Sample records for extreme stress conditions

  1. The effect of extreme spring weather on body condition and stress physiology in Lapland longspurs and white-crowned sparrows breeding in the Arctic.

    PubMed

    Krause, Jesse S; Pérez, Jonathan H; Chmura, Helen E; Sweet, Shannan K; Meddle, Simone L; Hunt, Kathleen E; Gough, Laura; Boelman, Natalie; Wingfield, John C

    2016-10-01

    Climate change is causing rapid shifts in temperature while also increasing the frequency, duration, and intensity of extreme weather. In the northern hemisphere, the spring of 2013 was characterized as extreme due to record high snow cover and low temperatures. Studies that describe the effects of extreme weather on phenology across taxa are limited while morphological and physiological responses remain poorly understood. Stress physiology, as measured through baseline and stress-induced concentrations of cortisol or corticosterone, has often been studied to understand how organisms respond to environmental stressors. We compared body condition and stress physiology of two long-distance migrants breeding in low arctic Alaska - the white-crowned sparrow (Zonotrichia leucophrys) and Lapland longspur (Calcarius lapponicus) - in 2013, an extreme weather year, with three more typical years (2011, 2012, and 2014). The extended snow cover in spring 2013 caused measureable changes in phenology, body condition and physiology. Arrival timing for both species was delayed 4-5days compared to the other three years. Lapland longspurs had reduced fat stores, pectoralis muscle profiles, body mass, and hematocrit levels, while stress-induced concentrations of corticosterone were increased. Similarly, white-crowned sparrows had reduced pectoralis muscle profiles and hematocrit levels, but in contrast to Lapland longspurs, had elevated fat stores and no difference in mass or stress physiology relative to other study years. An understanding of physiological mechanisms that regulate coping strategies is of critical importance for predicting how species will respond to the occurrence of extreme events in the future due to global climate change. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Perceived psychological stress and upper extremity cumulative trauma disorders.

    PubMed

    Strasser, P B; Lusk, S L; Franzblau, A; Armstrong, T J

    1999-01-01

    This report presents data exploring the relationship between perceived psychological stress and several variables implicated in the etiology of upper extremity cumulative trauma disorders (UECTDs). The sample was 354 workers from three different manufacturing companies. The primary job exposure for the subjects was that they were engaged in jobs that involved repetitious movements of the upper extremities, primarily of the hands and arms. Data collection included a detailed health history, a comprehensive physical examination of the upper extremities, limited electrodiagnostic testing, Cohen's Perceived Stress Scale, Karasek's Job Content Questionnaire, demographic information, and a measurement of repetition. Descriptive analyses, analysis of variance, correlational analyses, and multiple linear regression were used to examine the data. Perceived stress, as measured in this study, was only weakly associated with repetition, job dissatisfaction, and subjective complaints related to UECTDs. In addition, factors generally accepted as related to UECTDs (e.g., repetition, female gender, hormonal influences, and existing medical conditions) were not robust predictors of perceived stress. The major limitation is related to the measurement of perceived psychological stress. Like most psychosocial phenomena, perceived stress is a complex construct, one that is difficult to measure and correlate with health outcomes. Further research is necessary to examine what role, if any, perceived stress may have in the etiology of UECTDs.

  3. Extreme mechanical properties of materials under extreme pressure and temperature conditions (Invited)

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Armentrout, M. M.; Xie, M.; Weinberger, M.; Kaner, R. B.; Tolbert, S. H.

    2010-12-01

    A strong synergy ties together the high-pressure subfields of mineral physics, solid-state physics, and materials engineering. The catalog of studies measuring the mechanical properties of materials subjected to large differential stresses in the diamond anvil cell demonstrates a significant pressure-enhancement of strength across many classes of materials, including elemental solids, salts, oxides, silicates, and borides and nitrides. High pressure techniques—both radial diffraction and laser heating in the diamond anvil cell—can be used to characterize the behavior of ultrahard materials under extreme conditions, and help test hypotheses about how composition, structure, and bonding work together to govern the mechanical properties of materials. The principles that are elucidated by these studies can then be used to help design engineering materials to encourage desired properties. Understanding Earth and planetary interiors requires measuring equations of state of relevant materials, including oxides, silicates, and metals under extreme conditions. If these minerals in the diamond anvil cell have any ability to support a differential stress, the assumption of quasi-hydrostaticity no longer applies, with a resulting non-salubrious effect on attempts to measure equation of state. We illustrate these applications with the results of variety of studies from our laboratory and others’ that have used high-pressure radial diffraction techniques and also laser heating in the diamond anvil cell to characterize the mechanical properties of a variety of ultrahard materials, especially osmium metal, osmium diboride, rhenium diboride, and tungsten tetraboride. We compare ambient condition strength studies such as hardness testing with high-pressure studies, especially radial diffraction under differential stress. In addition, we outline criteria for evaluating mechanical properties of materials at combination high pressures and temperatures. Finally, we synthesize our

  4. Contrasting extremes in water-related stresses determine species survival

    NASA Astrophysics Data System (ADS)

    Bartholomeus, R. P.; Witte, J. P. M.; van Bodegom, P. M.; van Dam, J. C.; Aerts, R.

    2012-04-01

    In temperate climates, soil moisture, in concert with nutrient availability and soil acidity, is the most important environmental filter in determining local plant species composition, as it determines the availability of both oxygen and water to plant roots. These resources are indispensable for meeting the physiological demands of plants. Especially the occurrence of both excessive dry and wet moisture conditions at a particular site has strong implications for the survival of species, because plants need traits that allow them to respond to such counteracting conditions. However, adapting to one stress may go at the cost of the other, i.e. there exists a trade-off in the tolerance for wet conditions and the tolerance for dry conditions. Until now, both large-scale (global) and plot-scale effects of soil moisture conditions on plant species composition have mostly been investigated through indirect environmental measures, which do not include the key soil physical and plant physiological processes in the soil-plant-atmosphere system. Moreover, researchers only determined effects of one of the water-related stresses, i.e. either oxygen or drought stress. In order to quantify both oxygen and drought stress with causal measures, we focused on interacting meteorological, soil physical, microbial, and plant physiological processes in the soil-plant-atmosphere system. We simulated these plant stresses with a novel, process-based approach, incorporating in detail the interacting processes in the soil-plant-atmosphere interface. High variability and extremes in resource availability can be highly detrimental to plant species ('you can only die once'). We show that co-occurrence of oxygen and drought stress reduces the percentage of specialists within a vegetation plot. The percentage of non-specialists within a vegetation plot, however, decreases significantly with increasing stress as long as only one of the stresses prevails, but increases significantly with an

  5. Survival and Energy Producing Strategies of Alkane Degraders Under Extreme Conditions and Their Biotechnological Potential.

    PubMed

    Park, Chulwoo; Park, Woojun

    2018-01-01

    Many petroleum-polluted areas are considered as extreme environments because of co-occurrence of low and high temperatures, high salt, and acidic and anaerobic conditions. Alkanes, which are major constituents of crude oils, can be degraded under extreme conditions, both aerobically and anaerobically by bacteria and archaea of different phyla. Alkane degraders possess exclusive metabolic pathways and survival strategies, which involve the use of protein and RNA chaperones, compatible solutes, biosurfactants, and exopolysaccharide production for self-protection during harsh environmental conditions such as oxidative and osmotic stress, and ionic nutrient-shortage. Recent findings suggest that the thermophilic sulfate-reducing archaeon Archaeoglobus fulgidus uses a novel alkylsuccinate synthase for long-chain alkane degradation, and the thermophilic Candidatus Syntrophoarchaeum butanivorans anaerobically oxidizes butane via alkyl-coenzyme M formation. In addition, gene expression data suggest that extremophiles produce energy via the glyoxylate shunt and the Pta-AckA pathway when grown on a diverse range of alkanes under stress conditions. Alkane degraders possess biotechnological potential for bioremediation because of their unusual characteristics. This review will provide genomic and molecular insights on alkane degraders under extreme conditions.

  6. Whole-body heating decreases skin vascular response to low orthostatic stress in the lower extremities.

    PubMed

    Yamazaki, Fumio; Nakayama, Yoshiro; Sone, Ryoko

    2006-04-01

    To elucidate the influence of heat stress on cutaneous vascular response in the lower extremities during orthostatic stress, a head-up tilt (HUT) test at angles of 15 degrees, 30 degrees, 45 degrees, and 60 degrees for 4 min each was conducted under normothermic control conditions followed by whole-body heat stress produced by a hot water-perfused suit in healthy volunteers. Skin blood flows (SkBF) in the forearm, thigh, and calf were monitored using laser-Doppler flowmetry throughout the experiment. Furthermore, to elucidate the effects of increased core and local skin temperatures on the local vascular response in calf skin under increasing orthostatic stress, the thigh was occluded at 20, 30, 50, 70, and 80 mmHg with a cuff in both the normothermic condition and the whole-body or local heating condition. Significant decreases in forearm SkBF during HUT were observed at an angle of 60 degrees during normothermia and at 30 degrees or more during heating. SkBF in the thigh and calf was decreased significantly by HUT at 15 degrees and above during normothermia, and there was no significant reduction of SkBF in these sites during HUT at the lower angles (15 degrees -45 degrees ) during whole-body heating. Significant decreases of calf SkBF were observed at cuff pressures of 20 mmHg and above during normothermia and of 30 mmHg and above during whole-body and local heating, respectively. These results suggest that SkBF in the lower extremities shows a marked reduction compared with the upper extremities during low orthostatic stress in normothermia, and the enhanced skin vasoconstrictor response in the lower extremities is diminished by both whole-body and local heat stress.

  7. Physiological and psychological fatigue in extreme conditions: the military example.

    PubMed

    Weeks, Sharon R; McAuliffe, Caitlin L; Durussel, David; Pasquina, Paul F

    2010-05-01

    The extreme conditions causing fatigue in military service members in combat and combat training deserve special consideration. The collective effects of severe exertion, limited caloric intake, and sleep deprivation, combined with the inherent stressors of combat, lead to both physiological and psychological fatigue that may significantly impair performance. Studies of combat training have revealed a myriad of endocrine, cognitive, and neurological changes that occur as a result of exposure to extreme conditions. Further contributory effects of multiple military deployments, post-traumatic stress disorder, and traumatic brain injury may also influence both the susceptibility to and expression of fatigue states. Further research is needed to explore these effects to enhance military readiness and performance as well as prevent injuries. Copyright (c) 2010 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  8. Extremely high wall-shear stress events in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Pan, Chong; Kwon, Yongseok

    2018-04-01

    The present work studies the fluctuating characteristics of the streamwise wall-shear stress in a DNS of a turbulent boundary layer at Re τ =1500 from a structural view. The two-dimensional field of the fluctuating friction velocity u‧ τ (x,z) is decomposed into the large- and small-scale components via a recently proposed scale separation algorithm, Quasi-bivariate Variational Mode Decomposition (QB-VMD). Both components are found to be dominated by streak-like structures, which can be regarded as the wall signature of the inner-layer streaks and the outer-layer LSMs, respectively. Extreme positive/negative wall-shear stress fluctuation events are detected in the large-scale component. The former’s occurrence frequency is nearly one order of magnitude higher than the latter; therefore, they contribute a significant portion of the long tail of the wall-shear stress distribution. Both two-point correlations and conditional averages show that these extreme positive wall-shear stress events are embedded in the large-scale positive u‧ τ streaks. They seem to be formed by near-wall ‘splatting’ process, which are related to strong finger-like sweeping (Q4) events originated from the outer-layer positive LSMs.

  9. Extreme Conditions Modeling Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coe, R. G.; Neary, V. S.; Lawson, M. J.

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, NM on May 13th-14th, 2014. The objective of the workshop was to review the current state of knowledge on how to model WECs in extreme conditions (e.g. hurricanes and other large storms) and to suggest how U.S. Department of Energy (DOE) and national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry.

  10. Imaging of upper extremity stress fractures in the athlete.

    PubMed

    Anderson, Mark W

    2006-07-01

    Although it is much less common than injuries in the lower extremities, an upper extremity stress injury can have a significant impact on an athlete. If an accurate and timely diagnosis is to be made, the clinician must have a high index of suspicion of a stress fracture in any athlete who is involved in a throwing, weightlifting, or upper extremity weight-bearing sport and presents with chronic pain in the upper extremity. Imaging should play an integral role in the work-up of these patients; if initial radiographs are unrevealing, further cross-sectional imaging should be strongly considered. Although a three-phase bone scan is highly sensitive in this regard, MRI has become the study of choice at most centers.

  11. Stress fractures of the ribs and upper extremities: causation, evaluation, and management.

    PubMed

    Miller, Timothy L; Harris, Joshua D; Kaeding, Christopher C

    2013-08-01

    Stress fractures are common troublesome injuries in athletes and non-athletes. Historically, stress fractures have been thought to predominate in the lower extremities secondary to the repetitive stresses of impact loading. Stress injuries of the ribs and upper extremities are much less common and often unrecognized. Consequently, these injuries are often omitted from the differential diagnosis of rib or upper extremity pain. Given the infrequency of this diagnosis, few case reports or case series have reported on their precipitating activities and common locations. Appropriate evaluation for these injuries requires a thorough history and physical examination. Radiographs may be negative early, requiring bone scintigraphy or MRI to confirm the diagnosis. Nonoperative and operative treatment recommendations are made based on location, injury classification, and causative activity. An understanding of the most common locations of upper extremity stress fractures and their associated causative activities is essential for prompt diagnosis and optimal treatment.

  12. Extreme Conditions Modeling Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coe, Ryan Geoffrey; Neary, Vincent Sinclair; Lawon, Michael J.

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, New Mexico on May 13–14, 2014. The objective of the workshop was to review the current state of knowledge on how to numerically and experimentally model WECs in extreme conditions (e.g. large ocean storms) and to suggest how national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry. More than 30 U.S. and European WEC experts from industry, academia, and national research institutes attended the workshop, which consistedmore » of presentations from W EC developers, invited keynote presentations from subject matter experts, breakout sessions, and a final plenary session .« less

  13. Stress physiology and weapon integrity of intertidal mantis shrimp under future ocean conditions

    PubMed Central

    deVries, Maya S.; Webb, Summer J.; Tu, Jenny; Cory, Esther; Morgan, Victoria; Sah, Robert L.; Deheyn, Dimitri D.; Taylor, Jennifer R. A.

    2016-01-01

    Calcified marine organisms typically experience increased oxidative stress and changes in mineralization in response to ocean acidification and warming conditions. These effects could hinder the potency of animal weapons, such as the mantis shrimp’s raptorial appendage. The mechanical properties of this calcified weapon enable extremely powerful punches to be delivered to prey and aggressors. We examined oxidative stress and exoskeleton structure, mineral content, and mechanical properties of the raptorial appendage and the carapace under long-term ocean acidification and warming conditions. The predatory appendage had significantly higher % Mg under ocean acidification conditions, while oxidative stress levels as well as the % Ca and mechanical properties of the appendage remained unchanged. Thus, mantis shrimp tolerate expanded ranges of pH and temperature without experiencing oxidative stress or functional changes to their weapons. Our findings suggest that these powerful predators will not be hindered under future ocean conditions. PMID:27974830

  14. Communities that thrive in extreme conditions captured from a freshwater lake.

    PubMed

    Low-Décarie, Etienne; Fussmann, Gregor F; Dumbrell, Alex J; Bell, Graham

    2016-09-01

    Organisms that can grow in extreme conditions would be expected to be confined to extreme environments. However, we were able to capture highly productive communities of algae and bacteria capable of growing in acidic (pH 2), basic (pH 12) and saline (40 ppt) conditions from an ordinary freshwater lake. Microbial communities may thus include taxa that are highly productive in conditions that are far outside the range of conditions experienced in their host ecosystem. The organisms we captured were not obligate extremophiles, but were capable of growing in both extreme and benign conditions. The ability to grow in extreme conditions may thus be a common functional attribute in microbial communities. © 2016 The Author(s).

  15. Response of Simple, Model Systems to Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, Rodney C.; Lang, Maik

    2015-07-30

    The focus of the research was on the application of high-pressure/high-temperature techniques, together with intense energetic ion beams, to the study of the behavior of simple oxide systems (e.g., SiO 2, GeO 2, CeO 2, TiO 2, HfO 2, SnO 2, ZnO and ZrO 2) under extreme conditions. These simple stoichiometries provide unique model systems for the analysis of structural responses to pressure up to and above 1 Mbar, temperatures of up to several thousands of kelvin, and the extreme energy density generated by energetic heavy ions (tens of keV/atom). The investigations included systematic studies of radiation- and pressure-induced amorphizationmore » of high P-T polymorphs. By studying the response of simple stoichiometries that have multiple structural “outcomes”, we have established the basic knowledge required for the prediction of the response of more complex structures to extreme conditions. We especially focused on the amorphous state and characterized the different non-crystalline structure-types that result from the interplay of radiation and pressure. For such experiments, we made use of recent technological developments, such as the perforated diamond-anvil cell and in situ investigation using synchrotron x-ray sources. We have been particularly interested in using extreme pressures to alter the electronic structure of a solid prior to irradiation. We expected that the effects of modified band structure would be evident in the track structure and morphology, information which is much needed to describe theoretically the fundamental physics of track-formation. Finally, we investigated the behavior of different simple-oxide, composite nanomaterials (e.g., uncoated nanoparticles vs. core/shell systems) under coupled, extreme conditions. This provided insight into surface and boundary effects on phase stability under extreme conditions.« less

  16. Generation of multivariate near shore extreme wave conditions based on an extreme value copula for offshore boundary conditions.

    NASA Astrophysics Data System (ADS)

    Leyssen, Gert; Mercelis, Peter; De Schoesitter, Philippe; Blanckaert, Joris

    2013-04-01

    Near shore extreme wave conditions, used as input for numerical wave agitation simulations and for the dimensioning of coastal defense structures, need to be determined at a harbour entrance situated at the French North Sea coast. To obtain significant wave heights, the numerical wave model SWAN has been used. A multivariate approach was used to account for the joint probabilities. Considered variables are: wind velocity and direction, water level and significant offshore wave height and wave period. In a first step a univariate extreme value distribution has been determined for the main variables. By means of a technique based on the mean excess function, an appropriate member of the GPD is selected. An optimal threshold for peak over threshold selection is determined by maximum likelihood optimization. Next, the joint dependency structure for the primary random variables is modeled by an extreme value copula. Eventually the multivariate domain of variables was stratified in different classes, each of which representing a combination of variable quantiles with a joint probability, which are used for model simulation. The main variable is the wind velocity, as in the area of concern extreme wave conditions are wind driven. The analysis is repeated for 9 different wind directions. The secondary variable is water level. In shallow waters extreme waves will be directly affected by water depth. Hence the joint probability of occurrence for water level and wave height is of major importance for design of coastal defense structures. Wind velocity and water levels are only dependent for some wind directions (wind induced setup). Dependent directions are detected using a Kendall and Spearman test and appeared to be those with the longest fetch. For these directions, wind velocity and water level extreme value distributions are multivariately linked through a Gumbel Copula. These distributions are stratified into classes of which the frequency of occurrence can be

  17. Conditional probability of rainfall extremes across multiple durations

    NASA Astrophysics Data System (ADS)

    Le, Phuong Dong; Leonard, Michael; Westra, Seth

    2017-04-01

    The conditional probability that extreme rainfall will occur at one location given that it is occurring at another location is critical in engineering design and management circumstances including planning of evacuation routes and the sitting of emergency infrastructure. A challenge with this conditional simulation is that in many situations the interest is not so much the conditional distributions of rainfall of the same duration at two locations, but rather the conditional distribution of flooding in two neighbouring catchments, which may be influenced by rainfall of different critical durations. To deal with this challenge, a model that can consider both spatial and duration dependence of extremes is required. The aim of this research is to develop a model that can take account both spatial dependence and duration dependence into the dependence structure of extreme rainfalls. To achieve this aim, this study is a first attempt at combining extreme rainfall for multiple durations within a spatial extreme model framework based on max-stable process theory. Max-stable processes provide a general framework for modelling multivariate extremes with spatial dependence for just a single duration extreme rainfall. To achieve dependence across multiple timescales, this study proposes a new approach that includes addition elements representing duration dependence of extremes to the covariance matrix of max-stable model. To improve the efficiency of calculation, a re-parameterization proposed by Koutsoyiannis et al. (1998) is used to reduce the number of parameters necessary to be estimated. This re-parameterization enables the GEV parameters to be represented as a function of timescale. A stepwise framework has been adopted to achieve the overall aims of this research. Firstly, the re-parameterization is used to define a new set of common parameters for marginal distribution across multiple durations. Secondly, spatial interpolation of the new parameter set is used to

  18. Epidemiology and Impact on Performance of Lower Extremity Stress Injuries in Professional Basketball Players.

    PubMed

    Khan, Moin; Madden, Kim; Burrus, M Tyrrell; Rogowski, Joseph P; Stotts, Jeff; Samani, Marisa J; Sikka, Robby; Bedi, Asheesh

    Professional basketball players in the National Basketball Association (NBA) subject their lower extremities to significant repetitive loading during both regular-season and off-season training. Little is known about the incidence of lower extremity bony stress injuries and their impact on return to play and performance in these athletes. Stress injuries of the lower extremity will have significant impact on performance. Case series. Level 4. All bony stress injuries from 2005 to 2015 were identified from the NBA. Number of games missed due to injury and performance statistics were collected from 2 years prior to injury to 2 years after the injury. A linear regression analysis was performed to determine the impact of injury for players who returned to sport. A total of 76 lower extremity bony stress injuries involving 75 NBA players (mean age, 25.4 ± 4.1 years) were identified. Fifty-five percent (42/76) involved the foot, and most injuries occurred during the regular season (82.9%, 63/76), with half occurring within the first 6 weeks. Among players who sustained a fifth metatarsal stress fracture, 42.9% were unable to return to professional play. Players who sustained stress injuries had reduced play performance, specifically related to number of games played ( P = 0.014) and number of steals per game ( P = 0.004). Players who had surgery had significantly better performance at 2 years than those who were managed nonoperatively, independent of the type of injury (β = 4.561; 95% CI, 1.255-7.868). Lower extremity bony stress injuries may significantly affect both short- and long-term player performance and career length. Stress injuries result in decreased player performance, and surgical intervention results in improved performance metrics compared with those treated using conservative methods. Stress injuries result in decreased player performance, and surgical intervention results in improved performance metrics.

  19. Extreme hydrothermal conditions at an active plate-bounding fault.

    PubMed

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G R; Janku-Capova, Lucie; Carpenter, Brett M; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  20. Extreme hydrothermal conditions at an active plate-bounding fault

    NASA Astrophysics Data System (ADS)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G. R.; Janku-Capova, Lucie; Carpenter, Brett M.; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R.; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  1. Leaf conductance and carbon gain under salt-stressed conditions

    NASA Astrophysics Data System (ADS)

    Volpe, V.; Manzoni, S.; Marani, M.; Katul, G.

    2011-12-01

    Exposure of plants to salt stress is often accompanied by reductions in leaf photosynthesis and in stomatal and mesophyll conductances. To separate the effects of salt stress on these quantities, a model based on the hypothesis that carbon gain is maximized subject to a water loss cost is proposed. The optimization problem of adjusting stomatal aperture for maximizing carbon gain at a given water loss is solved for both a non-linear and a linear biochemical demand function. A key novel theoretical outcome of the optimality hypothesis is an explicit relationship between the stomatal and mesophyll conductances that can be evaluated against published measurements. The approaches here successfully describe gas-exchange measurements reported for olive trees (Olea europea L.) and spinach (Spinacia oleraceaL.) in fresh water and in salt-stressed conditions. Salt stress affected both stomatal and mesophyll conductances and photosynthetic efficiency of both species. The fresh water/salt water comparisons show that the photosynthetic capacity is directly reduced by 30%-40%, indicating that reductions in photosynthetic rates under increased salt stress are not due only to a limitation of CO2diffusion. An increase in salt stress causes an increase in the cost of water parameter (or marginal water use efficiency) exceeding 100%, analogous in magnitude to findings from extreme drought stress studies. The proposed leaf-level approach can be incorporated into physically based models of the soil-plant-atmosphere system to assess how saline conditions and elevated atmospheric CO2 jointly impact transpiration and photosynthesis.

  2. Impact of phytopathogen infection and extreme weather stress on internalization of Salmonella Typhimurium in lettuce.

    PubMed

    Ge, Chongtao; Lee, Cheonghoon; Nangle, Ed; Li, Jianrong; Gardner, David; Kleinhenz, Matthew; Lee, Jiyoung

    2014-01-03

    Internalization of human pathogens, common in many types of fresh produce, is a threat to human health since the internalized pathogens cannot be fully inactivated/removed by washing with water or sanitizers. Given that pathogen internalization can be affected by many environmental factors, this study was conducted to investigate the influence of two types of plant stress on the internalization of Salmonella Typhimurium in iceberg lettuce during pre-harvest. The stresses were: abiotic (water stress induced by extreme weather events) and biotic (phytopathogen infection by lettuce mosaic virus [LMV]). Lettuce with and without LMV infection were purposefully contaminated with green fluorescence protein-labeled S. Typhimurium on the leaf surfaces. Lettuce was also subjected to water stress conditions (drought and storm) which were simulated by irrigating with different amounts of water. The internalized S. Typhimurium in the different parts of the lettuce were quantified by plate count and real-time quantitative PCR and confirmed with a laser scanning confocal microscope. Salmonella internalization occurred under the conditions outlined above; however internalization levels were not significantly affected by water stress alone. In contrast, the extent of culturable S. Typhimurium internalized in the leafy part of the lettuce decreased when infected with LMV under water stress conditions and contaminated with high levels of S. Typhimurium. On the other hand, LMV-infected lettuce showed a significant increase in the levels of culturable bacteria in the roots. In conclusion, internalization was observed under all experimental conditions when the lettuce surface was contaminated with S. Typhimurium. However, the extent of internalization was only affected by water stress when lettuce was infected with LMV. © 2013.

  3. Diagnosis, treatment, and rehabilitation of stress fractures in the lower extremity in runners

    PubMed Central

    Kahanov, Leamor; Eberman, Lindsey E; Games, Kenneth E; Wasik, Mitch

    2015-01-01

    Stress fractures account for between 1% and 20% of athletic injuries, with 80% of stress fractures in the lower extremity. Stress fractures of the lower extremity are common injuries among individuals who participate in endurance, high load-bearing activities such as running, military and aerobic exercise and therefore require practitioner expertise in diagnosis and management. Accurate diagnosis for stress fractures is dependent on the anatomical area. Anatomical regions such as the pelvis, sacrum, and metatarsals offer challenges due to difficulty differentiating pathologies with common symptoms. Special tests and treatment regimes, however, are similar among most stress fractures with resolution between 4 weeks to a year. The most difficult aspect of stress fracture treatment entails mitigating internal and external risk factors. Practitioners should address ongoing risk factors to minimize recurrence. PMID:25848327

  4. Isolation and Characterization of Bacteria Capable of Tolerating the Extreme Conditions of Clean Room Environments▿

    PubMed Central

    La Duc, Myron T.; Dekas, Anne; Osman, Shariff; Moissl, Christine; Newcombe, David; Venkateswaran, Kasthuri

    2007-01-01

    In assessing the bacterial populations present in spacecraft assembly, spacecraft test, and launch preparation facilities, extremophilic bacteria (requiring severe conditions for growth) and extremotolerant bacteria (tolerant to extreme conditions) were isolated. Several cultivation approaches were employed to select for and identify bacteria that not only survive the nutrient-limiting conditions of clean room environments but can also withstand even more inhospitable environmental stresses. Due to their proximity to spacefaring objects, these bacteria pose a considerable risk for forward contamination of extraterrestrial sites. Samples collected from four geographically distinct National Aeronautics and Space Administration clean rooms were challenged with UV-C irradiation, 5% hydrogen peroxide, heat shock, pH extremes (pH 3.0 and 11.0), temperature extremes (4°C to 65°C), and hypersalinity (25% NaCl) prior to and/or during cultivation as a means of selecting for extremotolerant bacteria. Culture-independent approaches were employed to measure viable microbial (ATP-based) and total bacterial (quantitative PCR-based) burdens. Intracellular ATP concentrations suggested a viable microbial presence ranging from below detection limits to 106 cells/m2. However, only 0.1 to 55% of these viable cells were able to grow on defined culture medium. Isolated members of the Bacillaceae family were more physiologically diverse than those reported in previous studies, including thermophiles (Geobacillus), obligate anaerobes (Paenibacillus), and halotolerant, alkalophilic species (Oceanobacillus and Exiguobacterium). Non-spore-forming microbes (α- and β-proteobacteria and actinobacteria) exhibiting tolerance to the selected stresses were also encountered. The multiassay cultivation approach employed herein enhances the current understanding of the physiological diversity of bacteria housed in these clean rooms and leads us to ponder the origin and means of translocation of

  5. Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments.

    PubMed

    La Duc, Myron T; Dekas, Anne; Osman, Shariff; Moissl, Christine; Newcombe, David; Venkateswaran, Kasthuri

    2007-04-01

    In assessing the bacterial populations present in spacecraft assembly, spacecraft test, and launch preparation facilities, extremophilic bacteria (requiring severe conditions for growth) and extremotolerant bacteria (tolerant to extreme conditions) were isolated. Several cultivation approaches were employed to select for and identify bacteria that not only survive the nutrient-limiting conditions of clean room environments but can also withstand even more inhospitable environmental stresses. Due to their proximity to spacefaring objects, these bacteria pose a considerable risk for forward contamination of extraterrestrial sites. Samples collected from four geographically distinct National Aeronautics and Space Administration clean rooms were challenged with UV-C irradiation, 5% hydrogen peroxide, heat shock, pH extremes (pH 3.0 and 11.0), temperature extremes (4 degrees C to 65 degrees C), and hypersalinity (25% NaCl) prior to and/or during cultivation as a means of selecting for extremotolerant bacteria. Culture-independent approaches were employed to measure viable microbial (ATP-based) and total bacterial (quantitative PCR-based) burdens. Intracellular ATP concentrations suggested a viable microbial presence ranging from below detection limits to 10(6) cells/m(2). However, only 0.1 to 55% of these viable cells were able to grow on defined culture medium. Isolated members of the Bacillaceae family were more physiologically diverse than those reported in previous studies, including thermophiles (Geobacillus), obligate anaerobes (Paenibacillus), and halotolerant, alkalophilic species (Oceanobacillus and Exiguobacterium). Non-spore-forming microbes (alpha- and beta-proteobacteria and actinobacteria) exhibiting tolerance to the selected stresses were also encountered. The multiassay cultivation approach employed herein enhances the current understanding of the physiological diversity of bacteria housed in these clean rooms and leads us to ponder the origin and means

  6. Focus issue on the Study of Matter at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Saini, Naurang L.; Saxena, Surendra K.; Bansil, Arun

    2015-09-01

    Study of matter at extreme conditions encompasses many different approaches for understanding the physics, chemistry and materials science underlying processes, products and technologies important for society. Although extreme conditions have been associated traditionally with research in areas of geology, mineral and earth sciences, the field has expanded in the recent years to include work on energy related materials and quantum functional materials from hard to soft matter. With the motivation to engage a large number of scientists with various disciplinary interests, ranging from physics, chemistry, geophysics to materials science, the study of matter at extreme conditions has been the theme of a series of conferences hosted by the High Pressure Science Society of America (HiPSSA) and the Center for the Study of Matter at Extreme Conditions (CeSMEC) of Florida International University (FIU), Miami. These SMEC (Study of Matter at Extreme Conditions) conferences are aimed at providing a unique platform for leading researchers to meet and share cutting-edge developments, and to bridge established fields under this interdisciplinary umbrella for research on materials. The seventh meeting in the SMEC series was held during March 23-30, 2013, while sailing from Miami to the Caribbean Islands, and concluded with great enthusiasm.

  7. Protection of the Photosynthetic Apparatus from Extreme Dehydration and Oxidative Stress in Seedlings of Transgenic Tobacco

    PubMed Central

    Personat, José-María; Tejedor-Cano, Javier; Lindahl, Marika; Diaz-Espejo, Antonio; Jordano, Juan

    2012-01-01

    A genetic program that in sunflower seeds is activated by Heat Shock transcription Factor A9 (HaHSFA9) has been analyzed in transgenic tobacco seedlings. The ectopic overexpression of the HSFA9 program protected photosynthetic membranes, which resisted extreme dehydration and oxidative stress conditions. In contrast, heat acclimation of seedlings induced thermotolerance but not resistance to the harsh stress conditions employed. The HSFA9 program was found to include the expression of plastidial small Heat Shock Proteins that accumulate only at lower abundance in heat-stressed vegetative organs. Photosystem II (PSII) maximum quantum yield was higher for transgenic seedlings than for non-transgenic seedlings, after either stress treatment. Furthermore, protection of both PSII and Photosystem I (PSI) membrane protein complexes was observed in the transgenic seedlings, leading to their survival after the stress treatments. It was also shown that the plastidial D1 protein, a labile component of the PSII reaction center, and the PSI core protein PsaB were shielded from oxidative damage and degradation. We infer that natural expression of the HSFA9 program during embryogenesis may protect seed pro-plastids from developmental desiccation. PMID:23227265

  8. "Complex" Posttraumatic Stress Disorder/Disorders of Extreme Stress (CP/DES) in Sexually Abused Children: An Exloratory Study.

    ERIC Educational Resources Information Center

    Hall, Darlene Kordich

    1999-01-01

    Compares three groups of young sexually abused children on seven "Complex" Posttraumatic Stress Disorder/Disorders of Extreme Stress (CP/DES) indices. As cumulative number of types of trauma increased, the number of CP/DES symptoms rose. Results suggest that CP/DES also characterizes sexually abused children, especially those who have…

  9. Matter Under Extreme Conditions: The Early Years

    NASA Astrophysics Data System (ADS)

    Keeler, R. Norris; Gibson, Carl H.

    2012-03-01

    Extreme conditions in natural flows are examined, starting with a turbulent big bang. A hydro-gravitational-dynamics cosmology model is adopted. Planck-Kerr turbulence instability causes Planck-particle turbulent combustion. Inertial-vortex forces induce a non-turbulent ki- netic energy cascade to Planck-Kolmogorov scales where vorticity is produced, overcoming 10113 Pa Planck-Fortov pressures. The spinning, expanding fireball has a slight deficit of Planck antiparticles. Space and mass-energy powered by gluon viscous stresses expand exponentially at speeds >1025 c. Turbulent temperature and spin fluctuations fossilize at scales larger than ct, where c is light speed and t is time. Because "dark-energy" antigravity forces vanish when infla- tion ceases, and because turbulence produces entropy, the universe is closed and will collapse and rebound. Density and spin fossils of big bang turbulent mixing trigger structure formation in the plasma epoch. Fragmenting protosuperclustervoids and protoclustervoids produce weak tur- bulence until the plasma-gas transition give chains of protogalaxies with the morphology of tur- bulence. Chain galaxy clusters observed at large redshifts ~8.6 support this interpretation. Pro- togalaxies fragment into clumps, each with a trillion Earth-mass H-He gas planets. These make stars, supernovae, the first chemicals, the first oceans and the first life soon after the cosmologi- cal event.

  10. Injuries in an Extreme Conditioning Program.

    PubMed

    Aune, Kyle T; Powers, Joseph M

    2016-10-19

    Extreme conditioning programs (ECPs) are fitness training regimens relying on aerobic, plyometric, and resistance training exercises, often with high levels of intensity for a short duration of time. These programs have grown rapidly in popularity in recent years, but science describing the safety profile of these programs is lacking. The rate of injury in the extreme conditioning program is greater than the injury rate of weightlifting and the majority of injuries occur to the shoulder and back. Cross-sectional study. Level 4. This is a retrospective survey of injuries reported by athletes participating in an ECP. An injury survey was sent to 1100 members of Iron Tribe Fitness, a gym franchise with 5 locations across Birmingham, Alabama, that employs exercises consistent with an ECP in this study. An injury was defined as a physical condition resulting from ECP participation that caused the athlete to either seek medical treatment, take time off from exercising, or make modifications to his or her technique to continue. A total of 247 athletes (22%) completed the survey. The majority (57%) of athletes were male (n = 139), and 94% of athletes were white (n = 227). The mean age of athletes was 38.9 years (±8.9 years). Athletes reported participation in the ECP for, on average, 3.6 hours per week (± 1.2 hours). Eighty-five athletes (34%) reported that they had sustained an injury while participating in the ECP. A total of 132 injuries were recorded, yielding an estimated incidence of 2.71 per 1000 hours. The shoulder or upper arm was the most commonly injured body site, accounting for 38 injuries (15% of athletes). Athletes with a previous shoulder injury were 8.1 times as likely to injure their shoulder in the ECP compared with athletes with healthy shoulders. The trunk, back, head, or neck (n = 29, 12%) and the leg or knee (n = 29, 12%) were the second most commonly injured sites. The injury incidence rate among athletes with < 6 months of experience in the ECP

  11. Application of Electro Chemical Machining for materials used in extreme conditions

    NASA Astrophysics Data System (ADS)

    Pandilov, Z.

    2018-03-01

    Electro-Chemical Machining (ECM) is the generic term for a variety of electrochemical processes. ECM is used to machine work pieces from metal and metal alloys irrespective of their hardness, strength or thermal properties, through the anodic dissolution, in aerospace, automotive, construction, medical equipment, micro-systems and power supply industries. The Electro Chemical Machining is extremely suitable for machining of materials used in extreme conditions. General overview of the Electro-Chemical Machining and its application for different materials used in extreme conditions is presented.

  12. Whole lot of parts: stress in extreme environments.

    PubMed

    Steel, G Daniel

    2005-06-01

    Stress has been a central interest for researchers of human behavior in extreme and unusual environments and also for those who are responsible for planning and carrying out expeditions involving such environments. This paper compares the actuarial and case study methods for predicting reactions to stress. Actuarial studies are useful, but do not tap enough variables to allow us to predict how a specific individual will cope with the rigors of an individual mission. Case histories provide a wealth of detail, but few investigators understand the challenges of properly applying this method. This study reviews some of the strengths and weaknesses of the actuarial and case history methods, and presents a four celled taxonomy of stress based on method (actuarial and case history) and effects (distress and eustress). For both research and operational purposes, the person, the setting, and time should not be considered independently; rather, it is an amalgam of these variables that provides the proper basis of analysis.

  13. Porous materials for thermal management under extreme conditions.

    PubMed

    Clyne, T W; Golosnoy, I O; Tan, J C; Markaki, A E

    2006-01-15

    A brief analysis is presented of how heat transfer takes place in porous materials of various types. The emphasis is on materials able to withstand extremes of temperature, gas pressure, irradiation, etc. i.e. metals and ceramics, rather than polymers. A primary aim is commonly to maximize either the thermal resistance (i.e. provide insulation) or the rate of thermal equilibration between the material and a fluid passing through it (i.e. to facilitate heat exchange). The main structural characteristics concern porosity (void content), anisotropy, pore connectivity and scale. The effect of scale is complex, since the permeability decreases as the structure is refined, but the interfacial area for fluid-solid heat exchange is, thereby, raised. The durability of the pore structure may also be an issue, with a possible disadvantage of finer scale structures being poor microstructural stability under service conditions. Finally, good mechanical properties may be required, since the development of thermal gradients, high fluid fluxes, etc. can generate substantial levels of stress. There are, thus, some complex interplays between service conditions, pore architecture/scale, fluid permeation characteristics, convective heat flow, thermal conduction and radiative heat transfer. Such interplays are illustrated with reference to three examples: (i) a thermal barrier coating in a gas turbine engine; (ii) a Space Shuttle tile; and (iii) a Stirling engine heat exchanger. Highly porous, permeable materials are often made by bonding fibres together into a network structure and much of the analysis presented here is oriented towards such materials.

  14. Posttraumatic Stress Disorder (PTSD) and Disorders of Extreme Stress (DESNOS) symptoms following prostitution and childhood abuse.

    PubMed

    Choi, Hyunjung; Klein, Carolin; Shin, Min-Sup; Lee, Hoon-Jin

    2009-08-01

    With the participation of 46 prostituted women in Korea, this study investigates the relationship between prostitution experiences, a history of childhood sexual abuse (CSA), and symptoms of posttraumatic stress disorder (PTSD) and disorders of extreme stress not otherwise specified (DESNOS). Prostituted women showed higher levels of PTSD and DESNOS symptoms compared to a control group. Women who had experienced both CSA by a significant other and prostitution showed the highest levels of traumatic stress. However, posttraumatic reexperiencing and avoidance and identity, relational, and affect regulation problems were significant for prostitution experiences even when the effects of CSA were controlled.

  15. Risk Factor, Job Stress and Quality of Life in Workers With Lower Extremity Pain Who Use Video Display Terminals

    PubMed Central

    2018-01-01

    Objective To investigate the general characteristics of video display terminal (VDT) workers with lower extremity pain, to identify the risk factors of work-related lower extremity pain, and to examine the relationship between work stress and health-related quality of life. Methods A questionnaire about the general characteristics of the survey group and the musculoskeletal symptom was used. A questionnaire about job stress used the Korean Occupational Stress Scale and medical outcome study 36-item Short Form Health Survey (SF-36) to assess health-related quality of life. Results There were 1,711 subjects in the lower extremity group and 2,208 subjects in the control group. Age, sex, hobbies, and feeling of loading affected lower extremity pain as determined in a crossover analysis of all variables with and without lower extremity pain. There were no statistically significant difference between the two groups in terms of job stress and SF-36 values of the pain and control groups. Conclusion Job stress in VDT workers was higher than average, and the quality of life decreased as the stress increased. Factors such as younger age, women, hobbies other than exercise, and feeling of loading influenced lower extremity pain of workers. Further long-term follow-up and supplementary studies are needed to identify risk factors for future lower extremity pain, taking into account ergonomic factors such as worker's posture. PMID:29560330

  16. Risk Factor, Job Stress and Quality of Life in Workers With Lower Extremity Pain Who Use Video Display Terminals.

    PubMed

    Choi, Sehoon; Jang, Seong Ho; Lee, Kyu Hoon; Kim, Mi Jung; Park, Si-Bog; Han, Seung Hoon

    2018-02-01

    To investigate the general characteristics of video display terminal (VDT) workers with lower extremity pain, to identify the risk factors of work-related lower extremity pain, and to examine the relationship between work stress and health-related quality of life. A questionnaire about the general characteristics of the survey group and the musculoskeletal symptom was used. A questionnaire about job stress used the Korean Occupational Stress Scale and medical outcome study 36-item Short Form Health Survey (SF-36) to assess health-related quality of life. There were 1,711 subjects in the lower extremity group and 2,208 subjects in the control group. Age, sex, hobbies, and feeling of loading affected lower extremity pain as determined in a crossover analysis of all variables with and without lower extremity pain. There were no statistically significant difference between the two groups in terms of job stress and SF-36 values of the pain and control groups. Job stress in VDT workers was higher than average, and the quality of life decreased as the stress increased. Factors such as younger age, women, hobbies other than exercise, and feeling of loading influenced lower extremity pain of workers. Further long-term follow-up and supplementary studies are needed to identify risk factors for future lower extremity pain, taking into account ergonomic factors such as worker's posture.

  17. Straw Mulching Reduces the Harmful Effects of Extreme Hydrological and Temperature Conditions in Citrus Orchards

    PubMed Central

    Liu, Yi; Wang, Jing; Liu, Dongbi; Li, Zhiguo; Zhang, Guoshi; Tao, Yong; Xie, Juan; Pan, Junfeng; Chen, Fang

    2014-01-01

    Extreme weather conditions with negative impacts can strongly affect agricultural production. In the Danjiangkou reservoir area, citrus yields were greatly influenced by cold weather conditions and drought stress in 2011. Soil straw mulching (SM) practices have a major effect on soil water and thermal regimes. A two-year field experiment was conducted to evaluate whether the SM practices can help achieve favorable citrus fruit yields. Results showed that the annual total runoff was significantly (P<0.05) reduced with SM as compared to the control (CK). Correspondingly, mean soil water storage in the top 100 cm of the soil profile was increased in the SM as compared to the CK treatment. However, this result was significant only in the dry season (Jan to Mar), and not in the wet season (Jul to Sep) for both years. Interestingly, the SM treatment did not significantly increase citrus fruit yield in 2010 but did so in 2011, when the citrus crop was completely destroyed (zero fruit yield) in the CK treatment plot due to extremely low temperatures during the citrus overwintering stage. The mulch probably acted as an insulator, resulting in smaller fluctuations in soil temperature in the SM than in the CK treatment. The results suggested that the small effects on soil water and temperature changes created by surface mulch had limited impact on citrus fruit yield in a normal year (e.g., in 2010). However, SM practices can positively impact citrus fruit yield in extreme weather conditions. PMID:24489844

  18. Sleep and stress in man: an approach through exercise and exposure to extreme environments.

    PubMed

    Buguet, A; Cespuglio, R; Radomski, M W

    1998-05-01

    In this paper, the effects of exercise on human sleep (in temperate, cold, and hot climates) are compared with those of exposure to extreme environments (tropical, polar climates). Exercise has two effect: (i) when the exercise load is too heavy or if the subject is not trained to the exercise conditions, the hypothalamo-pituitary-adrenocortical axis (HPA) is strongly activated (somatic stress reaction), and a diachronic (delayed) decrease in total sleep time and slow-wave sleep (SWS) occurs with a synchronic (concomitant) sleep disruption (such as a decrease in REM sleep); (ii) a diachronic enhancement of SWS and (or) REM sleep occurs during moderate training and in athletes, with a moderate HPA activation (neurogenic stress reaction). Heat acclimatization (neurogenic stress response) results in a diachronic increase in SWS, contrary to acute heat exposure (somatic stress) which leads to a diachronic decrease in SWS. Nocturnal cold exposure (somatic and (or) neurogenic stress) provokes a synchronic decrease in REM sleep with an activation of stress hormones, which are reduced by previous acclimation (neurogenic pathway); SWS remains undisturbed in the cold, as it occurs at the beginning of the night before body cooling. In conclusion, when the brain can deal with the stressor (neurogenic stress), diachronic increases in SWS and (or) REM sleep occur. When these "central" mechanisms are overloaded, the classical "somatic" stress reaction occurs with diachronic and synchronic disruptions of the sleep structure.

  19. Injuries in an Extreme Conditioning Program

    PubMed Central

    Aune, Kyle T.; Powers, Joseph M.

    2016-01-01

    Background: Extreme conditioning programs (ECPs) are fitness training regimens relying on aerobic, plyometric, and resistance training exercises, often with high levels of intensity for a short duration of time. These programs have grown rapidly in popularity in recent years, but science describing the safety profile of these programs is lacking. Hypothesis: The rate of injury in the extreme conditioning program is greater than the injury rate of weightlifting and the majority of injuries occur to the shoulder and back. Study Design: Cross-sectional study. Level of Evidence: Level 4. Methods: This is a retrospective survey of injuries reported by athletes participating in an ECP. An injury survey was sent to 1100 members of Iron Tribe Fitness, a gym franchise with 5 locations across Birmingham, Alabama, that employs exercises consistent with an ECP in this study. An injury was defined as a physical condition resulting from ECP participation that caused the athlete to either seek medical treatment, take time off from exercising, or make modifications to his or her technique to continue. Results: A total of 247 athletes (22%) completed the survey. The majority (57%) of athletes were male (n = 139), and 94% of athletes were white (n = 227). The mean age of athletes was 38.9 years (±8.9 years). Athletes reported participation in the ECP for, on average, 3.6 hours per week (± 1.2 hours). Eighty-five athletes (34%) reported that they had sustained an injury while participating in the ECP. A total of 132 injuries were recorded, yielding an estimated incidence of 2.71 per 1000 hours. The shoulder or upper arm was the most commonly injured body site, accounting for 38 injuries (15% of athletes). Athletes with a previous shoulder injury were 8.1 times as likely to injure their shoulder in the ECP compared with athletes with healthy shoulders. The trunk, back, head, or neck (n = 29, 12%) and the leg or knee (n = 29, 12%) were the second most commonly injured sites. The

  20. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida.

    PubMed

    Rámila, Consuelo D P; Contreras, Samuel A; Di Domenico, Camila; Molina-Montenegro, Marco A; Vega, Andrea; Handford, Michael; Bonilla, Carlos A; Pizarro, Gonzalo E

    2016-11-05

    Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500mg/L), and within its tissues (>5000mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effects of City Expansion on Heat Stress under Climate Change Conditions

    PubMed Central

    Argüeso, Daniel; Evans, Jason P.; Pitman, Andrew J.; Di Luca, Alejandro

    2015-01-01

    We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990–2009) and future (2040–2059) simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort. PMID:25668390

  2. Beyond the extreme: Recovery dynamics following heat and drought stress in trees

    NASA Astrophysics Data System (ADS)

    Ruehr, N.; Duarte, A. G.; Arneth, A.

    2016-12-01

    Plant recovery processes following extreme events can have profound impacts on forest carbon and water cycling. However, large knowledge gaps persist on recovery dynamics of tree physiological processes following heat and drought stress. To date, few experimental studies exist that include recovery responses in stress research. We synthesized recent research on tree recovery processes related to carbon and water exchange following heat and drought stress, and show that the intensity of stress can affect the pace of recovery with large variations among tree species and processes. Following stress release, leaf water potential recovers instantaneously upon rewatering as found in most studies. Transpiration (T), stomatal conductance (gs) and photosynthesis (A) often lag behind, with lowest recovery following severe stress. Interestingly, the patterns in heat and drought stress recovery apparently differ. While A recovers generally more quickly than gs following drought, which increases water-use-efficiency, both gs and A tend to remain reduced following heat events. The pace of recovery following heat events likely depends on water availability during stress and temperature maxima reached (photosynthetic impairment at temperatures > 40°C). Slow recovery during the initial post-stress days might result from hydraulic limitation and elevated levels of abscisic acid. The mechanisms resulting in a continued impairment of T and gs during a later stage of the recovery period (from weeks up to months) are still elusive. Feedback loops from the photosynthetic machinery, reduced mesophyll conductance or leaf morphological changes may play an important role. In summary, post-stress recovery can substantially affect tree carbon and water cycling. Thus, in order to estimate the impacts of extreme climate events on forest ecosystems in the long-term, we need a better understanding of recovery dynamics and their limitations in terms of stress timing, intensity and duration.

  3. Exploratory results from a new rotary shear designed to reproduce the extreme deformation conditions of crustal earthquakes

    NASA Astrophysics Data System (ADS)

    Di Toro, G.; Nielsen, S. B.; Spagnuolo, E.; Smith, S.; Violay, M. E.; Niemeijer, A. R.; Di Felice, F.; Di Stefano, G.; Romeo, G.; Scarlato, P.

    2011-12-01

    A challenging goal in experimental rock deformation is to reproduce the extreme deformation conditions typical of coseismic slip in crustal earthquakes: large slip (up to 50 m), slip rates (0.1-10 m/s), accelerations (> 10 m/s2) and normal stress (> 50 MPa). Moreover, fault zones usually contain non-cohesive rocks (gouges) and fluids. The integration of all these deformation conditions is such a technical challenge that there is currently no apparatus in the world that can reproduce seismic slip. Yet, the determination of rock friction at seismic slip rates remains one of the main unknowns in earthquake physics, as it cannot be determined (or very approximately) by seismic wave inversion analysis. In the last thirty years, rotary shear apparatus were designed that combine large normal stresses and slip but low slip rates (high-pressure rotary shears first designed by Tullis) or low normal stresses but large slip rates and slip (rotary shears first designed by Shimamoto). Here we present the results of experiments using a newly-constructed Slow to HIgh Velocity Apparatus (SHIVA), installed at INGV in Rome, which extends the combination of normal stress, slip and slip rate achieved by previous apparatus and reproduces the conditions likely to occur during an earthquake in the shallow crust. SHIVA uses two brushless engines (max power 300 kW, max torque 930 Nm) and an air actuator (thrust 5 tons) in a rotary shear configuration (nominally infinite displacement) to slide hollow rock cylinders (30/50 mm int./ext. diameter) at slip rates ranging from 10 micron/s up to 6.5 m/s, accelerations up to 80 m/s2 and normal stresses up to 50 MPa. SHIVA can also perform experiments in which the torque on the sample (rather than the slip rate) is progressively increased until spontaneous failure occurs: this experimental capability should better reproduce natural conditions. The apparatus is equipped with a sample chamber to carry out experiments in the presence of fluids (up to 15

  4. Adaptive Coping under Conditions of Extreme Stress: Multilevel Influences on the Determinants of Resilience in Maltreated Children

    ERIC Educational Resources Information Center

    Cicchetti, Dante; Rogosch, Fred A.

    2009-01-01

    The study of resilience in maltreated children reveals the possibility of coping processes and resources on multiple levels of analysis as children strive to adapt under conditions of severe stress. In a maltreating context, aspects of self-organization, including self-esteem, self-reliance, emotion regulation, and adaptable yet reserved…

  5. Global crop yield response to extreme heat stress under multiple climate change futures

    NASA Astrophysics Data System (ADS)

    Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R.

    2014-12-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (dY = -12.8 ± 6.7% versus -7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (dY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (dY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.

  6. Global crop yield response to extreme heat stress under multiple climate change futures

    NASA Astrophysics Data System (ADS)

    Deryng, Delphine; Conway, Declan; Ramankutty, Navin; Price, Jeff; Warren, Rachel

    2014-03-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (ΔY = -12.8 ± 6.7% versus - 7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (ΔY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (ΔY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.

  7. [Sports and extreme conditions. Cardiovascular incidence in long term exertion and extreme temperatures (heat, cold)].

    PubMed

    Melin, B; Savourey, G

    2001-06-30

    During ultra-endurance exercise, both increase in body temperature and dehydration due to sweat losses, lead to a decrease in central blood volume. The heart rate drift allows maintaining appropriate cardiac output, in order to satisfy both muscle perfusion and heat transfer requirements by increasing skin blood flow. The resulting dehydration can impair thermal regulation and increase the risks of serious accidents as heat stroke. Endurance events, lasting more than 8 hours, result in large sweat sodium chloride losses. Thus, ingestion of large amounts of water with poor salt intake can induce symptomatic hyponatremia (plasma sodium < 130 mEq/L) which is also a serious accident. Heat environment increases the thermal constraint and when the air humidity is high, evaporation of sweat is compromise. Thus, thermal stress becomes uncompensable which increases the risk of cardiovascular collapse. Cold exposure induces physiological responses to maintain internal temperature by both limiting thermal losses and increasing metabolic heat production. Cold can induce accidental hypothermia and local frost-bites; moreover, it increases the risk of arrhythmia during exercise. Some guidelines (cardiovascular fitness, water and electrolyte intakes, protective clothing) are given for each extreme condition.

  8. Liquid Water Restricts Habitability in Extreme Deserts.

    PubMed

    Cockell, Charles S; Brown, Sarah; Landenmark, Hanna; Samuels, Toby; Siddall, Rebecca; Wadsworth, Jennifer

    2017-04-01

    Liquid water is a requirement for biochemistry, yet under some circumstances it is deleterious to life. Here, we show that liquid water reduces the upper temperature survival limit for two extremophilic photosynthetic microorganisms (Gloeocapsa and Chroococcidiopsis spp.) by greater than 40°C under hydrated conditions compared to desiccated conditions. Under hydrated conditions, thermal stress causes protein inactivation as shown by the fluorescein diacetate assay. The presence of water was also found to enhance the deleterious effects of freeze-thaw in Chroococcidiopsis sp. In the presence of water, short-wavelength UV radiation more effectively kills Gloeocapsa sp. colonies, which we hypothesize is caused by factors including the greater penetration of UV radiation into hydrated colonies compared to desiccated colonies. The data predict that deserts where maximum thermal stress or irradiation occurs in conjunction with the presence of liquid water may be less habitable to some organisms than more extreme arid deserts where organisms can dehydrate prior to being exposed to these extremes, thus minimizing thermal and radiation damage. Life in extreme deserts is poised between the deleterious effects of the presence and the lack of liquid water. Key Words: Deserts-Extremophiles-Stress-High temperatures-UV radiation-Desiccation. Astrobiology 17, 309-318.

  9. The Influence of Wheelchair Propulsion Hand Pattern on Upper Extremity Muscle Power and Stress

    PubMed Central

    Slowik, Jonathan S.; Requejo, Philip S.; Mulroy, Sara J.; Neptune, Richard R.

    2016-01-01

    The hand pattern (i.e., full-cycle hand path) used during manual wheelchair propulsion is frequently classified as one of four distinct hand pattern types: arc, single loop, double loop and semicircular. Current clinical guidelines recommend the use of the semicircular pattern, which is based on advantageous levels of broad biomechanical metrics implicitly related to the demand placed on the upper extremity (e.g., lower cadence). However, an understanding of the influence of hand pattern on specific measures of upper extremity muscle demand (e.g., muscle power and stress) is needed to help make such recommendations, but these quantities are difficult and impractical to measure experimentally. The purpose of this study was to use musculoskeletal modeling and forward dynamics simulations to investigate the influence of the hand pattern used on specific measures of upper extremity muscle demand. The simulation results suggest that the double loop and semicircular patterns produce the most favorable levels of overall muscle stress and total muscle power. The double loop pattern had the lowest full-cycle and recovery-phase upper extremity demand but required high levels of muscle power during the relatively short contact phase. The semicircular pattern had the second-lowest full-cycle levels of overall muscle stress and total muscle power, and demand was more evenly distributed between the contact and recovery phases. These results suggest that in order to decrease upper extremity demand, manual wheelchair users should use either the double loop or semicircular pattern when propelling their wheelchairs at a self-selected speed on level ground. PMID:27062591

  10. Characterizing drought stress and trait influence on maize yield under current and future conditions.

    PubMed

    Harrison, Matthew T; Tardieu, François; Dong, Zhanshan; Messina, Carlos D; Hammer, Graeme L

    2014-03-01

    Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for

  11. Exploratory and Confirmatory Factor Analyses of the Structured Interview for Disorders of Extreme Stress

    ERIC Educational Resources Information Center

    Scoboria, Alan; Ford, Julian; Lin, Hsiu-ju; Frisman, Linda

    2008-01-01

    Two studies were conducted to provide the first empirical examination of the factor structure of a revised version of the clinically derived Structured Interview for Disorders of Extreme Stress, a structured interview designed to assess associated features of posttraumatic stress disorder (PTSD) thought to be related to early onset, interpersonal,…

  12. Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions.

    PubMed

    Szabó, Attila; Korponai, Kristóf; Kerepesi, Csaba; Somogyi, Boglárka; Vörös, Lajos; Bartha, Dániel; Márialigeti, Károly; Felföldi, Tamás

    2017-05-01

    Soda pans of the Pannonian steppe are unique environments regarding their physical and chemical characteristics: shallowness, high turbidity, intermittent character, alkaline pH, polyhumic organic carbon concentration, hypertrophic condition, moderately high salinity, sodium and carbonate ion dominance. The pans are highly productive environments with picophytoplankton predominance. Little is known about the planktonic bacterial communities inhabiting these aquatic habitats; therefore, amplicon sequencing and shotgun metagenomics were applied to reveal their composition and functional properties. Results showed a taxonomically complex bacterial community which was distinct from other soda lakes regarding its composition, e.g. the dominance of class Alphaproteobacteria was observed within phylum Proteobacteria. The shotgun metagenomic analysis revealed several functional gene components related to the harsh and at the same time hypertrophic environmental conditions, e.g. proteins involved in stress response, transport and hydrolase systems targeting phytoplankton-derived organic matter. This is the first detailed report on the indigenous planktonic bacterial communities coping with the multiple extreme conditions present in the unique soda pans of the Pannonian steppe.

  13. Synoptic Conditions and Moisture Sources Actuating Extreme Precipitation in Nepal

    NASA Astrophysics Data System (ADS)

    Bohlinger, Patrik; Sorteberg, Asgeir; Sodemann, Harald

    2017-12-01

    Despite the vast literature on heavy-precipitation events in South Asia, synoptic conditions and moisture sources related to extreme precipitation in Nepal have not been addressed systematically. We investigate two types of synoptic conditions—low-pressure systems and midlevel troughs—and moisture sources related to extreme precipitation events. To account for the high spatial variability in rainfall, we cluster station-based daily precipitation measurements resulting in three well-separated geographic regions: west, central, and east Nepal. For each region, composite analysis of extreme events shows that atmospheric circulation is directed against the Himalayas during an extreme event. The direction of the flow is regulated by midtropospheric troughs and low-pressure systems traveling toward the respective region. Extreme precipitation events feature anomalous high abundance of total column moisture. Quantitative Lagrangian moisture source diagnostic reveals that the largest direct contribution stems from land (approximately 75%), where, in particular, over the Indo-Gangetic Plain moisture uptake was increased. Precipitation events occurring in this region before the extreme event likely provided additional moisture.

  14. Liquid Water Restricts Habitability in Extreme Deserts

    NASA Astrophysics Data System (ADS)

    Cockell, Charles S.; Brown, Sarah; Landenmark, Hanna; Samuels, Toby; Siddall, Rebecca; Wadsworth, Jennifer

    2017-04-01

    Liquid water is a requirement for biochemistry, yet under some circumstances it is deleterious to life. Here, we show that liquid water reduces the upper temperature survival limit for two extremophilic photosynthetic microorganisms (Gloeocapsa and Chroococcidiopsis spp.) by greater than 40°C under hydrated conditions compared to desiccated conditions. Under hydrated conditions, thermal stress causes protein inactivation as shown by the fluorescein diacetate assay. The presence of water was also found to enhance the deleterious effects of freeze-thaw in Chroococcidiopsis sp. In the presence of water, short-wavelength UV radiation more effectively kills Gloeocapsa sp. colonies, which we hypothesize is caused by factors including the greater penetration of UV radiation into hydrated colonies compared to desiccated colonies. The data predict that deserts where maximum thermal stress or irradiation occurs in conjunction with the presence of liquid water may be less habitable to some organisms than more extreme arid deserts where organisms can dehydrate prior to being exposed to these extremes, thus minimizing thermal and radiation damage. Life in extreme deserts is poised between the deleterious effects of the presence and the lack of liquid water.

  15. The matter in extreme conditions instrument at the Linac Coherent Light Source

    DOE PAGES

    Nagler, Bob; Arnold, Brice; Bouchard, Gary; ...

    2015-04-21

    The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented.

  16. Future crop production threatened by extreme heat

    NASA Astrophysics Data System (ADS)

    Siebert, Stefan; Ewert, Frank

    2014-04-01

    Heat is considered to be a major stress limiting crop growth and yields. While important findings on the impact of heat on crop yield have been made based on experiments in controlled environments, little is known about the effects under field conditions at larger scales. The study of Deryng et al (2014 Global crop yield response to extreme heat stress under multiple climate change futures Environ. Res. Lett. 9 034011), analysing the impact of heat stress on maize, spring wheat and soya bean under climate change, represents an important contribution to this emerging research field. Uncertainties in the occurrence of heat stress under field conditions, plant responses to heat and appropriate adaptation measures still need further investigation.

  17. The Matter in Extreme Conditions instrument at the Linac Coherent Light Source

    PubMed Central

    Nagler, Bob; Arnold, Brice; Bouchard, Gary; Boyce, Richard F.; Boyce, Richard M.; Callen, Alice; Campell, Marc; Curiel, Ruben; Galtier, Eric; Garofoli, Justin; Granados, Eduardo; Hastings, Jerry; Hays, Greg; Heimann, Philip; Lee, Richard W.; Milathianaki, Despina; Plummer, Lori; Schropp, Andreas; Wallace, Alex; Welch, Marc; White, William; Xing, Zhou; Yin, Jing; Young, James; Zastrau, Ulf; Lee, Hae Ja

    2015-01-01

    The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented. PMID:25931063

  18. Fault stability under conditions of variable normal stress

    USGS Publications Warehouse

    Dieterich, J.H.; Linker, M.F.

    1992-01-01

    The stability of fault slip under conditions of varying normal stress is modelled as a spring and slider system with rate- and state-dependent friction. Coupling of normal stress to shear stress is achieved by inclining the spring at an angle, ??, to the sliding surface. Linear analysis yields two conditions for unstable slip. The first, of a type previously identified for constant normal stress systems, results in instability if stiffness is below a critical value. Critical stiffness depends on normal stress, constitutive parameters, characteristic sliding distance and the spring angle. Instability of the first type is possible only for velocity-weakening friction. The second condition yields instability if spring angle ?? <-cot-1??ss, where ??ss is steady-state sliding friction. The second condition can arise under conditions of velocity strengthening or weakening. Stability fields for finite perturbations are investigated by numerical simulation. -Authors

  19. 11. DETAIL OF EXTREMELY DETERIORATED CONDITION OF ORIGINAL STONE DAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL OF EXTREMELY DETERIORATED CONDITION OF ORIGINAL STONE DAM ABUTMENT AND REASON FOR ENCASING ABUTMENT IN CONCRETE, c. 1918. - Dam No. 5 Hydroelectric Plant, On Potomac River, Hedgesville, Berkeley County, WV

  20. Competition and facilitation structure plant communities under nurse tree canopies in extremely stressful environments.

    PubMed

    Al-Namazi, Ali A; El-Bana, Magdy I; Bonser, Stephen P

    2017-04-01

    Nurse plant facilitation in stressful environments can produce an environment with relatively low stress under its canopy. These nurse plants may produce the conditions promoting intense competition between coexisting species under the canopy, and canopies may establish stress gradients, where stress increases toward the edge of the canopy. Competition and facilitation on these stress gradients may control species distributions in the communities under canopies. We tested the following predictions: (1) interactions between understory species shift from competition to facilitation in habitats experiencing increasing stress from the center to the edge of canopy of a nurse plant, and (2) species distributions in understory communities are controlled by competitive interactions at the center of canopy, and facilitation at the edge of the canopy. We tested these predictions using a neighbor removal experiment under nurse trees growing in arid environments. Established individuals of each of four of the most common herbaceous species in the understory were used in the experiment. Two species were more frequent in the center of the canopy, and two species were more frequent at the edge of the canopy. Established individuals of each species were subjected to neighbor removal or control treatments in both canopy center and edge habitats. We found a shift from competitive to facilitative interactions from the center to the edge of the canopy. The shift in the effect of neighbors on the target species can help to explain species distributions in these canopies. Canopy-dominant species only perform well in the presence of neighbors in the edge microhabitat. Competition from canopy-dominant species can also limit the performance of edge-dominant species in the canopy microhabitat. The shift from competition to facilitation under nurse plant canopies can structure the understory communities in extremely stressful environments.

  1. Prevention of lower extremity stress fractures: a controlled trial of a shock absorbent insole.

    PubMed Central

    Gardner, L I; Dziados, J E; Jones, B H; Brundage, J F; Harris, J M; Sullivan, R; Gill, P

    1988-01-01

    A prospective controlled trial was carried out to determine the usefulness of a viscoelastic polymer insole in prevention of stress fractures and stress reactions of the lower extremities. The subjects were 3,025 US Marine recruits who were followed for 12 weeks of training at Parris Island, South Carolina. Polymer and standard mesh insoles were systematically distributed in boots that were issued to members of odd and even numbered platoons. The most important finding was that an elastic polymer insole with good shock absorbency properties did not prevent stress reactions of bone during a 12-week period of vigorous physical training. To control for the confounding effects of running in running shoes, which occurred for about one and one-half hours per week for the first five weeks, we also examined the association of age of shoes and cost of shoes with injury incidence. A slight trend of increasing stress injuries by increasing age of shoes was observed. However, this trend did not account for the similarity of rates in the two insole groups. In addition, we observed a strong trend of decreasing stress injury rate by history of increasing physical activity, as well as a higher stress injury rate in White compared to Black recruits. The results of the trial were not altered after controlling for these factors. This prospective study confirms previous clinical reports of the association of stress fractures with physical activity history. The clinical application of a shock absorbing insole as a preventive for lower extremity stress reactions is not supported in these uniformly trained recruits. The findings are relevant to civilian populations. PMID:3056045

  2. Extreme weather conditions reduce the CO2 fertilization effect in temperate C3 grasslands

    NASA Astrophysics Data System (ADS)

    Obermeier, Wolfgang; Lehnert, Lukas; Kammann, Claudia; Müller, Christoph; Grünhage, Ludger; Luterbacher, Jürg; Erbs, Martin; Yuan, Naiming; Bendix, Jörg

    2016-04-01

    The increase in atmospheric greenhouse gas concentrations from anthropogenic activities is the major driver of global climate change. The rising atmospheric carbon dioxide (CO2) concentrations may stimulate plant photosynthesis and, thus, cause a net sink effect in the global carbon cycle. As a consequence of an enhanced photosynthesis, an increase in the net primary productivity (NPP) of C3 plants (termed CO2 fertilization) is widely assumed. This process is associated with a reduced stomatal conductance of leaves as the carbon demand of photosynthesis is met earlier. This causes a higher water-use efficiency and, hence, may reduce water stress in plants exposed to elevated CO2 concentrations ([eCO2]). However, the magnitude and persistence of the CO2 fertilization effect under a future climate including more frequent weather extremes are controversial. To test the CO2 fertilization effect for Central European grasslands, a data set comprising 16 years of biomass samples and environmental variables such as local weather and soil conditions was analysed by means of a novel approach. The data set was recorded on a "Free Air Carbon dioxide Enrichment" (FACE) experimental site which allows to quantify the CO2 fertilization effect under naturally occurring climate variations. The results indicate that the CO2 fertilization effect on the aboveground biomass is strongest under local average environmental conditions. Such intermediate regimes were defined by the mean +/- 1 standard deviation of the long-term average in the respective variable three months before harvest. The observed CO2 fertilization effect was reduced or vanished under drier, wetter and hotter conditions when the respective variable exceeded the bounds of the intermediate regimes. Comparable conditions, characterized by a higher frequency of more extreme weather conditions, are predicted for the future by climate projections. Consequently, biogeochemical models may overestimate the future NPP sink

  3. Adrenocortical stress responses influence an invasive vertebrate's fitness in an extreme environment

    PubMed Central

    Jessop, Tim S.; Letnic, Mike; Webb, Jonathan K.; Dempster, Tim

    2013-01-01

    Continued range expansion into physiologically challenging environments requires invasive species to maintain adaptive phenotypic performance. The adrenocortical stress response, governed in part by glucocorticoid hormones, influences physiological and behavioural responses of vertebrates to environmental stressors. However, any adaptive role of this response in invasive populations that are expanding into extreme environments is currently unclear. We experimentally manipulated the adrenocortical stress response of invasive cane toads (Rhinella marina) to investigate its effect on phenotypic performance and fitness at the species' range front in the Tanami Desert, Australia. Here, toads are vulnerable to overheating and dehydration during the annual hot–dry season and display elevated plasma corticosterone levels indicative of severe environmental stress. By comparing unmanipulated control toads with toads whose adrenocortical stress response was manipulated to increase acute physiological stress responsiveness, we found that control toads had significantly reduced daily evaporative water loss and higher survival relative to the experimental animals. The adrenocortical stress response hence appears essential in facilitating complex phenotypic performance and setting fitness trajectories of individuals from invasive species during range expansion. PMID:23945686

  4. Adolescent risk-taking under stressed and non-stressed conditions: Conservative, calculating and impulsive types

    PubMed Central

    Johnson, Sara B.; Dariotis, Jacinda K.; Wang, Constance

    2012-01-01

    Purpose Adolescent risk-taking may result from heightened susceptibility to environmental cues, particularly emotion and potential rewards. This study evaluated the impact of social stress on adolescent risk-taking, accounting for individual differences in risk-taking under non-stressed conditions. Methods Eighty-nine older adolescents completed a computerized risk-taking and decision-making battery at baseline. At follow-up, participants were randomized to a control condition, which repeated this battery, or an experimental condition, which included a social and cognitive stressor before the battery. Baseline risk-taking data were cluster-analyzed to create groups of adolescents with similar risk-taking tendencies. The degree to which these risk-taking tendencies predicted risk-taking by stress condition at follow-up was assessed. Results Participants in the stress condition took more risks those in the no-stress condition. However, differences in risk-taking under stress were related to baseline risk-taking tendencies. We observed three types of risk-takers: conservative, calculated, and impulsive. Impulsives were less accurate and planful under stress, calculated risk-takers took fewer risks, and conservatives engaged in low risk-taking regardless of stress. Conclusions As a group, adolescents are more likely to take risks in “hot cognitive” than in “cold cognitive” situations. However, there is significant variability in adolescents’ behavioral responses to stress related to trait-level risk-taking tendencies. Implications and contribution Many, but not all, adolescents take more risks under social stress. Parents and clinicians should be aware that behavior is a function of both personality and environmental cues. Interventions may help adolescents recognize their risk-taking propensity and environmental “triggers” that undermine their attempts to control their behavior. PMID:22794532

  5. Neurodevelopmental Outcomes of Extremely Preterm Infants Randomized to Stress Dose Hydrocortisone.

    PubMed

    Parikh, Nehal A; Kennedy, Kathleen A; Lasky, Robert E; Tyson, Jon E

    2015-01-01

    To compare the effects of stress dose hydrocortisone therapy with placebo on survival without neurodevelopmental impairments in high-risk preterm infants. We recruited 64 extremely low birth weight (birth weight ≤1000 g) infants between the ages of 10 and 21 postnatal days who were ventilator-dependent and at high-risk for bronchopulmonary dysplasia. Infants were randomized to a tapering 7-day course of stress dose hydrocortisone or saline placebo. The primary outcome at follow-up was a composite of death, cognitive or language delay, cerebral palsy, severe hearing loss, or bilateral blindness at a corrected age of 18-22 months. Secondary outcomes included continued use of respiratory therapies and somatic growth. Fifty-seven infants had adequate data for the primary outcome. Of the 28 infants randomized to hydrocortisone, 19 (68%) died or survived with impairment compared with 22 of the 29 infants (76%) assigned to placebo (relative risk: 0.83; 95% CI, 0.61 to 1.14). The rates of death for those in the hydrocortisone and placebo groups were 31% and 41%, respectively (P = 0.42). Randomization to hydrocortisone also did not significantly affect the frequency of supplemental oxygen use, positive airway pressure support, or need for respiratory medications. In high-risk extremely low birth weight infants, stress dose hydrocortisone therapy after 10 days of age had no statistically significant effect on the incidence of death or neurodevelopmental impairment at 18-22 months. These results may inform the design and conduct of future clinical trials. ClinicalTrials.gov NCT00167544.

  6. Neurodevelopmental Outcomes of Extremely Preterm Infants Randomized to Stress Dose Hydrocortisone

    PubMed Central

    Parikh, Nehal A.; Kennedy, Kathleen A.; Tyson, Jon E.

    2015-01-01

    Objective To compare the effects of stress dose hydrocortisone therapy with placebo on survival without neurodevelopmental impairments in high-risk preterm infants. Study Design We recruited 64 extremely low birth weight (birth weight ≤1000g) infants between the ages of 10 and 21 postnatal days who were ventilator-dependent and at high-risk for bronchopulmonary dysplasia. Infants were randomized to a tapering 7-day course of stress dose hydrocortisone or saline placebo. The primary outcome at follow-up was a composite of death, cognitive or language delay, cerebral palsy, severe hearing loss, or bilateral blindness at a corrected age of 18–22 months. Secondary outcomes included continued use of respiratory therapies and somatic growth. Results Fifty-seven infants had adequate data for the primary outcome. Of the 28 infants randomized to hydrocortisone, 19 (68%) died or survived with impairment compared with 22 of the 29 infants (76%) assigned to placebo (relative risk: 0.83; 95% CI, 0.61 to 1.14). The rates of death for those in the hydrocortisone and placebo groups were 31% and 41%, respectively (P = 0.42). Randomization to hydrocortisone also did not significantly affect the frequency of supplemental oxygen use, positive airway pressure support, or need for respiratory medications. Conclusions In high-risk extremely low birth weight infants, stress dose hydrocortisone therapy after 10 days of age had no statistically significant effect on the incidence of death or neurodevelopmental impairment at 18–22 months. These results may inform the design and conduct of future clinical trials. Trial Registration ClinicalTrials.gov NCT00167544 PMID:26376074

  7. Identification of differentially expressed genes in Fiskeby III under ozone stress conditions

    USDA-ARS?s Scientific Manuscript database

    As the global climate changes, plants will be challenged by environmental stresses that are more extreme and more frequent leading to increased yield loss. Specifically, ozone stress is an increasing problem in both urban and rural areas. Soybeans are one of the plant species that are quite ozone se...

  8. Generalized Rainich conditions, generalized stress-energy conditions, and the Hawking-Ellis classification

    NASA Astrophysics Data System (ADS)

    Martín–Moruno, Prado; Visser, Matt

    2017-11-01

    The (generalized) Rainich conditions are algebraic conditions which are polynomial in the (mixed-component) stress-energy tensor. As such they are logically distinct from the usual classical energy conditions (NEC, WEC, SEC, DEC), and logically distinct from the usual Hawking-Ellis (Segré-Plebański) classification of stress-energy tensors (type I, type II, type III, type IV). There will of course be significant inter-connections between these classification schemes, which we explore in the current article. Overall, we shall argue that it is best to view the (generalized) Rainich conditions as a refinement of the classical energy conditions and the usual Hawking-Ellis classification.

  9. Extreme Metal Music and Anger Processing

    PubMed Central

    Sharman, Leah; Dingle, Genevieve A.

    2015-01-01

    The claim that listening to extreme music causes anger, and expressions of anger such as aggression and delinquency have yet to be substantiated using controlled experimental methods. In this study, 39 extreme music listeners aged 18–34 years were subjected to an anger induction, followed by random assignment to 10 min of listening to extreme music from their own playlist, or 10 min silence (control). Measures of emotion included heart rate and subjective ratings on the Positive and Negative Affect Scale (PANAS). Results showed that ratings of PANAS hostility, irritability, and stress increased during the anger induction, and decreased after the music or silence. Heart rate increased during the anger induction and was sustained (not increased) in the music condition, and decreased in the silence condition. PANAS active and inspired ratings increased during music listening, an effect that was not seen in controls. The findings indicate that extreme music did not make angry participants angrier; rather, it appeared to match their physiological arousal and result in an increase in positive emotions. Listening to extreme music may represent a healthy way of processing anger for these listeners. PMID:26052277

  10. Measuring Science Teachers' Stress Level Triggered by Multiple Stressful Conditions

    ERIC Educational Resources Information Center

    Halim, Lilia; Samsudin, Mohd Ali; Meerah, T. Subahan M.; Osman, Kamisah

    2006-01-01

    The complexity of science teaching requires science teachers to encounter a range of tasks. Some tasks are perceived as stressful while others are not. This study aims to investigate the extent to which different teaching situations lead to different stress levels. It also aims to identify the easiest and most difficult conditions to be regarded…

  11. Mechanical characterization of alloys in extreme conditions of high strain rates and high temperature

    NASA Astrophysics Data System (ADS)

    Cadoni, Ezio

    2018-03-01

    The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.

  12. Chronic stress impairs acoustic conditioning more than visual conditioning in rats: morphological and behavioural evidence.

    PubMed

    Dagnino-Subiabre, A; Terreros, G; Carmona-Fontaine, C; Zepeda, R; Orellana, J A; Díaz-Véliz, G; Mora, S; Aboitiz, F

    2005-01-01

    Chronic stress affects brain areas involved in learning and emotional responses. These alterations have been related with the development of cognitive deficits in major depression. The aim of this study was to determine the effect of chronic immobilization stress on the auditory and visual mesencephalic regions in the rat brain. We analyzed in Golgi preparations whether stress impairs the neuronal morphology of the inferior (auditory processing) and superior colliculi (visual processing). Afterward, we examined the effect of stress on acoustic and visual conditioning using an avoidance conditioning test. We found that stress induced dendritic atrophy in inferior colliculus neurons and did not affect neuronal morphology in the superior colliculus. Furthermore, stressed rats showed a stronger impairment in acoustic conditioning than in visual conditioning. Fifteen days post-stress the inferior colliculus neurons completely restored their dendritic structure, showing a high level of neural plasticity that is correlated with an improvement in acoustic learning. These results suggest that chronic stress has more deleterious effects in the subcortical auditory system than in the visual system and may affect the aversive system and fear-like behaviors. Our study opens a new approach to understand the pathophysiology of stress and stress-related disorders such as major depression.

  13. Wireless pilot monitoring system for extreme race conditions.

    PubMed

    Pino, Esteban J; Arias, Diego E; Aqueveque, Pablo; Melin, Pedro; Curtis, Dorothy W

    2012-01-01

    This paper presents the design and implementation of an assistive device to monitor car drivers under extreme conditions. In particular, this system is designed in preparation for the 2012 Atacama Solar Challenge to be held in the Chilean desert. Actual preliminary results show the feasibility of such a project including physiological and ambient sensors, real-time processing algorithms, wireless data transmission and a remote monitoring station. Implementation details and field results are shown along with a discussion of the main problems found in real-life telemetry monitoring.

  14. Lack of correlation of desiccation and radiation tolerance in microorganisms from diverse extreme environments tested under anoxic conditions

    PubMed Central

    Bohmeier, Maria; Perras, Alexandra K; Schwendner, Petra; Rabbow, Elke; Moissl-Eichinger, Christine; Cockell, Charles S; Vannier, Pauline; Marteinsson, Viggo T; Monaghan, Euan P; Ehrenfreund, Pascale; Garcia-Descalzo, Laura; Gómez, Felipe; Malki, Moustafa; Amils, Ricardo; Gaboyer, Frédéric; Westall, Frances; Cabezas, Patricia; Walter, Nicolas; Rettberg, Petra

    2018-01-01

    Abstract Four facultative anaerobic and two obligate anaerobic bacteria were isolated from extreme environments (deep subsurface halite mine, sulfidic anoxic spring, mineral-rich river) in the frame MASE (Mars Analogues for Space Exploration) project. The isolates were investigated under anoxic conditions for their survivability after desiccation up to 6 months and their tolerance to ionizing radiation up to 3000 Gy. The results indicated that tolerances to both stresses are strain-specific features. Yersinia intermedia MASE-LG-1 showed a high desiccation tolerance but its radiation tolerance was very low. The most radiation-tolerant strains were Buttiauxella sp. MASE-IM-9 and Halanaerobium sp. MASE-BB-1. In both cases, cultivable cells were detectable after an exposure to 3 kGy of ionizing radiation, but cells only survived desiccation for 90 and 30 days, respectively. Although a correlation between desiccation and ionizing radiation resistance has been hypothesized for some aerobic microorganisms, our data showed that there was no correlation between tolerance to desiccation and ionizing radiation, suggesting that the physiological basis of both forms of tolerances is not necessarily linked. In addition, these results indicated that facultative and obligate anaerobic organisms living in extreme environments possess varied species-specific tolerances to extremes. PMID:29474542

  15. AgroClimate: Simulating and Monitoring the Risk of Extreme Weather Events from a Crop Phenology Perspective

    NASA Astrophysics Data System (ADS)

    Fraisse, C.; Pequeno, D.; Staub, C. G.; Perry, C.

    2016-12-01

    Climate variability, particularly the occurrence of extreme weather conditions such as dry spells and heat stress during sensitive crop developmental phases can substantially increase the prospect of reduced crop yields. Yield losses or crop failure risk due to stressful weather conditions vary mainly due to stress severity and exposure time and duration. The magnitude of stress effects is also crop specific, differing in terms of thresholds and adaptation to environmental conditions. To help producers in the Southeast USA mitigate and monitor the risk of crop losses due to extreme weather events we developed a web-based tool that evaluates the risk of extreme weather events during the season taking into account the crop development stages. Producers can enter their plans for the upcoming season in a given field (e.g. crop, variety, planting date, acreage etc.), select or not a specific El Nino Southern Oscillation (ENSO) phase, and will be presented with the probabilities (ranging from 0 -100%) of extreme weather events occurring during sensitive phases of the growing season for the selected conditions. The DSSAT models CERES-Maize, CROPGRO-Soybean, CROPGRO-Cotton, and N-Wheat phenology models have been translated from FORTRAN to a standalone versions in R language. These models have been tested in collaboration with Extension faculty and producers during the 2016 season and their usefulness for risk mitigation and monitoring evaluated. A companion AgroClimate app was also developed to help producers track and monitor phenology development during the cropping season.

  16. Environmental Growing Conditions in Five Production Systems Induce Stress Response and Affect Chemical Composition of Cocoa (Theobroma cacao L.) Beans.

    PubMed

    Niether, Wiebke; Smit, Inga; Armengot, Laura; Schneider, Monika; Gerold, Gerhard; Pawelzik, Elke

    2017-11-29

    Cocoa beans are produced all across the humid tropics under different environmental conditions provided by the region but also by the season and the type of production system. Agroforestry systems compared to monocultures buffer climate extremes and therefore provide a less stressful environment for the understory cocoa, especially under seasonally varying conditions. We measured the element concentration as well as abiotic stress indicators (polyamines and total phenolic content) in beans derived from five different production systems comparing monocultures and agroforestry systems and from two harvesting seasons. Concentrations of N, Mg, S, Fe, Mn, Na, and Zn were higher in beans produced in agroforestry systems with high stem density and leaf area index. In the dry season, the N, Fe, and Cu concentration of the beans increased. The total phenolic content increased with proceeding of the dry season while other abiotic stress indicators like spermine decreased, implying an effect of the water availability on the chemical composition of the beans. Agroforestry systems did not buffer the variability of stress indicators over the seasons compared to monocultures. The effect of environmental growing conditions on bean chemical composition was not strong but can contribute to variations in cocoa bean quality.

  17. Modelling hydrological extremes under non-stationary conditions using climate covariates

    NASA Astrophysics Data System (ADS)

    Vasiliades, Lampros; Galiatsatou, Panagiota; Loukas, Athanasios

    2013-04-01

    Extreme value theory is a probabilistic theory that can interpret the future probabilities of occurrence of extreme events (e.g. extreme precipitation and streamflow) using past observed records. Traditionally, extreme value theory requires the assumption of temporal stationarity. This assumption implies that the historical patterns of recurrence of extreme events are static over time. However, the hydroclimatic system is nonstationary on time scales that are relevant to extreme value analysis, due to human-mediated and natural environmental change. In this study the generalized extreme value (GEV) distribution is used to assess nonstationarity in annual maximum daily rainfall and streamflow timeseries at selected meteorological and hydrometric stations in Greece and Cyprus. The GEV distribution parameters (location, scale, and shape) are specified as functions of time-varying covariates and estimated using the conditional density network (CDN) as proposed by Cannon (2010). The CDN is a probabilistic extension of the multilayer perceptron neural network. Model parameters are estimated via the generalized maximum likelihood (GML) approach using the quasi-Newton BFGS optimization algorithm, and the appropriate GEV-CDN model architecture for the selected meteorological and hydrometric stations is selected by fitting increasingly complicated models and choosing the one that minimizes the Akaike information criterion with small sample size correction. For all case studies in Greece and Cyprus different formulations are tested with combinational cases of stationary and nonstationary parameters of the GEV distribution, linear and non-linear architecture of the CDN and combinations of the input climatic covariates. Climatic indices such as the Southern Oscillation Index (SOI), which describes atmospheric circulation in the eastern tropical pacific related to El Niño Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) index that varies on an interdecadal

  18. Extreme Drought Conditions in the Rio Grande/Bravo Basin

    NASA Astrophysics Data System (ADS)

    Gutiérrez, F.; Dracup, J. A.

    2001-12-01

    The Treaty of February 3, 1944 entitled "Utilization of Waters of the Colorado and Tijuana Rivers and of the Rio Grande" between the U.S. and Mexico regulates the distribution of flows of the rivers between these two countries. The treaty is based on hydrological data available up to 1944. Using new (historical and paleoclimatological) data, the water balance presented in the Treaty is re-examinated and the 431,721,000 m3/year allocation for USA during "extreme drought conditions" is re-evaluated. The authors define "extreme drought conditions" for this basin and a hydrological drought analysis is carried out using a streamflow simulation model. The analysis is complemented with an analysis of the effects of the El Niño - Southern Oscillation and the Pacific Decadal Oscillation on precipitation and streamflow. The results of this research will be applicable to potential changes in the current water resources management policies on the basin. Given the social, economical and political importance of this basin, the findings of this research potentially will have significant impacts. This research is founded by the NSF fund SAHRA (Science and Technology Center to study and promote the "Sustainability of Water Resources in Semi-Arid Regions" at the University of Arizona).

  19. Extremity movements help occupational therapists identify stress responses in preterm infants in the neonatal intensive care unit: a systematic review.

    PubMed

    Holsti, Liisa; Grunau, Ruth E

    2007-06-01

    Accurate assessment and treatment of pain and stress in preterm infants in neonatal intensive care units (NICU) is vital because pain and stress responses have been linked to long-term alterations in development in this population. To review the evidence of specific extremity movements in preterm infants as observed during stressful procedures. Five on-line databases were searched for relevant studies. For each study, levels of evidence were determined and effect size estimates were calculated. Each study was also evaluated for specific factors that presented potential threats to its validity. Eighteen studies were identified and seven comprised the review. The combined sample included 359 preterm infants. Six specific movements were associated with painful and intrusive procedures. A set of specific extremity movements, when combined with other reliable biobehavioural measures of pain and stress, can form the basis for future research and development of a clinical stress scale for preterm infants.

  20. Effective Stress Law in Unconventional Reservoirs under Different Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Saurabh, S.; Harpalani, S.

    2017-12-01

    Unconventional reservoirs have attracted a great deal of research interest worldwide during the past two decades. Low permeability and specialized techniques required to exploit these resources present opportunities for improvement in both production rates and ultimate recovery. Understanding subsurface stress modifications and permeability evolution are valuable when evaluating the prospects of unconventional reservoirs. These reservoir properties are functions of effective stress. As a part of this study, effective stress law, specifically the variation of anisotropic Biot's coefficient under various boundary conditions believed to exist in gas reservoirs by different researchers, has been established. Pressure-dependent-permeability (PdK) experiments were carried out on San Juan coal under different boundary conditions, that is, uniaxial strain condition and constant volume condition. Stress and strain in the vertical and horizontal directions were monitored throughout the experiment. Data collected during the experiments was used to determine the Biot's coefficient in vertical and horizontal directions under these two boundary conditions, treating coal as transversely isotropic. The variation of Biot's coefficient was found to be well correlated with the variation in coal permeability. Based on the estimated values of Biot's coefficients, a theory of variation in its value is presented for other boundary conditions. The findings of the study shed light on the inherent behavior of Biot's coefficient under different reservoir boundary conditions. This knowledge can improve the modeling work requiring estimation of effective stress in reservoirs, such as, pressure-/stress- dependent permeability. At the same time, if the effective stresses are known with more certainty by other methods, it enables assessment of the unknown reservoir boundary conditions.

  1. The effect of consumer pressure and abiotic stress on positive plant interactions are mediated by extreme climatic events.

    PubMed

    Filazzola, Alessandro; Liczner, Amanda Rae; Westphal, Michael; Lortie, Christopher J

    2018-01-01

    Environmental extremes resulting from a changing climate can have profound implications for plant interactions in desert communities. Positive interactions can buffer plant communities from abiotic stress and consumer pressure caused by climatic extremes, but limited research has explored this empirically. We tested the hypothesis that the mechanism of shrub facilitation on an annual plant community can change with precipitation extremes in deserts. During years of extreme drought and above-average rainfall in a desert, we measured plant interactions and biomass while manipulating a soil moisture gradient and reducing consumer pressure. Shrubs facilitated the annual plant community at all levels of soil moisture through reductions in microclimatic stress in both years and herbivore protection in the wet year only. Shrub facilitation and the high rainfall year contributed to the dominance of a competitive annual species in the plant community. Precipitation patterns in deserts determine the magnitude and type of facilitation mechanisms. Moreover, shrub facilitation mediates the interspecific competition within the associated annual community between years with different rainfall amounts. Examining multiple drivers during extreme climate events is a challenging area of research, but it is a necessary consideration given forecasts predicting that these events will increase in frequency and magnitude. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions

    NASA Astrophysics Data System (ADS)

    Bhattarai, Nishan; Wagle, Pradeep; Gowda, Prasanna H.; Kakani, Vijaya G.

    2017-11-01

    The ability of remote sensing-based surface energy balance (SEB) models to track water stress in rain-fed switchgrass (Panicum virgatum L.) has not been explored yet. In this paper, the theoretical framework of crop water stress index (CWSI; 0 = extremely wet or no water stress condition and 1 = extremely dry or no transpiration) was utilized to estimate CWSI in rain-fed switchgrass using Landsat-derived evapotranspiration (ET) from five remote sensing based single-source SEB models, namely Surface Energy Balance Algorithm for Land (SEBAL), Mapping ET with Internalized Calibration (METRIC), Surface Energy Balance System (SEBS), Simplified Surface Energy Balance Index (S-SEBI), and Operational Simplified Surface Energy Balance (SSEBop). CWSI estimates from the five SEB models and a simple regression model that used normalized difference vegetation index (NDVI), near-surface temperature difference, and measured soil moisture (SM) as covariates were compared with those derived from eddy covariance measured ET (CWSIEC) for the 32 Landsat image acquisition dates during the 2011 (dry) and 2013 (wet) growing seasons. Results indicate that most SEB models can predict CWSI reasonably well. For example, the root mean square error (RMSE) ranged from 0.14 (SEBAL) to 0.29 (SSEBop) and the coefficient of determination (R2) ranged from 0.25 (SSEBop) to 0.72 (SEBAL), justifying the added complexity in CWSI modeling as compared to results from the simple regression model (R2 = 0.55, RMSE = 0.16). All SEB models underestimated CWSI in the dry year but the estimates from SEBAL and S-SEBI were within 7% of the mean CWSIEC and explained over 60% of variations in CWSIEC. In the wet year, S-SEBI mostly overestimated CWSI (around 28%), while estimates from METRIC, SEBAL, SEBS, and SSEBop were within 8% of the mean CWSIEC. Overall, SEBAL was the most robust model under all conditions followed by METRIC, whose performance was slightly worse and better than SEBAL in dry and wet years

  3. Preparation of monolithic silica-chitin composite under extreme biomimetic conditions.

    PubMed

    Bazhenov, Vasilii V; Wysokowski, Marcin; Petrenko, Iaroslav; Stawski, Dawid; Sapozhnikov, Philipp; Born, René; Stelling, Allison L; Kaiser, Sabine; Jesionowski, Teofil

    2015-05-01

    Chitin is a widespread renewable biopolymer that is extensively distributed in the natural world. The high thermal stability of chitin provides an opportunity to develop novel inorganic-organic composites under hydrothermal synthesis conditions in vitro. For the first time, in this work we prepared monolithic silica-chitin composite under extreme biomimetic conditions (80°C and pH 1.5) using three dimensional chitinous matrices isolated from the marine sponge Aplysina cauliformis. The resulting material was studied using light and fluorescence microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy. A mechanism for the silica-chitin interaction after exposure to these hydrothermal conditions is proposed and discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Development of synchrotron X-ray micro-tomography under extreme conditions of pressure and temperature.

    PubMed

    Álvarez-Murga, M; Perrillat, J P; Le Godec, Y; Bergame, F; Philippe, J; King, A; Guignot, N; Mezouar, M; Hodeau, J L

    2017-01-01

    X-ray tomography is a non-destructive three-dimensional imaging/microanalysis technique selective to a wide range of properties such as density, chemical composition, chemical states and crystallographic structure with extremely high sensitivity and spatial resolution. Here the development of in situ high-pressure high-temperature micro-tomography using a rotating module for the Paris-Edinburgh cell combined with synchrotron radiation is described. By rotating the sample chamber by 360°, the limited angular aperture of ordinary high-pressure cells is surmounted. Such a non-destructive high-resolution probe provides three-dimensional insight on the morphological and structural evolution of crystalline as well as amorphous phases during high pressure and temperature treatment. To demonstrate the potentials of this new experimental technique the compression behavior of a basalt glass is investigated by X-ray absorption tomography, and diffraction/scattering tomography imaging of the structural changes during the polymerization of C 60 molecules under pressure is performed. Small size and weight of the loading frame and rotating module means that this apparatus is portable, and can be readily installed on most synchrotron facilities to take advantage of the diversity of three-dimensional imaging techniques available at beamlines. This experimental breakthrough should open new ways for in situ imaging of materials under extreme pressure-temperature-stress conditions, impacting diverse areas in physics, chemistry, geology or materials sciences.

  5. Resistance to Extreme Stresses in the Tardigrada: Experiments on Earth and in Space and Astrobiological Perspectives

    NASA Astrophysics Data System (ADS)

    Rebecchi, L.; Altiero, T.; Guidetti, R.; Cesari, M.; Rizzo, A. M.; Bertolani, R.

    2010-04-01

    The ability of tardigrades to enter cryptobiosis al-lows them to resist to extreme stresses: very low or high temperatures, chemicals, high pressure, ionizing and UV radiations This has lead to propose tardigrades as suitable model in space research.

  6. Extreme Terrestrial Environments: Life in Thermal Stress and Hypoxia. A Narrative Review.

    PubMed

    Burtscher, Martin; Gatterer, Hannes; Burtscher, Johannes; Mairbäurl, Heimo

    2018-01-01

    Living, working and exercising in extreme terrestrial environments are challenging tasks even for healthy humans of the modern new age. The issue is not just survival in remote environments but rather the achievement of optimal performance in everyday life, occupation, and sports. Various adaptive biological processes can take place to cope with the specific stressors of extreme terrestrial environments like cold, heat, and hypoxia (high altitude). This review provides an overview of the physiological and morphological aspects of adaptive responses in these environmental stressors at the level of organs, tissues, and cells. Furthermore, adjustments existing in native people living in such extreme conditions on the earth as well as acute adaptive responses in newcomers are discussed. These insights into general adaptability of humans are complemented by outcomes of specific acclimatization/acclimation studies adding important information how to cope appropriately with extreme environmental temperatures and hypoxia.

  7. Extreme Terrestrial Environments: Life in Thermal Stress and Hypoxia. A Narrative Review

    PubMed Central

    Burtscher, Martin; Gatterer, Hannes; Burtscher, Johannes; Mairbäurl, Heimo

    2018-01-01

    Living, working and exercising in extreme terrestrial environments are challenging tasks even for healthy humans of the modern new age. The issue is not just survival in remote environments but rather the achievement of optimal performance in everyday life, occupation, and sports. Various adaptive biological processes can take place to cope with the specific stressors of extreme terrestrial environments like cold, heat, and hypoxia (high altitude). This review provides an overview of the physiological and morphological aspects of adaptive responses in these environmental stressors at the level of organs, tissues, and cells. Furthermore, adjustments existing in native people living in such extreme conditions on the earth as well as acute adaptive responses in newcomers are discussed. These insights into general adaptability of humans are complemented by outcomes of specific acclimatization/acclimation studies adding important information how to cope appropriately with extreme environmental temperatures and hypoxia. PMID:29867589

  8. Impact of extreme exercise at high altitude on oxidative stress in humans.

    PubMed

    Quindry, John; Dumke, Charles; Slivka, Dustin; Ruby, Brent

    2016-09-15

    Exercise and oxidative stress research continues to grow as a physiological subdiscipline. The influence of high altitude on exercise and oxidative stress is among the recent topics of intense study in this area. Early findings indicate that exercise at high altitude has an independent influence on free radical generation and the resultant oxidative stress. This review provides a detailed summary of oxidative stress biochemistry as gleaned mainly from studies of humans exercising at high altitude. Understanding of the human response to exercise at altitude is largely derived from field-based research at altitudes above 3000 m in addition to laboratory studies which employ normobaric hypoxia. The implications of oxidative stress incurred during high altitude exercise appear to be a transient increase in oxidative damage followed by redox-sensitive adaptations in multiple tissues. These outcomes are consistent for lowland natives, high altitude acclimated sojourners and highland natives, although the latter group exhibits a more robust adaptive response. To date there is no evidence that altitude-induced oxidative stress is deleterious to normal training or recovery scenarios. Limited evidence suggests that deleterious outcomes related to oxidative stress are limited to instances where individuals are exposed to extreme elevations for extended durations. However, confirmation of this tentative conclusion requires further investigation. More applicably, altitude-induced hypoxia may have an independent influence on redox-sensitive adaptive responses to exercise and exercise recovery. If correct, these findings may hold important implications for athletes, mountaineers, and soldiers working at high altitude. These points are raised within the confines of published research on the topic of oxidative stress during exercise at altitude. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  9. Impact of extreme exercise at high altitude on oxidative stress in humans

    PubMed Central

    Dumke, Charles; Slivka, Dustin; Ruby, Brent

    2015-01-01

    Abstract Exercise and oxidative stress research continues to grow as a physiological subdiscipline. The influence of high altitude on exercise and oxidative stress is among the recent topics of intense study in this area. Early findings indicate that exercise at high altitude has an independent influence on free radical generation and the resultant oxidative stress. This review provides a detailed summary of oxidative stress biochemistry as gleaned mainly from studies of humans exercising at high altitude. Understanding of the human response to exercise at altitude is largely derived from field‐based research at altitudes above 3000 m in addition to laboratory studies which employ normobaric hypoxia. The implications of oxidative stress incurred during high altitude exercise appear to be a transient increase in oxidative damage followed by redox‐sensitive adaptations in multiple tissues. These outcomes are consistent for lowland natives, high altitude acclimated sojourners and highland natives, although the latter group exhibits a more robust adaptive response. To date there is no evidence that altitude‐induced oxidative stress is deleterious to normal training or recovery scenarios. Limited evidence suggests that deleterious outcomes related to oxidative stress are limited to instances where individuals are exposed to extreme elevations for extended durations. However, confirmation of this tentative conclusion requires further investigation. More applicably, altitude‐induced hypoxia may have an independent influence on redox‐sensitive adaptive responses to exercise and exercise recovery. If correct, these findings may hold important implications for athletes, mountaineers, and soldiers working at high altitude. These points are raised within the confines of published research on the topic of oxidative stress during exercise at altitude. PMID:26453842

  10. Setting up virgin stress conditions in discrete element models

    PubMed Central

    Rojek, J.; Karlis, G.F.; Malinowski, L.J.; Beer, G.

    2013-01-01

    In the present work, a methodology for setting up virgin stress conditions in discrete element models is proposed. The developed algorithm is applicable to discrete or coupled discrete/continuum modeling of underground excavation employing the discrete element method (DEM). Since the DEM works with contact forces rather than stresses there is a need for the conversion of pre-excavation stresses to contact forces for the DEM model. Different possibilities of setting up virgin stress conditions in the DEM model are reviewed and critically assessed. Finally, a new method to obtain a discrete element model with contact forces equivalent to given macroscopic virgin stresses is proposed. The test examples presented show that good results may be obtained regardless of the shape of the DEM domain. PMID:27087731

  11. Setting up virgin stress conditions in discrete element models.

    PubMed

    Rojek, J; Karlis, G F; Malinowski, L J; Beer, G

    2013-03-01

    In the present work, a methodology for setting up virgin stress conditions in discrete element models is proposed. The developed algorithm is applicable to discrete or coupled discrete/continuum modeling of underground excavation employing the discrete element method (DEM). Since the DEM works with contact forces rather than stresses there is a need for the conversion of pre-excavation stresses to contact forces for the DEM model. Different possibilities of setting up virgin stress conditions in the DEM model are reviewed and critically assessed. Finally, a new method to obtain a discrete element model with contact forces equivalent to given macroscopic virgin stresses is proposed. The test examples presented show that good results may be obtained regardless of the shape of the DEM domain.

  12. A New Stress-Based Model of Political Extremism

    PubMed Central

    Canetti-Nisim, Daphna; Halperin, Eran; Sharvit, Keren; Hobfoll, Stevan E.

    2011-01-01

    Does exposure to terrorism lead to hostility toward minorities? Drawing on theories from clinical and social psychology, we propose a stress-based model of political extremism in which psychological distress—which is largely overlooked in political scholarship—and threat perceptions mediate the relationship between exposure to terrorism and attitudes toward minorities. To test the model, a representative sample of 469 Israeli Jewish respondents was interviewed on three occasions at six-month intervals. Structural Equation Modeling indicated that exposure to terrorism predicted psychological distress (t1), which predicted perceived threat from Palestinian citizens of Israel (t2), which, in turn, predicted exclusionist attitudes toward Palestinian citizens of Israel (t3). These findings provide solid evidence and a mechanism for the hypothesis that terrorism introduces nondemocratic attitudes threatening minority rights. It suggests that psychological distress plays an important role in political decision making and should be incorporated in models drawing upon political psychology. PMID:22140275

  13. Enhancement of wind stress evaluation method under storm conditions

    NASA Astrophysics Data System (ADS)

    Chen, Yingjian; Yu, Xiping

    2016-12-01

    Wind stress is an important driving force for many meteorological and oceanographical processes. However, most of the existing methods for evaluation of the wind stress, including various bulk formulas in terms of the wind speed at a given height and formulas relating the roughness height of the sea surface with wind conditions, predict an ever-increasing tendency of the wind stress coefficient as the wind speed increases, which is inconsistent with the field observations under storm conditions. The wave boundary layer model, which is based on the momentum and energy conservation, has the advantage to take into account the physical details of the air-sea interaction process, but is still invalid under storm conditions without a modification. By including the energy dissipation due to the presence of sea spray, which is speculated to be an important aspect of the air-sea interaction under storm conditions, the wave boundary layer model is improved in this study. The improved model is employed to estimate the wind stress caused by an idealized tropical cyclone motion. The computational results show that the wind stress coefficient reaches its maximal value at a wind speed of about 40 m/s and decreases as the wind speed further increases. This is in fairly good agreement with the field data.

  14. Aerodynamic surface stress intermittency and conditionally averaged turbulence statistics

    NASA Astrophysics Data System (ADS)

    Anderson, William; Lanigan, David

    2015-11-01

    Aeolian erosion is induced by aerodynamic stress imposed by atmospheric winds. Erosion models prescribe that sediment flux, Q, scales with aerodynamic stress raised to exponent, n, where n > 1 . Since stress (in fully rough, inertia-dominated flows) scales with incoming velocity squared, u2, it follows that q ~u2n (where u is some relevant component of the flow). Thus, even small (turbulent) deviations of u from its time-mean may be important for aeolian activity. This rationale is augmented given that surface layer turbulence exhibits maximum Reynolds stresses in the fluid immediately above the landscape. To illustrate the importance of stress intermittency, we have used conditional averaging predicated on stress during large-eddy simulation of atmospheric boundary layer flow over an arid, bare landscape. Conditional averaging provides an ensemble-mean visualization of flow structures responsible for erosion `events'. Preliminary evidence indicates that surface stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. We characterize geometric attributes of such structures and explore streamwise and vertical vorticity distribution within the conditionally averaged flow field. This work was supported by the National Sci. Foundation, Phys. and Dynamic Meteorology Program (PM: Drs. N. Anderson, C. Lu, and E. Bensman) under Grant # 1500224. Computational resources were provided by the Texas Adv. Comp. Center at the Univ. of Texas.

  15. NOAA Environmental Satellite Measurements of Extreme Space Weather Events

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; Wilkinson, D. C.; Redmon, R. J.

    2015-12-01

    For over 40 years the National Oceanic and Atmospheric Administration (NOAA) has continuously monitored the near-earth space environment in support of space weather operations. Data from this period have covered a wide range of geophysical conditions including periods of extreme space weather such as the great geomagnetic March 1989, the 2003 Halloween storm and the more recent St Patrick's Day storm of 2015. While not specifically addressed here, these storms have stressed our technology infrastructure in unexpected and surprising ways. Space weather data from NOAA geostationary (GOES) and polar (POES) satellites along with supporting data from the Air Force are presented to compare and contrast the space environmental conditions measured during extreme events.

  16. Improving multisensor estimation of heavy-to-extreme precipitation via conditional bias-penalized optimal estimation

    NASA Astrophysics Data System (ADS)

    Kim, Beomgeun; Seo, Dong-Jun; Noh, Seong Jin; Prat, Olivier P.; Nelson, Brian R.

    2018-01-01

    A new technique for merging radar precipitation estimates and rain gauge data is developed and evaluated to improve multisensor quantitative precipitation estimation (QPE), in particular, of heavy-to-extreme precipitation. Unlike the conventional cokriging methods which are susceptible to conditional bias (CB), the proposed technique, referred to herein as conditional bias-penalized cokriging (CBPCK), explicitly minimizes Type-II CB for improved quantitative estimation of heavy-to-extreme precipitation. CBPCK is a bivariate version of extended conditional bias-penalized kriging (ECBPK) developed for gauge-only analysis. To evaluate CBPCK, cross validation and visual examination are carried out using multi-year hourly radar and gauge data in the North Central Texas region in which CBPCK is compared with the variant of the ordinary cokriging (OCK) algorithm used operationally in the National Weather Service Multisensor Precipitation Estimator. The results show that CBPCK significantly reduces Type-II CB for estimation of heavy-to-extreme precipitation, and that the margin of improvement over OCK is larger in areas of higher fractional coverage (FC) of precipitation. When FC > 0.9 and hourly gauge precipitation is > 60 mm, the reduction in root mean squared error (RMSE) by CBPCK over radar-only (RO) is about 12 mm while the reduction in RMSE by OCK over RO is about 7 mm. CBPCK may be used in real-time analysis or in reanalysis of multisensor precipitation for which accurate estimation of heavy-to-extreme precipitation is of particular importance.

  17. Atmospheric conditions and weather regimes associated with extreme winter dry spells over the Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Raymond, Florian; Ullmann, Albin; Camberlin, Pierre; Oueslati, Boutheina; Drobinski, Philippe

    2018-06-01

    Very long dry spell events occurring during winter are natural hazards to which the Mediterranean region is extremely vulnerable, because they can lead numerous impacts for environment and society. Four dry spell patterns have been identified in a previous work. Identifying the main associated atmospheric conditions controlling the dry spell patterns is key to better understand their dynamics and their evolution in a changing climate. Except for the Levant region, the dry spells are generally associated with anticyclonic blocking conditions located about 1000 km to the Northwest of the affected area. These anticyclonic conditions are favourable to dry spell occurrence as they are associated with subsidence of cold and dry air coming from boreal latitudes which bring low amount of water vapour and non saturated air masses, leading to clear sky and absence of precipitation. These extreme dry spells are also partly related to the classical four Euro-Atlantic weather regimes are: the two phases of the North Atlantic Oscillation, the Scandinavian "blocking" or "East-Atlantic", and the "Atlantic ridge". Only the The "East-Atlantic", "Atlantic ridge" and the positive phase of the North Atlantic Oscillation are frequently associated with extremes dry spells over the Mediterranean basin but they do not impact the four dry spell patterns equally. Finally long sequences of those weather regimes are more favourable to extreme dry spells than short sequences. These long sequences are associated with the favourable prolonged and reinforced anticyclonic conditions

  18. Moving in extreme environments: what's extreme and who decides?

    PubMed

    Cotter, James David; Tipton, Michael J

    2014-01-01

    Humans work, rest and play in immensely varied extreme environments. The term 'extreme' typically refers to insufficiency or excess of one or more stressors, such as thermal energy or gravity. Individuals' behavioural and physiological capacity to endure and enjoy such environments varies immensely. Adverse effects of acute exposure to these environments are readily identifiable (e.g. heat stroke or bone fracture), whereas adverse effects of chronic exposure (e.g. stress fractures or osteoporosis) may be as important but much less discernable. Modern societies have increasingly sought to protect people from such stressors and, in that way, minimise their adverse effects. Regulations are thus established, and advice is provided on what is 'acceptable' exposure. Examples include work/rest cycles in the heat, hydration regimes, rates of ascent to and duration of stay at altitude and diving depth. While usually valuable and well intentioned, it is important to realise the breadth and importance of limitations associated with such guidelines. Regulations and advisories leave less room for self-determination, learning and perhaps adaptation. Regulations based on stress (e.g. work/rest cycles relative to WBGT) are more practical but less direct than those based on strain (e.g. core temperature), but even the latter can be substantively limited (e.g. by lack of criterion validation and allowance for behavioural regulation in the research on which they are based). Extreme Physiology & Medicine is publishing a series of reviews aimed at critically examining the issues involved with self- versus regulation-controlled human movement acutely and chronically in extreme environments. These papers, arising from a research symposium in 2013, are about the impact of people engaging in such environments and the effect of rules and guidelines on their safety, enjoyment, autonomy and productivity. The reviews will cover occupational heat stress, sporting heat stress, hydration, diving

  19. Life under Multiple Extreme Conditions: Diversity and Physiology of the Halophilic Alkalithermophiles

    PubMed Central

    Wiegel, Juergen

    2012-01-01

    Around the world, there are numerous alkaline, hypersaline environments that are heated either geothermally or through intense solar radiation. It was once thought that such harsh environments were inhospitable and incapable of supporting a variety of life. However, numerous culture-dependent and -independent studies revealed the presence of an extensive diversity of aerobic and anaerobic bacteria and archaea that survive and grow under these multiple harsh conditions. This diversity includes the halophilic alkalithermophiles, a novel group of polyextremophiles that require for growth and proliferation the multiple extremes of high salinity, alkaline pH, and elevated temperature. Life under these conditions undoubtedly involves the development of unique physiological characteristics, phenotypic properties, and adaptive mechanisms that enable control of membrane permeability, control of intracellular osmotic balance, and stability of the cell wall, intracellular proteins, and other cellular constituents. This minireview highlights the ecology and growth characteristics of the extremely halophilic alkalithermophiles that have been isolated thus far. Biochemical, metabolic, and physiological properties of the extremely halophilic alkalithermophiles are described, and their roles in resistance to the combined stressors of high salinity, alkaline pH, and high temperature are discussed. The isolation of halophilic alkalithermophiles broadens the physicochemical boundaries for life and extends the boundaries for the combinations of the maximum salinity, pH, and temperature that can support microbial growth. PMID:22492435

  20. "On-off-on" switchable sensor: a fluorescent spiropyran responds to extreme pH conditions and its bioimaging applications.

    PubMed

    Wan, Shulin; Zheng, Yang; Shen, Jie; Yang, Wantai; Yin, Meizhen

    2014-11-26

    A novel spiropyran that responds to both extreme acid and extreme alkali and has an "on-off-on" switch is reported. Benzoic acid at the indole N-position and carboxyl group at the indole 6-position contribute to the extreme acid response. The ionizations of carboxyl and phenolic hydroxyl groups cause the extreme alkali response. Moreover, the fluorescent imaging in bacterial cells under extreme pH conditions supports the mechanism of pH response.

  1. Extreme fog events in Poland with respect to circulation conditions

    NASA Astrophysics Data System (ADS)

    Ustrnul, Z.; Czekierda, D.; Wypych, A.

    2010-09-01

    Fog is a phenomenon which belongs to a group of so-called hydrometeorites and, according to the different dictionaries, it is a suspension of water droplets or ice crystals in the ground layer of the air that impairs visibility in the horizontal direction below 1 km. The phenomenon of fog, although much less dynamic or violent than other extreme phenomena, such as thunderstorms or hail, is equally dangerous and brings about huge social and economic complications. Land and air transportation suffer and fog may sometimes leads to a complete crippling of the whole economy in an area where fog occurs. The main objective of the study is determination of the circulation types bringing extreme fog events in Poland. The duration of fog at each meteorological station was considered as the main input data originated from 54 synoptic stations located across the country. The mentioned data series cover the period of 56 years (1951-2006). The occurrence of fog depends on meteorological conditions caused to a large extent by a given synoptic situation and local terrain conditions. In this study, according to its objectives, only circulation conditions are taken into consideration. These have been described by 5 different circulation classifications (Grosswetterlagen, Litynski, Osuchowska-Klein, Niedzwiedz and Ustrnul). Situations when this phenomenon occurred across a large part of the country were taken into detailed consideration. Special attention was paid to fog coverage during 24-hour periods. In this work, in light of certain doubts about the homogeneity of the observation material available, the intensity of fog was not included, as it requires additional and very tedious analysis. In the first step all cases of fog during the 1966-2006 study period which lasted 24 hours at more than 10 of the considered weather stations, i.e: at least 5 stations have been considered. As expected, in most cases, either a centre of a classical high pressure system or a high pressure wedge

  2. Thyro-stress.

    PubMed

    Kalra, Sanjay; Verma, Komal; Balhara, Yatan Pal Singh

    2017-01-01

    Our understanding of the biopsychosocial model of health, and its influence on chronic endocrine conditions, has improved over the past few decades. We can distinguish, for example, between diabetes distress and major depressive disorders in diabetes. Similar to diabetes distress, we suggest the existence of "thyrostress" in chronic thyroid disorders. Thyro-stress is defined as an emotional state, characterized by extreme apprehension, discomfort or dejection, caused by the challenges and demand of living with thyroid disorders such as hypothyroidism. This communication describes the etiology, clinical features, differential diagnosis, and management of thyro-stress.

  3. Investigation of Thermal Stress Convection in Nonisothermal Gases Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Mackowski, Daniel W.; Knight, Roy W.

    1996-01-01

    Microgravity conditions offer an environment in which convection in a nonisothermal gas could be driven primarily by thermal stress. A direct examination of thermal stress flows would be invaluable in assessing the accuracy of the Burnett terms in the fluid stress tensor. We present a preliminary numerical investigation of the competing effects of thermal stress, thermal creep at the side walls, and buoyancy on gas convection in nonuniformly heated containers under normal and reduced gravity levels. Conditions in which thermal stress convection becomes dominant are identified, and issues regarding the experimental measurement of the flows are discussed.

  4. Predictability of the atmospheric conditions leading to extreme weather events in the Western Mediterranean Region in comparison with the seasonal mean conditions

    NASA Astrophysics Data System (ADS)

    Khodayar, Samiro; Kalthoff, Norbert

    2013-04-01

    Among all severe convective weather situations, fall season heavy rainfall represents the most threatening phenomenon in the western Mediterranean region. Devastating flash floods occur every year somewhere in eastern Spain, southern France, Italy, or North Africa, being responsible for a great proportion of the fatalities, property losses, and destruction of infrastructure caused by natural hazards. Investigations in the area have shown that most of the heavy rainfall events in this region can be attributed to mesoscale convective systems. The main goal of this investigation is to understand and identify the atmospheric conditions that favor the initiation and development of such systems. Insight of the involved processes and conditions will improve their predictability and help preventing some of the fatal consequences related with the occurrence of these weather phenomena. The HyMeX (Hydrological cycle in the Mediterranean eXperiment) provides a unique framework to investigate this issue. Making use of high-resolution seasonal simulations with the COSMO-CLM model the mean atmospheric conditions of the fall season, September, October and November, are investigated in different western Mediterranean regions such as eastern Spain, Southern France, northern Africa and Italy. The precipitation distribution, its daily cycle, and probability distribution function are evaluated to ascertain the similarities and differences between the regions of interest, as well as the spatial distribution of extreme events. Additionally, the regional differences of the boundary layer and mid-tropospheric conditions, atmospheric stability and inhibition, and low-level triggering are presented. Selected high impact weather HyMeX episodes' are analyzed with special focus on the atmospheric pre-conditions leading to the extreme weather situations. These pre-conditions are then compared to the mean seasonal conditions to identify and point out possible anomalies in the atmospheric

  5. Observational Simulation of Icing in Extreme Weather Conditions

    NASA Astrophysics Data System (ADS)

    Gultepe, Ismail; Heymsfield, Andrew; Agelin-Chaab, Martin; Komar, John; Elfstrom, Garry; Baumgardner, Darrel

    2017-04-01

    Observations and prediction of icing in extreme weather conditions are important for aviation, transportation, and shipping applications, and icing adversely affects the economy. Icing environments can be studied either in the outdoor atmosphere or in the laboratory. There have been several aircraft based in-situ studies related to weather conditions affecting aviation operations, transportation, and marine shipping that includes icing, wind, and turbulence. However, studying severe weather conditions from aircraft observations are limited due to safety and sampling issues, instrumental uncertainties, and even the possibility of aircraft producing its own physical and dynamical effects. Remote sensing based techniques (e.g. retrieval techniques) for studying severe weather conditions represent usually a volume that cannot characterize the important scales and also represents indirect observations. Therefore, laboratory simulations of atmospheric processes can help us better understand the interactions among microphysical and dynamical processes. The Climatic Wind Tunnel (CWT) in ACE at the University of Ontario Institute of Technology (UOIT) has a large semi-open jet test chamber with flow area 7-13 m2 that can precisely control temperatures down to -40°C, and up to 250 km hr-1 wind speeds, for heavy or dry snow conditions with low visibility, similar to ones observed in the Arctic and cold climate regions, or at high altitude aeronautical conditions. In this study, the ACE CWT employed a spray nozzle array suspended in its settling chamber and fed by pressurized water, creating various particle sizes from a few microns up to mm size range. This array, together with cold temperature and high wind speed, enabled simulation of severe weather conditions, including icing, visibility, strong wind and turbulence, ice fog and frost, freezing fog, heavy snow and blizzard conditions. In this study, the test results will be summarized, and their application to aircraft

  6. Numerical Analysis of Flood modeling of upper Citarum River under Extreme Flood Condition

    NASA Astrophysics Data System (ADS)

    Siregar, R. I.

    2018-02-01

    This paper focuses on how to approach the numerical method and computation to analyse flood parameters. Water level and flood discharge are the flood parameters solved by numerical methods approach. Numerical method performed on this paper for unsteady flow conditions have strengths and weaknesses, among others easily applied to the following cases in which the boundary irregular flow. The study area is in upper Citarum Watershed, Bandung, West Java. This paper uses computation approach with Force2 programming and HEC-RAS to solve the flow problem in upper Citarum River, to investigate and forecast extreme flood condition. Numerical analysis based on extreme flood events that have occurred in the upper Citarum watershed. The result of water level parameter modeling and extreme flood discharge compared with measurement data to analyse validation. The inundation area about flood that happened in 2010 is about 75.26 square kilometres. Comparing two-method show that the FEM analysis with Force2 programs has the best approach to validation data with Nash Index is 0.84 and HEC-RAS that is 0.76 for water level. For discharge data Nash Index obtained the result analysis use Force2 is 0.80 and with use HEC-RAS is 0.79.

  7. Solutions for Critical Raw Materials under Extreme Conditions: A Review

    PubMed Central

    Grilli, Maria Luisa; Bellezze, Tiziano; Gamsjäger, Ernst; Rinaldi, Antonio; Novak, Pavel; Balos, Sebastian; Piticescu, Radu Robert; Ruello, Maria Letizia

    2017-01-01

    In Europe, many technologies with high socio-economic benefits face materials requirements that are often affected by demand-supply disruption. This paper offers an overview of critical raw materials in high value alloys and metal-matrix composites used in critical applications, such as energy, transportation and machinery manufacturing associated with extreme working conditions in terms of temperature, loading, friction, wear and corrosion. The goal is to provide perspectives about the reduction and/or substitution of selected critical raw materials: Co, W, Cr, Nb and Mg. PMID:28772645

  8. Numerical tools to predict the environmental loads for offshore structures under extreme weather conditions

    NASA Astrophysics Data System (ADS)

    Wu, Yanling

    2018-05-01

    In this paper, the extreme waves were generated using the open source computational fluid dynamic (CFD) tools — OpenFOAM and Waves2FOAM — using linear and nonlinear NewWave input. They were used to conduct the numerical simulation of the wave impact process. Numerical tools based on first-order (with and without stretching) and second-order NewWave are investigated. The simulation to predict force loading for the offshore platform under the extreme weather condition is implemented and compared.

  9. Apomixis frequency under stress conditions in weeping lovegrass (Eragrostis curvula)

    PubMed Central

    Rodrigo, Juan Manuel; Zappacosta, Diego Carlos; Selva, Juan Pablo; Garbus, Ingrid; Albertini, Emidio; Echenique, Viviana

    2017-01-01

    To overcome environmental stress, plants develop physiological responses that are triggered by genetic or epigenetic changes, some of which involve DNA methylation. It has been proposed that apomixis, the formation of asexual seeds without meiosis, occurs through the temporal or spatial deregulation of the sexual process mediated by genetic and epigenetic factors influenced by the environment. Here, we explored whether there was a link between the occurrence of apomixis and various factors that generate stress, including drought stress, in vitro culture, and intraspecific hybridization. For this purpose, we monitored the embryo sacs of different weeping lovegrass (Eragrostis curvula [Schrad.] Nees) genotypes after the plants were subjected to these stress conditions. Progeny tests based on molecular markers and genome methylation status were analyzed following the stress treatment. When grown in the greenhouse, the cultivar Tanganyika INTA generated less than 2% of its progeny by sexual reproduction. Plants of this cultivar subjected to different stresses showed an increase of sexual embryo sacs, demonstrating an increased expression of sexuality compared to control plants. Plants of the cv. Tanganyika USDA did not demonstrate the ability to generate sexual embryo sacs under any conditions and is therefore classified as a fully apomictic cultivar. We found that this change in the prevalence of sexuality was correlated with genetic and epigenetic changes analyzed by MSAP and AFLPs profiles. Our results demonstrate that different stress conditions can alter the expression of sexual reproduction in facultative tetraploid apomictic cultivars and when the stress stops the reproductive mode shift back to the apomixis original level. These data together with previous observations allow us to generate a hypothetical model of the regulation of apomixis in weeping lovegrass in which the genetic/s region/s that condition apomixis, is/are affected by ploidy, and is

  10. Responses of neurons to extreme osmomechanical stress.

    PubMed

    Wan, X; Harris, J A; Morris, C E

    1995-05-01

    Neurons are often regarded as fragile cells, easily destroyed by mechanical and osmotic insult. The results presented here demonstrate that this perception needs revision. Using extreme osmotic swelling, we show that molluscan neurons are astonishingly robust. In distilled water, a heterogeneous population of Lymnaea stagnalis CNS neurons swelled to several times their initial volume, yet had a ST50 (survival time for 50% of cells) > 60 min. Cells that were initially bigger survived longer. On return to normal medium, survivors were able, over the next 24 hr, to rearborize. Reversible membrane capacitance changes corresponding to about 0.7 muF/cm2 of apparent surface area accompanied neuronal swelling and shrinking in hypo- and hyperosmotic solutions; reversible changes in cell surface area evidently contributed to the neurons' ability to accommodate hydrostatic pressures then recover. The reversible membrane area/capacitance changes were not dependent on extracellular Ca2+. Neurons were monitored for potassium currents during direct mechanical inflation and during osmotically driven inflation. The latter but not the former stimulus routinely elicited small potassium currents, suggesting that tension increases activate the currents only if additional disruption of the cortex has occurred. Under stress in distilled water, a third of the neurons displayed a quite unexpected behavior: prolonged writhing of peripheral regions of the soma. This suggested that a plasma membrane-linked contractile machinery (presumably actomyosin) might contribute to the neurons' mechano-osmotic robustness by restricting water influx. Consistent with this possibility, 1 mM N-ethyl-maleimide, which inhibits myosin ATPase, decreased the ST50 to 18 min, rendered the survival time independent of initial size, and abolished writhing activity. For neurons, active mechanical resistance of the submembranous cortex, along with the mechanical compliance supplied by insertion or eversion of membrane

  11. Behavior of Materials Under Conditions of Thermal Stress

    NASA Technical Reports Server (NTRS)

    Manson, S S

    1954-01-01

    A review is presented of available information on the behavior of brittle and ductile materials under conditions of thermal stress and thermal shock. For brittle materials, a simple formula relating physical properties to thermal-shock resistance is derived and used to determine the relative significance of two indices currently in use for rating materials. For ductile materials, thermal-shock resistance depends upon the complex interrelation among several metallurgical variables which seriously affect strength and ductility. These variables are briefly discussed and illustrated from literature sources. The importance of simulating operating conditions in tests for rating materials is especially to be emphasized because of the importance of testing conditions in metallurgy. A number of practical methods that have been used to minimize the deleterious effects of thermal stress and thermal shock are outlined.

  12. Rubisco activase and wheat productivity under heat stress conditions

    USDA-ARS?s Scientific Manuscript database

    Rubisco activase (RCA) constrains the photosynthetic potential of plants at high temperature (heat stress). We hypothesized that endogenous levels of RCA could serve as an important determinant of plant productivity under heat stress conditions. In this study, we investigated the possible relation...

  13. Role of Water in the Selection of Stable Proteins at Ambient and Extreme Thermodynamic Conditions

    NASA Astrophysics Data System (ADS)

    Bianco, Valentino; Franzese, Giancarlo; Dellago, Christoph; Coluzza, Ivan

    2017-04-01

    Proteins that are functional at ambient conditions do not necessarily work at extreme conditions of temperature T and pressure P . Furthermore, there are limits of T and P above which no protein has a stable functional state. Here, we show that these limits and the selection mechanisms for working proteins depend on how the properties of the surrounding water change with T and P . We find that proteins selected at high T are superstable and are characterized by a nonextreme segregation of a hydrophilic surface and a hydrophobic core. Surprisingly, a larger segregation reduces the stability range in T and P . Our computer simulations, based on a new protein design protocol, explain the hydropathy profile of proteins as a consequence of a selection process influenced by water. Our results, potentially useful for engineering proteins and drugs working far from ambient conditions, offer an alternative rationale to the evolutionary action exerted by the environment in extreme conditions.

  14. Lower Extremity Overuse Conditions Affecting Figure Skaters During Daily Training

    PubMed Central

    Campanelli, Valentina; Piscitelli, Francesco; Verardi, Luciano; Maillard, Pauline; Sbarbati, Andrea

    2015-01-01

    Background Most ice figure skaters train and compete with ongoing issues in the lower extremities, which are often overlooked by the skaters and considered injuries only when they prevent the athletes from skating. Although not severe, these conditions impair the quality of daily training and compromise the skaters’ state of mind and performances. Purpose (1) To determine the point prevalence of the ongoing lower extremity overuse conditions in a population of ice figure skaters of all ages and levels and (2) to identify the risk factors contributing to the development of the most common ongoing conditions. Study Design Cross-sectional study; Level of evidence, 3. Methods A total of 95 skaters of all ages and skating levels were evaluated in a single examination in the middle of the competitive season. Data collection consisted of a questionnaire, clinical examination, and measurement of the skaters’ characteristics and the equipment used. Results Retrocalcaneal bursitis was the most common problem, affecting at least 1 foot in 34% of the skaters evaluated, followed by posterior heel skin calluses and superficial calcaneal bursitis, which affected 29% and 28% of skaters, respectively. The prevalence of the majority of these conditions was 10% to 32% higher in elite skaters than in nonelite skaters. Higher boot–foot length difference was associated with greater risk of superficial calcaneal bursitis in the landing foot of elite skaters, while higher body weight and greater in-skate ankle flexibility were associated with the development of retrocalcaneal bursitis in nonelite skaters. Only 30 skaters (32%) wore the appropriate boot size, while 57 skaters (51%) could not dorsiflex their ankles properly while wearing skates. Conclusion The heel represents a major area of concern for the high prevalence of calcaneal bursitis and calluses in proximity of the Achilles tendon, suggesting that improvements on the boot heel cup design should take priority. The

  15. Chronic stress and sex differences on the recall of fear conditioning and extinction.

    PubMed

    Baran, Sarah E; Armstrong, Charles E; Niren, Danielle C; Hanna, Jeffery J; Conrad, Cheryl D

    2009-03-01

    Chronic stress effects and sex differences were examined on conditioned fear extinction. Male and female Sprague-Dawley rats were chronically stressed by restraint (6 h/d/21 d), conditioned to tone and footshock, followed by extinction after 1 h and 24 h delays. Chronic stress impaired the recall of fear extinction in males, as evidenced by high freezing to tone after the 24 h delay despite exposure to the previous 1 h delay extinction trials, and this effect was not due to ceiling effects from overtraining during conditioning. In contrast, chronic stress attenuated the recall of fear conditioning acquisition in females, regardless of exposure to the 1 h extinction exposure. Since freezing to tone was reinstated following unsignalled footshocks, the deficit in the stressed rats reflected impaired recall rather than impaired consolidation. Sex differences in fear conditioning and extinction were observed in nonstressed controls as well, with control females resisting extinction to tone. Analysis of contextual freezing showed that all groups (control, stress, male, female) increased freezing immediately after the first tone extinction trial, demonstrating contextual discrimination. These findings show that chronic stress and sex interact to influence fear conditioning, with chronic stress impairing the recall of delayed fear extinction in males to implicate the medial prefrontal cortex, disrupting the recall of the fear conditioning acquisition in females to implicate the amygdala, and nonstressed controls exhibiting sex differences in fear conditioning and extinction, which may involve the amygdala and/or corticosterone levels.

  16. Deformation mechanisms in a coal mine roadway in extremely swelling soft rock.

    PubMed

    Li, Qinghai; Shi, Weiping; Yang, Renshu

    2016-01-01

    The problem of roadway support in swelling soft rock was one of the challenging problems during mining. For most geological conditions, combinations of two or more supporting approaches could meet the requirements of most roadways; however, in extremely swelling soft rock, combined approaches even could not control large deformations. The purpose of this work was to probe the roadway deformation mechanisms in extremely swelling soft rock. Based on the main return air-way in a coal mine, deformation monitoring and geomechanical analysis were conducted, as well as plastic zone mechanical model was analysed. Results indicated that this soft rock was potentially very swelling. When the ground stress acted alone, the support strength needed in situ was not too large and combined supporting approaches could meet this requirement; however, when this potential released, the roadway would undergo permanent deformation. When the loose zone reached 3 m within surrounding rock, remote stress p ∞ and supporting stress P presented a linear relationship. Namely, the greater the swelling stress, the more difficult it would be in roadway supporting. So in this extremely swelling soft rock, a better way to control roadway deformation was to control the releasing of surrounding rock's swelling potential.

  17. Adaptation of the nematode Caenorhabditis elegans to extreme osmotic stress.

    PubMed

    Lamitina, S Todd; Morrison, Rebecca; Moeckel, Gilbert W; Strange, Kevin

    2004-04-01

    The ability to control osmotic balance is essential for cellular life. Cellular osmotic homeostasis is maintained by accumulation and loss of inorganic ions and organic osmolytes. Although osmoregulation has been studied extensively in many cell types, major gaps exist in our molecular understanding of this essential process. Because of its numerous experimental advantages, the nematode Caenorhabditis elegans provides a powerful model system to characterize the genetic basis of animal cell osmoregulation. We therefore characterized the ability of worms to adapt to extreme osmotic stress. Exposure of worms to high-salt growth agar causes rapid shrinkage. Survival is normal on agar containing up to 200 mM NaCl. When grown on 200 mM NaCl for 2 wk, worms are able to survive well on agar containing up to 500 mM NaCl. HPLC analysis demonstrated that levels of the organic osmolyte glycerol increase 15- to 20-fold in nematodes grown on 200 mM NaCl agar. Accumulation of glycerol begins 3 h after exposure to hypertonic stress and peaks by 24 h. Glycerol accumulation is mediated primarily by synthesis from metabolic precursors. Consistent with this finding, hypertonicity increases transcriptional expression of glycerol 3-phosphate dehydrogenase, an enzyme that is rate limiting for hypertonicity-induced glycerol synthesis in yeast. Worms adapted to high salt swell and then return to their initial body volume when exposed to low-salt agar. During recovery from hypertonic stress, glycerol levels fall rapidly and glycerol excretion increases approximately fivefold. Our studies provide the first description of osmotic adaptation in C. elegans and provide the foundation for genetic and functional genomic analysis of animal cell osmoregulation.

  18. Tremor frequency characteristics in Parkinson's disease under resting-state and stress-state conditions.

    PubMed

    Lee, Hong Ji; Lee, Woong Woo; Kim, Sang Kyong; Park, Hyeyoung; Jeon, Hyo Seon; Kim, Han Byul; Jeon, Beom S; Park, Kwang Suk

    2016-03-15

    Tremor characteristics-amplitude and frequency components-are primary quantitative clinical factors for diagnosis and monitoring of tremors. Few studies have investigated how different patient's conditions affect tremor frequency characteristics in Parkinson's disease (PD). Here, we analyzed tremor characteristics under resting-state and stress-state conditions. Tremor was recorded using an accelerometer on the finger, under resting-state and stress-state (calculation task) conditions, during rest tremor and postural tremor. The changes of peak power, peak frequency, mean frequency, and distribution of power spectral density (PSD) of tremor were evaluated across conditions. Patients whose tremors were considered more than "mild" were selected, for both rest (n=67) and postural (n=25) tremor. Stress resulted in both greater peak powers and higher peak frequencies for rest tremor (p<0.001), but not for postural tremor. Notably, peak frequencies were concentrated around 5 Hz under stress-state condition. The distributions of PSD of tremor were symmetrical, regardless of conditions. Tremor is more evident and typical tremor characteristics, namely a lower frequency as amplitude increases, are different in stressful condition. Patient's conditions directly affect neural oscillations related to tremor frequencies. Therefore, tremor characteristics in PD should be systematically standardized across patient's conditions such as attention and stress levels. Copyright © 2016. Published by Elsevier B.V.

  19. Poor working conditions and work stress among Canadian sex workers.

    PubMed

    Duff, P; Sou, J; Chapman, J; Dobrer, S; Braschel, M; Goldenberg, S; Shannon, K

    2017-10-01

    While sex work is often considered the world's oldest profession, there remains a dearth of research on work stress among sex workers (SWs) in occupational health epidemiological literature. A better understanding of the drivers of work stress among SWs is needed to inform sex work policy, workplace models and standards. To examine the factors that influence work stress among SWs in Metro Vancouver. Analyses drew from a longitudinal cohort of SWs, known as An Evaluation of Sex Workers' Health Access (AESHA) (2010-14). A modified standardized 'work stress' scale, multivariable linear regression with generalized estimating equations was used to longitudinally examine the factors associated with work stress. In multivariable analysis, poor working conditions were associated with increased work stress and included workplace physical/sexual violence (β = 0.18; 95% confidence interval (CI) 0.06, 0.29), displacement due to police (β = 0.26; 95% CI 0.14, 0.38), working in public spaces (β = 0.73; 95% CI 0.61, 0.84). Older (β = -0.02; 95% CI -0.03, -0.01) and Indigenous SWs experienced lower work stress (β = -0.25; 95% CI -0.43, -0.08), whereas non-injection (β = 0.32; 95% CI 0.14, 0.49) and injection drug users (β = 0.17; 95% CI 0.03, 0.31) had higher work stress. Vancouver-based SWs' work stress was largely shaped by poor work conditions, such as violence, policing, lack of safe workspaces. There is a need to move away from criminalized approaches which shape unsafe work conditions and increase work stress for SWs. Policies that promote SWs' access to the same occupational health, safety and human rights standards as workers in other labour sectors are also needed. © The Author 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  20. The Microbial Sulfur Cycle at Extremely Haloalkaline Conditions of Soda Lakes

    PubMed Central

    Sorokin, Dimitry Y.; Kuenen, J. Gijs; Muyzer, Gerard

    2011-01-01

    Soda lakes represent a unique ecosystem with extremely high pH (up to 11) and salinity (up to saturation) due to the presence of high concentrations of sodium carbonate in brines. Despite these double extreme conditions, most of the lakes are highly productive and contain a fully functional microbial system. The microbial sulfur cycle is among the most active in soda lakes. One of the explanations for that is high-energy efficiency of dissimilatory conversions of inorganic sulfur compounds, both oxidative and reductive, sufficient to cope with costly life at double extreme conditions. The oxidative part of the sulfur cycle is driven by chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria (SOB), which are unique for soda lakes. The haloalkaliphilic SOB are present in the surface sediment layer of various soda lakes at high numbers of up to 106 viable cells/cm3. The culturable forms are so far represented by four novel genera within the Gammaproteobacteria, including the genera Thioalkalivibrio, Thioalkalimicrobium, Thioalkalispira, and Thioalkalibacter. The latter two were only found occasionally and each includes a single species, while the former two are widely distributed in various soda lakes over the world. The genus Thioalkalivibrio is the most physiologically diverse and covers the whole spectrum of salt/pH conditions present in soda lakes. Most importantly, the dominant subgroup of this genus is able to grow in saturated soda brines containing 4 M total Na+ – a so far unique property for any known aerobic chemolithoautotroph. Furthermore, some species can use thiocyanate as a sole energy source and three out of nine species can grow anaerobically with nitrogen oxides as electron acceptor. The reductive part of the sulfur cycle is active in the anoxic layers of the sediments of soda lakes. The in situ measurements of sulfate reduction rates and laboratory experiments with sediment slurries using sulfate, thiosulfate, or elemental sulfur as

  1. Lifetime estimation of extreme-ultraviolet pellicle at 500 W source power by thermal stress analysis

    NASA Astrophysics Data System (ADS)

    Park, Eun-Sang; Ban, Chung-Hyun; Park, Jae-Hun; Oh, Hye-Keun

    2017-10-01

    The analysis of the thermal stress and the extreme-ultraviolet (EUV) pellicle is important since the pellicle could be easily damaged since the thickness of the pellicle is 50 nm thin due to 90% required EUV transmission. One of the solution is using a high emissivity metallic material on the both sides of the pellicle and it can lower the thermal stress. However, using a metallic coating on pellicle core which is usually consist of silicon group can decrease the EUV transmission compared to using a single core layer pellicle only. Therefore, we optimized thermal and optical properties of the pellicle and elect three types of the pellicle. In this paper we simulated our optimized pellicles with 500W source power. The result shows that the difference of the thermal stress is small for each case. Therefore, our result also shows that using a high emissivity coating is necessary since the cooling of the pellicle strongly depends on emissivity and it can lower the stress effectively even at high EUV source power.

  2. Snow and ice ecosystems: not so extreme.

    PubMed

    Maccario, Lorrie; Sanguino, Laura; Vogel, Timothy M; Larose, Catherine

    2015-12-01

    Snow and ice environments cover up to 21% of the Earth's surface. They have been regarded as extreme environments because of their low temperatures, high UV irradiation, low nutrients and low water availability, and thus, their microbial activity has not been considered relevant from a global microbial ecology viewpoint. In this review, we focus on why snow and ice habitats might not be extreme from a microbiological perspective. Microorganisms interact closely with the abiotic conditions imposed by snow and ice habitats by having diverse adaptations, that include genetic resistance mechanisms, to different types of stresses in addition to inhabiting various niches where these potential stresses might be reduced. The microbial communities inhabiting snow and ice are not only abundant and taxonomically diverse, but complex in terms of their interactions. Altogether, snow and ice seem to be true ecosystems with a role in global biogeochemical cycles that has likely been underestimated. Future work should expand past resistance studies to understanding the function of these ecosystems. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Diversity in transcripts and translational pattern of stress proteins in marine extremophiles.

    PubMed

    Ambily Nath, I V; Loka Bharathi, P A

    2011-03-01

    Extremophiles occur in a diverse range of habitats, from the frigid waters of Antarctic to the superheated plumes of hydrothermal vents. Their in-depth study could provide important insights into the biochemical, ecological and evolutionary aspects of marine microbes. The cellular machinery of such extreme-lovers could be highly flexible to cope with such harsh environments. Extreme conditions of temperature, pressure, salinity, pH, oxidative stress, radiation, etc., above the physiological tolerance level can disrupt the natural conformation of proteins in the cell. The induction of stress proteins (heat/cold shock proteins/salt stress proteins/pressure-induced proteins) plays a vital role in the acclimatization of extremophiles. The present review focuses on the in vitro studies conducted on the transcripts and translational pattern of stress proteins in extremophiles. Though some proteins are unique, a commonality in stress resistance mechanism has been observed, for example, the universal occurrence of HSP60, 70 and the expression of metabolic and DNA repair proteins. The review highlights that among all the stressful conditions, salt/osmotic stress evokes the expression of highest number of transcripts/proteins while psychrophilic condition the least.

  4. Abiotic stress signaling and responses in plants

    PubMed Central

    Zhu, Jian-Kang

    2016-01-01

    Summary As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population. PMID:27716505

  5. Responses of tree species to heat waves and extreme heat events.

    PubMed

    Teskey, Robert; Wertin, Timothy; Bauweraerts, Ingvar; Ameye, Maarten; McGuire, Mary Anne; Steppe, Kathy

    2015-09-01

    The number and intensity of heat waves has increased, and this trend is likely to continue throughout the 21st century. Often, heat waves are accompanied by drought conditions. It is projected that the global land area experiencing heat waves will double by 2020, and quadruple by 2040. Extreme heat events can impact a wide variety of tree functions. At the leaf level, photosynthesis is reduced, photooxidative stress increases, leaves abscise and the growth rate of remaining leaves decreases. In some species, stomatal conductance increases at high temperatures, which may be a mechanism for leaf cooling. At the whole plant level, heat stress can decrease growth and shift biomass allocation. When drought stress accompanies heat waves, the negative effects of heat stress are exacerbated and can lead to tree mortality. However, some species exhibit remarkable tolerance to thermal stress. Responses include changes that minimize stress on photosynthesis and reductions in dark respiration. Although there have been few studies to date, there is evidence of within-species genetic variation in thermal tolerance, which could be important to exploit in production forestry systems. Understanding the mechanisms of differing tree responses to extreme temperature events may be critically important for understanding how tree species will be affected by climate change. © 2014 John Wiley & Sons Ltd.

  6. Response of shoal grass, Halodule wrightii, to extreme winter conditions in the Lower Laguna Madre, Texas

    USGS Publications Warehouse

    Hicks, D.W.; Onuf, C.P.; Tunnell, J.W.

    1998-01-01

    Effects of a severe freeze on the shoal grass, Halodule wrightii, were documented through analysis of temporal and spatial trends in below-ground biomass. The coincidence of the second lowest temperature (-10.6??C) in 107 years of record, 56 consecutive hours below freezing, high winds and extremely low water levels exposed the Laguna Madre, TX, to the most severe cold stress in over a century. H. wrightii tolerated this extreme freeze event. Annual pre- and post-freeze surveys indicated that below-ground biomass estimated from volume was Unaffected by the freeze event. Nor was there any post-freeze change in biomass among intertidal sites directly exposed to freezing air temperatures relative to subtidal sites which remained submerged during the freezing period.

  7. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities.

    PubMed

    Buckley, Lauren B; Huey, Raymond B

    2016-12-01

    Extreme temperatures can injure or kill organisms and can drive evolutionary patterns. Many indices of extremes have been proposed, but few attempts have been made to establish geographic patterns of extremes and to evaluate whether they align with geographic patterns in biological vulnerability and diversity. To examine these issues, we adopt the CLIMDEX indices of thermal extremes. We compute scores for each index on a geographic grid during a baseline period (1961-1990) and separately for the recent period (1991-2010). Heat extremes (temperatures above the 90th percentile during the baseline period) have become substantially more common during the recent period, particularly in the tropics. Importantly, the various indices show weak geographic concordance, implying that organisms in different regions will face different forms of thermal stress. The magnitude of recent shifts in indices is largely uncorrelated with baseline scores in those indices, suggesting that organisms are likely to face novel thermal stresses. Organismal tolerances correlate roughly with absolute metrics (mainly for cold), but poorly with metrics defined relative to local conditions. Regions with high extreme scores do not correlate closely with regions with high species diversity, human population density, or agricultural production. Even though frequency and intensity of extreme temperature events have - and are likely to have - major impacts on organisms, the impacts are likely to be geographically and taxonomically idiosyncratic and difficult to predict. © 2016 John Wiley & Sons Ltd.

  8. Soil heating and evaporation under extreme conditions: Forest fires and slash pile burns

    NASA Astrophysics Data System (ADS)

    Massman, W. J.

    2011-12-01

    Heating any soil during a sufficiently intense wild fire or prescribed burn can alter soil irreversibly, resulting in many significant and well known, long term biological, chemical, and hydrological effects. To better understand how fire impacts soil, especially considering the increasing probability of wildfires that is being driven by climate change and the increasing use of prescribe burns by land managers, it is important to better understand the dynamics of the coupled heat and moisture transport in soil during these extreme heating events. Furthermore, improving understanding of heat and mass transport during such extreme conditions should also provide insights into the associated transport mechanisms under more normal conditions as well. Here I describe the development of a new model designed to simulate soil heat and moisture transport during fires where the surface heating often ranges between 10,000 and 100,000 Wm-2 for several minutes to several hours. Model performance is tested against laboratory measurements of soil temperature and moisture changes at several depths during controlled heating events created with an extremely intense radiant heater. The laboratory tests employed well described soils with well known physical properties. The model, on the other hand, is somewhat unusual in that it employs formulations for temperature dependencies of the soil specific heat, thermal conductivity, and the water retention curve (relation between soil moisture and soil moisture potential). It also employs a new formulation for the surface evaporation rate as a component of the upper boundary condition, as well as the Newton-Raphson method and the generalized Thomas algorithm for inverting block tri-diagonal matrices to solve for soil temperature and soil moisture potential. Model results show rapid evaporation rates with significant vapor transfer not only to the free atmosphere above the soil, but to lower depths of the soil, where the vapor re

  9. Thermoregulatory value of cracking-clay soil shelters for small vertebrates during extreme desert conditions.

    PubMed

    Waudby, Helen P; Petit, Sophie

    2017-05-01

    Deserts exhibit extreme climatic conditions. Small desert-dwelling vertebrates have physiological and behavioral adaptations to cope with these conditions, including the ability to seek shelter. We investigated the temperature (T) and relative humidity (RH) regulating properties of the soil cracks that characterize the extensive cracking-clay landscapes of arid Australia, and the extent of their use by 2 small marsupial species: fat-tailed and stripe-faced dunnarts (Sminthopsis crassicaudata and Sminthopsis macroura). We measured hourly (over 24-h periods) the T and RH of randomly-selected soil cracks compared to outside conditions, during 2 summers and 2 winters. We tracked 17 dunnarts (8 Sminthopsis crassicaudata and 9 Sminthopsis macroura) to quantify their use of cracks. Cracks consistently moderated microclimate, providing more stable conditions than available from non-crack points, which often displayed comparatively dramatic fluctuations in T and RH. Both dunnart species used crack shelters extensively. Cracks constitute important shelter for small animals during extreme conditions by providing a stable microclimate, which is typically cooler than outside conditions in summer and warmer in winter. Cracks likely play a fundamental sheltering role by sustaining the physiological needs of small mammal populations. Globally, cracking-clay areas are dominated by agricultural land uses, including livestock grazing. Management of these systems should focus not only on vegetation condition, but also on soil integrity, to maintain shelter resources for ground-dwelling fauna. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  10. Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions

    NASA Astrophysics Data System (ADS)

    Obermeier, W. A.; Lehnert, L. W.; Kammann, C. I.; Müller, C.; Grünhage, L.; Luterbacher, J.; Erbs, M.; Moser, G.; Seibert, R.; Yuan, N.; Bendix, J.

    2017-02-01

    The increase in atmospheric greenhouse gas concentrations from anthropogenic activities is the major driver of recent global climate change. The stimulation of plant photosynthesis due to rising atmospheric carbon dioxide concentrations ([CO2]) is widely assumed to increase the net primary productivity (NPP) of C3 plants--the CO2 fertilization effect (CFE). However, the magnitude and persistence of the CFE under future climates, including more frequent weather extremes, are controversial. Here we use data from 16 years of temperate grassland grown under `free-air carbon dioxide enrichment’ conditions to show that the CFE on above-ground biomass is strongest under local average environmental conditions. The observed CFE was reduced or disappeared under wetter, drier and/or hotter conditions when the forcing variable exceeded its intermediate regime. This is in contrast to predictions of an increased CO2 fertilization effect under drier and warmer conditions. Such extreme weather conditions are projected to occur more intensely and frequently under future climate scenarios. Consequently, current biogeochemical models might overestimate the future NPP sink capacity of temperate C3 grasslands and hence underestimate future atmospheric [CO2] increase.

  11. Analysis of extreme summers and prior late winter/spring conditions in central Europe

    NASA Astrophysics Data System (ADS)

    Träger-Chatterjee, C.; Müller, R. W.; Bendix, J.

    2013-05-01

    Drought and heat waves during summer in mid-latitudes are a serious threat to human health and agriculture and have negative impacts on the infrastructure, such as problems in energy supply. The appearance of such extreme events is expected to increase with the progress of global warming. A better understanding of the development of extremely hot and dry summers and the identification of possible precursors could help improve existing seasonal forecasts in this regard, and could possibly lead to the development of early warning methods. The development of extremely hot and dry summer seasons in central Europe is attributed to a combined effect of the dominance of anticyclonic weather regimes and soil moisture-atmosphere interactions. The atmospheric circulation largely determines the amount of solar irradiation and the amount of precipitation in an area. These two variables are themselves major factors controlling the soil moisture. Thus, solar irradiation and precipitation are used as proxies to analyse extreme sunny and dry late winter/spring and summer seasons for the period 1958-2011 in Germany and adjacent areas. For this purpose, solar irradiation data from the European Center for Medium Range Weather Forecast 40-yr and interim re-analysis dataset, as well as remote sensing data are used. Precipitation data are taken from the Global Precipitation Climatology Project. To analyse the atmospheric circulation geopotential data at 850 hPa are also taken from the European Center for Medium Range Weather Forecast 40-yr and interim re-analysis datasets. For the years in which extreme summers in terms of high solar irradiation and low precipitation are identified, the previous late winter/spring conditions of solar irradiation and precipitation in Germany and adjacent areas are analysed. Results show that if the El Niño-Southern Oscillation (ENSO) is not very intensely developed, extremely high solar irradiation amounts, together with extremely low precipitation

  12. Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida.

    PubMed

    Bojanovič, Klara; D'Arrigo, Isotta; Long, Katherine S

    2017-04-01

    Bacteria cope with and adapt to stress by modulating gene expression in response to specific environmental cues. In this study, the transcriptional response of Pseudomonas putida KT2440 to osmotic, oxidative, and imipenem stress conditions at two time points was investigated via identification of differentially expressed mRNAs and small RNAs (sRNAs). A total of 440 sRNA transcripts were detected, of which 10% correspond to previously annotated sRNAs, 40% to novel intergenic transcripts, and 50% to novel transcripts antisense to annotated genes. Each stress elicits a unique response as far as the extent and dynamics of the transcriptional changes. Nearly 200 protein-encoding genes exhibited significant changes in all stress types, implicating their participation in a general stress response. Almost half of the sRNA transcripts were differentially expressed under at least one condition, suggesting possible functional roles in the cellular response to stress conditions. The data show a larger fraction of differentially expressed sRNAs than of mRNAs with >5-fold expression changes. The work provides detailed insights into the mechanisms through which P. putida responds to different stress conditions and increases understanding of bacterial adaptation in natural and industrial settings. IMPORTANCE This study maps the complete transcriptional response of P. putida KT2440 to osmotic, oxidative, and imipenem stress conditions at short and long exposure times. Over 400 sRNA transcripts, consisting of both intergenic and antisense transcripts, were detected, increasing the number of identified sRNA transcripts in the strain by a factor of 10. Unique responses to each type of stress are documented, including both the extent and dynamics of the gene expression changes. The work adds rich detail to previous knowledge of stress response mechanisms due to the depth of the RNA sequencing data. Almost half of the sRNAs exhibit significant expression changes under at least one

  13. Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida

    PubMed Central

    Bojanovič, Klara; D'Arrigo, Isotta

    2017-01-01

    ABSTRACT Bacteria cope with and adapt to stress by modulating gene expression in response to specific environmental cues. In this study, the transcriptional response of Pseudomonas putida KT2440 to osmotic, oxidative, and imipenem stress conditions at two time points was investigated via identification of differentially expressed mRNAs and small RNAs (sRNAs). A total of 440 sRNA transcripts were detected, of which 10% correspond to previously annotated sRNAs, 40% to novel intergenic transcripts, and 50% to novel transcripts antisense to annotated genes. Each stress elicits a unique response as far as the extent and dynamics of the transcriptional changes. Nearly 200 protein-encoding genes exhibited significant changes in all stress types, implicating their participation in a general stress response. Almost half of the sRNA transcripts were differentially expressed under at least one condition, suggesting possible functional roles in the cellular response to stress conditions. The data show a larger fraction of differentially expressed sRNAs than of mRNAs with >5-fold expression changes. The work provides detailed insights into the mechanisms through which P. putida responds to different stress conditions and increases understanding of bacterial adaptation in natural and industrial settings. IMPORTANCE This study maps the complete transcriptional response of P. putida KT2440 to osmotic, oxidative, and imipenem stress conditions at short and long exposure times. Over 400 sRNA transcripts, consisting of both intergenic and antisense transcripts, were detected, increasing the number of identified sRNA transcripts in the strain by a factor of 10. Unique responses to each type of stress are documented, including both the extent and dynamics of the gene expression changes. The work adds rich detail to previous knowledge of stress response mechanisms due to the depth of the RNA sequencing data. Almost half of the sRNAs exhibit significant expression changes under at least

  14. A New Stress-Based Model of Political Extremism: Personal Exposure to Terrorism, Psychological Distress, and Exclusionist Political Attitudes

    ERIC Educational Resources Information Center

    Canetti-Nisim, Daphna; Halperin, Eran; Sharvit, Keren; Hobfoll, Stevan E.

    2009-01-01

    Does exposure to terrorism lead to hostility toward minorities? Drawing on theories from clinical and social psychology, we propose a stress-based model of political extremism in which psychological distress--which is largely overlooked in political scholarship--and threat perceptions mediate the relationship between exposure to terrorism and…

  15. Seasonal Forecasts of Extreme Conditions for Wildland Fire Management in Alaska using NMME

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Bieniek, P.; Thoman, R.; York, A.; Ziel, R.

    2016-12-01

    The summer of 2015 was the second largest Alaska fire season since 1950 where approximately the land area of Massachusetts burned. The record fire year of 2004 resulted in 6.5 million acres burned and was costly from property loss (> 35M) and emergency personnel (> 17M). In addition to requiring significant resources, wildfire smoke impacts air quality in Alaska and downstream into North America. Fires in Alaska result from lightning strikes coupled with persistent (extreme) dry warm conditions in remote areas with limited fire management and the seasonal climate/weather determine the extent of the fire season in Alaska. Fire managers rely on weather/climate outlooks for allocating staff and resources from days to a season in advance. Though currently few tested products are available at the seasonal scale. Probabilistic forecasts of the expected seasonal climate/weather would aid tremendously in the planning process. Advanced knowledge of both lightning and fuel conditions would assist managers in planning resource allocation for the upcoming season. For fuel conditions, the Canadian Forest Fire Weather Index System (CFFWIS) has been used since 1992 because it better suits the Alaska fire regime than the standard US National Fire Danger Rating System (NFDRS). This CFFWIS is based on early afternoon values of 2-m air temperature, relative humidity, and 10-m winds and daily total precipitation. Extremes of these indices and the variables are used to calculate these indices will be defined in reference to fire weather for the boreal forest. The CFFWIS will be applied and evaluated for the NMME hindcasts. This study will evaluate the quality of the forecasts comparing the hindcast NMME CFFWIS to acres burned in Alaska. Spatial synoptic patterns in the NMME related to fire weather extremes will be constructed using self-organized maps and probabilities of occurrence will be evaluated against acres burned.

  16. Psychosomatic symptoms and stressful working conditions among Palestinian nurses: a cross-sectional study

    PubMed Central

    Jaradat, Yousef; Nijem, Khaldoun; Lien, Lars; Stigum, Hein; Bjertness, Espen; Bast-Pettersen, Rita

    2016-01-01

    Background: High levels of perceived stressful working conditions have been found to have an adverse effect on physical and mental health. Objectives: To examine the associations between self-reported stressful working conditions and Psychosomatic Symptoms (PSS), and to investigate possible gender differences. Methods: The present cross-sectional study comprises 430 nurses employed in Hebron district, Palestine. Self-reported stressful working conditions were recorded, and a Psychosomatic Symptoms Check list was used to assess prevalence of PSS. Findings: Median score on the psychosomatic symptom checklist for the group was 11, (range 1–21). Women reported more symptoms than men, with medians 11.6 and 10.0, respectively (p = .0001). PSS were associated with more self-reported stressful working conditions for both men (p < .0001) and women (p < .0001). The association was strongest among men. Conclusions: PSS were associated with high self-reported stressful working conditions, and this association was strongest among the men. PMID:27160155

  17. Molecular-dynamics simulation of Richtmyer-Meshkov instability on a Li-H2 interface at extreme compressing conditions

    NASA Astrophysics Data System (ADS)

    Huang, Shenghong; Wang, Weirong; Luo, Xisheng

    2018-06-01

    The new characteristics of Richtmyer-Meshkov instability (RMI) under extreme shock conditions are numerically studied by using molecular dynamics simulation incorporated with the electron force field model. The emphasis is placed on the ionization effects caused by different impacting speeds (6-30 km/s) on the microscale RMI on a Li-H2 interface. The linear region of the amplitude growth rate of the shocked interface under extreme shock conditions is observed to be much longer than that at the ordinary impact, which is in good accord with experimental results obtained with a Nova laser. It is also found that the amplitude of the nonlinear region is larger than the ordinary counterpart or the prediction by theory without considering the ionization effect. The two new characteristics are attributed to the ambipolar acceleration induced by the extra electric field due to the electron/ion separation under extreme shock conditions. These new findings may shed new light on the very complex physical process of the inertial confinement fusion on nanoscales.

  18. Effect of cold water and inverse lighting on growth performance of broiler chickens under extreme heat stress.

    PubMed

    Park, Sang-oh; Park, Byung-sung; Hwangbo, Jong

    2015-07-01

    The present study was carried out to investigate the effect of provision of extreme heat stress diet (EHD), inverse lighting, cold water on growth performance of broiler chickens exposed to extreme heat stress. The chickens were divided into four treatment groups, (T1, T2, T3, T4) as given below: Ti (EHD 1, 10:00-19:00 dark, 19:00-10:00 light, cool water 9 degrees C); T2 (EHD 2, 10:00-19:00 dark, 19:00-10:00 light, cool water 9 degrees C); T3 (EHD 1, 09:00-18:00 dark, 18:00-09:00 light, cool water 141C); T4 (EHD 2, 09:00-18:00 dark, 18:00-09:00 light, cool water 14 degrees C. EHD 1 contained soybean oil, molasses, methionine and lysine; EHD 2 contained the same ingredients as EHD 1 with addition of vitamin C. Groups T1 and T2 were given cooler water than the othertwo groups, and displayed higher body weight increase and diet intake as compared to T3 and T4 (p<0.05). The weights of their liver and gizzard were similar but the weights of the thymus and bursa of fabricius (F) were higher in groups T1 and T2 (p<0.05). It was observed that groups T1 and T2 displayed higher concentrations of blood triglyceride, total cholesterol, HDL-cholesterol and blood sugar as compared to T3 and T4; however LDL-cholesterol level was higher in groups T3 and T4 (p<0.05). T1 and T2 displayed higher levels of immunity substances such as IgG, IgAand IgM as compared to T3 and T4, but the blood level of corticosterone was lower in groups T1 and T2 (p<0.05). Ti and T2 contained higher amount of fecal Lactobacill as compared to T3 and T4; howeverT3 and T4 contained higher amount of fecal E. coli, total aerobic bacteria and coliform bacteria (p<0.05). Groups T1 and T2 displayed higher concentrations of cecal total short chain fatty acids, acetic acid and propionic acid but groups T3 and T4 displayed higher concentrations of butyric acid, isobutyric acid, valeric acid and isovaleric acid (p<0.05). The present study reports novel results such that the supply of extreme heat stress diet, inverse

  19. Strength conditions for the elastic structures with a stress error

    NASA Astrophysics Data System (ADS)

    Matveev, A. D.

    2017-10-01

    As is known, the constraints (strength conditions) for the safety factor of elastic structures and design details of a particular class, e.g. aviation structures are established, i.e. the safety factor values of such structures should be within the given range. It should be noted that the constraints are set for the safety factors corresponding to analytical (exact) solutions of elasticity problems represented for the structures. Developing the analytical solutions for most structures, especially irregular shape ones, is associated with great difficulties. Approximate approaches to solve the elasticity problems, e.g. the technical theories of deformation of homogeneous and composite plates, beams and shells, are widely used for a great number of structures. Technical theories based on the hypotheses give rise to approximate (technical) solutions with an irreducible error, with the exact value being difficult to be determined. In static calculations of the structural strength with a specified small range for the safety factors application of technical (by the Theory of Strength of Materials) solutions is difficult. However, there are some numerical methods for developing the approximate solutions of elasticity problems with arbitrarily small errors. In present paper, the adjusted reference (specified) strength conditions for the structural safety factor corresponding to approximate solution of the elasticity problem have been proposed. The stress error estimation is taken into account using the proposed strength conditions. It has been shown that, to fulfill the specified strength conditions for the safety factor of the given structure corresponding to an exact solution, the adjusted strength conditions for the structural safety factor corresponding to an approximate solution are required. The stress error estimation which is the basis for developing the adjusted strength conditions has been determined for the specified strength conditions. The adjusted strength

  20. [Experimental evaluation of actoprotective activity of nitrogen-containing heterocyclic compounds derivatives in extreme conditions].

    PubMed

    Tsublova, E G; Ivanova, T G; Ivanova, T N; Iasnetsov, V V

    2013-07-01

    In experiments on nonlinear male mice the ability of new derivatives of nitrogen-containing heterocyclic compounds to increase the physical working capacity in conditions of hyperthermia, hypothermia and acute normobaric hypoxia and hypercapnia has been investigated. It is established, that pyridine derivative IBHF-11 has more expressed positive action in the said conditions. It provided increase of the working capacity of animals at all kinds of extreme influence, and the value of positive action was comparable, and in conditions of acute normobaric hypoxia and hypercapnia exceeded those at the reference products bemitil and bromantan.

  1. Stress, deformation and micromorphological aspects of soil freezing under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Jetchick, Elizabeth

    In this thesis, frost heave is viewed as a process resulting from the interactions between thermodynamic conditions, soil environment controls such as texture, stress/deformation conditions and soil microstructure. A series of laboratory experiments was devised to investigate the links between these aspects. Because a limited number of studies exist on the development of internal stresses and strains in freezing soil, the work focussed on obtaining rheological data using conventional soil strain gauges and prototype stress transducers. A fine-grained unstructured silt was placed in a column (30 cm diameter by 100 cm length) and subjected to freezing and freeze-thaw cycles from the top down, lasting up to three months. Heat and water flows, as well as stresses and strains were monitored. The frozen soil was sectioned at the end of four of the experiments to examine the soil fabrics that had developed. From the experimental results, schematic stress and strain curves are proposed. For a single freeze cycle, compressive normal and tensile normal stresses were recorded simultaneously by the measuring devices within the freezing soil profile. Ice lens inception took place when the stress field changed, a condition which occurred either at the frost front level or at the base of the growing ice lens. Negative and positive strains reflected the different stress states that were sustained below and above the freezing front. Negative strains or soil consolidation took place as stresses increased before the passage of the frost line. Negligible soil strains were recorded as maximum soil consolidation was attained, before soil expansion. Distinct positive strain patterns indicating secondary and continuing heave, were recorded simultaneously throughout a thickness of soil, over a range of temperatures. Ice lens growth mostly took place as secondary frost heave, but continuing heave was measured, and the temperature conditions for both types of heave were determined. During

  2. Investigating the Effects of Simulated Space conditions on Novel Extremely Halophilic Archaea: Halovarius Luteus gen. nov., sp. nov.

    NASA Astrophysics Data System (ADS)

    Feshangsaz, Niloofar; Van Loon, ing.. Jack J. W. A.; Nazmi, Kamran; Semsarha, Farid

    2016-07-01

    Studying halophiles from different environments of Earth provide new insights into our search for life in the universe. Haloarchaea show some unique characteristics and physiological adaptations like acidic proteins against harsh environments such as natural brine with salt concentration approaching saturation (5 M) and regions with low active water. These properties make haloarchaea interesting candidate for astrobiological studies. Halovarius luteus gen. nov., sp. nov. a novel extremely halophilic archaeon from Urmia salt lake, in Iran has been chosen to explore its resistance against a series of extreme conditions. The aim of this study is to assess the resistance of strain DA50T under the effects of simulated space conditions like simulated microgravity, hypergravity, and desiccation. In this paper we will discuss the results of these studies where we specifically focus on changes in carotenoid pigments production and whole cell proteome. This is the first report of very novel Iranian archaea in response to extreme space conditions. The pigments were extracted by acetone and methanol. Pigments were analyzed by scanning the absorbance spectrum in the UV-VIS spectrophotometer. And they were separated by TLC. Whole protein from cell lysate supernatant was extracted after lysis with Bacterial Protein Extraction Reagent and fractionated by RP-HPLC using C18 column. Proteome analyzed by electrophoresis (SDS-PAGE), and MALDI-TOF. Carotenoid pigments are formed under different extreme conditions such as dry environment and gravitational changes. Also the protein composition exhibits alterations after exposure to the same conditions. Our conclusion is that pigments and proteins formation depend on the growth circumstances. Halophiles use this as an adaptation to survive under different environmental conditions.

  3. Posttranscriptional Control of Photosynthetic mRNA Decay under Stress Conditions Requires 3′ and 5′ Untranslated Regions and Correlates with Differential Polysome Association in Rice1[W][OA

    PubMed Central

    Park, Su-Hyun; Chung, Pil Joong; Juntawong, Piyada; Bailey-Serres, Julia; Kim, Youn Shic; Jung, Harin; Bang, Seung Woon; Kim, Yeon-Ki; Do Choi, Yang; Kim, Ju-Kon

    2012-01-01

    Abiotic stress, including drought, salinity, and temperature extremes, regulates gene expression at the transcriptional and posttranscriptional levels. Expression profiling of total messenger RNAs (mRNAs) from rice (Oryza sativa) leaves grown under stress conditions revealed that the transcript levels of photosynthetic genes are reduced more rapidly than others, a phenomenon referred to as stress-induced mRNA decay (SMD). By comparing RNA polymerase II engagement with the steady-state mRNA level, we show here that SMD is a posttranscriptional event. The SMD of photosynthetic genes was further verified by measuring the half-lives of the small subunit of Rubisco (RbcS1) and Chlorophyll a/b-Binding Protein1 (Cab1) mRNAs during stress conditions in the presence of the transcription inhibitor cordycepin. To discern any correlation between SMD and the process of translation, changes in total and polysome-associated mRNA levels after stress were measured. Total and polysome-associated mRNA levels of two photosynthetic (RbcS1 and Cab1) and two stress-inducible (Dehydration Stress-Inducible Protein1 and Salt-Induced Protein) genes were found to be markedly similar. This demonstrated the importance of polysome association for transcript stability under stress conditions. Microarray experiments performed on total and polysomal mRNAs indicate that approximately half of all mRNAs that undergo SMD remain polysome associated during stress treatments. To delineate the functional determinant(s) of mRNAs responsible for SMD, the RbcS1 and Cab1 transcripts were dissected into several components. The expressions of different combinations of the mRNA components were analyzed under stress conditions, revealing that both 3′ and 5′ untranslated regions are necessary for SMD. Our results, therefore, suggest that the posttranscriptional control of photosynthetic mRNA decay under stress conditions requires both 3′ and 5′ untranslated regions and correlates with differential polysome

  4. Abiotic Stresses Shift Belowground Populus-Associated Bacteria Toward a Core Stress Microbiome

    PubMed Central

    Carter, Kelsey R.; Carrell, Alyssa A.; Jun, Se-Ran; Jawdy, Sara S.; Vélez, Jessica M.; Gunter, Lee E.; Yang, Zamin; Nookaew, Intawat; Engle, Nancy L.; Lu, Tse-Yuan S.; Schadt, Christopher W.; Tschaplinski, Timothy J.; Tuskan, Gerald A.; Pelletier, Dale A.; Weston, David J.

    2018-01-01

    ABSTRACT Adverse growth conditions can lead to decreased plant growth, productivity, and survival, resulting in poor yields or failure of crops and biofeedstocks. In some cases, the microbial community associated with plants has been shown to alleviate plant stress and increase plant growth under suboptimal growing conditions. A systematic understanding of how the microbial community changes under these conditions is required to understand the contribution of the microbiome to water utilization, nutrient uptake, and ultimately yield. Using a microbiome inoculation strategy, we studied how the belowground microbiome of Populus deltoides changes in response to diverse environmental conditions, including water limitation, light limitation (shading), and metal toxicity. While plant responses to treatments in terms of growth, photosynthesis, gene expression and metabolite profiles were varied, we identified a core set of bacterial genera that change in abundance in response to host stress. The results of this study indicate substantial structure in the plant microbiome community and identify potential drivers of the phytobiome response to stress. IMPORTANCE The identification of a common “stress microbiome” indicates tightly controlled relationships between the plant host and bacterial associates and a conserved structure in bacterial communities associated with poplar trees under different growth conditions. The ability of the microbiome to buffer the plant from extreme environmental conditions coupled with the conserved stress microbiome observed in this study suggests an opportunity for future efforts aimed at predictably modulating the microbiome to optimize plant growth. PMID:29404422

  5. Abiotic Stresses Shift Belowground Populus -Associated Bacteria Toward a Core Stress Microbiome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timm, Collin M.; Carter, Kelsey R.; Carrell, Alyssa A.

    Adverse growth conditions can lead to decreased plant growth, productivity, and survival, resulting in poor yields or failure of crops and biofeedstocks. In some cases, the microbial community associated with plants has been shown to alleviate plant stress and increase plant growth under suboptimal growing conditions. A systematic understanding of how the microbial community changes under these conditions is required to understand the contribution of the microbiome to water utilization, nutrient uptake, and ultimately yield. Using a microbiome inoculation strategy, we studied how the belowground microbiome ofPopulus deltoideschanges in response to diverse environmental conditions, including water limitation, light limitation (shading),more » and metal toxicity. While plant responses to treatments in terms of growth, photosynthesis, gene expression and metabolite profiles were varied, we identified a core set of bacterial genera that change in abundance in response to host stress. The results of this study indicate substantial structure in the plant microbiome community and identify potential drivers of the phytobiome response to stress.The identification of a common “stress microbiome” indicates tightly controlled relationships between the plant host and bacterial associates and a conserved structure in bacterial communities associated with poplar trees under different growth conditions. The ability of the microbiome to buffer the plant from extreme environmental conditions coupled with the conserved stress microbiome observed in this study suggests an opportunity for future efforts aimed at predictably modulating the microbiome to optimize plant growth.« less

  6. Abiotic Stresses Shift Belowground Populus -Associated Bacteria Toward a Core Stress Microbiome

    DOE PAGES

    Timm, Collin M.; Carter, Kelsey R.; Carrell, Alyssa A.; ...

    2018-01-23

    Adverse growth conditions can lead to decreased plant growth, productivity, and survival, resulting in poor yields or failure of crops and biofeedstocks. In some cases, the microbial community associated with plants has been shown to alleviate plant stress and increase plant growth under suboptimal growing conditions. A systematic understanding of how the microbial community changes under these conditions is required to understand the contribution of the microbiome to water utilization, nutrient uptake, and ultimately yield. Using a microbiome inoculation strategy, we studied how the belowground microbiome ofPopulus deltoideschanges in response to diverse environmental conditions, including water limitation, light limitation (shading),more » and metal toxicity. While plant responses to treatments in terms of growth, photosynthesis, gene expression and metabolite profiles were varied, we identified a core set of bacterial genera that change in abundance in response to host stress. The results of this study indicate substantial structure in the plant microbiome community and identify potential drivers of the phytobiome response to stress.The identification of a common “stress microbiome” indicates tightly controlled relationships between the plant host and bacterial associates and a conserved structure in bacterial communities associated with poplar trees under different growth conditions. The ability of the microbiome to buffer the plant from extreme environmental conditions coupled with the conserved stress microbiome observed in this study suggests an opportunity for future efforts aimed at predictably modulating the microbiome to optimize plant growth.« less

  7. The behavior of Kevlar fibers under environmental-stress conditions

    NASA Astrophysics Data System (ADS)

    Perry, Mark Charles

    There are a myriad of mechanisms by which polymers can degrade and fail. It is therefore important to understand the physical mechanics, chemistry, their interactions, and kinetics. This pursuit becomes more than just "academic" because these mechanisms might just change with service conditions (i.e. environment and loading). If one does not understand these processes from the molecular to macroscopic scale it would be exceedingly difficult to gain information from accelerated testing because the mechanisms just might change from one condition to another. The purpose of this study was to probe these processes on scales ranging from molecular to macroscopic in environmental stress conditions. This study reports the results of environmental-stress degradation of Kevlar 49 fibers. The environmental agent of focus was the ubiquitous air pollutant complex NOsb{x}. Other materials and environments were investigated to a lesser extent for purposes of comparison. Mechanical property (i.e., short-term strength, modulus, and creep lifetime) degradation was examined using single fiber, yarn, and epoxy coated yarn (composite) specimens under environmental-stress conditions. Optical and scanning electron microscopes were employed to examine and compare the appearance of fracture features resulting from the various testing conditions. Atomic force microscopy augmented these studies with detailed topographical mappings and measures of the fracture surface frictional and modulus properties. Molecular processes (i.e., chain scission and other mechanical-chemical reactions) were probed by measures of changes in viscosity average molecular weight and the infrared spectra. It was demonstrated that environmental-stress degradation effects do occur in the Kevlar-NOsb{x} gas system. Strength decay in environmentally exposed unloaded fibers was demonstrated and a synergistic response in creep reduced fiber lifetimes by three orders of magnitude at moderate loadings. That is to say, the

  8. Metabolism and antioxidant defense in the larval chironomid Tanytarsus minutipalpus: adjustments to diel variations in the extreme conditions of Lake Magadi

    PubMed Central

    Wood, Chris M.; Bergman, Harold L.; Johannsson, Ora E.; Laurent, Pierre; Chevalier, Claudine; Kisipan, Mosiany L.; Kavembe, Geraldine D.; Papah, Michael B.; Brix, Kevin V.; De Boeck, Gudrun; Maina, John N.; Ojoo, Rodi O.; Bianchini, Adalto

    2017-01-01

    ABSTRACT Insect larvae are reported to be a major component of the simple but highly productive trophic web found in Lake Magadi (Kenya, Africa), which is considered to be one of the most extreme aquatic environments on Earth. Previous studies show that fish must display biochemical and physiological adjustments to thrive under the extreme conditions of the lake. However, information for invertebrates is lacking. In the present study, the occurrence of the larval chironomid Tanytarsus minutipalpus is reported in Lake Magadi for the first time. Additionally, changes in larval metabolism and antioxidant defense correlated with diel variations in the extremely hostile environmental conditions of the lake are described. Wide variations in water temperature (20.2-29.3°C) and dissolved oxygen content (3.2-18.6 mg O2 l−1) were observed at different times of day, without significant change in water pH (10.0±0.03). Temperature and dissolved oxygen were higher at 13:00 h (29.3±0.4°C and 18.6±1.0 mg O2 l−1) and 19:00 h (29.3±0.8°C and 16.2±1.6 mg O2 l−1) and lower at 01:00 h (21.1±0.1°C and 10.7±0.03 mg O2 l−1) and 07:00 h (20.2±0.4°C and 3.2±0.7 mg O2 l−1). Significant and parallel increases in parameters related to metabolism (cholinesterase, glucose, cholesterol, urea, creatinine and hemoglobin) and the antioxidant system (SOD, GPx, GR, GSH and GSSG) were observed in larvae collected at 13:00 h. In contrast, no significant changes were observed in pro-oxidants (ROS and NO), TOSC and oxidative damage parameters (LPO and DNA damage). Therefore, the observed increases in temperature and dissolved O2 content in Lake Magadi were associated with changes in the antioxidant system of T. minutipalpus larvae. Adjustments performed by the chironomid larvae were efficient in maintaining body homeostasis, as well as protecting biomolecules against oxidative damage, so that oxidative stress did not occur. GSH-GSSG and GPx-GR systems appeared to

  9. Complex-Spectrum Magnetic Environment enhances and/or modifies Bioeffects of Hypokinetic Stress Condition: an Animal Study

    NASA Astrophysics Data System (ADS)

    Temuriantz, N. A.; Martinyuk, V. S.; Ptitsyna, N. G.; Villoresi, G.; Iucci, N.; Tyasto, M. I.; Dorman, L. I.

    During last decades it was shown by many authors that ultra-low and extremely low frequency electric and magnetic fields ULF 0-10 Hz ELF 10-1000 Hz may produce biological effects and consequently may be a possible source for health problems Spaceflight electric and magnetic environments are characterized by complex combination of static and time-varying components in ULF-ELF range and by high variability The objective of this study was to investigate the possible influence of such magnetic fields on rats to understand the pathway regarding functional state of cardiovascular system Magnetic field MF pattern with variable complex spectra in 0-150 Hz frequency range was simulated using 3-axial Helmholtz coils and special computer-based equipment The effect of the real world MF exposure on rats was also tested in combination with hypokinetic stress condition which is typical for spaceflights It was revealed that variable complex-spectrum MF acts as a weak or moderate stress-like factor which amplifies and or modifies the functional shifts caused by other stress-factors The value and direction of the functional shifts caused by MF exposure significantly depend on gender individual-typological constitutional features and also on the physiological state norm stress of organism Our results support the idea that variable complex-spectrum MF action involves sympathetic activation overload in cholesterol transport in blood and also secretor activation of tissue basophyls mast cells that can influence the regional haemodynamics These

  10. Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation.

    PubMed

    Mukherjee, Vaskar; Radecka, Dorota; Aerts, Guido; Verstrepen, Kevin J; Lievens, Bart; Thevelein, Johan M

    2017-01-01

    Non-conventional yeasts present a huge, yet barely exploited, resource of yeast biodiversity for industrial applications. This presents a great opportunity to explore alternative ethanol-fermenting yeasts that are more adapted to some of the stress factors present in the harsh environmental conditions in second-generation (2G) bioethanol fermentation. Extremely tolerant yeast species are interesting candidates to investigate the underlying tolerance mechanisms and to identify genes that when transferred to existing industrial strains could help to design more stress-tolerant cell factories. For this purpose, we performed a high-throughput phenotypic evaluation of a large collection of non-conventional yeast species to identify the tolerance limits of the different yeast species for desirable stress tolerance traits in 2G bioethanol production. Next, 12 multi-tolerant strains were selected and used in fermentations under different stressful conditions. Five strains out of which, showing desirable fermentation characteristics, were then evaluated in small-scale, semi-anaerobic fermentations with lignocellulose hydrolysates. Our results revealed the phenotypic landscape of many non-conventional yeast species which have not been previously characterized for tolerance to stress conditions relevant for bioethanol production. This has identified for each stress condition evaluated several extremely tolerant non- Saccharomyces yeasts. It also revealed multi-tolerance in several yeast species, which makes those species good candidates to investigate the molecular basis of a robust general stress tolerance. The results showed that some non-conventional yeast species have similar or even better fermentation efficiency compared to S. cerevisiae in the presence of certain stressful conditions. Prior to this study, our knowledge on extreme stress-tolerant phenotypes in non-conventional yeasts was limited to only few species. Our work has now revealed in a systematic way the

  11. Extreme Sea Conditions in Shallow Water: Estimation based on in-situ measurements

    NASA Astrophysics Data System (ADS)

    Le Crom, Izan; Saulnier, Jean-Baptiste

    2013-04-01

    The design of marine renewable energy devices and components is based, among others, on the assessment of the environmental extreme conditions (winds, currents, waves, and water level) that must be combined together in order to evaluate the maximal loads on a floating/fixed structure, and on the anchoring system over a determined return period. Measuring devices are generally deployed at sea over relatively short durations (a few months to a few years), typically when describing water free surface elevation, and extrapolation methods based on hindcast data (and therefore on wave simulation models) have to be used. How to combine, in a realistic way, the action of the different loads (winds and waves for instance) and which correlation of return periods should be used are highly topical issues. However, the assessment of the extreme condition itself remains a not-fully-solved, crucial, and sensitive task. Above all in shallow water, extreme wave height, Hmax, is the most significant contribution in the dimensioning process of EMR devices. As a case study, existing methodologies for deep water have been applied to SEMREV, the French marine energy test site. The interest of this study, especially at this location, goes beyond the simple application to SEMREV's WEC and floating wind turbines deployment as it could also be extended to the Banc de Guérande offshore wind farm that are planned close by. More generally to pipes and communication cables as it is a redundant problematic. The paper will first present the existing measurements (wave and wind on site), the prediction chain that has been developed via wave models, the extrapolation methods applied to hindcast data, and will try to formulate recommendations for improving this assessment in shallow water.

  12. Typical meteorological conditions associated with extreme nitrogen dioxide (NO2) pollution events over Scandinavia

    NASA Astrophysics Data System (ADS)

    Thomas, Manu Anna; Devasthale, Abhay

    2017-10-01

    Characterizing typical meteorological conditions associated with extreme pollution events helps to better understand the role of local meteorology in governing the transport and distribution of pollutants in the atmosphere. The knowledge of their co-variability could further help to evaluate and constrain chemistry transport models. Hence, in this study, we investigate the statistical linkages between extreme nitrogen dioxide (NO2) pollution events and meteorology over Scandinavia using observational and reanalysis data. It is observed that the south-westerly winds dominated during extreme events, accounting for 50-65 % of the total events depending on the season, while the second largest annual occurrence was from south-easterly winds, accounting for 17 % of total events. The specific humidity anomalies showed an influx of warmer and moisture-laden air masses over Scandinavia in the free troposphere. Two distinct modes in the persistency of circulation patterns are observed. The first mode lasts for 1-2 days, dominated by south-easterly winds that prevailed during 78 % of total extreme events in that mode, while the second mode lasted for 3-5 days, dominated by south-westerly winds that prevailed during 86 % of the events. The combined analysis of circulation patterns, their persistency, and associated changes in humidity and clouds suggests that NO2 extreme events over Scandinavia occur mainly due to long-range transport from the southern latitudes.

  13. Normal and Extreme Wind Conditions for Power at Coastal Locations in China.

    PubMed

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China's coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40-62 years are statistically analyzed. The East Asian Monsoon that affects almost China's entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov-Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters.

  14. The influence of wheelchair propulsion technique on upper extremity muscle demand: a simulation study.

    PubMed

    Rankin, Jeffery W; Kwarciak, Andrew M; Richter, W Mark; Neptune, Richard R

    2012-11-01

    The majority of manual wheelchair users will experience upper extremity injuries or pain, in part due to the high force requirements, repetitive motion and extreme joint postures associated with wheelchair propulsion. Recent studies have identified cadence, contact angle and peak force as important factors for reducing upper extremity demand during propulsion. However, studies often make comparisons between populations (e.g., able-bodied vs. paraplegic) or do not investigate specific measures of upper extremity demand. The purpose of this study was to use a musculoskeletal model and forward dynamics simulations of wheelchair propulsion to investigate how altering cadence, peak force and contact angle influence individual muscle demand. Forward dynamics simulations of wheelchair propulsion were generated to emulate group-averaged experimental data during four conditions: 1) self-selected propulsion technique, and while 2) minimizing cadence, 3) maximizing contact angle, and 4) minimizing peak force using biofeedback. Simulations were used to determine individual muscle mechanical power and stress as measures of muscle demand. Minimizing peak force and cadence had the lowest muscle power requirements. However, minimizing peak force increased cadence and recovery power, while minimizing cadence increased average muscle stress. Maximizing contact angle increased muscle stress and had the highest muscle power requirements. Minimizing cadence appears to have the most potential for reducing muscle demand and fatigue, which could decrease upper extremity injuries and pain. However, altering any of these variables to extreme values appears to be less effective; instead small to moderate changes may better reduce overall muscle demand. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Long distance migratory songbirds respond to extremes in arctic seasonality

    NASA Astrophysics Data System (ADS)

    Boelman, N.; Asmus, A.; Chmura, H.; Krause, J.; Perez, J. H.; Sweet, S. K.; Gough, L.; Wingfield, J.

    2017-12-01

    Arctic regions are warming rapidly, with extreme weather events increasing in frequency, duration and intensity, as in other regions. Many studies have focused on how shifting seasonality in environmental conditions affect the phenology and productivity of vegetation, while far fewer have examined how arctic fauna responds. We studied two species of long-distance migratory songbirds, Lapland longspurs, Calcarius lapponicus, and White-crowned sparrows, Zonotrichia leucophrys gambelii, across seven consecutive breeding seasons in northern Alaskan tundra. We aimed to understand how spring environmental conditions affected breeding cycle phenology, food availability, body condition, stress physiology, and ultimately, reproductive success. Spring temperatures, precipitation, storm frequency, and snow-free dates differed significantly among years, with 2013 characterized by unusually late snow cover, and 2015 and 2016 characterized by unusually early snow-free dates and several late spring snowstorms. In response, we found that relative to other study years, there was a significant delay in breeding cycle phenology for both study species in 2013, while breeding cycle phenology was significantly earlier in 2015 only. For both species, we also found significant variation among years in: the seasonal patterns of arthropod availability during the nesting stage; body condition, and; stress physiology. Finally, we found significant variation in reproductive success of both species across years, and that daily survival rates were decreased by snow storm events. Our findings suggest that arctic-breeding passerine communities may be able to adjust phenology to unpredictable shifts in the timing of spring, but extreme conditions during the incubation and nestling stages are detrimental to reproductive success.

  16. Multi-model ensemble projections of future extreme heat stress on rice across southern China

    NASA Astrophysics Data System (ADS)

    He, Liang; Cleverly, James; Wang, Bin; Jin, Ning; Mi, Chunrong; Liu, De Li; Yu, Qiang

    2017-08-01

    Extreme heat events have become more frequent and intense with climate warming, and these heatwaves are a threat to rice production in southern China. Projected changes in heat stress in rice provide an assessment of the potential impact on crop production and can direct measures for adaptation to climate change. In this study, we calculated heat stress indices using statistical scaling techniques, which can efficiently downscale output from general circulation models (GCMs). Data across the rice belt in southern China were obtained from 28 GCMs in the Coupled Model Intercomparison Project phase 5 (CMIP5) with two emissions scenarios (RCP4.5 for current emissions and RCP8.5 for increasing emissions). Multi-model ensemble projections over the historical period (1960-2010) reproduced the trend of observations in heat stress indices (root-mean-square error RMSE = 6.5 days) better than multi-model arithmetic mean (RMSE 8.9 days) and any individual GCM (RMSE 11.4 days). The frequency of heat stress events was projected to increase by 2061-2100 in both scenarios (up to 185 and 319% for RCP4.5 and RCP8.5, respectively), especially in the middle and lower reaches of the Yangtze River. This increasing risk of exposure to heat stress above 30 °C during flowering and grain filling is predicted to impact rice production. The results of our study suggest the importance of specific adaption or mitigation strategies, such as selection of heat-tolerant cultivars and adjustment of planting date in a warmer future world.

  17. Development of a Fatigue Crack Growth Coupon for Highly Plastic Stress Conditions

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Aggarwal, Pravin K.; Swanson, Gregory R.

    2003-01-01

    The analytical approach used to develop a novel fatigue crack growth coupon for highly plastic stress field condition is presented in this paper. The flight hardware investigated is a large separation bolt that has a deep notch, which produces a large plastic zone at the notch root when highly loaded. Four test specimen configurations are analyzed in an attempt to match the elastic-plastic stress field and crack constraint conditions present in the separation bolt. Elastic-plastic finite element analysis is used to compare the stress fields and critical fracture parameters. Of the four test specimens analyzed, the modified double-edge notch tension - 3 (MDENT-3) most closely approximates the stress field, J values, and crack constraint conditions found in the flight hardware. The MDENT-3 is also most insensitive to load misalignment and/or load redistribution during crack growth.

  18. Soil biotic legacy effects of extreme weather events influence plant invasiveness

    PubMed Central

    Meisner, Annelein; De Deyn, Gerlinde B.; de Boer, Wietse; van der Putten, Wim H.

    2013-01-01

    Climate change is expected to increase future abiotic stresses on ecosystems through extreme weather events leading to more extreme drought and rainfall incidences [Jentsch A, et al. (2007) Front Ecol Environ 5(7):365–374]. These fluctuations in precipitation may affect soil biota, soil processes [Evans ST, Wallenstein MD (2012) Biogeochemistry 109:101–116], and the proportion of exotics in invaded plant communities [Jiménez MA, et al. (2011) Ecol Lett 14:1277–1235]. However, little is known about legacy effects in soil on the performance of exotics and natives in invaded plant communities. Here we report that drought and rainfall effects on soil processes and biota affect the performance of exotics and natives in plant communities. We performed two mesocosm experiments. In the first experiment, soil without plants was exposed to drought and/or rainfall, which affected soil N availability. Then the initial soil moisture conditions were restored, and a mixed community of co-occurring natives and exotics was planted and exposed to drought during growth. A single stress before or during growth decreased the biomass of natives, but did not affect exotics. A second drought stress during plant growth resetted the exotic advantage, whereas native biomass was not further reduced. In the second experiment, soil inoculation revealed that drought and/or rainfall influenced soil biotic legacies, which promoted exotics but suppressed natives. Our results demonstrate that extreme weather events can cause legacy effects in soil biota, promoting exotics and suppressing natives in invaded plant communities, depending on the type, frequency, and timing of extreme events. PMID:23716656

  19. The Emotional Stress Reaction Questionnaire (ESRQ): Measurement of Stress Reaction Level in Field Conditions in 60 Seconds

    DTIC Science & Technology

    2011-04-01

    of coherence, secondary appraisal , cognitive emotion-focused coping , self-rated performance, self-rated health and a low moral stress reaction. The...1989). Personality, appraisal and cognitive coping processes, and performance during various conditions of stress . Military Psychology, 1, 167-182...Psychology, 2, 63-78. Larsson, G., Kempe, S., & Starrin, B. (1988). Appraisal and coping processes in acute, time-limited stressful situations: A

  20. Mediator phosphorylation prevents stress response transcription during non-stress conditions.

    PubMed

    Miller, Christian; Matic, Ivan; Maier, Kerstin C; Schwalb, Björn; Roether, Susanne; Strässer, Katja; Tresch, Achim; Mann, Matthias; Cramer, Patrick

    2012-12-28

    The multiprotein complex Mediator is a coactivator of RNA polymerase (Pol) II transcription that is required for the regulated expression of protein-coding genes. Mediator serves as an end point of signaling pathways and regulates Pol II transcription, but the mechanisms it uses are not well understood. Here, we used mass spectrometry and dynamic transcriptome analysis to investigate a functional role of Mediator phosphorylation in gene expression. Affinity purification and mass spectrometry revealed that Mediator from the yeast Saccharomyces cerevisiae is phosphorylated at multiple sites of 17 of its 25 subunits. Mediator phosphorylation levels change upon an external stimulus set by exposure of cells to high salt concentrations. Phosphorylated sites in the Mediator tail subunit Med15 are required for suppression of stress-induced changes in gene expression under non-stress conditions. Thus dynamic and differential Mediator phosphorylation contributes to gene regulation in eukaryotic cells.

  1. Oxidative stress differentially impacts male and female bovine embryos depending on the culture medium and the stress condition.

    PubMed

    Dallemagne, Matthew; Ghys, Emmanuelle; De Schrevel, Catalina; Mwema, Ariane; De Troy, Delphine; Rasse, Catherine; Donnay, Isabelle

    2018-09-01

    Male and female embryos are known to differ for their metabolism and response to environmental factors very early in development. The present study aimed to evaluate the response to oxidative stress of male and female bovine embryos at the morula-blastocyst stages in terms of developmental rates, total cell number and apoptotic rates in two culture conditions. Embryos where cultured in a medium supplemented with either 5% fetal calf serum (FCS) or 4 mg/mL bovine serum albumin and a mixture of insulin, transferrin and selenium (BSA-ITS). Oxidative stress was applied at Day-5 post insemination (pi) by adding either AAPH or menadione to the culture medium, and blastocysts were analyzed at Day-7pi. The impact on development and blastocyst quality was dependent on the culture medium and the stress inducer but differed between male and female embryos. Male embryos resisted better to oxidative stress in FCS supplemented medium, no matter the stress inducer. Accordingly, the impact on blastocyst cell number tended to be higher in female blastocysts after stress induction with AAPH in FCS supplemented medium. On the other hand, in BSA-ITS supplemented medium, female embryos were more resistant to AAPH induced stress, while menadione had no impact on sex ratio. The weaker resistance of males to AAPH in this medium is in accordance with their trend to show a higher increase in apoptotic rates than females in this condition. In conclusion, this study shows that oxidative stress has differential impact on male and female bovine blastocysts depending on the culture condition and on the way oxidative stress is induced. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Zymomonas with improved xylose utilization in stress conditions

    DOEpatents

    Caimi, Perry G; Emptage, Mark; Li, Xu; Viitanen, Paul V; Chou, Yat-Chen; Franden, Mary Ann; Zhang, Min

    2013-06-18

    Strains of xylose utilizing Zymomonas with improved xylose utilization and ethanol production during fermentation in stress conditions were obtained using an adaptation method. The adaptation involved continuously growing xylose utilizing Zymomonas in media containing high sugars, acetic acid, ammonia, and ethanol.

  3. Modeling soil heating and moisture transport under extreme conditions: Forest fires and slash pile burns

    NASA Astrophysics Data System (ADS)

    Massman, W. J.

    2012-10-01

    Heating any soil during a sufficiently intense wildfire or prescribed burn can alter it irreversibly, causing many significant, long-term biological, chemical, and hydrological effects. Given the climate-change-driven increasing probability of wildfires and the increasing use of prescribed burns by land managers, it is important to better understand the dynamics of the coupled heat and moisture transport in soil during these extreme heating events. Furthermore, improved understanding and modeling of heat and mass transport during extreme conditions should provide insights into the associated transport mechanisms under more normal conditions. The present study describes a numerical model developed to simulate soil heat and moisture transport during fires where the surface heating often ranges between 10,000 and 100,000 W m-2 for several minutes to several hours. Basically, the model extends methods commonly used to model coupled heat flow and moisture evaporation at ambient conditions into regions of extreme dryness and heat. But it also incorporates some infrequently used formulations for temperature dependencies of the soil specific heat, thermal conductivity, and the water retention curve, as well as advective effects due to the large changes in volume that occur when liquid water is rapidly volatilized. Model performance is tested against laboratory measurements of soil temperature and moisture changes at several depths during controlled heating events. Qualitatively, the model agrees with the laboratory observations, namely, it simulates an increase in soil moisture ahead of the drying front (due to the condensation of evaporated soil water at the front) and a hiatus in the soil temperature rise during the strongly evaporative stage of the soil drying. Nevertheless, it is shown that the model is incapable of producing a physically realistic solution because it does not (and, in fact, cannot) represent the relationship between soil water potential and soil

  4. Pi2 Pulsations During Extremely Quiet Geomagnetic Condition: Van Allen Probe Observations

    NASA Astrophysics Data System (ADS)

    Ghamry, Essam

    2017-06-01

    A ultra low frequency (ULF) wave, Pi2, has been reported to occur during periods of extremely quiet magnetospheric and solar wind conditions. And no statistical study on the Pi2 has been performed during extremely quiet conditions, using satellite observations to the author’s knowledge. Also Pi2 pulsations in the space fluxgate magnetometers near perigee failed to attract scientist’s attention previously. In this paper, Pi2 pulsations detected by the Van Allen probe satellites (VAP-A & VAP-B) were investigated statistically. During the period from October 2012 to December 2014, ninety six Pi2 events were identified using VAP when Kp = 0 while using Kakioka (KAK, L = 1.23) as a reference ground station. Seventy five events had high coherence between VAP-Bz and H components at KAK station. As a result, it was found that 77 % of the events had power spectra between 5 and 12 mHz, which differs from the regular Pi2 band range of from 6.7 to 25 mHz. In addition, it was shown that it is possible to observe Pi2 pulsations from space fluxgate magnetometers near perigee. Twenty two clean Pi2 pulsations were found where L < 4 and four examples of Pi2 oscillations at different L shells are presented in this paper.

  5. Sports nuclear medicine. Bone imaging for lower extremity pain in athletes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brill, D.R.

    Increased participation in sports by the general public has led to an increase in sports-induced injuries, including stress fractures, shin splints, arthritis, and a host of musculotendinous maladies. Bone scintigraphy with Tc-99m MDP has been used with increasing frequency in detecting stress fractures, but this study can miss certain important conditions and detect other lesions of lesser clinical significance. This paper demonstrates the spectrum of findings on bone scanning in nonacute sports trauma and offers suggestions for the optimal use of Tc-99m MDP for detecting the causes of lower extremity pain in athletes.

  6. Extraordinary survival of nanobacteria under extreme conditions

    NASA Astrophysics Data System (ADS)

    Bjorklund, Michael; Ciftcioglu, Neva; Kajander, E. Olavi

    1998-07-01

    Nanobacteria show high resistance to gamma irradiation. To further examine their survival in extreme conditions several disinfecting and sterilizing chemicals as well as autoclaving, UV light, microwaves, heating and drying treatments were carried out. The effect of antibiotics used in cell culture were also evaluated. Two forms of nanobacteria were used in the tests: nanobacteria cultured in serum containing medium, and nanobacteria cultured in serum-free medium, the latter being more mineralized. Nanobacteria, having various amounts of apatite on their surfaces, were used to analyze the degree of protection given by the mineral. The chemicals tested included ethanol, glutaraldehyde, formalin, hypochlorite, hydrogen peroxide, hydrochloric acid, sodium hydroxide, detergents, and commercial disinfectants at concentrations generally used for disinfection. After chemical and physical treatments for various times, the nanobacteria were subcultered to detect their survival. The results show unique and wide resistance of nanobacteria to common agents used in disinfection. It can also be seen that the mineralization of the nanobacterial surface furthermore increases the resistance. Survival of nanobacteria is unique among living bacteria, but it can be compared with that observed in spores. Interestingly, nanobacteria have metabolic rate as slow as bacterial spores. A slow metabolic rate and protective structures, like mineral, biofilm and impermeable cell wall, can thus explain the observations made.

  7. Normal and Extreme Wind Conditions for Power at Coastal Locations in China

    PubMed Central

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China’s coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40–62 years are statistically analyzed. The East Asian Monsoon that affects almost China’s entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov–Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters. PMID:26313256

  8. Evaluating stress analysis and failure criteria for offshore structures for Pechora Sea conditions

    NASA Astrophysics Data System (ADS)

    Nesic, S.; Donskoy, Y.; Zolotukhin, A.

    2017-12-01

    Development of Arctic hydrocarbon resources has faced many challenges due to sensitive environmental conditions including low temperatures, ice cover and terrestrial permafrost and extreme seasonal variation in sunlight. Russian offshore field development in Arctic region is usually associated with annual ice cover, which can cause serious damage on the offshore platforms. The Pechora Sea has claimed as one of the most perspective oil and gas region of the Russian Arctic with seven discovered oil and gas fields and several dozens of structures. Our rough assessment, based on in-place hydrocarbon volumes and recovery factor evaluation concept, indicates that Pechora Sea alone has in-place volumes amounting to ca. 20 billion barrel oil equivalent (BOE). This quantity is enough to secure produced volumes by 2040 exceeding 3 billion BOE [1] that indicates huge resource potential of the region. The environmental conditions are primarily function of water dynamics and ice cover. The sea is covered by the ice for greatest part of the year. In this article, the ice load simulations were performed using explicit dynamic analysis system in ANSYS software to determine best shape and size of an offshore platform for the Pechora Sea ice conditions. Different gravity based structures (GBS) were analyzed: artificial island, hollow cylindrical and conical concrete structures and four-leg GBS. Relationships between the stress, deformations and time were analyzed and important observations from the simulation results were a basis for selecting the most preferable structures.

  9. Extreme summer temperatures in Iberia: health impacts and associated synoptic conditions

    NASA Astrophysics Data System (ADS)

    García-Herrera, R.; Díaz, J.; Trigo, R. M.; Hernández, E.

    2005-02-01

    This paper examines the effect of extreme summer temperatures on daily mortality in two large cities of Iberia: Lisbon (Portugal) and Madrid (Spain). Daily mortality and meteorological variables are analysed using the same methodology based on Box-Jenkins models. Results reveal that in both cases there is a triggering effect on mortality when maximum daily temperature exceeds a given threshold (34°C in Lisbon and 36°C in Madrid). The impact of most intense heat events is very similar for both cities, with significant mortality values occurring up to 3 days after the temperature threshold has been surpassed. This impact is measured as the percentual increase of mortality associated to a 1°C increase above the threshold temperature. In this respect, Lisbon shows a higher impact, 31%, as compared with Madrid at 21%. The difference can be attributed to demographic and socio-economic factors. Furthermore, the longer life span of Iberian women is critical to explain why, in both cities, females are more susceptible than males to heat effects, with an almost double mortality impact value. The analysis of Sea Level Pressure (SLP), 500hPa geopotential height and temperature fields reveals that, despite being relatively close to each other, Lisbon and Madrid have relatively different synoptic circulation anomalies associated with their respective extreme summer temperature days. The SLP field reveals higher anomalies for Lisbon, but extending over a smaller area. Extreme values in Madrid seem to require a more western location of the Azores High, embracing a greater area over Europe, even if it is not as deep as for Lisbon. The origin of the hot and dry air masses that usually lead to extreme heat days in both cities is located in Northern Africa. However, while Madrid maxima require wind blowing directly from the south, transporting heat from Southern Spain and Northern Africa, Lisbon maxima occur under more easterly conditions, when Northern African air flows over the

  10. Stress response physiology of thermophiles.

    PubMed

    Ranawat, Preeti; Rawat, Seema

    2017-04-01

    Thermo (or hyperthermo) philic microorganisms are ubiquitous having a wide range of habitats from freshly fallen snow to pasteurized milk to geothermal areas like hot springs. The variations in physicochemical conditions, viz., temperature, pH, nutrient availability and light intensity in the habitats always pose stress conditions for the inhabitants leading to slow growth or cell death. The industrial processes used for harvesting secondary metabolites such as enzymes, toxins and organic acids also create stressed environments for thermophiles. The production of DNA-binding proteins, activation of reactive oxygen species detoxification system, compatible solute accumulation, expression of heat shock proteins and alterations in morphology are a few examples of physiological changes demonstrated by these microscopic lifeforms in stress. These microorganisms exhibit complex genetic and physiological changes to minimize, adapt to and repair damage caused by extreme environmental disturbances. These changes are termed as 'stress responses' which enable them to stabilize their homeostasis. The exploration of important thermophilic factors would pave the way in engineering the microbial strains for various biotechnological applications. This review article presents a picture of physiological responses of thermophiles against various stress conditions as their mechanisms to respond to stress make them model organisms to further explore them for basic and applied biology purposes.

  11. Plant volatiles in extreme terrestrial and marine environments.

    PubMed

    Rinnan, Riikka; Steinke, Michael; McGenity, Terry; Loreto, Francesco

    2014-08-01

    This review summarizes the current understanding on plant and algal volatile organic compound (VOC) production and emission in extreme environments, where temperature, water availability, salinity or other environmental factors pose stress on vegetation. Here, the extreme environments include terrestrial systems, such as arctic tundra, deserts, CO₂ springs and wetlands, and marine systems such as sea ice, tidal rock pools and hypersaline environments, with mangroves and salt marshes at the land-sea interface. The emission potentials at fixed temperature and light level or actual emission rates for phototrophs in extreme environments are frequently higher than for organisms from less stressful environments. For example, plants from the arctic tundra appear to have higher emission potentials for isoprenoids than temperate species, and hypersaline marine habitats contribute to global dimethyl sulphide (DMS) emissions in significant amounts. DMS emissions are more widespread than previously considered, for example, in salt marshes and some desert plants. The reason for widespread VOC, especially isoprenoid, emissions from different extreme environments deserves further attention, as these compounds may have important roles in stress resistance and adaptation to extremes. Climate warming is likely to significantly increase VOC emissions from extreme environments both by direct effects on VOC production and volatility, and indirectly by altering the composition of the vegetation. © 2014 John Wiley & Sons Ltd.

  12. A uniaxial stress capacitive dilatometer for high-resolution thermal expansion and magnetostriction under multiextreme conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Küchler, R.; Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, Universitätsstrasse 2, 86135 Augsburg; Stingl, C.

    2016-07-15

    Thermal expansion and magnetostriction are directional dependent thermodynamic quantities. For the characterization of novel quantum phases of matter, it is required to study materials under multi-extreme conditions, in particular, down to very low temperatures, in very high magnetic fields or under high pressure. We developed a miniaturized capacitive dilatometer suitable for temperatures down to 20 mK and usage in high magnetic fields, which exerts a large spring force between 40 to 75 N on the sample. This corresponds to a uniaxial stress up to 3 kbar for a sample with cross section of (0.5 mm){sup 2}. We describe design andmore » performance test of the dilatometer which resolves length changes with high resolution of 0.02 Å at low temperatures. The miniaturized device can be utilized in any standard cryostat, including dilution refrigerators or the commercial physical property measurement system.« less

  13. Structural and Mechanical Properties of Intermediate Filaments under Extreme Conditions and Disease

    NASA Astrophysics Data System (ADS)

    Qin, Zhao

    Intermediate filaments are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that intermediate filament proteins play key roles to reinforce cells subjected to large-deformation as well as participate in signal transduction. However, it is still poorly understood how the nanoscopic structure, as well as the biochemical properties of these protein molecules contribute to their biomechanical functions. In this research we investigate the material function of intermediate filaments under various extreme mechanical conditions as well as disease states. We use a full atomistic model and study its response to mechanical stresses. Learning from the mechanical response obtained from atomistic simulations, we build mesoscopic models following the finer-trains-coarser principles. By using this multiple-scale model, we present a detailed analysis of the mechanical properties and associated deformation mechanisms of intermediate filament network. We reveal the mechanism of a transition from alpha-helices to beta-sheets with subsequent intermolecular sliding under mechanical force, which has been inferred previously from experimental results. This nanoscale mechanism results in a characteristic nonlinear force-extension curve, which leads to a delocalization of mechanical energy and prevents catastrophic fracture. This explains how intermediate filament can withstand extreme mechanical deformation of > 1 00% strain despite the presence of structural defects. We combine computational and experimental techniques to investigate the molecular mechanism of Hutchinson-Gilford progeria syndrome, a premature aging disease. We find that the mutated lamin tail .domain is more compact and stable than the normal one. This altered structure and stability may enhance the association of intermediate filaments with the nuclear membrane, providing a molecular mechanism of the disease. We study the nuclear membrane association

  14. Towards validated chemistry at extreme conditions: reactive MD simulations of shocked Polyvinyl Nitrate and Nitromethane

    NASA Astrophysics Data System (ADS)

    Islam, Md Mahbubul; Strachan, Alejandro

    A detailed atomistic-level understanding of the ultrafast chemistry of detonation processes of high energy materials is crucial to understand their performance and safety. Recent advances in laser shocks and ultra-fast spectroscopy is yielding the first direct experimental evidence of chemistry at extreme conditions. At the same time, reactive molecular dynamics (MD) in current high-performance computing platforms enable an atomic description of shock-induced chemistry with length and timescales approaching those of experiments. We use MD simulations with the reactive force field ReaxFF to investigate the shock-induced chemical decomposition mechanisms of polyvinyl nitrate (PVN) and nitromethane (NM). The effect of shock pressure on chemical reaction mechanisms and kinetics of both the materials are investigated. For direct comparison of our simulation results with experimentally derived IR absorption data, we performed spectral analysis using atomistic velocity at various shock conditions. The combination of reactive MD simulations and ultrafast spectroscopy enables both the validation of ReaxFF at extreme conditions and contributes to the interpretation of the experimental data relating changes in spectral features to atomic processes. Office of Naval Research MURI program.

  15. A 100-Year Review: Stress physiology including heat stress.

    PubMed

    Collier, R J; Renquist, B J; Xiao, Y

    2017-12-01

    Stress is an external event or condition that places a strain on a biological system. The animal response to a stress involves the expenditure of energy to remove or reduce the impact of the stress. This increases maintenance requirements of the animal and results in loss of production. The biological response to stress is divided into acute and chronic phases, with the acute phase lasting hours to a few days and the chronic phase lasting several days to weeks. The acute response is driven by homeostatic regulators of the nervous and endocrine systems and the chronic phase by homeorhetic regulators of the endocrine system. Both responses involve alterations in energy balance and metabolism. Thermal environment affects all animals and therefore represents the largest single stressor in animal production. Other types of stressors include housing conditions, overcrowding, social rank, disease, and toxic compounds. "Acclimation" to a stress is a phenotypic response developed by the animal to an individual stressor within the environment. However, under natural conditions, it is rare for only one environmental variable to change over time. "Acclimatization" is the process by which an animal adapts to several stressors within its natural environment. Acclimation is a homeorhetic process that takes several weeks to occur and occurs via homeorhetic, not homeostatic, mechanisms. It is a phenotypic change that disappears when the stress is removed. When the stress is severe and not relieved by acclimatization or management changes, the animal is considered chronically stressed and is susceptible to increased incidence of disease and poor health. Milk yield and reproduction are extremely sensitive to stress because of the high energy and protein demands of lactation and the complexity of the reproductive process and multiple organs that are involved. Improvements in protection of animals against stress require improved education of producers to recognize stress and methods

  16. Concrete Condition Assessment Using Impact-Echo Method and Extreme Learning Machines

    PubMed Central

    Zhang, Jing-Kui; Yan, Weizhong; Cui, De-Mi

    2016-01-01

    The impact-echo (IE) method is a popular non-destructive testing (NDT) technique widely used for measuring the thickness of plate-like structures and for detecting certain defects inside concrete elements or structures. However, the IE method is not effective for full condition assessment (i.e., defect detection, defect diagnosis, defect sizing and location), because the simple frequency spectrum analysis involved in the existing IE method is not sufficient to capture the IE signal patterns associated with different conditions. In this paper, we attempt to enhance the IE technique and enable it for full condition assessment of concrete elements by introducing advanced machine learning techniques for performing comprehensive analysis and pattern recognition of IE signals. Specifically, we use wavelet decomposition for extracting signatures or features out of the raw IE signals and apply extreme learning machine, one of the recently developed machine learning techniques, as classification models for full condition assessment. To validate the capabilities of the proposed method, we build a number of specimens with various types, sizes, and locations of defects and perform IE testing on these specimens in a lab environment. Based on analysis of the collected IE signals using the proposed machine learning based IE method, we demonstrate that the proposed method is effective in performing full condition assessment of concrete elements or structures. PMID:27023563

  17. Climate extremes in the Pacific: improving seasonal prediction of tropical cyclones and extreme ocean temperatures to improve resilience

    NASA Astrophysics Data System (ADS)

    Kuleshov, Y.; Jones, D.; Spillman, C. M.

    2012-04-01

    Climate change and climate extremes have a major impact on Australia and Pacific Island countries. Of particular concern are tropical cyclones and extreme ocean temperatures, the first being the most destructive events for terrestrial systems, while the latter has the potential to devastate ocean ecosystems through coral bleaching. As a practical response to climate change, under the Pacific-Australia Climate Change Science and Adaptation Planning program (PACCSAP), we are developing enhanced web-based information tools for providing seasonal forecasts for climatic extremes in the Western Pacific. Tropical cyclones are the most destructive weather systems that impact on coastal areas. Interannual variability in the intensity and distribution of tropical cyclones is large, and presently greater than any trends that are ascribable to climate change. In the warming environment, predicting tropical cyclone occurrence based on historical relationships, with predictors such as sea surface temperatures (SSTs) now frequently lying outside of the range of past variability meaning that it is not possible to find historical analogues for the seasonal conditions often faced by Pacific countries. Elevated SSTs are the primary trigger for mass coral bleaching events, which can lead to widespread damage and mortality on reef systems. Degraded coral reefs present many problems, including long-term loss of tourism and potential loss or degradation of fisheries. The monitoring and prediction of thermal stress events enables the support of a range of adaptive and management activities that could improve reef resilience to extreme conditions. Using the climate model POAMA (Predictive Ocean-Atmosphere Model for Australia), we aim to improve accuracy of seasonal forecasts of tropical cyclone activity and extreme SSTs for the regions of Western Pacific. Improved knowledge of extreme climatic events, with the assistance of tailored forecast tools, will help enhance the resilience and

  18. Effects of Swim Stress on Neophobia and Reconditioning Using a Conditioned Taste Aversion Procedure

    ERIC Educational Resources Information Center

    Walker, Jennifer M.; Ramsey, Ashley K.; Fowler, Stephanie W.; Schachtman, Todd R.

    2012-01-01

    Previous research has found that swim stress during a classical conditioning trial attenuates conditioned taste aversion (CTA). In the current study, rats were used to examine the effects of inescapable swim stress on the habituation of neophobia to a flavored solution and reacquisition of an extinguished conditioned taste aversion. In Experiment…

  19. Dynamic fracture of tantalum under extreme tensile stress.

    PubMed

    Albertazzi, Bruno; Ozaki, Norimasa; Zhakhovsky, Vasily; Faenov, Anatoly; Habara, Hideaki; Harmand, Marion; Hartley, Nicholas; Ilnitsky, Denis; Inogamov, Nail; Inubushi, Yuichi; Ishikawa, Tetsuya; Katayama, Tetsuo; Koyama, Takahisa; Koenig, Michel; Krygier, Andrew; Matsuoka, Takeshi; Matsuyama, Satoshi; McBride, Emma; Migdal, Kirill Petrovich; Morard, Guillaume; Ohashi, Haruhiko; Okuchi, Takuo; Pikuz, Tatiana; Purevjav, Narangoo; Sakata, Osami; Sano, Yasuhisa; Sato, Tomoko; Sekine, Toshimori; Seto, Yusuke; Takahashi, Kenjiro; Tanaka, Kazuo; Tange, Yoshinori; Togashi, Tadashi; Tono, Kensuke; Umeda, Yuhei; Vinci, Tommaso; Yabashi, Makina; Yabuuchi, Toshinori; Yamauchi, Kazuto; Yumoto, Hirokatsu; Kodama, Ryosuke

    2017-06-01

    The understanding of fracture phenomena of a material at extremely high strain rates is a key issue for a wide variety of scientific research ranging from applied science and technological developments to fundamental science such as laser-matter interaction and geology. Despite its interest, its study relies on a fine multiscale description, in between the atomic scale and macroscopic processes, so far only achievable by large-scale atomic simulations. Direct ultrafast real-time monitoring of dynamic fracture (spallation) at the atomic lattice scale with picosecond time resolution was beyond the reach of experimental techniques. We show that the coupling between a high-power optical laser pump pulse and a femtosecond x-ray probe pulse generated by an x-ray free electron laser allows detection of the lattice dynamics in a tantalum foil at an ultrahigh strain rate of [Formula: see text] ~2 × 10 8 to 3.5 × 10 8 s -1 . A maximal density drop of 8 to 10%, associated with the onset of spallation at a spall strength of ~17 GPa, was directly measured using x-ray diffraction. The experimental results of density evolution agree well with large-scale atomistic simulations of shock wave propagation and fracture of the sample. Our experimental technique opens a new pathway to the investigation of ultrahigh strain-rate phenomena in materials at the atomic scale, including high-speed crack dynamics and stress-induced solid-solid phase transitions.

  20. Dynamic fracture of tantalum under extreme tensile stress

    DOE PAGES

    Albertazzi, Bruno; Ozaki, Norimasa; Zhakhovsky, Vasily; ...

    2017-06-02

    The understanding of fracture phenomena of a material at extremely high strain rates is a key issue for a wide variety of scientific research ranging from applied science and technological developments to fundamental science such as laser-matter interaction and geology. Despite its interest, its study relies on a fine multiscale description, in between the atomic scale and macroscopic processes, so far only achievable by large-scale atomic simulations. Direct ultrafast real-time monitoring of dynamic fracture (spallation) at the atomic lattice scale with picosecond time resolution was beyond the reach of experimental techniques. We show that the coupling between a high-power opticalmore » laser pump pulse and a femtosecond x-ray probe pulse generated by an x-ray free electron laser allows detection of the lattice dynamics in a tantalum foil at an ultrahigh strain rate of Embedded Image ~2 × 10 8 to 3.5 × 10 8 s -1. A maximal density drop of 8 to 10%, associated with the onset of spallation at a spall strength of ~17 GPa, was directly measured using x-ray diffraction. The experimental results of density evolution agree well with large-scale atomistic simulations of shock wave propagation and fracture of the sample. Our experimental technique opens a new pathway to the investigation of ultrahigh strain-rate phenomena in materials at the atomic scale, including high-speed crack dynamics and stress-induced solid-solid phase transitions.« less

  1. Dynamic fracture of tantalum under extreme tensile stress

    PubMed Central

    Albertazzi, Bruno; Ozaki, Norimasa; Zhakhovsky, Vasily; Faenov, Anatoly; Habara, Hideaki; Harmand, Marion; Hartley, Nicholas; Ilnitsky, Denis; Inogamov, Nail; Inubushi, Yuichi; Ishikawa, Tetsuya; Katayama, Tetsuo; Koyama, Takahisa; Koenig, Michel; Krygier, Andrew; Matsuoka, Takeshi; Matsuyama, Satoshi; McBride, Emma; Migdal, Kirill Petrovich; Morard, Guillaume; Ohashi, Haruhiko; Okuchi, Takuo; Pikuz, Tatiana; Purevjav, Narangoo; Sakata, Osami; Sano, Yasuhisa; Sato, Tomoko; Sekine, Toshimori; Seto, Yusuke; Takahashi, Kenjiro; Tanaka, Kazuo; Tange, Yoshinori; Togashi, Tadashi; Tono, Kensuke; Umeda, Yuhei; Vinci, Tommaso; Yabashi, Makina; Yabuuchi, Toshinori; Yamauchi, Kazuto; Yumoto, Hirokatsu; Kodama, Ryosuke

    2017-01-01

    The understanding of fracture phenomena of a material at extremely high strain rates is a key issue for a wide variety of scientific research ranging from applied science and technological developments to fundamental science such as laser-matter interaction and geology. Despite its interest, its study relies on a fine multiscale description, in between the atomic scale and macroscopic processes, so far only achievable by large-scale atomic simulations. Direct ultrafast real-time monitoring of dynamic fracture (spallation) at the atomic lattice scale with picosecond time resolution was beyond the reach of experimental techniques. We show that the coupling between a high-power optical laser pump pulse and a femtosecond x-ray probe pulse generated by an x-ray free electron laser allows detection of the lattice dynamics in a tantalum foil at an ultrahigh strain rate of ε. ~2 × 108 to 3.5 × 108 s−1. A maximal density drop of 8 to 10%, associated with the onset of spallation at a spall strength of ~17 GPa, was directly measured using x-ray diffraction. The experimental results of density evolution agree well with large-scale atomistic simulations of shock wave propagation and fracture of the sample. Our experimental technique opens a new pathway to the investigation of ultrahigh strain-rate phenomena in materials at the atomic scale, including high-speed crack dynamics and stress-induced solid-solid phase transitions. PMID:28630909

  2. Aerodynamic Surface Stress Intermittency and Conditionally Averaged Turbulence Statistics

    NASA Astrophysics Data System (ADS)

    Anderson, W.

    2015-12-01

    Aeolian erosion of dry, flat, semi-arid landscapes is induced (and sustained) by kinetic energy fluxes in the aloft atmospheric surface layer. During saltation -- the mechanism responsible for surface fluxes of dust and sediment -- briefly suspended sediment grains undergo a ballistic trajectory before impacting and `splashing' smaller-diameter (dust) particles vertically. Conceptual models typically indicate that sediment flux, q (via saltation or drift), scales with imposed aerodynamic (basal) stress raised to some exponent, n, where n > 1. Since basal stress (in fully rough, inertia-dominated flows) scales with the incoming velocity squared, u^2, it follows that q ~ u^2n (where u is some relevant component of the above flow field, u(x,t)). Thus, even small (turbulent) deviations of u from its time-averaged value may play an enormously important role in aeolian activity on flat, dry landscapes. The importance of this argument is further augmented given that turbulence in the atmospheric surface layer exhibits maximum Reynolds stresses in the fluid immediately above the landscape. In order to illustrate the importance of surface stress intermittency, we have used conditional averaging predicated on aerodynamic surface stress during large-eddy simulation of atmospheric boundary layer flow over a flat landscape with momentum roughness length appropriate for the Llano Estacado in west Texas (a flat agricultural region that is notorious for dust transport). By using data from a field campaign to measure diurnal variability of aeolian activity and prevailing winds on the Llano Estacado, we have retrieved the threshold friction velocity (which can be used to compute threshold surface stress under the geostrophic balance with the Monin-Obukhov similarity theory). This averaging procedure provides an ensemble-mean visualization of flow structures responsible for erosion `events'. Preliminary evidence indicates that surface stress peaks are associated with the passage of

  3. Comparative transcriptome analysis of pepper (Capsicum annuum) revealed common regulons in multiple stress conditions and hormone treatments.

    PubMed

    Lee, Sanghyeob; Choi, Doil

    2013-09-01

    Global transcriptome analysis revealed common regulons for biotic/abiotic stresses, and some of these regulons encoding signaling components in both stresses were newly identified in this study. In this study, we aimed to identify plant responses to multiple stress conditions and discover the common regulons activated under a variety of stress conditions. Global transcriptome analysis revealed that salicylic acid (SA) may affect the activation of abiotic stress-responsive genes in pepper. Our data indicate that methyl jasmonate (MeJA) and ethylene (ET)-responsive genes were primarily activated by biotic stress, while abscisic acid (ABA)-responsive genes were activated under both types of stresses. We also identified differentially expressed gene (DEG) responses to specific stress conditions. Biotic stress induces more DEGs than those induced by abiotic and hormone applications. The clustering analysis using DEGs indicates that there are common regulons for biotic or abiotic stress conditions. Although SA and MeJA have an antagonistic effect on gene expression levels, SA and MeJA show a largely common regulation as compared to the regulation at the DEG expression level induced by other hormones. We also monitored the expression profiles of DEG encoding signaling components. Twenty-two percent of these were commonly expressed in both stress conditions. The importance of this study is that several genes commonly regulated by both stress conditions may have future applications for creating broadly stress-tolerant pepper plants. This study revealed that there are complex regulons in pepper plant to both biotic and abiotic stress conditions.

  4. Multiple extreme environmental conditions of intermittent soda pans in the Carpathian Basin (Central Europe).

    PubMed

    Boros, Emil; Katalin, V-Balogh; Vörös, Lajos; Horváth, Zsófia

    2017-01-01

    Soda lakes and pans represent saline ecosystems with unique chemical composition, occurring on all continents. The purpose of this study was to identify and characterise the main environmental gradients and trophic state that prevail in the soda pans (n=84) of the Carpathian Basin in Central Europe. Underwater light conditions, dissolved organic matter, phosphorus and chlorophyll a were investigated in 84 pans during 2009-2010. Besides, water temperature was measured hourly with an automatic sensor throughout one year in a selected pan. The pans were very shallow (median depth: 15 cm), and their extremely high turbidity (Secchi depth median: 3 cm, min: 0.5 cm) was caused by high concentrations of inorganic suspended solids (median: 0.4 g L -1 , max: 16 g L -1 ), which was the dominant (>50%) contributing factor to the vertical attenuation coefficient in 67 pans (80%). All pans were polyhumic (median DOC: 47 mg L -1 ), and total phosphorus concentration was also extremely high (median: 2 mg L -1 , max: 32 mg L -1 ). The daily water temperature maximum (44 °C) and fluctuation maximum (28 °C) were extremely high during summertime. The combination of environmental boundaries: shallowness, daily water temperature fluctuation, intermittent hydroperiod, high turbidity, polyhumic organic carbon concentration, high alkalinity and hypertrophy represent a unique extreme aquatic ecosystem.

  5. Multiple extreme environmental conditions of intermittent soda pans in the Carpathian Basin (Central Europe)

    PubMed Central

    Boros, Emil; Katalin, V.-Balogh; Vörös, Lajos; Horváth, Zsófia

    2017-01-01

    Soda lakes and pans represent saline ecosystems with unique chemical composition, occurring on all continents. The purpose of this study was to identify and characterise the main environmental gradients and trophic state that prevail in the soda pans (n=84) of the Carpathian Basin in Central Europe. Underwater light conditions, dissolved organic matter, phosphorus and chlorophyll a were investigated in 84 pans during 2009–2010. Besides, water temperature was measured hourly with an automatic sensor throughout one year in a selected pan. The pans were very shallow (median depth: 15 cm), and their extremely high turbidity (Secchi depth median: 3 cm, min: 0.5 cm) was caused by high concentrations of inorganic suspended solids (median: 0.4 g L–1, max: 16 g L–1), which was the dominant (>50%) contributing factor to the vertical attenuation coefficient in 67 pans (80%). All pans were polyhumic (median DOC: 47 mg L–1), and total phosphorus concentration was also extremely high (median: 2 mg L–1, max: 32 mg L–1). The daily water temperature maximum (44 °C) and fluctuation maximum (28 °C) were extremely high during summertime. The combination of environmental boundaries: shallowness, daily water temperature fluctuation, intermittent hydroperiod, high turbidity, polyhumic organic carbon concentration, high alkalinity and hypertrophy represent a unique extreme aquatic ecosystem. PMID:28572691

  6. Neuronal Cellular Responses to Extremely Low Frequency Electromagnetic Field Exposure: Implications Regarding Oxidative Stress and Neurodegeneration

    PubMed Central

    Reale, Marcella; Kamal, Mohammad A.; Patruno, Antonia; Costantini, Erica; D'Angelo, Chiara; Pesce, Miko; Greig, Nigel H.

    2014-01-01

    Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs) on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD), have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF)-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1mT; frequency, 50-Hz) on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expession of NOS and O2 −, which were countered by compensatory changes in antioxidant catylase (CAT) activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a decline in CAT

  7. Nonempirical Semilocal Free-Energy Density Functional for Matter under Extreme Conditions.

    PubMed

    Karasiev, Valentin V; Dufty, James W; Trickey, S B

    2018-02-16

    Realizing the potential for predictive density functional calculations of matter under extreme conditions depends crucially upon having an exchange-correlation (XC) free-energy functional accurate over a wide range of state conditions. Unlike the ground-state case, no such functional exists. We remedy that with systematic construction of a generalized gradient approximation XC free-energy functional based on rigorous constraints, including the free-energy gradient expansion. The new functional provides the correct temperature dependence in the slowly varying regime and the correct zero-T, high-T, and homogeneous electron gas limits. Its accuracy in the warm dense matter regime is attested by excellent agreement of the calculated deuterium equation of state with reference path integral Monte Carlo results at intermediate and elevated T. Pressure shifts for hot electrons in compressed static fcc Al and for low-density Al demonstrate the combined magnitude of thermal and gradient effects handled well by this functional over a wide T range.

  8. Extreme Wave-Induced Oscillation in Paradip Port Under the Resonance Conditions

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Gulshan

    2017-12-01

    A mathematical model is constructed to analyze the long wave-induced oscillation in Paradip Port, Odisha, India under the resonance conditions to avert any extreme wave hazards. Boundary element method (BEM) with corner contribution is utilized to solve the Helmholtz equation under the partial reflection boundary conditions. Furthermore, convergence analysis is also performed for the boundary element scheme with uniform and non-uniform discretization of the boundary. The numerical scheme is also validated with analytic approximation and existing studies based on harbor resonance. Then, the amplification factor is estimated at six key record stations in the Paradip Port with multidirectional incident waves and resonance modes are also estimated at the boundary of the port. Ocean surface wave field is predicted in the interior of Paradip Port for the different directional incident wave at various resonance modes. Moreover, the safe locations in the port have been identified for loading and unloading of moored ship with different resonance modes and directional incident waves.

  9. Nonempirical Semilocal Free-Energy Density Functional for Matter under Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Karasiev, Valentin V.; Dufty, James W.; Trickey, S. B.

    2018-02-01

    Realizing the potential for predictive density functional calculations of matter under extreme conditions depends crucially upon having an exchange-correlation (X C ) free-energy functional accurate over a wide range of state conditions. Unlike the ground-state case, no such functional exists. We remedy that with systematic construction of a generalized gradient approximation X C free-energy functional based on rigorous constraints, including the free-energy gradient expansion. The new functional provides the correct temperature dependence in the slowly varying regime and the correct zero-T , high-T , and homogeneous electron gas limits. Its accuracy in the warm dense matter regime is attested by excellent agreement of the calculated deuterium equation of state with reference path integral Monte Carlo results at intermediate and elevated T . Pressure shifts for hot electrons in compressed static fcc Al and for low-density Al demonstrate the combined magnitude of thermal and gradient effects handled well by this functional over a wide T range.

  10. Extreme groundwater levels caused by extreme weather conditions - the highest ever measured groundwater levels in Middle Germany and their management

    NASA Astrophysics Data System (ADS)

    Reinstorf, F.; Kramer, S.; Koch, T.; Pfützner, B.

    2017-12-01

    Extreme weather conditions during the years 2009 - 2011 in combination with changes in the regional water management led to maximum groundwater levels in large areas of Germany in 2011. This resulted in extensive water logging, with problems especially in urban areas near rivers, where water logging produced huge problems for buildings and infrastructure. The acute situation still exists in many areas and requires the development of solution concepts. Taken the example of the Elbe-Saale-Region in the Federal State of Saxony-Anhalt, were a pilot research project was carried out, the analytical situation, the development of a management tool and the implementation of a groundwater management concept are shown. The central tool is a coupled water budget - groundwater flow model. In combination with sophisticated multi-scale parameter estimation, a high-resolution groundwater level simulation was carried out. A decision support process with an intensive stakeholder interaction combined with high-resolution simulations enables the development of a management concept for extreme groundwater situations in consideration of sustainable and environmentally sound solutions mainly on the base of passive measures.

  11. Extreme Heat: A Prevention Guide to Promote Your Personal Health and Safety

    MedlinePlus

    ... in your office, school, or home. Related Links Climate Change- Extreme Heat Heat Stress Illness Search Heat Stress Illness Data Temperature Extremes- Climate and Health Language: English (US) Español (Spanish) File ...

  12. Bivariate extreme value distributions

    NASA Technical Reports Server (NTRS)

    Elshamy, M.

    1992-01-01

    In certain engineering applications, such as those occurring in the analyses of ascent structural loads for the Space Transportation System (STS), some of the load variables have a lower bound of zero. Thus, the need for practical models of bivariate extreme value probability distribution functions with lower limits was identified. We discuss the Gumbel models and present practical forms of bivariate extreme probability distributions of Weibull and Frechet types with two parameters. Bivariate extreme value probability distribution functions can be expressed in terms of the marginal extremel distributions and a 'dependence' function subject to certain analytical conditions. Properties of such bivariate extreme distributions, sums and differences of paired extremals, as well as the corresponding forms of conditional distributions, are discussed. Practical estimation techniques are also given.

  13. Aluminum/water reactions under extreme conditions

    NASA Astrophysics Data System (ADS)

    Hooper, Joseph

    2013-03-01

    We discuss mechanisms that may control the reaction of aluminum and water under extreme conditions. We are particularly interested in the high-temperature, high-strain regime where the native oxide layer is destroyed and fresh aluminum is initially in direct contact with liquid or supercritical water. Disparate experimental data over the years have suggested rapid oxidation of aluminum is possible in such situations, but no coherent picture has emerged as to the basic oxidation mechanism or the physical processes that govern the extent of reaction. We present theoretical and computational analysis of traditional metal/water reaction mechanisms that treat diffusion through a dynamic oxide layer or reaction limited by surface kinetics. Diffusion through a fresh solid oxide layer is shown to be far too slow to have any effect on the millisecond timescale (even at high temperatures). Quantum molecular dynamics simulations of liquid Al and water surface reactions show rapid water decomposition at the interface, catalyzed by adjacent water molecules in a Grotthus-like relay mechanism. The surface reaction barriers are far too low for this to be rate-limiting in any way. With these straightforward mechanisms ruled out, we investigate two more complex possibilities for the rate-limiting factor; first, we explore the possibility that newly formed oxide remains a metastable liquid well below its freezing point, allowing for diffusion-limited reactions through the oxide shell but on a much faster timescale. The extent of reaction would then be controlled by the solidification kinetics of alumina. Second, we discuss preliminary analysis on surface erosion and turbulent mixing, which may play a prominent role during hypervelocity penetration of solid aluminum projectiles into water.

  14. Chewing gum modifies state anxiety and alertness under conditions of social stress.

    PubMed

    Sketchley-Kaye, Kathryn; Jenks, Rebecca; Miles, Christopher; Johnson, Andrew J

    2011-11-01

    The finding that chewing gum can moderate state anxiety under conditions of acute stress has proved difficult to replicate. The present study examines the extent to which chewing gum can moderate state anxiety under conditions of acute social stress. In a between-participants design, 36 participants completed a task comprising a mock job interview (a variation on the Trier Social Stress Task, which included a mental arithmetic component) while either chewing gum or without chewing gum. Self-rated measures of mood and anxiety were taken at baseline, after a 10-minute presentation preparation stage, after the 10-minute presentation, and following a 5-minute recovery stage. Post-presentation measures reflected increased state anxiety and decreased self-rated calmness and contentedness. Chewing gum attenuated the rise in state anxiety while increasing self-rated alertness. Chewing gum did not affect contentedness or calmness. The findings indicate that chewing gum can act to reduce anxiety under conditions of acute social stress: a finding consistent with Scholey et al. Furthermore, the data add to the growing body of literature demonstrating that chewing gum can increase alertness.

  15. Comparison of Extreme Pressure Additive Treat Rates in Soybean and Mineral Oils Under Boundary Lubrication Conditions

    USDA-ARS?s Scientific Manuscript database

    Traditionally, it is considered that, under boundary lubrication conditions, the reduction in friction and wear is mostly dependent on Extreme Pressure (EP) additives, rather than the basestock. However, several studies indicate that vegetable oils also contribute to the lubricity under this regime...

  16. Charge transfer in TATB and HMX under extreme conditions.

    PubMed

    Zhang, Chaoyang; Ma, Yu; Jiang, Daojian

    2012-11-01

    Charge transfer is usually accompanied by structural changes in materials under different conditions. However, the charge transfer in energetic materials that are subjected to extreme conditions has seldom been explored by researchers. In the work described here, the charge transfer in single molecules and unit cells of the explosives TATB and HMX under high temperatures and high pressures was investigated by performing static and dynamic calculations using three DFT methods, including the PWC functional of LDA, and the BLYP and PBE functionals of GGA. The results showed that negative charge is transferred from the nitro groups of molecular or crystalline TATB and HMX when they are heated. All DFT calculations for the compressed TATB unit cell indicate that, generally, negative charge transfer occurs to its nitro groups as the compression increases. PWC and PBE calculations for crystalline HMX show that negative charge is first transferred to the nitro groups but, as the compression increases, the negative charge is transferred from the nitro groups. However, the BLYP calculations indicated that there was gradual negative charge transfer to the nitro groups of HMX, similar to the case for TATB. The unrelaxed state of the uniformly compressed TATB causes negative charge to be transferred from its nitro groups, in contrast to what is seen in the relaxed state. Charge transfer in TATB is predicted to occur much more easily than in HMX.

  17. Extreme Environments Rig

    NASA Image and Video Library

    2013-08-13

    The Glenn Extreme Environment Chamber (GEER) simulates the extreme conditions found in space and tests many devices that will explore Venus to see if they can withstand the punishing environment and temperatures over 800 degrees F.

  18. Extreme ambient temperatures and cardiorespiratory emergency room visits: assessing risk by comorbid health conditions in a time series study

    PubMed Central

    2014-01-01

    Background Extreme ambient temperatures are an increasing public health concern. The aim of this study was to assess if persons with comorbid health conditions were at increased risk of adverse cardiorespiratory morbidity during temperature extremes. Methods A time series study design was applied to 292,666 and 562,738 emergency room (ER) visits for cardiovascular and respiratory diseases, respectively, that occurred in Toronto area hospitals between April 1st 2002 and March 31st 2010. Subgroups of persons with comorbid health conditions were identified. Relative risks (RRs) and their corresponding 95% confidence intervals (CIs) were estimated using a Poisson regression model with distributed lag non-linear model, and were adjusted for the confounding influence of seasonality, relative humidity, day-of-the-week, outdoor air pollutants and daily influenza ER visits. Effect modification by comorbid health conditions was tested using the relative effect modification (REM) index. Results Stronger associations of cardiovascular disease ER visits were observed for persons with diabetes compared to persons without diabetes (REM = 1.12; 95% CI: 1.01 – 1.27) with exposure to the cumulative short term effect of extreme hot temperatures (i.e. 99th percentile of temperature distribution vs. 75th percentile). Effect modification was also found for comorbid respiratory disease (REM = 1.17; 95% CI: 1.02 – 1.44) and cancer (REM = 1.20; 95% CI: 1.02 – 1.49) on respiratory disease ER visits during short term hot temperature episodes. The effect of extreme cold temperatures (i.e. 1st percentile of temperature distribution vs. 25th percentile) on cardiovascular disease ER visits were stronger for individuals with comorbid cardiac diseases (REM = 1.47; 95% CI: 1.06 – 2.23) and kidney diseases (REM = 2.43; 95% CI: 1.59 – 8.83) compared to those without these conditions when cumulated over a two-week period. Conclusions The identification of those most

  19. The fate of carbon dioxide in water-rich fluids under extreme conditions

    PubMed Central

    Pan, Ding; Galli, Giulia

    2016-01-01

    Investigating the fate of dissolved carbon dioxide under extreme conditions is critical to understanding the deep carbon cycle in Earth, a process that ultimately influences global climate change. We used first-principles molecular dynamics simulations to study carbonates and carbon dioxide dissolved in water at pressures (P) and temperatures (T) approximating the conditions of Earth’s upper mantle. Contrary to popular geochemical models assuming that molecular CO2(aq) is the major carbon species present in water under deep Earth conditions, we found that at 11 GPa and 1000 K, carbon exists almost entirely in the forms of solvated carbonate (CO32−) and bicarbonate (HCO3−) ions and that even carbonic acid [H2CO3(aq)] is more abundant than CO2(aq). Furthermore, our simulations revealed that ion pairing between Na+ and CO32−/HCO3− is greatly affected by P-T conditions, decreasing with increasing pressure at 800 to 1000 K. Our results suggest that in Earth’s upper mantle, water-rich geofluids transport a majority of carbon in the form of rapidly interconverting CO32− and HCO3− ions, not solvated CO2(aq) molecules. PMID:27757424

  20. The fate of carbon dioxide in water-rich fluids under extreme conditions.

    PubMed

    Pan, Ding; Galli, Giulia

    2016-10-01

    Investigating the fate of dissolved carbon dioxide under extreme conditions is critical to understanding the deep carbon cycle in Earth, a process that ultimately influences global climate change. We used first-principles molecular dynamics simulations to study carbonates and carbon dioxide dissolved in water at pressures ( P ) and temperatures ( T ) approximating the conditions of Earth's upper mantle. Contrary to popular geochemical models assuming that molecular CO 2 (aq) is the major carbon species present in water under deep Earth conditions, we found that at 11 GPa and 1000 K, carbon exists almost entirely in the forms of solvated carbonate ([Formula: see text]) and bicarbonate ([Formula: see text]) ions and that even carbonic acid [H 2 CO 3 (aq)] is more abundant than CO 2 (aq). Furthermore, our simulations revealed that ion pairing between Na + and [Formula: see text]/[Formula: see text] is greatly affected by P - T conditions, decreasing with increasing pressure at 800 to 1000 K. Our results suggest that in Earth's upper mantle, water-rich geofluids transport a majority of carbon in the form of rapidly interconverting [Formula: see text] and [Formula: see text] ions, not solvated CO 2 (aq) molecules.

  1. Transcriptional targets of DAF-16 insulin signaling pathway protect C. elegans from extreme hypertonic stress.

    PubMed

    Lamitina, S Todd; Strange, Kevin

    2005-02-01

    All cells adapt to hypertonic stress by regulating their volume after shrinkage, by accumulating organic osmolytes, and by activating mechanisms that protect against and repair hypertonicity-induced damage. In mammals and nematodes, inhibition of signaling from the DAF-2/IGF-1 insulin receptor activates the DAF-16/FOXO transcription factor, resulting in increased life span and resistance to some types of stress. We tested the hypothesis that inhibition of insulin signaling in Caenorhabditis elegans also increases hypertonic stress resistance. Genetic inhibition of DAF-2 or its downstream target, the AGE-1 phosphatidylinositol 3-kinase, confers striking resistance to a normally lethal hypertonic shock in a DAF-16-dependent manner. However, insulin signaling is not inhibited by or required for adaptation to hypertonic conditions. Microarray studies have identified 263 genes that are transcriptionally upregulated by DAF-16 activation. We identified 14 DAF-16-upregulated genes by RNA interference screening that are required for age-1 hypertonic stress resistance. These genes encode heat shock proteins, proteins of unknown function, and trehalose synthesis enzymes. Trehalose levels were elevated approximately twofold in age-1 mutants, but this increase was insufficient to prevent rapid hypertonic shrinkage. However, age-1 animals unable to synthesize trehalose survive poorly under hypertonic conditions. We conclude that increased expression of proteins that protect eukaryotic cells against environmental stress and/or repair stress-induced molecular damage confers hypertonic stress resistance in C. elegans daf-2/age-1 mutants. Elevated levels of solutes such as trehalose may also function in a cytoprotective manner. Our studies provide novel insights into stress resistance in animal cells and a foundation for new studies aimed at defining molecular mechanisms underlying these essential processes.

  2. Effect of experimental stress in 2 different pain conditions affecting the facial muscles.

    PubMed

    Woda, Alain; L'heveder, Gildas; Ouchchane, Lemlih; Bodéré, Céline

    2013-05-01

    Chronic facial muscle pain is a common feature in both fibromyalgia (FM) and myofascial (MF) pain conditions. In this controlled study, a possible difference in the mode of deregulation of the physiological response to a stressing stimulus was explored by applying an acute mental stress to FM and MF patients and to controls. The effects of the stress test were observed on pain, sympathetic variables, and both tonic and reflex electromyographic activities of masseteric and temporal muscles. The statistical analyses were performed through a generalized linear model including mixed effects. Painful reaction to the stressor was stronger (P < .001) and longer (P = .011) in FM than in MF independently of a higher pain level at baseline. The stress-induced autonomic changes only seen in FM patients did not reach significance. The electromyographic responses to the stress test were strongest for controls and weakest for FM. The stress test had no effect on reflex activity (area under the curve [AUC]) or latency, although AUC was high in FM and latencies were low in both pain groups. It is suggested that FM is characterized by a lower ability to adapt to acute stress than MF. This study showed that an acute psychosocial stress triggered several changes in 2 pain conditions including an increase in pain of larger amplitude in FM than in MF pain. Similar stress-induced changes should be explored as possible mechanisms for differentiation between dysfunctional pain conditions. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  3. Detection of Stress Levels from Biosignals Measured in Virtual Reality Environments Using a Kernel-Based Extreme Learning Machine.

    PubMed

    Cho, Dongrae; Ham, Jinsil; Oh, Jooyoung; Park, Jeanho; Kim, Sayup; Lee, Nak-Kyu; Lee, Boreom

    2017-10-24

    Virtual reality (VR) is a computer technique that creates an artificial environment composed of realistic images, sounds, and other sensations. Many researchers have used VR devices to generate various stimuli, and have utilized them to perform experiments or to provide treatment. In this study, the participants performed mental tasks using a VR device while physiological signals were measured: a photoplethysmogram (PPG), electrodermal activity (EDA), and skin temperature (SKT). In general, stress is an important factor that can influence the autonomic nervous system (ANS). Heart-rate variability (HRV) is known to be related to ANS activity, so we used an HRV derived from the PPG peak interval. In addition, the peak characteristics of the skin conductance (SC) from EDA and SKT variation can also reflect ANS activity; we utilized them as well. Then, we applied a kernel-based extreme-learning machine (K-ELM) to correctly classify the stress levels induced by the VR task to reflect five different levels of stress situations: baseline, mild stress, moderate stress, severe stress, and recovery. Twelve healthy subjects voluntarily participated in the study. Three physiological signals were measured in stress environment generated by VR device. As a result, the average classification accuracy was over 95% using K-ELM and the integrated feature (IT = HRV + SC + SKT). In addition, the proposed algorithm can embed a microcontroller chip since K-ELM algorithm have very short computation time. Therefore, a compact wearable device classifying stress levels using physiological signals can be developed.

  4. Extreme anthropogenic loads and the northern ecosystem condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryuckkov, V.V.

    1993-11-01

    In the extreme North, the polar region of siberian Russia, the largest mining and processing enterprises for metallic and nonmetallic ores, coal, oil, and gas are situated. The extremely vulnerable boreal and polar ecosystems of the north are responding adversely to the impact of these activities, and are in danger of collapse because of them. The mechanisms of such impacts, their formation, continuous extension, and merger have been studied. The deforested and destroyed areas of former forest-tundra and taiga ecosystems resemble the Arctic zones of a much harsher environment more than the typical Arctic zones where they occur. 5 refs.,more » 3 figs., 2 tabs.« less

  5. Mechanism for amorphization of boron carbide under complex stress conditions

    NASA Astrophysics Data System (ADS)

    Li, Jun; Xu, Shuang; Liu, Lisheng; Wang, Zhen; Zhang, Jinyong; Liu, Qiwen

    2018-05-01

    As an excellent material, the application of boron carbide (B4C) is limited by pressure-induced amorphization. To understand the mechanism for amorphization in B4C, first-principles methods based on density functional theory were employed to investigate the mechanical behaviors and the deformation process in B4C under complex stress conditions with six different biaxial perpendicular compression directions. The angle (θ) between one of the loading directions and the [0 0 0 1] c-axis ranged from 0° to 75° with every 15° interval. We found that the maximum stress at θ = 30° is 124.5 GPa, which is the lowest among six biaxial compressions. Simulation results show that the mechanism for amorphization in B4C under complex stress conditions is complicated. We take the θ = 30° biaxial compression as an example to explain the complicated deformation process. In the elastic deformation region, sudden bending of three-atom chains occurs and results in a stress fluctuation. Then the formation of new B–B bonds between the three-atom chains and the icosahedra leads to the first stress drop. After that, the B–C bonds in the chains are broken, resulting in the second stress drop. In this process, the icosahedra are partially destroyed. The stress increases continuously and then drops at the critical failure strain. Finally, the fully destruction of icosahedra leads to amorphization in B4C. However, under other five biaxial compressions, the B–C bonds in three-atom chains are not fractured before structural failure. Understanding the deformation mechanism for amorphization of B4C in real applications is prime important for proposing how to resist amorphization and enhance the toughness of B4C.

  6. Climate, not conflict, explains extreme Middle East dust storm

    DOE PAGES

    Parolari, Anthony J.; Li, Dan; Bou-Zeid, Elie; ...

    2016-11-08

    The recent dust storm in the Middle East (Sepember 2015) was publicized in the media as a sign of an impending 'Dust Bowl.' Its severity, demonstrated by extreme aerosol optical depth in the atmosphere in the 99th percentile compared to historical data, was attributed to the ongoing regional conflict. However, surface meteorological and remote sensing data, as well as regional climate model simulations, support an alternative hypothesis: the historically unprecedented aridity played a more prominent role, as evidenced by unusual climatic and meteorological conditions prior to and during the storm. Remotely sensed normalized difference vegetation index demonstrates that vegetation covermore » was high in 2015 relative to the prior drought and conflict periods, suggesting that agricultural activity was not diminished during that year, thus negating the media narrative. Instead, meteorological simulations using the Weather Research and Forecasting (WRF) model show that the storm was associated with a cyclone and 'Shamal' winds, typical for dust storm generation in this region, that were immediately followed by an unusual wind reversal at low levels that spread dust west to the Mediterranean Coast. These unusual meteorological conditions were aided by a significant reduction in the critical shear stress due to extreme dry and hot conditions, thereby enhancing dust availability for erosion during this storm. Concluding, unusual aridity, combined with unique synoptic weather patterns, enhanced dust emission and westward long-range transport across the region, thus generating the extreme storm.« less

  7. Climate, not conflict, explains extreme Middle East dust storm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parolari, Anthony J.; Li, Dan; Bou-Zeid, Elie

    The recent dust storm in the Middle East (Sepember 2015) was publicized in the media as a sign of an impending 'Dust Bowl.' Its severity, demonstrated by extreme aerosol optical depth in the atmosphere in the 99th percentile compared to historical data, was attributed to the ongoing regional conflict. However, surface meteorological and remote sensing data, as well as regional climate model simulations, support an alternative hypothesis: the historically unprecedented aridity played a more prominent role, as evidenced by unusual climatic and meteorological conditions prior to and during the storm. Remotely sensed normalized difference vegetation index demonstrates that vegetation covermore » was high in 2015 relative to the prior drought and conflict periods, suggesting that agricultural activity was not diminished during that year, thus negating the media narrative. Instead, meteorological simulations using the Weather Research and Forecasting (WRF) model show that the storm was associated with a cyclone and 'Shamal' winds, typical for dust storm generation in this region, that were immediately followed by an unusual wind reversal at low levels that spread dust west to the Mediterranean Coast. These unusual meteorological conditions were aided by a significant reduction in the critical shear stress due to extreme dry and hot conditions, thereby enhancing dust availability for erosion during this storm. Concluding, unusual aridity, combined with unique synoptic weather patterns, enhanced dust emission and westward long-range transport across the region, thus generating the extreme storm.« less

  8. Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis

    PubMed Central

    2014-01-01

    Background The circadian clock enables living organisms to anticipate recurring daily and seasonal fluctuations in their growth habitats and synchronize their biology to the environmental cycle. The plant circadian clock consists of multiple transcription-translation feedback loops that are entrained by environmental signals, such as light and temperature. In recent years, alternative splicing emerges as an important molecular mechanism that modulates the clock function in plants. Several clock genes are known to undergo alternative splicing in response to changes in environmental conditions, suggesting that the clock function is intimately associated with environmental responses via the alternative splicing of the clock genes. However, the alternative splicing events of the clock genes have not been studied at the molecular level. Results We systematically examined whether major clock genes undergo alternative splicing under various environmental conditions in Arabidopsis. We also investigated the fates of the RNA splice variants of the clock genes. It was found that the clock genes, including EARLY FLOWERING 3 (ELF3) and ZEITLUPE (ZTL) that have not been studied in terms of alternative splicing, undergo extensive alternative splicing through diverse modes of splicing events, such as intron retention, exon skipping, and selection of alternative 5′ splice site. Their alternative splicing patterns were differentially influenced by changes in photoperiod, temperature extremes, and salt stress. Notably, the RNA splice variants of TIMING OF CAB EXPRESSION 1 (TOC1) and ELF3 were degraded through the nonsense-mediated decay (NMD) pathway, whereas those of other clock genes were insensitive to NMD. Conclusion Taken together, our observations demonstrate that the major clock genes examined undergo extensive alternative splicing under various environmental conditions, suggesting that alternative splicing is a molecular scheme that underlies the linkage between the clock

  9. Climate change hampers endangered species through intensified moisture-related plant stresses (Invited)

    NASA Astrophysics Data System (ADS)

    Bartholomeus, R.; Witte, J.; van Bodegom, P.; Dam, J. V.; Aerts, R.

    2010-12-01

    With recent climate change, extremes in meteorological conditions are forecast and observed to increase globally, and to affect vegetation composition. More prolonged dry periods will alternate with more intensive rainfall events, both within and between years, which will change soil moisture dynamics. In temperate climates, soil moisture, in concert with nutrient availability and soil acidity, is the most important environmental filter in determining local plant species composition, as it determines the availability of both oxygen and water to plant roots. These resources are indispensable for meeting the physiological demands of plants. The consequences of climate change for our natural environment are among the most pressing issues of our time. The international research community is beginning to realise that climate extremes may be more powerful drivers of vegetation change and species extinctions than slow-and-steady climatic changes, but the causal mechanisms of such changes are presently unknown. The roles of amplitudes in water availability as drivers of vegetation change have been particularly elusive owing to the lack of integration of the key variables involved. Here we show that the combined effect of increased rainfall variability, temperature and atmospheric CO2-concentration will lead to an increased variability in both wet and dry extremes in stresses faced by plants (oxygen and water stress, respectively). We simulated these plant stresses with a novel, process-based approach, incorporating in detail the interacting processes in the soil-plant-atmosphere interface. In order to quantify oxygen and water stress with causal measures, we focused on interacting meteorological, soil physical, microbial, and plant physiological processes in the soil-plant-atmosphere system. As both the supply and demand of oxygen and water depend strongly on the prevailing meteorological conditions, both oxygen and water stress were calculated dynamically in time to

  10. Tardigrades living in extreme environments have naturally selected prerequisites useful to space conquer

    NASA Astrophysics Data System (ADS)

    Guidetti, Roberto; Tiziana, Altiero; Cesari, Michele; Rizzo, Angela Maria; Bertolani, Roberto; Galletta, Giuseppe; Dalessandro, Maurizio; Rebecchi, Lorena

    a complete or almost complete metabolic standstill. The ability of tardigrades to colonize terrestrial habitats is linked to their well known ability to enter anhydrobiosis when their habi-tat desiccates. Tardigrades survive dehydration by entering a highly stable state of suspended animation due to complete desiccation (¿ 95Results on tardigrades open a window on the fu-ture perspective in astrobiology and in their applications. The discovery and identification of metabolites naturally synthesized by tardigrades to perform a remarkable protection against the damages to cellular components and DNA due to desiccation, radiation, microgravity and oxidation stresses, will be used to define the countermeasures to protect sensitive organisms, including humans, not naturally able to withstand extreme stresses under space conditions, for the future long-term explorations of our solar system, including Mars.

  11. Short-term effects of teriparatide versus placebo on bone biomarkers, structure, and fracture healing in women with lower-extremity stress fractures: A pilot study.

    PubMed

    Almirol, Ellen A; Chi, Lisa Y; Khurana, Bharti; Hurwitz, Shelley; Bluman, Eric M; Chiodo, Christopher; Matzkin, Elizabeth; Baima, Jennifer; LeBoff, Meryl S

    2016-09-01

    In this pilot, placebo-controlled study, we evaluated whether brief administration of teriparatide (TPTD) in premenopausal women with lower-extremity stress fractures would increase markers of bone formation in advance of bone resorption, improve bone structure, and hasten fracture healing according to magnetic resonance imaging (MRI). Premenopausal women with acute lower-extremity stress fractures were randomized to injection of TPTD 20-µg subcutaneous (s.c.) (n = 6) or placebo s.c. (n = 7) for 8 weeks. Biomarkers for bone formation N-terminal propeptide of type I procollagen (P1NP) and osteocalcin (OC) and resorption collagen type-1 cross-linked C-telopeptide (CTX) and collagen type 1 cross-linked N-telopeptide (NTX) were measured at baseline, 4 and 8 weeks. The area between the percent change of P1NP and CTX over study duration is defined as the anabolic window. To assess structural changes, peripheral quantitative computed topography (pQCT) was measured at baseline, 8 and 12 weeks at the unaffected tibia and distal radius. The MRI of the affected bone assessed stress fracture healing at baseline and 8 weeks. After 8 weeks of treatment, bone biomarkers P1NP and OC increased more in the TPTD- versus placebo-treated group (both p ≤ 0.01), resulting in a marked anabolic window (p ≤ 0.05). Results from pQCT demonstrated that TPTD-treated women showed a larger cortical area and thickness compared to placebo at the weight bearing tibial site, while placebo-treated women had a greater total tibia and cortical density. No changes at the radial sites were observed between groups. According to MRI, 83.3% of the TPTD- and 57.1% of the placebo-treated group had improved or healed stress fractures (p = 0.18). In this randomized, pilot study, brief administration of TPTD showed anabolic effects that TPTD may help hasten fracture healing in premenopausal women with lower-extremity stress fractures. Larger prospective studies are warranted to determine

  12. Monitoring psychosocial stress at work: development of the Psychosocial Working Conditions Questionnaire.

    PubMed

    Widerszal-Bazyl, M; Cieślak, R

    2000-01-01

    Many studies on the impact of psychosocial working conditions on health prove that psychosocial stress at work is an important risk factor endangering workers' health. Thus it should be constantly monitored like other work hazards. The paper presents a newly developed instrument for stress monitoring called the Psychosocial Working Conditions Questionnaire (PWC). Its structure is based on Robert Karasek's model of job stress (Karasek, 1979; Karasek & Theorell, 1990). It consists of 3 main scales Job Demands, Job Control, Social Support and 2 additional scales adapted from the Occupational Stress Questionnaire (Elo, Leppanen, Lindstrom, & Ropponen, 1992), Well-Being and Desired Changes. The study of 8 occupational groups (bank and insurance specialists, middle medical personnel, construction workers, shop assistants, government and self-government administration officers, computer scientists, public transport drivers, teachers, N = 3,669) indicates that PWC has satisfactory psychometrics parameters. Norms for the 8 groups were developed.

  13. Extreme groundwater levels caused by extreme weather conditions - the highest ever measured groundwater levels in Middle Germany and their management

    NASA Astrophysics Data System (ADS)

    Reinstorf, F.

    2016-12-01

    Extreme weather conditions during the years 2009 - 2011 in combination with changes in the regional water management and possible impacts of climate change led to maximum groundwater levels in large areas of Germany in 2011. This resulted in extensive water logging, with problems especially in urban areas near rivers, where water logging produced huge problems for buildings and infrastructure. The acute situation still exists in many areas and requires the development of solution concepts. Taken the example of the Elbe-Saale-Region in the Federal State of Saxony-Anhalt, were a pilot research project was carried out, the analytical situation, the development of a management tool and the implementation of a groundwater management concept are shown. The central tool is a coupled water budget - groundwater flow model. In combination with sophisticated multi-scale parameter estimation, a high resolution groundwater level simulation was carried out. A decision support process with a very intensive stakeholder interaction combined with high resolution simulations enables the development of a management concept for extreme groundwater situations in consideration of sustainable and environmentally sound solutions mainly on the base of passive measures.

  14. Extreme groundwater levels caused by extreme weather conditions - the highest ever measured groundwater levels in Middle Germany and their management

    NASA Astrophysics Data System (ADS)

    Reinstorf, Frido; Kramer, Stefanie; Koch, Thomas; Seifert, Sven; Monninkhoff, Bertram; Pfützner, Bernd

    2017-04-01

    Extreme weather conditions during the years 2009 - 2011 in combination with changes in the regional water management and possible impacts of climate change led to maximum groundwater levels in large areas of Germany in 2011. This resulted in extensive water logging, with problems especially in urban areas near rivers, where water logging produced huge problems for buildings and infrastructure. The acute situation still exists in many areas and requires the development of solution concepts. Taken the example of the Elbe-Saale-Region in the Federal State of Saxony-Anhalt, were a pilot research project was carried out, the analytical situation, the development of a management tool and the implementation of a groundwater management concept are shown. The central tool is a coupled water budget - groundwater flow model. In combination with sophisticated multi-scale parameter estimation, a high resolution groundwater level simulation was carried out. A decision support process with a very intensive stakeholder interaction combined with high resolution simulations enables the development of a management concept for extreme groundwater situations in consideration of sustainable and environmentally sound solutions mainly on the base of passive measures.

  15. Mechanism of shallow disrupted slide induced by extreme rainfall

    NASA Astrophysics Data System (ADS)

    Igwe, O.; Fukuoka, H.

    2010-12-01

    On July 16, 2010, extreme rainfall attacked western Japan and it caused very intense rainfall in Shobara city, Hiroshima prefecture, Japan. This rainfall induced hundreds of shallow disrupted slides and many of those became debris flows. One of this debris flows attacked a house standing in front of the exit of a channel, and claimed a resident’s life. Western Japan had repeatedly similar disasters in the past. Last event took place from July 19 to 26, 2009, when western Japan had a severe rainstorms and caused floods and landslides. Most of the landslides are debris slide - debris flows. Most devastated case took place in Hofu city, Japan. On July 21, extremely intense rainstorm caused numerous debris flows and mud flows in the hillslopes. Some of the debris flows destroyed residential houses and home for elderly people, and finally killed 14 residents. One of the unusual feature of both disaster was that landslides are distributed in very narrow area. In the 2010 Shobara city disaster, all of the landslides were distributed in 5 km x 3 km, and in the 2009 Hofu city disaster, most devastated zone of landslides were 10 km x 5 km. Rain radars of Meteorological Agency of Government of Japan detected the intense rainfall, however, the spatial resolution is usually larger than 5 km and the disaster area is too small to predict landslides nor issue warning. Furthermore, it was found that the growth rate of baby clouds was very quick. The geology of both areas are rhyolite (Shobara) and granite (Hofu), so the areal assessment of landslide hazard should be prepared before those intense rainfall will come. As for the Hofu city case, it was proved that debris flows took place in the high precipitation area and covered by covered by weathered granite sands and silts which is called “masa". This sands has been proved susceptible against landslides under extreme rainfall conditions. However, the transition from slide - debris flow process is not well revealed, except

  16. Nonempirical Semilocal Free-Energy Density Functional for Matter under Extreme Conditions

    DOE PAGES

    Karasiev, Valentin V.; Dufty, James W.; Trickey, S. B.

    2018-02-14

    The potential for density functional calculations to predict the properties of matter under extreme conditions depends crucially upon having a non-empirical approximate free energy functional valid over a wide range of state conditions. Unlike the ground-state case, no such free-energy exchange- correlation (XC) functional exists. We remedy that with systematic construction of a generalized gradient approximation XC free-energy functional based on rigorous constraints, including the free energy gradient expansion. The new functional provides the correct temperature dependence in the slowly varying regime and the correct zero-T, high-T, and homogeneous electron gas limits. Application in Kohn-Sham calculations for hot electrons inmore » a static fcc Aluminum lattice demon- strates the combined magnitude of thermal and gradient effects handled by this functional. Its accuracy in the increasingly important warm dense matter regime is attested by excellent agreement of the calculated deuterium equation of state with reference path integral Monte Carlo results at intermediate and elevated temperatures and by low density Al calculations over a wide T range.« less

  17. Nonempirical Semilocal Free-Energy Density Functional for Matter under Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karasiev, Valentin V.; Dufty, James W.; Trickey, S. B.

    The potential for density functional calculations to predict the properties of matter under extreme conditions depends crucially upon having a non-empirical approximate free energy functional valid over a wide range of state conditions. Unlike the ground-state case, no such free-energy exchange- correlation (XC) functional exists. We remedy that with systematic construction of a generalized gradient approximation XC free-energy functional based on rigorous constraints, including the free energy gradient expansion. The new functional provides the correct temperature dependence in the slowly varying regime and the correct zero-T, high-T, and homogeneous electron gas limits. Application in Kohn-Sham calculations for hot electrons inmore » a static fcc Aluminum lattice demon- strates the combined magnitude of thermal and gradient effects handled by this functional. Its accuracy in the increasingly important warm dense matter regime is attested by excellent agreement of the calculated deuterium equation of state with reference path integral Monte Carlo results at intermediate and elevated temperatures and by low density Al calculations over a wide T range.« less

  18. About climate variabilitiy leading the hydric condition of the soil in the rainfed region of Argentina

    NASA Astrophysics Data System (ADS)

    Pántano, V. C.; Penalba, O. C.

    2013-05-01

    Extreme events of temperature and rainfall have a socio-economic impact in the rainfed agriculture production region in Argentina. The magnitude of the impact can be analyzed through the water balance which integrates the characteristics of the soil and climate conditions. Changes observed in climate variables during the last decades affected the components of the water balance. As a result, a displacement of the agriculture border towards the west was produced, improving the agricultural production of the region. The objective of this work is to analyze how the variability of rainfall and temperature leads the hydric condition of the soil, with special focus on extreme events. The hydric conditions of the soil (HC= Excess- Deficit) were estimated from the monthly water balance (Thornthwaite and Mather method, 1957), using monthly potential evapotranspiration (PET) and monthly accumulated rainfall (R) for 33 stations (period 1970-2006). Information of temperature and rainfall was provided by National Weather Service and the effective capacity of soil water was considered from Forte Lay and Spescha (2001). An agricultural extreme condition occurs when soil moisture and rainfall are inadequate or excessive for the development of the crops. In this study, we define an extreme event when the variable is less (greater) than its 20% and 10% (80% and 90%) percentile. In order to evaluate how sensitive is the HC to water and heat stress in the region, different conditional probabilities were evaluated. There is a weaker response of HC to extreme low PET while extreme low R leads high values of HC. However, this behavior is not always observed, especially in the western region where extreme high and low PET show a stronger influence over the HC. Finally, to analyze the temporal variability of extreme PET and R, leading hydric condition of the soil, the number of stations presenting extreme conditions was computed for each month. As an example, interesting results were

  19. A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis.

    PubMed

    Miranda, José A; Avonce, Nelson; Suárez, Ramón; Thevelein, Johan M; Van Dijck, Patrick; Iturriaga, Gabriel

    2007-11-01

    Improving stress tolerance is a major goal for agriculture. Trehalose is a key molecule involved in drought tolerance in anhydrobiotic organisms. Here we describe the construction of a chimeric translational fusion of yeast trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. This construct was overexpressed in yeast cells displaying both TPS and TPP enzyme activities and trehalose biosynthesis capacity. In Arabidopsis thaliana, the gene fusion was overexpressed using either the 35S promoter or the stress-regulated rd29A promoter. Transgene insertion in the genome was checked by PCR and transcript expression by RT-PCR. Several independent homozygous lines were selected in the presence of kanamycin and further analyzed. Trehalose was accumulated in all these lines at low levels. No morphological or growth alterations were observed in lines overexpressing the TPS1-TPS2 construct, whereas plants overexpressing the TPS1 alone under the control of the 35S promoter had aberrant growth, color and shape. TPS1-TPS2 overexpressor lines were glucose insensitive, consistent with a suggested role of trehalose/T6P in modulating sugar sensing and carbohydrate metabolism. Moreover, TPS1-TPS2 lines displayed a significant increase in drought, freezing, salt and heat tolerance. This is the first time that trehalose accumulation in plants is shown to protect against freezing and heat stress. Therefore, these results demonstrate that engineering trehalose metabolism with a yeast TPS-TPP bifunctional enzyme confers multiple stress protection in plants, comprising a potential tool to improve stress-tolerance in crops.

  20. On the Performance of Carbon Nanotubes in Extreme Conditions and in the Presence of Microwaves

    DTIC Science & Technology

    2013-01-01

    been considered for use as transparent conductors include: transparent conducting oxides (TCOs), intrinsically conducting polymers (ICPs), graphene ...optical transmission properties, but are extremely sensitive to environmental conditions (such as temperature and humidity). Graphene has recently...during the dicing procedure, silver paint was applied to the sample to serve as improvised contact/probe-landing points. Figure 1 shows the CNT thin

  1. Measurement of heat stress conditions at cow level and comparison to climate conditions at stationary locations inside a dairy barn.

    PubMed

    Schüller, Laura K; Heuwieser, Wolfgang

    2016-08-01

    The objectives of this study were to examine heat stress conditions at cow level and to investigate the relationship to the climate conditions at 5 different stationary locations inside a dairy barn. In addition, we compared the climate conditions at cow level between primiparous and multiparous cows for a period of 1 week after regrouping. The temperature-humidity index (THI) differed significantly between all stationary loggers. The lowest THI was measured at the window logger in the experimental stall and the highest THI was measured at the central logger in the experimental stall. The THI at the mobile cow loggers was 2·33 THI points higher than at the stationary loggers. Furthermore, the mean daily THI was higher at the mobile cow loggers than at the stationary loggers on all experimental days. The THI in the experimental pen was 0·44 THI points lower when the experimental cow group was located inside the milking parlour. The THI measured at the mobile cow loggers was 1·63 THI points higher when the experimental cow group was located inside the milking parlour. However, there was no significant difference for all climate variables between primiparous and multiparous cows. These results indicate, there is a wide range of climate conditions inside a dairy barn and especially areas with a great distance to a fresh air supply have an increased risk for the occurrence of heat stress conditions. Furthermore, the heat stress conditions are even higher at cow level and cows not only influence their climatic environment, but also generate microclimates within different locations inside the barn. Therefore climate conditions should be obtained at cow level to evaluate the heat stress conditions that dairy cows are actually exposed to.

  2. The Sphagnum microbiome supports bog ecosystem functioning under extreme conditions.

    PubMed

    Bragina, Anastasia; Oberauner-Wappis, Lisa; Zachow, Christin; Halwachs, Bettina; Thallinger, Gerhard G; Müller, Henry; Berg, Gabriele

    2014-09-01

    Sphagnum-dominated bogs represent a unique yet widely distributed type of terrestrial ecosystem and strongly contribute to global biosphere functioning. Sphagnum is colonized by highly diverse microbial communities, but less is known about their function. We identified a high functional diversity within the Sphagnum microbiome applying an Illumina-based metagenomic approach followed by de novo assembly and MG-RAST annotation. An interenvironmental comparison revealed that the Sphagnum microbiome harbours specific genetic features that distinguish it significantly from microbiomes of higher plants and peat soils. The differential traits especially support ecosystem functioning by a symbiotic lifestyle under poikilohydric and ombrotrophic conditions. To realise a plasticity-stability balance, we found abundant subsystems responsible to cope with oxidative and drought stresses, to exchange (mobile) genetic elements, and genes that encode for resistance to detrimental environmental factors, repair and self-controlling mechanisms. Multiple microbe-microbe and plant-microbe interactions were also found to play a crucial role as indicated by diverse genes necessary for biofilm formation, interaction via quorum sensing and nutrient exchange. A high proportion of genes involved in nitrogen cycle and recycling of organic material supported the role of bacteria for nutrient supply. 16S rDNA analysis indicated a higher structural diversity than that which had been previously detected using PCR-dependent techniques. Altogether, the diverse Sphagnum microbiome has the ability to support the life of the host plant and the entire ecosystem under changing environmental conditions. Beyond this, the moss microbiome presents a promising bio-resource for environmental biotechnology - with respect to novel enzymes or stress-protecting bacteria. © 2014 John Wiley & Sons Ltd.

  3. Transcriptomic and Proteomic Analysis of Oenococcus oeni Adaptation to Wine Stress Conditions

    PubMed Central

    Margalef-Català, Mar; Araque, Isabel; Bordons, Albert; Reguant, Cristina; Bautista-Gallego, Joaquín

    2016-01-01

    Oenococcus oeni, the main lactic acid bacteria responsible for malolactic fermentation in wine, has to adapt to stressful conditions, such as low pH and high ethanol content. In this study, the changes in the transcriptome and the proteome of O. oeni PSU-1 during the adaptation period before MLF start have been studied. DNA microarrays were used for the transcriptomic analysis and two complementary proteomic techniques, 2-D DIGE and iTRAQ labeling were used to analyze the proteomic response. One of the most influenced functions in PSU-1 due to inoculation into wine-like medium (WLM) was translation, showing the over-expression of certain ribosomal genes and the corresponding proteins. Amino acid metabolism and transport was also altered and several peptidases were up regulated both at gene and protein level. Certain proteins involved in glutamine and glutamate metabolism showed an increased abundance revealing the key role of nitrogen uptake under stressful conditions. A strong transcriptional inhibition of carbohydrate metabolism related genes was observed. On the other hand, the transcriptional up-regulation of malate transport and citrate consumption was indicative of the use of L-malate and citrate associated to stress response and as an alternative energy source to sugar metabolism. Regarding the stress mechanisms, our results support the relevance of the thioredoxin and glutathione systems in the adaptation of O. oeni to wine related stress. Genes and proteins related to cell wall showed also significant changes indicating the relevance of the cell envelop as protective barrier to environmental stress. The differences found between transcriptomic and proteomic data suggested the relevance of post-transcriptional mechanisms and the complexity of the stress response in O. oeni adaptation. Further research should deepen into the metabolisms mostly altered due to wine conditions to elucidate the role of each mechanism in the O. oeni ability to develop MLF. PMID

  4. The Extreme Male Brain Theory and Gender Role Behaviour in Persons with an Autism Spectrum Condition

    ERIC Educational Resources Information Center

    Stauder, J. E. A.; Cornet, L. J. M.; Ponds, R. W. H. M.

    2011-01-01

    According to the Extreme Male Brain theory persons with autism possess masculinised cognitive traits. In this study masculinisation of gender role behaviour is evaluated in 25 persons with an autism spectrum condition (ASC) and matched controls with gender role behaviour as part of a shortened version of the Minnesota Multiphasic Personality…

  5. Fluid Fe(1 - x)Hx under extreme conditions

    NASA Astrophysics Data System (ADS)

    Seclaman, Alexandra; Wilson, Hugh F.; Cohen, Ronald E.

    We study the fluid Fe-H binary system using first principles molecular dynamics (FPMD) and a new FPMD-based method, CATS, in order to compute efficiently and accurately the equation of state of Fe-H fluids up to 5 TPa and 30,000K. We constructed GRBV-type LDA pseudopotentials for Fe and H with small rcuts in order to avoid pseudo-core overlap. In the liquid Fe regime we find good agreement with previous works, up to the pressures where data is available. In the high density regime of pure H we also find good agreement with previous results. Previous work has been focused on low Fe concentrations in metallic liquid H. We extend previous studies by investigating several intermediate Fe(1 - x)Hx liquid compositions, as well as metallic liquid H and Fe. Preliminary results indicate extreme compositional pressure effects under isothermic and isochoric conditions, 3.9 TPa difference between Fe and H at 20,000K. Thermal pressure effects are comparatively small, 0.12-0.15 TPa per 10,000K for H and Fe, respectively. Equations of state will be presented and fluid immiscibility will be discussed. This work has been supported by the ERC Advanced Grant ToMCaT and NSF and the Carnegie Institution.

  6. Influenza transmission during extreme indoor conditions in a low-resource tropical setting

    NASA Astrophysics Data System (ADS)

    Tamerius, James; Ojeda, Sergio; Uejio, Christopher K.; Shaman, Jeffrey; Lopez, Brenda; Sanchez, Nery; Gordon, Aubree

    2017-04-01

    Influenza transmission occurs throughout the planet across wide-ranging environmental conditions. However, our understanding of the environmental factors mediating transmission is evaluated using outdoor environmental measurements, which may not be representative of the indoor conditions where influenza is transmitted. In this study, we examined the relationship between indoor environment and influenza transmission in a low-resource tropical population. We used a case-based ascertainment design to enroll 34 households with a suspected influenza case and then monitored households for influenza, while recording indoor temperature and humidity data in each household. We show that the indoor environment is not commensurate with outdoor conditions and that the relationship between indoor and outdoor conditions varies significantly across homes. We also show evidence of influenza transmission in extreme indoor environments. Specifically, our data suggests that indoor environments averaged 29 °C, 18 g/kg specific humidity, and 68 % relative humidity across 15 transmission events observed. These indoor settings also exhibited significant temporal variability with temperatures as high as 39 °C and specific and relative humidity increasing to 22 g/kg and 85 %, respectively, during some transmission events. However, we were unable to detect differences in the transmission efficiency by indoor temperature or humidity conditions. Overall, these results indicate that laboratory studies investigating influenza transmission and virus survival should increase the range of environmental conditions that they assess and that observational studies investigating the relationship between environment and influenza activity should use caution using outdoor environmental measurements since they can be imprecise estimates of the conditions that mediate transmission indoors.

  7. Influenza transmission during extreme indoor conditions in a low-resource tropical setting.

    PubMed

    Tamerius, James; Ojeda, Sergio; Uejio, Christopher K; Shaman, Jeffrey; Lopez, Brenda; Sanchez, Nery; Gordon, Aubree

    2017-04-01

    Influenza transmission occurs throughout the planet across wide-ranging environmental conditions. However, our understanding of the environmental factors mediating transmission is evaluated using outdoor environmental measurements, which may not be representative of the indoor conditions where influenza is transmitted. In this study, we examined the relationship between indoor environment and influenza transmission in a low-resource tropical population. We used a case-based ascertainment design to enroll 34 households with a suspected influenza case and then monitored households for influenza, while recording indoor temperature and humidity data in each household. We show that the indoor environment is not commensurate with outdoor conditions and that the relationship between indoor and outdoor conditions varies significantly across homes. We also show evidence of influenza transmission in extreme indoor environments. Specifically, our data suggests that indoor environments averaged 29 °C, 18 g/kg specific humidity, and 68 % relative humidity across 15 transmission events observed. These indoor settings also exhibited significant temporal variability with temperatures as high as 39 °C and specific and relative humidity increasing to 22 g/kg and 85 %, respectively, during some transmission events. However, we were unable to detect differences in the transmission efficiency by indoor temperature or humidity conditions. Overall, these results indicate that laboratory studies investigating influenza transmission and virus survival should increase the range of environmental conditions that they assess and that observational studies investigating the relationship between environment and influenza activity should use caution using outdoor environmental measurements since they can be imprecise estimates of the conditions that mediate transmission indoors.

  8. Moving in extreme environments: extreme loading; carriage versus distance.

    PubMed

    Lucas, Samuel J E; Helge, Jørn W; Schütz, Uwe H W; Goldman, Ralph F; Cotter, James D

    2016-01-01

    This review addresses human capacity for movement in the context of extreme loading and with it the combined effects of metabolic, biomechanical and gravitational stress on the human body. This topic encompasses extreme duration, as occurs in ultra-endurance competitions (e.g. adventure racing and transcontinental races) and expeditions (e.g. polar crossings), to the more gravitationally limited load carriage (e.g. in the military context). Juxtaposed to these circumstances is the extreme metabolic and mechanical unloading associated with space travel, prolonged bedrest and sedentary lifestyle, which may be at least as problematic, and are therefore included as a reference, e.g. when considering exposure, dangers and (mal)adaptations. As per the other reviews in this series, we describe the nature of the stress and the associated consequences; illustrate relevant regulations, including why and how they are set; present the pros and cons for self versus prescribed acute and chronic exposure; describe humans' (mal)adaptations; and finally suggest future directions for practice and research. In summary, we describe adaptation patterns that are often U or J shaped and that over time minimal or no load carriage decreases the global load carrying capacity and eventually leads to severe adverse effects and manifest disease under minimal absolute but high relative loads. We advocate that further understanding of load carrying capacity and the inherent mechanisms leading to adverse effects may advantageously be studied in this perspective. With improved access to insightful and portable technologies, there are some exciting possibilities to explore these questions in this context.

  9. Stress reactivity and personality in extreme sport athletes: The psychobiology of BASE jumpers.

    PubMed

    Monasterio, Erik; Mei-Dan, Omer; Hackney, Anthony C; Lane, Amy R; Zwir, Igor; Rozsa, Sandor; Cloninger, C Robert

    2016-12-01

    This is the first report of the psychobiology of stress in BASE jumpers, one of the most dangerous forms of extreme sport. We tested the hypotheses that indicators of emotional style (temperament) predict salivary cortisol reactivity, whereas indicators of intentional goal-setting (persistence and character) predict salivary alpha-amylase reactivity during BASE jumping. Ninety-eight subjects completed the Temperament and Character Inventory (TCI) the day before the jump, and 77 also gave salivary samples at baseline, pre-jump on the bridge over the New River Gorge, and post-jump upon landing. Overall BASE jumpers are highly resilient individuals who are highly self-directed, persistent, and risk-taking, but they are heterogeneous in their motives and stress reactivity in the Hypothalamic-Pituitary-Adrenal (HPA) stress system (cortisol reactivity) and the sympathetic arousal system (alpha-amylase reactivity). Three classes of jumpers were identified using latent class analysis based on their personality profiles, prior jumping experience, and levels of cortisol and alpha-amylase at all three time points. "Masterful" jumpers (class 1) had a strong sense of self-directedness and mastery, extensive prior experience, and had little alpha-amylase reactivity and average cortisol reactivity. "Trustful" jumpers (class 2) were highly cooperative and trustful individuals who had little cortisol reactivity coincident with the social support they experienced prior to jumping. "Courageous" jumpers (class 3) were determined despite anxiety and inexperience, and they had high sympathetic reactivity but average cortisol activation. We conclude that trusting social attachment (Reward Dependence) and not jumping experience predicted low cortisol reactivity, whereas persistence (determination) and not jumping experience predicted high alpha-amylase reactivity. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. The influence of acute stress on the regulation of conditioned fear

    PubMed Central

    Raio, Candace M.; Phelps, Elizabeth A.

    2014-01-01

    Fear learning and regulation is a prominent model for describing the pathogenesis of anxiety disorders and stress-related psychopathology. Fear expression can be modulated using a number of regulatory strategies, including extinction, cognitive emotion regulation, avoidance strategies and reconsolidation. In this review, we examine research investigating the effects of acute stress and stress hormones on these regulatory techniques. We focus on what is known about the impact of stress on the ability to flexibly regulate fear responses that are acquired through Pavlovian fear conditioning. Our primary aim is to explore the impact of stress on fear regulation in humans. Given this, we focus on techniques where stress has been linked to alterations of fear regulation in humans (extinction and emotion regulation), and briefly discuss other techniques (avoidance and reconsolidation) where the impact of stress or stress hormones have been mainly explored in animal models. These investigations reveal that acute stress may impair the persistent inhibition of fear, presumably by altering prefrontal cortex function. Characterizing the effects of stress on fear regulation is critical for understanding the boundaries within which existing regulation strategies are viable in everyday life and can better inform treatment options for those who suffer from anxiety and stress-related psychopathology. PMID:25530986

  11. Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response.

    PubMed

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions.

  12. Detectors in Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaj, G.; Carini, G.; Carron, S.

    2015-08-06

    Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 10 12 - 10 13 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impedingmore » data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.« less

  13. Effects of wear and service conditions on residual stresses in commuter car wheels

    DOT National Transportation Integrated Search

    2004-09-01

    This paper illustrates application of the shakedown residual stress estimation technique to : assess the effects of service conditions on wheel residual stresses. The examples described provide the : technical details on how the technique is practica...

  14. Influence of rearing conditions on voluntary ethanol intake and response to stress in rats.

    PubMed

    Rockman, G E; Hall, A M; Markert, L E; Glavin, G B

    1988-03-01

    The effects of exposure to four environmental rearing conditions on subsequent voluntary ethanol intake and response to immobilization stress were examined. Male weanling rats were reared in an enriched environment, with a female partner, with a male partner, or individually, for 90 days. At 111 days of age, voluntary consumption of ethanol in increasing concentrations (3 to 9%, v/v) was assessed. Following the ethanol-exposure period, rats were randomly divided into stressed and nonstressed groups and exposed to 3 h of immobilization. Results indicated that the enriched animals consumed greater amounts of ethanol as compared to all other groups, suggesting that the enriched environment and not handling, housing conditions, or the presence of another male or female is responsible for the observed increase in ethanol drinking behavior. Ulcer data indicated that among environmentally enriched rats, ethanol attenuated stress ulcer development relative to their non-ethanol-exposed but stressed controls. In nonstressed enriched rats, ethanol alone exacerbated stomach damage. We suggest that environmental rearing conditions markedly influence the complex interaction between ethanol intake and the response to stress.

  15. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves

  16. Stress-induced thermotolerance of ventilatory motor pattern generation in the locust, Locusta migratoria.

    PubMed

    Newman, Amy E M; Foerster, Melody; Shoemaker, Kelly L; Robertson, R Meldrum

    2003-11-01

    Ventilation is a crucial motor activity that provides organisms with an adequate circulation of respiratory gases. For animals that exist in harsh environments, an important goal is to protect ventilation under extreme conditions. Heat shock, anoxia, and cold shock are environmental stresses that have previously been shown to trigger protective responses. We used the locust to examine stress-induced thermotolerance by monitoring the ability of the central nervous system to generate ventilatory motor patterns during a subsequent heat exposure. Preparations from pre-stressed animals had an increased incidence of motor pattern recovery following heat-induced failure, however, prior stress did not alter the characteristics of the ventilatory motor pattern. During constant heat exposure at sub-lethal temperatures, we observed a protective effect of heat shock pre-treatment. Serotonin application had similar effects on motor patterns when compared to prior heat shock. These studies are consistent with previous studies that indicate prior exposure to extreme temperatures and hypoxia can protect neural operation against high temperature stress. They further suggest that the protective mechanism is a time-dependent process best revealed during prolonged exposure to extreme temperatures and is mediated by a neuromodulator such as serotonin.

  17. Low intensity red laser action on Escherichia coli cultures submitted to stress conditions

    NASA Astrophysics Data System (ADS)

    Santos, J. N.; Roos, C.; Barboza, L. L.; Paoli, F.; Fonseca, A. S.

    2014-12-01

    Clinical applications of low intensity lasers are based on the biostimulation effect and considered to occur mainly at cells under stressful conditions. Also, although the cytochrome is a chromophore to red and near infrared radiations, there are doubts whether indirect effects of these radiations could occur on the DNA molecule by oxidative mechanisms. Thus, this work evaluated the survival, filamentation and morphology of Escherichia coli cultures proficient and deficient in oxidative DNA damage repair exposed to low intensity red laser under stress conditions. Wild type and endonuclease III deficient E. coli cells were exposed to laser (658 nm, 1 and 8 J cm-2) under hyposmotic stress and bacterial survival, filamentation and cell morphology were evaluated. Laser exposure: (i) does not alter the bacterial survival in 0.9% NaCl, but increases the survival of wild type and decreases the survival of endonuclease III deficient cells under hyposmotic stress; (ii) increases filamentation in 0.9% NaCl but decreases in wild type and increases in endonuclease III deficient cells under hyposmotic stress; (iii) decreases the area and perimeter of wild type, does not alter these parameters in endonuclease III deficient cells under hyposmotic stress but increases the area of these in 0.9% NaCl. Low intensity red laser exposure has different effects on survival, filamentation phenotype and morphology of wild type and endonuclease III deficient cells under hyposmotic stress. Thus, our results suggest that therapies based on low intensity red lasers could take into account physiologic conditions and genetic characteristics of cells.

  18. Preliminary analysis of cold stress responsive proteins in Mesocestoides corti larvae.

    PubMed

    Canclini, Lucía; Esteves, Adriana

    2007-07-01

    Many parasites undergo sudden changes in environmental conditions at some stage during their life cycle. The molecular response to this variation is characterised by a rapid transcriptional activation of a specific set of genes coding for proteins generically known as stress proteins. They appear to be also involved in various biological processes including cell proliferation and differentiation. The platyhelminth parasite, Mesocestoides corti (Cestoda) presents important properties as a model organism. Under stress conditions, key molecules involved in metabolic pathways as well as in the growth and differentiation of the parasite can be identified. 2D protein expression profile of tetrathyridia of M. corti, submitted to nutritional starvation and cold stress is described, as well as the recovery pattern. A set of specifically expressed proteins was observed in each experimental condition. Quantitative and qualitative differences and stress recovery pattern are also reported. This work makes evident the high plasticity and resistance to extreme environmental conditions of these parasites at the molecular level.

  19. Stress and opioids: role of opioids in modulating stress-related behavior and effect of stress on morphine conditioned place preference.

    PubMed

    Bali, Anjana; Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2015-04-01

    Research studies have defined the important role of endogenous opioids in modulating stress-associated behavior. The release of β-endorphins in the amygdala in response to stress helps to cope with a stressor by inhibiting the over-activation of HPA axis. Administration of mu opioid agonists reduces the risk of developing post-traumatic stress disorder (PTSD) following a traumatic event by inhibiting fear-related memory consolidation. Similarly, the release of endogenous enkephalin and nociceptin in the basolateral amygdala and the nucleus accumbens tends to produce the anti-stress effects. An increase in dynorphin levels during prolonged exposure to stress may produce learned helplessness, dysphoria and depression. Stress also influences morphine-induced conditioned place preference (CPP) depending upon the intensity and duration of the stressor. Acute stress inhibits morphine CPP, while chronic stress potentiates CPP. The development of dysphoria due to increased dynorphin levels may contribute to chronic stress-induced potentiation of morphine CPP. The activation of ERK/cyclic AMP responsive element-binding (CREB) signaling in the mesocorticolimbic area, glucocorticoid receptors in the basolateral amygdala, and norepinephrine and galanin system in the nucleus accumbens may decrease the acute stress-induced inhibition of morphine CPP. The increase in dopamine levels in the nucleus accumbens and augmentation of GABAergic transmission in the median prefrontal cortex may contribute in potentiating morphine CPP. Stress exposure reinstates the extinct morphine CPP by activating the orexin receptors in the nucleus accumbens, decreasing the oxytocin levels in the lateral septum and amygdala, and altering the GABAergic transmission (activation of GABAA and inactivation of GABAB receptors). The present review describes these varied interactions between opioids and stress along with the possible mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Urbanization, Extreme Climate Hazards and Food, Energy Water Security

    NASA Astrophysics Data System (ADS)

    Romero-Lankao, P.; Davidson, D.; McPhearson, T.

    2016-12-01

    Research is urgently needed that incorporates the interconnected nature of three critical resources supporting our cities: food, energy and water. Cities are increasing demands for food, water and energy resources that in turn stress resource supplies, creating risks of negative impacts to human and ecological wellbeing. Simultaneously, shifts in climatic conditions, including extremes such as floods, heat, and droughts, threaten the sustainable availability of adequate quantities and qualities of food, energy and water (FEW) resources needed for resilient cities and ecosystems. These resource flows cannot be treated in isolation simply because they are interconnected: shifts in food, energy or water dynamics in turn affect the others, affecting the security of the whole - i.e., FEW nexus security. We present a framework to examine the dynamic interactions of urbanization, FEW nexus security and extreme hazard risks, with two overarching research questions: Do existing and emerging actions intended to enhance a population's food, water and energy security have the capacity to ensure FEW nexus security in the face of changing climate and urban development conditions? Can we identify a common set of social, ecological and technological conditions across a diversity of urban-regions that support the emergence of innovations that can lead to structural transformations for FEW nexus security?

  1. Fast screening of Bifidobacterium longum sublethal stress conditions in a novel two-stage continuous culture strategy.

    PubMed

    Mozzetti, V; Grattepanche, F; Berger, B; Rezzonico, E; Arigoni, F; Lacroix, C

    2013-06-01

    A central issue in the application of probiotics as food additives is their fastidious production and their sensitivity to many environmental stresses. The importance of inducible cell-protective mechanisms triggered by application of sublethal stresses for survival under stress conditions has been demonstrated. Continuous cultures could be a suitable and more efficient method to test stress factors on one culture instead of several repeated batch cultures. In this study, the application of a two-stage continuous culture of Bifidobacterium longum NCC2705 was investigated. The first reactor was operated under fixed conditions at 37 °C and pH 6.0 and used to produce cells with controlled physiology, mimicking cells in the late exponential growth phase. Stress pretreatment combinations of pH (6.0, 5.0 and 4.0), temperature (37, 45 and 47 °C) and NaCl (0, 5 and 10%) were tested in the second reactor. Of all tested combinations, only those of pH 4.0 significantly decreased cell viability in the second reactor compared to control conditions (37 °C, pH 6.0, 0% NaCl) and, therefore, could not be considered as sublethal stresses. Pretreatments with 5 or 10% NaCl had a negative effect on cell viability after gastric lethal stress. A significant improvement in cell resistance to heat lethal stress (56 °C, 5 min) was observed for cells pretreated at 47 °C. In contrast, heat pretreatment negatively affected cell viability after freeze drying and osmotic lethal stresses. The two-stage continuous culture allowed for efficient screening of several stress pretreatments during the same experiment with up to four different conditions tested per day. Optimal sublethal stress conditions can also be applied for producing cells with traditional batch cultures.

  2. Statistical evaluation for stability studies under stress storage conditions.

    PubMed

    Gil-Alegre, M E; Bernabeu, J A; Camacho, M A; Torres-Suarez, A I

    2001-11-01

    During the pharmaceutical development of a new drug, it is necessary to select as soon as possible the formulation with the best stability characteristics. The current International Commission for Harmonisation (ICH) regulations regarding stability testing requirements for a Registration Application provide the stress testing conditions with the aim of assessing the effect of severe conditions on the drug product. In practice, the well-known Arrhenius theory is still used to make a rapid stability prediction, to estimate a drug product shelf life during early stages of its pharmaceutical development. In this work, both the planning of a stress stability study to obtain a correct stability prediction from a temperature extrapolation and the suitable data treatment to discern the reliability of the stability results are discussed. The study was focused on the early formulation step of a very stable drug, Mitonafide (antineoplastic agent), formulated in a parenteral solution and in tablets. It was observed, for the solid system, that the extrapolated results using Arrhenius theory might be statistically good, but far from the real situation if the stability study is not designed in a correct way. The statistical data treatment and the stress-stability test proposed in this work are suitable to make a reliable stability prediction of different formulations with the same drug, within its pharmaceutical development.

  3. Psychological stress associated with cardiogenetic conditions.

    PubMed

    Hidayatallah, Nadia; Silverstein, Louise B; Stolerman, Marina; McDonald, Thomas; Walsh, Christine A; Paljevic, Esma; Cohen, Lilian L; Marion, Robert W; Wasserman, David; Hreyo, Sarah; Dolan, Siobhan M

    2014-09-01

    Genetic testing now makes it possible to identify specific mutations that may lead to life-threatening cardiac arrhythmias. This article presents data from a qualitative research study that explored the subjective experiences of individuals and families with cardiogenetic conditions. We focus on describing patients' experiences of psychological stresses associated with having a cardiogenetic condition, illustrating the importance of integrating psychological and medical care. This integration of care is particularly important as personalized genomic medicine continues to evolve and the implications of genetic testing have a profound effect on individuals and families. The researchers interviewed 50 participants from 32 families. The research team used a systematic, grounded theory procedure to code and analyze interview and focus group transcripts, incorporating multiple coders at several stages of the data analysis process. Three major themes emerged: a bereavement trajectory associated with sudden death in the absence of prior symptoms; high anxiety about transmitting a genetic mutation; and resilience reflected in positive lifestyle changes and participation in support groups. This article identifies patient perspectives on personalized genomic medicine in cardiogenetics that can improve clinical care, including: specialized bereavement counseling; improving education about cardiogenetic conditions for medical professionals; parent guidelines for discussing cardiogenetic conditions with their children; information about support groups; and the routine inclusion of clinical psychologists in interdisciplinary treatment teams. Given recent advances in technology and decreasing costs, whole-genome sequencing is likely to become common practice in the near future. Therefore, these recommendations are likely to be relevant for other genetic conditions, as well as the entire field of personalized genomic medicine.

  4. Selection of extreme environmental conditions, albedo coefficient and Earth infrared radiation, for polar summer Long Duration Balloon missions

    NASA Astrophysics Data System (ADS)

    González-Llana, Arturo; González-Bárcena, David; Pérez-Grande, Isabel; Sanz-Andrés, Ángel

    2018-07-01

    The selection of the extreme thermal environmental conditions -albedo coefficient and Earth infrared radiation- for the thermal design of stratospheric balloon missions is usually based on the methodologies applied in space missions. However, the particularities of stratospheric balloon missions, such as the much higher residence time of the balloon payload over a determined area, make necessary an approach centered in the actual environment the balloon is going to find, in terms of geographic area and season of flight. In this sense, this work is focussed on stratospheric balloon missions circumnavigating the North Pole during the summer period. Pairs of albedo and Earth infrared radiation satellite data restricted to this area and season of interest have been treated statistically. Furthermore, the environmental conditions leading to the extreme temperatures of the payload depend in turn on the surface finish, and more particularly on the ratio between the solar absorptance and the infrared emissivity α/ε. A simple but representative thermal model of a balloon and its payload has been set up in order to identify the pairs of albedo coefficient and Earth infrared radiation leading to extreme temperatures for each value of α/ε.

  5. Impact of urban WWTP and CSO fluxes on river peak flow extremes under current and future climate conditions.

    PubMed

    Keupers, Ingrid; Willems, Patrick

    2013-01-01

    The impact of urban water fluxes on the river system outflow of the Grote Nete catchment (Belgium) was studied. First the impact of the Waste Water Treatment Plant (WWTP) and the Combined Sewer Overflow (CSO) outflows on the river system for the current climatic conditions was determined by simulating the urban fluxes as point sources in a detailed, hydrodynamic river model. Comparison was made of the simulation results on peak flow extremes with and without the urban point sources. In a second step, the impact of climate change scenarios on the urban fluxes and the consequent impacts on the river flow extremes were studied. It is shown that the change in the 10-year return period hourly peak flow discharge due to climate change (-14% to +45%) was in the same order of magnitude as the change due to the urban fluxes (+5%) in current climate conditions. Different climate change scenarios do not change the impact of the urban fluxes much except for the climate scenario that involves a strong increase in rainfall extremes in summer. This scenario leads to a strong increase of the impact of the urban fluxes on the river system.

  6. Is the wide distribution of aspen a result of its stress tolerance?

    Treesearch

    V. J. Lieffers; S. M. Landhausser; E. H. Hogg

    2001-01-01

    Populus tremuloides is distributed from drought-prone fringes of the Great Plains to extremely cold sites at arctic treeline. To occupy these conditions aspen appears to be more tolerant of stress than the other North American species of the genus Populus. Cold winters, cold soil conditions during the growing season, periodic drought, insect defoliation, and...

  7. Force Field Accelerated Density Functional Theory Molecular Dynamics for Simulation of Reactive Systems at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Lindsey, Rebecca; Goldman, Nir; Fried, Laurence

    2017-06-01

    Atomistic modeling of chemistry at extreme conditions remains a challenge, despite continuing advances in computing resources and simulation tools. While first principles methods provide a powerful predictive tool, the time and length scales associated with chemistry at extreme conditions (ns and μm, respectively) largely preclude extension of such models to molecular dynamics. In this work, we develop a simulation approach that retains the accuracy of density functional theory (DFT) while decreasing computational effort by several orders of magnitude. We generate n-body descriptions for atomic interactions by mapping forces arising from short density functional theory (DFT) trajectories on to simple Chebyshev polynomial series. We examine the importance of including greater than 2-body interactions, model transferability to different state points, and discuss approaches to ensure smooth and reasonable model shape outside of the distance domain sampled by the DFT training set. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Force Field Accelerated Density Functional Theory Molecular Dynamics for Simulation of Reactive Systems at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Lindsey, Rebecca; Goldman, Nir; Fried, Laurence

    Understanding chemistry at extreme conditions is crucial in fields including geochemistry, astrobiology, and alternative energy. First principles methods can provide valuable microscopic insights into such systems while circumventing the risks of physical experiments, however the time and length scales associated with chemistry at extreme conditions (ns and μm, respectively) largely preclude extension of such models to molecular dynamics. In this work, we develop a simulation approach that retains the accuracy of density functional theory (DFT) while decreasing computational effort by several orders of magnitude. We generate n-body descriptions for atomic interactions by mapping forces arising from short density functional theory (DFT) trajectories on to simple Chebyshev polynomial series. We examine the importance of including greater than 2-body interactions, model transferability to different state points, and discuss approaches to ensure smooth and reasonable model shape outside of the distance domain sampled by the DFT training set. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Relationship between accumulated heat stress during the dry period, body condition score, and reproduction parameters of Holstein cows in tropical conditions.

    PubMed

    Avendaño-Reyes, Leonel; Fuquay, John W; Moore, Reuben B; Liu, Zhanglin; Clark, Bruce L; Vierhout, C

    2010-02-01

    To estimate the relationship between heat stress during the last 60 days prepartum, body condition score and certain reproductive traits in the subsequent lactation of Holstein cows, 564 multiparous cows and 290 primiparous cows from four dairy herds were used in a hot, humid region. Maximum prepartum degree days were estimated to quantify the degree of heat stress. Multiple regressions analyses and logistic regression analysis were performed to determine the effect of prepartum heat stress and body condition change on reproductive parameters, which were obtained from DHIA forms at the end of the lactation. Multiparous and primiparous cows which gained body condition score from calving to 60 d postpartum exhibited 28 and 27 fewer days open (P < 0.05), respectively, than cows not gaining. There was no effect (P > 0.05) of heat stress measurement on days open or services per conception in either multiparous or primiparous cows. During hotter months of calving, multiparous cows showed higher services per conception and primiparous cows showed higher days open and services per conception (P < 0.05). Maximum prepartum degree-days were positively associated (P < 0.05) with calving difficulty score. Multiparous cows with high body condition score at calving were 1.47 times more likely to present a very difficult calving than cows that calved in October (P < 0.05). Collectively, these results suggest that reproductive performance was not affected by cumulative prepartum heat stress although it was associated with very difficult calving score.

  10. A Transdiagnostic Minority Stress Treatment Approach for Gay and Bisexual Men’s Syndemic Health Conditions

    PubMed Central

    Pachankis, John E.

    2015-01-01

    Developing and deploying separate treatments for separate conditions seems ill-suited to intervening upon the co-occurring, and possibly functionally similar, psychosocial conditions facing gay and bisexual men. This article argues for the need to create transdiagnostic interventions that reduce multiple syndemic conditions facing gay and bisexual men at the level of their shared source in minority stress pathways. This article first reviews psychosocial syndemic conditions affecting gay and bisexual men, then suggests pathways that might link minority stress to psychosocial syndemics based on recent advancements in emotion science, psychiatric nosology, and cognitive-affective neuroscience, and finally suggests cross-cutting psychosocial treatment principles to reduce minority stress–syndemic pathways among gay and bisexual men. Because minority stress serves as a common basis of all psychosocial syndemic conditions reviewed here, locating the pathways through which minority stress generates psychosocial syndemics and employing overarching treatment principles capable of simultaneously alleviating these pathways will ultimately create a transdiagnostic approach to improving gay and bisexual men’s health. Clinical research and training approaches are suggested to further validate the pathways suggested here, establish the efficacy of treatment approaches tied to those pathways, and generate effective methods for disseminating a transdiagnostic minority stress treatment approach for gay and bisexual men’s psychosocial syndemic health. PMID:26123065

  11. Effect of baclofen on morphine-induced conditioned place preference, extinction, and stress-induced reinstatement in chronically stressed mice.

    PubMed

    Meng, Shanshan; Quan, Wuxing; Qi, Xu; Su, Zhiqiang; Yang, Shanshan

    2014-01-01

    A stress-induced increase in excitability can result from a reduction in inhibitory neurotransmission. Modulation of gamma-aminobutyric acid (GABA)ergic transmission is an effective treatment for drug seeking and relapse. This study investigated whether baclofen, a GABA(B) receptor agonist, had an impact on morphine-induced conditioned place preference (CPP), extinction, and stress-induced relapse in chronically stressed mice. Chronic stress was induced by restraining mice for 2 h for seven consecutive days. We first investigated whether chronic stress influenced morphine-induced CPP, extinction, and stress-induced relapse in the stressed mice. Next, we investigated whether three different doses of baclofen influenced chronic stress as measured by the expression of morphine-induced CPP. We chose the most effective dose for subsequent extinction and reinstatement experiments. Reinstatement of morphine-induced CPP was induced by a 6-min forced swim stress. Locomotor activity was also measured for each test. Chronic stress facilitated the expression of morphine-induced CPP and prolonged extinction time. Forced swim stress primed the reinstatement of morphine-induced CPP in mice. Baclofen treatment affected the impact of chronic stress on different phases of morphine-induced CPP. Our results showed that baclofen antagonized the effects of chronic stress on morphine-induced CPP. These findings suggest the potential clinical utility of GABA(B) receptor-positive modulators as an anti-addiction agent in people suffering from chronic stress.

  12. Tolerance to winemaking stress conditions of Patagonian strains of Saccharomyces eubayanus and Saccharomyces uvarum.

    PubMed

    Origone, A C; Del Mónaco, S M; Ávila, J R; González Flores, M; Rodríguez, M E; Lopes, C A

    2017-08-01

    Evaluating the winemaking stress tolerance of a set of both Saccharomyces eubayanus and Saccharomyces uvarum strains from diverse Patagonian habitats. Yeast strains growth was analysed under increasing ethanol concentrations; all of them were able to grow until 8% v/v ethanol. The effect of different temperature and pH conditions as well as at SO 2 and hexose concentrations was evaluated by means of a central composite experimental design. Only two S. uvarum strains (NPCC 1289 and 1321) were able to grow in most stress conditions. Kinetic parameters analysed (μ max and λ) were statistically affected by temperature, pH and SO 2 , but not influenced by sugar concentration. The obtained growth model was used for predicting optimal growth conditions for both strains: 20°C, 0% w/v SO 2 and pH 4·5. Strains from human-associated environments (chichas) presented the highest diversity in the response to different stress factors. Two S. uvarum strains from chichas demonstrated to be the most tolerant to winemaking conditions. This work evidenced the potential use of two S. uvarum yeast strains as starter cultures in wines fermented at low temperatures. Saccharomyces eubayanus was significantly affected by winemaking stress conditions, limiting its use in this industry. © 2017 The Society for Applied Microbiology.

  13. Three responses of wetland conditions to climatic extremes in the Prairie Pothole Region

    USGS Publications Warehouse

    Cressey, Ryann L.; Austin, Jane; Stafford, Joshua D.

    2016-01-01

    Wetlands in central North Dakota were revisited after 50 years to assess changes following extreme drought and a prolonged wet period. We compared data collected during 1961–1966 to current (2013–2014) wetland conditions. We revisited 80 wetlands in 2013 and 2014 across three study areas and measured wetland area, ponded-water depth, and specific conductance. Wetlands at the three study areas responded to prolonged wet conditions in one of three ways. Wetlands at Crystal Springs became larger, and had deeper ponds of lower specific conductance in 2013–14 compared to the 1960s. Wetlands at Cottonwood were larger with deeper ponds of slightly higher specific conductance in 2013–2014. Wetlands at Mt. Moriah had only subtle changes in size, pond depth, and specific conductance between periods. Prolonged wet conditions led to merging of most wetlands (defined as the outer edge of wet-meadow vegetation) at Crystal Springs and a few wetlands at Cottonwood. Low topographic relief at Crystal Springs and Cottonwood contributed to storage of excess water in wetlands with associated responses to prolonged wet conditions. In contrast, higher topographic relief and natural outlets into two intermittent streams at Mt. Moriah resulted in wetlands being less impacted by prolonged wet conditions.

  14. Effects of far infrared rays irradiated from ceramic material (BIOCERAMIC) on psychological stress-conditioned elevated heart rate, blood pressure, and oxidative stress-suppressed cardiac contractility.

    PubMed

    Leung, Ting-Kai; Chen, Chien-Ho; Tsai, Shih-Ying; Hsiao, George; Lee, Chi-Ming

    2012-10-31

    The present study examined the effects of BIOCERAMIC on psychological stress-conditioned elevated heart rate, blood pressure and oxidative stress-suppressed cardiac contractility using in vivo and in vitro animal models. We investigated the effects of BIOCERAMIC on the in vivo cardiovascular hemodynamic parameters of rats by monitoring their heart rates, systolic blood pressure, mean blood pressure and diastolic blood pressure. Thereafter, we assayed its effects on the heart rate in an isolated frog heart with and without adrenaline stimulation, and on cardiac contractility under oxidative stress. BIOCERAMIC caused significant decreases in heart rates and systolic and mean blood pressure in the stress-conditioned heart rate rat models (P < 0.05), as well as in the experimental models of an isolated frog heart with and without adrenaline stimulation (P < 0.05), and normalized cardiac contractility under oxidative stress (P < 0.05). BIOCERAMIC may, therefore, normalize the effects of psychological stress and oxidative stress conditions.

  15. OsNucleolin1-L Expression in Arabidopsis Enhances Photosynthesis via Transcriptome Modification under Salt Stress Conditions.

    PubMed

    Udomchalothorn, Thanikarn; Plaimas, Kitiporn; Sripinyowanich, Siriporn; Boonchai, Chutamas; Kojonna, Thammaporn; Chutimanukul, Panita; Comai, Luca; Buaboocha, Teerapong; Chadchawan, Supachitra

    2017-04-01

    OsNUC1 encodes rice nucleolin, which has been shown to be involved in salt stress responses. Expression of the full-length OsNUC1 gene in Arabidopsis resulted in hypersensitivity to ABA during germination. Transcriptome analysis of the transgenic lines, in comparison with the wild type, revealed that the RNA abundance of >1,900 genes was significantly changed under normal growth conditions, while under salt stress conditions the RNAs of 999 genes were found to be significantly regulated. Gene enrichment analysis showed that under normal conditions OsNUC1 resulted in repression of genes involved in photosynthesis, while in salt stress conditions OsNUC1 increased expression of the genes involved in the light-harvesting complex. Correspondingly, the net rate of photosynthesis of the transgenic lines was increased under salt stress. Transgenic rice lines with overexpression of the OsNUC1-L gene were generated and tested for photosynthetic performance under salt stress conditions. The transgenic rice lines treated with salt stress at the booting stage had a higher photosynthetic rate and stomatal conductance in flag leaves and second leaves than the wild type. Moreover, higher contents of Chl a and carotenoids were found in flag leaves of the transgenic rice. These results suggest a role for OsNUC1 in the modification of the transcriptome, especially the gene transcripts responsible for photosynthesis, leading to stabilization of photosynthesis under salt stress conditions. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions.

    PubMed

    Grover, Minakshi; Madhubala, R; Ali, Sk Z; Yadav, S K; Venkateswarlu, B

    2014-09-01

    Microorganisms isolated from stressed ecosystem may prove as ideal candidates for development of bio-inoculants for stressed agricultural production systems. In the present study, moisture stress tolerant rhizobacteria were isolated from the rhizosphere of sorghum, pigeonpea, and cowpea grown under semiarid conditions in India. Four isolates KB122, KB129, KB133, and KB142 from sorghum rhizosphere exhibited plant growth promoting traits and tolerance to salinity, high temperature, and moisture stress. These isolates were identified as Bacillus spp. by 16S rDNA sequence analysis. The strains were evaluated for growth promotion of sorghum seedlings under two different moisture stress conditions (set-I, continuous 50% soil water holding capacity (WHC) throughout the experiment and set-II, 75% soil WHC for 27 days followed by no irrigation for 5 days) under greenhouse conditions. Plate count and scanning electron microscope studies indicated successful root surface colonization by inoculated bacteria. Plants inoculated with Bacillus spp. strains showed better growth in terms of shoot length and root biomass with dark greenish leaves due to high chlorophyll content while un-inoculated plants showed rolling of the leaves, stunted appearance, and wilting under both stress conditions. Inoculation also improved leaf relative water content and soil moisture content. However, variation in proline and sugar content in the different treatments under two stress conditions indicated differential effect of microbial treatments on plant physiological parameters under stress conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Quantitative proteomic analysis of cabernet sauvignon grape cells exposed to thermal stresses reveals alterations in sugar and phenylpropanoid metabolism.

    PubMed

    George, Iniga S; Pascovici, Dana; Mirzaei, Mehdi; Haynes, Paul A

    2015-09-01

    Grapes (Vitis vinifera) are a valuable fruit crop and wine production is a major industry. Global warming and expanded range of cultivation will expose grapes to more temperature stresses in future. Our study investigated protein level responses to abiotic stresses, with particular reference to proteomic changes induced by the impact of four different temperature stress regimes, including both hot and cold temperatures, on cultured grape cells. Cabernet Sauvignon cell suspension cultures grown at 26°C were subjected to 14 h of exposure to 34 and 42°C for heat stress, and 18 and 10°C for cold stress. Cells from the five temperatures were harvested in biological triplicates and label-free quantitative shotgun proteomic analysis was performed. A total of 2042 non-redundant proteins were identified from the five temperature points. Fifty-five proteins were only detected in extreme heat stress conditions (42°C) and 53 proteins were only detected at extreme cold stress conditions (10°C). Gene Ontology (GO) annotations of differentially expressed proteins provided insights into the metabolic pathways that are involved in temperature stress in grape cells. Sugar metabolism displayed switching between alternative and classical pathways during temperature stresses. Additionally, nine proteins involved in the phenylpropanoid pathway were greatly increased in abundance at extreme cold stress, and were thus found to be cold-responsive proteins. All MS data have been deposited in the ProteomeXchange with identifier PXD000977 (http://proteomecentral.proteomexchange.org/dataset/PXD000977). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Silicon in vascular plants: uptake, transport and its influence on mineral stress under acidic conditions.

    PubMed

    Pontigo, Sofía; Ribera, Alejandra; Gianfreda, Liliana; de la Luz Mora, María; Nikolic, Miroslav; Cartes, Paula

    2015-07-01

    So far, considerable advances have been achieved in understanding the mechanisms of Si uptake and transport in vascular plants. This review presents a comprehensive update about this issue, but also provides the new insights into the role of Si against mineral stresses that occur in acid soils. Such information could be helpful to understand both the differential Si uptake ability as well as the benefits of this mineral element on plants grown under acidic conditions. Silicon (Si) has been widely recognized as a beneficial element for many plant species, especially under stress conditions. In the last few years, great efforts have been made to elucidate the mechanisms involved in uptake and transport of Si by vascular plants and recently, different Si transporters have been identified. Several researches indicate that Si can alleviate various mineral stresses in plants growing under acidic conditions, including aluminium (Al) and manganese (Mn) toxicities as well as phosphorus (P) deficiency all of which are highly detrimental to crop production. This review presents recent findings concerning the influence of uptake and transport of Si on mineral stress under acidic conditions because a knowledge of this interaction provides the basis for understanding the role of Si in mitigating mineral stress in acid soils. Currently, only four Si transporters have been identified and there is little information concerning the response of Si transporters under stress conditions. More investigations are therefore needed to establish whether there is a relationship between Si transporters and the benefits of Si to plants subjected to mineral stress. Evidence presented suggests that Si supply and its subsequent accumulation in plant tissues could be exploited as a strategy to improve crop productivity on acid soils.

  19. Cold Stress

    MedlinePlus

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  20. Heat Stress

    MedlinePlus

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir OSHA-NIOSH ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  1. Prior exposure to a single stress session facilitates subsequent contextual fear conditioning in rats. Evidence for a role of corticosterone.

    PubMed

    Cordero, M Isabel; Venero, Cesar; Kruyt, Nyika D; Sandi, Carmen

    2003-11-01

    Previous studies showed that exposure of rats to chronic restraint stress for 21 days enhances subsequent contextual fear conditioning. Since recent evidence suggest that this effect is not dependent on stress-induced neurodegenerative processes, but to elevated training-elicited glucocorticoid release in chronically stressed animals, we aimed to explore here whether a single exposure to restraint stress, which is not expected to induce neuronal damage, would also affect contextual fear conditioning. We also questioned whether post-training corticosterone levels might be associated with any potential effect of stress on fear conditioning. Adult male Wistar rats were exposed to acute restraint stress for 2 h and, two days later, trained in the contextual fear conditioning task, under training conditions involving either moderate (0.4 mA shock) or high (1 mA shock) stress levels. The results showed that acute stress enhanced conditioned freezing at both training conditions, although data from the 1 mA shock intensity experiment only approached significance. Stressed animals were shown to display higher post-training corticosterone levels. Furthermore, the facilitating effect of prior stress was not evident when animals were trained in the hippocampal-independent auditory-cued conditioning task. Therefore, these findings support the idea that stress experiences preceding exposure to new types of stressors facilitate the development of contextual fear conditioning. They also indicate that not only repeated, but also a single exposure to aversive stimulation is sufficient to facilitate context-dependent fear conditioning, and suggest that increased glucocorticoid release at training might be implicated in the mechanisms mediating the memory facilitating effects induced by prior stress experiences.

  2. Characteristic changes in heat extremes over India in response to global warming using CMIP5 model simulations

    NASA Astrophysics Data System (ADS)

    Kundeti, K.; Chang, H. H.; T V, L. K.; Desamsetti, S.; Dandi, A. R.

    2017-12-01

    A critical aspect of human-induced climate change is how it will affect climatological mean and extremes around the world. Summer season surface climate of the Indian sub continent is characterized by hot and humid conditions. The global warming can have profound impact on the mean climate as well as extreme weather events over India that may affect both natural and human systems significantly. In this study we examine very direct measure of the impact of climate change on human health and comfort. The Heat stress Index is the measure of combined effects of temperature and atmospheric moisture on the ability of the human body to dissipate heat. It is important to assess the future changes in the seasonal mean of heat stress index, it is also desirable to know how the future holds when it comes to extremes in temperature for a country like India where so much of outdoor activities happen both in the onshore/offshore energy sectors, extensive construction activities. This study assesses the performance of the Coupled Model Inter comparison Project Phase 5 (CMIP5) simulations in the present and develops future climate scenarios. The changes in heat extremes are assessed for three future periods 2016-2035, 2046-2065 and 2080-2099 with respect to 1986-2005 (base line) under two RCP's (Representative Concentrate Pathways) - RCP4.5 and RCP8.5. In view of this, we provide the expected future changes in the seasonal mean heat stress indices and also the frequency of heat stress exceeding a certain threshold relevant to Inida. Besides, we provide spatial maps of expected future changes in the heat stress index derived as a function of daily mean temperature and relative humidity and representative of human comfort having a direct bearing on the human activities. The observations show an increase in heat extremes over many parts in this region that are generally well captured by the models. The results indicate a significant change in frequency and intensity of heat extremes

  3. Effects of service conditions on the as-manufactured residual stress distribution in commuter car wheels

    DOT National Transportation Integrated Search

    2001-09-01

    The effects of simulated service conditions on the as-manufactured residual stress : distribution in commuter car wheels are investigated. The residual stresses, those : stresses which remain after all applied loads are removed, can encourage the for...

  4. Distinct Redox Regulation in Sub-Cellular Compartments in Response to Various Stress Conditions in Saccharomyces cerevisiae

    PubMed Central

    Ayer, Anita; Sanwald, Julia; Pillay, Bethany A.; Meyer, Andreas J.; Perrone, Gabriel G.; Dawes, Ian W.

    2013-01-01

    Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (E GSH) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. E GSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (−340 to −350 mV) were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H+/2GSH) and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H+/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions. PMID:23762325

  5. Designing Resilient and Productive Grasses with Plasticity to Extreme Weather Events

    NASA Astrophysics Data System (ADS)

    Loka, D.; Humphreys, M.; Gwyn Jones, D.; Scullion, J.; Doonan, J.; Gasior, D.; Harper, J.; Farrell, M.; Kingston-Smith, A.; Dodd, R.; Chadwick, D.; Hill, P.; Robinson, D.; Jones, D.

    2016-12-01

    Grasslands occupy more than 70% of the world's agricultural land and are major providers of healthy feed for livestock and for ecosystem services. Global warming is projected to increase the intensity and frequency of extreme weather events such as drought and flooding and will reduce persistency of currently productive but stress sensitive forage grass varieties, thereby challenging global food security and compromising on their existing ecosystem functionality. New perennial grass varieties, tolerant to the onsets of more than one abiotic stresses, are required in order to achieve sustainable grassland production and function over years under adverse environmental conditions. Identifying and selecting reliable morphological and physiological traits associated with increased resistance to multiple stress conditions is a prerequisite to ensure future grasslands resilience. The objectives of our study were to select from diverse and novel Festulolium (ryegrass spp. x fescue spp. hybrids) grass populations capable of providing optimal combinations of good forage production together with resilience to multiple stresses and to monitor morphological and physiological responses under multiple stress conditions. The grasses were: Festulolium variety Prior (L. perenne x F. pratensis), shown to alter soil structure and hydrology to mitigate run-off and flooding; two advanced breeding populations of diploid L. perenne with genes for drought tolerance derived from the Mediterranean fescue species F. arundinacea and F. glaucescens; two tetraploid hybrid populations involving L. perenne in combination with F. glaucescens and F. mairei (from North Africa), respectively. As controls, Festulolium variety AberNiche and L. perenne variety AberWolf varieties, were used. Treatments consisted of: A) Control; plants maintained at optimum conditions, B) Flood; plants were flooded for 6 weeks followed by a 4-week recovery, C) Drought; plants received limited quantity of water for 12 weeks

  6. The role of habitat structure for biomolecule integrity and microbial survival under extreme environmental stress in Antarctica (and Mars?): ecology and technology

    NASA Astrophysics Data System (ADS)

    Wynn-Williams, D. A.; Newton, E. M.; Edwards, H. G. M.

    2001-08-01

    The integrity of cells and biomolecules in stressed environments is enhanced within microhabitats. Despite desiccation and low temperatures in Antarctic deserts, the greatest near-surface factor is solar radiation. Photosynthetic microbial communities that pioneer polar deserts harness photosynthetically active radiation (PAR) whilst concurrently adopting protective strategies against UVB with screening pigments or avoidance in stratified habitats. To analyse whole communities in situ, we use laser Raman spectroscopy as a non-intrusive technique for organic compounds and mineral substrata. We use the distinctive spectra of cyanobacterial and lichen UV-screening pigments, and energy-quenching carotenoids to define their functional locations. Their occurrence in extreme habitats and in the fossil record permits extrapolation to conditions on early Earth and analogous habitats on early Mars. We describe our Raman spectral database accumulated with a laboratory FT Raman spectrometer and expansion to Antarctic fieldwork and astrobiology with a novel miniature 1064 nm laser system with an Indium-Gallium-Arsenide detector.

  7. Analysis of Environmental Stress Factors Using an Artificial Growth System and Plant Fitness Optimization

    PubMed Central

    Lee, Meonghun; Yoe, Hyun

    2015-01-01

    The environment promotes evolution. Evolutionary processes represent environmental adaptations over long time scales; evolution of crop genomes is not inducible within the relatively short time span of a human generation. Extreme environmental conditions can accelerate evolution, but such conditions are often stress inducing and disruptive. Artificial growth systems can be used to induce and select genomic variation by changing external environmental conditions, thus, accelerating evolution. By using cloud computing and big-data analysis, we analyzed environmental stress factors for Pleurotus ostreatus by assessing, evaluating, and predicting information of the growth environment. Through the indexing of environmental stress, the growth environment can be precisely controlled and developed into a technology for improving crop quality and production. PMID:25874206

  8. The myoglobin of Emperor penguin (Aptenodytes forsteri): amino acid sequence and functional adaptation to extreme conditions.

    PubMed

    Tamburrini, M; Romano, M; Giardina, B; di Prisco, G

    1999-02-01

    In the framework of a study on molecular adaptations of the oxygen-transport and storage systems to extreme conditions in Antarctic marine organisms, we have investigated the structure/function relationship in Emperor penguin (Aptenodytes forsteri) myoglobin, in search of correlation with the bird life style. In contrast with previous reports, the revised amino acid sequence contains one additional residue and 15 differences. The oxygen-binding parameters seem well adapted to the diving behaviour of the penguin and to the environmental conditions of the Antarctic habitat. Addition of lactate has no major effect on myoglobin oxygenation over a large temperature range. Therefore, metabolic acidosis does not impair myoglobin function under conditions of prolonged physical effort, such as diving.

  9. Human-biometeorological conditions in the southern Baltic coast based on the universal thermal climate index (UTCI)

    NASA Astrophysics Data System (ADS)

    Kolendowicz, Leszek; Półrolniczak, Marek; Szyga-Pluta, Katarzyna; Bednorz, Ewa

    2017-10-01

    The paper focuses on bioclimatic conditions in the southern part of the Baltic coast based on universal thermal climate index values. Taking into consideration the observational data from coastline stations as well as reanalysis data from the National Center for Environmental Prediction and National Center for Atmospheric Research (sea level pressure and the 500 hPa geopotential height), the authors attempt to explain which of the synoptic situations are responsible for the occurrence of days with very strong and extreme cold or heat stress. The obtained results confirm that the extreme thermal heat and cold stress conditions are for the most part associated with high-pressure systems. The researched area is usually situated in the western or southern periphery of the anticyclones. The cold stress also occurs during the advection from west or northwest, caused by the direct influence of a low-pressure system whose center is situated over the North Sea, southern Scandinavia, or the southern Baltic Sea.

  10. Studying the effect of material initial conditions on drying induced stresses

    NASA Astrophysics Data System (ADS)

    Heydari, M.; Khalili, K.; Ahmadi-Brooghani, S. Y.

    2018-02-01

    Cracking as a result of non-uniform deformation during drying is one of defects that may occur during drying and has to be dealt with by proper drying treatment. In the current study the effect of initial condition has been investigated on stress-strain induced by drying. The convective drying of a porous clay-like material has been simulated by using a mathematical model. Mass and heat transfer along with the mechanical behavior of the object being dried make the phenomenon a highly coupled problem. The coupling variables are the solid displacement, moisture content and temperature of the porous medium. A numerical solution is sought and employed to predict the influence of initial conditions of material on the drying induced stresses, the moisture content, and the temperature variations. Simulation results showed that increasing the initial temperature is an effective way to reduce the stresses induced by drying and to obtain products with good quality without significant change in drying curve and in comparison this is more effective than intermittent drying.

  11. Proteomic changes in rice leaves grown under open field high temperature stress conditions.

    PubMed

    Das, Smruti; Krishnan, P; Mishra, Vagish; Kumar, Ritesh; Ramakrishnan, B; Singh, N K

    2015-11-01

    The interactive effect of temperature with other climatic and soil factors has profound influences on the growth and development of rice. The responses of rice to high temperatures under field conditions are more important than those under the controlled conditions. To understand the genes associated with high temperature stress response in general and tolerance in particular, the expression of all those genes associated with adaptation and tolerance in rice requires proteomic analysis. High temperature stress-tolerant cv. N22 was subjected to 28/18 °C (control) and 42/32 °C (high temperature stress) at flowering stage. The plants were grown in the field under the free air temperature increment condition. The proteomic changes in rice leaves due to high temperature stress were discussed. The proteomes of leaves had about 3000 protein spots, reproducibly detected on 2-dimensional electrophoretic gels with 573 proteins differentially expressed between the control and the high temperature treatments. Putative physiological functions suggested five categories such as growth (15.4%), heat shock proteins (7.7%), regulatory proteins (26.9%), redox homeostasis proteins (11.5%) and energy and metabolism (38.5%) related proteins. The results of the present study suggest that cv. N22, an agronomically recognized temperature tolerant rice cultivar copes with high temperature stress in a complex manner. Several functional proteins play important roles in its responses. The predicted climate change events necessitate more studies using this cultivar under different simulated ecological conditions to identify proteomic changes and the associated genes to be used as biomarkers and to gain a better understanding on the biochemical pathways involved in tolerance.

  12. Stress-responsive expression patterns and functional characterization of cold shock domain proteins in cabbage (Brassica rapa) under abiotic stress conditions.

    PubMed

    Choi, Min Ji; Park, Ye Rin; Park, Su Jung; Kang, Hunseung

    2015-11-01

    Although the functional roles of cold shock domain proteins (CSDPs) have been demonstrated during the growth, development, and stress adaptation of Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and wheat (Triticum aestivum), the functions of CSDPs in other plants species, including cabbage (Brassica rapa), are largely unknown. To gain insight into the roles of CSDPs in cabbage under stress conditions, the genes encoding CSDPs in cabbage were isolated, and the functional roles of CSDPs in response to environmental stresses were analyzed. Real-time RT-PCR analysis revealed that the levels of BrCSDP transcripts increased during cold, salt, or drought stress, as well as upon ABA treatment. Among the five BrCSDP genes found in the cabbage genome, one CSDP (BRU12051), named BrCSDP3, was unique in that it is localized to the chloroplast as well as to the nucleus. Ectopic expression of BrCSDP3 in Arabidopsis resulted in accelerated seed germination and better seedling growth compared to the wild-type plants under high salt or dehydration stress conditions, and in response to ABA treatment. BrCSDP3 did not affect the splicing of intron-containing genes and processing of rRNAs in the chloroplast. BrCSDP3 had the ability to complement RNA chaperone-deficient Escherichia coli mutant cells under low temperatures as well as DNA- and RNA-melting abilities, suggesting that it possesses RNA chaperone activity. Taken together, these results suggest that BrCSDP3, harboring RNA chaperone activity, plays a role as a positive regulator in seed germination and seedling growth under stress conditions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Sensitivity to change of mobility measures in musculoskeletal conditions on lower extremities in outpatient rehabilitation settings.

    PubMed

    Navarro-Pujalte, Esther; Gacto-Sánchez, Mariano; Montilla-Herrador, Joaquina; Escolar-Reina, Pilar; Ángeles Franco-Sierra, María; Medina-Mirapeix, Francesc

    2018-01-12

    Prospective longitudinal study. To examine the sensitivity of the Mobility Activities Measure for lower extremities and to compare it to the sensitivity of the Physical Functioning Scale (PF-10) and the Patient-Specific Functional Scale (PSFS) at week 4 and week 8 post-hospitalization in outpatient rehabilitation settings. Mobility Activities Measure is a set of short mobility measures to track outpatient rehabilitation progress: its scales have shown good properties but its sensitivity to change has not been reported. Patients with musculoskeletal conditions were recruited at admission in three outpatient rehabilitation settings in Spain. Data were collected at admission, week 4 and week 8 from an initial sample of 236 patients (mean age ± SD = 36.7 ± 11.1). Mobility Activities Measure scales for lower extremity; PF-10; and PSFS. All the Mobility Activities Measure scales were sensitive to both positive and negative changes (the Standardized Response Means (SRMs) ranged between 1.05 and 1.53 at week 4, and between 0.63 and 1.47 at week 8). The summary measure encompassing the three Mobility Activities Measure scales detected a higher proportion of participants who had improved beyond the minimal detectable change (MDC) than detected by the PSFS and the PF-10 both at week 4 (86.64% vs. 69.81% and 42.23%, respectively) and week 8 (71.14% vs. 55.65% and 60.81%, respectively). The three Mobility Activities Measure scales assessing the lower extremity can be used across outpatient rehabilitation settings to provide consistent and sensitive measures of changes in patients' mobility. Implications for rehabilitation All the scales of the Mobility Activities Measure for the lower extremity were sensitive to both positive and negative change across the follow-up periods. Overall, the summary measure encompassing the three Mobility Activities Measure scales for the lower extremity appeared more sensitive to positive changes than the Physical Functioning Scale

  14. Biology and survival of extremely halophilic archaeon Haloarcula marismortui RR12 isolated from Mumbai salterns, India in response to salinity stress.

    PubMed

    Thombre, Rebecca S; Shinde, Vinaya D; Oke, Radhika S; Dhar, Sunil Kumar; Shouche, Yogesh S

    2016-05-27

    Haloarchaea are unique microorganism's resistant to environmental and osmotic stresses and thrive in their habitats despite extreme fluctuating salinities. In the present study, haloarchaea were isolated from hypersaline thalossohaline salterns of Bhandup, Mumbai, India and were identified as Haloferax prahovense, Haloferax alexandrines, Haloferax lucentense, Haloarcula tradensis, Haloarcula marismortui and Haloarcula argentinensis. The mechanism of adaptation to contrasting salinities (1.5 M and 4.5 M) was investigated in the extreme haloarchaeon, Hal. marismortui RR12. Hal. marismortui RR12 increased the intracellular sequestration of K(+) and Cl(-) ions in hypo salinity and hyper salinity respectively as detected by Energy-dispersive X-ray spectroscopy microanalysis (EDAX) and Inductively Coupled Plasma- atomic Emission Spectroscopy (ICP-AES) indicating the presence of 'salt-in' strategy of osmoadaptation. As a cellular response to salinity stress, it produced small heat shock like proteins (sHSP) identified using MALDI-TOF MS and increased the production of protective red carotenoid pigment. This is the first report on the study of the concomitant cellular, molecular and physiological mechanism adapted by Hal. marismortui RR12 when exposed to contrasting salinities in external environment.

  15. The Impact of Different Environmental Conditions on Cognitive Function: A Focused Review

    PubMed Central

    Taylor, Lee; Watkins, Samuel L.; Marshall, Hannah; Dascombe, Ben J.; Foster, Josh

    2016-01-01

    Cognitive function defines performance in objective tasks that require conscious mental effort. Extreme environments, namely heat, hypoxia, and cold can all alter human cognitive function due to a variety of psychological and/or biological processes. The aims of this Focused Review were to discuss; (1) the current state of knowledge on the effects of heat, hypoxic and cold stress on cognitive function, (2) the potential mechanisms underpinning these alterations, and (3) plausible interventions that may maintain cognitive function upon exposure to each of these environmental stressors. The available evidence suggests that the effects of heat, hypoxia, and cold stress on cognitive function are both task and severity dependent. Complex tasks are particularly vulnerable to extreme heat stress, whereas both simple and complex task performance appear to be vulnerable at even at moderate altitudes. Cold stress also appears to negatively impact both simple and complex task performance, however, the research in this area is sparse in comparison to heat and hypoxia. In summary, this focused review provides updated knowledge regarding the effects of extreme environmental stressors on cognitive function and their biological underpinnings. Tyrosine supplementation may help individuals maintain cognitive function in very hot, hypoxic, and/or cold conditions. However, more research is needed to clarify these and other postulated interventions. PMID:26779029

  16. Effect on Quality Characteristics of Tomatoes Grown Under Well-Watered and Drought Stress Conditions.

    PubMed

    Klunklin, Warinporn; Savage, Geoffrey

    2017-07-25

    Tomatoes are one of the most nutritionally and economically important crops in New Zealand and around the world. Tomatoes require large amounts of water to grow well and are adversely affected by drought stress. However, few studies have evaluated the physicochemical characteristics of commercial tomatoes grown under water stress conditions. Four tomato cultivars (Incas, Marmande, Scoresby Dwarf, and Window Box Red) were grown in a greenhouse under well-watered and drought stress conditions and the tomatoes were harvested when ripe. The physicochemical properties and antioxidant contents of the fruits were compared. There were significant differences between cultivars in quality characteristics-such as dry matter, total soluble solids, and pH parameters-but there were no differences in the quality characteristics between the two treatments of the fruits ( p > 0.05); however, there were significant differences ( p < 0.05) in the antioxidant compositions (lycopene, total phenolics, and flavonoids) and antioxidant activities (DPPH and ABTS) of the fruits of both cultivars and treatments. Overall, these results indicated that tomatoes increased their bioactive compounds without changing any quality characteristics when exposed to water stress conditions.

  17. Does red noise increase or decrease extinction risk? Single extreme events versus series of unfavorable conditions.

    PubMed

    Schwager, Monika; Johst, Karin; Jeltsch, Florian

    2006-06-01

    Recent theoretical studies have shown contrasting effects of temporal correlation of environmental fluctuations (red noise) on the risk of population extinction. It is still debated whether and under which conditions red noise increases or decreases extinction risk compared with uncorrelated (white) noise. Here, we explain the opposing effects by introducing two features of red noise time series. On the one hand, positive autocorrelation increases the probability of series of poor environmental conditions, implying increasing extinction risk. On the other hand, for a given time period, the probability of at least one extremely bad year ("catastrophe") is reduced compared with white noise, implying decreasing extinction risk. Which of these two features determines extinction risk depends on the strength of environmental fluctuations and the sensitivity of population dynamics to these fluctuations. If extreme (catastrophic) events can occur (strong noise) or sensitivity is high (overcompensatory density dependence), then temporal correlation decreases extinction risk; otherwise, it increases it. Thus, our results provide a simple explanation for the contrasting previous findings and are a crucial step toward a general understanding of the effect of noise color on extinction risk.

  18. The National Ignition Facility: an experimental platform for studying behavior of matter under extreme conditions

    NASA Astrophysics Data System (ADS)

    Moses, Edward

    2011-11-01

    The National Ignition Facility (NIF), a 192-beam Nd-glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light, is now operational at Lawrence Livermore National Laboratory (LLNL). As the world's largest and most energetic laser system, NIF serves as the national center for the U.S. Department of Energy (DOE) and National Nuclear Security Administration to achieve thermonuclear burn in the laboratory and to explore the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from all of its 192 extremely energetic laser beams into a mm3-sized target, NIF can reach the conditions required to initiate fusion reactions. NIF can also provide access to extreme scientific environments: temperatures about 100 million K, densities of 1,000 g/cm3, and pressures 100 billion times atmospheric pressure. These conditions have never been created before in a laboratory and exist naturally only in interiors of the planetary and stellar environments as well as in nuclear weapons. Since August 2009, the NIF team has been conducting experiments in support of the National Ignition Campaign (NIC)—a partnership among LLNL, Los Alamos National Laboratory, General Atomics, the University of Rochester, Sandia National Laboratories, as well as a number of universities and international collaborators. The results from these initial experiments show promise for the relatively near-term achievement of ignition. Capsule implosion experiments at energies up to 1.2 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 10%. Cryogenic target capability and additional diagnostics are being installed in preparation for layered target deuterium-tritium implosions to be conducted later in 2010. Important national security and basic science experiments have

  19. Stress and body condition are associated with climate and demography in Asian elephants.

    PubMed

    Mumby, Hannah S; Mar, Khyne U; Thitaram, Chatchote; Courtiol, Alexandre; Towiboon, Patcharapa; Min-Oo, Zaw; Htut-Aung, Ye; Brown, Janine L; Lummaa, Virpi

    2015-01-01

    Establishing links between ecological variation, physiological markers of stress and demography is crucial for understanding how and why changes in environmental conditions affect population dynamics, and may also play a key role for conservation efforts of endangered species. However, detailed longitudinal studies of long-lived species are rarely available. We test how two markers of stress and body condition vary through the year and are associated with climatic conditions and large-scale mortality and fertility variation in the world's largest semi-captive population of Asian elephants employed in the timber industry in Myanmar. Glucocorticoid metabolites (used as a proxy for stress levels in 75 elephants) and body weight (used as a proxy for condition in 116 elephants) were monitored monthly across a typical monsoon cycle and compared with birth and death patterns of the entire elephant population over half a century (n = 2350). Our results show seasonal variation in both markers of stress and condition. In addition, this variation is correlated with population-level demographic variables. Weight is inversely correlated with population mortality rates 1 month later, and glucocorticoid metabolites are negatively associated with birth rates. Weight shows a highly positive correlation with rainfall 1 month earlier. Determining the factors associated with demography may be key to species conservation by providing information about the correlates of mortality and fertility patterns. The unsustainability of the studied captive population has meant that wild elephants have been captured and tamed for work. By elucidating the correlates of demography in captive elephants, our results offer management solutions that could reduce the pressure on the wild elephant population in Myanmar.

  20. Efficacy of a prehospital self-expanding polyurethane foam for noncompressible hemorrhage under extreme operational conditions.

    PubMed

    Rago, Adam P; Larentzakis, Andreas; Marini, John; Picard, Abby; Duggan, Michael J; Busold, Rany; Helmick, Marc; Zugates, Greg; Beagle, John; Sharma, Upma; King, David R

    2015-02-01

    Noncompressible abdominal hemorrhage is a significant cause of battlefield and civilian mortality. We developed a self-expanding polyurethane foam intended to provide temporary hemorrhage control and enable evacuation to a definitive surgical capability, for casualties who would otherwise die. We hypothesized that foam treatment would be efficacious over a wide range of out-of-hospital operational conditions. The foam was tested in an established lethal, closed-cavity hepatoportal injury model in four groups as follows. Group 1 involved baseline conditions, wherein foam was deployed from a pneumatically driven, first-generation delivery device at room temperature (n = 6). Group 2 involved foam deployment from a field-relevant, handheld delivery prototype (n = 12). Group 3 involved foam components that were conditioned to simulate 1-year shelf-life (n = 6). Group 4 involved foam that was conditioned to a range of temperatures (10 °C and 50 °C; n = 6 per group). In all studies, survival was monitored for up to 180 minutes and compared with an ongoing and accumulating control group with no intervention (n = 14). In Group 1 with a first-generation delivery system, foam treatment resulted in a significant survival advantage relative to the control group (p < 0.001), confirming previous results. In Group 2 with a handheld delivery system, survival was also improved, 83% at 3 hours, compared with 7% in the control group (p < 0.001). In Group 3, survival was 83% at 3 hours (p = 0.002). In Group 4 at temperature extremes, 3-hour survival was 83% (p = 0.002) and 67% (p = 0.014) in the low- and high-temperature groups, respectively. Temperature extremes did not result in hypothermia, hyperthermia, or thermal injury. In all studies, the bleeding rate in foam groups was significantly lower than in the control group (p < 0.05). Under a range of military operational conditions, foam treatment resulted in a survival advantage relative to the control group. This supports the

  1. [Corrective effect of aromatherapy on indices of heart rate variability in students under exam stress conditions].

    PubMed

    Abrahamyan, H T; Minasyan, S M

    2016-01-01

    There were investigated changes in indices of the activity of regulatory mechanisms of heart rhythm in student under exam stress conditions and the possibility of their correction with aid of aromatherapy. The examination stress was established to be accompanied by pronounced shifts of integral and spectral indices of heart rhythm in students, indicating to the activation of the sympathetic circuit of Autonomic Nervous System in conditions of examination stress. A positive, relaxation impact of the essential oil of orange on the investigated indices was also recorded. The latter is expressed by weakly pronounced changes or lack of them in data of integral and spectral heart rate indices in students from the experimental group, that indicates to the stabilizing effect of used ethereal oil on the psycho-physiological state of students in conditions of exam stress

  2. Cyclone-induced rapid creation of extreme Antarctic sea ice conditions

    PubMed Central

    Wang, Zhaomin; Turner, John; Sun, Bo; Li, Bingrui; Liu, Chengyan

    2014-01-01

    Two polar vessels, Akademik Shokalskiy and Xuelong, were trapped by thick sea ice in the Antarctic coastal region just to the west of 144°E and between 66.5°S and 67°S in late December 2013. This event demonstrated the rapid establishment of extreme Antarctic sea ice conditions on synoptic time scales. The event was associated with cyclones that developed at lower latitudes. Near the event site, cyclone-enhanced strong southeasterly katabatic winds drove large westward drifts of ice floes. In addition, the cyclones also gave southward ice drift. The arrival and grounding of Iceberg B9B in Commonwealth Bay in March 2011 led to the growth of fast ice around it, forming a northward protruding barrier. This barrier blocked the westward ice drift and hence aided sea ice consolidation on its eastern side. Similar cyclone-induced events have occurred at this site in the past after the grounding of Iceberg B9B. Future events may be predictable on synoptic time scales, if cyclone-induced strong wind events can be predicted. PMID:24937550

  3. Effect of the Leveling Conditions on Residual Stress Evolution of Hot Rolled High Strength Steels for Cold Forming

    NASA Astrophysics Data System (ADS)

    Park, Keecheol; Oh, Kyungsuk

    2017-09-01

    In order to investigate the effect of leveling conditions on residual stress evolution during the leveling process of hot rolled high strength steels, the in-plane residual stresses of sheet processed under controlled conditions at skin-pass mill and levelers were measured by cutting method. The residual stress was localized near the edge of sheet. As the thickness of sheet was increased, the residual stress occurred region was expanded. The magnitude of residual stress within the sheet was reduced as increasing the deformation occurred during the leveling process. But the residual stress itself was not removed completely. The magnitude of camber occurred at cut plate was able to be predicted by the residual stress distribution. A numerical algorithm was developed for analysing the effect of leveling conditions on residual stress. It was able to implement the effect of plastic deformation in leveling, tension, work roll bending, and initial state of sheet (residual stress and curl distribution). The validity of simulated results was verified from comparison with the experimentally measured residual stress and curl in a sheet.

  4. SIPEX 2012: Extreme sea-ice and atmospheric conditions off East Antarctica

    NASA Astrophysics Data System (ADS)

    Heil, P.; Stammerjohn, S.; Reid, P.; Massom, R. A.; Hutchings, J. K.

    2016-09-01

    In 2012, Antarctic sea-ice coverage was marked by weak annual-mean climate anomalies that consisted of opposing anomalies early and late in the year (some setting new records) which were interspersed by near-average conditions for most of the austral autumn and winter. Here, we investigate the ocean-ice-atmosphere system off East Antarctica, prior to and during the Sea Ice Physics and Ecosystems eXperiment [SIPEX] 2012, by exploring relationships between atmospheric and oceanic forcing together with the sea-ice and snow characteristics. During August and September 2012, just prior to SIPEX 2012, atmospheric circulation over the Southern Ocean was near-average, setting up the ocean-ice-atmosphere system for near-average conditions. However, below-average surface pressure and temperature as well as strengthened circumpolar winds prevailed during June and July 2012. This led to a new record (19.48×106 km2) in maximum Antarctic sea-ice extent recorded in late September. In contrast to the weak circum-Antarctic conditions, the East Antarctic sector (including the SIPEX 2012 region) experienced positive sea-ice extent and concentration anomalies during most of 2012, coincident with negative atmospheric pressure and sea-surface temperature anomalies. Heavily deformed sea ice appeared to be associated with intensified wind stress due to increased cyclonicity as well as an increased influx of sea ice from the east. This increased westward ice flux is likely linked to the break-up of nearly 80% of the Mertz Glacier Tongue in 2010, which strongly modified the coastal configuration and hence the width of the westward coastal current. Combined with favourable atmospheric conditions the associated changed coastal configuration allowed more sea ice to remain within the coastal current at the expense of a reduced northward flow in the region around 141°-145°E. In addition a westward propagating positive anomaly of sea-ice extent from the western Ross Sea during austral winter

  5. Enduring deficits in contextual and auditory fear conditioning after adolescent, not adult, social instability stress in male rats.

    PubMed

    Morrissey, Mark D; Mathews, Iva Z; McCormick, Cheryl M

    2011-01-01

    Adolescence is a time of developmental changes and reorganization in the brain and stress systems, thus, adolescents may be more vulnerable than adults to the effects of chronic mild stressors. Most studies, however, have not directly compared stress experienced in adolescence to the same stress experience in adulthood. In the present study, adolescent (n=46) and adult (n=48) male rats underwent 16 days of social instability stress (daily 1h isolation and change of cage partners) or were non-stress controls. Rats were then tested on the strength of acquired contextual and cued fear conditioning, as well as extinction learning, beginning either the day after the stress procedure or 3 weeks later. No difference was found among the groups during the Training Phase of conditioning. Irrespective of the time between the social stress experience and fear conditioning, rats stressed in adolescence had decreased context and cue memory, and cue generalization compared to control rats, as measured by the percentage of time spent freezing in tests. Social instability stress in adulthood had no effect on any measure of fear conditioning. The results support the hypothesis that adolescence is a time of heightened vulnerability to stressors. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Working conditions, self-perceived stress, anxiety, depression and quality of life: A structural equation modelling approach

    PubMed Central

    Rusli, Bin Nordin; Edimansyah, Bin Abdin; Naing, Lin

    2008-01-01

    Background The relationships between working conditions [job demand, job control and social support]; stress, anxiety, and depression; and perceived quality of life factors [physical health, psychological wellbeing, social relationships and environmental conditions] were assessed using a sample of 698 male automotive assembly workers in Malaysia. Methods The validated Malay version of the Job Content Questionnaire (JCQ), Depression Anxiety Stress Scales (DASS) and the World Health Organization Quality of Life-Brief (WHOQOL-BREF) were used. A structural equation modelling (SEM) analysis was applied to test the structural relationships of the model using AMOS version 6.0, with the maximum likelihood ratio as the method of estimation. Results The results of the SEM supported the hypothesized structural model (χ2 = 22.801, df = 19, p = 0.246). The final model shows that social support (JCQ) was directly related to all 4 factors of the WHOQOL-BREF and inversely related to depression and stress (DASS). Job demand (JCQ) was directly related to stress (DASS) and inversely related to the environmental conditions (WHOQOL-BREF). Job control (JCQ) was directly related to social relationships (WHOQOL-BREF). Stress (DASS) was directly related to anxiety and depression (DASS) and inversely related to physical health, environment conditions and social relationships (WHOQOL-BREF). Anxiety (DASS) was directly related to depression (DASS) and inversely related to physical health (WHOQOL-BREF). Depression (DASS) was inversely related to the psychological wellbeing (WHOQOL-BREF). Finally, stress, anxiety and depression (DASS) mediate the relationships between job demand and social support (JCQ) to the 4 factors of WHOQOL-BREF. Conclusion These findings suggest that higher social support increases the self-reported quality of life of these workers. Higher job control increases the social relationships, whilst higher job demand increases the self-perceived stress and decreases the self

  7. Working conditions, self-perceived stress, anxiety, depression and quality of life: a structural equation modelling approach.

    PubMed

    Rusli, Bin Nordin; Edimansyah, Bin Abdin; Naing, Lin

    2008-02-06

    The relationships between working conditions [job demand, job control and social support]; stress, anxiety, and depression; and perceived quality of life factors [physical health, psychological wellbeing, social relationships and environmental conditions] were assessed using a sample of 698 male automotive assembly workers in Malaysia. The validated Malay version of the Job Content Questionnaire (JCQ), Depression Anxiety Stress Scales (DASS) and the World Health Organization Quality of Life-Brief (WHOQOL-BREF) were used. A structural equation modelling (SEM) analysis was applied to test the structural relationships of the model using AMOS version 6.0, with the maximum likelihood ratio as the method of estimation. The results of the SEM supported the hypothesized structural model (chi2 = 22.801, df = 19, p = 0.246). The final model shows that social support (JCQ) was directly related to all 4 factors of the WHOQOL-BREF and inversely related to depression and stress (DASS). Job demand (JCQ) was directly related to stress (DASS) and inversely related to the environmental conditions (WHOQOL-BREF). Job control (JCQ) was directly related to social relationships (WHOQOL-BREF). Stress (DASS) was directly related to anxiety and depression (DASS) and inversely related to physical health, environment conditions and social relationships (WHOQOL-BREF). Anxiety (DASS) was directly related to depression (DASS) and inversely related to physical health (WHOQOL-BREF). Depression (DASS) was inversely related to the psychological wellbeing (WHOQOL-BREF). Finally, stress, anxiety and depression (DASS) mediate the relationships between job demand and social support (JCQ) to the 4 factors of WHOQOL-BREF. These findings suggest that higher social support increases the self-reported quality of life of these workers. Higher job control increases the social relationships, whilst higher job demand increases the self-perceived stress and decreases the self-perceived quality of life related to

  8. Observed response of vulnerable forest ecosystems to ongoing site condition changes

    NASA Astrophysics Data System (ADS)

    Bidló, András; Gulyás, Krisztina; Gálos, Borbála; Horváth, Adrienn

    2017-04-01

    In the last decades, several symptoms of drought damages have been observed in the Hungarian forests (e.g. sparse canopy, leaf drop, top drying, fungal diseases). Forest responses are also influenced by other factors beyond climate (e.g. available water content, soil conditions, biotic damages, adaptive capacity, etc.). Our aim was to prepare a complex analysis of the change of all site conditions, that could lead to the observed health status decline of the forest tree species. For a case study region in Hungary (Keszthely Mountains, near to Lake Balaton) precipitation and temperature tendencies as well as the frequency of extreme dry summers have been determined for the period 1961-2100. Soil conditions have been investigated in 9 profiles and soil mapping analysis has been carried out including 100 sites with hand soil auger. For the investigation of the water-balance we used the modified Thornthwaite-type monthly model and determined water stress when the relative extractable water (REW) decreased below 40% (Granier et al., 1999). In the last 30 years three severe droughts have been detected when duration of extremely dry and hot periods exceeded 3-4 years. Not only orographic and microclimate conditions but also soil types show a large diversity within a relatively small distance in the case study area. On rendzina with shallow topsoil layer thickness, low water holding capacity, black pine was planted. Brown earth with medium and brown forest soils with deep topsoil layer thickness is favourable for oak (sessile or Turkey) and beech. These microscale differences between the three site condition types resulted different available water contents quantified by the modified Thornthwaite-type monthly water-balance model. Our results show the different sensitivity of the studied sites to water stress. It means that the local scale orographic and soil conditions can enhance the projected drought risk of the region. However, the favourable microclimatic effects of

  9. Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions.

    PubMed

    Kamal, Abu Hena Mostafa; Komatsu, Setsuko

    2016-02-01

    To know the molecular systems basically flooding conditions in soybean, biophoton emission measurements and proteomic analyses were carried out for flooding-stressed roots under light and dark conditions. Photon emission was analyzed using a photon counter. Gel-free quantitative proteomics were performed to identify significant changes proteins using the nano LC-MS along with SIEVE software. Biophoton emissions were significantly increased in both light and dark conditions after flooding stress, but gradually decreased with continued flooding exposure compared to the control plants. Among the 120 significantly identified proteins in the roots of soybean plants, 73 and 19 proteins were decreased and increased in the light condition, respectively, and 4 and 24 proteins were increased and decreased, respectively, in the dark condition. The proteins were mainly functionally grouped into cell organization, protein degradation/synthesis, and glycolysis. The highly abundant lactate/malate dehydrogenase proteins were decreased in flooding-stressed roots exposed to light, whereas the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme was increased in both light and dark conditions. Notably, however, specific enzyme assays revealed that the activities of these enzymes and biophoton emission were sharply increased after 3 days of flooding stress. This finding suggests that the source of biophoton emission in roots might involve the chemical excitation of electron or proton through enzymatic or non-enzymatic oxidation and reduction reactions. Moreover, the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme may play important roles in responses in flooding stress of soybean under the light condition and as a contributing factor to biophoton emission.

  10. Inhibition of anandamide hydrolysis dampens the neuroendocrine response to stress in neonatal rats subjected to suboptimal rearing conditions.

    PubMed

    McLaughlin, Ryan Joseph; Verlezza, Silvanna; Gray, Jennifer Megan; Hill, Matthew Nicholas; Walker, Claire-Dominique

    2016-01-01

    Exposure to stress during early development can exert profound effects on the maturation of the neuroendocrine stress axis. The endocannabinoid (ECB) system has recently surfaced as a fundamental component of the neuroendocrine stress response; however, the effect of early-life stress on neonatal ECB signaling and the capacity to which ECB enhancement may modulate neonatal stress responses is relatively unknown. The present study assessed whether exposure to early-life stress in the form of limited access to nesting/bedding material (LB) from postnatal (PND) day 2 to 9 alters neuroendocrine activity and hypothalamic ECB content in neonatal rats challenged with a novel immobilization stressor. Furthermore, we examined whether inhibition of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of anandamide (AEA) affects neuroendocrine responses in PND10 pups as a function of rearing conditions. Neonatal rats showed a robust increase in corticosterone (CORT) and adrenocorticotropin hormone (ACTH) secretion in response to immobilization stress, which was significantly blunted in pups reared in LB conditions. Accordingly, LB pups exhibited reduced stress-induced Fos immunoreactivity in the paraventricular nucleus of the hypothalamus, with no significant differences in hypothalamic ECB content. Administration of the FAAH inhibitor URB597 (0.3 mg/kg, ip) 90 min prior to immobilization stress significantly dampened stress-induced CORT release, but only in pups reared in LB conditions. These results suggest that rearing in restricted bedding conditions dampens the neuroendocrine response to stress, while augmenting AEA mitigates stress-induced alterations in glucocorticoid secretion preferentially in pups subjected to early-life stress.

  11. Effect on Quality Characteristics of Tomatoes Grown Under Well-Watered and Drought Stress Conditions

    PubMed Central

    Klunklin, Warinporn; Savage, Geoffrey

    2017-01-01

    Tomatoes are one of the most nutritionally and economically important crops in New Zealand and around the world. Tomatoes require large amounts of water to grow well and are adversely affected by drought stress. However, few studies have evaluated the physicochemical characteristics of commercial tomatoes grown under water stress conditions. Four tomato cultivars (Incas, Marmande, Scoresby Dwarf, and Window Box Red) were grown in a greenhouse under well-watered and drought stress conditions and the tomatoes were harvested when ripe. The physicochemical properties and antioxidant contents of the fruits were compared. There were significant differences between cultivars in quality characteristics—such as dry matter, total soluble solids, and pH parameters—but there were no differences in the quality characteristics between the two treatments of the fruits (p > 0.05); however, there were significant differences (p < 0.05) in the antioxidant compositions (lycopene, total phenolics, and flavonoids) and antioxidant activities (DPPH and ABTS) of the fruits of both cultivars and treatments. Overall, these results indicated that tomatoes increased their bioactive compounds without changing any quality characteristics when exposed to water stress conditions. PMID:28757563

  12. Microbial diversity of extreme habitats in human homes.

    PubMed

    Savage, Amy M; Hills, Justin; Driscoll, Katherine; Fergus, Daniel J; Grunden, Amy M; Dunn, Robert R

    2016-01-01

    High-throughput sequencing techniques have opened up the world of microbial diversity to scientists, and a flurry of studies in the most remote and extreme habitats on earth have begun to elucidate the key roles of microbes in ecosystems with extreme conditions. These same environmental extremes can also be found closer to humans, even in our homes. Here, we used high-throughput sequencing techniques to assess bacterial and archaeal diversity in the extreme environments inside human homes (e.g., dishwashers, hot water heaters, washing machine bleach reservoirs, etc.). We focused on habitats in the home with extreme temperature, pH, and chemical environmental conditions. We found a lower diversity of microbes in these extreme home environments compared to less extreme habitats in the home. However, we were nonetheless able to detect sequences from a relatively diverse array of bacteria and archaea. Habitats with extreme temperatures alone appeared to be able to support a greater diversity of microbes than habitats with extreme pH or extreme chemical environments alone. Microbial diversity was lowest when habitats had both extreme temperature and one of these other extremes. In habitats with both extreme temperatures and extreme pH, taxa with known associations with extreme conditions dominated. Our findings highlight the importance of examining interactive effects of multiple environmental extremes on microbial communities. Inasmuch as taxa from extreme environments can be both beneficial and harmful to humans, our findings also suggest future work to understand both the threats and opportunities posed by the life in these habitats.

  13. Mismatch or cumulative stress: the pathway to depression is conditional on attention style.

    PubMed

    Nederhof, Esther; Ormel, Johan; Oldehinkel, Albertine J

    2014-03-01

    In the study reported here, the main question we investigated was whether attention style could be a conditional adaptation. We organized participants of the TRacking Adolescents' Individual Lives Survey (TRAILS; N = 2,230) into shifters, sustainers, and two comparison groups, depending on their performance on a shifting- and a sustained-attention task at age 11 years. Compared with sustainers, shifters reported more pre- and perinatal risk factors and more childhood stress, and they adopted a faster life-history strategy. These differences were not found between the comparison groups, who performed well or poorly on both tasks, which suggests that specialization for either sustained or shifting attention is the key to conditional adaptation. In a subsample (n = 860), we found that stress did not increase depression risk in shifters, whereas a mismatch between early and recent stress predicted depression in sustainers. Cumulative stress predicted depression in the comparison group. These results suggest that shifters retain high levels of plasticity throughout life, whereas sustainers' adapted their phenotype early in life to the expected mature environment.

  14. Survival in Extreme Conditions.

    ERIC Educational Resources Information Center

    Bloom, Martin; Halsema, James

    1983-01-01

    Explores the psychosocial and environmental configurations involved in the survival of 500 civilians in a Japanese internment camp in the Philippines during World War II. Although conditions were very harsh, the survival rate of this group was better than expected. Discusses available demographic, social organizational, and cultural information.…

  15. The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium.

    PubMed

    Alzahrani, Yahya; Kuşvuran, Alpaslan; Alharby, Hesham F; Kuşvuran, Sebnem; Rady, Mostafa M

    2018-06-15

    In the crust of earth, silicon (Si) is one of the two major elements. For plant growth and development, importance of Si remains controversial due to the widely differences in ability of plants to take up this element. In this paper, pot experiments were done to study Si roles in improving salt, drought or cadmium (Cd) stress tolerance in wheat. Up to full emergence, all pots were watered at 100% field capacity (FC) every other day with nutrient solution without any treatments. Fifteen days after sowing, pots were divided into four plots, each with 40 pots for no stress (control) and three stress treatments; drought (50% FC), salinity (200 mM NaCl) and cadmium (2 mM Cd). For all plots, Si was applied at four levels (0, 2, 4 and 6 mM). Under no stress condition, Si applications increased Si content and improved growth as a result of reduced electrolyte leakage (EL), malondialdehyde (MDA) and Na + contents. Under stress conditions, Si supplementation conferred higher growth, gas exchange, tissue water and membranes stabilities, and K + content, and had limited MDA and Na + contents and EL compared to those obtained without Si. Compared to those without Si, enzyme (e.g., superoxide dismutase, catalase and peroxidase) activity was improved by Si applications, which were linked with elevated antioxidants and osmoprotectants (e.g., free proline, soluble sugars, ascorbic acid and glutathione) contents, might providing antioxidant defense against abiotic stress in wheat. The level of 4 mM Si was most effective for mitigating the salt and drought stress conditions, while 6 mM Si level was most influentially for alleviating the Cd stress condition. These results suggest that Si is beneficial in remarkably affecting physiological phenomena and improving wheat growth under abiotic stress. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. CYTOGENETIC AND MOLECULAR RESPONSES OF AMMONIUM SULPHATE APPLICATION FOR TOLERANCE TO EXTREME TEMPERATURES IN VICIA FABA L.

    PubMed

    Öney, S; Tabur, S; Tuna, M

    2015-01-01

    Effects of ammonium sulphate [(NH4)2SO4] on mitosis, cell cycle and chromosomes in Vicia faba L. seeds exposed to extreme temperatures were investigated using flowcytometric and cytogenetic analysis. Seeds germinated at high and low temperatures showed a signiicant decrease in mitotic index as compared to those of optimum temperature conditions. Application of 50 and 1000 µM (NH4)2SO4 were successful in alleviating the negative effects of low and high temperature on mitotic activity, respectively. 50 µM (NH4)2SO4 showed the most positive effect on cell cycle at the extreme temperatures. This concentration increased the cell division removing or decreasing the negative effects of temperature stress. Namely, the highest G2/M and S phase percentages under stress conditions were obtained with application of 50 µM (NH4)2SO4. Chromosomal aberrations were not observed in cells of seeds germinated in distilled water and also at any temperatures. However, the frequency of chromosomal aberrations increased significantly by increasing (NH4)2SO4 concentration. The highest aberration frequency in all temperature degree tested was found at 1000 µM (NH4)2SO4 concentration.

  17. High-fidelity numerical modeling of the Upper Mississippi River under extreme flood condition

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Le, Trung; DeWall, Petra; Bartelt, Nicole; Woldeamlak, Solomon; Yang, Xiaolei; Sotiropoulos, Fotis

    2016-12-01

    We present data-driven numerical simulations of extreme flooding in a large-scale river coupling coherent-structure resolving hydrodynamics with bed morphodynamics under live-bed conditions. The study area is a ∼ 3.2 km long and ∼ 300 m wide reach of the Upper Mississippi River, near Minneapolis MN, which contains several natural islands and man-made hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the Virtual Flow Simulator (VFS-Rivers) model, a recently developed in-house code, to investigate the flow and bed evolution of the river during a 100-year flood event. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. We integrate data from airborne Light Detection and Ranging (LiDAR), sub-aqueous sonar apparatus on-board a boat and in-situ laser scanners to construct a digital elevation model of the river bathymetry and surrounding flood plain, including islands and bridge piers. A field campaign under base-flow condition is also carried out to collect mean flow measurements via Acoustic Doppler Current Profiler (ADCP) to validate the hydrodynamic module of the VFS-Rivers model. Our simulation results for the bed evolution of the river under the 100-year flood reveal complex sediment transport dynamics near the bridge piers consisting of both scour and refilling events due to the continuous passage of sand dunes. We find that the scour depth near the bridge piers can reach to a maximum of ∼ 9 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems.

  18. Quantifying the relationship between extreme air pollution events and extreme weather events

    NASA Astrophysics Data System (ADS)

    Zhang, Henian; Wang, Yuhang; Park, Tae-Won; Deng, Yi

    2017-05-01

    Extreme weather events can strongly affect surface air quality, which has become a major environmental factor to affect human health. Here, we examined the relationship between extreme ozone and PM2.5 (particular matter with an aerodynamic diameter less than 2.5 μm) events and the representative meteorological parameters such as daily maximum temperature (Tmax), minimum relative humidity (RHmin), and minimum wind speed (Vmin), using the location-specific 95th or 5th percentile threshold derived from historical reanalysis data (30 years for ozone and 10 years for PM2.5). We found that ozone and PM2.5 extremes were decreasing over the years, reflecting EPA's tightened standards and effort on reducing the corresponding precursor's emissions. Annual ozone and PM2.5 extreme days were highly correlated with Tmax and RHmin, especially in the eastern U.S. They were positively (negatively) correlated with Vmin in urban (rural and suburban) stations. The overlapping ratios of ozone extreme days with Tmax were fairly constant, about 32%, and tended to be high in fall and low in winter. Ozone extreme days were most sensitive to Tmax, then RHmin, and least sensitive to Vmin. The majority of ozone extremes occurred when Tmax was between 300 K and 320 K, RHmin was less than 40%, and Vmin was less than 3 m/s. The number of annual extreme PM2.5 days was highly positively correlated with the extreme RHmin/Tmax days, with correlation coefficient between PM2.5/RHmin highest in urban and suburban regions and the correlation coefficient between PM2.5/Tmax highest in rural area. Tmax has more impact on PM2.5 extreme over the eastern U.S. Extreme PM2.5 days were more likely to occur at low RH conditions in the central and southeastern U.S., especially during spring time, and at high RH conditions in the northern U.S. and the Great Plains. Most extreme PM2.5 events occurred when Tmax was between 300 K and 320 K and RHmin was between 10% and 50%. Extreme PM2.5 days usually occurred when

  19. The phase-contrast imaging instrument at the matter in extreme conditions endstation at LCLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagler, Bob; Schropp, Andreas; Galtier, Eric C.

    2016-10-07

    Here, we describe the phase-contrast imaging instrument at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source. The instrument can image phenomena with a spatial resolution of a few hundreds of nanometers and at the same time reveal the atomic structure through X-ray diffraction, with a temporal resolution better than 100 fs. It was specifically designed for studies relevant to high-energy-density science and can monitor, e.g., shock fronts, phase transitions, or void collapses. This versatile instrument was commissioned last year and is now available to the MEC user community.

  20. Climate change hampers endangered species through intensified moisture-related plant stresses

    NASA Astrophysics Data System (ADS)

    (Ruud) Bartholomeus, R. P.; (Flip) Witte, J. P. M.; (Peter) van Bodegom, P. M.; (Jos) van Dam, J. C.; (Rien) Aerts, R.

    2010-05-01

    With recent climate change, extremes in meteorological conditions are forecast and observed to increase globally, and to affect vegetation composition. More prolonged dry periods will alternate with more intensive rainfall events, both within and between years, which will change soil moisture dynamics. In temperate climates, soil moisture, in concert with nutrient availability and soil acidity, is the most important environmental filter in determining local plant species composition, as it determines the availability of both oxygen and water to plant roots. These resources are indispensable for meeting the physiological demands of plants. The consequences of climate change for our natural environment are among the most pressing issues of our time. The international research community is beginning to realise that climate extremes may be more powerful drivers of vegetation change and species extinctions than slow-and-steady climatic changes, but the causal mechanisms of such changes are presently unknown. The roles of amplitudes in water availability as drivers of vegetation change have been particularly elusive owing to the lack of integration of the key variables involved. Here we show that the combined effect of increased rainfall variability, temperature and atmospheric CO2-concentration will lead to an increased variability in both wet and dry extremes in stresses faced by plants (oxygen and water stress, respectively). We simulated these plant stresses with a novel, process-based approach, incorporating in detail the interacting processes in the soil-plant-atmosphere interface. In order to quantify oxygen and water stress with causal measures, we focused on interacting meteorological, soil physical, microbial, and plant physiological processes in the soil-plant-atmosphere system. The first physiological process inhibited at high soil moisture contents is plant root respiration, i.e. oxygen consumption in the roots, which responds to increased temperatures. High

  1. Juvenile stress potentiates aversive 22-kHz ultrasonic vocalizations and freezing during auditory fear conditioning in adult male rats.

    PubMed

    Yee, Nicole; Schwarting, Rainer K W; Fuchs, Eberhard; Wöhr, Markus

    2012-09-01

    Traumatic experiences that occur during adolescence can render individuals vulnerable to mood and anxiety disorders. A model in juvenile rats (age: 27-29 days) was developed previously to study the long-term effects of adolescent stress exposure on behaviour and physiology. This paradigm, termed juvenile stress, involves subjecting juvenile rats to different stressors on consecutive days over a 3-day period. Here, we investigated the effects of the juvenile stress paradigm on freezing behaviour and aversive 22-kHz ultrasonic vocalizations (USVs) during auditory fear conditioning in adult male rats (age: 68-90 days). We found that rats previously subjected to juvenile stress increased aversive 22-kHz USVs (total calls and time spent calling) compared with controls during fear-conditioning training. The acoustic USV parameters between control and juvenile stress rats were largely equivalent, including duration, peak frequency and amplitude. While rats did not differ in freezing behaviour during fear conditioning, juvenile stress rats exhibited greater cue-conditioned freezing upon testing 24 h later. Our results show that juvenile stress elicited different long-term changes in freezing and aversive USVs during fear conditioning. Furthermore, they highlight the importance of assessing USVs to detect experience-dependent differences between control and stress-exposed animals which are not detectable by measuring visible behaviour.

  2. Speech perception in older listeners with normal hearing:conditions of time alteration, selective word stress, and length of sentences.

    PubMed

    Cho, Soojin; Yu, Jyaehyoung; Chun, Hyungi; Seo, Hyekyung; Han, Woojae

    2014-04-01

    Deficits of the aging auditory system negatively affect older listeners in terms of speech communication, resulting in limitations to their social lives. To improve their perceptual skills, the goal of this study was to investigate the effects of time alteration, selective word stress, and varying sentence lengths on the speech perception of older listeners. Seventeen older people with normal hearing were tested for seven conditions of different time-altered sentences (i.e., ±60%, ±40%, ±20%, 0%), two conditions of selective word stress (i.e., no-stress and stress), and three different lengths of sentences (i.e., short, medium, and long) at the most comfortable level for individuals in quiet circumstances. As time compression increased, sentence perception scores decreased statistically. Compared to a natural (or no stress) condition, the selectively stressed words significantly improved the perceptual scores of these older listeners. Long sentences yielded the worst scores under all time-altered conditions. Interestingly, there was a noticeable positive effect for the selective word stress at the 20% time compression. This pattern of results suggests that a combination of time compression and selective word stress is more effective for understanding speech in older listeners than using the time-expanded condition only.

  3. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, P., E-mail: pkrishnan@iari.res.in; Singh, Ravender; Verma, A.P.S.

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T{sub 2}). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate ofmore » seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T{sub 2}) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds.« less

  4. Desiccation and Mortality Dynamics in Seedlings of Different European Beech (Fagus sylvatica L.) Populations under Extreme Drought Conditions.

    PubMed

    Bolte, Andreas; Czajkowski, Tomasz; Cocozza, Claudia; Tognetti, Roberto; de Miguel, Marina; Pšidová, Eva; Ditmarová, Ĺubica; Dinca, Lucian; Delzon, Sylvain; Cochard, Hervè; Ræbild, Anders; de Luis, Martin; Cvjetkovic, Branislav; Heiri, Caroline; Müller, Jürgen

    2016-01-01

    European beech (Fagus sylvatica L., hereafter beech), one of the major native tree species in Europe, is known to be drought sensitive. Thus, the identification of critical thresholds of drought impact intensity and duration are of high interest for assessing the adaptive potential of European beech to climate change in its native range. In a common garden experiment with one-year-old seedlings originating from central and marginal origins in six European countries (Denmark, Germany, France, Romania, Bosnia-Herzegovina, and Spain), we applied extreme drought stress and observed desiccation and mortality processes among the different populations and related them to plant water status (predawn water potential, ΨPD) and soil hydraulic traits. For the lethal drought assessment, we used a critical threshold of soil water availability that is reached when 50% mortality in seedling populations occurs (LD50SWA). We found significant population differences in LD50SWA (10.5-17.8%), and mortality dynamics that suggest a genetic difference in drought resistance between populations. The LD50SWA values correlate significantly with the mean growing season precipitation at population origins, but not with the geographic margins of beech range. Thus, beech range marginality may be more due to climatic conditions than to geographic range. The outcome of this study suggests the genetic variation has a major influence on the varying adaptive potential of the investigated populations.

  5. Desiccation and Mortality Dynamics in Seedlings of Different European Beech (Fagus sylvatica L.) Populations under Extreme Drought Conditions

    PubMed Central

    Bolte, Andreas; Czajkowski, Tomasz; Cocozza, Claudia; Tognetti, Roberto; de Miguel, Marina; Pšidová, Eva; Ditmarová, Ĺubica; Dinca, Lucian; Delzon, Sylvain; Cochard, Hervè; Ræbild, Anders; de Luis, Martin; Cvjetkovic, Branislav; Heiri, Caroline; Müller, Jürgen

    2016-01-01

    European beech (Fagus sylvatica L., hereafter beech), one of the major native tree species in Europe, is known to be drought sensitive. Thus, the identification of critical thresholds of drought impact intensity and duration are of high interest for assessing the adaptive potential of European beech to climate change in its native range. In a common garden experiment with one-year-old seedlings originating from central and marginal origins in six European countries (Denmark, Germany, France, Romania, Bosnia-Herzegovina, and Spain), we applied extreme drought stress and observed desiccation and mortality processes among the different populations and related them to plant water status (predawn water potential, ΨPD) and soil hydraulic traits. For the lethal drought assessment, we used a critical threshold of soil water availability that is reached when 50% mortality in seedling populations occurs (LD50SWA). We found significant population differences in LD50SWA (10.5–17.8%), and mortality dynamics that suggest a genetic difference in drought resistance between populations. The LD50SWA values correlate significantly with the mean growing season precipitation at population origins, but not with the geographic margins of beech range. Thus, beech range marginality may be more due to climatic conditions than to geographic range. The outcome of this study suggests the genetic variation has a major influence on the varying adaptive potential of the investigated populations. PMID:27379105

  6. [Stress analysis of the mandible by 3D FEA in normal human being under three loading conditions].

    PubMed

    Sun, Jian; Zhang, Fu-qiang; Wang, Dong-wei; Yu, Jia; Wang, Cheng-tao

    2004-02-01

    The condition and character of stress distribution in the mandibular in normal human being during centric, protrusive, laterotrusive occlusion were analysed. The three-dimensional finite element model of the mandibular was developed by helica CT scanning and CAD/CAM software, and three-dimensional finite element stress analysis was done by ANSYS software. Three-dimensional finite element model of the mandibular was generated. Under these three occlusal conditions, the stress of various regions in the mandible were distributed unequally, and the stress feature was different;while the stress of corresponding region in bilateral mandibular was in symmetric distribution. The stress value of condyle neck, the posterior surface of coronoid process and mandibular angle were high. The material properties of mandible were closely correlated to the value of stress. Stress distribution were similar according to the three different loading patterns, but had different effects on TMJ joint. The concentrated areas of stress were in the condyle neck, the posterior surface of coronoid process and mandibular angle.

  7. Solar Wind Interaction with the Martian Upper Atmosphere at Early Mars/Extreme Solar Conditions

    NASA Astrophysics Data System (ADS)

    Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Lee, Y.; Nagy, A. F.; Tenishev, V.; Pawlowski, D. J.; Combi, M. R.

    2014-12-01

    The investigation of ion escape fluxes from Mars, resulting from the solar wind interaction with its upper atmosphere/ionosphere, is important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3-D Mars cold neutral atmosphere profiles (0 ~ 300 km) from the newly developed and validated Mars Global Ionosphere Thermosphere Model (M-GITM) and the 3-D hot oxygen profiles (100 km ~ 5 RM) from the exosphere Monte Carlo model Adaptive Mesh Particle Simulator (AMPS). We apply these 3-D model output fields into the 3-D BATS-R-US Mars multi-fluid MHD (MF-MHD) model (100 km ~ 20 RM) that can simulate the interplay between Mars upper atmosphere and solar wind by considering the dynamics of individual ion species. The multi-fluid MHD model solves separate continuity, momentum and energy equations for each ion species (H+, O+, O2+, CO2+). The M-GITM model together with the AMPS exosphere model take into account the effects of solar cycle and seasonal variations on both cold and hot neutral atmospheres. This feature allows us to investigate the corresponding effects on the Mars upper atmosphere ion escape by using a one-way coupling approach, i.e., both the M-GITM and AMPS model output fields are used as the input for the multi-fluid MHD model and the M-GITM is used as input into the AMPS exosphere model. In this study, we present M-GITM, AMPS, and MF-MHD calculations (1-way coupled) for 2.5 GYA conditions and/or extreme solar conditions for present day Mars (high solar wind velocities, high solar wind dynamic pressure, and high solar irradiance conditions, etc.). Present day extreme conditions may result in MF-MHD outputs that are similar to 2.5 GYA cases. The crustal field orientations are also considered in this study. By comparing estimates of past ion escape rates with the current ion loss rates to be returned by the MAVEN spacecraft (2013-2016), we can better constrain the

  8. Establishment and performance of an experimental green roof under extreme climatic conditions.

    PubMed

    Klein, Petra M; Coffman, Reid

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April-October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  9. Identification of Extreme Events Under Climate Change Conditions Over Europe and The Northwest-atlantic Region: Spatial Patterns and Time Series Characteristics

    NASA Astrophysics Data System (ADS)

    Leckebusch, G.; Ulbrich, U.; Speth, P.

    In the context of climate change and the resulting possible impacts on socio-economic conditions for human activities it seems that due to a changed occurrence of extreme events more severe consequences have to be expected than from changes in the mean climate. These extreme events like floods, excessive heats and droughts or windstorms possess impacts on human social and economic life in different categories such as forestry, agriculture, energy use, tourism and the reinsurance business. Reinsurances are affected by nearly 70% of all insured damages over Europe in the case of wind- storms. Especially the December 1999 French windstorms caused damages about 10 billion. A new EU-founded project (MICE = Modelling the Impact of Climate Ex- tremes) will focus on these impacts caused by changed occurrences of extreme events over Europe. Based upon the output of general circulation models as well as regional climate models, investigations are carried out with regard to time series characteristics as well as the spatial patterns of extremes under climate changed conditions. After the definition of specific thresholds for climate extremes, in this talk we will focus on the results of the analysis for the different data sets (HadCM3 and CGCMII GCM's and RCM's, re-analyses, observations) with regard to windstorm events. At first the results of model outputs are validated against re-analyses and observations. Especially a comparison of the stormtrack (2.5 to 8 day bandpass filtered 500 hPa geopotential height), cyclone track, cyclone frequency and intensity is presented. Highly relevant to damages is the extreme wind near the ground level, so the 10 m wind speed will be investigated additionally. of special interest to possible impacts is the changed spatial occurrence of windspeed maxima under 2xCO2-induced climate change.

  10. Voluntary wheel running produces resistance to inescapable stress-induced potentiation of morphine conditioned place preference.

    PubMed

    Rozeske, Robert R; Greenwood, Benjamin N; Fleshner, Monika; Watkins, Linda R; Maier, Steven F

    2011-06-01

    In rodents, exposure to acute inescapable, but not escapable, stress potentiates morphine conditioned place preference (CPP), an effect that is dependent upon hyperactivation of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN). Six weeks of voluntary wheel running constrains activation of DRN 5-HT neurons during exposure to inescapable stress. Six weeks of voluntary wheel running before inescapable stress blocked stress-induced potentiation of morphine CPP. Published by Elsevier B.V.

  11. Resilience of networks to environmental stress: From regular to random networks

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho

    2018-04-01

    Despite the huge interest in network resilience to stress, most of the studies have concentrated on internal stress damaging network structure (e.g., node removals). Here we study how networks respond to environmental stress deteriorating their external conditions. We show that, when regular networks gradually disintegrate as environmental stress increases, disordered networks can suddenly collapse at critical stress with hysteresis and vulnerability to perturbations. We demonstrate that this difference results from a trade-off between node resilience and network resilience to environmental stress. The nodes in the disordered networks can suppress their collapses due to the small-world topology of the networks but eventually collapse all together in return. Our findings indicate that some real networks can be highly resilient against environmental stress to a threshold yet extremely vulnerable to the stress above the threshold because of their small-world topology.

  12. Stress and Self-Perceived Parenting Behaviors of Parents of Children with Autistic Spectrum Conditions

    ERIC Educational Resources Information Center

    Osborne, Lisa A.; Reed, Phil

    2010-01-01

    The relationships between parenting stress and self-perceived parenting behaviors in 138 parents of children with autistic spectrum conditions were studied over 9-10 months. Apart from perceived communication being attenuated, there were no major areas of self-perceived parenting weakness. Parenting stress closely interacted with self-perceived…

  13. Unique genetic loci identified for emotional behavior in control and chronic stress conditions.

    PubMed

    Carhuatanta, Kimberly A K; Shea, Chloe J A; Herman, James P; Jankord, Ryan

    2014-01-01

    An individual's genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual's genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse model to identify chromosomal regions that predict fear learning and emotional behavior following exposure to a control or chronic stress environment. 62 BXD recombinant inbred strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait loci (QTLs) were identified for emotional learning, anxiety and locomotion in control and chronic stress populations. Candidate genes, including those with already known functions in learning and stress were found to reside within the identified QTLs. Our data suggest that chronic stress history reveals novel genetic predictors of emotional behavior.

  14. Unique genetic loci identified for emotional behavior in control and chronic stress conditions

    PubMed Central

    Carhuatanta, Kimberly A. K.; Shea, Chloe J. A.; Herman, James P.; Jankord, Ryan

    2014-01-01

    An individual's genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual's genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse model to identify chromosomal regions that predict fear learning and emotional behavior following exposure to a control or chronic stress environment. 62 BXD recombinant inbred strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait loci (QTLs) were identified for emotional learning, anxiety and locomotion in control and chronic stress populations. Candidate genes, including those with already known functions in learning and stress were found to reside within the identified QTLs. Our data suggest that chronic stress history reveals novel genetic predictors of emotional behavior. PMID:25374516

  15. Exploring valid internal-control genes in Porphyra yezoensis (Bangiaceae) during stress response conditions

    NASA Astrophysics Data System (ADS)

    Wang, Wenlei; Wu, Xiaojie; Wang, Chao; Jia, Zhaojun; He, Linwen; Wei, Yifan; Niu, Jianfeng; Wang, Guangce

    2014-07-01

    To screen the stable expression genes related to the stress (strong light, dehydration and temperature shock) we applied Absolute real-time PCR technology to determine the transcription numbers of the selected test genes in P orphyra yezoensis, which has been regarded as a potential model species responding the stress conditions in the intertidal. Absolute real-time PCR technology was applied to determine the transcription numbers of the selected test genes in P orphyra yezoensis, which has been regarded as a potential model species in stress responding. According to the results of photosynthesis parameters, we observed that Y(II) and F v/ F m were significantly affected when stress was imposed on the thalli of P orphyra yezoensis, but underwent almost completely recovered under normal conditions, which were collected for the following experiments. Then three samples, which were treated with different grade stresses combined with salinity, irradiation and temperature, were collected. The transcription numbers of seven constitutive expression genes in above samples were determined after RNA extraction and cDNA synthesis. Finally, a general insight into the selection of internal control genes during stress response was obtained. We found that there were no obvious effects in terms of salinity stress (at salinity 90) on transcription of most genes used in the study. The 18S ribosomal RNA gene had the highest expression level, varying remarkably among different tested groups. RPS8 expression showed a high irregular variance between samples. GAPDH presented comparatively stable expression and could thus be selected as the internal control. EF-1α showed stable expression during the series of multiple-stress tests. Our research provided available references for the selection of internal control genes for transcripts determination of P. yezoensis.

  16. [Psychosomatics in patients with hypertensive disease under conditions of occupational stress].

    PubMed

    Enikeev, A Kh; Zamotaev, Iu N; Kolomoets, N M

    2008-01-01

    The aim of the work--the investigation of peculiarities of psychosomatic relations in patients with different stages of hypertensive disease (HD) in conditions of direct occupation activity. The 225 workers from a number of large pharmaceutical industries, who was engaged in performance of the basic occupation activities in conditions of conveyor manufacture at the alternating working regimen, that seemed to be an origin of stresses. On grounds of blood pressure level the patients were selected into 3 groups. The 65 cases with border arterial hypertension (BAH) were included into the 1st group, 69 patients with stage 1 HB were included into the 2nd group and 61 patient--into the third group. The control group consisted of 30 health volunteers. The results of the study testify that occupational stress results in development of neurosis, stable sympathicotonia with formation of hyperkinetic and in consequent advance--hypokinetic type of circulation, gradual aggravation of changes from heart side, decrease of productiveness of mentality. One of causes of persistence of neurosis is a deficiency of a pragmatic information in conditions of complicate and strenuous process of occupational activity.

  17. Cryptic Genetic Variation for Arabidopsis thaliana Seed Germination Speed in a Novel Salt Stress Environment

    PubMed Central

    Yuan, Wei; Flowers, Jonathan M.; Sahraie, Dustin J.; Purugganan, Michael D.

    2016-01-01

    The expansion of species ranges frequently necessitates responses to novel environments. In plants, the ability of seeds to disperse to marginal areas relies in part to its ability to germinate under stressful conditions. Here we examine the genetic architecture of Arabidopsis thaliana germination speed under a novel, saline environment, using an Extreme QTL (X-QTL) mapping platform we previously developed. We find that early germination in normal and salt conditions both rely on a QTL on the distal arm of chromosome 4, but we also find unique QTL on chromosomes 1, 2, 4, and 5 that are specific to salt stress environments. Moreover, different QTLs are responsible for early vs. late germination, suggesting a temporal component to the expression of life history under these stress conditions. Our results indicate that cryptic genetic variation exists for responses to a novel abiotic stress, which may suggest a role of such variation in adaptation to new climactic conditions or growth environments. PMID:27543295

  18. Focusing adaptive-optics for neutron spectroscopy at extreme conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simeoni, G. G., E-mail: ggsimeoni@outlook.com; Physics Department E13, Technical University of Munich, D-85748 Garching; Valicu, R. G.

    2015-12-14

    Neutron Spectroscopy employing extreme-conditions sample environments is nowadays a crucial tool for the understanding of fundamental scientific questions as well as for the investigation of materials and chemical-physical properties. For all these kinds of studies, an increased neutron flux over a small sample area is needed. The prototype of a focusing neutron guide component, developed and produced completely at the neutron source FRM II in Garching (Germany), has been installed at the time-of-flight (TOF) disc-chopper neutron spectrometer TOFTOF and came into routine-operation. The design is based on the compressed Archimedes' mirror concept for finite-size divergent sources. It represents a uniquemore » device combining the supermirror technology with Adaptive Optics, suitable for broad-bandwidth thermal-cold TOF neutron spectroscopy (here optimized for 1.4–10 Å). It is able to squeeze the beam cross section down to a square centimeter, with a more than doubled signal-to-background ratio, increased efficiency at high scattering angles, and improved symmetry of the elastic resolution function. We present a comparison between the simulated and measured beam cross sections, as well as the performance of the instrument within real experiments. This work intends to show the unprecedented opportunities achievable at already existing instruments, along with useful guidelines for the design and construction of next-generation neutron spectrometers.« less

  19. Stress-induced enhancement of fear conditioning and sensitization facilitates extinction-resistant and habituation-resistant fear behaviors in a novel animal model of posttraumatic stress disorder.

    PubMed

    Corley, Michael J; Caruso, Michael J; Takahashi, Lorey K

    2012-01-18

    Posttraumatic stress disorder (PTSD) is characterized by stress-induced symptoms including exaggerated fear memories, hypervigilance and hyperarousal. However, we are unaware of an animal model that investigates these hallmarks of PTSD especially in relation to fear extinction and habituation. Therefore, to develop a valid animal model of PTSD, we exposed rats to different intensities of footshock stress to determine their effects on either auditory predator odor fear extinction or habituation of fear sensitization. In Experiment 1, rats were exposed to acute footshock stress (no shock control, 0.4 mA, or 0.8 mA) immediately prior to auditory fear conditioning training involving the pairing of auditory clicks with a cloth containing cat odor. When presented to the conditioned auditory clicks in the next 5 days of extinction testing conducted in a runway apparatus with a hide box, rats in the two shock groups engaged in higher levels of freezing and head out vigilance-like behavior from the hide box than the no shock control group. This increase in fear behavior during extinction testing was likely due to auditory activation of the conditioned fear state because Experiment 2 demonstrated that conditioned fear behavior was not broadly increased in the absence of the conditioned auditory stimulus. Experiment 3 was then conducted to determine whether acute exposure to stress induces a habituation resistant sensitized fear state. We found that rats exposed to 0.8 mA footshock stress and subsequently tested for 5 days in the runway hide box apparatus with presentations of nonassociative auditory clicks exhibited high initial levels of freezing, followed by head out behavior and culminating in the occurrence of locomotor hyperactivity. In addition, Experiment 4 indicated that without delivery of nonassociative auditory clicks, 0.8 mA footshock stressed rats did not exhibit robust increases in sensitized freezing and locomotor hyperactivity, albeit head out vigilance

  20. Impacts of climate extremes on gross primary production under global warming

    DOE PAGES

    Williams, I. N.; Torn, M. S.; Riley, W. J.; ...

    2014-09-24

    The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at themore » warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate

  1. Impacts of climate extremes on gross primary production under global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, I. N.; Torn, M. S.; Riley, W. J.

    The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at themore » warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate

  2. Effects of Stress and Sex on Acquisition and Consolidation of Human Fear Conditioning

    ERIC Educational Resources Information Center

    Kuhn, Cynthia M.; LaBar, Kevin S.; Zorawski, Michael; Blanding, Nineequa Q.

    2006-01-01

    We examined the relationship between stress hormone (cortisol) release and acquisition and consolidation of conditioned fear learning in healthy adults. Participants underwent acquisition of differential fear conditioning, and consolidation was assessed in a 24-h delayed extinction test. The acquisition phase was immediately followed by an 11-min…

  3. Super Clausius-Clapeyron scaling of extreme hourly precipitation and its relation to large-scale atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Lenderink, Geert; Barbero, Renaud; Loriaux, Jessica; Fowler, Hayley

    2017-04-01

    Present-day precipitation-temperature scaling relations indicate that hourly precipitation extremes may have a response to warming exceeding the Clausius-Clapeyron (CC) relation; for The Netherlands the dependency on surface dew point temperature follows two times the CC relation corresponding to 14 % per degree. Our hypothesis - as supported by a simple physical argument presented here - is that this 2CC behaviour arises from the physics of convective clouds. So, we think that this response is due to local feedbacks related to the convective activity, while other large scale atmospheric forcing conditions remain similar except for the higher temperature (approximately uniform warming with height) and absolute humidity (corresponding to the assumption of unchanged relative humidity). To test this hypothesis, we analysed the large-scale atmospheric conditions accompanying summertime afternoon precipitation events using surface observations combined with a regional re-analysis for the data in The Netherlands. Events are precipitation measurements clustered in time and space derived from approximately 30 automatic weather stations. The hourly peak intensities of these events again reveal a 2CC scaling with the surface dew point temperature. The temperature excess of moist updrafts initialized at the surface and the maximum cloud depth are clear functions of surface dew point temperature, confirming the key role of surface humidity on convective activity. Almost no differences in relative humidity and the dry temperature lapse rate were found across the dew point temperature range, supporting our theory that 2CC scaling is mainly due to the response of convection to increases in near surface humidity, while other atmospheric conditions remain similar. Additionally, hourly precipitation extremes are on average accompanied by substantial large-scale upward motions and therefore large-scale moisture convergence, which appears to accelerate with surface dew point. This

  4. Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions

    DOE PAGES

    Luscher, Darby Jon; Mayeur, Jason Rhea; Mourad, Hashem Mohamed; ...

    2015-08-05

    Here, we have developed a multi-physics modeling approach that couples continuum dislocation transport, nonlinear thermoelasticity, crystal plasticity, and consistent internal stress and deformation fields to simulate the single-crystal response of materials under extreme dynamic conditions. Dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. Nonlinear thermoelasticity provides a thermodynamically consistent equation of state to relate stress (including pressure), temperature, energy densities, and dissipation. Crystal plasticity is coupled to dislocation transport via Orowan's expression where the constitutive description makes use of recent advances in dislocation velocity theories applicable under extreme loading conditions.more » The configuration of geometrically necessary dislocation density gives rise to an internal stress field that can either inhibit or accentuate the flow of dislocations. An internal strain field associated with the internal stress field contributes to the kinematic decomposition of the overall deformation. The paper describes each theoretical component of the framework, key aspects of the constitutive theory, and some details of a one-dimensional implementation. Results from single-crystal copper plate impact simulations are discussed in order to highlight the role of dislocation transport and pile-up in shock loading regimes. The main conclusions of the paper reinforce the utility of the modeling approach to shock problems.« less

  5. Roles of melatonin in abiotic stress resistance in plants.

    PubMed

    Zhang, Na; Sun, Qianqian; Zhang, Haijun; Cao, Yunyun; Weeda, Sarah; Ren, Shuxin; Guo, Yang-Dong

    2015-02-01

    In recent years melatonin has emerged as a research highlight in plant studies. Melatonin has different functions in many aspects of plant growth and development. The most frequently mentioned functions of melatonin are related to abiotic stresses such as drought, radiation, extreme temperature, and chemical stresses. This review mainly focuses on the regulatory effects of melatonin when plants face harsh environmental conditions. Evidence indicates that environmental stress can increase the level of endogenous melatonin in plants. Overexpression of the melatonin biosynthetic genes elevates melatonin levels in transgenic plants. The transgenic plants show enhanced tolerance to abiotic stresses. Exogenously applied melatonin can also improve the ability of plants to tolerate abiotic stresses. The mechanisms by which melatonin alleviates abiotic stresses are discussed. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Glenn Extreme Environment Rig (GEER)

    NASA Image and Video Library

    2017-01-17

    NASA Glenn research engineers prepare our extreme environments chamber (GEER) for a test. GEER, which simulates the extreme conditions found in space, tests many devices that will explore Venus to see if they can withstand the punishing environment and temperatures over 800˚F.

  7. Transcriptome Analysis in Tardigrade Species Reveals Specific Molecular Pathways for Stress Adaptations

    PubMed Central

    Förster, Frank; Beisser, Daniela; Grohme, Markus A.; Liang, Chunguang; Mali, Brahim; Siegl, Alexander Matthias; Engelmann, Julia C.; Shkumatov, Alexander V.; Schokraie, Elham; Müller, Tobias; Schnölzer, Martina; Schill, Ralph O.; Frohme, Marcus; Dandekar, Thomas

    2012-01-01

    Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade Milnesium tardigradum were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from Hypsibius dujardini, revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for M. tardigradum are different from typical motifs known from higher animals. M. tardigradum and H. dujardini protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of M. tardigradum. These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and M. tardigradum in particular so highly stress resistant. PMID:22563243

  8. Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations.

    PubMed

    Förster, Frank; Beisser, Daniela; Grohme, Markus A; Liang, Chunguang; Mali, Brahim; Siegl, Alexander Matthias; Engelmann, Julia C; Shkumatov, Alexander V; Schokraie, Elham; Müller, Tobias; Schnölzer, Martina; Schill, Ralph O; Frohme, Marcus; Dandekar, Thomas

    2012-01-01

    Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade Milnesium tardigradum were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from Hypsibius dujardini, revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for M. tardigradum are different from typical motifs known from higher animals. M. tardigradum and H. dujardini protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of M. tardigradum. These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and M. tardigradum in particular so highly stress resistant.

  9. Perception, Action, and Cognition of Football Referees in Extreme Temperatures: Impact on Decision Performance.

    PubMed

    Gaoua, Nadia; de Oliveira, Rita F; Hunter, Steve

    2017-01-01

    Different professional domains require high levels of physical performance alongside fast and accurate decision-making. Construction workers, police officers, firefighters, elite sports men and women, the military and emergency medical professionals are often exposed to hostile environments with limited options for behavioral coping strategies. In this (mini) review we use football refereeing as an example to discuss the combined effect of intense physical activity and extreme temperatures on decision-making and suggest an explicative model. In professional football competitions can be played in temperatures ranging from -5°C in Norway to 30°C in Spain for example. Despite these conditions, the referee's responsibility is to consistently apply the laws fairly and uniformly, and to ensure the rules are followed without waning or adversely influencing the competitiveness of the play. However, strenuous exercise in extreme environments imposes increased physiological and psychological stress that can affect decision-making. Therefore, the physical exertion required to follow the game and the thermal strain from the extreme temperatures may hinder the ability of referees to make fast and accurate decisions. Here, we review literature on the physical and cognitive requirements of football refereeing and how extreme temperatures may affect referees' decisions. Research suggests that both hot and cold environments have a negative impact on decision-making but data specific to decision-making is still lacking. A theoretical model of decision-making under the constraint of intense physical activity and thermal stress is suggested. Future naturalistic studies are needed to validate this model and provide clear recommendations for mitigating strategies.

  10. Perception, Action, and Cognition of Football Referees in Extreme Temperatures: Impact on Decision Performance

    PubMed Central

    Gaoua, Nadia; de Oliveira, Rita F.; Hunter, Steve

    2017-01-01

    Different professional domains require high levels of physical performance alongside fast and accurate decision-making. Construction workers, police officers, firefighters, elite sports men and women, the military and emergency medical professionals are often exposed to hostile environments with limited options for behavioral coping strategies. In this (mini) review we use football refereeing as an example to discuss the combined effect of intense physical activity and extreme temperatures on decision-making and suggest an explicative model. In professional football competitions can be played in temperatures ranging from -5°C in Norway to 30°C in Spain for example. Despite these conditions, the referee’s responsibility is to consistently apply the laws fairly and uniformly, and to ensure the rules are followed without waning or adversely influencing the competitiveness of the play. However, strenuous exercise in extreme environments imposes increased physiological and psychological stress that can affect decision-making. Therefore, the physical exertion required to follow the game and the thermal strain from the extreme temperatures may hinder the ability of referees to make fast and accurate decisions. Here, we review literature on the physical and cognitive requirements of football refereeing and how extreme temperatures may affect referees’ decisions. Research suggests that both hot and cold environments have a negative impact on decision-making but data specific to decision-making is still lacking. A theoretical model of decision-making under the constraint of intense physical activity and thermal stress is suggested. Future naturalistic studies are needed to validate this model and provide clear recommendations for mitigating strategies. PMID:28912742

  11. Is Canadian surgical residency training stressful?

    PubMed

    Aminazadeh, Nasser; Farrokhyar, Forough; Naeeni, Amir; Naeeni, Marjan; Reid, Susan; Kashfi, Arash; Kahnamoui, Kamyar

    2012-08-01

    Surgical residency has the reputation of being arduous and stressful. We sought to determine the stress levels of surgical residents, the major causes of stress and the coping mechanisms used. We developed and distributed a survey among surgical residents across Canada. A total of 169 participants responded: 97 (57%) male and 72 (43%) female graduates of Canadian (83%) or foreign (17%) medical schools. In all, 87% reported most of the past year of residency as somewhat stressful to extremely stressful, with time pressure (90%) being the most important stressor, followed by number of working hours (83%), residency program (73%), working conditions (70%), caring for patients (63%) and financial situation (55%). Insufficient sleep and frequent call was the component of residency programs that was most commonly rated as highly stressful (31%). Common coping mechanisms included staying optimistic (86%), engaging in enjoyable activities (83%), consulting others (75%) and exercising (69%). Mental or emotional problems during residency were reported more often by women (p = 0.006), who were also more likely than men to seek help (p = 0.026), but men reported greater financial stress (p = 0.036). Foreign graduates reported greater stress related to working conditions (p < 0.001), residency program (p = 0.002), caring for family members (p = 0.006), discrimination (p < 0.001) and personal and family safety (p < 0.001) than Canadian graduates. Time pressure and working hours were the most common stressors overall, and lack of sleep and call frequency were the most stressful components of the residency program. Female sex and graduating from a non-Canadian medical school increased the likelihood of reporting stress in certain areas of residency.

  12. Individuals with tension and migraine headaches exhibit increased heart rate variability during post-stress mindfulness meditation practice but a decrease during a post-stress control condition - A randomized, controlled experiment.

    PubMed

    Azam, Muhammad Abid; Katz, Joel; Mohabir, Vina; Ritvo, Paul

    2016-12-01

    Current research suggests that associations between headache conditions (migraine, tension) and imbalances in the autonomic nervous system (ANS) are due to stress-related dysregulation in the activity of the parasympathetic-sympathetic branches. Mindfulness meditation has demonstrated effectiveness in reducing pain-related distress, and in enhancing heart rate variability-a vagal-mediated marker of ANS balance. This study examined HRV during cognitive stress and mindfulness meditation in individuals with migraine and tension headaches. Undergraduate students with tension and migraine headaches (n=36) and headache-free students (n=39) were recruited for an experiment involving HRV measurement during baseline, cognitive stress-induction, and after randomization to post-stress conditions of audio-guided mindfulness meditation practice (MMP) or mindfulness meditation description (MMD). HRV was derived using electrocardiograms as the absolute power in the high frequency bandwidth (ms 2 ). A three-way ANOVA tested the effects of Group (headache vs. headache-free), Phase (baseline, stress, & post-stress), and Condition (MMP vs. MMD) on HRV. ANOVA revealed a significant three-way interaction. Simple effects tests indicated: 1) HRV increased significantly from stress to MMP for headache and headache-free groups (p<0.001), 2) significantly greater HRV for headache (p<0.001) and headache-free (p<0.05) groups during MMP compared to MMD, and 3) significantly lower HRV in the headache vs. headache-free group during the post-stress MMD condition (p<0.05). Results suggest mindfulness practice can promote effective heart rate regulation, and thereby promote effective recovery after a stressful event for individuals with headache conditions. Moreover, headache conditions may be associated with dysregulated stress recovery, thus more research is needed on the cardiovascular health and stress resilience of headache sufferers. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Fitness to work of astronauts in conditions of action of the extreme emotional factors

    NASA Astrophysics Data System (ADS)

    Prisniakova, L. M.

    2004-01-01

    The theoretical model for the quantitative determination of influence of a level of emotional exertion on the success of human activity is presented. The learning curves of fixed words in the groups with a different level of the emotional exertion are analyzed. The obtained magnitudes of time constant T depending on a type of the emotional exertion are a quantitative measure of the emotional exertion. Time constants could also be of use for a prediction of the characteristic of fitness to work of an astronaut in conditions of extreme factors. The inverse of the sign of influencing on efficiency of activity of the man is detected. The paper offers a mathematical model of the relation between successful activity and motivations or the emotional exertion (Yerkes-Dodson law). Proposed models can serve by the theoretical basis of the quantitative characteristics of an estimation of activity of astronauts in conditions of the emotional factors at a phase of their selection.

  14. Fitness to work of astronauts in conditions of action of the extreme emotional factors.

    PubMed

    Prisniakova, L M

    2004-01-01

    The theoretical model for the quantitative determination of influence of a level of emotional exertion on the success of human activity is presented. The learning curves of fixed words in the groups with a different level of the emotional exertion are analyzed. The obtained magnitudes of time constant T depending on a type of the emotional exertion are a quantitative measure of the emotional exertion. Time constants could also be of use for a prediction of the characteristic of fitness to work of an astronaut in conditions of extreme factors. The inverse of the sign of influencing on efficiency of activity of the man is detected. The paper offers a mathematical model of the relation between successful activity and motivations or the emotional exertion (Yerkes-Dodson law). Proposed models can serve by the theoretical basis of the quantitative characteristics of an estimation of activity of astronauts in conditions of the emotional factors at a phase of their selection. Published by Elsevier Ltd on behalf of COSPAR.

  15. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei; Chen, Ren-Xu

    2017-09-01

    Regional metamorphism at extreme conditions refers either to Alpine-type metamorphism at low geothermal gradients of <10 °C/km, or to Buchan-type metamorphism at high geothermal gradients of >30 °C/km. Extreme pressures refer to those above the polymorphic transition of quartz to coesite, so that ultrahigh-pressure (UHP) eclogite-facies metamorphism occurs at mantle depths of >80 km. Extreme temperatures refer to those higher than 900 °C at crustal depths of ≤80 km, so that ultrahigh-temperature (UHT) granulite-facies metamorphism occurs at medium to high pressures. While crustal subduction at the low geothermal gradients results in blueschist-eclogite facies series without arc volcanism, heating of the thinned orogenic lithosphere brings about the high geothermal gradients for amphibolite-granulite facies series with abundant magmatism. Therefore, UHP metamorphic rocks result from cold lithospheric subduction to the mantle depths, whereas UHT metamorphic rocks are produced by hot underplating of the asthenospheric mantle at the crustal depths. Active continental rifting is developed on the thinned lithosphere in response to asthenospheric upwelling, and this tectonism is suggested as a feasible mechanism for regional granulite-facies metamorphism, with the maximum temperature depending on the extent to which the mantle lithosphere is thinned prior to the rifting. While lithospheric compression is associated with subduction metamorphism in accretionary and collisional orogens, the thinned orogenic lithosphere undergoes extension due to the asthenospheric upwelling to result in orogen-parallel rifting metamorphism and magmatism. Thus, the rifting metamorphism provides a complement to the subduction metamorphism and its operation marks the asthenospheric heating of the orogenic lithosphere. Because of the partial melting and melt extraction of the lower continental crust, contemporaneous granite-migmatite-granulite associations may serve as a petrological

  16. Statistical analysis of short-term water stress conditions at Riggs Creek OzFlux tower site

    NASA Astrophysics Data System (ADS)

    Azmi, Mohammad; Rüdiger, Christoph; Walker, Jeffrey P.

    2017-10-01

    A large range of indices and proxies are available to describe the water stress conditions of an area subject to different applications, which have varying capabilities and limitations depending on the prevailing local climatic conditions and land cover. The present study uses a range of spatio-temporally high-resolution (daily and within daily) data sources to evaluate a number of drought indices (DIs) for the Riggs Creek OzFlux tower site in southeastern Australia. Therefore, the main aim of this study is to evaluate the statistical characteristics of individual DIs subject to short-term water stress conditions. In order to derive a more general and therefore representative DI, a new criterion is required to specify the statistical similarity between each pair of indices to allow determining the dominant drought types along with their representative DIs. The results show that the monitoring of water stress at this case study area can be achieved by evaluating the individual behaviour of three clusters of (i) vegetation conditions, (ii) water availability and (iii) water consumptions. This indicates that it is not necessary to assess all individual DIs one by one to derive a comprehensive and informative data set about the water stress of an area; instead, this can be achieved by analysing one of the DIs from each cluster or deriving a new combinatory index for each cluster, based on established combination methods.

  17. Lower extremity and pelvic stress fractures in athletes

    PubMed Central

    Liong, S Y; Whitehouse, R W

    2012-01-01

    Stress fractures occur following excessive use and are commonly seen in athletes, in whom the lower limbs are frequently involved. Delayed diagnosis and management of these injuries can result in significant long-term damage and athlete morbidity. A high index of suspicion may facilitate diagnosis, but clinical presentation may be non-specific. In this regard, imaging in the form of plain radiograph, CT, MRI and bone scintigraphy may be of value. This article reviews the incidence, presentation, radiological findings and management options for athletes with stress fractures of the lower limb. PMID:22815414

  18. Novel portable press for synchrotron time-resolved 3-D micro-imagining under extreme conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philippe, J.; Le Godec, Y., E-mail: yann.legodec@impmc.upmc.fr; Bergame, F.

    Here we present the instrumental development to extend the synchrotron X-ray microtomography techniques to in situ studies under static compression (HP) or shear stress or the both conditions at high temperatures (HT). To achieve this, a new rotating tomography Paris-Edinburgh cell (rotoPEc) has been developed. This ultra-compact portable device, easily and successfully adapted to various multi-modal synchrotron experimental set-up at ESRF, SOLEIL and DIAMOND is explained in detail.

  19. The Lcn2-engineered HEK-293 cells show senescence under stressful condition

    PubMed Central

    Bahmani, Bahareh; Amiri, Fatemeh; Mohammadi Roushandeh, Amaneh; Bahadori, Marzie; Harati, Mozhgan Dehghan; Habibi Roudkenar, Mehryar

    2015-01-01

    Objective(s): Lipocalin2 (Lcn2) gene is highly expressed in response to various types of cellular stresses. The precise role of Lcn2 has not been fully understood yet. However, it plays a key role in controlling vital cellular processes such as proliferation, apoptosis and metabolism. Recently it was shown that Lcn2 decreases senescence and increases proliferation of mesenchymal stem cells (MSC) with finite life span under either normal or oxidative stress conditions. However, Lcn2 effects on immortal cell line with infinite proliferation are not defined completely. Materials and Materials and Methods: HEK-293 cells were transfected with recombinant pcDNA3.1 containing Lcn2 fragment (pcDNA3.1-Lcn2). Expression of lipocalin2 in transfected cells was evaluated by RT-PCR, real time RT-PCR, and ELISA. Different cell groups were treated with H2O2 and WST-1 assay was performed to determine their proliferation rate. Senescence was studied by β-galactosidase and gimsa staining methods as well as evaluation of the expression of senescence-related genes by real time RT-PCR. Results: Lcn2 increased cell proliferation under normal culture condition, while the proliferation slightly decreased under oxidative stress. This decrease was further found to be attributed to senescence. Conclusion: Our findings indicated that under harmful conditions, Lcn2 gene is responsible for the regulation of cell survival through senescence. PMID:26124931

  20. Fear Conditioning, Synaptic Plasticity, and the Amygdala: Implications for Posttraumatic Stress Disorder

    PubMed Central

    Mahan, Amy L.; Ressler, Kerry J.

    2011-01-01

    Posttraumatic stress disorder (PTSD) is an anxiety disorder that can develop after a traumatic experience such as domestic violence, natural disasters or combat-related trauma. The cost of such disorders on society and the individual can be tremendous. In this article we will review how the neural circuitry implicated in PTSD in humans is related to the neural circuitry of fear. We then discuss how fear conditioning is a suitable model for studying the molecular mechanisms of the fear components which underlie PTSD, and the biology of fear conditioning with a particular focus on the brain derived neurotropic factor (BDNF)-TrkB, GABAergic and glutamatergic ligand-receptor systems. We then summarize how such approaches may help to inform our understanding of PTSD and other stress-related disorders and provide insight to new pharmacological avenues of treatment of PTSD. PMID:21798604

  1. IrrE, a Global Regulator of Extreme Radiation Resistance in Deinococcus radiodurans, Enhances Salt Tolerance in Escherichia coli and Brassica napus

    PubMed Central

    Zhou, Zhengfu; Yan, Yongliang; Zhang, Wei; Lu, Wei; Ping, Shuzhen; Dai, Qilin; Yuan, Menglong; Feng, Bin; Hou, Xiaoguang; Zhang, Ying; Ruiqiang; Liu, Tingting; Feng, Lu; Wang, Lei; Chen, Ming; Lin, Min

    2009-01-01

    Background Globally, about 20% of cultivated land is now affected by salinity. Salt tolerance is a trait of importance to all crops in saline soils. Previous efforts to improve salt tolerance in crop plants have met with only limited success. Bacteria of the genus Deinococcus are known for their ability to survive highly stressful conditions, and therefore possess a unique pool of genes conferring extreme resistance. In Deinococcus radiodurans, the irrE gene encodes a global regulator responsible for extreme radioresistance. Methodology/Principal Findings Using plate assays, we showed that IrrE protected E. coli cells against salt shock and other abiotic stresses such as oxidative, osmotic and thermal shocks. Comparative proteomic analysis revealed that IrrE functions as a switch to regulate different sets of proteins such as stress responsive proteins, protein kinases, glycerol-degrading enzymes, detoxification proteins, and growth-related proteins in E. coli. We also used quantitative RT-PCR to investigate expression of nine selected stress-responsive genes in transgenic and wild-type Brassica napus plants. Transgenic B. napus plants expressing the IrrE protein can tolerate 350 mM NaCl, a concentration that inhibits the growth of almost all crop plants. Conclusions Expression of IrrE, a global regulator for extreme radiation resistance in D. radiodurans, confers significantly enhanced salt tolerance in both E. coli and B. napus. We thus propose that the irrE gene might be used as a potentially promising transgene to improve abiotic stress tolerances in crop plants. PMID:19204796

  2. Response of CO and H2 uptake to extremes of water stress in saline and non-saline soils

    NASA Astrophysics Data System (ADS)

    King, G.

    2017-12-01

    Neither carbon monoxide (CO) nor hydrogen (H2) have direct impacts on radiative forcing, but both play important roles in tropospheric chemistry. Soils affect both the fate and significance of atmospheric CO and H2 by acting as strong global gas sinks ( 15% and >75 %, respectively), but much remains unknown about the microbiology of these gases, including responses to key environmental drivers. The role of water availability, measured as water potential, has been addressed to a limited extent by earlier studies with results suggesting that CO and H2 uptake are strongly limited by water stress. However recent results indicate a much greater tolerance of water stress than previously suspected. Ex situ assays have shown that non-saline playa soils from the Alvord Basin (Oregon, USA) consumed atmospheric and exogenous hydrogen and CO under conditions of severe water stress. CO uptake occurred at water potentials < -30 MPa, which are far below values considered optimal for terrestrial bacterial growth. Surface soils that had been exposed to water potentials as low as -300 MPa also oxidized CO and H2 after brief equilibration at higher potentials (less water stress), indicating remarkable tolerance of desiccating conditions. Tolerance to water stress for CO and H2 uptake was also observed for soils from a montane rainforest (Hawai`i, USA). However, unlike playa soils rainforest soils seldom experience extended drought that would select for desiccation tolerance. While CO uptake by forest soils was more sensitive to water stress (limits -10MPa) than in playa soils, H2 uptake was observed at -90 MPa to -100 MPa. Tolerance at these levels might be due to the formation of intracellular water that limits the local effects of stress. Comparisons of water stress responses between saline and non-saline soils further suggested that communities of CO- and H2-oxidizing were generally robust with respect to stresses resulting from solute and matric effects. Collectively the results

  3. Measurement of stress distributions in truck tyre contact patch in real rolling conditions

    NASA Astrophysics Data System (ADS)

    Anghelache, Gabriel; Moisescu, Raluca

    2012-12-01

    Stress distributions on three orthogonal directions have been measured across the contact patch of truck tyres using the complex measuring system that contains a transducer assembly with 30 sensing elements placed in the road surface. The measurements have been performed in straight line, in real rolling conditions. Software applications for calibration, data acquisition, and data processing were developed. The influence of changes in inflation pressure and rolling speed on the shapes and sizes of truck tyre contact patch has been shown. The shapes and magnitudes of normal, longitudinal, and lateral stress distributions, measured at low speed, have been presented and commented. The effect of wheel toe-in and camber on the stress distribution results was observed. The paper highlights the impact of the longitudinal tread ribs on the shear stress distributions. The ratios of stress distributions in the truck tyre contact patch have been computed and discussed.

  4. Battlefield Stress: Pre-Conditioning Soldiers for Combat

    DTIC Science & Technology

    1987-06-05

    of the casualties were caused not by direct wounds or disease , but by battlefield ntress.9 In the war in Lebanon, June through September 1992, the...Exhaustion. He analyzes the stress mechanism in health and diseas , then explores how this knowedge furthers our understanding of how to face stress. In another...34 to Fiab Back- give an excellent account of the mechanisms of stress and provide examples of stress, stress diseases , and ailments. This book is based

  5. Chronic Vortioxetine Treatment Reduces Exaggerated Expression of Conditioned Fear Memory and Restores Active Coping Behavior in Chronically Stressed Rats.

    PubMed

    Hatherall, Lauren; Sánchez, Connie; Morilak, David A

    2017-04-01

    Stress is a risk factor for depression and anxiety disorders, disrupting neuronal processes leading to exaggerated fear and compromised coping behaviors. Current antidepressants are only partially effective. Vortioxetine, a novel multimodal antidepressant, is a serotonin transporter inhibitor; 5-HT3, 5-HT7, and 5-HT1D receptor antagonist; 5-HT1B partial agonist; and 5-HT1A agonist. We have shown that chronic dietary vortioxetine administration reversed stress-induced deficits in cognitive flexibility. In the present studies, we investigated the generality of vortioxetine's effects on other stress-related behavioral changes after different types of chronic stress. In experiment 1, rats were fear-conditioned by pairing a tone with footshock, then exposed to chronic plus acute prolonged stress. In experiment 2, rats were exposed to chronic unpredictable stress. In both experiments, beginning on day 4 of chronic stress, vortioxetine was given in the diet (24 mg/kg/d). In experiment 1, effects of vortioxetine were tested on stress-induced changes in retention and extinction of cue-conditioned fear, and in experiment 2, on coping behavior on the shock probe defensive burying test after chronic stress. Chronic stress exaggerated the expression of conditioned fear memory. Vortioxetine restored fear memory to control levels and rendered extinction in stressed rats comparable with that in controls. In experiment 2, chronic unpredictable stress caused a shift from active to passive coping behavior, and vortioxetine restored active coping. Vortioxetine reduced exaggerated expression of conditioned fear and restored adaptive coping behavior following 2 different types of chronic stress, adding to the evidence of its therapeutic potential in the management of depression and anxiety disorders. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  6. Acclimatization to extreme heat

    NASA Astrophysics Data System (ADS)

    Warner, M. E.; Ganguly, A. R.; Bhatia, U.

    2017-12-01

    Heat extremes throughout the globe, as well as in the United States, are expected to increase. These heat extremes have been shown to impact human health, resulting in some of the highest levels of lives lost as compared with similar natural disasters. But in order to inform decision makers and best understand future mortality and morbidity, adaptation and mitigation must be considered. Defined as the ability for individuals or society to change behavior and/or adapt physiologically, acclimatization encompasses the gradual adaptation that occurs over time. Therefore, this research aims to account for acclimatization to extreme heat by using a hybrid methodology that incorporates future air conditioning use and installation patterns with future temperature-related time series data. While previous studies have not accounted for energy usage patterns and market saturation scenarios, we integrate such factors to compare the impact of air conditioning as a tool for acclimatization, with a particular emphasis on mortality within vulnerable communities.

  7. Antioxidant Therapeutic Strategies for Cardiovascular Conditions Associated with Oxidative Stress.

    PubMed

    Farías, Jorge G; Molina, Víctor M; Carrasco, Rodrigo A; Zepeda, Andrea B; Figueroa, Elías; Letelier, Pablo; Castillo, Rodrigo L

    2017-09-01

    Oxidative stress (OS) refers to the imbalance between the generation of reactive oxygen species (ROS) and the ability to scavenge these ROS by endogenous antioxidant systems, where ROS overwhelms the antioxidant capacity. Excessive presence of ROS results in irreversible damage to cell membranes, DNA, and other cellular structures by oxidizing lipids, proteins, and nucleic acids. Oxidative stress plays a crucial role in the pathogenesis of cardiovascular diseases related to hypoxia, cardiotoxicity and ischemia-reperfusion. Here, we describe the participation of OS in the pathophysiology of cardiovascular conditions such as myocardial infarction, anthracycline cardiotoxicity and congenital heart disease. This review focuses on the different clinical events where redox factors and OS are related to cardiovascular pathophysiology, giving to support for novel pharmacological therapies such as omega 3 fatty acids, non-selective betablockers and microRNAs.

  8. Electronics for Extreme Environments

    NASA Astrophysics Data System (ADS)

    Patel, J. U.; Cressler, J.; Li, Y.; Niu, G.

    2001-01-01

    Most of the NASA missions involve extreme environments comprising radiation and low or high temperatures. Current practice of providing friendly ambient operating environment to electronics costs considerable power and mass (for shielding). Immediate missions such as the Europa orbiter and lander and Mars landers require the electronics to perform reliably in extreme conditions during the most critical part of the mission. Some other missions planned in the future also involve substantial surface activity in terms of measurements, sample collection, penetration through ice and crust and the analysis of samples. Thus it is extremely critical to develop electronics that could reliably operate under extreme space environments. Silicon On Insulator (SOI) technology is an extremely attractive candidate for NASA's future low power and high speed electronic systems because it offers increased transconductance, decreased sub-threshold slope, reduced short channel effects, elimination of kink effect, enhanced low field mobility, and immunity from radiation induced latch-up. A common belief that semiconductor devices function better at low temperatures is generally true for bulk devices but it does not hold true for deep sub-micron SOI CMOS devices with microscopic device features of 0.25 micrometers and smaller. Various temperature sensitive device parameters and device characteristics have recently been reported in the literature. Behavior of state of the art technology devices under such conditions needs to be evaluated in order to determine possible modifications in the device design for better performance and survivability under extreme environments. Here, we present a unique approach of developing electronics for extreme environments to benefit future NASA missions as described above. This will also benefit other long transit/life time missions such as the solar sail and planetary outposts in which electronics is out open in the unshielded space at the ambient space

  9. Modulation of contextual fear conditioning by chronic stress in rats is related to individual differences in behavioral reactivity to novelty.

    PubMed

    Cordero, M Isabel; Kruyt, Nyika D; Sandi, Carmen

    2003-04-25

    We investigated whether contextual fear conditioning could be related to the behavioral trait of locomotor reactivity to novelty in undisturbed and chronically stressed rats. Fear conditioning was found to be specifically enhanced in low reactive-stressed animals, as compared to low reactive-undisturbed rats. The results suggest that individuals that display low reactivity to novelty are more susceptible to be influenced by stress exposure to subsequently exhibit potentiated contextual fear conditioning.

  10. Technology development of protein rich concentrates for nutrition in extreme conditions using soybean and meat by-products.

    PubMed

    Kalenik, Tatiana K; Costa, Rui; Motkina, Elena V; Kosenko, Tamara A; Skripko, Olga V; Kadnikova, Irina A

    2017-01-01

    There is a need to develop new foods for participants of expeditions in extreme conditions, which must be self-sufficient. These foods should be light to carry, with a long shelf life, tasty and with  high nutrient density. Currently, protein sources are limited mainly to dried and canned meat. In this work, a protein-rich dried concentrate suitable for extreme expeditions was developed using soya, tomato, milk whey and meat by-products. Protein concentrates were developed using minced beef liver and heart, dehydrated and mixed with a soya protein-lycopene coagulate (SPLC) obtained from a solution prepared with germi- nated soybeans and mixed with tomato paste in milk whey, and finally dried. The technological parameters of pressing SPLC and of drying the protein concentrate were optimized using response surface methodology. The optimized technological parameters to prepare the protein concentrates were obtained, with 70:30 being the ideal ratio of minced meat to SPLC. The developed protein concentrates are characterized by a high calorific value of 376 kcal/100 g of dry product, with a water content of 98 g·kg-1, and 641-644 g·kg-1 of proteins. The essential amino acid indices are 100, with minimum essential amino acid content constitut- ing 100-128% of the FAO standard, depending on the raw meat used. These concentrates are also rich in micronutrients such as β-carotene and vitamin C. Analysis of the nutrient content showed that these non-perishable concentrates present a high nutritional value and complement other widely available vegetable concentrates to prepare a two-course meal. The soups and porridges prepared with these concentrates can be classified as functional foods, and comply with army requirements applicable to food products for extreme conditions.

  11. Extreme Conditioning Programs: Potential Benefits and Potential Risks.

    PubMed

    Knapik, Joseph J

    2015-01-01

    CrossFit, Insanity, Gym Jones, and P90X are examples of extreme conditioning programs (ECPs). ECPs typically involve high-volume and high-intensity physical activities with short rest periods between movements and use of multiple joint exercises. Data on changes in fitness with ECPs are limited to CrossFit investigations that demonstrated improvements in muscle strength, muscular endurance, aerobic fitness, and body composition. However, no study has directly compared CrossFit or other ECPs to other more traditional forms of aerobic and resistance training within the same investigation. These direct comparisons are needed to more adequately evaluate the effectiveness of ECPs. Until these studies emerge, the comparisons with available literature suggest that improvements in CrossFit, in terms of muscular endurance (push-ups, sit-ups), strength, and aerobic capacity, appear to be similar to those seen in more traditional training programs. Investigations of injuries in ECPs are limited to two observational studies that suggest that the overall injury rate is similar to that seen in other exercise programs. Several cases of rhabdomyolysis and cervical carotid artery dissections have been reported during CrossFit training. The symptoms, diagnosis, and treatment of these are reviewed here. Until more data on ECPs emerge, physical training should be aligned with US Army doctrine. If ECPs are included in exercise programs, trainers should (1) have appropriate training certifications, (2) inspect exercise equipment regularly to assure safety, (3) introduce ECPs to new participants, (4) ensure medical clearance of Soldiers with special health problems before participation in ECPs, (4) tailor ECPs to the individual Soldier, (5) adjust rest periods to optimize recovery and reduce fatigue, (6) monitor Soldiers for signs of overtraining, rhabdomyolysis, and other problems, and (7) coordinate exercise programs with other unit training activities to eliminate redundant activities

  12. Unique Nature of the Quality of Life in the Context of Extreme Climatic, Geographical and Specific Socio-Cultural Living Conditions

    ERIC Educational Resources Information Center

    Kulik, Anastasia; Neyaskina, Yuliya; Frizen, Marina; Shiryaeva, Olga; Surikova, Yana

    2016-01-01

    This article presents the results of a detailed empirical research, aimed at studying the quality of life in the context of extreme climatic, geographical and specific sociocultural living conditions. Our research is based on the methodological approach including social, economical, ecological and psychological characteristics and reflecting…

  13. Stress concentration in the vicinity of a hole defect under conditions of Hertzian contact

    NASA Technical Reports Server (NTRS)

    Yamamoto, T.; Eguchi, M.; Murayama, K.

    1981-01-01

    Two dimensional photoelastic stress analyses were conducted for epoxy resin models containing a hole defect under the conditions of Hertzian contact. Stress concentrations around the defect were determined as a function of several parameters. The effect of tangential traction on the stress concentration was also determined. Sharp stress concentrations occur in the vicinity of both the left and the right side of the hole. The stress concentration becomes more distinct the larger the hole diameter and the smaller distance between the hole and the contact surface. The stress concentration is greatest when the disk imposing a normal load is located at the contact surface directly over the hole. The magnitude and the location of stress concentration varies with the distance between the Hertzian contact area and the hole. The area involved in a process of rolling contact fatigue is confined to a shallow region at both sides of the hole. It was found that the effect of tangential traction is comparatively small on the stress concentration around the hole.

  14. Differential impact of the first and second wave of a stress response on subsequent fear conditioning in healthy men.

    PubMed

    Antov, Martin I; Wölk, Christoph; Stockhorst, Ursula

    2013-10-01

    Stress is a process of multiple neuroendocrine changes over time. We examined effects of the first-wave and second-wave stress response on acquisition and immediate extinction of differential fear conditioning, assessed by skin conductance responses. In Experiment 1, we placed acquisition either close to the (second-wave) salivary cortisol peak, induced by a psychosocial stressor (experimental group, EG), or after non-stressful pretreatment (control group, CG). Contrary to predictions, groups did not differ in differential responding. In the EG only, mean differential responding was negatively correlated with cortisol increases. In Experiment 2, we placed conditioning near the first-wave stress response, induced by a cold pressor test (CPT), or after a warm-water condition (CG). CPT-stress increased extinction resistance. Moreover, acquisition performance after CPT was positively correlated with first-wave blood pressure increases. Data suggest that mediators of the first-wave stress response enhance fear maintenance whereas second-wave cortisol responsivity to stress might attenuate fear learning. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions

    NASA Astrophysics Data System (ADS)

    Yang, Dong

    Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, most waterside tube cracks are found near heavy attachment welds on the outer surface and are typically blunt, with multiple bulbous features indicating a discontinuous growth. These types of tube failures are typically referred to as stress assisted corrosion (SAC). For recovery boilers in the pulp and paper industry, these failures are particularly important as any water leak inside the furnace can potentially lead to smelt-water explosion. Metal properties, environmental variables, and stress conditions are the major factors influencing SAC crack initation and propagation in carbon steel boiler tubes. Slow strain rate tests (SSRT) were conducted under boiler water conditions to study the effect of temperature, oxygen level, and stress conditions on crack initation and propagation on SA-210 carbon steel samples machined out of boiler tubes. Heat treatments were also performed to develop various grain size and carbon content on carbon steel samples, and SSRTs were conducted on these samples to examine the effect of microstructure features on SAC cracking. Mechanisms of SAC crack initation and propagation were proposed and validated based on interrupted slow strain tests (ISSRT). Water chemistry guidelines are provided to prevent SAC and fracture mechanics model is developed to predict SAC failure on industrial boiler tubes.

  16. Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones

    NASA Astrophysics Data System (ADS)

    von Buttlar, Jannis; Zscheischler, Jakob; Rammig, Anja; Sippel, Sebastian; Reichstein, Markus; Knohl, Alexander; Jung, Martin; Menzer, Olaf; Altaf Arain, M.; Buchmann, Nina; Cescatti, Alessandro; Gianelle, Damiano; Kiely, Gerard; Law, Beverly E.; Magliulo, Vincenzo; Margolis, Hank; McCaughey, Harry; Merbold, Lutz; Migliavacca, Mirco; Montagnani, Leonardo; Oechel, Walter; Pavelka, Marian; Peichl, Matthias; Rambal, Serge; Raschi, Antonio; Scott, Russell L.; Vaccari, Francesco P.; van Gorsel, Eva; Varlagin, Andrej; Wohlfahrt, Georg; Mahecha, Miguel D.

    2018-03-01

    Extreme climatic events, such as droughts and heat stress, induce anomalies in ecosystem-atmosphere CO2 fluxes, such as gross primary production (GPP) and ecosystem respiration (Reco), and, hence, can change the net ecosystem carbon balance. However, despite our increasing understanding of the underlying mechanisms, the magnitudes of the impacts of different types of extremes on GPP and Reco within and between ecosystems remain poorly predicted. Here we aim to identify the major factors controlling the amplitude of extreme-event impacts on GPP, Reco, and the resulting net ecosystem production (NEP). We focus on the impacts of heat and drought and their combination. We identified hydrometeorological extreme events in consistently downscaled water availability and temperature measurements over a 30-year time period. We then used FLUXNET eddy covariance flux measurements to estimate the CO2 flux anomalies during these extreme events across dominant vegetation types and climate zones. Overall, our results indicate that short-term heat extremes increased respiration more strongly than they downregulated GPP, resulting in a moderate reduction in the ecosystem's carbon sink potential. In the absence of heat stress, droughts tended to have smaller and similarly dampening effects on both GPP and Reco and, hence, often resulted in neutral NEP responses. The combination of drought and heat typically led to a strong decrease in GPP, whereas heat and drought impacts on respiration partially offset each other. Taken together, compound heat and drought events led to the strongest C sink reduction compared to any single-factor extreme. A key insight of this paper, however, is that duration matters most: for heat stress during droughts, the magnitude of impacts systematically increased with duration, whereas under heat stress without drought, the response of Reco over time turned from an initial increase to a downregulation after about 2 weeks. This confirms earlier theories that

  17. Relationship between stress and pain in work-related upper extremity disorders: the hidden role of chronic multisymptom illnesses.

    PubMed

    Clauw, Daniel J; Williams, David A

    2002-05-01

    Pain and fatigue are commonly associated with work-related upper extremity disorders. Occasionally these symptoms persist beyond a reasonable healing period. One potential explanation for prolonged symptom expression is the concurrent development of a stress-mediated illness or CMI (Chronic Multi-Symptom Illness). In such a scenario, the chronic regional pain and other symptoms that the individual is experiencing would be attributable to the CMI rather than to tissue damage or a biomechanical dysfunction of the upper-extremity. This article critically reviews the case definitions of the new class of CMI disorders and evaluates the existing evidence supporting centrally mediated physiological changes (e.g., sensory hypervigilance, dysautonomia) that manifest as symptoms of pain and fatigue in some individuals experiencing chronic stressors. While explanations for prolonged pain and fatigue have historically focused on mechanisms involving peripheral pathology or psychiatric explanations, ample evidences support the role of altered Central Nervous System function in accounting for symptom manifestation in CMI. A model is presented that unites seemingly disparate findings across numerous investigations and provides a framework for understanding how genetics, triggering events, stressors, and early life events can affect CNS activity. Resultant symptom expression (e.g., pain and fatigue) from central dysregulation would be expected to occur in a subset of individuals in the population, including a subset of individuals with work-related upper extremity disorders. Thus when symptoms such as pain and fatigue persist beyond a reasonable period, consideration of CMI and associated assessment and interventions focused on central mechanisms may be worthwhile.

  18. Impact of desiccation and heat exposure stress on Salmonella tolerance to acidic conditions.

    PubMed

    Richardson, Kurt E; Cox, Nelson A; Cosby, Douglas E; Berrang, Mark E

    2018-02-01

    In a recent study, the pH of commonly used Salmonella pre-enrichment media became acidic (pH 4.0 to 5.0) when feed or feed ingredients were incubated for 24 h. Acidic conditions have been reported to injure or kill Salmonella. In this study, cultures of four known feed isolates (S. montevideo, S. senftenberg, S. tennessee, and S. schwarzengrund) and four important processing plant isolates (S. typhimurium, S. enteritidis, S. infantis, and S. heidelberg) were grown on meat and bone meal and later subjected to desiccation and heat exposure to stress the microorganism. The impact of stress on the isolates ability to survive in acidic conditions ranging from pH 4.0 to 7.0 was compared to the non-stressed isolate. Cell injury was determined on xylose lysine tergitol 4 (XLT4) and cell death determined on nutrient agar (NA). When measured by cell death in non-stressed Salmonella, S. typhimurium was the most acid tolerant and S. heidelberg was the most acid sensitive whereas in stressed Salmonella, S. senftenberg was the most acid tolerant and S. tennessee was the most acid sensitive. The pH required to cause cell injury varied among isolates. With some isolates, the pH required for 50% cell death and 50% cell injury was similar. In other isolates, cell injury occurred at a more neutral pH. These findings suggest that the pH of pre-enrichment media may influence the recovery and bias the serotype of Salmonella recovered from feed during pre-enrichment.

  19. Response of snow-dependent hydrologic extremes to continued global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diffenbaugh, Noah; Scherer, Martin; Ashfaq, Moetasim

    2012-01-01

    Snow accumulation is critical for water availability in the Northern Hemisphere1,2, raising concern that global warming could have important impacts on natural and human systems in snow-dependent regions1,3. Although regional hydrologic changes have been observed (for example, refs 1,3 5), the time of emergence of extreme changes in snow accumulation and melt remains a key unknown for assessing climate- change impacts3,6,7. We find that the CMIP5 global climate model ensemble exhibits an imminent shift towards low snow years in the Northern Hemisphere, with areas of western North America, northeastern Europe and the Greater Himalaya showing the strongest emergence during themore » near- termdecadesandat2 Cglobalwarming.Theoccurrenceof extremely low snow years becomes widespread by the late twenty-first century, as do the occurrences of extremely high early-season snowmelt and runoff (implying increasing flood risk), and extremely low late-season snowmelt and runoff (implying increasing water stress). Our results suggest that many snow-dependent regions of the Northern Hemisphere are likely to experience increasing stress from low snow years within the next three decades, and from extreme changes in snow-dominated water resources if global warming exceeds 2 C above the pre-industrial baseline.« less

  20. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity

    PubMed Central

    Barkla, Bronwyn J.

    2016-01-01

    Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised. PMID:28248236

  1. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity.

    PubMed

    Barkla, Bronwyn J

    2016-09-08

    Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised.

  2. Changes in the probability of co-occurring extreme climate events

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.

    2017-12-01

    Extreme climate events such as floods, droughts, heatwaves, and severe storms exert acute stresses on natural and human systems. When multiple extreme events co-occur, either in space or time, the impacts can be substantially compounded. A diverse set of human interests - including supply chains, agricultural commodities markets, reinsurance, and deployment of humanitarian aid - have historically relied on the rarity of extreme events to provide a geographic hedge against the compounded impacts of co-occuring extremes. However, changes in the frequency of extreme events in recent decades imply that the probability of co-occuring extremes is also changing, and is likely to continue to change in the future in response to additional global warming. This presentation will review the evidence for historical changes in extreme climate events and the response of extreme events to continued global warming, and will provide some perspective on methods for quantifying changes in the probability of co-occurring extremes in the past and future.

  3. Role of GABAA receptors in dorsal raphe nucleus in stress-induced reinstatement of morphine-conditioned place preference in rats.

    PubMed

    Li, Chen; Staub, Daniel R; Kirby, Lynn G

    2013-12-01

    The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Our data indicate that stress inhibits the dorsal raphe nucleus (DRN)-5-HT system via stimulation of GABA synaptic activity by the stress neurohormone corticotropin-releasing factor and, more recently, that morphine history sensitizes DRN-5-HT neurons to GABAergic inhibitory effects of stress. We tested the hypothesis that DRN GABAA receptors contribute to stress-induced reinstatement of morphine-conditioned place preference (CPP). First, we tested if activation of GABAA receptors in the DRN would reinstate morphine CPP. Second, we tested if blockade of GABAA receptors in the DRN would attenuate swim stress-induced reinstatement of morphine CPP. CPP was induced by morphine (5 mg/kg) in a 4-day conditioning phase followed by a conditioning test. Upon acquiring conditioning criteria, subjects underwent 4 days of extinction training followed by an extinction test. Upon acquiring extinction criteria, animals underwent a reinstatement test. For the first experiment, the GABAA receptor agonist muscimol (50 ng) or vehicle was injected into the DRN prior to the reinstatement test. For the second experiment, the GABAA receptor antagonist bicuculline (75 ng) or vehicle was injected into the DRN prior to a forced swim stress, and then, animals were tested for reinstatement of CPP. Intraraphe injection of muscimol reinstated morphine CPP, while intraraphe injection of bicuculline attenuated swim stress-induced reinstatement. These data provide evidence that GABAA receptor-mediated inhibition of the serotonergic DRN contributes to stress-induced reinstatement of morphine CPP.

  4. Kinetics of Materials at Extreme Conditions: Understanding the Time Dependent Approach to Equilibrium at MaRIE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, R. G.; Mcnabb, D.; Kumar, M.

    The National Nuclear Security Agency has recently recognized that a long-term need exists to establish a stronger scientific basis for the assessment and qualification of materials and manufacturing processes for the nuclear stockpile and other national security applications. These materials may have undergone substantial changes with age, or may represent new materials that are being introduced because of difficulties associated with reusing or recreating materials used in original stockpile components. Also, with advancements in manufacturing methods, the NNSA anticipates opportunities for an enhanced range of control over fabricated components, an enhanced pace of materials development, and enhanced functionality. The developmentmore » of qualification standards for these new materials will require the ability to understand and control material characteristics that affect both mechanical and dynamic performance. A unique aspect for NNSA is that the performance requirements for materials are often set by system hydrodynamics, and these materials must perform in extreme environments and loading conditions. Thus, the scientific motivation is to understand “Matter-Radiation Interactions in Extremes (MaRIE).”« less

  5. The Bbgas3 β-glucanosyltransferase contributes to fungal adaptation to extreme alkaline pH.

    PubMed

    Luo, Zhibing; Zhang, Tongbing; Liu, Pengfei; Bai, Yuting; Chen, Qiyan; Zhang, Yongjun; Keyhani, Nemat O

    2018-05-25

    Fungal β-1,3-glucanosyltransferases are cell wall remodeling enzymes implicated in stress response, cell wall integrity, and virulence, with most fungal genomes containing multiple members. The insect pathogenic fungus Beauveria bassiana displays robust growth over a wide pH range (pH = 4-10). Random insertion mutant library screening for increased sensitivity to alkaline (pH 10) growth conditions resulted in the identification and mapping of a mutant to a β-1,3-glucanosyltransferase gene ( Bbgas3 ). Bbgas3 expression was pH dependent and regulated by the PacC transcription factor, that activates genes in response to neutral/alkaline growth conditions. Targeted gene-knockout of Bbgas3 resulted in reduced growth under alkaline conditions, with only minor effects of increased sensitivity to cell wall stress (Congo Red and calcofluor white), and no significant effects on fungal sensitivity to oxidative or osmotic stress. The cell walls of ΔBbgas3 aerial conidia were thinner than wild type and complemented strains in response to alkaline conditions, and β-1,3-glucan antibody and lectin staining revealed alterations in cell surface carbohydrate epitopes. The ΔBbgas3 mutant displayed alterations in cell wall chitin and carbohydrate content in response to alkaline pH. Insect bioassays revealed impaired virulence for the ΔBbgas3 mutant depending upon the pH of the media on which the conidia were grown and harvested. Unexpectedly, a decreased lethal time to kill (LT 50 , i.e. increased virulence) was seen for the mutant using intra-hemocoel injection assays using conidia grown at acidic pH (5.6). These data show that BbGas3 acts as a pH-responsive cell wall remodeling enzyme involved in resistance to extreme pH (>9). Importance Little is known about adaptations required for growth at high (>9) pH. Here, we show that a specific fungal membrane remodelling β-1,3-glucanosyltransferase ( Bbgas3 ), regulated by the pH-responsive PacC transcription factor forms a critical

  6. Antioxidant Therapeutic Strategies for Cardiovascular Conditions Associated with Oxidative Stress

    PubMed Central

    Molina, Víctor M.; Carrasco, Rodrigo A.; Figueroa, Elías; Letelier, Pablo; Castillo, Rodrigo L.

    2017-01-01

    Oxidative stress (OS) refers to the imbalance between the generation of reactive oxygen species (ROS) and the ability to scavenge these ROS by endogenous antioxidant systems, where ROS overwhelms the antioxidant capacity. Excessive presence of ROS results in irreversible damage to cell membranes, DNA, and other cellular structures by oxidizing lipids, proteins, and nucleic acids. Oxidative stress plays a crucial role in the pathogenesis of cardiovascular diseases related to hypoxia, cardiotoxicity and ischemia–reperfusion. Here, we describe the participation of OS in the pathophysiology of cardiovascular conditions such as myocardial infarction, anthracycline cardiotoxicity and congenital heart disease. This review focuses on the different clinical events where redox factors and OS are related to cardiovascular pathophysiology, giving to support for novel pharmacological therapies such as omega 3 fatty acids, non-selective betablockers and microRNAs. PMID:28862654

  7. Research progress of extreme climate and its vegetation response

    NASA Astrophysics Data System (ADS)

    Cui, Xiaolin; Wei, Xiaoqing; Wang, Tao

    2017-08-01

    The IPCC’s fifth assessment report indicates that climate warming is unquestionable, the frequency and intensity of extreme weather events may increase, and extreme weather events can destroy the growth conditions of vegetation that is otherwise in a stable condition. Therefore, it is essential to research the formation of extreme weather events and its ecological response, both in terms scientific development and the needs of societal development. This paper mainly examines these issues from the following aspects: (1) the definition of extreme climate events and the methods of studying the associated response of vegetation; (2) the research progress on extreme climate events and their vegetation response; and (3) the future direction of research on extreme climate and its vegetation response.

  8. Analysis of the stress-deformed condition of the disassembly parabolic antenna

    NASA Astrophysics Data System (ADS)

    Odinets, M. N.; Kaygorodtseva, N. V.; Krysova, I. V.

    2018-01-01

    Active development of satellite communications and computer-aided design systems raises the problem of designing parabolic antennas on a new round of development. The aim of the work was to investigate the influence of the design of the mirror of a parabolic antenna on its endurance under wind load. The research task was an automated analysis of the stress-deformed condition of various designs of computer models of a paraboloid mirror (segmented or holistic) at modeling the exploitation conditions. The peculiarity of the research was that the assembly model of the antenna’s mirror was subjected to rigid connections on the contacting surfaces of the segments and only then the finite element grid was generated. The analysis showed the advantage of the design of the demountable antenna, which consists of cyclic segments, in front of the construction of the holistic antenna. Calculation of the stress-deformed condition of the antennas allows us to conclude that dividing the design of the antenna’s mirror on parabolic and cyclic segments increases it strength and rigidity. In the future, this can be used to minimize the mass of antenna and the dimensions of the disassembled antenna. The presented way of modeling a mirror of a parabolic antenna using to the method of the finite-element analysis can be used in the production of antennas.

  9. Enhanced seed production under prolonged heat stress conditions in Arabidopsis thaliana plants deficient in cytosolic ascorbate peroxidase 2

    PubMed Central

    Mittler, Ron

    2013-01-01

    Reactive oxygen species play a key role in the response of plants to abiotic stress conditions. Their level is controlled in Arabidopsis thaliana by a large network of genes that includes the H2O2-scavenging enzymes cytosolic ascorbate peroxidase (APX) 1 and 2. Although the function of APX1 has been established under different growth conditions, genetic evidence for APX2 function, as well as for the mode of cooperation between APX1 and APX2, is very limited. This study characterized the response of Arabidopsis mutants deficient in APX1, APX2, and APX1/APX2 to heat, salinity, light, and oxidative stresses. The findings reveal that deficiency in APX2 resulted in a decreased tolerance to light stress, as well as an enhanced tolerance to salinity and oxidative stresses. Interestingly, plants lacking APX2 were more sensitive to heat stress at the seedling stage, but more tolerant to heat stress at the reproductive stage. Cooperation between APX1 and APX2 was evident during oxidative stress, but not during light, salinity, or heat stress. The findings demonstrate a role for APX2 in the response of plants to light, heat, salinity, and oxidative stresses. The finding that plants lacking APX2 produced more seeds under prolonged heat stress conditions suggests that redundant mechanisms activated in APX2-deficient plants during heat stress play a key role in the protection of reproductive tissues from heat-related damage. This finding is very important because heat-associated damage to reproductive tissues in different crops is a major cause for yield loss in agriculture production worldwide. PMID:23183257

  10. Stressors, stress and stress consequences during long-duration manned space missions: a descriptive model

    NASA Astrophysics Data System (ADS)

    Geuna, Stefano; Brunelli, Francesco; Perino, Maria A.

    Keeping crew members in good health is a major factor in the success or failure of long-duration manned space missions. Among the many possible agents that can affect the crew's general well-being, stress is certainly one of the most critical because of its implications on human health and performance, both physical and mental. Nevertheless, very few studies have been performed on this fundamental issue and none of them has addressed it in its entirity, considering its diverse physical and psychological aspects. In this work, a descriptive model is proposed to expound the mechanism and sequence of events which mediate stress. A critical analysis of the information provided by past manned spaceflights and by dedicated research performed in analogous environments is presented, and an extrapolation of the available data on human stress in such extreme conditions is proposed. Both internal and external stressors have been identified, at physical and psychosocial levels, thus providing the basis for their early detection and preventive reduction. The possible negative consequences of stress that may lead to disease in crewmembers are described. Finally, the most effective instruments which may be of help in reducing space-related human stress and treating its negative consequences are suggested.

  11. Correlation between vortices and wall shear stress in a curved artery model under pulsatile flow conditions

    NASA Astrophysics Data System (ADS)

    Cox, Christopher; Plesniak, Michael W.

    2017-11-01

    One of the most physiologically relevant factors within the cardiovascular system is the wall shear stress. The wall shear stress affects endothelial cells via mechanotransduction and atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the shear stress is both oscillatory and multidirectional. Also, the combined effect of curvature and pulsatility in cardiovascular flows produces unsteady vortices. In this work, our goal is to assess the correlation between multiple vortex pairs and wall shear stress. To accomplish this, we use an in-house high-order flux reconstruction Navier-Stokes solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180° curved artery model. We use a physiologically relevant flow rate and generate results using both fully developed and uniform entrance conditions, the latter motivated by the fact that flow upstream to a curved artery may not be fully developed. Under these two inflow conditions, we characterize the evolution of various vortex pairs and their subsequent effect on several wall shear stress metrics. Supported by GW Center for Biomimetics and Bioinspired Engineering.

  12. Modeling Spatial Dependence of Rainfall Extremes Across Multiple Durations

    NASA Astrophysics Data System (ADS)

    Le, Phuong Dong; Leonard, Michael; Westra, Seth

    2018-03-01

    Determining the probability of a flood event in a catchment given that another flood has occurred in a nearby catchment is useful in the design of infrastructure such as road networks that have multiple river crossings. These conditional flood probabilities can be estimated by calculating conditional probabilities of extreme rainfall and then transforming rainfall to runoff through a hydrologic model. Each catchment's hydrological response times are unlikely to be the same, so in order to estimate these conditional probabilities one must consider the dependence of extreme rainfall both across space and across critical storm durations. To represent these types of dependence, this study proposes a new approach for combining extreme rainfall across different durations within a spatial extreme value model using max-stable process theory. This is achieved in a stepwise manner. The first step defines a set of common parameters for the marginal distributions across multiple durations. The parameters are then spatially interpolated to develop a spatial field. Storm-level dependence is represented through the max-stable process for rainfall extremes across different durations. The dependence model shows a reasonable fit between the observed pairwise extremal coefficients and the theoretical pairwise extremal coefficient function across all durations. The study demonstrates how the approach can be applied to develop conditional maps of the return period and return level across different durations.

  13. Stream Response to an Extreme Defoliation Event

    NASA Astrophysics Data System (ADS)

    Gold, A.; Loffredo, J.; Addy, K.; Bernhardt, E. S.; Berdanier, A. B.; Schroth, A. W.; Inamdar, S. P.; Bowden, W. B.

    2017-12-01

    Extreme climatic events are known to profoundly impact stream flow and stream fluxes. These events can also exert controls on insect outbreaks, which may create marked changes in stream characteristics. The invasive Gypsy Moth (Lymantria dispar dispar) experiences episodic infestations based on extreme climatic conditions within the northeastern U.S. In most years, gypsy moth populations are kept in check by diseases. In 2016 - after successive years of unusually warm, dry spring and summer weather -gypsy moth caterpillars defoliated over half of Rhode Island's 160,000 forested ha. No defoliation of this magnitude had occurred for more than 30 years. We examined one RI headwater stream's response to the defoliation event in 2016 compared with comparable data in 2014 and 2015. Stream temperature and flow was gauged continuously by USGS and dissolved oxygen (DO) was measured with a YSI EXO2 sonde every 30 minutes during a series of deployments in the spring, summer and fall from 2014-2016. We used the single station, open channel method to estimate stream metabolism metrics. We also assessed local climate and stream temperature data from 2009-2016. We observed changes in stream responses during the defoliation event that suggest changes in ET, solar radiation and heat flux. Although the summer of 2016 had more drought stress (PDSI) than previous years, stream flow occurred throughout the summer, in contrast to several years with lower drought stress when stream flow ceased. Air temperature in 2016 was similar to prior years, but stream temperature was substantially higher than the prior seven years, likely due to the loss of canopy shading. DO declined dramatically in 2016 compared to prior years - more than the rising stream temperatures would indicate. Gross Primary Productivity was significantly higher during the year of the defoliation, indicating more total fixation of inorganic carbon from photo-autotrophs. In 2016, Ecosystem Respiration was also higher and Net

  14. Proteomic analysis on roots of Oenothera glazioviana under copper-stress conditions.

    PubMed

    Wang, Chong; Wang, Jie; Wang, Xiao; Xia, Yan; Chen, Chen; Shen, Zhenguo; Chen, Yahua

    2017-09-06

    Proteomic studies were performed to identify proteins involved in the response of Oenothera glazioviana seedlings under Cu stress. Exposure of 28-d-old seedlings to 50 μM CuSO4 for 3 d led to inhibition of shoot and root growth as well as a considerable increase in the level of lipid peroxidation in the roots. Cu absorbed by O. glazioviana accumulated more easily in the root than in the shoot. Label-free proteomic analysis indicated 58 differentially abundant proteins (DAPs) of the total 3,149 proteins in the roots of O. glazioviana seedlings, of which 36 were upregulated and 22 were downregulated under Cu stress conditions. Gene Ontology analysis showed that most of the identified proteins could be annotated to signal transduction, detoxification, stress defence, carbohydrate, energy, and protein metabolism, development, and oxidoreduction. We also retrieved 13 proteins from the enriched Kyoto Encyclopaedia of Genes and Genomes and the protein-protein interaction databases related to various pathways, including the citric acid (CA) cycle. Application of exogenous CA to O. glazioviana seedlings exposed to Cu alleviated the stress symptoms. Overall, this study provided new insights into the molecular mechanisms of plant response to Cu at the protein level in relation to soil properties.

  15. Organization and Regulation of Soybean SUMOylation System under Abiotic Stress Conditions

    PubMed Central

    Li, Yanjun; Wang, Guixin; Xu, Zeqian; Li, Jing; Sun, Mengwei; Guo, Jingsong; Ji, Wei

    2017-01-01

    Covalent attachment of the small ubiquitin-related modifier, SUMO, to substrate proteins plays a significant role in plants under stress conditions, which can alter target proteins' function, location, and protein-protein interactions. Despite this importance, information about SUMOylation in the major legume crop, soybean, remains obscure. In this study, we performed a bioinformatics analysis of the entire soybean genome and identified 40 genes belonged to six families involved in a cascade of enzymatic reactions in soybean SUMOylation system. The cis-acting elements analysis revealed that promoters of SUMO pathway genes contained different combinations of stress and development-related cis-regulatory elements. RNA-seq data analysis showed that SUMO pathway components exhibited versatile tissue-specific expression patterns, indicating coordinated functioning during plant growth and development. qRT-PCR analysis of 13 SUMO pathway members indicated that majority of the SUMO pathway members were transcriptionally up-regulated by NaCl, heat and ABA stimuli during the 24 h period of treatment. Furthermore, SUMOylation dynamics in soybean roots under abiotic stress treatment were analyzed by western blot, which were characterized by regulation of SUMOylated proteins. Collectively, this study defined the organization of the soybean SUMOylation system and implied an essential function for SUMOylation in soybean abiotic stress responses. PMID:28878795

  16. Associations between headache and stress, alcohol drinking, exercise, sleep, and comorbid health conditions in a Japanese population.

    PubMed

    Yokoyama, Masako; Yokoyama, Tetsuji; Funazu, Kazuo; Yamashita, Takeshi; Kondo, Shuji; Hosoai, Hiroshi; Yokoyama, Akira; Nakamura, Haruo

    2009-06-01

    We conducted a cross-sectional survey of 12,988 subjects aged 20-79 years (5,908 men and 7,090 women) receiving health checkups at a Tokyo clinic. They filled out a self-administered structured questionnaire, and 5.4% of the men and 15.4% of the women reported having headaches. Younger subjects were more prone to having headaches. The likelihood of having headaches increased with stress level and decreased ability to relieve stress in both genders. There was an inverse dose-response relationship between having headaches and alcohol consumption, and less walking/exercise and sleep problems increased the likelihood of headaches in both genders. Headache sufferers of both genders were more likely to report multiple additional poor health conditions. A multivariate stepwise logistic analysis showed that age, self-estimated degree of stress, reported number of additional poor health conditions, and less alcohol consumption were independently correlated with having headaches. In conclusion, although women were more susceptible to headache, Japanese men and women in Tokyo shared factors associated with headache, including age, stress, having other poor health conditions, alcohol consumption, sleep, and exercise.

  17. Bacterial responses to fluctuations and extremes in temperature and brine salinity at the surface of Arctic winter sea ice.

    PubMed

    Ewert, Marcela; Deming, Jody W

    2014-08-01

    Wintertime measurements near Barrow, Alaska, showed that bacteria near the surface of first-year sea ice and in overlying saline snow experience more extreme temperatures and salinities, and wider fluctuations in both parameters, than bacteria deeper in the ice. To examine impacts of such conditions on bacterial survival, two Arctic isolates with different environmental tolerances were subjected to winter-freezing conditions, with and without the presence of organic solutes involved in osmoprotection: proline, choline, or glycine betaine. Obligate psychrophile Colwellia psychrerythraea strain 34H suffered cell losses under all treatments, with maximal loss after 15-day exposure to temperatures fluctuating between -7 and -25 °C. Osmoprotectants significantly reduced the losses, implying that salinity rather than temperature extremes presents the greater stress for this organism. In contrast, psychrotolerant Psychrobacter sp. strain 7E underwent miniaturization and fragmentation under both fluctuating and stable-freezing conditions, with cell numbers increasing in most cases, implying a different survival strategy that may include enhanced dispersal. Thus, the composition and abundance of the bacterial community that survives in winter sea ice may depend on the extent to which overlying snow buffers against extreme temperature and salinity conditions and on the availability of solutes that mitigate osmotic shock, especially during melting. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Accurate evaluation of fast threshold voltage shift for SiC MOS devices under various gate bias stress conditions

    NASA Astrophysics Data System (ADS)

    Sometani, Mitsuru; Okamoto, Mitsuo; Hatakeyama, Tetsuo; Iwahashi, Yohei; Hayashi, Mariko; Okamoto, Dai; Yano, Hiroshi; Harada, Shinsuke; Yonezawa, Yoshiyuki; Okumura, Hajime

    2018-04-01

    We investigated methods of measuring the threshold voltage (V th) shift of 4H-silicon carbide (SiC) metal–oxide–semiconductor field-effect transistors (MOSFETs) under positive DC, negative DC, and AC gate bias stresses. A fast measurement method for V th shift under both positive and negative DC stresses revealed the existence of an extremely large V th shift in the short-stress-time region. We then examined the effect of fast V th shifts on drain current (I d) changes within a pulse under AC operation. The fast V th shifts were suppressed by nitridation. However, the I d change within one pulse occurred even in commercially available SiC MOSFETs. The correlation between I d changes within one pulse and V th shifts measured by a conventional method is weak. Thus, a fast and in situ measurement method is indispensable for the accurate evaluation of I d changes under AC operation.

  19. Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis species, reveals candidate genes and events that potentially connected to cold stress.

    PubMed

    Xu, Weirong; Li, Ruimin; Zhang, Ningbo; Ma, Fuli; Jiao, Yuntong; Wang, Zhenping

    2014-11-01

    Vitis amurensis Rupr. is an exceptional wild-growing Vitis (grape) species that can safely survive a wide range of cold conditions, but the underlying cold-adaptive mechanism associated with gene regulation is poorly investigated. We have analyzed the physiochemical and transcriptomic changes caused by cold stress in a cold-tolerant accession, 'Heilongjiang seedling', of Chinese wild V. amurensis. We statistically determined that a total of 6,850 cold-regulated transcripts were involved in cold regulation, including 3,676 up-regulated and 3,174 down-regulated transcripts. A global survey of messenger RNA revealed that skipped exon is the most prevalent form of alternative spicing event. Importantly, we found that the total splicing events increased with the prolonged cold stress. We also identified thirty-eight major TF families that were involved in cold regulation, some of which were previously unknown. Moreover, a large number of candidate pathways for the metabolism or biosynthesis of secondary metabolites were found to be regulated by cold, which is of potential importance in coordinating cold tolerance with growth and development. Several heat shock proteins and heat shock factors were also detected to be intensively cold-regulated. Furthermore, we validated the expression profiles of 16 candidates using qRT-PCR to further confirm the accuracy of the RNA-seq data. Our results provide a genome-wide view of the dynamic changes in the transcriptome of V. amurensis, in which it is evident that various structural and regulatory genes are crucial for cold tolerance/adaptation. Moreover, our robust dataset advances our knowledge of the genes involved in the complex regulatory networks of cold stress and leads to a better understanding of cold tolerance mechanisms in this extremely cold-tolerant Vitis species.

  20. Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis

    PubMed Central

    Razzoli, Maria; Frontini, Andrea; Gurney, Allison; Mondini, Eleonora; Cubuk, Cankut; Katz, Liora S.; Cero, Cheryl; Bolan, Patrick J.; Dopazo, Joaquin; Vidal-Puig, Antonio; Cinti, Saverio; Bartolomucci, Alessandro

    2015-01-01

    Background Stress-associated conditions such as psychoemotional reactivity and depression have been paradoxically linked to either weight gain or weight loss. This bi-directional effect of stress is not understood at the functional level. Here we tested the hypothesis that pre-stress level of adaptive thermogenesis and brown adipose tissue (BAT) functions explain the vulnerability or resilience to stress-induced obesity. Methods We used wt and triple β1,β2,β3−Adrenergic Receptors knockout (β-less) mice exposed to a model of chronic subordination stress (CSS) at either room temperature (22 °C) or murine thermoneutrality (30 °C). A combined behavioral, physiological, molecular, and immunohistochemical analysis was conducted to determine stress-induced modulation of energy balance and BAT structure and function. Immortalized brown adipocytes were used for in vitro assays. Results Departing from our initial observation that βARs are dispensable for cold-induced BAT browning, we demonstrated that under physiological conditions promoting low adaptive thermogenesis and BAT activity (e.g. thermoneutrality or genetic deletion of the βARs), exposure to CSS acted as a stimulus for BAT activation and thermogenesis, resulting in resistance to diet-induced obesity despite the presence of hyperphagia. Conversely, in wt mice acclimatized to room temperature, and therefore characterized by sustained BAT function, exposure to CSS increased vulnerability to obesity. Exposure to CSS enhanced the sympathetic innervation of BAT in wt acclimatized to thermoneutrality and in β-less mice. Despite increased sympathetic innervation suggesting adrenergic-mediated browning, norepinephrine did not promote browning in βARs knockout brown adipocytes, which led us to identify an alternative sympathetic/brown adipocytes purinergic pathway in the BAT. This pathway is downregulated under conditions of low adaptive thermogenesis requirements, is induced by stress, and elicits activation

  1. Stress concentration in the vicinity of a hole defect under conditions of Hertzian contact

    NASA Technical Reports Server (NTRS)

    Yamamoto, T.; Eguchi, M.; Murayama, K.

    1981-01-01

    Two-dimensional photoelastic stress analyses were conducted for epoxy resin models containing a hole defect under the conditions of Hertzian contact. Stress concentrations around the defect were determined as a function of several parameters. These were hole diameter, its vertical distance from the contact surface, and the horizontal distance from the Hertzian contact area. Also determined was the effect of tangential traction (generated by a friction coefficient of 0.1) on the stress concentration. Sharp stress concentrations occur in the vicinity of both the left and the right side of the hole. The stress concentration becomes more distinct the larger the hole diameter and the smaller the distance between the hole and the contact surface. The stress concentration is greatest when the disk imposing a normal load is located at the contact surface directly over the hole. The magnitude and the location of stress concentration varies with the distance between the Hertzian contact area and the hole. Taking into account the stress amplitude, the area which can be involved in a process of rolling contact fatigue seems to be confined to a shallow region at both sides of the hole. The effect of tangential traction is comparatively small on the stress concentration around the hole.

  2. Mental skills training effectively minimizes operative performance deterioration under stressful conditions: Results of a randomized controlled study.

    PubMed

    Anton, N E; Beane, J; Yurco, A M; Howley, L D; Bean, E; Myers, E M; Stefanidis, D

    2018-02-01

    Stress can negatively impact surgical performance, but mental skills may help. We hypothesized that a comprehensive mental skills curriculum (MSC) would minimize resident performance deterioration under stress. Twenty-four residents were stratified then randomized to receive mental skills and FLS training (MSC group), or only FLS training (control group). Laparoscopic suturing skill was assessed on a live porcine model with and without external stressors. Outcomes were compared with t-tests. Twenty-three residents completed the study. The groups were similar at baseline. There were no differences in suturing at posttest or transfer test under normal conditions. Both groups experienced significantly decreased performance when stress was applied, but the MSC group significantly outperformed controls under stress. This MSC enabled residents to perform significantly better than controls in the simulated OR under unexpected stressful conditions. These findings support the use of psychological skills as an integral part of a surgical resident training. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Seasonal Prediction of Hydro-Climatic Extremes in the Greater Horn of Africa Under Evolving Climate Conditions to Support Adaptation Strategies

    NASA Astrophysics Data System (ADS)

    Tadesse, T.; Zaitchik, B. F.; Habib, S.; Funk, C. C.; Senay, G. B.; Dinku, T.; Policelli, F. S.; Block, P.; Baigorria, G. A.; Beyene, S.; Wardlow, B.; Hayes, M. J.

    2014-12-01

    The development of effective strategies to adapt to changes in the character of droughts and floods in Africa will rely on improved seasonal prediction systems that are robust to an evolving climate baseline and can be integrated into disaster preparedness and response. Many efforts have been made to build models to improve seasonal forecasts in the Greater Horn of Africa region (GHA) using satellite and climate data, but these efforts and models must be improved and translated into future conditions under evolving climate conditions. This has considerable social significance, but is challenged by the nature of climate predictability and the adaptability of coupled natural and human systems facing exposure to climate extremes. To address these issues, work is in progress under a project funded by NASA. The objectives of the project include: 1) Characterize and explain large-scale drivers in the ocean-atmosphere-land system associated with years of extreme flood or drought in the GHA. 2) Evaluate the performance of state-of-the-art seasonal forecast methods for prediction of decision-relevant metrics of hydrologic extremes. 3) Apply seasonal forecast systems to prediction of socially relevant impacts on crops, flood risk, and economic outcomes, and assess the value of these predictions to decision makers. 4) Evaluate the robustness of seasonal prediction systems to evolving climate conditions. The National Drought Mitigation Center (University of Nebraska-Lincoln, USA) is leading this project in collaboration with the USGS, Johns Hopkins University, University of Wisconsin-Madison, the International Research Institute for Climate and Society, NASA, and GHA local experts. The project is also designed to have active engagement of end users in various sectors, university researchers, and extension agents in GHA through workshops and/or webinars. This project is expected improve and implement new and existing climate- and remote sensing-based agricultural

  4. Effect of Temper Condition on Stress Relaxation Behavior of an Aluminum Copper Lithium Alloy

    NASA Astrophysics Data System (ADS)

    Mishra, Sumeet; Beura, Vikrant Kumar; Singh, Amit; Yadava, Manasij; Nayan, Niraj

    2018-07-01

    Deformation behavior of an Al-Cu-Li alloy in different temper conditions (solutionized and T8) is investigated using stress relaxation tests. Fundamental parameters such as the apparent and physical activation volume, strain rate sensitivity, effective stress, and exhaustion rate of mobile dislocation density are determined from single and multiple relaxation tests. It was found that dislocation-dislocation interaction controls the kinetics of plastic deformation in the solutionized sample, whereas dislocation-precipitate interaction is the overriding factor in the presence of T1 precipitates. The apparent activation volume was found to be significantly lower in the presence of T1 precipitates compared with solutionized samples. Strain rate sensitivity and effective stress were found to be higher in the presence of T1 precipitates. In addition, multiple relaxation tests showed that irrespective of microstructural features (solutes, semi-coherent precipitates), the mobile dislocation density reduces during the relaxation period. Further evidence regarding reduction in mobile dislocation density is obtained from uniaxial tensile tests carried out after stress relaxation tests, where both solutionized and T8 samples show an increase in strength. Additional discussion on relaxation strain is included to provide a complete overview regarding the time-dependent deformation behavior of the Al-Cu-Li alloy in different temper conditions.

  5. Effect of Temper Condition on Stress Relaxation Behavior of an Aluminum Copper Lithium Alloy

    NASA Astrophysics Data System (ADS)

    Mishra, Sumeet; Beura, Vikrant Kumar; Singh, Amit; Yadava, Manasij; Nayan, Niraj

    2018-04-01

    Deformation behavior of an Al-Cu-Li alloy in different temper conditions (solutionized and T8) is investigated using stress relaxation tests. Fundamental parameters such as the apparent and physical activation volume, strain rate sensitivity, effective stress, and exhaustion rate of mobile dislocation density are determined from single and multiple relaxation tests. It was found that dislocation-dislocation interaction controls the kinetics of plastic deformation in the solutionized sample, whereas dislocation-precipitate interaction is the overriding factor in the presence of T1 precipitates. The apparent activation volume was found to be significantly lower in the presence of T1 precipitates compared with solutionized samples. Strain rate sensitivity and effective stress were found to be higher in the presence of T1 precipitates. In addition, multiple relaxation tests showed that irrespective of microstructural features (solutes, semi-coherent precipitates), the mobile dislocation density reduces during the relaxation period. Further evidence regarding reduction in mobile dislocation density is obtained from uniaxial tensile tests carried out after stress relaxation tests, where both solutionized and T8 samples show an increase in strength. Additional discussion on relaxation strain is included to provide a complete overview regarding the time-dependent deformation behavior of the Al-Cu-Li alloy in different temper conditions.

  6. Increased endothelial microparticles and oxidative stress at extreme altitude.

    PubMed

    Pichler Hefti, Jacqueline; Leichtle, Alexander; Stutz, Monika; Hefti, Urs; Geiser, Thomas; Huber, Andreas R; Merz, Tobias M

    2016-04-01

    Hypoxia and oxidative stress affect endothelial function. Endothelial microparticles (MP) are established measures of endothelial dysfunction and influence vascular reactivity. To evaluate the effects of hypoxia and antioxidant supplementation on endothelial MP profiles, a double-blind, placebo-controlled trial, during a high altitude expedition was performed. 29 participants were randomly assigned to a treatment group (n = 14), receiving vitamin E, C, A, and N-acetylcysteine daily, and a control group (n = 15), receiving placebo. Blood samples were obtained at 490 m (baseline), 3530, 4590, and 6210 m. A sensitive tandem mass spectrometry method was used to measure 8-iso-prostaglandin F2α and hydroxyoctadecadienoic acids as markers of oxidative stress. Assessment of MP profiles including endothelial activation markers (CD62+MP and CD144+MP) and cell apoptosis markers (phosphatidylserine+MP and CD31+MP) was performed using a standardized flow cytometry-based protocol. 15 subjects reached all altitudes and were included in the final analysis. Oxidative stress increased significantly at altitude. No statistically significant changes were observed comparing baseline to altitude measurements of phosphatidylserine expressing MP (p = 0.1718) and CD31+MP (p = 0.1305). Compared to baseline measurements, a significant increase in CD62+MP (p = 0.0079) and of CD144+MP was detected (p = 0.0315) at high altitudes. No significant difference in any MP level or oxidative stress markers were found between the treatment and the control group. Hypobaric hypoxia is associated with increased oxidative stress and induces a significant increase in CD62+ and CD144+MP, whereas phosphatidylserine+MP and CD31+MP remain unchanged. This indicates that endothelial activation rather than an apoptosis is the primary factor of hypoxia induced endothelial dysfunction.

  7. Sfp1 and Rtg3 reciprocally modulate carbon source‐conditional stress adaptation in the pathogenic yeast Candida albicans

    PubMed Central

    Kastora, Stavroula L.; Herrero‐de‐Dios, Carmen; Avelar, Gabriela M.; Munro, Carol A.

    2017-01-01

    Summary The pathogenicity of the clinically important yeast, Candida albicans, is dependent on robust responses to host‐imposed stresses. These stress responses have generally been dissected in vitro at 30°C on artificial growth media that do not mimic host niches. Yet host inputs, such as changes in carbon source or temperature, are known to affect C. albicans stress adaptation. Therefore, we performed screens to identify novel regulators that promote stress resistance during growth on a physiologically relevant carboxylic acid and at elevated temperatures. These screens revealed that, under these ‘non‐standard’ growth conditions, numerous uncharacterised regulators are required for stress resistance in addition to the classical Hog1, Cap1 and Cta4 stress pathways. In particular, two transcription factors (Sfp1 and Rtg3) promote stress resistance in a reciprocal, carbon source‐conditional manner. SFP1 is induced in stressed glucose‐grown cells, whereas RTG3 is upregulated in stressed lactate‐grown cells. Rtg3 and Sfp1 regulate the expression of key stress genes such as CTA4, CAP1 and HOG1 in a carbon source‐dependent manner. These mechanisms underlie the stress sensitivity of C. albicans sfp1 cells during growth on glucose, and rtg3 cells on lactate. The data suggest that C. albicans exploits environmentally contingent regulatory mechanisms to retain stress resistance during host colonisation. PMID:28574606

  8. Random regression models to account for the effect of genotype by environment interaction due to heat stress on the milk yield of Holstein cows under tropical conditions.

    PubMed

    Santana, Mário L; Bignardi, Annaiza Braga; Pereira, Rodrigo Junqueira; Menéndez-Buxadera, Alberto; El Faro, Lenira

    2016-02-01

    The present study had the following objectives: to compare random regression models (RRM) considering the time-dependent (days in milk, DIM) and/or temperature × humidity-dependent (THI) covariate for genetic evaluation; to identify the effect of genotype by environment interaction (G×E) due to heat stress on milk yield; and to quantify the loss of milk yield due to heat stress across lactation of cows under tropical conditions. A total of 937,771 test-day records from 3603 first lactations of Brazilian Holstein cows obtained between 2007 and 2013 were analyzed. An important reduction in milk yield due to heat stress was observed for THI values above 66 (-0.23 kg/day/THI). Three phases of milk yield loss were identified during lactation, the most damaging one at the end of lactation (-0.27 kg/day/THI). Using the most complex RRM, the additive genetic variance could be altered simultaneously as a function of both DIM and THI values. This model could be recommended for the genetic evaluation taking into account the effect of G×E. The response to selection in the comfort zone (THI ≤ 66) is expected to be higher than that obtained in the heat stress zone (THI > 66) of the animals. The genetic correlations between milk yield in the comfort and heat stress zones were less than unity at opposite extremes of the environmental gradient. Thus, the best animals for milk yield in the comfort zone are not necessarily the best in the zone of heat stress and, therefore, G×E due to heat stress should not be neglected in the genetic evaluation.

  9. Extreme weather events and infectious disease outbreaks.

    PubMed

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.

  10. Impacts of extreme heat and drought on crop yields in China: an assessment by using the DLEM-AG2 model

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Yang, J.; Pan, S.; Tian, H.

    2016-12-01

    China is not only one of the major agricultural production countries with the largest population in the world, but it is also the most susceptible to climate change and extreme events. Much concern has been raised about how extreme climate has affected crop yield, which is crucial for China's food supply security. However, the quantitative assessment of extreme heat and drought impacts on crop yield in China has rarely been investigated. By using the Dynamic Land Ecosystem Model (DLEM-AG2), a highly integrated process-based ecosystem model with crop-specific simulation, here we quantified spatial and temporal patterns of extreme climatic heat and drought stress and their impacts on the yields of major food crops (rice, wheat, maize, and soybean) across China during 1981-2015, and further investigated the underlying mechanisms. Simulated results showed that extreme heat and drought stress significantly reduced national cereal production and increased the yield gaps between potential yield and rain-fed yield. The drought stress was the primary factor to reduce crop yields in the semi-arid and arid regions, and extreme heat stress slightly aggravated the yield loss. The yield gap between potential yield and rain-fed yield was larger at locations with lower precipitation. Our results suggest that a large exploitable yield gap in response to extreme climatic heat-drought stress offers an opportunity to increase productivity in China by optimizing agronomic practices, such as irrigation, fertilizer use, sowing density, and sowing date.

  11. Survival, physical and physiological changes of Taenia hydatigena eggs under different conditions of water stress.

    PubMed

    Sánchez Thevenet, Paula; Alvarez, Hector Manuel; Basualdo, Juan Angel

    2017-06-01

    Taenia hydatigena eggs were investigated for morphological and physiological changes under water stress conditions. Fresh eggs were exposed at 31%, 47% and 89% of relative humidity (RH), and survival, size and ultrastructural changes were accounted up to 365 days of exposition. The article shows how each RH environment affects the vitality of the eggs. Results of this study suggest that T. hydatigena eggs have mechanisms to withstand water stress, indicating that the eggs clustering improves protection against desiccation, and that endogenous metabolism using triacylglycerols play an important role in the maintenance of embryo vitality under low, medium and high relative humidity conditions. This contributes to understanding the water stress resistance mechanism in eggs belonging to Taeniidae family. The findings shown herein have provided a basis to better comprehend basic biology and epidemiology of the cysticercosis caused by T. hydatigena. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Crystallization and Thermoelectric Transport in Semiconductor Micro- and Nanostructures Under Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokirmak, Ali; Silva, Helena

    This project focused on thermoelectric transport in semiconductor micro and nanostructures where moderate and typical operating voltages and currents lead to extreme thermal gradients and current densities. Models that describe behavior of semiconducting materials typically assume an equilibrium condition or slight deviations from it. In these cases the generation-recombination processes are assumed to have reached a local equilibrium for a given temperature. Hence, free carrier concentrations and their mobilities, band-gap, thermal conductivity, thermoelectric properties, mobility of atoms and mechanical properties of the material, can be described as a function of temperature. In the case of PN junctions under electrical bias,more » carrier concentrations can change up to ~ 1020 cm-3 and a drift-diffusion approximation is typically used to obtain the carrier concentrations while assuming that the material properties do not change. In non-equilibrium conditions, the assumption that the material properties remain the same may not be valid. While the increased conduction-band electron concentration may not have a drastic effect on the material, large hole concentration is expected to soften the material as ‘a hole’ comes into existence as a broken bond in the lattice. As the hole density approaches 1022 cm-3, the number of bonds holding the lattice together is significantly reduced, making it easier to break additional bonds, reduce band-gap and inhibit phonon transport. As these holes move away from where they were generated, local properties are expected to deviate significantly from the equilibrium case. Hence, temperature alone is not sufficient to describe the behavior of the material. The behavior of the solid material close to a molten region (liquid-solid interfaces) is also expected to deviate from the equilibrium case as a function of hole injection rate, which can be drastically increased or decreased in the presence of an electric field. In the

  13. Selection criteria for wear resistant powder coatings under extreme erosive wear conditions

    NASA Astrophysics Data System (ADS)

    Kulu, P.; Pihl, T.

    2002-12-01

    Wear-resistant thermal spray coatings for sliding wear are hard but brittle (such as carbide and oxide based coatings), which makes them useless under impact loading conditions and sensitive to fatigue. Under extreme conditions of erosive wear (impact loading, high hardness of abrasives, and high velocity of abradant particles), composite coatings ensure optimal properties of hardness and toughness. The article describes tungsten carbide-cobalt (WC-Co) systems and self-fluxing alloys, containing tungsten carbide based hardmetal particles [NiCrSiB-(WC-Co)] deposited by the detonation gun, continuous detonation spraying, and spray fusion processes. Different powder compositions and processes were studied, and the effect of the coating structure and wear parameters on the wear resistance of coatings are evaluated. The dependence of the wear resistance of sprayed and fused coatings on their hardness is discussed, and hardness criteria for coating selection are proposed. The so-called “double cemented” structure of WC-Co based hardmetal or metal matrix composite coatings, as compared with a simple cobalt matrix containing particles of WC, was found optimal. Structural criteria for coating selection are provided. To assist the end user in selecting an optimal deposition method and materials, coating selection diagrams of wear resistance versus hardness are given. This paper also discusses the cost-effectiveness of coatings in the application areas that are more sensitive to cost, and composite coatings based on recycled materials are offered.

  14. Knockdown of an inflorescence meristem-specific cytokinin oxidase - OsCKX2 in rice reduces yield penalty under salinity stress condition.

    PubMed

    Joshi, Rohit; Sahoo, Khirod Kumar; Tripathi, Amit Kumar; Kumar, Ritesh; Gupta, Brijesh Kumar; Pareek, Ashwani; Singla-Pareek, Sneh Lata

    2018-05-01

    Cytokinins play a significant role in determining grain yield in plants. Cytokinin oxidases catalyse irreversible degradation of cytokinins and hence modulate cellular cytokinin levels. Here, we studied the role of an inflorescence meristem-specific rice cytokinin oxidase - OsCKX2 - in reducing yield penalty under salinity stress conditions. We utilized an RNAi-based approach to study the function of OsCKX2 in maintaining grain yield under salinity stress condition. Ultra-performance liquid chromatography-based estimation revealed a significant increase in cytokinins in the inflorescence meristem of OsCKX2-knockdown plants. To determine if there exists a correlation between OsCKX2 levels and yield under salinity stress condition, we assessed the growth, physiology and grain yield of OsCKX2-knockdown plants vis-à-vis the wild type. OsCKX2-knockdown plants showed better vegetative growth, higher relative water content and photosynthetic efficiency and reduced electrolyte leakage as compared with the wild type under salinity stress. Importantly, we found a negative correlation between OsCKX2 expression and plant productivity as evident by assessment of agronomical parameters such as panicle branching, filled grains per plant and harvest index both under control and salinity stress conditions. These results suggest that OsCKX2, via controlling cytokinin levels, regulates floral primordial activity modulating rice grain yield under normal as well as abiotic stress conditions. © 2017 John Wiley & Sons Ltd.

  15. Conditioned Fear Extinction and Generalization in Post-Traumatic Stress Disorder

    DTIC Science & Technology

    2012-08-01

    ORGANIZATION: Emory University Atlanta, GA 30322-1018 REPORT DATE: August 2012 TYPE OF REPORT: Annual Report PREPARED FOR: U.S...To) 1 August 2011–31 July 2012 4. TITLE AND SUBTITLE Conditioned Fear Extinction and Generalization in Post-Traumatic Stress Disorder...TT   100   RS4606   RGS2   CC   109   CG   88   GG   28   RS4680   COMT   AA   44   GA   99   GG   83   RS4875113

  16. Leaves of field-grown mastic trees suffer oxidative stress at the two extremes of their lifespan.

    PubMed

    Juvany, Marta; Müller, Maren; Munné-Bosch, Sergi

    2012-08-01

    Leaf senescence is a complex phenomenon occurring in all plant species, but it is still poorly understood in plants grown in Mediterranean field conditions and well-adapted to harsh climatic conditions. To better understand the physiological processes underlying leaf senescence in mastic trees (Pistacia lentiscus L.), we evaluated leaf growth, water and N content, photosystem II (PSII) photochemistry, lipid peroxidation and levels of photosynthetic pigments, antioxidants, abscisic acid, and salicylic acid and jasmonic acid during the complete leaf lifespan, from early expansion to late senescence in relation to natural climatic conditions in the field. While mature leaves suffered from water and N deficit during late spring and summer, both young (emerging) and old (senescing) leaves were most sensitive to photo-oxidative stress, as indicated by reductions in the F(v)/F(m) ratio and enhanced lipid peroxidation during late autumn and winter. Reductions in the F(v)/F(m) ratio were associated with low α-tocopherol (vitamin E) levels, while very old, senescing leaves additionally showed severe anthocyanin losses. We have concluded that both young (emerging) and old (senescing) leaves suffer oxidative stress in mastic trees, which may be linked in part to suboptimal temperatures during late autumn and winter as well as to low vitamin E levels. © 2012 Institute of Botany, Chinese Academy of Sciences.

  17. Extreme embrittlement of austenitic stainless steel irradiated to 75-81 dpa at 335-360{degrees}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porollo, S.I.; Vorobjev, A.N.; Konobeev, Yu.V.

    1997-04-01

    It is generally accepted that void swelling of austenitic steels ceases below some temperature in the range 340-360{degrees}C, and exhibits relatively low swelling rates up to {approximately}400{degrees}C. This perception may not be correct at all irradiation conditions, however, since it was largely developed from data obtained at relatively high displacement rates in fast reactors whose inlet temperatures were in the range 360-370{degrees}C. There is an expectation, however, that the swelling regime can shift to lower temperatures at low displacement rates via the well-known {open_quotes}temperature shift{close_quotes} phenomenon. It is also known that the swelling rates at the lower end of themore » swelling regime increase continuously at a sluggish rate, never approaching the terminal 1%/dpa level within the duration of previous experiments. This paper presents the results of an experiment conducted in the BN-350 fast reactor in Kazakhstan that involved the irradiation of argon-pressurized thin-walled tubes (0-200 MPa hoop stress) constructed from Fe-16Cr-15Ni-3Mo-Nb stabilized steel in contact with the sodium coolant, which enters the reactor at {approx}270{degrees}C. Tubes in the annealed condition reached 75 dpa at 335{degrees}C, and another set in the 20% cold-worked condition reached 81 dpa at 360{degrees}C. Upon disassembly all tubes, except those in the stress-free condition, were found to have failed in an extremely brittle fashion. The stress-free tubes exhibited diameter changes that imply swelling levels ranging from 9 to 16%. It is expected that stress-enhancement of swelling induced even larger swelling levels in the stressed tubes.« less

  18. mRNA quality control is bypassed for immediate export of stress-responsive transcripts.

    PubMed

    Zander, Gesa; Hackmann, Alexandra; Bender, Lysann; Becker, Daniel; Lingner, Thomas; Salinas, Gabriela; Krebber, Heike

    2016-12-12

    Cells grow well only in a narrow range of physiological conditions. Surviving extreme conditions requires the instantaneous expression of chaperones that help to overcome stressful situations. To ensure the preferential synthesis of these heat-shock proteins, cells inhibit transcription, pre-mRNA processing and nuclear export of non-heat-shock transcripts, while stress-specific mRNAs are exclusively exported and translated. How cells manage the selective retention of regular transcripts and the simultaneous rapid export of heat-shock mRNAs is largely unknown. In Saccharomyces cerevisiae, the shuttling RNA adaptor proteins Npl3, Gbp2, Hrb1 and Nab2 are loaded co-transcriptionally onto growing pre-mRNAs. For nuclear export, they recruit the export-receptor heterodimer Mex67-Mtr2 (TAP-p15 in humans). Here we show that cellular stress induces the dissociation of Mex67 and its adaptor proteins from regular mRNAs to prevent general mRNA export. At the same time, heat-shock mRNAs are rapidly exported in association with Mex67, without the need for adapters. The immediate co-transcriptional loading of Mex67 onto heat-shock mRNAs involves Hsf1, a heat-shock transcription factor that binds to heat-shock-promoter elements in stress-responsive genes. An important difference between the export modes is that adaptor-protein-bound mRNAs undergo quality control, whereas stress-specific transcripts do not. In fact, regular mRNAs are converted into uncontrolled stress-responsive transcripts if expressed under the control of a heat-shock promoter, suggesting that whether an mRNA undergoes quality control is encrypted therein. Under normal conditions, Mex67 adaptor proteins are recruited for RNA surveillance, with only quality-controlled mRNAs allowed to associate with Mex67 and leave the nucleus. Thus, at the cost of error-free mRNA formation, heat-shock mRNAs are exported and translated without delay, allowing cells to survive extreme situations.

  19. Application of mean wall shear stress boundary condition to complex turbulent flows using a wall-modeled large eddy simulation

    NASA Astrophysics Data System (ADS)

    Cho, Minjeong; Lee, Jungil; Choi, Haecheon

    2012-11-01

    The mean wall shear stress boundary condition was successfully applied to turbulent channel and boundary flows using large eddy simulation without resolving near-wall region (see Lee, Cho & Choi in this book of abstracts). In the present study, we apply this boundary condition to more complex flows where flow separation and redeveloping flow exist. As a test problem, we consider flow over a backward-facing step at Reh = 22860 based on the step height. Turbulent boundary layer flow at the inlet (Reθ = 1050) is obtained using inflow generation technique by Lund et al. (1998) but with wall shear stress boundary condition. First, we prescribe the mean wall shear stress distribution obtained from DNS (Kim, 2011, Ph.D. Thesis, Stanford U.) as the boundary condition of present simulation. Here we give no-slip boundary condition at flow-reversal region. The present results are in good agreements with the flow statistics by DNS. Currently, a dynamic approach of obtaining mean wall shear stress based on the log-law is being applied to the flow having flow separation and its results will be shown in the presentation. Supported by the WCU and NRF programs.

  20. Ventilation Loss in the NASA Space Shuttle Crew Protective Garments: Potential for Heat Stress

    NASA Technical Reports Server (NTRS)

    Askew, Gregory K.; Kaufman, Jonathan W.

    1991-01-01

    The potential of the National Aeronautics and Space Administration (NASA) S1035 Launch/Entry suit (LES) for producing heat stress in a simulated Space Shuttle cabin environment has been studied. The testing was designed to determine if the NASA S1035 poses a greater threat of inducing heat stress than the NASA S1032. Conditions were designed to simulate an extreme prelaunch situation, with chamber temperatures maintained at dry bulb temperature 27.2 +/- 0.1 C, globe temperature - 27.3 +/- 0.1 C, and wet bulb temperature 21.1 +/- 0.3 C. Four males, aged 28-48, were employed in this study, with three subjects having exposures in all four conditions and the fourth subject exposed to 3 conditions. Test durations in the ventilated (V) and unventilated (UV) conditions were designed for 480 minutes, which all subjects achieved. No significant differences related to experimental conditions were noted in rectal temperatures, heart rates or sweat rates. The results indicate that the S1032 and S1035 garments, in either the V or UV state, poses no danger of inducing unacceptable heat stress under the conditions expected within the Shuttle cabin during launch or re-entry.

  1. Psychosocial work conditions, perceived stress, perceived muscular tension, and neck/shoulder symptoms among medical secretaries.

    PubMed

    Larsman, Pernilla; Kadefors, Roland; Sandsjö, Leif

    2013-01-01

    Unfavorable psychosocial working conditions are hypothesized to lead to perceived stress, which, in turn, can be related to an increased risk of development of neck/shoulder symptoms through increased and sustained muscle activation. The aim of the present study was to test this hypothesized process model among medical secretaries, a female-dominated profession characterized by a high amount of visual display unit use and a high prevalence of neck/shoulder symptoms. In this cross-sectional study, a questionnaire survey was conducted among medical secretaries (n = 200). The proposed process model was tested using a path model framework. The results indicate that high work demands were related to high perceived stress, which in turn was related to a high perceived muscle tension and neck/shoulder symptoms. Low influence at work was not related to perceived stress, but was directly related to a high perceived muscle tension. In general, these cross-sectional results lend tentative support for the hypothesis that adverse psychosocial work conditions (high work demands) may contribute to the development of neck/shoulder symptoms through the mechanism of stress-induced sustained muscular activation. This process model needs to be further tested in longitudinal studies.

  2. Palliative Care for Extremely Premature Infants and Their Families

    ERIC Educational Resources Information Center

    Boss, Renee D.

    2010-01-01

    Extremely premature infants face multiple acute and chronic life-threatening conditions. In addition, the treatments to ameliorate or cure these conditions often entail pain and discomfort. Integrating palliative care from the moment that extremely premature labor is diagnosed offers families and clinicians support through the process of defining…

  3. Stable pelagic vertebrate community structure through extreme Paleogene greenhouse conditions

    NASA Astrophysics Data System (ADS)

    Sibert, E. C.; Friedman, M.; Hull, P. M.; Hunt, G.; Norris, R. D.

    2016-02-01

    The species composition (structure) and energy transfer (function) of an ecosystem is reflected by the presence and type of consumers that it supports. Here we use ichthyoliths, microfossil fish teeth and shark denticles, to assess the ecological variability of the pelagic fish community structure and composition from the Late Cretaceous to the middle Eocene from a drill core in the South Pacific gyre (DSDP Site 596). We find that the overall vertebrate community structure, as measured by the relative abundance of sharks to ray-finned fishes, has a punctuated change at the Cretaceous/Paleogene mass extinction. The vertebrate community structure remained stable throughout the Paleogene despite a five-fold increase in overall abundance of ichthyoliths during the extreme greenhouse of the Early Eocene. Further, we use a novel system to quantify the morphological variation in fish teeth. We find that the morphospace occupied by the tooth assemblage is conserved throughout the interval, with a slight expansion following the Cretaceous-Paleogene mass extinction, and the evolution of a distinct morphotype-group around the Paleocene-Eocene boundary. While there are elevated rates of morphotype origination and extinction following the Cretaceous-Paleogene mass extinction, the extreme greenhouse warming of the Early Eocene and associated increase in fish production produce near-zero origination and extinction rates. The relative stability in composition of the pelagic vertebrate community during intervals of extreme climate change and across large ranges of total fish accumulation, suggests that pelagic ecosystem structure is robust to climate events, and that the overall structure of the pelagic fish community may be decoupled from both climate and ecosystem function.

  4. Real-time Continuous Assessment Method for Mental and Physiological Condition using Heart Rate Variability

    NASA Astrophysics Data System (ADS)

    Yoshida, Yutaka; Yokoyama, Kiyoko; Ishii, Naohiro

    It is necessary to monitor the daily health condition for preventing stress syndrome. In this study, it was proposed the method assessing the mental and physiological condition, such as the work stress or the relaxation, using heart rate variability at real time and continuously. The instantanuous heart rate (HR), and the ratio of the number of extreme points (NEP) and the number of heart beats were calculated for assessing mental and physiological condition. In this method, 20 beats heart rate were used to calculate these indexes. These were calculated in one beat interval. Three conditions, which are sitting rest, performing mental arithmetic and watching relaxation movie, were assessed using our proposed algorithm. The assessment accuracies were 71.9% and 55.8%, when performing mental arithmetic and watching relaxation movie respectively. In this method, the mental and physiological condition was assessed using only 20 regressive heart beats, so this method is considered as the real time assessment method.

  5. The relations between posttraumatic stress disorder symptoms and disorder of extreme stress (not otherwise specified) symptoms following war captivity.

    PubMed

    Zerach, Gadi; Solomon, Zahava

    2013-01-01

    War captivity is a recognized pathogenic agent for both posttraumatic stress disorder (PTSD) symptoms and disorder of extreme stress not otherwise specified (DESNOS) symptoms, also known as Complex PTSD. However, the relationship between the two disorders remains unclear. While some scholars assume that the two diagnoses are overlapping and share the same predictors, others believe that the two diagnoses are relatively independent and differ in phenomenology and functional impairment. This study aims to assess both PTSD and DESNOS symptoms and their inter-relations among ex-prisoners of war (ex-POWs) and matched controls, 35 years after the end of the war. The sample included two groups of male Israeli veterans from the 1973 Yom Kippur War: ex-POWs (n = 176) and comparable veterans who had not been held captive (n = 118). PTSD and DESNOS symptoms, battlefield and captivity stressors, and ways of coping in captivity were assessed using self-report questionnaires in 2008. Ex-POWs reported a higher number of PTSD symptoms and higher rates of PTSD symptoms that fill criteria for the diagnosis of PTSD than controls. Furthermore, ex-POWs reported a higher number of DESNOS symptom clusters and higher rates of DESNOS symptoms that fill criteria for the diagnosis of DESNOS. Moreover, we found positive relationships between PTSD symptom clusters and DESNOS symptom clusters. Finally, weight loss and mental suffering in captivity, loss of emotional control and total number of DESNOS symptoms predicted total number of PTSD symptoms. However, only the total number of PTSD symptoms predicted the total number of DESNOS symptoms. This study demonstrated the heavy and extensive toll of war captivity, three decades after the ex-POWs' release from captivity. Importantly, approaching the publication of DSM-5, this study depicts both the high number of DESNOS symptom clusters alongside PTSD symptoms and highlights the complex relationship between the two diagnostic entities. Thus

  6. [Injury mechanisms in extreme violence settings].

    PubMed

    Arcaute-Velazquez, Fernando Federico; García-Núñez, Luis Manuel; Noyola-Vilallobos, Héctor Faustino; Espinoza-Mercado, Fernando; Rodríguez-Vega, Carlos Eynar

    2016-01-01

    Extreme violence events are consequence of current world-wide economic, political and social conditions. Injury patterns found among victims of extreme violence events are very complex, obeying several high-energy injury mechanisms. In this article, we present the basic concepts of trauma kinematics that regulate the clinical approach to victims of extreme violence events, in the hope that clinicians increase their theoretical armamentarium, and reflecting on obtaining better outcomes. Copyright © 2016. Published by Masson Doyma México S.A.

  7. Slow waves moving near the openings in highly stressed conditions

    NASA Astrophysics Data System (ADS)

    Guzev, Michail; Makarov, Vladimir

    2017-04-01

    In situ experiments have shown the unusual deformation waves near the openings on high depth of the construction. Process of the wave spreading is beginning after the mining and has two stages of the zonal mesocracking structure formation and development [1]. Extending in a radial direction, the wave poorly fades with distance. For phenomenon modelling the theoretical decision for non-Eucledian models about opening of round cross-section in strongly compressed rock massif is used [2]. The decision qualitatively repeats behaviour of a wave in a rock mass, adjustment of phenomenological parametres is executed. References [1] Vladimir V. Makarov, Mikhail A. Guzev, Vladimir N. Odintsev, Lyudmila S. Ksendzenko (2016) Periodical zonal character of damage near the openings in highly-stressed rock mass conditions. Journal of Rock Mechanics and Geotechnical Engineering. Volume 8, Issue 2, pp. 164-169. [2] M.A. Guzev, V.V. Makarov, 2007. Deforming and failure of the high stressed rocks around the openings, RAS Edit., Vladivostok, 2007, P. 232 (in Russian).

  8. Condition assessment of timber bridges. 2, Evaluation of several stress-wave tools

    Treesearch

    Brian K. Brashaw; Robert J. Vatalaro; James P. Wacker; Robert J. Ross

    2005-01-01

    This study was conducted to evaluate the accuracy and reliability of several stress-wave devices widely used for locating deteriorated areas in timber bridge members. Bridge components containing different levels of natural decay were tested using various devices. The specimens were then sawn (along their length) into slabs to expose their interior condition. The...

  9. Assessment of extreme value distributions for maximum temperature in the Mediterranean area

    NASA Astrophysics Data System (ADS)

    Beck, Alexander; Hertig, Elke; Jacobeit, Jucundus

    2015-04-01

    Extreme maximum temperatures highly affect the natural as well as the societal environment Heat stress has great effects on flora, fauna and humans and culminates in heat related morbidity and mortality. Agriculture and different industries are severely affected by extreme air temperatures. Even more under climate change conditions, it is necessary to detect potential hazards which arise from changes in the distributional parameters of extreme values, and this is especially relevant for the Mediterranean region which is characterized as a climate change hot spot. Therefore statistical approaches are developed to estimate these parameters with a focus on non-stationarities emerging in the relationship between regional climate variables and their large-scale predictors like sea level pressure, geopotential heights, atmospheric temperatures and relative humidity. Gridded maximum temperature data from the daily E-OBS dataset (Haylock et al., 2008) with a spatial resolution of 0.25° x 0.25° from January 1950 until December 2012 are the predictands for the present analyses. A s-mode principal component analysis (PCA) has been performed in order to reduce data dimension and to retain different regions of similar maximum temperature variability. The grid box with the highest PC-loading represents the corresponding principal component. A central part of the analyses is the model development for temperature extremes under the use of extreme value statistics. A combined model is derived consisting of a Generalized Pareto Distribution (GPD) model and a quantile regression (QR) model which determines the GPD location parameters. The QR model as well as the scale parameters of the GPD model are conditioned by various large-scale predictor variables. In order to account for potential non-stationarities in the predictors-temperature relationships, a special calibration and validation scheme is applied, respectively. Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P

  10. Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, Y.; Di Sabatino, S.; Martilli, A.; Chan, P. W.

    2018-03-01

    Anthropogenic heat flux is the heat generated by human activities in the urban canopy layer, which is considered the main contributor to the urban heat island (UHI). The UHI can in turn increase the use and energy consumption of air-conditioning systems. In this study, two effective methods for water-cooling air-conditioning systems in non-domestic areas, including the direct cooling system and central piped cooling towers (CPCTs), are physically based, parameterized, and implemented in a weather research and forecasting model at the city scale of Hong Kong. An extreme high temperature event (June 23-28, 2016) in the urban areas was examined, and we assessed the effects on the surface thermal environment, the interaction of sea-land breeze circulation and urban heat island circulation, boundary layer dynamics, and a possible reduction of energy consumption. The results showed that both water-cooled air-conditioning systems could reduce the 2 m air temperature by around 0.5 °C-0.8 °C during the daytime, and around 1.5 °C around 7:00-8:00 pm when the planetary boundary layer (PBL) height was confined to a few hundred meters. The CPCT contributed around 80%-90% latent heat flux and significantly increased the water vapor mixing ratio in the atmosphere by around 0.29 g kg-1 on average. The implementation of the two alternative air-conditioning systems could modify the heat and momentum of turbulence, which inhibited the evolution of the PBL height (a reduction of 100-150 m), reduced the vertical mixing, presented lower horizontal wind speed and buoyant production of turbulent kinetic energy, and reduced the strength of sea breeze and UHI circulation, which in turn affected the removal of air pollutants. Moreover, the two alternative air-conditioning systems could significantly reduce the energy consumption by around 30% during extreme high temperature events. The results of this study suggest potential UHI mitigation strategies and can be extended to

  11. Oxidative stress in severe pulmonary trauma in critical ill patients. Antioxidant therapy in patients with multiple trauma--a review.

    PubMed

    Bedreag, Ovidiu Horea; Rogobete, Alexandru Florin; Sarandan, Mirela; Cradigati, Alina Carmen; Papurica, Marius; Dumbuleu, Maria Corina; Chira, Alexandru Mihai; Rosu, Oana Maria; Sandesc, Dorel

    2015-01-01

    Multiple trauma patients require extremely good management and thus, the trauma team needs to be prepared and to be up to date with the new standards of intensive therapy. Oxidative stress and free radicals represent an extremely aggressive factor to cells, having a direct consequence upon the severity of lung inflammation. Pulmonary tissue is damaged by oxidative stress, leading to biosynthesis of mediators that exacerbate inflammation modulators. The subsequent inflammation spreads throughout the body, leading most of the time to multiple organ dysfunction and death. In this paper, we briefly present an update of biochemical effects of oxidative stress and free radical damage to the pulmonary tissue in patients in critical condition in the intensive care unit. Also, we would like to present a series of active substances that substantially reduce the aggressiveness of free radicals, increasing the chances of survival.

  12. Differential expression of catalases in Vibrio parahaemolyticus under various stress conditions.

    PubMed

    Lin, Ling-Chun; Lin, Guang-Huey; Wang, Zi-Li; Tseng, Yi-Hsiung; Yu, Mei-Shiuan

    2015-10-01

    Among antioxidant enzymes, catalases protect microorganisms by degrading hydrogen peroxide under oxidative stress. In this study, the activities of at least four Vibrio parahaemolyticus catalases (Kat1 to Kat4) were differentially detected during different growth stages and under various stress conditions using zymographic analysis. Our results showed that only Kat2 is stable at 55 °C. Kat1 and Kat2 respond to hydrogen peroxide during the early stationary and exponential growth phases, respectively and the response decreases upon entering the stationary phase. Kat3 and Kat4 are bifunctional, exhibiting both catalase and peroxidase activities and are only expressed during the stationary phase, under starvation or under stress at pH 5.5. Our study also shows that expression of Kat3 and Kat4 depends on RpoS. We confirm that both monofunctional and bifunctional catalases are expressed and function differentially under various stresses to contribute total catalase activities for the survival of V. parahaemolyticus. A comparative genomic study among Vibrio species revealed that only V. parahaemolyticus contains two copies of genes that encode monofunctional and bifunctional catalases. We propose that both types of catalases, whether evolved or acquired horizontally through long-term evolution, may play crucial protective roles in V. parahaemolyticus in response to environmental fluctuations. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Subjective Stress, Salivary Cortisol, and Electrophysiological Responses to Psychological Stress

    PubMed Central

    Qi, Mingming; Gao, Heming; Guan, Lili; Liu, Guangyuan; Yang, Juan

    2016-01-01

    The present study aimed to investigate the subjective stress, salivary cortisol, and electrophysiological responses to psychological stress induced by a modified version of a mental arithmetic task. Fifteen participants were asked to estimate whether the multiplication product of two-decimal numbers was above 10 or not either with a time limit (the stress condition) or without a time limit (the control condition). The results showed that participants reported higher levels of stress, anxiety, and negative affect in the stress condition than they did in the control condition. Moreover, the salivary cortisol level continued to increase after the stress condition but exhibited a sharp decrease after the control condition. In addition, the electrophysiological data showed that the amplitude of the frontal-central N1 component was larger for the stress condition than it was for the control condition, while the amplitude of the frontal-central P2 component was larger for the control condition than it was for the stress condition. Our study suggests that the psychological stress characteristics of time pressure and social-evaluative threat caused dissociable effects on perception and on the subsequent attentional resource allocation of visual information. PMID:26925026

  14. Physiological response of Pinus halepensis needles under ozone and water stress conditions.

    PubMed

    Manes, Fausto; Donato, Eugenio; Vitale, Marcello

    2001-10-01

    The aim of this study was to evaluate how physiological processes of potted Pinus halepensis plants, grown under controlled conditions, were affected by ozone (O3) and/or water stress, integrating the gas exchange and biochemical data with fluorescence OJIP polyphasic transient data. Plants submitted to only water stress (T1) and with ozone (T3) showed a strong decrease in stomatal conductance and gas exchange, coinciding with a reduction of maximum yield of photochemistry (varphipo) and very negative values of leaf water potential. Simultaneously, a great increase of both PSII antenna size, indicated by absorption per reaction centre, and electron transport per reaction centre were found. The reduction of photosynthesis in the O3-treated plants (T2) by a slowing down of the Calvin cycle was supported by the increase of related fluorescence parameters such as relative variable fluorescence, heat de-excitation constant, energy de-excitation by spillover, and the decrease of varphipo. We suggest an antagonistic effect between the two stresses to explain the delayed ozone-induced decrease of stomatal conductance values for T3 with respect to T1 plants, by an alteration of the physiological mechanisms of stomatal opening, which involve the increase of intra-cellular free-calcium induced by ABA under co-occurring water shortage. We emphasise the importance of considering the intensity of the individual stress factor in studies concerning the interaction of stresses.

  15. Extreme warmth and heat-stressed plankton in the tropics during the Paleocene-Eocene Thermal Maximum.

    PubMed

    Frieling, Joost; Gebhardt, Holger; Huber, Matthew; Adekeye, Olabisi A; Akande, Samuel O; Reichart, Gert-Jan; Middelburg, Jack J; Schouten, Stefan; Sluijs, Appy

    2017-03-01

    Global ocean temperatures rapidly warmed by ~5°C during the Paleocene-Eocene Thermal Maximum (PETM; ~56 million years ago). Extratropical sea surface temperatures (SSTs) met or exceeded modern subtropical values. With these warm extratropical temperatures, climate models predict tropical SSTs >35°C-near upper physiological temperature limits for many organisms. However, few data are available to test these projected extreme tropical temperatures or their potential lethality. We identify the PETM in a shallow marine sedimentary section deposited in Nigeria. On the basis of planktonic foraminiferal Mg/Ca and oxygen isotope ratios and the molecular proxy [Formula: see text], latest Paleocene equatorial SSTs were ~33°C, and [Formula: see text] indicates that SSTs rose to >36°C during the PETM. This confirms model predictions on the magnitude of polar amplification and refutes the tropical thermostat theory. We attribute a massive drop in dinoflagellate abundance and diversity at peak warmth to thermal stress, showing that the base of tropical food webs is vulnerable to rapid warming.

  16. Comparison of estimated core body temperature measured with the BioHarness and rectal temperature under several heat stress conditions.

    PubMed

    Seo, Yongsuk; DiLeo, Travis; Powell, Jeffrey B; Kim, Jung-Hyun; Roberge, Raymond J; Coca, Aitor

    2016-08-01

    Monitoring and measuring core body temperature is important to prevent or minimize physiological strain and cognitive dysfunction for workers such as first responders (e.g., firefighters) and military personnel. The purpose of this study is to compare estimated core body temperature (Tco-est), determined by heart rate (HR) data from a wearable chest strap physiology monitor, to standard rectal thermometry (Tre) under different conditions.  Tco-est and Tre measurements were obtained in thermoneutral and heat stress conditions (high temperature and relative humidity) during four different experiments including treadmill exercise, cycling exercise, passive heat stress, and treadmill exercise while wearing personal protective equipment (PPE).  Overall, the mean Tco-est did not differ significantly from Tre across the four conditions. During exercise at low-moderate work rates under heat stress conditions, Tco-est was consistently higher than Tre at all-time points. Tco-est underestimated temperature compared to Tre at rest in heat stress conditions and at a low work rate under heat stress while wearing PPE. The mean differences between the two measurements ranged from -0.1 ± 0.4 to 0.3 ± 0.4°C and Tco-est correlated well with HR (r = 0.795 - 0.849) and mean body temperature (r = 0.637 - 0.861).  These results indicate that, the comparison of Tco-est to Tre may result in over- or underestimation which could possibly lead to heat-related illness during monitoring in certain conditions. Modifications to the current algorithm should be considered to address such issues.

  17. Extreme river flow dependence in Northern Scotland

    NASA Astrophysics Data System (ADS)

    Villoria, M. Franco; Scott, M.; Hoey, T.; Fischbacher-Smith, D.

    2012-04-01

    Various methods for the spatial analysis of hydrologic data have been developed recently. Here we present results using the conditional probability approach proposed by Keef et al. [Appl. Stat. (2009): 58,601-18] to investigate spatial interdependence in extreme river flows in Scotland. This approach does not require the specification of a correlation function, being mostly suitable for relatively small geographical areas. The work is motivated by the Flood Risk Management Act (Scotland (2009)) which requires maps of flood risk that take account of spatial dependence in extreme river flow. The method is based on two conditional measures of spatial flood risk: firstly the conditional probability PC(p) that a set of sites Y = (Y 1,...,Y d) within a region C of interest exceed a flow threshold Qp at time t (or any lag of t), given that in the specified conditioning site X > Qp; and, secondly the expected number of sites within C that will exceed a flow Qp on average (given that X > Qp). The conditional probabilities are estimated using the conditional distribution of Y |X = x (for large x), which can be modeled using a semi-parametric approach (Heffernan and Tawn [Roy. Statist. Soc. Ser. B (2004): 66,497-546]). Once the model is fitted, pseudo-samples can be generated to estimate functionals of the joint tails of the distribution of (Y,X). Conditional return level plots were directly compared to traditional return level plots thus improving our understanding of the dependence structure of extreme river flow events. Confidence intervals were calculated using block bootstrapping methods (100 replicates). We report results from applying this approach to a set of four rivers (Dulnain, Lossie, Ewe and Ness) in Northern Scotland. These sites were chosen based on data quality, spatial location and catchment characteristics. The river Ness, being the largest (catchment size 1839.1km2) was chosen as the conditioning river. Both the Ewe (441.1km2) and Ness catchments have

  18. Probabilistic forecasting of extreme weather events based on extreme value theory

    NASA Astrophysics Data System (ADS)

    Van De Vyver, Hans; Van Schaeybroeck, Bert

    2016-04-01

    Extreme events in weather and climate such as high wind gusts, heavy precipitation or extreme temperatures are commonly associated with high impacts on both environment and society. Forecasting extreme weather events is difficult, and very high-resolution models are needed to describe explicitly extreme weather phenomena. A prediction system for such events should therefore preferably be probabilistic in nature. Probabilistic forecasts and state estimations are nowadays common in the numerical weather prediction community. In this work, we develop a new probabilistic framework based on extreme value theory that aims to provide early warnings up to several days in advance. We consider the combined events when an observation variable Y (for instance wind speed) exceeds a high threshold y and its corresponding deterministic forecasts X also exceeds a high forecast threshold y. More specifically two problems are addressed:} We consider pairs (X,Y) of extreme events where X represents a deterministic forecast, and Y the observation variable (for instance wind speed). More specifically two problems are addressed: Given a high forecast X=x_0, what is the probability that Y>y? In other words: provide inference on the conditional probability: [ Pr{Y>y|X=x_0}. ] Given a probabilistic model for Problem 1, what is the impact on the verification analysis of extreme events. These problems can be solved with bivariate extremes (Coles, 2001), and the verification analysis in (Ferro, 2007). We apply the Ramos and Ledford (2009) parametric model for bivariate tail estimation of the pair (X,Y). The model accommodates different types of extremal dependence and asymmetry within a parsimonious representation. Results are presented using the ensemble reforecast system of the European Centre of Weather Forecasts (Hagedorn, 2008). Coles, S. (2001) An Introduction to Statistical modelling of Extreme Values. Springer-Verlag.Ferro, C.A.T. (2007) A probability model for verifying deterministic

  19. Mapping the Decadal Spatio-temporal Variation of Social Vulnerability to Hydro-climatic Extremes over India

    NASA Astrophysics Data System (ADS)

    H, V.; Karmakar, S.; Ghosh, S.

    2015-12-01

    Human induced global warming is unequivocal and observational studies shows that, this has led to increase in the intensity and frequency of hydro-climatic extremes, most importantly precipitation extreme, heat waves and drought; and also is expected to be increased in the future. The occurrence of these extremes have a devastating effects on nation's economy and on societal well-being. Previous studies on India provided the evidences of significant changes in the precipitation extreme from pre- to post-1950, with huge spatial heterogeneity; and projections of heat waves indicated that significant part of India will experience heat stress conditions in the future. Under these circumstance, it is necessary to develop a nation-wide social vulnerability map to scrutinize the adequacy of existing emergency management. Yet there has been no systematic past efforts on mapping social vulnerability to hydro-climatic extremes at nation-wide for India. Therefore, immediate efforts are required to quantify the social vulnerability, particularly developing country like India, where major transformations in demographic characteristics and development patterns are evident during past decades. In the present study, we perform a comprehensive spatio-temporal social vulnerability analysis by considering multiple sensitive indicators for three decades (1990-2010) which identifies the hot-spots, with higher vulnerability to hydro-climatic extremes. The population datasets are procured from Census of India and the meteorological datasets are obtained from India Meteorological Department (IMD). The study derives interesting results on decadal changes of spatial distribution of risk, considering social vulnerability and hazard to extremes.

  20. Correlation between structural and semiconductor-metal changes and extreme conditions materials chemistry in Ge-Sn.

    PubMed

    Guillaume, Christophe L; Serghiou, George; Thomson, Andrew; Morniroli, Jean-Paul; Frost, Dan J; Odling, Nicholas; Jeffree, Chris E

    2010-09-20

    High pressure and temperature experiments on Ge-Sn mixtures to 24 GPa and 2000 K reveal segregation of Sn from Ge below 10 GPa whereas Ge-Sn agglomerates persist above 10 GPa regardless of heat treatment. At 10 GPa Ge reacts with Sn to form a tetragonal P4(3)2(1)2 Ge(0.9)Sn(0.1) solid solution on recovery, of interest for optoelectronic applications. Using electron diffraction and scanning electron microscopy measurements in conjunction with a series of tailored experiments promoting equilibrium and kinetically hindered synthetic conditions, we provide a step by step correlation between the semiconductor-metal and structural changes of the solid and liquid states of the two elements, and whether they segregate, mix or react upon compression. We identify depletion zones as an effective monitor for whether the process is moving toward reaction or segregation. This work hence also serves as a reference for interpretation of complex agglomerates and for developing successful synthesis conditions for new materials using extremes of pressure and temperature.

  1. Zinc is released by cultured astrocytes as a gliotransmitter under hypoosmotic stress-loaded conditions and regulates microglial activity.

    PubMed

    Segawa, Shohei; Nishiura, Takeshi; Furuta, Takahiro; Ohsato, Yuki; Tani, Misaki; Nishida, Kentaro; Nagasawa, Kazuki

    2014-01-17

    Astrocytes contribute to the maintenance of brain homeostasis via the release of gliotransmitters such as ATP and glutamate. Here we examined whether zinc was released from astrocytes under stress-loaded conditions, and was involved in the regulation of microglial activity as a gliotransmitter. Hypoosmotic stress was loaded to astrocytes using balanced salt solution prepared to 214-314 mOsmol/L, and then intra- and extra-cellular zinc levels were assessed using Newport Green DCF diacetate (NG) and ICP-MS, respectively. Microglial activation by the astrocytic supernatant was assessed by their morphological changes and poly(ADP-ribose) (PAR) polymer accumulation. Exposure of astrocytes to hypoosmotic buffer, increased the extracellular ATP level in osmolarity-dependent manners, indicating a load of hypoosmotic stress. In hypoosmotic stress-loaded astrocytes, there were apparent increases in the intra- and extra-cellular zinc levels. Incubation of microglia in the astrocytic conditioned medium transformed them into the activated "amoeboid" form and induced PAR formation. Administration of an extracellular zinc chelator, CaEDTA, to the astrocytic conditioned medium almost completely prevented the microglial activation. Treatment of astrocytes with an intracellular zinc chelator, TPEN, suppressed the hypoosmotic stress-increased intracellular, but not the extracellular, zinc level, and the increase in the intracellular zinc level was blocked partially by a nitric oxide synthase inhibitor, but not by CaEDTA, indicating that the mechanisms underlying the increases in the intra- and extra-cellular zinc levels might be different. These findings suggest that under hypoosmotic stress-loaded conditions, zinc is released from astrocytes and then plays a primary role in microglial activation as a gliotransmitter. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Prenatal stress alters amygdala functional connectivity in preterm neonates.

    PubMed

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Sze, Gordon; Sinha, Rajita; Constable, R Todd; Ment, Laura R

    2016-01-01

    Exposure to prenatal and early-life stress results in alterations in neural connectivity and an increased risk for neuropsychiatric disorders. In particular, alterations in amygdala connectivity have emerged as a common effect across several recent studies. However, the impact of prenatal stress exposure on the functional organization of the amygdala has yet to be explored in the prematurely-born, a population at high risk for neuropsychiatric disorders. We test the hypothesis that preterm birth and prenatal exposure to maternal stress alter functional connectivity of the amygdala using two independent cohorts. The first cohort is used to establish the effects of preterm birth and consists of 12 very preterm neonates and 25 term controls, all without prenatal stress exposure. The second is analyzed to establish the effects of prenatal stress exposure and consists of 16 extremely preterm neonates with prenatal stress exposure and 10 extremely preterm neonates with no known prenatal stress exposure. Standard resting-state functional magnetic resonance imaging and seed connectivity methods are used. When compared to term controls, very preterm neonates show significantly reduced connectivity between the amygdala and the thalamus, the hypothalamus, the brainstem, and the insula (p < 0.05). Similarly, when compared to extremely preterm neonates without exposure to prenatal stress, extremely preterm neonates with exposure to prenatal stress show significantly less connectivity between the left amygdala and the thalamus, the hypothalamus, and the peristriate cortex (p < 0.05). Exploratory analysis of the combined cohorts suggests additive effects of prenatal stress on alterations in amygdala connectivity associated with preterm birth. Functional connectivity from the amygdala to other subcortical regions is decreased in preterm neonates compared to term controls. In addition, these data, for the first time, suggest that prenatal stress exposure amplifies these

  3. Environmental conditions can modulate the links among oxidative stress, age, and longevity.

    PubMed

    Marasco, Valeria; Stier, Antoine; Boner, Winnie; Griffiths, Kate; Heidinger, Britt; Monaghan, Pat

    2017-06-01

    Understanding the links between environmental conditions and longevity remains a major focus in biological research. We examined within-individual changes between early- and mid-adulthood in the circulating levels of four oxidative stress markers linked to ageing, using zebra finches (Taeniopygia guttata): a DNA damage product (8-hydroxy-2'-deoxyguanosine; 8-OHdG), protein carbonyls (PC), non-enzymatic antioxidant capacity (OXY), and superoxide dismutase activity (SOD). We further examined whether such within-individual changes differed among birds living under control (ad lib food) or more challenging environmental conditions (unpredictable food availability), having previously found that the latter increased corticosterone levels when food was absent but improved survival over a three year period. Our key findings were: (i) 8-OHdG and PC increased with age in both environments, with a higher increase in 8-OHdG in the challenging environment; (ii) SOD increased with age in the controls but not in the challenged birds, while the opposite was true for OXY; (iii) control birds with high levels of 8-OHdG died at a younger age, but this was not the case in challenged birds. Our data clearly show that while exposure to the potentially damaging effects of oxidative stress increases with age, environmental conditions can modulate the pace of this age-related change. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Vulnerability and resilience in a group intervention with hospital personnel during exposure to extreme and prolonged war stress.

    PubMed

    Palgi, Yuval; Ben-Ezra, Menachem; Possick, Chaya

    2012-02-01

    The current study presents a pilot demonstration of a new therapeutic procedure to mitigate symptoms of post-traumatic stress disorder (PTSD). The pilot took place during the Second Lebanon War. Vulnerability and resilience statements, as well as post-traumatic symptoms, were measured among special army administrative staff (SAAS) who worked in a hospital setting during extreme and prolonged war stress. All 13 soldiers in the unit studied participated in seven group therapy intervention sessions. It was hypothesized that shifting the focus of therapeutic intervention from the scenes of the events to the personal and professional narratives of preparing for the event would change the content of the soldiers' narratives. It was believed that subtracting the number of positive statements from the number of negative statements would yield increasingly higher "resilience scores" during and after the war. It also was believed that such a change would be reflected in reduction of post-traumatic symptoms. As expected, the participants showed a decrease in vulnerability and an increase in resilience contents, as well as a decrease in traumatic symptoms during and after the war. These findings may reflect the effects of the ceasefire, the mutually supportive attitude of the participants, and the therapeutic interventions.

  5. [Effect of exogenous sucrose on growth and active ingredient content of licorice seedlings under salt stress conditions].

    PubMed

    Liu, Fu-zhi; Yang, Jun

    2015-11-01

    Licorice seedlings were taken as experimental materials, an experiment was conducted to study the effects of exogenous sucrose on growth and active ingredient content of licorice seedlings under NaCl stress conditions. The results of this study showed that under salt stress conditions, after adding a certain concentration of exogenous sucrose, the licorice seedlings day of relative growth rate was increasing, and this stress can be a significant weakening effect, indicating that exogenous sucrose salt stress-relieving effect. The total flavonoids and phenylalanine ammonia lyase (PAL) activity were significantly increased, the exogenous sucrose can mitigated the seedling roots under salt stress, the licorice flavonoid content in the enhanced growth was largely due to the activity of PAL an increased, when the concentration of exogenous sucrose wae 10 mmol x L(-1), PAL activity reaching a maximum, when the concentration of exogenous sucrose was 15 mmol x L(-1), PAL activity turned into a downward trend, the results indicating that this mitigation has concentration effect. After applying different concentrations of exogenous sugar, the contents of liquiritin changes with the change of flavonoids content was similar. After applying different concentrations of exogenous sucrose, the content of licorice acid under salt stress was higher than the levels were not reached during salt stress, the impact of exogenous sucrose concentration gradient of licorice acid accumulation was not obvious.

  6. Generalized Unsafety Theory of Stress: Unsafe Environments and Conditions, and the Default Stress Response

    PubMed Central

    Brosschot, Jos F.; Thayer, Julian F.

    2018-01-01

    Prolonged physiological stress responses form an important risk factor for disease. According to neurobiological and evolution-theoretical insights the stress response is a default response that is always “on” but inhibited by the prefrontal cortex when safety is perceived. Based on these insights the Generalized Unsafety Theory of Stress (GUTS) states that prolonged stress responses are due to generalized and largely unconsciously perceived unsafety rather than stressors. This novel perspective necessitates a reconstruction of current stress theory, which we address in this paper. We discuss a variety of very common situations without stressors but with prolonged stress responses, that are not, or not likely to be caused by stressors, including loneliness, low social status, adult life after prenatal or early life adversity, lack of a natural environment, and less fit bodily states such as obesity or fatigue. We argue that in these situations the default stress response may be chronically disinhibited due to unconsciously perceived generalized unsafety. Also, in chronic stress situations such as work stress, the prolonged stress response may be mainly caused by perceived unsafety in stressor-free contexts. Thus, GUTS identifies and explains far more stress-related physiological activity that is responsible for disease and mortality than current stress theories. PMID:29518937

  7. Generalized Unsafety Theory of Stress: Unsafe Environments and Conditions, and the Default Stress Response.

    PubMed

    Brosschot, Jos F; Verkuil, Bart; Thayer, Julian F

    2018-03-07

    Prolonged physiological stress responses form an important risk factor for disease. According to neurobiological and evolution-theoretical insights the stress response is a default response that is always "on" but inhibited by the prefrontal cortex when safety is perceived. Based on these insights the Generalized Unsafety Theory of Stress (GUTS) states that prolonged stress responses are due to generalized and largely unconsciously perceived unsafety rather than stressors. This novel perspective necessitates a reconstruction of current stress theory, which we address in this paper. We discuss a variety of very common situations without stressors but with prolonged stress responses, that are not, or not likely to be caused by stressors, including loneliness, low social status, adult life after prenatal or early life adversity, lack of a natural environment, and less fit bodily states such as obesity or fatigue. We argue that in these situations the default stress response may be chronically disinhibited due to unconsciously perceived generalized unsafety. Also, in chronic stress situations such as work stress, the prolonged stress response may be mainly caused by perceived unsafety in stressor-free contexts. Thus, GUTS identifies and explains far more stress-related physiological activity that is responsible for disease and mortality than current stress theories.

  8. How extreme are extremes?

    NASA Astrophysics Data System (ADS)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2016-04-01

    High temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. Heat-wave indicators have been mainly developed with the aim of capturing the potential impacts on specific sectors (agriculture, health, wildfires, transport, power generation and distribution). However, the ability to capture the occurrence of extreme temperature events is an essential property of a multi-hazard extreme climate indicator. Aim of this study is to develop a standardized heat-wave indicator, that can be combined with other indices in order to describe multiple hazards in a single indicator. The proposed approach can be used in order to have a quantified indicator of the strenght of a certain extreme. As a matter of fact, extremes are usually distributed in exponential or exponential-exponential functions and it is difficult to quickly asses how strong was an extreme events considering only its magnitude. The proposed approach simplify the quantitative and qualitative communication of extreme magnitude

  9. A cognitive neuroscience account of posttraumatic stress disorder and its treatment.

    PubMed

    Brewin, C R

    2001-04-01

    Recent research in the areas of animal conditioning, the neural systems underlying emotion and memory, and the effect of fear on these systems is reviewed. This evidence points to an important distinction between hippocampally-dependent and non-hippocampally-dependent forms of memory that are differentially affected by extreme stress. The cognitive science perspective is related to a recent model of posttraumatic stress disorder, dual representation theory, that also posits separate memory systems underlying vivid reexperiencing versus ordinary autobiographical memories of trauma. This view is compared with other accounts in the literature of traumatic memory processes in PTSD, and the contrasting implications for therapy are discussed.

  10. Increasing water cycle extremes in California and relation to ENSO cycle under global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jin -Ho; Wang, S. -Y. Simon; Gillies, Robert R.

    California has experienced its most severe drought in recorded history since the winter of 2013-2014. The long duration of drought has stressed statewide water resources and the economy, while fueling an extraordinary increase in wildfires. The effects of global warming on the regional climate include a hotter and drier climate, as well as earlier snowmelt, both of which exacerbate drought conditions. However, connections between a changing climate and how climate oscillations modulate regional water cycle extremes are not well understood. Here we analyze large-ensemble simulations of future climate change in California using the Community Earth System Model version 1 (CESM1)more » and multiple climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Both intense drought and excessive flooding are projected to increase by at least 50% toward the end of the 21st century. Furthermore, the projected increase in water cycle extremes is associated with tighter relation to El Niño and Southern Oscillation (ENSO), particularly extreme El Niño and La Niña events, which modulates California’s climate not only through its warm and cold phases, but also ENSO’s precursor patterns.« less

  11. Increasing water cycle extremes in California and relation to ENSO cycle under global warming

    DOE PAGES

    Yoon, Jin -Ho; Wang, S. -Y. Simon; Gillies, Robert R.; ...

    2015-10-21

    California has experienced its most severe drought in recorded history since the winter of 2013-2014. The long duration of drought has stressed statewide water resources and the economy, while fueling an extraordinary increase in wildfires. The effects of global warming on the regional climate include a hotter and drier climate, as well as earlier snowmelt, both of which exacerbate drought conditions. However, connections between a changing climate and how climate oscillations modulate regional water cycle extremes are not well understood. Here we analyze large-ensemble simulations of future climate change in California using the Community Earth System Model version 1 (CESM1)more » and multiple climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Both intense drought and excessive flooding are projected to increase by at least 50% toward the end of the 21st century. Furthermore, the projected increase in water cycle extremes is associated with tighter relation to El Niño and Southern Oscillation (ENSO), particularly extreme El Niño and La Niña events, which modulates California’s climate not only through its warm and cold phases, but also ENSO’s precursor patterns.« less

  12. Modeling heat stress under different environmental conditions.

    PubMed

    Carabaño, M J; Logar, B; Bormann, J; Minet, J; Vanrobays, M-L; Díaz, C; Tychon, B; Gengler, N; Hammami, H

    2016-05-01

    Renewed interest in heat stress effects on livestock productivity derives from climate change, which is expected to increase temperatures and the frequency of extreme weather events. This study aimed at evaluating the effect of temperature and humidity on milk production in highly selected dairy cattle populations across 3 European regions differing in climate and production systems to detect differences and similarities that can be used to optimize heat stress (HS) effect modeling. Milk, fat, and protein test day data from official milk recording for 1999 to 2010 in 4 Holstein populations located in the Walloon Region of Belgium (BEL), Luxembourg (LUX), Slovenia (SLO), and southern Spain (SPA) were merged with temperature and humidity data provided by the state meteorological agencies. After merging, the number of test day records/cows per trait ranged from 686,726/49,655 in SLO to 1,982,047/136,746 in BEL. Values for the daily average and maximum temperature-humidity index (THIavg and THImax) ranges for THIavg/THImax were largest in SLO (22-74/28-84) and shortest in SPA (39-76/46-83). Change point techniques were used to determine comfort thresholds, which differed across traits and climatic regions. Milk yield showed an inverted U-shaped pattern of response across the THI scale with a HS threshold around 73 THImax units. For fat and protein, thresholds were lower than for milk yield and were shifted around 6 THI units toward larger values in SPA compared with the other countries. Fat showed lower HS thresholds than protein traits in all countries. The traditional broken line model was compared with quadratic and cubic fits of the pattern of response in production to increasing heat loads. A cubic polynomial model allowing for individual variation in patterns of response and THIavg as heat load measure showed the best statistical features. Higher/lower producing animals showed less/more persistent production (quantity and quality) across the THI scale. The

  13. Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica Lake, Adriatic coast)

    NASA Astrophysics Data System (ADS)

    Ciglenečki, I.; Janeković, I.; Marguš, M.; Bura-Nakić, E.; Carić, M.; Ljubešić, Z.; Batistić, M.; Hrustić, E.; Dupčić, I.; Garić, R.

    2015-10-01

    Rogoznica Lake is highly eutrophic marine system located on the Eastern Adriatic coast (43°32‧N, 15°58‧E). Because of the relatively small size (10,276 m2) and depth (15 m) it experiences strong natural and indirect anthropogenic influences. Dynamics within the lake is characterized by the extreme and highly variable environmental conditions (seasonal variations in salinity and temperature, water stratification and mixing, redox and euxinic conditions, concentrations of nutrients) which significantly influence the biology inside the lake. Due to the high phytoplankton activity, the upper part of the water column is well oxygenated, while hypoxia/anoxia usually occurs in the bottom layers. Anoxic part of the water column is characterized with high concentrations of sulfide (up to 5 mM) and nutrients (NH4+ up to 315 μM; PO43- up to 53 μM; SiO44- up to 680 μM) indicating the pronounced remineralization of the allochthonous organic matter, produced in the surface waters. The mixolimnion varies significantly within a season feeling effects of the Adriatic atmospheric and ocean dynamics (temperature, wind, heat fluxes, rainfall) which all affect the vertical stability and possibly induce vertical mixing and/or turnover. Seasonal vertical mixing usually occurs during the autumn/winter upon the breakdown of the stratification, injecting oxygen-rich water from the surface into the deeper layers. Depending on the intensity and duration of the vertical dynamics (slower diffusion and/or faster turnover of the water layers) anoxic conditions could developed within the whole water column. Extreme weather events such as abrupt change in the air temperature accompanied with a strong wind and consequently heat flux are found to be a key triggering mechanism for the fast turnover, introducing a large amount of nutrients and sulfur species from deeper parts to the surface. Increased concentration of nutrients, especially ammonium, phosphate, and silicates persisting for

  14. Extreme Science (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajo-Franklin, Caroline; Klein, Spencer; Minor, Andrew

    On Feb. 27, 2012 at the Berkeley Repertory Theatre, four Berkeley Lab scientists presented talks related to extreme science - and what it means to you. Topics include: Neutrino hunting in Antarctica. Learn why Spencer Klein goes to the ends of the Earth to search for these ghostly particles. From Chernobyl to Central Asia, Tamas Torok travels the globe to study microbial diversity in extreme environments. Andrew Minor uses the world's most advanced electron microscopes to explore materials at ultrahigh stresses and in harsh environments. And microbes that talk to computers? Caroline Ajo-Franklin is pioneering cellular-electrical connections that could helpmore » transform sunlight into fuel.« less

  15. [The heart in extreme sports: hyperbaric activity and microgravity].

    PubMed

    Berrettini, Umberto; Landolfi, Angelo; Patteri, Giovanna

    2008-10-01

    The study of the cardiovascular and respiratory modifications in extreme environments could be useful for the understanding of the adaptive mechanisms of the body in particular conditions. The knowledge of how different environmental conditions in terms of extreme pressure, temperature and gravity modify the neurovegetative and cardiovascular system could be useful in daily practice for hypobaric and hyperbaric sports.

  16. Small RNA-mediated responses to low- and high-temperature stresses in cotton

    PubMed Central

    Wang, Qiongshan; Liu, Nian; Yang, Xiyan; Tu, Lili; Zhang, Xianlong

    2016-01-01

    MicroRNAs (miRNAs) are one class of endogenous non-coding RNAs modulating the expression of target genes involved in plant development and stress tolerance, by degrading mRNA or repressing translation. In this study, small RNA and mRNA degradome sequencing were used to identify low- and high-temperature stress-responsive miRNAs and their targets in cotton (Gossypium hirsutum). Cotton seedlings were treated under different temperature conditions (4, 12, 25, 35, and 42 °C) and then the effects were investigated. In total, 319 known miRNAs and 800 novel miRNAs were identified, and 168 miRNAs were differentially expressed between different treatments. The targets of these miRNAs were further analysed by degradome sequencing. Based on studies from Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, the majority of the miRNAs are from genes that are likely involved in response to hormone stimulus, oxidation-reduction reaction, photosynthesis, plant–pathogen interaction and plant hormone signal transduction pathways. This study provides new insight into the molecular mechanisms of plant response to extreme temperature stresses, and especially the roles of miRNAs under extreme temperatures. PMID:27752116

  17. CHROMIUM PLATING FOR PROTECTION AGAINST STRESS CORROSION CRACKING OF HARDENED AISI 410 STEEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suss, H.

    1958-04-22

    Because of its high corrosion resistance properties, chromium electroplate should offer protection to AISI 419 steel against stress corrosion cracking. Tests have been made (KAPL and Bettis) on chromium plates on test specimens as deposited by two different sources in conformance with Bettis and USMC specifications. These deposits either offered protection to hardened (RC36- 42) AISI 410 against stress corrosion cracking, or caused accelerated stress corrosion cracking under conditions which did not crack unplated material. At present there is no significant data which could give definite clues for these extreme differences in the corrosive protective values. The results of testsmore » so far strongly question tbe value of chromium plate as a means to protect AISI 410 against stress corrosion cracking. (A.C.)« less

  18. Development of a Fatigue Crack Growth Coupon for Highly Plastic Stress Conditions

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Aggarwal, Pravin K.; Swanson, Gregory R.

    2003-01-01

    This paper presents an analytical approach used to develop a novel fatigue crack growth coupon for a highly plastic 3-D stress field condition. The flight hardware investigated in this paper is a large separation bolt that fractures using pyrotechnics at the appointed time during the flight sequence. The separation bolt has a deep notch that produces a severe stress concentration and a large plastic zone when highly loaded. For this geometry, linear-elastic fracture mechanics (LEFM) techniques are not valid due to the large nonlinear stress field. Unfortunately, industry codes that are generally available for fracture mechanics analysis and fatigue crack growth (e.g. NASGRO (11) are limited to LEFM and are available for only a limited number of geometries. The results of LEFM based codes are questionable when used on geometries with significant plasticity. Therefore elastic-plastic fracture mechanics (EPFM) techniques using the finite element method (FEM) were used to analyze the bolt and test coupons. scale flight hardware is very costly in t e r n of assets, laboratory resources, and schedule. Therefore to alleviate some of these problems, a series of novel test coupons were developed to simulate the elastic-plastic stress field present in the bolt.

  19. Thermal–mechanical stress analysis of pressurized water reactor pressure vessel with/without a preexisting crack under grid load following conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurin

    In this paper, we present thermal-mechanical stress analysis of a pressurized water reactor pressure vessel and its hot-leg and cold-leg nozzles. Results are presented from thermal and thermal-mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting crack in the reactor nozzle (axial crack in hot leg nozzle). From the model results it is found that the stress-strain states are significantly higher in case of presence of crack than without crack. In conclusion, the stress-strain state under grid load following condition are more realistic compared to the stress-strainmore » state estimated assuming simplified transients.« less

  20. Thermal–mechanical stress analysis of pressurized water reactor pressure vessel with/without a preexisting crack under grid load following conditions

    DOE PAGES

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurin; ...

    2016-10-26

    In this paper, we present thermal-mechanical stress analysis of a pressurized water reactor pressure vessel and its hot-leg and cold-leg nozzles. Results are presented from thermal and thermal-mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting crack in the reactor nozzle (axial crack in hot leg nozzle). From the model results it is found that the stress-strain states are significantly higher in case of presence of crack than without crack. In conclusion, the stress-strain state under grid load following condition are more realistic compared to the stress-strainmore » state estimated assuming simplified transients.« less

  1. Karrikin-KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment.

    PubMed

    Wang, Lu; Waters, Mark T; Smith, Steven M

    2018-07-01

    The control of seed germination in response to environmental conditions is important for plant success. We investigated the role of the karrikin receptor KARRIKIN INSENSITIVE2 (KAI2) in the response of Arabidopsis seeds to osmotic stress, salinity and high temperature. Germination of the kai2 mutant was examined in response to NaCl, mannitol and elevated temperature. The effect of karrikin on germination of wild-type seeds, hypocotyl elongation and the expression of karrikin-responsive genes was also examined in response to such stresses. The kai2 seeds germinated less readily than wild-type seeds and germination was more sensitive to inhibition by abiotic stress. Karrikin-induced KAI2 signalling stimulated germination of wild-type seeds under favourable conditions, but, surprisingly, inhibited germination in the presence of osmolytes or at elevated temperature. By contrast, GA stimulated germination of wild-type seeds and mutants under all conditions. Karrikin induced expression of DLK2 and KUF1 genes and inhibited hypocotyl elongation independently of osmotic stress. Under mild osmotic stress, karrikin enhanced expression of DREB2A, WRKY33 and ERF5 genes, but not ABA signalling genes. Thus, the karrikin-KAI2 signalling system can protect against abiotic stress, first by providing stress tolerance, and second by inhibiting germination under conditions unfavourable to seedling establishment. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  2. Reef corals bleach to resist stress.

    PubMed

    Obura, David O

    2009-02-01

    A rationale is presented here for a primary role of bleaching in regulation of the coral-zooxanthellae symbiosis under conditions of stress. Corals and zooxanthellae have fundamentally different metabolic rates, requiring active homeostasis to limit zooxanthellae production and manage translocated products to maintain the symbiosis. The control processes for homeostasis are compromised by environmental stress, resulting in metabolic imbalance between the symbionts. For the coral-zooxanthella symbiosis the most direct way to minimize metabolic imbalance under stress is to reduce photosynthetic production by zooxanthellae. Two mechanisms have been demonstrated that do this: reduction of the chlorophyll concentration in individual zooxanthellae and reduction of the relative biomass of zooxanthellae. Both mechanisms result in visual whitening of the coral, termed bleaching. Arguments are presented here that bleaching provides the final control to minimize physiological damage from stress as an adversity response to metabolic imbalance. As such, bleaching meets the requirements of a stress response syndrome/general adaptive mechanism that is sensitive to internal states rather than external parameters. Variation in bleaching responses among holobionts reflects genotypic and phenotypic differentiation, allowing evolutionary change by natural selection. Thus, reef corals bleach to resist stress, and thereby have some capacity to adapt to and survive change. The extreme thermal anomalies causing mass coral bleaching worldwide lie outside the reaction norms for most coral-zooxanthellae holobionts, revealing the limitations of bleaching as a control mechanism.

  3. Future Extreme Heat Scenarios to Enable the Assessment of Climate Impacts on Public Health over the Coterminous U.S

    NASA Astrophysics Data System (ADS)

    Quattrochi, D. A.; Crosson, W. L.; Al-Hamdan, M. Z.; Estes, M. G., Jr.

    2013-12-01

    In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. This research seeks to provide historical and future measures of climate-driven extreme heat events to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The focus of research is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM outputs, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons for 2040 and 2090 are compared to the recent past period of 1981-2000. We characterize regional-scale temperature and humidity conditions using GCM outputs for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM outputs are analyzed to develop a ';heat stress climatology' based on statistics of extreme heat indicators. Differences between the two future and the past period are used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes are combined with the historical meteorological data, which is hourly and at a spatial scale (12 km) much finer than that of GCMs, to create future climate realizations. From these realizations, we compute the daily heat stress measures and related spatially-specific climatological fields, such as the mean annual number of days above certain thresholds of maximum and minimum air

  4. Future Extreme Heat Scenarios to Enable the Assessment of Climate Impacts on Public Health over the Coterminous U.S.

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Crosson, William L.; Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.

    2013-01-01

    In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. This research seeks to provide historical and future measures of climate-driven extreme heat events to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The focus of research is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM outputs, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons for 2040 and 2090 are compared to the recent past period of 1981- 2000. We characterize regional-scale temperature and humidity conditions using GCM outputs for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM outputs are analyzed to develop a 'heat stress climatology' based on statistics of extreme heat indicators. Differences between the two future and the past period are used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes are combined with the historical meteorological data, which is hourly and at a spatial scale (12 km), to create future climate realizations. From these realizations, we compute the daily heat stress measures and related spatially-specific climatological fields, such as the mean annual number of days above certain thresholds of maximum and minimum air temperatures, heat indices

  5. Changes in Extreme Events and the Potential Impacts on National Security

    NASA Astrophysics Data System (ADS)

    Bell, J.

    2017-12-01

    Extreme weather and climate events affect human health by causing death, injury, and illness, as well as having large socio-economic impacts. Climate change has caused changes in extreme event frequency, intensity and geographic distribution, and will continue to be a driver for changes in the future. Some of the extreme events that have already changed are heat waves, droughts, wildfires, flooding rains, coastal flooding, storm surge, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local intricacies of societal and environmental factors that influences the level of exposure. The goal of this presentation is to discuss the national security implications of changes in extreme weather events and demonstrate how changes in extremes can lead to a host cascading issues. To illustrate this point, this presentation will provide examples of the various pathways that extreme events can increase disease burden and cause economic stress.

  6. Comparative Sigma Factor-mRNA Levels in Mycobacterium marinum under Stress Conditions and during Host Infection

    PubMed Central

    Pettersson, B. M. Fredrik; Das, Sarbashis; Behra, Phani Rama Krishna; Jordan, Heather R.; Ramesh, Malavika; Mallick, Amrita; Root, Kate M.; Cheramie, Martin N.; de la Cruz Melara, Irma; Small, Pamela L. C.; Dasgupta, Santanu; Ennis, Don G.; Kirsebom, Leif A.

    2015-01-01

    We have used RNASeq and qRT-PCR to study mRNA levels for all σ-factors in different Mycobacterium marinum strains under various growth and stress conditions. We also studied their levels in M. marinum from infected fish and mosquito larvae. The annotated σ-factors were expressed and transcripts varied in relation to growth and stress conditions. Some were highly abundant such as sigA, sigB, sigC, sigD, sigE and sigH while others were not. The σ-factor mRNA profiles were similar after heat stress, during infection of fish and mosquito larvae. The similarity also applies to some of the known heat shock genes such as the α-crystallin gene. Therefore, it seems probable that the physiological state of M. marinum is similar when exposed to these different conditions. Moreover, the mosquito larvae data suggest that this is the state that the fish encounter when infected, at least with respect to σ-factor mRNA levels. Comparative genomic analysis of σ-factor gene localizations in three M. marinum strains and Mycobacterium tuberculosis H37Rv revealed chromosomal rearrangements that changed the localization of especially sigA, sigB, sigD, sigE, sigF and sigJ after the divergence of these two species. This may explain the variation in species-specific expression upon exposure to different growth conditions. PMID:26445268

  7. Rhythmicity in Mice Selected for Extremes in Stress Reactivity: Behavioural, Endocrine and Sleep Changes Resembling Endophenotypes of Major Depression

    PubMed Central

    Ruschel, Jörg; Palme, Rupert; Holsboer, Florian; Kimura, Mayumi; Landgraf, Rainer

    2009-01-01

    Background Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, including hyper- or hypo-activity of the stress hormone system, plays a critical role in the pathophysiology of mood disorders such as major depression (MD). Further biological hallmarks of MD are disturbances in circadian rhythms and sleep architecture. Applying a translational approach, an animal model has recently been developed, focusing on the deviation in sensitivity to stressful encounters. This so-called ‘stress reactivity’ (SR) mouse model consists of three separate breeding lines selected for either high (HR), intermediate (IR), or low (LR) corticosterone increase in response to stressors. Methodology/Principle Findings In order to contribute to the validation of the SR mouse model, our study combined the analysis of behavioural and HPA axis rhythmicity with sleep-EEG recordings in the HR/IR/LR mouse lines. We found that hyper-responsiveness to stressors was associated with psychomotor alterations (increased locomotor activity and exploration towards the end of the resting period), resembling symptoms like restlessness, sleep continuity disturbances and early awakenings that are commonly observed in melancholic depression. Additionally, HR mice also showed neuroendocrine abnormalities similar to symptoms of MD patients such as reduced amplitude of the circadian glucocorticoid rhythm and elevated trough levels. The sleep-EEG analyses, furthermore, revealed changes in rapid eye movement (REM) and non-REM sleep as well as slow wave activity, indicative of reduced sleep efficacy and REM sleep disinhibition in HR mice. Conclusion/Significance Thus, we could show that by selectively breeding mice for extremes in stress reactivity, clinically relevant endophenotypes of MD can be modelled. Given the importance of rhythmicity and sleep disturbances as biomarkers of MD, both animal and clinical studies on the interaction of behavioural, neuroendocrine and sleep parameters may reveal

  8. Correlation of Electrical Resistance to CMC Stress-Strain and Fracture Behavior Under High Heat-Flux Thermal and Stress Gradients

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory; Zhu, Dongming

    2015-01-01

    Because SiCSiC ceramic matrix composites (CMCs) are under consideration for use as turbine engine hot-section components in extreme environments, it becomes necessary to investigate their performance and damage morphologies under complex loading and environmental conditions. Monitoring of electrical resistance (ER) has been shown as an effective tool for detecting damage accumulation of woven melt-infiltrated SiCSiC CMCs. However, ER change under complicated thermo-mechanical loading is not well understood. In this study a systematic approach is taken to determine the capabilities of ER as a relevant non-destructive evaluation technique for high heat-flux testing, including thermal gradients and localized stress concentrations. Room temperature and high temperature, laser-based tensile tests were conducted in which stress-dependent damage locations were determined using modal acoustic emission (AE) monitoring and compared to full-field strain mapping using digital image correlation (DIC). This information is then compared with the results of in-situ ER monitoring, post-test ER inspection and fractography in order to correlate ER response to convoluted loading conditions and damage evolution.

  9. When Does Stress Help or Harm? The Effects of Stress Controllability and Subjective Stress Response on Stroop Performance

    PubMed Central

    Henderson, Roselinde K.; Snyder, Hannah R.; Gupta, Tina; Banich, Marie T.

    2012-01-01

    The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual’s response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low) responses can lead to impaired performance. The present studies tested the hypothesis that (1) learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that (2) this improvement emerges specifically for people who report moderate (subjective) responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n = 109). People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n = 90), we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest

  10. When does stress help or harm? The effects of stress controllability and subjective stress response on stroop performance.

    PubMed

    Henderson, Roselinde K; Snyder, Hannah R; Gupta, Tina; Banich, Marie T

    2012-01-01

    The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual's response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low) responses can lead to impaired performance. The present studies tested the hypothesis that (1) learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that (2) this improvement emerges specifically for people who report moderate (subjective) responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n = 109). People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n = 90), we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest Stroop

  11. Ectotherm thermal stress and specialization across altitude and latitude.

    PubMed

    Buckley, Lauren B; Miller, Ethan F; Kingsolver, Joel G

    2013-10-01

    Gradients of air temperature, radiation, and other climatic factors change systematically but differently with altitude and latitude. We explore how these factors combine to produce altitudinal and latitudinal patterns of body temperature, thermal stress, and seasonal overlap that differ markedly from patterns based solely on air temperature. We use biophysical models to estimate body temperature as a function of an organism's phenotype and environmental conditions (air and surface temperatures and radiation). Using grasshoppers as a case study, we compare mean body temperatures and the incidence of thermal extremes along altitudinal gradients both under past and current climates. Organisms at high elevation can experience frequent thermal stress despite generally cooler air temperatures due to high levels of solar radiation. Incidences of thermal stress have increased more rapidly than have increases in mean conditions due to recent climate change. Increases in air temperature have coincided with shifts in cloudiness and solar radiation, which can exacerbate shifts in body temperature. We compare altitudinal thermal gradients and their seasonality between tropical and temperate mountains to ask whether mountain passes pose a greater physiological barrier in the tropics (Janzen's hypothesis). We find that considering body temperature rather than air temperature generally increases the amount of overlap in thermal conditions along gradients in elevation and thus decreases the physiological barrier posed by tropical mountains. Our analysis highlights the limitations of predicting thermal stress based solely on air temperatures, and the importance of considering how phenotypes influence body temperatures.

  12. Impact of oxidative stress defense on bacterial survival and morphological change in Campylobacter jejuni under aerobic conditions.

    PubMed

    Oh, Euna; McMullen, Lynn; Jeon, Byeonghwa

    2015-01-01

    Campylobacter jejuni, a microaerophilic foodborne pathogen, inescapably faces high oxygen tension during its transmission to humans. Thus, the ability of C. jejuni to survive under oxygen-rich conditions may significantly impact C. jejuni viability in food and food safety as well. In this study, we investigated the impact of oxidative stress resistance on the survival of C. jejuni under aerobic conditions by examining three mutants defective in key antioxidant genes, including ahpC, katA, and sodB. All the three mutants exhibited growth reduction under aerobic conditions compared to the wild-type (WT), and the ahpC mutant showed the most significant growth defect. The CFU reduction in the mutants was recovered to the WT level by complementation. Higher levels of reactive oxygen species were accumulated in C. jejuni under aerobic conditions than microaerobic conditions, and supplementation of culture media with an antioxidant recovered the growth of C. jejuni. The levels of lipid peroxidation and protein oxidation were significantly increased in the mutants compared to WT. Additionally, the mutants exhibited different morphological changes under aerobic conditions. The ahpC and katA mutants developed coccoid morphology by aeration, whereas the sodB mutant established elongated cellular morphology. Compared to microaerobic conditions, interestingly, aerobic culture conditions substantially induced the formation of coccoidal cells, and antioxidant treatment reduced the emergence of coccoid forms under aerobic conditions. The ATP concentrations and PMA-qPCR analysis supported that oxidative stress is a factor that induces the development of a viable-but-non-culturable state in C. jejuni. The findings in this study clearly demonstrated that oxidative stress resistance plays an important role in the survival and morphological changes of C. jejuni under aerobic conditions.

  13. Interplay between plasma hormone profiles, sex and body condition in immature hawksbill turtles (Eretmochelys imbricata) subjected to a capture stress protocol.

    PubMed

    Jessop, Tim S; Sumner, Joanna M; Limpus, Colin J; Whittier, Joan M

    2004-01-01

    We investigated plasma hormone profiles of corticosterone and testosterone in immature hawksbill turtles (Eretmochelys imbricata) in response to a capture stress protocol. Further, we examined whether sex and body condition were covariates associated with variation in the adrenocortical response of immature turtles. Hawksbill turtles responded to the capture stress protocol by significantly increasing plasma levels of corticosterone over a 5 h period. There was no significant sex difference in the corticosterone stress response of immature turtles. Plasma testosterone profiles, while significantly different between the sexes, did not exhibit a significant change during the 5 h capture stress protocol. An index of body condition was not significantly associated with a turtle's capacity to produce plasma corticosterone both prior to and during exposure to the capture stress protocol. In summary, while immature hawksbill turtles exhibited an adrenocortical response to a capture stress protocol, neither their sex nor body condition was responsible for variation in endocrine responses. This lack of interaction between the adrenocortical response and these internal factors suggests that the inactive reproductive- and the current energetic- status of these immature turtles are important factors that could influence plasma hormone profiles during stress.

  14. Exploring Mbar shock conditions and isochorically heated aluminum at the Matter in Extreme Conditions end station of the Linac Coherent Light Source

    DOE PAGES

    Doppner, T.; LePape, S.; Ma, T.; ...

    2014-08-11

    Recent experiments performed at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatterx-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using velocity interferometer system for any reflector have been measured. Furthermore, the combination of experiments fully demonstratesmore » the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.« less

  15. Keeping Fit: Stress Relievers

    ERIC Educational Resources Information Center

    Crupi, Jeffrey

    2005-01-01

    With all the extra demands that are placed on teachers during the months of May and June, the end of the year can be an extremely stressful time. This article describes several tips for diminishing the effects of end of year stress. The following relaxation tips are described: (1) Neck and Upper Shoulder Stretch; (2) Superman Stretch; (3) Doorway…

  16. Cycling injuries of the lower extremity.

    PubMed

    Wanich, Tony; Hodgkins, Christopher; Columbier, Jean-Allain; Muraski, Erika; Kennedy, John G

    2007-12-01

    Cycling is an increasingly popular recreational and competitive activity, and cycling-related injuries are becoming more common. Many common cycling injuries of the lower extremity are preventable. These include knee pain, patellar quadriceps tendinitis, iliotibial band syndrome, hip pain, medial tibial stress syndrome, stress fracture, compartment syndrome, numbness of the foot, and metatarsalgia. Injury is caused by a combination of inadequate preparation, inappropriate equipment, poor technique, and overuse. Nonsurgical management may include rest, nonsteroidal anti-inflammatory drugs, corticosteroid injection, ice, a reduction in training intensity, orthotics, night splints, and physical therapy. Injury prevention should be the focus, with particular attention to bicycle fit and alignment, appropriate equipment, proper rider position and pedaling mechanics, and appropriate training.

  17. Base Oil-Extreme Pressure Additive Synergy in Lubricants

    USDA-ARS?s Scientific Manuscript database

    Extreme pressure (EP) additives are those containing reactive elements such as sulfur, phosphorus, and chlorine. In lubrication processes that occur under extremely severe conditions (e.g., high pressure and/or slow speed), these elements undergo chemical reactions generating new materials (tribofi...

  18. Global Weirding? - Using Very Large Ensembles and Extreme Value Theory to assess Changes in Extreme Weather Events Today

    NASA Astrophysics Data System (ADS)

    Otto, F. E. L.; Mitchell, D.; Sippel, S.; Black, M. T.; Dittus, A. J.; Harrington, L. J.; Mohd Saleh, N. H.

    2014-12-01

    A shift in the distribution of socially-relevant climate variables such as daily minimum winter temperatures and daily precipitation extremes, has been attributed to anthropogenic climate change for various mid-latitude regions. However, while there are many process-based arguments suggesting also a change in the shape of these distributions, attribution studies demonstrating this have not currently been undertaken. Here we use a very large initial condition ensemble of ~40,000 members simulating the European winter 2013/2014 using the distributed computing infrastructure under the weather@home project. Two separate scenarios are used:1. current climate conditions, and 2. a counterfactual scenario of "world that might have been" without anthropogenic forcing. Specifically focusing on extreme events, we assess how the estimated parameters of the Generalized Extreme Value (GEV) distribution vary depending on variable-type, sampling frequency (daily, monthly, …) and geographical region. We find that the location parameter changes for most variables but, depending on the region and variables, we also find significant changes in scale and shape parameters. The very large ensemble allows, furthermore, to assess whether such findings in the fitted GEV distributions are consistent with an empirical analysis of the model data, and whether the most extreme data still follow a known underlying distribution that in a small sample size might otherwise be thought of as an out-lier. The ~40,000 member ensemble is simulated using 12 different SST patterns (1 'observed', and 11 best guesses of SSTs with no anthropogenic warming). The range in SSTs, along with the corresponding changings in the NAO and high-latitude blocking inform on the dynamics governing some of these extreme events. While strong tele-connection patterns are not found in this particular experiment, the high number of simulated extreme events allows for a more thorough analysis of the dynamics than has been

  19. Decrease in hydroclimatic conditions generating floods in the southeast of Belgium over the last 50 years resulting from changes in seasonal snow cover and extreme precipitation events

    NASA Astrophysics Data System (ADS)

    Wyard, Coraline; Fettweis, Xavier

    2016-04-01

    As a consequence of climate change, several studies concluded that winter flood occurrence could increase in the future in many rivers of northern and western Europe in response to an increase in extreme precipitation events. This study aims to determine if trends in extreme hydroclimatic events generating floods can already be detected over the last century. In particular, we focus on the Ourthe River (southeast of Belgium) which is one of the main tributaries of the Meuse River with a catchment area of 3500 km². In this river, most of the floods occur during winter and about 50% of them are due to rainfall events associated with the melting of the snow which covers the Ardennes during winter. In this study, hydroclimatic conditions favorable to flooding were reconstructed over the 20th century using the regional climate model MAR ("Modèle Atmosphérique Régional") forced by the following reanalyses: the ERA-20C, the ERA-Interim and the NCEP/NCAR-v1. The use of the MAR model allows to compute precipitation, snow depth and run-off resulting from precipitation events and snow melting in any part of the Ourthe river catchment area. Therefore, extreme hydroclimatic events, namely extreme run-off events, which could potentially generate floods, can be reconstructed using the MAR model. As validation, the MAR results were compared to weather station-based data. A trend analysis was then performed in order to study the evolution of conditions favorable to flooding in the Ourthe River catchment. The results show that the MAR model allows the detection of more than 95% of the hydroclimatic conditions which effectively generated observed floods in the Ourthe River over the 1974-2014 period. Conditions favorable to flooding present a negative trend over the last 50 years as a result of a decrease in snow accumulation and in extreme precipitation events. However, significance of these trends depends on the reanalysis used to force the regional climate model as well as the

  20. An influence of extremal edges on boundary extension.

    PubMed

    Hale, Ralph G; Brown, James M; McDunn, Benjamin A; Siddiqui, Aisha P

    2015-08-01

    Studies have shown that people consistently remember seeing more of a studied scene than was physically present (e.g., Intraub & Richardson Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 179-187, 1989). This scene memory error, known as boundary extension, has been suggested to occur due to an observer's failure to differentiate between the contributing sources of information, including the sensory input, amodal continuation beyond the view boundaries, and contextual associations with the main objects and depicted scene locations (Intraub, 2010). Here, "scenes" made of abstract shapes on random-dot backgrounds, previously shown to elicit boundary extension (McDunn, Siddiqui, & Brown Psychonomic Bulletin & Review, 21, 370-375, 2014), were compared with versions made with extremal edges (Palmer & Ghose Psychological Science, 19, 77-84, 2008) added to their borders, in order to examine how boundary extension is influenced when amodal continuation at the borders' view boundaries is manipulated in this way. Extremal edges were expected to reduce boundary extension as compared to the same scenes without them, because extremal edge boundaries explicitly indicate an image's end (i.e., they do not continue past the view boundary). A large and a small difference (16 % and 40 %) between the close and wide-angle views shown during the experiment were tested to examine the effects of both boundary extension and normalization with and without extremal edges. Images without extremal edges elicited typical boundary extension for the 16 % size change condition, whereas the 40 % condition showed signs of normalization. With extremal edges, a reduced amount of boundary extension occurred for the 16 % condition, and only normalization was found for the 40 % condition. Our findings support and highlight the importance of amodal continuation at the view boundaries as a component of boundary extension.

  1. Repeated restraint stress enhances cue-elicited conditioned freezing and impairs acquisition of extinction in an age-dependent manner

    PubMed Central

    Zhang, Wei; Rosenkranz, J. Amiel

    2013-01-01

    Affective disorders are believed to involve dysfunction within the amygdala, a key structure for processing emotional information. Chronic stress may contribute to affective disorders such as depression and anxiety via its effects on the amygdala. Previous research has shown that chronic stress increases amygdala neuronal activity in an age-dependent manner. However, whether these distinct changes in amgydala neuronal activity are accompanied by age-dependent changes in amygdala-dependent affective behavior is unclear. In this study, we investigated how chronic stress impacts amgydala-dependent auditory fear conditioning in adolescent and adult rats in a repeated restraint model. We found that repeated restraint enhanced conditioned freezing in both adolescent and adult rats. But repeated restraint led to impaired acquisition of fear extinction only in adolescent rats. Along with previous findings, these results suggest that chronic stress may precipitate affective disorders via differential mechanisms, with different outcomes at different ages. PMID:23538069

  2. Structure of high and low shear-stress events in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Gomit, G.; de Kat, R.; Ganapathisubramani, B.

    2018-01-01

    Simultaneous particle image velocimetry (PIV) and wall-shear-stress sensor measurements were performed to study structures associated with shear-stress events in a flat plate turbulent boundary layer at a Reynolds number Reτ≈4000 . The PIV field of view covers 8 δ (where δ is the boundary layer thickness) along the streamwise direction and captures the entire boundary layer in the wall-normal direction. Simultaneously, wall-shear-stress measurements that capture the large-scale fluctuations were taken using a spanwise array of hot-film skin-friction sensors (spanning 2 δ ). Based on this combination of measurements, the organization of the conditional wall-normal and streamwise velocity fluctuations (u and v ) and of the Reynolds shear stress (-u v ) can be extracted. Conditional averages of the velocity field are computed by dividing the histogram of the large-scale wall-shear-stress fluctuations into four quartiles, each containing 25% of the occurrences. The conditional events corresponding to the extreme quartiles of the histogram (positive and negative) predominantly contribute to a change of velocity profile associated with the large structures and in the modulation of the small scales. A detailed examination of the Reynolds shear-stress contribution related to each of the four quartiles shows that the flow above a low wall-shear-stress event carries a larger amount of Reynolds shear stress than the other quartiles. The contribution of the small and large scales to this observation is discussed based on a scale decomposition of the velocity field.

  3. Nutritional condition of Pacific Black Brant wintering at the extremes of their range

    USGS Publications Warehouse

    Mason, D.D.; Barboza, P.S.; Ward, D.H.

    2006-01-01

    Endogenous stores of energy allow birds to survive periods of severe weather and food shortage during winter. We documented changes in lipid, protein, moisture, and ash in body tissues of adult female Pacific Black Brant (Branta bernicla nigricans) and modeled the energetic costs of wintering. Birds were collected at the extremes of their winter range, in Alaska and Baja California, Mexico. Body lipids decreased over winter for birds in Alaska but increased for those in Baja California. Conversely, body protein increased over winter for Brant in Alaska and remained stable for birds in Baja California. Lipid stores likely fuel migration for Brant wintering in Baja California and ensure winter survival for those in Alaska. Increases in body protein may support earlier reproduction for Brant in Alaska. Predicted energy demands were similar between sites during late winter but avenues of expenditure were different. Birds in Baja California spent more energy on lipid synthesis while those in Alaska incurred higher thermoregulatory costs. Estimated daily intake rates of eelgrass were similar between sites in early winter; however, feeding time was more constrained in Alaska because of high tides and short photoperiods. Despite differences in energetic costs and foraging time, Brant wintering at both sites appeared to be in good condition. We suggest that wintering in Alaska may be more advantageous than long-distance migration if winter survival is similar between sites and constraints on foraging time do not impair body condition. ?? The Cooper Ornithological Society 2006.

  4. Disorders of extreme stress (DESNOS) symptoms are associated with type and severity of interpersonal trauma exposure in a sample of healthy young women.

    PubMed

    Ford, Julian D; Stockton, Patricia; Kaltman, Stacey; Green, Bonnie L

    2006-11-01

    Childhood abuse and other developmentally adverse interpersonal traumas may put young adults at risk not only for posttraumatic stress disorder (PTSD) but also for impairment in affective, cognitive, biological, and relational self-regulation ("disorders of extreme stress not otherwise specified"; DESNOS). Structured clinical interviews with 345 sophomore college women, most of whom (84%) had experienced at least one traumatic event, indicated that the DESNOS syndrome was rare (1% prevalence), but DESNOS symptoms were reported by a majority of respondents. Controlling for PTSD and other anxiety or affective disorders, DESNOS symptom severity was associated with a history of single-incident interpersonal trauma and with more severe interpersonal trauma in a dose-response manner. Noninterpersonal trauma was associated with elevated prevalence of PTSD and dissociation but not with DESNOS severity. Study findings indicate that persistent posttraumatic problems with self-regulation warrant attention, even in relatively healthy young adult populations.

  5. Integration of environmental and spectral data for sunflower stress determination. [Red River Valley, Minnesota

    NASA Technical Reports Server (NTRS)

    Lillesand, T.; Seeley, M.

    1983-01-01

    Stress in sunflowers was assessed in western and northwestern Minnesota. Weekly ground observations (acquired in 1980 and 1981) were analyzed in concert with large scale aerial photography and concurrent LANDSAT data. Using multidate supervised and unsupervised classification procedures, it was found that all crops grown in association with sunflowers in the study area are spectrally separable from one another. Under conditions of extreme drought, severely stressed plants were differentiable from those not severely stressed, but between-crop separation was not possible. Initial regression analyses to estimate sunflower seed yield showed a sensitivity to environmental stress during the flowering and seed development stages. One of the most important biological factors related to sunflower production in the Red River Valley area was found to be the extent and severity of insect infestations.

  6. Three-Dimensional Finite Element Analysis of the Stress Distribution at the Internal Implant-Abutment Connection.

    PubMed

    Cho, Sung-Yong; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    2016-01-01

    This study investigated stress distribution in four different implant-abutment interface conditions in the internal tapered connection implant system. Four different implant diameters (3.5 mm, 4.0 mm, 4.5 mm, and 5.0 mm) and two abutment types (hexagonal and conical) were simulated. Four unique implant-abutment interface conditions were assumed based on wall thickness, mating surface length, distance to the vertical stop, and abutment shape. Axial and oblique loading was applied during abutment screw preload, and the Von Mises stresses were measured at the implant-abutment and abutment-screw interfaces. The implant-abutment interface stress decreased as the wall thickness increased. As the mating surface increased, the stress distribution trended downward, and when the distance to the implant vertical stop was 0 μm, the Von Mises stress was extremely high at the vertical stop. Despite their different shapes, the abutments showed similar stress distributions. However, the maximum Von Mises stress was higher in the conical connection than in the hexagonal connection, particularly at the contralateral side to loading. To decrease the stress distribution at the implant-abutment interface, the implant wall thickness, mating surface contact length, distance to the vertical stop, and abutment shape should be carefully considered.

  7. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin.

    PubMed

    Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2016-07-01

    Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  8. Spatial extreme value analysis to project extremes of large-scale indicators for severe weather

    PubMed Central

    Gilleland, Eric; Brown, Barbara G; Ammann, Caspar M

    2013-01-01

    Concurrently high values of the maximum potential wind speed of updrafts (Wmax) and 0–6 km wind shear (Shear) have been found to represent conducive environments for severe weather, which subsequently provides a way to study severe weather in future climates. Here, we employ a model for the product of these variables (WmSh) from the National Center for Atmospheric Research/United States National Center for Environmental Prediction reanalysis over North America conditioned on their having extreme energy in the spatial field in order to project the predominant spatial patterns of WmSh. The approach is based on the Heffernan and Tawn conditional extreme value model. Results suggest that this technique estimates the spatial behavior of WmSh well, which allows for exploring possible changes in the patterns over time. While the model enables a method for inferring the uncertainty in the patterns, such analysis is difficult with the currently available inference approach. A variation of the method is also explored to investigate how this type of model might be used to qualitatively understand how the spatial patterns of WmSh correspond to extreme river flow events. A case study for river flows from three rivers in northwestern Tennessee is studied, and it is found that advection of WmSh from the Gulf of Mexico prevails while elsewhere, WmSh is generally very low during such extreme events. © 2013 The Authors. Environmetrics published by JohnWiley & Sons, Ltd. PMID:24223482

  9. Predicting the solubility of gases in Nitrile Butadiene Rubber in extreme conditions using molecular simulation

    NASA Astrophysics Data System (ADS)

    Khawaja, Musab; Molinari, Nicola; Sutton, Adrian; Mostofi, Arash

    In the oil and gas industry, elastomer seals play an important role in protecting sensitive monitoring equipment from contamination by gases - a problem that is exacerbated by the high pressures and temperatures found down-hole. The ability to predict and prevent such permeative failure has proved elusive to-date. Nitrile butadiene rubber (NBR) is a common choice of elastomer for seals due to its resistance to heat and fuels. In the conditions found in the well it readily absorbs small molecular weight gases. How this behaviour changes quantitatively for different gases as a function of temperature and pressure is not well-understood. In this work a series of fully atomistic simulations are performed to understand the effect of extreme conditions on gas solubility in NBR. Widom particle insertion is used to compute solubilities. The importance of sampling and allowing structural relaxation upon compression are highlighted, and qualitatively reasonable trends reproduced. Finally, while at STP it has previously been shown that the solubility of CO2 is higher than that of He in NBR, we observe that under the right circumstances it is possible to reverse this trend.

  10. Tolerance of Mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions.

    PubMed

    Abbaspour, H; Saeidi-Sar, S; Afshari, H; Abdel-Wahhab, M A

    2012-05-01

    The influence of Glomus etunicatum colonization on plant growth and drought tolerance of 3-month-old Pistacia vera seedlings in potted culture was studied in two different water treatments. The arbuscular mycorrhiza (AM) inoculation and plant growth (including plant shoot and root weight, leaf area, and total chlorophyll) were higher for well-watered than for water-stressed plants. The growth of AM-treated seedlings was higher than non-AM-treatment regardless of water status. P, K, Zn and Cu contents in AM-treated shoots were greater than those in non-AM shoots under well-watered conditions and drought stress. N and Ca content were higher under drought stress, while AM symbiosis did not affect the Mg content. The contents of soluble sugars, proteins, flavonoid and proline were higher in mycorrhizal than non-mycorrhizal-treated plants under the whole water regime. AM colonization increased the activities of peroxidase enzyme in treatments, but did not affect the catalase activity in shoots and roots under well-watered conditions and drought stress. We conclude that AM colonization improved the drought tolerance of P. vera seedlings by increasing the accumulation of osmotic adjustment compounds, nutritional and antioxidant enzyme activity. It appears that AM formation enhanced the drought tolerance of pistachio plants, which increased host biomass and plant growth. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. Viscosity models for pure hydrocarbons at extreme conditions: A review and comparative study

    DOE PAGES

    Baled, Hseen O.; Gamwo, Isaac K.; Enick, Robert M.; ...

    2018-01-12

    Here, viscosity is a critical fundamental property required in many applications in the chemical and oil industries. In this review the performance of seven select viscosity models, representative of various predictive and correlative approaches, is discussed and evaluated by comparison to experimental data of 52 pure hydrocarbons including straight-chain alkanes, branched alkanes, cycloalkanes, and aromatics. This analysis considers viscosity data to extremely high-temperature, high-pressure conditions up to 573 K and 300 MPa. Unsatisfactory results are found, particularly at high pressures, with the Chung-Ajlan-Lee-Starling, Pedersen-Fredenslund, and Lohrenz-Bray-Clark models commonly used for oil reservoir simulation. If sufficient experimental viscosity data are readilymore » available to determine model-specific parameters, the free volume theory and the expanded fluid theory models provide generally comparable results that are superior to those obtained with the friction theory, particularly at pressures higher than 100 MPa. Otherwise, the entropy scaling method by Lötgering-Lin and Gross is recommended as the best predictive model.« less

  12. Viscosity models for pure hydrocarbons at extreme conditions: A review and comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baled, Hseen O.; Gamwo, Isaac K.; Enick, Robert M.

    Here, viscosity is a critical fundamental property required in many applications in the chemical and oil industries. In this review the performance of seven select viscosity models, representative of various predictive and correlative approaches, is discussed and evaluated by comparison to experimental data of 52 pure hydrocarbons including straight-chain alkanes, branched alkanes, cycloalkanes, and aromatics. This analysis considers viscosity data to extremely high-temperature, high-pressure conditions up to 573 K and 300 MPa. Unsatisfactory results are found, particularly at high pressures, with the Chung-Ajlan-Lee-Starling, Pedersen-Fredenslund, and Lohrenz-Bray-Clark models commonly used for oil reservoir simulation. If sufficient experimental viscosity data are readilymore » available to determine model-specific parameters, the free volume theory and the expanded fluid theory models provide generally comparable results that are superior to those obtained with the friction theory, particularly at pressures higher than 100 MPa. Otherwise, the entropy scaling method by Lötgering-Lin and Gross is recommended as the best predictive model.« less

  13. Stress fracture of ulna due to excessive push-ups.

    PubMed

    Meena, Sanjay; Rastogi, Devarshi; Solanki, Bipin; Chowdhury, Buddhadev

    2014-01-01

    Stress fractures are most common in the weight-bearing bones of the lower extremities and spine, but are rarely found in non-weight-bearing bones of the body. Stress fracture of the ulna is extremely rare. We report a case of complete stress fracture of ulna caused due to excessive push ups in a young athlete. Conservative management was successful in healing of fracture and returning this patient back to his previous activity level. Physician should have high index of suspicion, whenever they encounter a young athlete complaining of forearm pain.

  14. Extreme creep resistance in a microstructurally stable nanocrystalline alloy

    NASA Astrophysics Data System (ADS)

    Darling, K. A.; Rajagopalan, M.; Komarasamy, M.; Bhatia, M. A.; Hornbuckle, B. C.; Mishra, R. S.; Solanki, K. N.

    2016-09-01

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10-6 per second—six to eight orders of magnitude lower than most nanocrystalline metals—at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  15. Supervisors' attitudes and skills for active listening with regard to working conditions and psychological stress reactions among subordinate workers.

    PubMed

    Mineyama, Sachiko; Tsutsumi, Akizumi; Takao, Soshi; Nishiuchi, Kyoko; Kawakami, Norito

    2007-03-01

    We investigated whether supervisors' listening attitudes and skills were related to working conditions and psychological stress reactions among their subordinates. The subjects included 41 male supervisors and their immediate subordinates (n=203). The supervisors completed a short version of the Active Listening Attitude Scale (ALAS) consisting of two subscales: Listening Attitude and Listening Skill for Active Listening. The subordinates rated working conditions and their psychological stress reactions using selected scales of the Job Content Questionnaire and the Brief Job Stress Questionnaire. Those subordinates who worked under supervisors with a higher score of Listening Attitude and Listening Skill reported a more favorable psychological stress reaction than those who worked under supervisors with a lower score of Listening Attitude and Listening Skill. Those subordinates who worked under supervisors with a higher score of Listening Skill reported higher worksite support than those who worked under supervisors with a lower score of Listening Skill. Those subordinates who worked under supervisors with a higher score of Listening Attitude reported higher job control than those who worked under supervisors with a lower score of Listening Attitude. A supervisor's listening attitude and skill appeared to affect psychological stress reactions predominantly among male subordinates than among female subordinates. Psychological stress reactions were lower among younger subordinates who worked under supervisors with high listening skill, while no statistically difference was observed among older subordinates. These findings suggest that a supervisor's listening attitude and skill have an effect on working conditions and psychological stress reactions among subordinates and that the effects vary according to the subordinates' sex and age.

  16. Stress hormones are associated with the neuronal correlates of instructed fear conditioning.

    PubMed

    Merz, Christian Josef; Stark, Rudolf; Vaitl, Dieter; Tabbert, Katharina; Wolf, Oliver Tobias

    2013-01-01

    The effects of sex and stress hormones on classical fear conditioning have been subject of recent experimental studies. A correlation approach between basal cortisol concentrations and neuronal activation in fear-related structures seems to be a promising alternative approach in order to foster our understanding of how cortisol influences emotional learning. In this functional magnetic resonance imaging study, participants with varying sex hormone status (20 men, 15 women taking oral contraceptives, 15 women tested in the luteal phase) underwent an instructed fear conditioning protocol with geometrical figures as conditioned stimuli and an electrical stimulation as unconditioned stimulus. Salivary cortisol concentrations were measured and afterwards correlated with fear conditioned brain responses. Results revealed a positive correlation between basal cortisol levels and differential activation in the amygdala in men and OC women only. These results suggest that elevated endogenous cortisol levels are associated with enhanced fear anticipation depending on current sex hormone availability. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Numerical Investigation of Thermal Stress Convention in Nonisothermal Gases Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Mackowski, D. W.

    1999-01-01

    Reported here are our results of our numerical/theoretical investigation into the effects of thermal stress in nonisothermal gases under microgravity conditions. The first part of the report consists of a brief summary of the accomplishments and conclusions of our work. The second part consists of two manuscripts, one being a paper presented at the 1998 MSAD Fluid Physics workshop, and the other to appear in Physics of Fluids.

  18. Genomics of Adaptation to Multiple Concurrent Stresses: Insights from Comparative Transcriptomics of a Cichlid Fish from One of Earth's Most Extreme Environments, the Hypersaline Soda Lake Magadi in Kenya, East Africa.

    PubMed

    Kavembe, Geraldine D; Franchini, Paolo; Irisarri, Iker; Machado-Schiaffino, Gonzalo; Meyer, Axel

    2015-10-01

    The Magadi tilapia (Alcolapia grahami) is a cichlid fish that inhabits one of the Earth's most extreme aquatic environments, with high pH (~10), salinity (~60% of seawater), high temperatures (~40 °C), and fluctuating oxygen regimes. The Magadi tilapia evolved several unique behavioral, physiological, and anatomical adaptations, some of which are constituent and thus retained in freshwater conditions. We conducted a transcriptomic analysis on A. grahami to study the evolutionary basis of tolerance to multiple stressors. To identify the adaptive regulatory changes associated with stress responses, we massively sequenced gill transcriptomes (RNAseq) from wild and freshwater-acclimated specimens of A. grahami. As a control, corresponding transcriptome data from Oreochromis leucostictus, a closely related freshwater species, were generated. We found expression differences in a large number of genes with known functions related to osmoregulation, energy metabolism, ion transport, and chemical detoxification. Over-representation of metabolism-related gene ontology terms in wild individuals compared to laboratory-acclimated specimens suggested that freshwater conditions greatly decrease the metabolic requirements of this species. Twenty-five genes with diverse physiological functions related to responses to water stress showed signs of divergent natural selection between the Magadi tilapia and its freshwater relative, which shared a most recent common ancestor only about four million years ago. The complete set of genes responsible for urea excretion was identified in the gill transcriptome of A. grahami, making it the only fish species to have a functional ornithine-urea cycle pathway in the gills--a major innovation for increasing nitrogenous waste efficiency.

  19. Association between temperature and maternal stress during pregnancy.

    PubMed

    Lin, Yanfen; Hu, Wenjing; Xu, Jian; Luo, Zhongcheng; Ye, Xiaofang; Yan, Chonghuai; Liu, Zhiwei; Tong, Shilu

    2017-10-01

    Maternal psychological stress during pregnancy has essentially been conceptualized as a teratogen. However, little is known about the effect of temperature on maternal stress during pregnancy. The aim of this study is to investigate the relationship between temperature and maternal stress during pregnancy. In 2010, a total of 1931 eligible pregnant women were enrolled across Shanghai from four prenatal-care clinics during their mid-to-late pregnancy. Maternal life-event stress and emotional stress levels during pregnancy were assessed by the "Life Event Scale for Pregnant Women" (LESPW) and "Symptom Checklist-90-Revised Scale" (SCL-90-R), respectively. Exposure to ambient temperature was evaluated based on daily regional average in different moving average and lag days. The generalized estimating equations were used to evaluate the relationship between daily average temperature/temperature difference and maternal stress. After adjusting for relevant confounders, an U-shaped relationship was observed between daily average temperature and maternal Global-Severity-Index (GSI) of the SCL-90-R. Cumulative exposures to extremely low temperatures (< P5, 1.4-10.5℃, lag 0-1 days, 0-2 days and 0-5 days) and extremely high temperatures (≥ P95, 31.2-34.1℃, lag 0-1 days and 0-2 days), and acute exposures to extremely low (lag day 0, 1, 2 and 3) and high (lag day 0, 1) temperatures, all induced higher risks of high GSI (the highest tertile), compared to the risk induced by exposed to an optimal temperature range (20-25℃) (P< 0.05). Increased temperature difference was associated with high maternal GSI (P< 0.05). However, non-significant associations were observed between daily average temperatures/temperature differences and maternal log-transferred LESPW scores. Cumulative and acute exposures to extremely low/high temperatures may both induce emotional stress during pregnancy. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. An inducible HSP70 gene from the midge Chironomus dilutus: Characterization and transcription profile under environmental stress

    USGS Publications Warehouse

    Karouna-Renier, N. K.; Rao, K.R.

    2009-01-01

    In the present study, we identified and characterized an inducible heat shock protein 70 (HSP70) from the midge Chironomus dilutus and investigated the transcriptional profile of the gene under baseline and environmentally stressful conditions. Using real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), we observed increased expression of CD-HSP70-1 in response to both heat shock and copper stress. We also investigated the expression of this gene during midge development. All C. dilutus developmental stages expressed CD-HSP70-1 under normal conditions, although at extremely low levels. Phylogenetic analysis of the amino acid sequence demonstrated distinct clustering of this gene with inducible HSP70s from other insect species. ?? 2008 The Authors.

  1. The near-term prediction of drought and flooding conditions in the northeastern United States based on extreme phases of AMO and NAO

    NASA Astrophysics Data System (ADS)

    Berton, Rouzbeh; Driscoll, Charles T.; Adamowski, Jan F.

    2017-10-01

    frequency of wet, average, and dry discharge conditions with regards to the extreme phases of AMO and NAO. While the function was decaying, the tail asymptotically merged into and stabilized at the theoretical probability of the event. As the basin scale increased, the probability of wet, average, and dry discharge conditions decreased. The Merrimack River watershed will most likely experience greater than average discharge as its extreme condition, therefore development should be avoided on flood plains. Furthermore, the current reservoir storage capacity in the Merrimack should be improved in order to accommodate excess water input and minimize flood damage. Future research should target changes in the magnitude and timing of high discharge events in order to develop adaptation strategies for aging hydraulic infrastructure in the region.

  2. Neonatal pain-related stress, functional cortical activity and visual-perceptual abilities in school-age children born at extremely low gestational age

    PubMed Central

    Doesburg, Sam M.; Chau, Cecil M.; Cheung, Teresa P.L.; Moiseev, Alexander; Ribary, Urs; Herdman, Anthony T.; Miller, Steven P.; Cepeda, Ivan L.; Synnes, Anne; Grunau, Ruth E.

    2013-01-01

    Children born very prematurely (≤32 weeks) often exhibit visual-perceptual difficulties at school-age, even in the absence of major neurological impairment. The alterations in functional brain activity that give rise to such problems, as well as the relationship between adverse neonatal experience and neurodevelopment, remain poorly understood. Repeated procedural pain-related stress during neonatal intensive care has been proposed to contribute to altered neurocognitive development in these children. Due to critical periods in the development of thalamocortical systems, the immature brain of infants born at extremely low gestational age (ELGA; ≤28 weeks) may have heightened vulnerability to neonatal pain. In a cohort of school-age children followed since birth we assessed relations between functional brain activity measured using magnetoencephalogragy (MEG), visual-perceptual abilities and cumulative neonatal pain. We demonstrated alterations in the spectral structure of spontaneous cortical oscillatory activity in ELGA children at school-age. Cumulative neonatal pain-related stress was associated with changes in background cortical rhythmicity in these children, and these alterations in spontaneous brain oscillations were negatively correlated with visual-perceptual abilities at school-age, and were not driven by potentially confounding neonatal variables. These findings provide the first evidence linking neonatal painrelated stress, the development of functional brain activity, and school-age cognitive outcome in these vulnerable children. PMID:23711638

  3. Self-perceived depression, anxiety, stress and their relationships with psychosocial job factors in male automotive assembly workers.

    PubMed

    Edimansyah, Bin Abdin; Rusli, Bin Nordin; Naing, Lin; Mohamed Rusli, Bin Abdullah; Winn, Than; Tengku Mohamed Ariff, Bin Raja Hussin

    2008-01-01

    Depression, anxiety and stress have been recognized as important mental outcome measures in stressful working settings. The present study explores the prevalence of self-perceived depression, anxiety and stress; and their relationships with psychosocial job factors. A cross-sectional study involving 728 male automotive assembly workers was conducted in two major automotive assembly plants in Malaysia using the validated Malay versions of the Depression Anxiety Stress Scales (DASS) and Job Content Questionnaire (JCQ). Based on the DASS cut-off of > or =78 percentile scores, the prevalence of self-perceived depression, anxiety and stress was 35.4%, 47.2% and 31.1%, respectively. Four (0.5%), 29 (4.0%) and 2 (0.3%) workers, respectively, reported extremely severe self-perceived depression, anxiety and stress. Multiple linear regression analyses, controlling for age, education, salary, duration of work and marital status, revealed that psychological job demand, job insecurity and hazardous condition were positively associated with DASS-Depression, DASS-Anxiety and DASS-Stress; supervisor support was inversely associated with DASS-Depression and DASS-Stress. We suggest that reducing psychological job demand, job insecurity and hazardous condition factors may improve the self-perceived depression, anxiety and stress in male automotive assembly workers. Supervisor support is protective for self-perceived depression and stress.

  4. Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress.

    PubMed

    Jorge, Tiago F; Rodrigues, João A; Caldana, Camila; Schmidt, Romy; van Dongen, Joost T; Thomas-Oates, Jane; António, Carla

    2016-09-01

    Metabolomics is one omics approach that can be used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include analysis of a wide range of chemical species with diverse physical properties, from ionic inorganic compounds to biochemically derived hydrophilic carbohydrates, organic and amino acids, and a range of hydrophobic lipid-related compounds. This complexitiy brings huge challenges to the analytical technologies employed in current plant metabolomics programs, and powerful analytical tools are required for the separation and characterization of this extremely high compound diversity present in biological sample matrices. The use of mass spectrometry (MS)-based analytical platforms to profile stress-responsive metabolites that allow some plants to adapt to adverse environmental conditions is fundamental in current plant biotechnology research programs for the understanding and development of stress-tolerant plants. In this review, we describe recent applications of metabolomics and emphasize its increasing application to study plant responses to environmental (stress-) factors, including drought, salt, low oxygen caused by waterlogging or flooding of the soil, temperature, light and oxidative stress (or a combination of them). Advances in understanding the global changes occurring in plant metabolism under specific abiotic stress conditions are fundamental to enhance plant fitness and increase stress tolerance. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:620-649, 2016. © 2015 Wiley Periodicals, Inc.

  5. Perceived Stress and Its Relationship With Chronic Medical Conditions and Multimorbidity Among 229,293 Community-Dwelling Adults in 44 Low- and Middle-Income Countries.

    PubMed

    Vancampfort, Davy; Koyanagi, A; Ward, Philip B; Veronese, Nicola; Carvalho, André F; Solmi, Marco; Mugisha, James; Rosenbaum, Simon; De Hert, Marc; Stubbs, Brendon

    2017-10-15

    In this study, we assessed the association of chronic medical conditions and multimorbidity with perceived stress among community-dwelling adults in 44 low- and middle-income countries. Data from the World Health Survey (2002-2004), including 229,293 adults, were analyzed. A perceived stress score (range, 0 (lowest stress)-100 (highest stress)) was computed on the basis of 2 questions from the Perceived Stress Scale. Eleven chronic conditions were assessed. Multivariable linear regression analyses were conducted to explore the associations. All chronic conditions were associated with significantly higher mean perceived stress scores, with the exception of edentulism. The associations were particularly strong for depression (β = 14.71, 95% confidence interval (CI): 13.68, 15.74), visual impairment (β = 10.66, 95% CI: 8.09, 13.23), and schizophrenia (β = 9.98, 95% CI: 7.71, 12.24). Compared with no chronic conditions, the β coefficients for perceived stress with the presence of 1, 2, 3, and ≥4 chronic conditions were 5.58 (95% CI: 4.94, 6.23), 9.58 (95% CI: 8.67, 10.49), 14.15 (95% CI: 12.63, 15.67), and 20.17 (95% CI: 18.29, 22.05), respectively. The associations with perceived stress were significantly stronger among the poorest individuals for arthritis, asthma, diabetes, edentulism, and ≥4 chronic conditions. Our data suggest that a range of chronic conditions and multimorbidity are associated with greatly increased perceived stress among people in low- and middle-income countries, and that the poorest persons may be a particularly vulnerable group. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Arctic sea ice, Eurasia snow, and extreme winter haze in China.

    PubMed

    Zou, Yufei; Wang, Yuhang; Zhang, Yuzhong; Koo, Ja-Ho

    2017-03-01

    The East China Plains (ECP) region experienced the worst haze pollution on record for January in 2013. We show that the unprecedented haze event is due to the extremely poor ventilation conditions, which had not been seen in the preceding three decades. Statistical analysis suggests that the extremely poor ventilation conditions are linked to Arctic sea ice loss in the preceding autumn and extensive boreal snowfall in the earlier winter. We identify the regional circulation mode that leads to extremely poor ventilation over the ECP region. Climate model simulations indicate that boreal cryospheric forcing enhances the regional circulation mode of poor ventilation in the ECP region and provides conducive conditions for extreme haze such as that of 2013. Consequently, extreme haze events in winter will likely occur at a higher frequency in China as a result of the changing boreal cryosphere, posing difficult challenges for winter haze mitigation but providing a strong incentive for greenhouse gas emission reduction.

  7. Arctic sea ice, Eurasia snow, and extreme winter haze in China

    PubMed Central

    Zou, Yufei; Wang, Yuhang; Zhang, Yuzhong; Koo, Ja-Ho

    2017-01-01

    The East China Plains (ECP) region experienced the worst haze pollution on record for January in 2013. We show that the unprecedented haze event is due to the extremely poor ventilation conditions, which had not been seen in the preceding three decades. Statistical analysis suggests that the extremely poor ventilation conditions are linked to Arctic sea ice loss in the preceding autumn and extensive boreal snowfall in the earlier winter. We identify the regional circulation mode that leads to extremely poor ventilation over the ECP region. Climate model simulations indicate that boreal cryospheric forcing enhances the regional circulation mode of poor ventilation in the ECP region and provides conducive conditions for extreme haze such as that of 2013. Consequently, extreme haze events in winter will likely occur at a higher frequency in China as a result of the changing boreal cryosphere, posing difficult challenges for winter haze mitigation but providing a strong incentive for greenhouse gas emission reduction. PMID:28345056

  8. Insertion sequences enrichment in extreme Red sea brine pool vent.

    PubMed

    Elbehery, Ali H A; Aziz, Ramy K; Siam, Rania

    2017-03-01

    Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world's largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.

  9. Reactive Oxygen Species Generation-Scavenging and Signaling during Plant-Arbuscular Mycorrhizal and Piriformospora indica Interaction under Stress Condition.

    PubMed

    Nath, Manoj; Bhatt, Deepesh; Prasad, Ram; Gill, Sarvajeet S; Anjum, Naser A; Tuteja, Narendra

    2016-01-01

    A defined balance between the generation and scavenging of reactive oxygen species (ROS) is essential to utilize ROS as an adaptive defense response of plants under biotic and abiotic stress conditions. Moreover, ROS are not only a major determinant of stress response but also act as signaling molecule that regulates various cellular processes including plant-microbe interaction. In particular, rhizosphere constitutes the biologically dynamic zone for plant-microbe interactions which forms a mutual link leading to reciprocal signaling in both the partners. Among plant-microbe interactions, symbiotic associations of arbuscular mycorrhizal fungi (AMF) and arbuscular mycorrhizal-like fungus especially Piriformospora indica with plants are well known to improve plant growth by alleviating the stress-impacts and consequently enhance the plant fitness. AMF and P. indica colonization mainly enhances ROS-metabolism, maintains ROS-homeostasis, and thereby averts higher ROS-level accrued inhibition in plant cellular processes and plant growth and survival under stressful environments. This article summarizes the major outcomes of the recent reports on the ROS-generation, scavenging and signaling in biotic-abiotic stressed plants with AMF and P. indica colonization. Overall, a detailed exploration of ROS-signature kinetics during plant-AMF/ P. indica interaction can help in designing innovative strategies for improving plant health and productivity under stress conditions.

  10. Effects of acute social stress on the conditioned place preference induced by MDMA in adolescent and adult mice.

    PubMed

    García-Pardo, Maria P; Rodríguez-Arias, Marta; Maldonado, Concepcion; Manzanedo, Carmen; Miñarro, Jose; Aguilar, Maria A

    2014-09-01

    Exposure to social defeat stress increases the rewarding effects of psychostimulants in animal models, but its effect on 3,4-methylenedioxymethylamphetamine (MDMA) reward has received little attention. In the present study, we evaluated the influence of social defeat on the rewarding effects of MDMA in adolescent [postnatal day (PND) 29-40] and adult (PND 50-61) male mice using the conditioned place preference paradigm. Experimental mice were exposed to social defeat in an agonistic encounter before each session of conditioning with 1.25 or 10 mg/kg of MDMA. The effects of social defeat on corticosterone levels and the motor or the anxiogenic effects of MDMA were also evaluated. Mice exposed to social defeat during adulthood did not show conditioned place preference after conditioning with either dose of MDMA. Conversely, social defeat did not affect the anxiogenic and motor effects of MDMA. Adult mice exposed to social defeat showed higher levels of corticosterone than their controls and adolescent mice. Social stress did not induce behavioural effects in adolescent mice. Our results show that stress induced by social defeat decreases the sensitivity of adult mice to the rewarding effects of MDMA.

  11. The short-term stress response - Mother nature's mechanism for enhancing protection and performance under conditions of threat, challenge, and opportunity.

    PubMed

    Dhabhar, Firdaus S

    2018-03-26

    Our group has proposed that in contrast to chronic stress that can have harmful effects, the short-term (fight-or-flight) stress response (lasting for minutes to hours) is nature's fundamental survival mechanism that enhances protection and performance under conditions involving threat/challenge/opportunity. Short-term stress enhances innate/primary, adaptive/secondary, vaccine-induced, and anti-tumor immune responses, and post-surgical recovery. Mechanisms and mediators include stress hormones, dendritic cell, neutrophil, macrophage, and lymphocyte trafficking/function and local/systemic chemokine and cytokine production. Short-term stress may also enhance mental/cognitive and physical performance through effects on brain, musculo-skeletal, and cardiovascular function, reappraisal of threat/anxiety, and training-induced stress-optimization. Therefore, short-term stress psychology/physiology could be harnessed to enhance immuno-protection, as well as mental and physical performance. This review aims to provide a conceptual framework and targets for further investigation of mechanisms and conditions under which the protective/adaptive aspects of short-term stress/exercise can be optimized/harnessed, and for developing pharmacological/biobehavioral interventions to enhance health/healing, and mental/cognitive/physical performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Extremely Low Frequency Magnetic Field (50 Hz, 0.5 mT) Reduces Oxidative Stress in the Brain of Gerbils Submitted to Global Cerebral Ischemia

    PubMed Central

    Rauš Balind, Snežana; Selaković, Vesna; Radenović, Lidija; Prolić, Zlatko; Janać, Branka

    2014-01-01

    Magnetic field as ecological factor has influence on all living beings. The aim of this study was to determine if extremely low frequency magnetic field (ELF-MF, 50 Hz, 0.5 mT) affects oxidative stress in the brain of gerbils submitted to 10-min global cerebral ischemia. After occlusion of both carotid arteries, 3-month-old gerbils were continuously exposed to ELF-MF for 7 days. Nitric oxide and superoxide anion production, superoxide dismutase activity and index of lipid peroxidation were examined in the forebrain cortex, striatum and hippocampus on the 7th (immediate effect of ELF-MF) and 14th day after reperfusion (delayed effect of ELF-MF). Ischemia per se increased oxidative stress in the brain on the 7th and 14th day after reperfusion. ELF-MF also increased oxidative stress, but to a greater extent than ischemia, only immediately after cessation of exposure. Ischemic gerbils exposed to ELF-MF had increased oxidative stress parameters on the 7th day after reperfusion, but to a lesser extent than ischemic or ELF-MF-exposed animals. On the 14th day after reperfusion, oxidative stress parameters in the brain of these gerbils were mostly at the control levels. Applied ELF-MF decreases oxidative stress induced by global cerebral ischemia and thereby reduces possible negative consequences which free radical species could have in the brain. The results presented here indicate a beneficial effect of ELF-MF (50 Hz, 0.5 mT) in the model of global cerebral ischemia. PMID:24586442

  13. Failure Characteristics of Granite Influenced by Sample Height-to-Width Ratios and Intermediate Principal Stress Under True-Triaxial Unloading Conditions

    NASA Astrophysics Data System (ADS)

    Li, Xibing; Feng, Fan; Li, Diyuan; Du, Kun; Ranjith, P. G.; Rostami, Jamal

    2018-05-01

    The failure modes and peak unloading strength of a typical hard rock, Miluo granite, with particular attention to the sample height-to-width ratio (between 2 and 0.5), and the intermediate principal stress was investigated using a true-triaxial test system. The experimental results indicate that both sample height-to-width ratios and intermediate principal stress have an impact on the failure modes, peak strength and severity of rockburst in hard rock under true-triaxial unloading conditions. For longer rectangular specimens, the transition of failure mode from shear to slabbing requires higher intermediate principal stress. With the decrease in sample height-to-width ratios, slabbing failure is more likely to occur under the condition of lower intermediate principal stress. For same intermediate principal stress, the peak unloading strength monotonically increases with the decrease in sample height-to-width. However, the peak unloading strength as functions of intermediate principal stress for different types of rock samples (with sample height-to-width ratio of 2, 1 and 0.5) all present the pattern of initial increase, followed by a subsequent decrease. The curves fitted to octahedral shear stress as a function of mean effective stress also validate the applicability of the Mogi-Coulomb failure criterion for all considered rock sizes under true-triaxial unloading conditions, and the corresponding cohesion C and internal friction angle φ are calculated. The severity of strainburst of granite depends on the sample height-to-width ratios and intermediate principal stress. Therefore, different supporting strategies are recommended in deep tunneling projects and mining activities. Moreover, the comparison of test results of different σ 2/ σ 3 also reveals the little influence of minimum principal stress on failure characteristics of granite during the true-triaxial unloading process.

  14. [Seed vigor evaluation based on adversity resistance index of wheat seed germination under stress conditions.

    PubMed

    Chen, Lei Tai; Sun, Ai Qing; Yang, Min; Chen, Lu Lu; Ma, Xue Li; Li, Mei Ling; Yin, Yan Ping

    2016-09-01

    A total of 16 wheat cultivars were selected to detect seed vigor of different genotypes using standard germination test, seed germination test under stress conditions and field emergence test. The adversity resistance indices of seed vigor indices and field emergence percentage under different germination conditions were used as the indices to evaluate adversity resistance. Principal component analysis and cluster analysis were used for the comprehensive evaluation of seed vigor. Results showed that drought stress, artificial aging and cold soaking treatments affected seed vigor to some extent. The adversity resistance indices of the artificial aging and cold soaking tests were significantly positively correlated with the field emergence percentage, while the adversity resistance index of drought stress test had no significant correlation with the field emergence percentage. 16 wheat cultivars were classified as three groups based on the principal component analysis and cluster analysis. Yunong 949, Yumai 49-198, Luyuan 502, Zhengyumai 9987, Shimai 21, Shannong 23, and Shixin 828 belonged to high vigor seeds. Xunong 5, Yunong 982, Tangmai 8, Jimai 20, Jimai 22, Jinan 17, and Shannong 20 belonged to medium vigor seeds. The other two cultivars, Chang 4738 and Lunxuan 061, belonged to low vigor seeds.

  15. Assessment extreme hydrometeorological conditions in the Gulf of Bothnia, the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Dvornikov, Anton; Martyanov, Stanislav; Ryabchenko, Vladimir; Eremina, Tatjana; Isaev, Alexey; Sein, Dmitry

    2017-04-01

    Extreme hydrometeorological conditions in the Gulf of Bothnia, the Baltic Sea, are estimated paying a special attention to the area of the future construction of nuclear power plant (NPP) "Hanhikivi-1" (24° 16' E, 64° 32' N). To produce these estimates, long-term observations and results from numerical models of water and ice circulation and wind waves are used. It is estimated that the average annual air temperature in the vicinity of the station is +3° C, summer and winter extreme temperature is equal to 33.3° C and -41.5° C, respectively. Model calculations of wind waves have shown that the most dangerous (in terms of the generation of wind waves in the NPP area) is a north-west wind with the direction of 310°. The maximum height of the waves in the Gulf of Bothnia near the NPP for this wind direction with wind velocity of 10 m/s is 1.2-1.4 m. According to the model estimates, the highest possible level of the sea near the NPP is 248 cm, the minimum level, -151 cm, respectively for the western and eastern winds. These estimates are in good agreement with observations on the sea level for the period 1922-2015 at the nearest hydrometeorological station Raahe (Finland). In order to assess the likely impact of the NPP on the marine environment numerical experiments for the cold (2010) and warm year (2014) have been carried out. These calculations have shown that permanent release of heat into the marine environment from the operating NPP for the cold year (2010) will increase the temperature in the upper layer of 0-250m zone by 10°C in winter - spring and by 8°C in summer - early autumn, and in the bottom layer of 0-250m zone by 5°C in winter - spring and 3°C in summer - early autumn. For the warm year (2014), these temperature changes are smaller. Ice cover in both cases will disappear in two - kilometer vicinity of the NPP. These effects should be taken into account when assessing local climate changes in the future

  16. Protein Quality Control Under Oxidative Stress Conditions

    PubMed Central

    Dahl, Jan-Ulrik; Gray, Michael J.; Jakob, Ursula

    2015-01-01

    Accumulation of reactive oxygen and chlorine species (RO/CS) is generally regarded to be a toxic and highly undesirable event, which serves as contributing factor in aging and many age-related diseases. However, it is also put to excellent use during host defense, when high levels of RO/CS are produced to kill invading microorganisms and regulate bacterial colonization. Biochemical and cell biological studies of how bacteria and other microorganisms deal with RO/CS have now provided important new insights into the physiological consequences of oxidative stress, the major targets that need protection, and the cellular strategies employed by organisms to mitigate the damage. This review examines the redox-regulated mechanisms by which cells maintain a functional proteome during oxidative stress. We will discuss the well-characterized redox-regulated chaperone Hsp33, and review recent discoveries demonstrating that oxidative stress-specific activation of chaperone function is a much more widespread phenomenon than previously anticipated. New members of this group include the cytosolic ATPase Get3 in yeast, the E. coli protein RidA, and the mammalian protein α2-macroglobin. We will conclude our review with recent evidence showing that inorganic polyphosphate (polyP), whose accumulation significantly increases bacterial oxidative stress resistance, works by a protein-like chaperone mechanism. Understanding the relationship between oxidative and proteotoxic stresses will improve our understanding of both host-microbe interactions and of how mammalian cells combat the damaging side effects of uncontrolled RO/CS production, a hallmark of inflammation. PMID:25698115

  17. A Review & Assessment of Current Operating Conditions Allowable Stresses in ASME Section III Subsection NH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. W. Swindeman

    2009-12-14

    The current operating condition allowable stresses provided in ASME Section III, Subsection NH were reviewed for consistency with the criteria used to establish the stress allowables and with the allowable stresses provided in ASME Section II, Part D. It was found that the S{sub o} values in ASME III-NH were consistent with the S values in ASME IID for the five materials of interest. However, it was found that 0.80 S{sub r} was less than S{sub o} for some temperatures for four of the materials. Only values for alloy 800H appeared to be consistent with the criteria on which S{submore » o} values are established. With the intent of undertaking a more detailed evaluation of issues related to the allowable stresses in ASME III-NH, the availabilities of databases for the five materials were reviewed and augmented databases were assembled.« less

  18. A New Stress-Based Model of Political Extremism: Personal Exposure to Terrorism, Psychological Distress, and Exclusionist Political Attitudes.

    PubMed

    Canetti-Nisim, Daphna; Halperin, Eran; Sharvit, Keren; Hobfoll, Stevan E

    2009-06-01

    Does exposure to terrorism lead to hostility toward minorities? Drawing on theories from clinical and social psychology, we propose a stress-based model of political extremism in which psychological distress-which is largely overlooked in political scholarship-and threat perceptions mediate the relationship between exposure to terrorism and attitudes toward minorities. To test the model, a representative sample of 469 Israeli Jewish respondents was interviewed on three occasions at six-month intervals. Structural Equation Modeling indicated that exposure to terrorism predicted psychological distress (t1), which predicted perceived threat from Palestinian citizens of Israel (t2), which, in turn, predicted exclusionist attitudes toward Palestinian citizens of Israel (t3). These findings provide solid evidence and a mechanism for the hypothesis that terrorism introduces nondemocratic attitudes threatening minority rights. It suggests that psychological distress plays an important role in political decision making and should be incorporated in models drawing upon political psychology.

  19. Impact of Bony Stress Injuries on Professional Basketball Performance

    PubMed Central

    Khan, Moin; Madden, Kim; Rogowski, Joseph P.; Stotts, Jeff; Burrus, Matthew Tyrrell; Samani, Marisa; Sikka, Robby Singh; Bedi, Asheesh

    2017-01-01

    Objectives: Players in the National Basketball Association (NBA) subject their lower extremities to significant repetitive loading during the season as well as during off-season training. Little is known about the incidence and impact of lower extremity bony stress injuries in these athletes. Methods: Using the player injury database maintained by the NBA Players’ Association, all bony stress injuries from 1992 to May 2016 were identified. Those not involving the lower extremity were excluded from the study. Stress fractures and stress reactions were grouped together. Number of games missed due to the injury as well as player statistics including points per game (ppg), assists per game (apg), steals per game (spg), and blocks per game (bpg) were collected from two years prior to the injury to two years after the injury. Results: 76 lower extremity bony stress injuries were identified involving 75 different NBA players with an average player age of 25.4 ± 4.1 years. 55.3% (42/76) involved the foot, 21.1% (16/76) involved the ankle or fibula, 17.1% (13/76) involved the tibia, and 6.6% (5/76) involved either the knee or patella. The majority of injuries occurred in season 82.9% (63/76) with half of the injuries occurring within the first 6 weeks of the season. 38.2% (29/76) of these injuries were managed surgically. An average of 25.1 ± 21.3 games were missed. 19.7% (15/76) of patients who sustained a stress fracture also had a subsequent injury. 29.2% (21/76) of players were not able to return to professional basketball after the season in which the injury was sustained; however, those who were able to return to the same level of play did not see a significant change in performance as measured by ppg, apg, spg, or bpg when comparing the season prior to the injury and either one or two years after the injury. Stress injuries to the foot carried the worst prognosis, 57.1% (12/21) of those unable to return to professional basketball sustained such an injury

  20. Dynamics of food availability, body condition and physiological stress response in breeding Black-legged Kittiwakes

    USGS Publications Warehouse

    Kitaysky, A.S.; Wingfield, J.C.; Piatt, John F.

    1999-01-01

    1. The seasonal dynamics of body condition (BC), circulating corticosterone levels (baseline, BL) and the adrenocortical response to acute stress (SR) were examined in long-lived Black-legged Kittiwakes, Rissa tridactyla, breeding at Duck (food-poor colony) and Gull (food-rich colony) Islands in lower Cook Inlet, Alaska. It was tested whether the dynamics of corticosterone levels reflect a seasonal change in bird physiological condition due to reproduction and/or variation in foraging conditions. 2. BC declined seasonally, and the decline was more pronounced in birds at the food-poor colony. BL and SR levels of corticosterone rose steadily through the reproductive season, and BL levels were significantly higher in birds on Duck island compared with those on Gull Island. During the egg-laying and chick-rearing stages, birds had lower SR on Duck Island than on Gull Island. 3. The results suggest that, in addition to a seasonal change in bird physiology during reproduction, local ecological factors such as food availability affect circulating levels of corticosterone and adrenal response to acute stress.