

    PubMed

    Dong, Feng; Zhou, Huan-Xiang

    2006-10-01

    To investigate roles of electrostatic interactions in protein binding stability, electrostatic calculations were carried out on a set of 64 mutations over six protein-protein complexes. These mutations alter polar interactions across the interface and were selected for putative dominance of electrostatic contributions to the binding stability. Three protocols of implementing the Poisson-Boltzmann model were tested. In vdW4 the dielectric boundary between the protein low dielectric and the solvent high dielectric is defined as the protein van der Waals surface and the protein dielectric constant is set to 4. In SE4 and SE20, the dielectric boundary is defined as the surface of the protein interior inaccessible to a 1.4-A solvent probe, and the protein dielectric constant is set to 4 and 20, respectively. In line with earlier studies on the barnase-barstar complex, the vdW4 results on the large set of mutations showed the closest agreement with experimental data. The agreement between vdW4 and experiment supports the contention of dominant electrostatic contributions for the mutations, but their differences also suggest van der Waals and hydrophobic contributions. The results presented here will serve as a guide for future refinement in electrostatic calculation and inclusion of nonelectrostatic effects. Proteins 2006. (c) 2006 Wiley-Liss, Inc.

  10. [Determination of plasma protein binding rate of arctiin and arctigenin with ultrafiltration].

    PubMed

    Han, Xue-Ying; Wang, Wei; Tan, Ri-Qiu; Dou, De-Qiang

    2013-02-01

    To determine the plasma protein binding rate of arctiin and arctigenin. The ultrafiltration combined with HPLC was employed to determine the plasma protein binding rate of arctiin and arctigenin as well as rat plasma and healthy human plasma proteins. The plasma protein binding rate of arctiin with rat plasma at the concentrations of 64. 29, 32.14, 16.07 mg x L(-1) were (71.2 +/- 2.0)%, (73.4 +/- 0.61)%, (78.2 +/- 1.9)%, respectively; while the plasma protein binding rate of arctiin with healthy human plasma at the above concentrations were (64.8 +/- 3.1)%, (64.5 +/- 2.5)%, (77.5 +/- 1.7)%, respectively. The plasma protein binding rate of arctigenin with rat plasma at the concentrations of 77.42, 38.71, 19.36 mg x L(-1) were (96.7 +/- 0.41)%, (96.8 +/- 1.6)%, (97.3 +/- 0.46)%, respectively; while the plasma protein binding rate of arctigenin with normal human plasma at the above concentrations were (94.7 +/- 3.1)%, (96.8 +/- 1.6)%, (97.9 +/- 1.3)%, respectively. The binding rate of arctiin with rat plasma protein was moderate, which is slightly higher than the binding rate of arctiin with healthy human plasma protein. The plasma protein binding rates of arctigenin with both rat plasma and healthy human plasma are very high.

  11. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms

    PubMed Central

    2015-01-01

    ABSTRACT Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms. PMID:26055114

  12. Low glucose availability stimulates progesterone production by mouse ovaries in vitro.

    PubMed

    Wilsterman, Kathryn; Pepper, Aimee; Bentley, George E

    2017-12-15

    Steroid production by the ovary is primarily stimulated by gonadotropins but can also be affected by biological cues that provide information about energy status and environmental stress. To further understand which metabolic cues the ovary can respond to, we exposed gonadotropin-stimulated mouse ovaries in vitro to glucose metabolism inhibitors and measured steroid accumulation in media. Gonadotropin-stimulated ovaries exposed to 2-deoxy-d-glucose increased progesterone production and steroidogenic acute regulatory protein mRNA levels. However, oocytes and granulosa cells in antral follicles do not independently mediate this response because targeted treatment of these cell types with a different inhibitor of glucose metabolism (bromopyruvic acid) did not affect progesterone production. Elevated progesterone production is consistent with the homeostatic role of progesterone in glucose regulation in mammals. It also may regulate follicle growth and/or atresia within the ovary. These results suggest that ovaries can regulate glucose homeostasis in addition to their primary role in reproductive activity. © 2017. Published by The Company of Biologists Ltd.

  13. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin

    NASA Technical Reports Server (NTRS)

    Lu, C.; Fedoroff, N.

    2000-01-01

    Both physiological and genetic evidence indicate interconnections among plant responses to different hormones. We describe a pleiotropic recessive Arabidopsis transposon insertion mutation, designated hyponastic leaves (hyl1), that alters the plant's responses to several hormones. The mutant is characterized by shorter stature, delayed flowering, leaf hyponasty, reduced fertility, decreased rate of root growth, and an altered root gravitropic response. It also exhibits less sensitivity to auxin and cytokinin and hypersensitivity to abscisic acid (ABA). The auxin transport inhibitor 2,3,5-triiodobenzoic acid normalizes the mutant phenotype somewhat, whereas another auxin transport inhibitor, N-(1-naph-thyl)phthalamic acid, exacerbates the phenotype. The gene, designated HYL1, encodes a 419-amino acid protein that contains two double-stranded RNA (dsRNA) binding motifs, a nuclear localization motif, and a C-terminal repeat structure suggestive of a protein-protein interaction domain. We present evidence that the HYL1 gene is ABA-regulated and encodes a nuclear dsRNA binding protein. We hypothesize that the HYL1 protein is a regulatory protein functioning at the transcriptional or post-transcriptional level.

  14. Expression profile and ligand-binding characterization of odorant-binding protein 2 in Batocera horsfieldi (Hope)

    USDA-ARS?s Scientific Manuscript database

    Odorant-binding proteins (OBPs) are important components in insect olfactory systems that transport semiochemicals through the aqueous sensillum lymph to surface of olfactory receptor neurons. In this study, we cloned the cDNA of odorant-binding protein 2 (BhorOBP2) in Batocera horsfieldi (Hope) and...

  15. CXCL4 is a novel nickel-binding protein and augments nickel allergy.

    PubMed

    Kuroishi, T; Bando, K; Tanaka, Y; Shishido, K; Kinbara, M; Ogawa, T; Muramoto, K; Endo, Y; Sugawara, S

    2017-08-01

    Nickel (Ni) is the most frequent metal allergen and induces a TH 1 -dependent type-IV allergy. Although Ni 2+ is considered to bind to endogenous proteins, it currently remains unclear whether these Ni-binding proteins are involved in Ni allergy in vivo. We previously reported the adjuvant effects of lipopolysaccharide (LPS) in a Ni allergy mouse model. As LPS induces a number of inflammatory mediators, we hypothesized that Ni-binding protein(s) are also induced by LPS. The objective of this study was to purify and identify Ni-binding protein(s) from serum taken from LPS-injected mice (referred as LPS serum) and examined the augmenting effects of these Ni-binding protein(s) on Ni allergy in an in vivo model. BALB/cA mice were sensitized with an i.p. injection of NiCl 2 and LPS. Ten days after sensitization, mice were challenged with NiCl 2 by an i.d. injection into ear pinnae. Ni-binding protein(s) were purified by Ni-affinity column chromatography and gel filtration. Lipopolysaccharide serum, but not serum taken from saline-injected mice, augmented ear swelling induced by Ni-allergic inflammation. Ni-binding, but not non-binding fraction, purified from LPS serum augmented Ni-allergic inflammation. Mass spectrometry and Western blotting detected CXCL4 in the active fraction. A batch analysis with Ni-sepharose and a surface plasmon resonance analysis revealed direct binding between CXCL4 and Ni 2+ . Recombinant CXCL4 augmented Ni-allergic inflammation and exerted adjuvant effects at the sensitization phase. These results indicate that CXCL4 is a novel Ni-binding protein that augments Ni allergy at the elicitation and sensitization phases. This is the first study to demonstrate that the Ni-binding protein augments Ni allergy in vivo. © 2017 John Wiley & Sons Ltd.

  16. Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1.

    PubMed Central

    Bischoff, F R; Krebber, H; Smirnova, E; Dong, W; Ponstingl, H

    1995-01-01

    RCC1 (the regulator of chromosome condensation) stimulates guanine nucleotide dissociation on the Ras-related nuclear protein Ran. Both polypeptides are components of a regulatory pathway that has been implicated in regulating DNA replication, onset of and exit from mitosis, mRNA processing and transport, and import of proteins into the nucleus. In a search for further members of the RCC1-Ran signal pathway, we have identified proteins of 23, 45 and 300 kDa which tightly bind to Ran-GTP but not Ran-GDP. The purified soluble 23 kDa Ran binding protein RanBP1 does not activate RanGTPase, but increases GTP hydrolysis induced by the RanGTPase-activating protein RanGAP1 by an order of magnitude. In the absence of RanGAP, it strongly inhibits RCC1-induced exchange of Ran-bound GTP. In addition, it forms a stable complex with nucleotide-free RCC1-Ran. With these properties, it differs markedly from guanine diphosphate dissociation inhibitors which preferentially prevent the exchange of protein-bound GDP and in some cases were shown to inhibit GAP-induced GTP hydrolysis. RanBP1 is the first member of a new class of proteins regulating the binding and hydrolysis of GTP by Ras-related proteins. Images PMID:7882974

  17. Binding of [51Cr]ethylenediaminetetraacetate to proteins of human plasma.

    PubMed Central

    Babiker, M M

    1986-01-01

    Binding of [51Cr]EDTA to human plasma proteins was investigated using chemical and chromatographic techniques of separation of the proteins and protein fractions. Total plasma proteins isolated with ethanol retained 12.95 +/- 0.46% of the initial plasma activity. Proteins separated by other precipitants retained about 16% of the initial radioactivity. Globulins exhibited the highest binding capacity for [51Cr]EDTA and retained about 11.7% of the initial plasma activity following chromatographic separation. This value represents about 70% of the radioactivity bound by the total proteins of the plasma. gamma-Globulins contributed most of the binding attributed to the globulins and retained about 8.7% of the initial [51Cr]EDTA activity. The repeatedly reported underestimation of the renal glomerular filtration rate when estimated as the clearance of [51Cr]EDTA could be adequately accounted for by the extent of binding of this marker to the plasma proteins. PMID:2427701

  18. The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives.

    PubMed

    Maraia, Richard J; Mattijssen, Sandy; Cruz-Gallardo, Isabel; Conte, Maria R

    2017-11-01

    La was first identified as a polypeptide component of ribonucleic protein complexes targeted by antibodies in autoimmune patients and is now known to be a eukaryote cell-ubiquitous protein. Structure and function studies have shown that La binds to a common terminal motif, UUU-3'-OH, of nascent RNA polymerase III (RNAP III) transcripts and protects them from exonucleolytic decay. For precursor-tRNAs, the most diverse and abundant of these transcripts, La also functions as an RNA chaperone that helps to prevent their misfolding. Related to this, we review evidence that suggests that La and its link to RNAP III were significant in the great expansions of the tRNAomes that occurred in eukaryotes. Four families of La-related proteins (LARPs) emerged during eukaryotic evolution with specialized functions. We provide an overview of the high-resolution structural biology of La and LARPs. LARP7 family members most closely resemble La but function with a single RNAP III nuclear transcript, 7SK, or telomerase RNA. A cytoplasmic isoform of La protein as well as LARPs 6, 4, and 1 function in mRNA metabolism and translation in distinct but similar ways, sometimes with the poly(A)-binding protein, and in some cases by direct binding to poly(A)-RNA. New structures of LARP domains, some complexed with RNA, provide novel insights into the functional versatility of these proteins. We also consider LARPs in relation to ancestral La protein and potential retention of links to specific RNA-related pathways. One such link may be tRNA surveillance and codon usage by LARP-associated mRNAs. WIREs RNA 2017, 8:e1430. doi: 10.1002/wrna.1430 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  19. A dye-binding assay for measurement of the binding of Cu(II) to proteins.

    PubMed

    Wilkinson-White, Lorna E; Easterbrook-Smith, Simon B

    2008-10-01

    We analysed the theory of the coupled equilibria between a metal ion, a metal ion-binding dye and a metal ion-binding protein in order to develop a procedure for estimating the apparent affinity constant of a metal ion:protein complex. This can be done by analysing from measurements of the change in the concentration of the metal ion:dye complex with variation in the concentration of either the metal ion or the protein. Using experimentally determined values for the affinity constant of Cu(II) for the dye, 2-(5-bromo-2-pyridylaxo)-5-(N-propyl-N-sulfopropylamino) aniline (5-Br-PSAA), this procedure was used to estimate the apparent affinity constants for formation of Cu(II):transthyretin, yielding values which were in agreement with literature values. An apparent affinity constant for Cu(II) binding to alpha-synuclein of approximately 1 x 10(9)M(-1) was obtained from measurements of tyrosine fluorescence quenching by Cu(II). This value was in good agreement with that obtained using 5-Br-PSAA. Our analysis and data therefore show that measurement of changes in the equilibria between Cu(II) and 5-Br-PSAA by Cu(II)-binding proteins provides a general procedure for estimating the affinities of proteins for Cu(II).

  20. Ice-Binding Proteins and Their Function.

    PubMed

    Bar Dolev, Maya; Braslavsky, Ido; Davies, Peter L

    2016-06-02

    Ice-binding proteins (IBPs) are a diverse class of proteins that assist organism survival in the presence of ice in cold climates. They have different origins in many organisms, including bacteria, fungi, algae, diatoms, plants, insects, and fish. This review covers the gamut of IBP structures and functions and the common features they use to bind ice. We discuss mechanisms by which IBPs adsorb to ice and interfere with its growth, evidence for their irreversible association with ice, and methods for enhancing the activity of IBPs. The applications of IBPs in the food industry, in cryopreservation, and in other technologies are vast, and we chart out some possibilities.