Sample records for energy management solutions

  1. Smart energy management system

    NASA Astrophysics Data System (ADS)

    Desai, Aniruddha; Singh, Jugdutt

    2010-04-01

    Peak and average energy usage in domestic and industrial environments is growing rapidly and absence of detailed energy consumption metrics is making systematic reduction of energy usage very difficult. Smart energy management system aims at providing a cost-effective solution for managing soaring energy consumption and its impact on green house gas emissions and climate change. The solution is based on seamless integration of existing wired and wireless communication technologies combined with smart context-aware software which offers a complete solution for automation of energy measurement and device control. The persuasive software presents users with easy-to-assimilate visual cues identifying problem areas and time periods and encourages a behavioural change to conserve energy. The system allows analysis of real-time/statistical consumption data with the ability to drill down into detailed analysis of power consumption, CO2 emissions and cost. The system generates intelligent projections and suggests potential methods (e.g. reducing standby, tuning heating/cooling temperature, etc.) of reducing energy consumption. The user interface is accessible using web enabled devices such as PDAs, PCs, etc. or using SMS, email, and instant messaging. Successful real-world trial of the system has demonstrated the potential to save 20 to 30% energy consumption on an average. Low cost of deployment and the ability to easily manage consumption from various web enabled devices offers gives this system a high penetration and impact capability offering a sustainable solution to act on climate change today.

  2. Sustainable-energy managment practices in an energy economy

    NASA Astrophysics Data System (ADS)

    Darkwa, K.

    2001-10-01

    The economic survival of any nation depends upon its ability to produce and manage sufficient supplies of low-cost safe energy. The world's consumption of fossil fuel resources currently increasing at 3% per annum is found to be unsustainable. Projections of this trend show that mankind will exhaust all known reserves in the second half of the coming century. Governments, industrialists, commercial organizations, public sector departments and the general public have now become aware of the urgent requirements for the efficient management of resources and energy-consuming activities. Most organizations in the materials, manufacturing and retail sectors and in the service industries have also created energy management departments, or have employed consultants, to monitor energy consumption and to reduce wastage. Conversely, any sustained attempt to reduce rates of energy consumption even by as little as 0.1% per annum ensures relatively an eternal future supply as well as reduction on environmental and ecological effect. Thus, there is no long- term solution to energy flow problem other than systematic and effective energy management and the continuous application of the techniques of energy management. Essential energy management strategies in support of a sustainable energy- economy are discussed.

  3. Energy management and cooperation in microgrids

    NASA Astrophysics Data System (ADS)

    Rahbar, Katayoun

    Microgrids are key components of future smart power grids, which integrate distributed renewable energy generators to efficiently serve the load demand locally. However, random and intermittent characteristics of renewable energy generations may hinder the reliable operation of microgrids. This thesis is thus devoted to investigating new strategies for microgrids to optimally manage their energy consumption, energy storage system (ESS) and cooperation in real time to achieve the reliable and cost-effective operation. This thesis starts with a single microgrid system. The optimal energy scheduling and ESS management policy is derived to minimize the energy cost of the microgrid resulting from drawing conventional energy from the main grid under both the off-line and online setups, where the renewable energy generation/load demand are assumed to be non-causally known and causally known at the microgrid, respectively. The proposed online algorithm is designed based on the optimal off-line solution and works under arbitrary (even unknown) realizations of future renewable energy generation/load demand. Therefore, it is more practically applicable as compared to solutions based on conventional techniques such as dynamic programming and stochastic programming that require the prior knowledge of renewable energy generation and load demand realizations/distributions. Next, for a group of microgrids that cooperate in energy management, we study efficient methods for sharing energy among them for both fully and partially cooperative scenarios, where microgrids are of common interests and self-interested, respectively. For the fully cooperative energy management, the off-line optimization problem is first formulated and optimally solved, where a distributed algorithm is proposed to minimize the total (sum) energy cost of microgrids. Inspired by the results obtained from the off-line optimization, efficient online algorithms are proposed for the real-time energy management

  4. Energy Management Needs; A Project to Develop Solutions for Higher Education's Energy Problems in the 1980's.

    ERIC Educational Resources Information Center

    Coldren, Sharon L.; Mitchell, Cecilia

    Current patterns of energy management within higher education institutions and energy-related information and services that are needed by senior administrators and others to develop and improve energy management and planning on campus were studied. The findings and recommendations will be used to help develop a new research and action program for…

  5. Data management for the internet of things: design primitives and solution.

    PubMed

    Abu-Elkheir, Mervat; Hayajneh, Mohammad; Ali, Najah Abu

    2013-11-14

    The Internet of Things (IoT) is a networking paradigm where interconnected, smart objects continuously generate data and transmit it over the Internet. Much of the IoT initiatives are geared towards manufacturing low-cost and energy-efficient hardware for these objects, as well as the communication technologies that provide objects interconnectivity. However, the solutions to manage and utilize the massive volume of data produced by these objects are yet to mature. Traditional database management solutions fall short in satisfying the sophisticated application needs of an IoT network that has a truly global-scale. Current solutions for IoT data management address partial aspects of the IoT environment with special focus on sensor networks. In this paper, we survey the data management solutions that are proposed for IoT or subsystems of the IoT. We highlight the distinctive design primitives that we believe should be addressed in an IoT data management solution, and discuss how they are approached by the proposed solutions. We finally propose a data management framework for IoT that takes into consideration the discussed design elements and acts as a seed to a comprehensive IoT data management solution. The framework we propose adapts a federated, data- and sources-centric approach to link the diverse Things with their abundance of data to the potential applications and services that are envisioned for IoT.

  6. Data Management for the Internet of Things: Design Primitives and Solution

    PubMed Central

    Abu-Elkheir, Mervat; Hayajneh, Mohammad; Ali, Najah Abu

    2013-01-01

    The Internet of Things (IoT) is a networking paradigm where interconnected, smart objects continuously generate data and transmit it over the Internet. Much of the IoT initiatives are geared towards manufacturing low-cost and energy-efficient hardware for these objects, as well as the communication technologies that provide objects interconnectivity. However, the solutions to manage and utilize the massive volume of data produced by these objects are yet to mature. Traditional database management solutions fall short in satisfying the sophisticated application needs of an IoT network that has a truly global-scale. Current solutions for IoT data management address partial aspects of the IoT environment with special focus on sensor networks. In this paper, we survey the data management solutions that are proposed for IoT or subsystems of the IoT. We highlight the distinctive design primitives that we believe should be addressed in an IoT data management solution, and discuss how they are approached by the proposed solutions. We finally propose a data management framework for IoT that takes into consideration the discussed design elements and acts as a seed to a comprehensive IoT data management solution. The framework we propose adapts a federated, data- and sources-centric approach to link the diverse Things with their abundance of data to the potential applications and services that are envisioned for IoT. PMID:24240599

  7. A Distributed Dynamic Programming-Based Solution for Load Management in Smart Grids

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Xu, Yinliang; Li, Sisi; Zhou, MengChu; Liu, Wenxin; Xu, Ying

    2018-03-01

    Load management is being recognized as an important option for active user participation in the energy market. Traditional load management methods usually require a centralized powerful control center and a two-way communication network between the system operators and energy end-users. The increasing user participation in smart grids may limit their applications. In this paper, a distributed solution for load management in emerging smart grids is proposed. The load management problem is formulated as a constrained optimization problem aiming at maximizing the overall utility of users while meeting the requirement for load reduction requested by the system operator, and is solved by using a distributed dynamic programming algorithm. The algorithm is implemented via a distributed framework and thus can deliver a highly desired distributed solution. It avoids the required use of a centralized coordinator or control center, and can achieve satisfactory outcomes for load management. Simulation results with various test systems demonstrate its effectiveness.

  8. Clean Energy Solutions Center: Assisting Countries with Clean Energy Policy

    Science.gov Websites

    Energy Solutions Center: Assisting Countries with Clean Energy Policy NREL helps developing countries and adapting to climate change impacts, developing countries are looking for clean energy solutions supports clean energy scale-up in the developing world are knowledge, capacity, and cost. The Clean Energy

  9. Energy Consumption Management of Virtual Cloud Computing Platform

    NASA Astrophysics Data System (ADS)

    Li, Lin

    2017-11-01

    For energy consumption management research on virtual cloud computing platforms, energy consumption management of virtual computers and cloud computing platform should be understood deeper. Only in this way can problems faced by energy consumption management be solved. In solving problems, the key to solutions points to data centers with high energy consumption, so people are in great need to use a new scientific technique. Virtualization technology and cloud computing have become powerful tools in people’s real life, work and production because they have strong strength and many advantages. Virtualization technology and cloud computing now is in a rapid developing trend. It has very high resource utilization rate. In this way, the presence of virtualization and cloud computing technologies is very necessary in the constantly developing information age. This paper has summarized, explained and further analyzed energy consumption management questions of the virtual cloud computing platform. It eventually gives people a clearer understanding of energy consumption management of virtual cloud computing platform and brings more help to various aspects of people’s live, work and son on.

  10. Energy Solutions

    ERIC Educational Resources Information Center

    Sobieski, Jeff

    2010-01-01

    Education facilities managers are faced with a daunting set of challenges: They must find new ways to reduce energy consumption and carry out greener energy policies. HVAC typically accounts for more than 30% of a building's electricity costs, so there is a clear incentive to eliminate unnecessary heating and cooling of unoccupied rooms. With more…

  11. Optimal Energy Management for a Smart Grid using Resource-Aware Utility Maximization

    NASA Astrophysics Data System (ADS)

    Abegaz, Brook W.; Mahajan, Satish M.; Negeri, Ebisa O.

    2016-06-01

    Heterogeneous energy prosumers are aggregated to form a smart grid based energy community managed by a central controller which could maximize their collective energy resource utilization. Using the central controller and distributed energy management systems, various mechanisms that harness the power profile of the energy community are developed for optimal, multi-objective energy management. The proposed mechanisms include resource-aware, multi-variable energy utility maximization objectives, namely: (1) maximizing the net green energy utilization, (2) maximizing the prosumers' level of comfortable, high quality power usage, and (3) maximizing the economic dispatch of energy storage units that minimize the net energy cost of the energy community. Moreover, an optimal energy management solution that combines the three objectives has been implemented by developing novel techniques of optimally flexible (un)certainty projection and appliance based pricing decomposition in an IBM ILOG CPLEX studio. A real-world, per-minute data from an energy community consisting of forty prosumers in Amsterdam, Netherlands is used. Results show that each of the proposed mechanisms yields significant increases in the aggregate energy resource utilization and welfare of prosumers as compared to traditional peak-power reduction methods. Furthermore, the multi-objective, resource-aware utility maximization approach leads to an optimal energy equilibrium and provides a sustainable energy management solution as verified by the Lagrangian method. The proposed resource-aware mechanisms could directly benefit emerging energy communities in the world to attain their energy resource utilization targets.

  12. Standardized Solution for Management Controller for MTCA.4

    NASA Astrophysics Data System (ADS)

    Makowski, D.; Fenner, M.; Ludwig, F.; Mavrič, U.; Mielczarek, A.; Napieralski, A.; Perek, P.; Schlarb, H.

    2015-06-01

    The Micro Telecommunications Computing Architecture (MTCA) standard is a modern platform that is gaining popularity in the area of High Energy Physics (HEP) experiments. The standard provides extensive management, monitoring and diagnostics functionalities. The hardware control and monitoring is based on the Intelligent Platform Management Interface (IPMI), that was initially developed for supervision of complex computers operation. The original IPMI specification was extended to support functions required by the MTCA specification. The Module Management Controller (MMC) is required on each Advanced Mezzanine Card (AMC) installed in MTCA chassis. The Rear Transition Modules (RTMs) have to be equipped with RTM Management Controllers (RMCs) which is required by the MTCA.4 subsidiary specification. The commercially available implementations of MMC and RMC are expensive and do not provide the complete functionality that is required by specific HEP applications. Therefore, many research centers and commercial companies work on their own implementation of AMC and RTM controllers. The available implementations suffer because of lack of common approach and interoperability problems. Since both Lodz University of Technology (TUL) and Deutsches Elektronen-Synchrotron (DESY) have long-term experience in developing ATCA and MTCA hardware, the authors decided to develop a unified solution of management controller fully compliant with AMC and MTCA.4 standards. The MMC v1.00 solution is dedicated for management of AMC and RTM modules. The MMC v1.00 is based on Atmel ATxmega MCUs and can be fully customized by the user or used as a drop-in-module without any modifications. The paper discusses the functionality of the MMC v1.00 solution. The implementation was verified with developed evaluation kits for AMC and RTM cards.

  13. Providing Personalized Energy Management and Awareness Services for Energy Efficiency in Smart Buildings.

    PubMed

    Fotopoulou, Eleni; Zafeiropoulos, Anastasios; Terroso-Sáenz, Fernando; Şimşek, Umutcan; González-Vidal, Aurora; Tsiolis, George; Gouvas, Panagiotis; Liapis, Paris; Fensel, Anna; Skarmeta, Antonio

    2017-09-07

    Considering that the largest part of end-use energy consumption worldwide is associated with the buildings sector, there is an inherent need for the conceptualization, specification, implementation, and instantiation of novel solutions in smart buildings, able to achieve significant reductions in energy consumption through the adoption of energy efficient techniques and the active engagement of the occupants. Towards the design of such solutions, the identification of the main energy consuming factors, trends, and patterns, along with the appropriate modeling and understanding of the occupants' behavior and the potential for the adoption of environmentally-friendly lifestyle changes have to be realized. In the current article, an innovative energy-aware information technology (IT) ecosystem is presented, aiming to support the design and development of novel personalized energy management and awareness services that can lead to occupants' behavioral change towards actions that can have a positive impact on energy efficiency. Novel information and communication technologies (ICT) are exploited towards this direction, related mainly to the evolution of the Internet of Things (IoT), data modeling, management and fusion, big data analytics, and personalized recommendation mechanisms. The combination of such technologies has resulted in an open and extensible architectural approach able to exploit in a homogeneous, efficient and scalable way the vast amount of energy, environmental, and behavioral data collected in energy efficiency campaigns and lead to the design of energy management and awareness services targeted to the occupants' lifestyles. The overall layered architectural approach is detailed, including design and instantiation aspects based on the selection of set of available technologies and tools. Initial results from the usage of the proposed energy aware IT ecosystem in a pilot site at the University of Murcia are presented along with a set of identified

  14. Providing Personalized Energy Management and Awareness Services for Energy Efficiency in Smart Buildings

    PubMed Central

    Fotopoulou, Eleni; Tsiolis, George; Gouvas, Panagiotis; Liapis, Paris; Fensel, Anna; Skarmeta, Antonio

    2017-01-01

    Considering that the largest part of end-use energy consumption worldwide is associated with the buildings sector, there is an inherent need for the conceptualization, specification, implementation, and instantiation of novel solutions in smart buildings, able to achieve significant reductions in energy consumption through the adoption of energy efficient techniques and the active engagement of the occupants. Towards the design of such solutions, the identification of the main energy consuming factors, trends, and patterns, along with the appropriate modeling and understanding of the occupants’ behavior and the potential for the adoption of environmentally-friendly lifestyle changes have to be realized. In the current article, an innovative energy-aware information technology (IT) ecosystem is presented, aiming to support the design and development of novel personalized energy management and awareness services that can lead to occupants’ behavioral change towards actions that can have a positive impact on energy efficiency. Novel information and communication technologies (ICT) are exploited towards this direction, related mainly to the evolution of the Internet of Things (IoT), data modeling, management and fusion, big data analytics, and personalized recommendation mechanisms. The combination of such technologies has resulted in an open and extensible architectural approach able to exploit in a homogeneous, efficient and scalable way the vast amount of energy, environmental, and behavioral data collected in energy efficiency campaigns and lead to the design of energy management and awareness services targeted to the occupants’ lifestyles. The overall layered architectural approach is detailed, including design and instantiation aspects based on the selection of set of available technologies and tools. Initial results from the usage of the proposed energy aware IT ecosystem in a pilot site at the University of Murcia are presented along with a set of

  15. Energy Management for Automatic Monitoring Stations in Arctic Regions

    NASA Astrophysics Data System (ADS)

    Pimentel, Demian

    Automatic weather monitoring stations deployed in arctic regions are usually installed in hard to reach locations. Most of the time they run unsupervised and they face severe environmental conditions: very low temperatures, ice riming, etc. It is usual practice to use a local energy source to power the equipment. There are three main ways to achieve this: (1) a generator whose fuel has to be transported to the location at regular intervals (2) a battery and (3) an energy harvesting generator that exploits a local energy source. Hybrid systems are very common. Polar nights and long winters are typical of arctic regions. Solar radiation reaching the ground during this season is very low or non-existent, depending on the geographical location. Therefore, solar power generation is not very effective. One straightforward, but expensive and inefficient solution is the use of a large bank of batteries that is recharged during sunny months and discharged during the winter. The main purpose of the monitoring stations is to collect meteorological data at regular intervals; interruptions due to a lack of electrical energy can be prevented with the use of an energy management subsystem. Keeping a balance between incoming and outgoing energy flows, while assuring the continuous operation of the station, is the delicate task of energy management strategies. This doctoral thesis explores alternate power generation solutions and intelligent energy management techniques for equipment deployed in the arctic. For instance, harvesting energy from the wind to complement solar generation is studied. Nevertheless, harvested energy is a scarce resource and needs to be used efficiently. Genetic algorithms, fuzzy logic, and common sense are used to efficiently manage energy flows within a simulated arctic weather station.

  16. 75 FR 76962 - Application To Export Electric Energy; MAG Energy Solutions, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-306-A] Application To Export Electric Energy; MAG Energy Solutions, Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of Application. SUMMARY: MAG Energy Solutions, Inc. (MAG E.S.) has applied to renew its authority to transmit...

  17. Clean Energy Solutions Center Services (Chinese Translation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-03-01

    This is a Mandarin translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  18. Clean Energy Solutions Center Services (Vietnamese Translation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-03-01

    This is a Vietnamese translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  19. Clean Energy Solutions Center Services (French Translation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This is a French translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  20. Clean Energy Solutions Center Services (Arabic Translation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-03-01

    This is an Arabic translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  1. Clean Energy Solutions Center Services (Portuguese Translation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This is a Portuguese translation of the Clean Energy Solutions Center Services fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  2. Clean Energy Solutions Center Services (Arabic Translation) (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-06-01

    This is the Arabic translation of the Clean Energy Solutions Center Services fact sheet. The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  3. Piezoelectric Energy Harvesting Solutions

    PubMed Central

    Caliò, Renato; Rongala, Udaya Bhaskar; Camboni, Domenico; Milazzo, Mario; Stefanini, Cesare; de Petris, Gianluca; Oddo, Calogero Maria

    2014-01-01

    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions. PMID:24618725

  4. Research on Factors Influencing Individual's Behavior of Energy Management

    NASA Astrophysics Data System (ADS)

    Fan, Yanfeng

    With the rapid rise of distributed generation, Internet of Things, and mobile Internet, both U.S. and European smart home manufacturers have developed energy management solutions for individual usage. These applications help people manage their energy consumption more efficiently. Domestic manufacturers have also launched similar products. This paper focuses on the factors influencing Energy Management Behaviour (EMB) at the individual level. By reviewing academic literature, conducting surveys in Beijing, Shanghai and Guangzhou, the author builds an integrated behavioural energy management model of the Chinese energy consumers. This paper takes the vague term of EMB and redefines it as a function of two separate behavioural concepts: Energy Management Intention (EMI), and the traditional Energy Saving Intention (ESI). Secondly, the author conducts statistical analyses on these two behavioural concepts. EMI is the main driver behind an individual's EMB. EMI is affected by Behavioural Attitudes, Subjective Norms, and Perceived Behavioural Control (PBC). Among these three key factors, PBC exerts the strongest influence. This implies that the promotion of the energy management concept is mainly driven by good application user experience (UX). The traditional ESI also demonstrates positive influence on EMB, but its impact is weaker than the impacts arising under EMI's three factors. In other words, the government and manufacturers may not be able to change an individual's energy management behaviour if they rely solely on their traditional promotion strategies. In addition, the study finds that the government may achieve better promotional results by launching subsidies to the manufacturers of these kinds of applications and smart appliances.

  5. Black Plane Solutions and Localized Gravitational Energy

    PubMed Central

    Roberts, Jennifer

    2015-01-01

    We explore the issue of gravitational energy localization for static plane-symmetric solutions of the Einstein-Maxwell equations in 3+1 dimensions with asymptotic anti-de Sitter behavior. We apply three different energy-momentum complexes, the Einstein, Landau-Lifshitz, and Møller prescriptions, to the metric representing this category of solutions and determine the energy distribution for each. We find that the three prescriptions offer identical energy distributions, suggesting their utility for this type of model. PMID:27347499

  6. Clean Energy Solutions Center Services (Vietnamese Translation) (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-11-01

    This is the Vietnamese language translation of the Clean Energy Solutions Center (Solutions Center) fact sheet. The Solutions Center helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  7. Clean Energy Solutions Center Services (Chinese Translation) (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-04-01

    This is the Chinese language translation of the Clean Energy Solutions Center (Solutions Center) fact sheet. The Solutions Center helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  8. Comparison of Energy and Nutrient Contents of Commercial and Noncommercial Enteral Nutrition Solutions

    PubMed Central

    Jolfaie, Nahid Ramezani; Rouhani, Mohammad Hossein; Mirlohi, Maryam; Babashahi, Mina; Abbasi, Saeid; Adibi, Peiman; Esmaillzadeh, Ahmad; Azadbakht, Leila

    2017-01-01

    Background: Nutritional support plays a major role in the management of critically ill patients. This study aimed to compare the nutritional quality of enteral nutrition solutions (noncommercial vs. commercial) and the amount of energy and nutrients delivered and required in patients receiving these solutions. Materials and Methods: This cross-sectional study was conducted among 270 enterally fed patients. Demographic and clinical data in addition to values of nutritional needs and intakes were collected. Moreover, enteral nutrition solutions were analyzed in a food laboratory. Results: There were 150 patients who fed noncommercial enteral nutrition solutions (NCENS) and 120 patients who fed commercial enteral nutrition solutions (CENSs). Although energy and nutrients contents in CENSs were more than in NCENSs, these differences regarding energy, protein, carbohydrates, phosphorus, and calcium were not statistically significant. The values of energy and macronutrients delivered in patients who fed CENSs were higher (P < 0.001). Energy, carbohydrate, and fat required in patients receiving CENSs were provided, but protein intake was less than the required amount. In patients who fed NCENSs, only the values of fat requirement and intake were not significantly different, but other nutrition delivered was less than required amounts (P < 0.001). CENSs provided the nutritional needs of higher numbers of patients (P < 0.001). In patients receiving CENSs, nutrient adequacy ratio and also mean adequacy ratio were significantly higher than the other group (P < 0.001). Conclusion: CENSs contain more energy and nutrients compared with NCENSs. They are more effective to meet the nutritional requirements of entirely fed patients. PMID:29142894

  9. Hydrogen: A Promising Fuel and Energy Storage Solution - Continuum

    Science.gov Websites

    Magazine | NREL Hydrogen: A Promising Fuel and Energy Storage Solution Fuel cell electric Ainscough, NREL Hydrogen: A Promising Fuel and Energy Storage Solution Electrolysis-generated hydrogen may provide a solution to fluctuations in renewable-sourced energy. As electricity from renewable resources

  10. Energy Management in Smart Cities Based on Internet of Things: Peak Demand Reduction and Energy Savings.

    PubMed

    Mahapatra, Chinmaya; Moharana, Akshaya Kumar; Leung, Victor C M

    2017-12-05

    Around the globe, innovation with integrating information and communication technologies (ICT) with physical infrastructure is a top priority for governments in pursuing smart, green living to improve energy efficiency, protect the environment, improve the quality of life, and bolster economy competitiveness. Cities today faces multifarious challenges, among which energy efficiency of homes and residential dwellings is a key requirement. Achieving it successfully with the help of intelligent sensors and contextual systems would help build smart cities of the future. In a Smart home environment Home Energy Management plays a critical role in finding a suitable and reliable solution to curtail the peak demand and achieve energy conservation. In this paper, a new method named as Home Energy Management as a Service (HEMaaS) is proposed which is based on neural network based Q -learning algorithm. Although several attempts have been made in the past to address similar problems, the models developed do not cater to maximize the user convenience and robustness of the system. In this paper, authors have proposed an advanced Neural Fitted Q -learning method which is self-learning and adaptive. The proposed method provides an agile, flexible and energy efficient decision making system for home energy management. A typical Canadian residential dwelling model has been used in this paper to test the proposed method. Based on analysis, it was found that the proposed method offers a fast and viable solution to reduce the demand and conserve energy during peak period. It also helps reducing the carbon footprint of residential dwellings. Once adopted, city blocks with significant residential dwellings can significantly reduce the total energy consumption by reducing or shifting their energy demand during peak period. This would definitely help local power distribution companies to optimize their resources and keep the tariff low due to curtailment of peak demand.

  11. Energy Management in Smart Cities Based on Internet of Things: Peak Demand Reduction and Energy Savings

    PubMed Central

    Moharana, Akshaya Kumar

    2017-01-01

    Around the globe, innovation with integrating information and communication technologies (ICT) with physical infrastructure is a top priority for governments in pursuing smart, green living to improve energy efficiency, protect the environment, improve the quality of life, and bolster economy competitiveness. Cities today faces multifarious challenges, among which energy efficiency of homes and residential dwellings is a key requirement. Achieving it successfully with the help of intelligent sensors and contextual systems would help build smart cities of the future. In a Smart home environment Home Energy Management plays a critical role in finding a suitable and reliable solution to curtail the peak demand and achieve energy conservation. In this paper, a new method named as Home Energy Management as a Service (HEMaaS) is proposed which is based on neural network based Q-learning algorithm. Although several attempts have been made in the past to address similar problems, the models developed do not cater to maximize the user convenience and robustness of the system. In this paper, authors have proposed an advanced Neural Fitted Q-learning method which is self-learning and adaptive. The proposed method provides an agile, flexible and energy efficient decision making system for home energy management. A typical Canadian residential dwelling model has been used in this paper to test the proposed method. Based on analysis, it was found that the proposed method offers a fast and viable solution to reduce the demand and conserve energy during peak period. It also helps reducing the carbon footprint of residential dwellings. Once adopted, city blocks with significant residential dwellings can significantly reduce the total energy consumption by reducing or shifting their energy demand during peak period. This would definitely help local power distribution companies to optimize their resources and keep the tariff low due to curtailment of peak demand. PMID:29206159

  12. Energy Access Solutions Advance Gender Mainstreaming in West African States

    Science.gov Websites

    | Integrated Energy Solutions | NREL Energy Access Solutions Advance Gender Mainstreaming in West African States Energy Access Solutions Advance Gender Mainstreaming in West African States Under a expertise to an innovative policy that not only supports women in energy, but also helps bring clean energy

  13. Solar Energy - Solution or Pipedream?

    ERIC Educational Resources Information Center

    Polk, Joyce

    This series of lessons and class activities is designed for presentation in a sequence of nine class days. The collection is intended to provide the student in advanced science classes with awareness of the possibilities and limitations of solar energy as a potential solution to the energy crisis. Included are discussion of the following: (1)…

  14. No Solutions: Resisting Certainty in Water Supply Management

    NASA Astrophysics Data System (ADS)

    Cockerill, K.; Armstrong, M.; Richter, J.; Okie, J. G.

    2017-12-01

    Although most scholars and water managers implicitly understand that managing water resources is an ongoing need, both popular and academic literature routinely use the words `solution' and `solve' in discussing water management concerns. The word `solution' reflects a quest for certainty, stability, permanence. A focus on `solving' creates a simplistic expectation that some person or institution is responsible for implementing a solution and that once `solved' the issue no longer requires attention. The reality, however, is water management is a wicked problem, meaning it is amorphous, involves multiple definitions, is embedded in complex systems, and hence is intractable. By definition, wicked problems defy solution. Our interdisciplinary project integrates research from across a broad spectrum of biological, physical, and social sciences. We find that framing a problem in terms of `solving' affects how people think, feel, behave toward the problem. Further, our work suggests that the prevalence of solution- based language has simultaneously generated expectations that science / scientists can predict and control biophysical systems and that science is not to be trusted because it has failed to deliver on previous promises to permanently `solve' events like floods or droughts. Hydrologic systems, are, of course highly uncertain. Hence, reiterating a simplistic insistence on `solving' water management concerns may result in decreased public attention to or support for more complex policy discussions that could provide long-term management strategies. Using the language of `solutions' with expectations of certainty sets hydrologic researchers and water managers up to fail. Managing water is a social responsibility and it will require consistent attention in the future, just as it has throughout human history. Scientists have a key role to play in explaining how various hydrologic systems function, but they should not be expected to `solve' pressing water management

  15. Integrated Solutions for a Complex Energy World - Continuum Magazine |

    Science.gov Websites

    NREL Integrated Solutions for a Complex Energy World Integrated Solutions for a Complex Energy World Energy systems integration optimizes electrical, thermal, fuel, and data technologies design and performance. An array of clean energy technologies, including wind, solar, and electric vehicle batteries, is

  16. Energy efficient wireless sensor networks by using a fuzzy-based solution

    NASA Astrophysics Data System (ADS)

    Tirrito, Salvatore; Nicolosi, Giuseppina

    2016-12-01

    Wireless Sensor Networks are characterized by a distributed architecture realized by a set of autonomous electronic devices able to sense data from the surrounding environment and to communicate among them. These devices are battery powered since they may be used even to monitor hazardous events in inaccessible areas. As a consequence, it is preferable to assure the adoption of energy management solutions in order to extend the WSN lifetime, as far as possible. Moreover, it is crucial to guarantee that the nodes receive the transmitted data correctly. It is clear that trading off power optimization and quality of service has become one the most important concerns when dealing with modern systems based on WSNs. This paper introduces a solution based on a Fuzzy Logic Controller (FLC) focusing on the minimization of energy consumption of wireless sensor nodes. This is made possible because the sleeping time of these nodes is dynamically regulated by a FLC.

  17. An Advanced IoT-based System for Intelligent Energy Management in Buildings.

    PubMed

    Marinakis, Vangelis; Doukas, Haris

    2018-02-16

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings' energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building's data (e.g., energy management systems), energy production, energy prices, weather data and end-users' behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information.

  18. An Advanced IoT-based System for Intelligent Energy Management in Buildings

    PubMed Central

    Doukas, Haris

    2018-01-01

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings’ energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building’s data (e.g., energy management systems), energy production, energy prices, weather data and end-users’ behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information. PMID:29462957

  19. Building Energy Management Open Source Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Saifur

    Funded by the U.S. Department of Energy in November 2013, a Building Energy Management Open Source Software (BEMOSS) platform was engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. According to the Energy Information Administration (EIA), small- (5,000 square feet or smaller) and medium-sized (between 5,001 to 50,000 square feet) commercial buildings constitute about 95% of all commercial buildings in the U.S. These buildings typically do not have Building Automation Systems (BAS) to monitor and control building operation. While commercial BAS solutions exist, including those from Siemens, Honeywell, Johnsons Controls and many more, they aremore » not cost effective in the context of small- and medium-sized commercial buildings, and typically work with specific controller products from the same company. BEMOSS targets small and medium-sized commercial buildings to address this gap.« less

  20. High-Capacity Hydrogen-Based Green-Energy Storage Solutions For The Grid Balancing

    NASA Astrophysics Data System (ADS)

    D'Errico, F.; Screnci, A.

    One of the current main challenges in green-power storage and smart grids is the lack of effective solutions for accommodating the unbalance between renewable energy sources, that offer intermittent electricity supply, and a variable electricity demand. Energy management systems have to be foreseen for the near future, while they still represent a major challenge. Integrating intermittent renewable energy sources, by safe and cost-effective energy storage systems based on solid state hydrogen is today achievable thanks to recently some technology breakthroughs. Optimized solid storage method made of magnesium-based hydrides guarantees a very rapid absorption and desorption kinetics. Coupled with electrolyzer technology, high-capacity storage of green-hydrogen is therefore practicable. Besides these aspects, magnesium has been emerging as environmentally friend energy storage method to sustain integration, monitoring and control of large quantity of GWh from high capacity renewable generation in the EU.

  1. High-Capacity Hydrogen-Based Green-Energy Storage Solutions for the Grid Balancing

    NASA Astrophysics Data System (ADS)

    D'Errico, F.; Screnci, A.

    One of the current main challenges in green-power storage and smart grids is the lack of effective solutions for accommodating the unbalance between renewable energy sources, that offer intermittent electricity supply, and a variable electricity demand. Energy management systems have to be foreseen for the near future, while they still represent a major challenge. Integrating intermittent renewable energy sources, by safe and cost-effective energy storage systems based on solid state hydrogen is today achievable thanks to recently some technology breakthroughs. Optimized solid storage method made of magnesium-based hydrides guarantees a very rapid absorption and desorption kinetics. Coupled with electrolyzer technology, high-capacity storage of green-hydrogen is therefore practicable. Besides these aspects, magnesium has been emerging as environmentally friend energy storage method to sustain integration, monitoring and control of large quantity of GWh from high capacity renewable generation in the EU.

  2. Energy and Water Management

    NASA Technical Reports Server (NTRS)

    Valek, Susan E.

    2008-01-01

    Energy efficiency isn't just a good idea; it's a necessity, both for cost reasons and to meet federal regulatory requirements. First, rising energy unit costs continue to erode NASA's mission budget. NASA spent roughly $156M on facility energy in FY 2007. Although that represents less than one per cent of NASA's overall annual budget, the upward trend in energy costs concerns the agency. While NASA reduced consumption 13%, energy unit costs have risen 63%. Energy cost increases counteract the effects of energy conservation, which results in NASA buying less yet spending more. The second factor is federal energy legislation. The National Energy Conservation Policy Act, as amended by the Energy Policy Act of 2005, Executive Order (EO) 13423 (January, 2007), and the Energy Independence and Security Act (December, 2007), mandates energy/water conservation goals for all federal agencies, including NASA. There are also reporting requirements associated with this legislation. The Energy/Water Management Task was created to support NASA Headquarters Environmental Management Division (HO EMD) in meeting these requirements. With assistance from TEERM, HQ EMD compiled and submitted the NASA Annual Report to the Department of Energy FY 2007. The report contains information on how NASA is meeting federally mandated energy and water management goals. TEERM monitored input for timeliness, errors, and conformity to the new energy/water reporting guidelines and helped compile the information into the final report. TEERM also assists NASA Energy/Water Management with proposal and award calls, updates to the energy/water management database, and facilitating communication within the energy/water management community. TEERM is also supporting NASA and the Interagency Working Group (IWG) on Hydrogen and Fuel Cells. Established shortly after the President announced the Hydrogen Fuel Initiative in 2003, this IWG serves as the mechanism for collaboration among the Federal agencies

  3. Charged Vaidya solution satisfies weak energy condition

    NASA Astrophysics Data System (ADS)

    Chatterjee, Soumyabrata; Ganguli, Suman; Virmani, Amitabh

    2016-07-01

    The external matter stress-tensor supporting charged Vaidya solution appears to violate weak energy condition in certain region of the spacetime. Motivated by this, a new interpretation of charged Vaidya solution was proposed by Ori (Class Quant Grav 8:1559, 1991) in which the energy condition continues to be satisfied. In this construction, one glues an outgoing Vaidya solution to the original ingoing Vaidya solution provided the surface where the external stress-tensor vanishes is spacelike. We revisit this study and extend it to higher-dimensions, to AdS settings, and to higher-derivative f( R) theories. In asymptotically flat space context, we explore in detail the case when the mass function m( v) is proportional to the charge function q( v). When the proportionality constant ν = q(v)/m(v) lies in between zero and one, we show that the surface where the external stress-tensor vanishes is spacelike and lies in between the inner and outer apparent horizons.

  4. Solutions in radiology services management: a literature review.

    PubMed

    Pereira, Aline Garcia; Vergara, Lizandra Garcia Lupi; Merino, Eugenio Andrés Díaz; Wagner, Adriano

    2015-01-01

    The present study was aimed at reviewing the literature to identify solutions for problems observed in radiology services. Basic, qualitative, exploratory literature review at Scopus and SciELO databases, utilizing the Mendeley and Illustrator CC Adobe softwares. In the databases, 565 papers - 120 out of them, pdf free - were identified. Problems observed in the radiology sector are related to procedures scheduling, humanization, lack of training, poor knowledge and use of management techniques, and interaction with users. The design management provides the services with interesting solutions such as Benchmarking, CRM, Lean Approach, ServiceBlueprinting, continued education, among others. Literature review is an important tool to identify problems and respective solutions. However, considering the small number of studies approaching management of radiology services, this is a great field of research for the development of deeper studies.

  5. Manage Energy with Computers.

    ERIC Educational Resources Information Center

    American School and University, 1982

    1982-01-01

    Computerized energy management at Drew University (New Jersey) is accomplished by direct digital control in which microprocessor controllers control, monitor, and carry out energy management functions at the equipment level. (Author/MLF)

  6. Phosphorescence and Energy Transfer in Rigid Solutions.

    ERIC Educational Resources Information Center

    Enciso, E.; Cabello, A.

    1980-01-01

    Describes an experiment which illustrates the general aspects of intermolecular energy transfer between triplet states in rigid solutions of organic compounds solved in an ethanol-ether mixture. Measurements of quenching and energy transfer processes are made using the chemicals of benzophenone and naphthalene. (CS)

  7. Mobil`s Energy Management Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoeneborn, F.C.

    1997-06-01

    Mobil`s Facilities Management Network sponsored a cross-divisional team to reduce energy costs. This team developed an Energy Management Plan to reduce energy costs by $25 million annually throughout all Mobil divisions over the next five years (total of $125 million committed savings). The core of this plan is the belief that energy costs are controllable and should be managed with the expertise that Mobil manages other parts of the business. Areas of focus are economic procurement, efficient consumption, and expertise sharing.

  8. NREL's Impact Grows Through the Clean Energy Solutions Center and the New

    Science.gov Websites

    Clean Energy Design Studio - Continuum Magazine | NREL NREL's Impact Grows Through the Clean Energy Solutions Center and the New Clean Energy Design Studio The Clean Energy Solutions Center (Solutions Center) helps governments design and adopt policies and programs that support the deployment of

  9. Sustainable solutions for solid waste management in Southeast Asian countries.

    PubMed

    Ngoc, Uyen Nguyen; Schnitzer, Hans

    2009-06-01

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  10. Sustainable solutions for solid waste management in Southeast Asian countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uyen Nguyen Ngoc; Schnitzer, Hans

    2009-06-15

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will bemore » outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.« less

  11. Finding urban waste management solutions and policies: Waste-to-energy development and livelihood support system in Payatas, Metro Manila, Philippines.

    PubMed

    Serrona, Kevin Roy; Yu, Jeong-Soo

    2009-01-01

    One of the potential solutions in social and environmental sustainability in municipal solid waste management (MSW) in Metro Manila is to combine community-based recycling and sound landfill management strategies. The marriage of the two puts importance on recycling as a source of livelihood while proper landfill management aims to improve the aesthetic and environmental quality of disposal facilities in urban areas. To do this, a social mapping of wastepickers, junkshops and local recycling practices needs to be undertaken and at the same time assess strategies of the national and local governments vis-à-vis existing laws on municipal solid waste. The case of Payatas controlled disposal facility was taken as a pilot study because it represents the general condition of disposal sites in Metro Manila and the social landscape that it currently has. In addition, a waste-to-energy (WTE) project has been established in Payatas to produce electricity from methane gas. Preliminary interviews with wastepickers show that development interventions in disposal sites such as WTE pose no opposition from host communities for as long as alternative livelihood opportunities are provided. Regulating the flow of wastepickers into the landfill has advantages like improved income and security. Felt needs were also articulated like provision of financial support or capital for junkshop operation and skills training. Overall, a smooth relationship between the local government and community associations pays well in a transitioning landfill management scheme such as Payatas.

  12. Survey of Thermoelectric and Solar Technologies as Alternative Energy Solutions

    DTIC Science & Technology

    2012-02-01

    Survey of Thermoelectric and Solar Technologies as Alternative Energy Solutions by Kendall Bianchi, Jay R. Maddux, Kimberly Sablon-Ramsey...Research Laboratory Adelphi, MD 20783-1197 ARL-TR-5920 February 2012 Survey of Thermoelectric and Solar Technologies as Alternative Energy...Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Survey of Thermoelectric and Solar Technologies as Alternative Energy Solutions 5a

  13. Solutions in radiology services management: a literature review*

    PubMed Central

    Pereira, Aline Garcia; Vergara, Lizandra Garcia Lupi; Merino, Eugenio Andrés Díaz; Wagner, Adriano

    2015-01-01

    Objective The present study was aimed at reviewing the literature to identify solutions for problems observed in radiology services. Materials and Methods Basic, qualitative, exploratory literature review at Scopus and SciELO databases, utilizing the Mendeley and Illustrator CC Adobe softwares. Results In the databases, 565 papers – 120 out of them, pdf free – were identified. Problems observed in the radiology sector are related to procedures scheduling, humanization, lack of training, poor knowledge and use of management techniques, and interaction with users. The design management provides the services with interesting solutions such as Benchmarking, CRM, Lean Approach, ServiceBlueprinting, continued education, among others. Conclusion Literature review is an important tool to identify problems and respective solutions. However, considering the small number of studies approaching management of radiology services, this is a great field of research for the development of deeper studies. PMID:26543281

  14. Setting up an energy management team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashburn, W.H.

    1995-12-31

    Many people that are assigned the responsibility of reducing energy costs within an organization are technically inclined, and may have little organizational or management skills. A number of companies have achieved great savings with just a technical energy manager acting in a prima donna role. However, so much more can be achieved if energy management is integrated throughout the whole organization, with input from all levels. The energy management team is the key to an organized approach, and establishing one is the place to start. The Industrial Energy Center at Virginia Tech is sponsored by both electric and natural gasmore » utilities who ask for assistance in conducting energy surveys of industrial firms. One requirement of the companies the author surveys is that they agree to establish an energy management team. During the first few hours with the company he helps organize and train the team. The objective is to have a high implementation rate of the energy conservation opportunities found during the survey. By leaving in place an in-house energy management team, the prospects for this are better. The author has found that most large corporations have some type of energy management program, but not much has transcended to company level. This paper is directed toward establishing an energy management team at company level.« less

  15. How Tenneco manages energy productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glorioso, J.

    1982-08-01

    Tenneco's energy-management investments are intended to improve energy productivity, and are reported in terms of avoided costs in a way that highlights the energy value of conservation projects. This accounting approach helps management see that the return on conservation projects has increased faster than the rate of inflation. Tenneco's pursuit of higher productivity extends to labor, capital, and materials as well as energy resources. Data collection is the first step, followed by a ranking of possible projects. Continuous monitoring and energy use figures from each plant track the trend of energy value over time. Specific projects at Tenneco's energy-intensive operationsmore » of refining, shipbuilding, and food processing illustrate the company's energy management program. (DCK)« less

  16. Utilising integrated urban water management to assess the viability of decentralised water solutions.

    PubMed

    Burn, Stewart; Maheepala, Shiroma; Sharma, Ashok

    2012-01-01

    Cities worldwide are challenged by a number of urban water issues associated with climate change, population growth and the associated water scarcity, wastewater flows and stormwater run-off. To address these problems decentralised solutions are increasingly being considered by water authorities, and integrated urban water management (IUWM) has emerged as a potential solution to most of these urban water challenges, and as the key to providing solutions incorporating decentralised concepts at a city wide scale. To incorporate decentralised options, there is a need to understand their performance and their impact on a city's total water cycle under alternative water and land management options. This includes changes to flow, nutrient and sediment regimes, energy use, greenhouse gas emissions, and the impacts on rivers, aquifers and estuaries. Application of the IUWM approach to large cities demands revisiting the fundamental role of water system design in sustainable city development. This paper uses the extended urban metabolism model (EUMM) to expand a logical definition for the aims of IUWM, and discusses the role of decentralised systems in IUWM and how IUWM principles can be incorporated into urban water planning.

  17. Energy Management in Municipal Buildings.

    ERIC Educational Resources Information Center

    Massachusetts State Dept. of Community Affairs, Boston. Energy Conservation Project.

    This manual is written for the manager or supervisor responsible for instituting an energy management program for municipal buildings. An introduction discusses the management issues facing municipal government in dealing with the need to reduce energy consumption. The guide reviews methods for central coordination of activity to ensure that…

  18. Managing wilderness recreation use: common problems and potential solutions

    Treesearch

    David N. Cole; Margaret E. Petersen; Robert C. Lucas

    1987-01-01

    Describes pros and cons of potential solutions to common wilderness recreation problems. Covers the purpose of each potential solution, costs to visitors and management, effectiveness, other considerations, and sources of additional information.

  19. Implementing Proactive Network Management Solutions in the Residence Halls

    ERIC Educational Resources Information Center

    Bedi, Param

    2005-01-01

    This paper discusses how to implement networking solutions in residence halls at Arcadia University in Philadelphia. Sections of the paper include: (1) About Arcadia University; (2) Residence Halls Network; (3) How Campus Manager Helped Arcadia University; (4) What Is Campus Manager; (5) How Campus Manager Works; (6) Campus Manager Remediation…

  20. The effectiveness of energy management system on energy efficiency in the building

    NASA Astrophysics Data System (ADS)

    Julaihi, F.; Ibrahim, S. H.; Baharun, A.; Affendi, R.; Nawi, M. N. M.

    2017-10-01

    Energy plays a key role in achieving the desired economic growth for the country. Worldwide industries use 40 percent energy for material and consumption protection to fulfil human needs which contributes almost 37 percent of global greenhouse gases emissions. One of the approach in order to reduce the emission of greenhouse gases to the environment is by conserving energy. This could be executed by implementing energy management especially in commercial and office buildings as daily electricity consumption is high in this type of building. Energy management can also increase the efficiency of energy in the building. Study has been conducted to investigate the performance on implementation of energy management system in office building. Energy management is one of the contemporary challenges, thus study adopts an exploratory approach by using a tool developed by UNIDO called EnMS or Energy Management System. Findings show that by implementing energy management can reduce electricity consumption up to 30%. However, serious initiatives by the organization are needed to promote the effectiveness of energy management.

  1. Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hult, Erin; Granderson, Jessica; Mathew, Paul

    While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hourmore » onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.« less

  2. 49 CFR 238.403 - Crash energy management.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash energy...

  3. 49 CFR 238.403 - Crash energy management.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash energy...

  4. 49 CFR 238.403 - Crash energy management.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash energy...

  5. 49 CFR 238.403 - Crash energy management.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash energy...

  6. Research Staff | Integrated Energy Solutions | NREL

    Science.gov Websites

    Ricardo.Castillo@nrel.gov 303-384-7452 Chamberlain, Kyle Post Graduate Researcher Kyle.Chamberlain@nrel.gov 303-275 Researcher-Land Reuse & Arctic Energy Solutions Gail.Mosey@nrel.gov 303-384-7356 Mow, Benjamin Post Peterson, Zachary Post Graduate Researcher - Grid Modernization Zachary.Peterson@nrel.gov 303-275-4949

  7. Sustainability through Dynamic Energy Management - Continuum Magazine |

    Science.gov Websites

    NREL Sustainability through Dynamic Energy Management Sustainability through Dynamic Energy Management Integrating behavior change with advanced building systems is the new model in energy efficiency , it's necessary to integrate dynamic energy management with occupant behavior change. As plans were

  8. Smart EV Energy Management System to Support Grid Services

    NASA Astrophysics Data System (ADS)

    Wang, Bin

    Under smart grid scenarios, the advanced sensing and metering technologies have been applied to the legacy power grid to improve the system observability and the real-time situational awareness. Meanwhile, there is increasing amount of distributed energy resources (DERs), such as renewable generations, electric vehicles (EVs) and battery energy storage system (BESS), etc., being integrated into the power system. However, the integration of EVs, which can be modeled as controllable mobile energy devices, brings both challenges and opportunities to the grid planning and energy management, due to the intermittency of renewable generation, uncertainties of EV driver behaviors, etc. This dissertation aims to solve the real-time EV energy management problem in order to improve the overall grid efficiency, reliability and economics, using online and predictive optimization strategies. Most of the previous research on EV energy management strategies and algorithms are based on simplified models with unrealistic assumptions that the EV charging behaviors are perfectly known or following known distributions, such as the arriving time, leaving time and energy consumption values, etc. These approaches fail to obtain the optimal solutions in real-time because of the system uncertainties. Moreover, there is lack of data-driven strategy that performs online and predictive scheduling for EV charging behaviors under microgrid scenarios. Therefore, we develop an online predictive EV scheduling framework, considering uncertainties of renewable generation, building load and EV driver behaviors, etc., based on real-world data. A kernel-based estimator is developed to predict the charging session parameters in real-time with improved estimation accuracy. The efficacy of various optimization strategies that are supported by this framework, including valley-filling, cost reduction, event-based control, etc., has been demonstrated. In addition, the existing simulation-based approaches do

  9. Conical intersections of free energy surfaces in solution: Effect of electron correlation on a protonated Schiff base in methanol solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Toshifumi; Nakano, Katsuhiro; Kato, Shigeki

    2010-08-14

    The minimum energy conical intersection (MECI) optimization method with taking account of the dynamic electron correlation effect [T. Mori and S. Kato, Chem. Phys. Lett. 476, 97 (2009)] is extended to locate the MECI of nonequilibrium free energy surfaces in solution. A multistate electronic perturbation theory is introduced into the nonequilibrium free energy formula, which is defined as a function of solute and solvation coordinates. The analytical free energy gradient and interstate coupling vectors are derived, and are applied to locate MECIs in solution. The present method is applied to study the cis-trans photoisomerization reaction of a protonated Schiff basemore » molecule (PSB3) in methanol (MeOH) solution. It is found that the effect of dynamic electron correlation largely lowers the energy of S{sub 1} state. We also show that the solvation effect strongly stabilizes the MECI obtained by twisting the terminal C=N bond to become accessible in MeOH solution, whereas the conical intersection is found to be unstable in gas phase. The present study indicates that both electron correlation and solvation effects are important in the photoisomerization reaction of PSB3. The effect of counterion is also examined, and seems to be rather small in solution. The structures of free energy surfaces around MECIs are also discussed.« less

  10. NREL Leads Energy Systems Integration - Continuum Magazine | NREL

    Science.gov Websites

    performance data to manage and optimize campus energy use. Integrated Solutions for a Complex Energy World 03 Integrated Solutions for a Complex Energy World Energy systems integration optimizes the design and efficient data centers in the world. Sustainability through Dynamic Energy Management Sustainability through

  11. Solution synthesis of metal oxides for electrochemical energy storage applications.

    PubMed

    Xia, Xinhui; Zhang, Yongqi; Chao, Dongliang; Guan, Cao; Zhang, Yijun; Li, Lu; Ge, Xiang; Bacho, Ignacio Mínguez; Tu, Jiangping; Fan, Hong Jin

    2014-05-21

    This article provides an overview of solution-based methods for the controllable synthesis of metal oxides and their applications for electrochemical energy storage. Typical solution synthesis strategies are summarized and the detailed chemical reactions are elaborated for several common nanostructured transition metal oxides and their composites. The merits and demerits of these synthesis methods and some important considerations are discussed in association with their electrochemical performance. We also propose the basic guideline for designing advanced nanostructure electrode materials, and the future research trend in the development of high power and energy density electrochemical energy storage devices.

  12. Design of New Power Management Circuit for Light Energy Harvesting System

    PubMed Central

    Jafer, Issa; Stack, Paul; MacNamee, Kevin

    2016-01-01

    Nowadays, it can be observed that Wireless Sensors Networks (WSN) are taking increasingly vital roles in many applications, such as building energy monitoring and control, which is the focus of the work in this paper. However, the main challenging issue with adopting WSN technology is the use of power sources such as batteries, which have a limited lifetime. A smart solution that could tackle this problem is using Energy Harvesting technology. The work in this paper will be focused on proposing a new power management design through harvesting indoor light intensity. The new approach is inspired by the use of the Fractional Open Circuit Voltage based Maximum Power Point tracking (MPPT) concept for sub mw Photo Voltaic (PV) cells. The new design adopts two main features: First, it minimizes the power consumed by the power management section; and second, it maximizes the MPPT-converted output voltage and consequently improves the efficiency of the power conversion in the sub mw power level. The new experimentally-tested design showed an improvement of 81% in the efficiency of MPPT conversion using 0.5 mW input power in comparison with the other presented solutions that showed less efficiency with higher input power. PMID:26907300

  13. Total School Energy Management Program.

    ERIC Educational Resources Information Center

    Energy Education Programs, Woodstock, IL.

    This energy management program is intended to give school administrators some ideas about how to get started in managing energy conservation. An Implementation Guide provides options and step-by-step approaches for marshaling resources and organizing to get a program off the ground. A Curriculum Review and Development Guide includes general…

  14. Ultra-low-power conversion and management techniques for thermoelectric energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Fleming, Jerry W.

    2010-04-01

    Thermoelectric energy harvesting has increasingly gained acceptance as a potential power source that can be used for numerous commercial and military applications. However, power electronic designers have struggled to incorporate energy harvesting methods into their designs due to the relatively small voltage levels available from many harvesting device technologies. In order to bridge this gap, an ultra-low input voltage power conversion method is needed to convert small amounts of scavenged energy into a usable form of electricity. Such a method would be an enabler for new and improved medical devices, sensor systems, and other portable electronic products. This paper addresses the technical challenges involved in ultra-low-voltage power conversion by providing a solution utilizing novel power conversion techniques and applied technologies. Our solution utilizes intelligent power management techniques to control unknown startup conditions. The load and supply management functionality is also controlled in a deterministic manner. The DC to DC converter input operating voltage is 20mV with a conversion efficiency of 90% or more. The output voltage is stored into a storage device such as an ultra-capacitor or lithium-ion battery for use during brown-out or unfavorable harvesting conditions. Applications requiring modular, low power, extended maintenance cycles, such as wireless instrumentation would significantly benefit from the novel power conversion and harvesting techniques outlined in this paper.

  15. Management Architecture and Solutions for French Tactical Systems

    DTIC Science & Technology

    2006-10-01

    RTO-MP-IST-062 3 - 1 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Management Architecture and Solutions for French Tactical Systems Vincent...COTTIGNIES THALES Land & Joint Systems – Battlespace Transformation Center 160 Boulevard de Valmy - BP 82 92704 Colombes Cedex FRANCE ...planning, configuration and monitoring of Systems. Then, given the limitations of existing Management System Architecture, an innovative design based on

  16. Energy management strategy based on fuzzy logic for a fuel cell hybrid bus

    NASA Astrophysics Data System (ADS)

    Gao, Dawei; Jin, Zhenhua; Lu, Qingchun

    Fuel cell vehicles, as a substitute for internal-combustion-engine vehicles, have become a research hotspot for most automobile manufacturers all over the world. Fuel cell systems have disadvantages, such as high cost, slow response and no regenerative energy recovery during braking; hybridization can be a solution to these drawbacks. This paper presents a fuel cell hybrid bus which is equipped with a fuel cell system and two energy storage devices, i.e., a battery and an ultracapacitor. An energy management strategy based on fuzzy logic, which is employed to control the power flow of the vehicular power train, is described. This strategy is capable of determining the desired output power of the fuel cell system, battery and ultracapacitor according to the propulsion power and recuperated braking power. Some tests to verify the strategy were developed, and the results of the tests show the effectiveness of the proposed energy management strategy and the good performance of the fuel cell hybrid bus.

  17. Systemic solutions for multi-benefit water and environmental management.

    PubMed

    Everard, Mark; McInnes, Robert

    2013-09-01

    The environmental and financial costs of inputs to, and unintended consequences arising from narrow consideration of outputs from, water and environmental management technologies highlight the need for low-input solutions that optimise outcomes across multiple ecosystem services. Case studies examining the inputs and outputs associated with several ecosystem-based water and environmental management technologies reveal a range from those that differ little from conventional electro-mechanical engineering techniques through methods, such as integrated constructed wetlands (ICWs), designed explicitly as low-input systems optimising ecosystem service outcomes. All techniques present opportunities for further optimisation of outputs, and hence for greater cumulative public value. We define 'systemic solutions' as "…low-input technologies using natural processes to optimise benefits across the spectrum of ecosystem services and their beneficiaries". They contribute to sustainable development by averting unintended negative impacts and optimising benefits to all ecosystem service beneficiaries, increasing net economic value. Legacy legislation addressing issues in a fragmented way, associated 'ring-fenced' budgets and established management assumptions represent obstacles to implementing 'systemic solutions'. However, flexible implementation of legacy regulations recognising their primary purpose, rather than slavish adherence to detailed sub-clauses, may achieve greater overall public benefit through optimisation of outcomes across ecosystem services. Systemic solutions are not a panacea if applied merely as 'downstream' fixes, but are part of, and a means to accelerate, broader culture change towards more sustainable practice. This necessarily entails connecting a wider network of interests in the formulation and design of mutually-beneficial systemic solutions, including for example spatial planners, engineers, regulators, managers, farming and other businesses, and

  18. Energy Management of Smart Distribution Systems

    NASA Astrophysics Data System (ADS)

    Ansari, Bananeh

    Electric power distribution systems interface the end-users of electricity with the power grid. Traditional distribution systems are operated in a centralized fashion with the distribution system owner or operator being the only decision maker. The management and control architecture of distribution systems needs to gradually transform to accommodate the emerging smart grid technologies, distributed energy resources, and active electricity end-users or prosumers. The content of this document concerns with developing multi-task multi-objective energy management schemes for: 1) commercial/large residential prosumers, and 2) distribution system operator of a smart distribution system. The first part of this document describes a method of distributed energy management of multiple commercial/ large residential prosumers. These prosumers not only consume electricity, but also generate electricity using their roof-top solar photovoltaics systems. When photovoltaics generation is larger than local consumption, excess electricity will be fed into the distribution system, creating a voltage rise along the feeder. Distribution system operator cannot tolerate a significant voltage rise. ES can help the prosumers manage their electricity exchanges with the distribution system such that minimal voltage fluctuation occurs. The proposed distributed energy management scheme sizes and schedules each prosumer's ES to reduce the electricity bill and mitigate voltage rise along the feeder. The second part of this document focuses on emergency energy management and resilience assessment of a distribution system. The developed emergency energy management system uses available resources and redundancy to restore the distribution system's functionality fully or partially. The success of the restoration maneuver depends on how resilient the distribution system is. Engineering resilience terminology is used to evaluate the resilience of distribution system. The proposed emergency energy

  19. Specification of Energy Assessment Methodologies to Satisfy ISO 50001 Energy Management Standard

    NASA Astrophysics Data System (ADS)

    Kanneganti, Harish

    Energy management has become more crucial for industrial sector as a way to lower their cost of production and in reducing their carbon footprint. Environmental regulations also force the industrial sector to increase the efficiency of their energy usage. Hence industrial sector started relying on energy management consultancies for improvements in energy efficiency. With the development of ISO 50001 standard, the entire energy management took a new dimension involving top level management and getting their commitment on energy efficiency. One of the key requirements of ISO 50001 is to demonstrate continual improvement in their (industry) energy efficiency. The major aim of this work is to develop an energy assessment methodology and reporting format to tailor the needs of ISO 50001. The developed methodology integrates the energy reduction aspect of an energy assessment with the requirements of sections 4.4.3 (Energy Review) to 4.4.6 (Objectives, Targets and Action Plans) in ISO 50001 and thus helping the facilities in easy implementation of ISO 50001.

  20. Energy Management Policies in Distributed Residential Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Sisi; Sun, Jingtao

    2016-01-01

    In this paper, we study energy management problems in communities with several neighborhood-level Residential Energy Systems (RESs). We consider control problems from both community level and residential level to handle external changes such as restriction on peak demand and restriction on the total demand from the electricity grid. We propose three policies to handle the problems at community level. Based on the collected data from RESs such as predicted energy load, the community controller analyzes the policies, distribute the results to the RES, and each RES can then control and schedule its own energy load based on different coordination functions.more » We utilize a framework to integrate both policy analysis and coordination of functions. With the use of our approach, we show that the policies are useful to resolve the challenges of energy management under external changes.« less

  1. Clean Energy Solutions Center and SE4All: Partnering to Support Country Actions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-05-01

    Since 2012, the Clean Energy Solutions Center (Solutions Center) and Sustainable Energy for All (SE4All) have partnered to deliver information, knowledge and expert assistance to policymakers and practitioners in countries actively working to achieve SE4All objectives. Through SE4All efforts, national governments are implementing integrated country actions to strategically transform their energy markets. This fact sheet details the Solutions Center and SE4All partnership and available areas of technical assistance.

  2. Electric load management and energy conservation

    NASA Technical Reports Server (NTRS)

    Kheir, N. A.

    1976-01-01

    Electric load management and energy conservation relate heavily to the major problems facing power industry at present. The three basic modes of energy conservation are identified as demand reduction, increased efficiency and substitution for scarce fuels. Direct and indirect load management objectives are to reduce peak loads and have future growth in electricity requirements in such a manner to cause more of it to fall off the system's peak. In this paper, an overview of proposed and implemented load management options is presented. Research opportunities exist for the evaluation of socio-economic impacts of energy conservation and load management schemes specially on the electric power industry itself.

  3. Application of Harmony Search algorithm to the solution of groundwater management models

    NASA Astrophysics Data System (ADS)

    Tamer Ayvaz, M.

    2009-06-01

    This study proposes a groundwater resources management model in which the solution is performed through a combined simulation-optimization model. A modular three-dimensional finite difference groundwater flow model, MODFLOW is used as the simulation model. This model is then combined with a Harmony Search (HS) optimization algorithm which is based on the musical process of searching for a perfect state of harmony. The performance of the proposed HS based management model is tested on three separate groundwater management problems: (i) maximization of total pumping from an aquifer (steady-state); (ii) minimization of the total pumping cost to satisfy the given demand (steady-state); and (iii) minimization of the pumping cost to satisfy the given demand for multiple management periods (transient). The sensitivity of HS algorithm is evaluated by performing a sensitivity analysis which aims to determine the impact of related solution parameters on convergence behavior. The results show that HS yields nearly same or better solutions than the previous solution methods and may be used to solve management problems in groundwater modeling.

  4. Public sector energy management: A strategy for catalyzing energy efficiency in Malaysia

    NASA Astrophysics Data System (ADS)

    Roy, Anish Kumar

    To date the public sector role in facilitating the transition to a sustainable energy future has been envisaged mainly from a regulatory perspective. In such a role, the public sector provides the push factors---enforcing regulations and providing incentives---to correct market imperfections that impede energy transitions. An alternative and complementary role of the public sector that is now gaining increasing attention is that of catalyzing energy transitions through public sector energy management initiatives. This dissertation offers a conceptual framework to rationalize such a role for the public sector by combining recent theories of sustainable energy transition and public management. In particular, the framework identifies innovative public management strategies (such as performance contracting and procurement) for effectively implementing sustainable energy projects in government facilities. The dissertation evaluates a model of sustainable public sector energy management for promoting energy efficiency in Malaysia. The public sector in Malaysia can be a major player in leading and catalyzing energy efficiency efforts as it is not only the largest and one of the most influential energy consumers, but it also plays a central role in setting national development strategy. The dissertation makes several recommendations on how a public sector energy management strategy can be implemented in Malaysia. The US Federal Energy Management Program (FEMP) is used as a practical model. The analysis, however, shows that in applying the FEMP model to the Malaysian context, there are a number of limitations that will have to be taken into consideration to enable a public sector energy management strategy to be effectively implemented. Overall the analysis of this dissertation contributes to a rethinking of the public sector role in sustainable energy development that can strengthen the sector's credibility both in terms of governance and institutional performance. In

  5. Common Workflow Service: Standards Based Solution for Managing Operational Processes

    NASA Astrophysics Data System (ADS)

    Tinio, A. W.; Hollins, G. A.

    2017-06-01

    The Common Workflow Service is a collaborative and standards-based solution for managing mission operations processes using techniques from the Business Process Management (BPM) discipline. This presentation describes the CWS and its benefits.

  6. Chronically ill rural women: self-identified management problems and solutions.

    PubMed

    Cudney, Shirley; Sullivan, Therese; Winters, Charlene A; Paul, Lynn; Oriet, Pat

    2005-03-01

    To add to the knowledge base of illness management of chronically ill, rural women by describing the self-identified problems and solutions reported by women participants in the online health-education segment of the Women to Women (WTW) computer outreach project. WTW is a research-based computer intervention providing health education and online peer support for rural women with chronic diseases. Messages posted to the online chat room were examined to determine the women's self-management problems and solutions. The self-identified problems were: (1) difficulties in carrying through on self-management programmes; (2) negative fears and feelings; (3) poor communication with care providers; and (4) disturbed relationships with family and friends. The self-identified solutions to these problems included problem-solving techniques that were tailored to the rural lifestyle. Although not all problems were 'solvable', they could be 'lived with' if the women's prescriptions for self-management were used. Glimpses into the women's day-to-day experiences of living with chronic illness gleaned from the interactive health-education discussions will give health professionals insights into the women's efforts to manage their illnesses. The data provide health professionals with information to heighten their sensitivity to their clients' day-to-day care and educational needs.

  7. Curricular Management of the Internet: Beyond the Blocking Solution.

    ERIC Educational Resources Information Center

    Lynch, Paul J.

    2000-01-01

    Focuses on managed Internet use as a curricular challenge and alternate solution to blocking software. Suggests that by making curricular choices for students and directing the medium towards curricular goals, teachers can manage students' time and provide a safe environment where students can communicate and collaborate on projects. (AEF)

  8. Dependence of Interaction Free Energy between Solutes on an External Electrostatic Field

    PubMed Central

    Yang, Pei-Kun

    2013-01-01

    To explore the athermal effect of an external electrostatic field on the stabilities of protein conformations and the binding affinities of protein-protein/ligand interactions, the dependences of the polar and hydrophobic interactions on the external electrostatic field, −Eext, were studied using molecular dynamics (MD) simulations. By decomposing Eext into, along, and perpendicular to the direction formed by the two solutes, the effect of Eext on the interactions between these two solutes can be estimated based on the effects from these two components. Eext was applied along the direction of the electric dipole formed by two solutes with opposite charges. The attractive interaction free energy between these two solutes decreased for solutes treated as point charges. In contrast, the attractive interaction free energy between these two solutes increased, as observed by MD simulations, for Eext = 40 or 60 MV/cm. Eext was applied perpendicular to the direction of the electric dipole formed by these two solutes. The attractive interaction free energy was increased for Eext = 100 MV/cm as a result of dielectric saturation. The force on the solutes along the direction of Eext computed from MD simulations was greater than that estimated from a continuum solvent in which the solutes were treated as point charges. To explore the hydrophobic interactions, Eext was applied to a water cluster containing two neutral solutes. The repulsive force between these solutes was decreased/increased for Eext along/perpendicular to the direction of the electric dipole formed by these two solutes. PMID:23852018

  9. Grant management procedure for energy saving TDM-PONs

    NASA Astrophysics Data System (ADS)

    Alaelddin, Fuad Yousif Mohammed; Newaz, S. H. Shah; AL-Hazemi, Fawaz; Choi, Jun Kyun

    2018-01-01

    In order to minimize energy consumption in Time Division Multiplexing-Passive Optical Network (TDM-PON), IEEE and ITU-T have mandated sleep mode mechanism for Optical Network Units (ONUs) in the latest TDM-PON standards (e.g. IEEE P1904.1 SIEPON, ITU-T G.sup45). The sleep mode mechanism is a promising mean for maximizing energy saving in an ONU. An ONU in sleep mode flips between sleep and active state depending on the presence or absent of upstream and downstream frames. To ensure Quality of Service (QoS) of upstream frames, the recent TDM-PON standards introduced an early wake-up mechanism, in which an ONU is forced to leave the sleep state on upstream frame arrival. When the Optical Line Terminal (OLT) of a TDM-PON allows early wake-up of its connected ONUs, it allocates gratuitous grants for the sleeping ONUs along with allocating upstream grants for the ONUs in active state. Note that, the gratuitous grants control message sent periodically by the OLT on Inter-Gratuitous grant Interval (IGI) time. After leaving sleep state due to the arrival of upstream frame, the ONU uses its allocated gratuitous grant to send a control message mentioning the amount of upstream bandwidth (upstream grant) required in order to forward the remaining frames in its buffer. However, the existing early wake-up process of ONU can lead to increase the energy consumption of an ONU. It is because of the ONU wakes-up immediately from the sleep state on arrival of the upstream frame, but even so, it needs to wait for forwarding the frame until its allocated gratuitous grant period, resulting in spending energy unnecessarily. In addition, current energy saving solution for TDM-PONs do not provide a clear solution on how to manage different types of grants (e.g. listening grant, upstream transmission grant) within a Dynamic Bandwidth Allocation (DBA) polling cycle. To address this problem, we propose a state-of-art Grant Management Procedure (GMP) in order to maximize energy saving in a TDM

  10. Dynamic management of integrated residential energy systems

    NASA Astrophysics Data System (ADS)

    Muratori, Matteo

    This study combines principles of energy systems engineering and statistics to develop integrated models of residential energy use in the United States, to include residential recharging of electric vehicles. These models can be used by government, policymakers, and the utility industry to provide answers and guidance regarding the future of the U.S. energy system. Currently, electric power generation must match the total demand at each instant, following seasonal patterns and instantaneous fluctuations. Thus, one of the biggest drivers of costs and capacity requirement is the electricity demand that occurs during peak periods. These peak periods require utility companies to maintain operational capacity that often is underutilized, outdated, expensive, and inefficient. In light of this, flattening the demand curve has long been recognized as an effective way of cutting the cost of producing electricity and increasing overall efficiency. The problem is exacerbated by expected widespread adoption of non-dispatchable renewable power generation. The intermittent nature of renewable resources and their non-dispatchability substantially limit the ability of electric power generation of adapting to the fluctuating demand. Smart grid technologies and demand response programs are proposed as a technical solution to make the electric power demand more flexible and able to adapt to power generation. Residential demand response programs offer different incentives and benefits to consumers in response to their flexibility in the timing of their electricity consumption. Understanding interactions between new and existing energy technologies, and policy impacts therein, is key to driving sustainable energy use and economic growth. Comprehensive and accurate models of the next-generation power system allow for understanding the effects of new energy technologies on the power system infrastructure, and can be used to guide policy, technology, and economic decisions. This

  11. Effect of ion concentration, solution and membrane permittivity on electric energy storage and capacitance.

    PubMed

    Tajparast, Mohammad; Glavinović, Mladen I

    2018-06-06

    Bio-membranes as capacitors store electric energy, but their permittivity is low whereas the permittivity of surrounding solution is high. To evaluate the effective capacitance of the membrane/solution system and determine the electric energy stored within the membrane and in the solution, we estimated their electric variables using Poisson-Nernst-Planck simulations. We calculated membrane and solution capacitances from stored electric energy. The effective capacitance was calculated by fitting a six-capacitance model to charges (fixed and ion) and associated potentials, because it cannot be considered as a result of membrane and solution capacitance in series. The electric energy stored within the membrane (typically much smaller than that in the solution), depends on the membrane permittivity, but also on the external electric field, surface charge density, water permittivity and ion concentration. The effect on capacitances is more specific. Solution capacitance rises with greater solution permittivity or ion concentration, but the membrane capacitance (much smaller than solution capacitance) is only influenced by its permittivity. Interestingly, the effective capacitance is independent of membrane or solution permittivity, but rises as the ion concentration increases and surface charge becomes positive. Experimental estimates of membrane capacitance are thus not necessarily a reliable index of its surface area. Copyright © 2018. Published by Elsevier B.V.

  12. Energy Efficient Building Management | Climate Neutral Research Campuses |

    Science.gov Websites

    NREL Efficient Building Management Energy Efficient Building Management As campuses complete generate the greatest climate impact. Energy efficient management in the existing stock of buildings is the following links go to sections that describe how an energy buildings management and maintenance program may

  13. Co-management of Water, Energy, and Food Systems: Where Are We and What Does it Take for Implementation?

    NASA Astrophysics Data System (ADS)

    Akhbari, M.

    2015-12-01

    Water, energy, and food are closely bound in consumption and production patterns. To increase resource efficiency and productivity in a sustainable fashion, co-management of water, energy, and food resources is becoming inevitable. These co-management schemes require implementation of nexus-based approaches, which takes the interconnections of water, energy, and food systems into account and considers that development in one area may have major effects on others. While society, economy and environment are the action areas to implement a nexus approach, finance, governance, infrastructure and technology can create solutions. Existing obstacles in the action areas and challenges associated with creating solutions increase the complexities to develop nexus-based approaches and complicate their implementation. This study, identifies existing social, economic, and environmental obstacles, financial demands and constraints, shortcomings in governance, and infrastructure problems in the United States as the main challenges that need to be overcome. Then, it will be discussed how advanced technology could be employed to facilitate implementation of nexus-based approaches, followed by providing some recommendations to enable institutions to employ new technology, overcome existing obstacles, and address challenges in order to implement nexus-based management approaches.

  14. Green wireless body area nanonetworks: energy management and the game of survival.

    PubMed

    Misra, Sudip; Islam, Nabiul; Mahapatro, Judhistir; Rodrigues, Joel Jose P C

    2014-03-01

    In this paper, we envisage the architecture of Green Wireless Body Area Nanonetwork (GBAN) as a collection of nanodevices, in which each device is capable of communicating in both the molecular and wireless electromagnetic communication modes. The term green refers to the fact that the nanodevices in such a network can harvest energy from their surrounding environment, so that no nanodevice gets old solely due to the reasons attributed to energy depletion. However, the residual energy of a nanodevice can deplete substantially with the lapse of time, if the rate of energy consumption is not comparable with the rate of energy harvesting. It is observed that the rate of energy harvesting is nonlinear and sporadic in nature. So, the management of energy of the nanodevices is fundamentally important. We specifically address this problem in a ubiquitous healthcare monitoring scenario and formulate it as a cooperative Nash Bargaining game. The optimal strategy obtained from the Nash equilibrium solution provides improved network performance in terms of throughput and delay.

  15. Work with Us | Integrated Energy Solutions | NREL

    Science.gov Websites

    Work with Us Work with Us NREL offers industry, academia, and government agencies opportunities to work with us and leverage our research, facilities, and expertise. Contact Us Photo of Adam Warren with Us We're making an impact on advancing integrated energy solutions in the United States and abroad

  16. Understanding and managing the food-energy-water nexus - opportunities for water resources research

    NASA Astrophysics Data System (ADS)

    Cai, Ximing; Wallington, Kevin; Shafiee-Jood, Majid; Marston, Landon

    2018-01-01

    Studies on the food, energy, and water (FEW) nexus lay a shared foundation for researchers, policy makers, practitioners, and stakeholders to understand and manage linked production, utilization, and security of FEW systems. The FEW nexus paradigm provides the water community specific channels to move forward in interdisciplinary research where integrated water resources management (IWRM) has fallen short. Here, we help water researchers identify, articulate, utilize, and extend our disciplinary strengths within the broader FEW communities, while informing scientists in the food and energy domains about our unique skillset. This paper explores the relevance of existing and ongoing scholarship within the water community, as well as current research needs, for understanding FEW processes and systems and implementing FEW solutions through innovations in technologies, infrastructures, and policies. Following the historical efforts in IWRM, hydrologists, water resources engineers, economists, and policy analysts are provided opportunities for interdisciplinary studies among themselves and in collaboration with energy and food communities, united by a common path to achieve sustainability development goals.

  17. Waste management outlook for mountain regions: Sources and solutions.

    PubMed

    Semernya, Larisa; Ramola, Aditi; Alfthan, Björn; Giacovelli, Claudia

    2017-09-01

    Following the release of the global waste management outlook in 2015, the United Nations Environment Programme (UN Environment), through its International Environmental Technology Centre, is elaborating a series of region-specific and thematic waste management outlooks that provide policy recommendations and solutions based on current practices in developing and developed countries. The Waste Management Outlook for Mountain Regions is the first report in this series. Mountain regions present unique challenges to waste management; while remoteness is often associated with costly and difficult transport of waste, the potential impact of waste pollutants is higher owing to the steep terrain and rivers transporting waste downstream. The Outlook shows that waste management in mountain regions is a cross-sectoral issue of global concern that deserves immediate attention. Noting that there is no 'one solution fits all', there is a need for a more landscape-type specific and regional research on waste management, the enhancement of policy and regulatory frameworks, and increased stakeholder engagement and awareness to achieve sustainable waste management in mountain areas. This short communication provides an overview of the key findings of the Outlook and highlights aspects that need further research. These are grouped per source of waste: Mountain communities, tourism, and mining. Issues such as waste crime, plastic pollution, and the linkages between exposure to natural disasters and waste are also presented.

  18. 77 FR 32994 - Bureau of Ocean Energy Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Geological and Geophysical...: Bureau of Ocean Energy Management (BOEM), Interior. ACTION: Notice of extension of comment period... managed by BOEM: oil and gas exploration and development; renewable energy; and marine minerals. BOEM is...

  19. NREL, LiquidCool Solutions Partner on Energy-Efficient Cooling for

    Science.gov Websites

    denser and generate more heat. Liquid cooling, including the LiquidCool Solutions technology, offers a more energy-efficient solution that also allows for effective reuse of the heat rejected by the water, depending on the coolant temperature and heat exchanger specifications. These water temperatures

  20. 49 CFR 238.403 - Crash energy management.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... crash energy management system to dissipate kinetic energy during a collision. The crash energy management system shall provide a controlled deformation and collapse of designated sections within the... resulting from dynamic forces transmitted to occupied volumes. (b) The design of each unit shall consist of...

  1. 1998 federal energy and water management award winners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-10-28

    Energy is a luxury that no one can afford to waste, and many Federal Government agencies are becoming increasingly aware of the importance of using energy wisely. Thoughtful use of energy resources is important, not only to meet agency goals, but because energy efficiency helps improve air quality. Sound facility management offers huge savings that affect the agency`s bottom line, the environment, and workplace quality. In these fiscally-modest times, pursuing sound energy management programs can present additional challenges for energy and facility managers. The correct path to take is not always the easiest. Hard work, innovation, and vision are characteristicmore » of those who pursue energy efficiency. That is why the Department of energy, Federal Energy Management Program (FEMP) is proud to salute the winners of the 1998 Federal Energy and Water Management Award. The 1998 winners represent the kind of 21st century thinking that will help achieve widespread Federal energy efficiency. In one year, the winners, through a combination of public and private partnerships, saved more than $222 million and 10.5 trillion Btu by actively identifying and implementing energy efficiency, water conservation, and renewable energy projects. Through their dedication, hard work, ingenuity, and success, the award winners have also inspired others to increase their own efforts to save energy and water and to more aggressively pursue the use of renewable energy sources. The Federal Energy and Water Management Awards recognize the winners` contributions and ability to inspire others to take action.« less

  2. 3 CFR - Federal Leadership on Energy Management

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 3 The President 1 2014-01-01 2014-01-01 false Federal Leadership on Energy Management Presidential Documents Other Presidential Documents Memorandum of December 5, 2013 Federal Leadership on Energy Management Memorandum for the Heads of Executive Departments and Agencies In order to create a clean energy...

  3. The relationship between energy information management and energy management performance in higher education sector in Thailand, considering from resource and process based views

    NASA Astrophysics Data System (ADS)

    Mongkolsawat, Darunee

    The performance of energy management is usually considered through the energy reduction result however this does not sufficient for managing facility's energy in the long term. In combination to that, this study decides to investigate the relationship between the effectiveness of energy information management and the energy management performance. The interested sector is higher education institutions in Thailand due to their complex organisation both in management and property aspects. By not focusing on quantitative energy reduction as centre, the study seeks to establish a framework or tool in helping to understand such relationship qualitatively through organisation resource and process based view. Additionally, energy management structure is also accounted as initial factor. In relation to such framework, the performance of energy management is considered on its primary results concerning the issues of the data available, analysis results, and energy action. After the investigation, it is found that between the concerned factors and primary performance there are various specific relationships. For example, some tend to have direct connections as relations between the energy management structure and implemented actions, and between the investment in organisation resources and data available. While some have flexible relations as between data collection and results of analysed data. Furthermore, the load of energy management has been found influencing on organisation's motivation to invest in energy management. At the end of the paper, further application to the study is also proposed.

  4. Optimal Energy Management for Microgrids

    NASA Astrophysics Data System (ADS)

    Zhao, Zheng

    Microgrid is a recent novel concept in part of the development of smart grid. A microgrid is a low voltage and small scale network containing both distributed energy resources (DERs) and load demands. Clean energy is encouraged to be used in a microgrid for economic and sustainable reasons. A microgrid can have two operational modes, the stand-alone mode and grid-connected mode. In this research, a day-ahead optimal energy management for a microgrid under both operational modes is studied. The objective of the optimization model is to minimize fuel cost, improve energy utilization efficiency and reduce gas emissions by scheduling generations of DERs in each hour on the next day. Considering the dynamic performance of battery as Energy Storage System (ESS), the model is featured as a multi-objectives and multi-parametric programming constrained by dynamic programming, which is proposed to be solved by using the Advanced Dynamic Programming (ADP) method. Then, factors influencing the battery life are studied and included in the model in order to obtain an optimal usage pattern of battery and reduce the correlated cost. Moreover, since wind and solar generation is a stochastic process affected by weather changes, the proposed optimization model is performed hourly to track the weather changes. Simulation results are compared with the day-ahead energy management model. At last, conclusions are presented and future research in microgrid energy management is discussed.

  5. NREL Incubator Alliance Helps Entrepreneurs Build Clean Energy Solutions

    Science.gov Websites

    Incubator Alliance Helps Entrepreneurs Build Clean Energy Solutions For more information contact alliance. "We can do that by helping companies succeed." The incubators' objective is to build

  6. Campus Energy Management Projects.

    ERIC Educational Resources Information Center

    Welzenbach, Lanora, Ed.

    This publication is a compilation of data concerning energy conservation measures at more than 60 colleges and universities in the United States and Canada. The data are presented for the information of all who are interested in the variety of ways in which institutions of higher education are managing energy. Project descriptions are divided into…

  7. RF Power Transfer, Energy Harvesting, and Power Management Strategies

    NASA Astrophysics Data System (ADS)

    Abouzied, Mohamed Ali Mohamed

    sources in the far field, dc energy combining, wireless power transfer in the near field, the underlying power management strategies, and the integration on silicon. This integration is the ultimate goal for cheap solutions to enable the technology for broader use. All systems were designed, implemented and tested to demonstrate proof-of concept prototypes.

  8. Home and Building Energy Management Systems | Grid Modernization | NREL

    Science.gov Websites

    Home and Building Energy Management Systems Home and Building Energy Management Systems NREL building assets and energy management systems can provide value to the grid. Photo of a pair of NREL researchers who received a record of invention for a home energy management system in a smart home laboratory

  9. Resilience in Remote Communities | Integrated Energy Solutions | NREL

    Science.gov Websites

    community stakeholders, we develop and implement comprehensive road maps for resilience through: Strategic issues Experience developing and deploying integrated energy solutions Specialized facilities and expert Affordable Power in the Developing World Study Shows Philippine Power System Can Achieve 30% and 50

  10. 77 FR 20019 - FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM Interconnection, L.L.C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL12-50-000] FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM Interconnection, L.L.C.; Notice of Complaint... 206 of the Federal Energy Regulatory Commission's Rules of Practice and Procedure, 18 CFR 385.206 and...

  11. Federal Energy Management Program Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Brochure offers an overview of the Federal Energy Management Program (FEMP), which provides agencies and organizations with the information, tools, and assistance they need to achieve their energy-related requirements and goals through specialized initiatives.

  12. A Multiple Period Problem in Distributed Energy Management Systems Considering CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Muroda, Yuki; Miyamoto, Toshiyuki; Mori, Kazuyuki; Kitamura, Shoichi; Yamamoto, Takaya

    Consider a special district (group) which is composed of multiple companies (agents), and where each agent responds to an energy demand and has a CO2 emission allowance imposed. A distributed energy management system (DEMS) optimizes energy consumption of a group through energy trading in the group. In this paper, we extended the energy distribution decision and optimal planning problem in DEMSs from a single period problem to a multiple periods one. The extension enabled us to consider more realistic constraints such as demand patterns, the start-up cost, and minimum running/outage times of equipment. At first, we extended the market-oriented programming (MOP) method for deciding energy distribution to the multiple periods problem. The bidding strategy of each agent is formulated by a 0-1 mixed non-linear programming problem. Secondly, we proposed decomposing the problem into a set of single period problems in order to solve it faster. In order to decompose the problem, we proposed a CO2 emission allowance distribution method, called an EP method. We confirmed that the proposed method was able to produce solutions whose group costs were close to lower-bound group costs by computational experiments. In addition, we verified that reduction in computational time was achieved without losing the quality of solutions by using the EP method.

  13. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    PubMed Central

    Paritosh, Kunwar; Kushwaha, Sandeep K.; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches. PMID:28293629

  14. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling.

    PubMed

    Paritosh, Kunwar; Kushwaha, Sandeep K; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash; Vivekanand, Vivekanand

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  15. Fossil energy waste management. Technology status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includesmore » a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.« less

  16. E-Learning Barriers and Solutions to Knowledge Management and Transfer

    ERIC Educational Resources Information Center

    Oye, Nathaniel David; Salleh, Mazleena

    2013-01-01

    This paper present a systematic overview of barriers and solutions of e-learning in knowledge management (KM) and knowledge transfer (KT) with more focus on organizations. The paper also discusses KT in organizational settings and KT in the field of e-learning. Here, an e-learning initiative shows adaptive solutions to overcome knowledge transfer…

  17. Solute Response To Arid-Climate Managed-River Flow During Storm Events

    NASA Astrophysics Data System (ADS)

    McLean, B.; Shock, E.

    2006-12-01

    Storm pulses are widely used in unmanaged, temperate and subtropical river systems to resolve in-stream surface and subsurface flow components. Resulting catchment-scale hydrochemical mixing models yield insight into mechanisms of solute transport. Managed systems are far more complicated due to the human need for high quality water resources, which drives processes that are superimposed on most, if not all, of the unmanaged components. As an example, an increasingly large portion of the water supply for the Phoenix metropolitan area is derived from multiple surface water sources that are impounded, diverted and otherwise managed upstream from the urban core that consumes the water and produces anthropogenic impacts. During large storm events this managed system is perturbed towards natural behavior as it receives inputs from natural hydrologic pathways in addition to impervious surfaces and storm water drainage channels. Our goals in studying managed river systems during this critical transition state are to determine how the well- characterized behavior of natural systems break down as the system responds then returns to its managed state. Using storm events as perturbations we can contrast an arid managed system with the unmanaged system it approaches during the storm event. In the process, we can extract geochemical consequences specifically related to unknown urban components in the form of chemical fingerprints. The effects of river management on solute behavior were assessed by taking advantage of several anomalously heavy winter storm events in late 2004 and early 2005 using a rigorous sampling routine. Several hundred samples collected between January and October 2005 were analyzed for major ion, isotopic, and trace metal concentrations with 78 individual measurements for each sample. The data are used to resolve managed watershed processes, mechanisms of solute transport and river mixing from anthropogenic inputs. Our results show that concentrations of

  18. A systems approach to energy management and policy in commuter rail transportation

    NASA Astrophysics Data System (ADS)

    Owan, Ransome Egimine

    1998-12-01

    This research is motivated by a recognition of energy as a significant part of the transportation problem. Energy is a long-term variable cost that is controllable. The problem is comprised of: the limited supply of energy, chronic energy deficits and oil imports, energy cost, poor fuel substitution, and the undesirable environmental effects of transportation fuels (Green House Gases and global warming). Mass transit systems are energy intensive networks and energy is a direct constraint to the supply of affordable transportation. Commuter railroads are also relatively unresponsive to energy price changes due to travel demand patterns, firm power needs and slow adoption of efficient train technologies. However, the long term energy demand is lacking in existing transportation planning philosophy. In spite of the apparent oversight, energy is as important as urban land use, funding and congestion, all of which merit explicit treatment. This research was conducted in the form of a case study of New Jersey Transit in an attempt to broaden the understanding of the long-term effects of energy in a transportation environment. The systems approach method that is driven by heuristic models was utilized to investigate energy usage, transit peer group efficiency, energy management regimes, and the tradeoffs between energy and transportation, a seldom discussed topic in the field. Implicit in systems thinking is the methodological hunt for solutions. The energy problem was divided into thinking is the methodological hunt for solutions. The energy problem was divided into smaller parts that in turn were simpler to solve. The research presented five heuristic models: Transit Energy Aggregation Model, Structural Energy Consumption Model, Traction Power Consumption Model, Conjunctive Demand Model, and a Managerial Action Module. A putative relationship was established between traction energy, car-miles, seasonal and ambient factors, without inference of direct causality. The co

  19. DIFFUSED SOLUTE-SOLVENT INTERFACE WITH POISSON-BOLTZMANN ELECTROSTATICS: FREE-ENERGY VARIATION AND SHARP-INTERFACE LIMIT.

    PubMed

    Li, B O; Liu, Yuan

    A phase-field free-energy functional for the solvation of charged molecules (e.g., proteins) in aqueous solvent (i.e., water or salted water) is constructed. The functional consists of the solute volumetric and solute-solvent interfacial energies, the solute-solvent van der Waals interaction energy, and the continuum electrostatic free energy described by the Poisson-Boltzmann theory. All these are expressed in terms of phase fields that, for low free-energy conformations, are close to one value in the solute phase and another in the solvent phase. A key property of the model is that the phase-field interpolation of dielectric coefficient has the vanishing derivative at both solute and solvent phases. The first variation of such an effective free-energy functional is derived. Matched asymptotic analysis is carried out for the resulting relaxation dynamics of the diffused solute-solvent interface. It is shown that the sharp-interface limit is exactly the variational implicit-solvent model that has successfully captured capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states of underlying biomolecular systems as found in experiment and molecular dynamics simulations. Our phase-field approach and analysis can be used to possibly couple the description of interfacial fluctuations for efficient numerical computations of biomolecular interactions.

  20. Effect of Cracow program elimination of low emission sources upon the energy management system in Cracow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedberg, J.; Goerlich, K.; Glowacki, K.

    1995-12-31

    At the end of the 1980s, the energy management at the local level-like the whole set of such utility services-was based upon respective enterprises subject to a certain supervision of the establishing body and to a control of the District Inspectorate of Energy Management. Those enterprises that deal with generation and supply of heat energy to the local market, with distribution of heat, natural gas and electricity, operated as state companies; the last two branches made a part of either regional or national companies. Irrespective of the aforesaid, the co-generation power plants existed usually outside the heat generation and supplymore » system. The business economics of these enterprises was not subject to any market rules whatsoever, the prices were controlled and the customers had no right of choice of the energy supplier. From the very beginning the low emission elimination program assumed to have commercial rules introduced in the energy management. Thus, it turned out necessary to prepare the market - to draw up inventory of the conditions and needs related with heat supply and to take up market solutions as well. The management system, and in particular the items specified below, is discussed. The co-operation of energy distribution enterprises has been based upon a voluntary agreement (The Team for Energy Suppliers) so as to agree upon the basic actions of the respective partners; joint actions have been taken up more and more willingly.« less

  1. 75 FR 39678 - Meeting of Energy Services Companies and the Federal Energy Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... DEPARTMENT OF ENERGY Meeting of Energy Services Companies and the Federal Energy Management... Management Program (FEMP) within the Office of Energy Efficiency and Renewable Energy on the use of high-end... conducted in an informal, conference style. Each participant will be allowed to make a prepared general...

  2. Dynamic Voltage-Frequency and Workload Joint Scaling Power Management for Energy Harvesting Multi-Core WSN Node SoC

    PubMed Central

    Li, Xiangyu; Xie, Nijie; Tian, Xinyue

    2017-01-01

    This paper proposes a scheduling and power management solution for energy harvesting heterogeneous multi-core WSN node SoC such that the system continues to operate perennially and uses the harvested energy efficiently. The solution consists of a heterogeneous multi-core system oriented task scheduling algorithm and a low-complexity dynamic workload scaling and configuration optimization algorithm suitable for light-weight platforms. Moreover, considering the power consumption of most WSN applications have the characteristic of data dependent behavior, we introduce branches handling mechanism into the solution as well. The experimental result shows that the proposed algorithm can operate in real-time on a lightweight embedded processor (MSP430), and that it can make a system do more valuable works and make more than 99.9% use of the power budget. PMID:28208730

  3. Dynamic Voltage-Frequency and Workload Joint Scaling Power Management for Energy Harvesting Multi-Core WSN Node SoC.

    PubMed

    Li, Xiangyu; Xie, Nijie; Tian, Xinyue

    2017-02-08

    This paper proposes a scheduling and power management solution for energy harvesting heterogeneous multi-core WSN node SoC such that the system continues to operate perennially and uses the harvested energy efficiently. The solution consists of a heterogeneous multi-core system oriented task scheduling algorithm and a low-complexity dynamic workload scaling and configuration optimization algorithm suitable for light-weight platforms. Moreover, considering the power consumption of most WSN applications have the characteristic of data dependent behavior, we introduce branches handling mechanism into the solution as well. The experimental result shows that the proposed algorithm can operate in real-time on a lightweight embedded processor (MSP430), and that it can make a system do more valuable works and make more than 99.9% use of the power budget.

  4. Managing Energy in Your Educational Facility.

    ERIC Educational Resources Information Center

    2001

    This booklet explains how to develop and implement a plan to manage energy in educational facilities. It can be used to identify energy savings opportunities and implement a plan to reduce energy costs. It discusses the following steps for creating an effective energy-use plan: (1) get started and organize for success; (2) look at energy use and…

  5. Energy accounting and optimization for mobile systems

    NASA Astrophysics Data System (ADS)

    Dong, Mian

    Energy accounting determines how much a software process contributes to the total system energy consumption. It is the foundation for evaluating software and has been widely used by operating system based energy management. While various energy accounting policies have been tried, there is no known way to evaluate them directly simply because it is hard to track every hardware use by software in a heterogeneous multi-core system like modern smartphones and tablets. In this thesis, we provide the ground truth for energy accounting based on multi-player game theory and offer the first evaluation of existing energy accounting policies, revealing their important flaws. The proposed ground truth is based on Shapley value, a single value solution to multi-player games of which four axiomatic properties are natural and self-evident to energy accounting. To obtain the Shapley value-based ground truth, one only needs to know if a process is active during the time under question and the system energy consumption during the same time. We further provide a utility optimization formulation of energy management and show, surprisingly, that energy accounting does not matter for existing energy management solutions that control the energy use of a process by giving it an energy budget, or budget based energy management (BEM). We show an optimal energy management (OEM) framework can always outperform BEM. While OEM does not require any form of energy accounting, it is related to Shapley value in that both require the system energy consumption for all possible combination of processes under question. We provide a novel system solution that meet this requirement by acquiring system energy consumption in situ for an OS scheduler period, i.e.,10 ms. We report a prototype implementation of both Shapley value-based energy accounting and OEM based scheduling. Using this prototype and smartphone workload, we experimentally demonstrate how erroneous existing energy accounting policies can

  6. Using a water-food-energy nexus approach for optimal irrigation management during drought events in Nebraska

    NASA Astrophysics Data System (ADS)

    Campana, P. E.; Zhang, J.; Yao, T.; Melton, F. S.; Yan, J.

    2017-12-01

    Climate change and drought have severe impacts on the agricultural sector affecting crop yields, water availability, and energy consumption for irrigation. Monitoring, assessing and mitigating the effects of climate change and drought on the agricultural and energy sectors are fundamental challenges that require investigation for water, food, and energy security issues. Using an integrated water-food-energy nexus approach, this study is developing a comprehensive drought management system through integration of real-time drought monitoring with real-time irrigation management. The spatially explicit model developed, GIS-OptiCE, can be used for simulation, multi-criteria optimization and generation of forecasts to support irrigation management. To demonstrate the value of the approach, the model has been applied to one major corn region in Nebraska to study the effects of the 2012 drought on crop yield and irrigation water/energy requirements as compared to a wet year such as 2009. The water-food-energy interrelationships evaluated show that significant water volumes and energy are required to halt the negative effects of drought on the crop yield. The multi-criteria optimization problem applied in this study indicates that the optimal solutions of irrigation do not necessarily correspond to those that would produce the maximum crop yields, depending on both water and economic constraints. In particular, crop pricing forecasts are extremely important to define the optimal irrigation management strategy. The model developed shows great potential in precision agriculture by providing near real-time data products including information on evapotranspiration, irrigation volumes, energy requirements, predicted crop growth, and nutrient requirements.

  7. 75 FR 45111 - Electric Quarterly Reports; Strategic Energy Management Corp.; Solaro Energy Marketing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    .... ER00-167-000; Docket No. ER03- 752-000] Electric Quarterly Reports; Strategic Energy Management Corp.; Solaro Energy Marketing Corporation; Notice of Revocation of Market- Based Rate Tariff July 23, 2010. On... FERC ] 61,334 (2003). In the June 25 Order, the Commission directed Strategic Energy Management Corp...

  8. Global, decaying solutions of a focusing energy-critical heat equation in R4

    NASA Astrophysics Data System (ADS)

    Gustafson, Stephen; Roxanas, Dimitrios

    2018-05-01

    We study solutions of the focusing energy-critical nonlinear heat equation ut = Δu - | u|2 u in R4. We show that solutions emanating from initial data with energy and H˙1-norm below those of the stationary solution W are global and decay to zero, via the "concentration-compactness plus rigidity" strategy of Kenig-Merle [33,34]. First, global such solutions are shown to dissipate to zero, using a refinement of the small data theory and the L2-dissipation relation. Finite-time blow-up is then ruled out using the backwards-uniqueness of Escauriaza-Seregin-Sverak [17,18] in an argument similar to that of Kenig-Koch [32] for the Navier-Stokes equations.

  9. 2008 Federal Energy Management Program (FEMP) Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremper, C.

    2009-07-01

    This report assesses the market for Federal Energy Management Program (FEMP) services as it existed in FY 2008. It discusses Federal energy management goal progress in FY 2008, and examines the environment in which agencies implemented energy management projects over the last three years. The report also discusses some recent events that will increase the market for FEMP services, and outlines FEMP's major strategies to address these changes in FY 2009 and beyond.

  10. Technology Solutions Case Study: Southern Energy Homes, First DOE Zero Energy Ready Manufactured Home

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The country’s first Zero Energy Ready manufactured home that is certified by the U.S. Department of Energy (DOE) is up and running in Russellville, Alabama. The manufactured home was built by a partnership between Southern Energy Homes and the Advanced Residential Integrated Energy Solutions Collaborative (ARIES), which is a DOE Building America team. The effort was part of a three-home study including a standard-code manufactured home and an ENERGY STAR® manufactured home. Cooling-season results showed that the building used half the space-conditioning energy of a manufactured home built to the U.S. Department of Housing and Urban Development’s (HUD’s) Manufactured Homemore » Construction and Safety Standards. These standards are known collectively as the HUD Code, which is the building standard for all U.S. manufactured housing.« less

  11. Exploring the Free Energy Landscape of Solutes Embedded in Lipid Bilayers.

    PubMed

    Jämbeck, Joakim P M; Lyubartsev, Alexander P

    2013-06-06

    Free energy calculations are vital for our understanding of biological processes on an atomistic scale and can offer insight to various mechanisms. However, in some cases, degrees of freedom (DOFs) orthogonal to the reaction coordinate have high energy barriers and/or long equilibration times, which prohibit proper sampling. Here we identify these orthogonal DOFs when studying the transfer of a solute from water to a model membrane. Important DOFs are identified in bulk liquids of different dielectric nature with metadynamics simulations and are used as reaction coordinates for the translocation process, resulting in two- and three-dimensional space of reaction coordinates. The results are in good agreement with experiments and elucidate the pitfalls of using one-dimensional reaction coordinates. The calculations performed here offer the most detailed free energy landscape of solutes embedded in lipid bilayers to date and show that free energy calculations can be used to study complex membrane translocation phenomena.

  12. About the Federal Energy Management Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard Kidd

    2009-04-23

    Richard Kidd, Program Manager for the Federal Energy Management Program (FEMP), presents a discussion on FEMP direction and its future role, federal funding trends, future financing trends, and Earth Day observations.

  13. Levee Setbacks: An Innovative, Cost Effective, and Sustainable Solution for Improved Flood Risk management

    DTIC Science & Technology

    2017-06-30

    ER D C/ EL S R- 17 -3 Levee Setbacks: An Innovative, Cost-Effective, and Sustainable Solution for Improved Flood Risk Management En vi...EL SR-17-3 June 2017 Levee Setbacks: An Innovative, Cost-Effective, and Sustainable Solution for Improved Flood Risk Management David L. Smith...describes levee setbacks as alternatives to traditional levees for flood risk management and environmental benefits. It is organized into five sections

  14. Energy Literacy: A Natural and Essential Part of a Solutions-Based Approach to Climate Literacy

    NASA Astrophysics Data System (ADS)

    Inman, M. M.

    2011-12-01

    As with climate science topics, many Americans have misconceptions or gaps in understanding related to energy topics. Recent literacy efforts are geared to address these gaps in understanding. The U.S. Global Change Research Program's recently published "Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education" offers a welcome complement to the Climate Literacy Essential Principles released in 2008. Research and experience suggest that education, communication and outreach about global climate change and related topics is best done using a solutions-based approach. Energy is a natural and effective topic to frame these solutions around. Used as a framework for designing curricula, Energy Literacy naturally leads to solutions-based approaches to Climate Change education. An inherently interdisciplinary topic, energy education must happen in the context of both the natural and social sciences. The Energy Literacy Essential Principles reflect this and open the door to curriculum that integrates the two.

  15. Energy management: total program considers all building's systems.

    PubMed

    Blan, G J; Browne, K H

    1978-09-16

    Managing energy consumption, containing fuel usage, and preparing for alternate fuel sources are immediate areas for concern and action for all health care providers. The authors describe how they are meeting the challenge of increased energy costs and reduced availability while maintaining high-quality care by applying the concept of total energy management.

  16. Energy Management Controls. Course Syllabus.

    ERIC Educational Resources Information Center

    Bergen County Vocational-Technical High School, Hackensack, NJ.

    This course is one of four in a solar systems and energy management program developed by the Bergen County Vocational-Technical Schools to help tradespeople (heating, ventilation, and air conditioning; mechanics; plumbers; and electricians) to develop an awareness of alternate energy sources and to gain skills in the areas of solar installations…

  17. Energy Management Technician Curriculum Development. Final Report.

    ERIC Educational Resources Information Center

    Sarvis, Robert E.

    This document is the result of an effort to develop a comprehensive curriculum to train community college students as energy management technicians. The main body of the document contains the energy management technician training curriculum and course content for the proposed courses in the two-year sequence; a report of how the curriculum was…

  18. 76 FR 13666 - Pitney Bowes, Inc., Mailing Solutions Management, Global Engineering Group, Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...., Mailing Solutions Management, Global Engineering Group, Including On-Site Leased Workers From Guidant... workers and former workers of Pitney Bowes, Inc., Mailing Solutions Management Division, Engineering... reviewed the certification to clarify the subject worker group's identity. Additional information revealed...

  19. Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials

    NASA Astrophysics Data System (ADS)

    Antonelli, Paolo; Michelangeli, Alessandro; Scandone, Raffaele

    2018-04-01

    We prove the existence of weak solutions in the space of energy for a class of nonlinear Schrödinger equations in the presence of a external, rough, time-dependent magnetic potential. Under our assumptions, it is not possible to study the problem by means of usual arguments like resolvent techniques or Fourier integral operators, for example. We use a parabolic regularisation, and we solve the approximating Cauchy problem. This is achieved by obtaining suitable smoothing estimates for the dissipative evolution. The total mass and energy bounds allow to extend the solution globally in time. We then infer sufficient compactness properties in order to produce a global-in-time finite energy weak solution to our original problem.

  20. An optimization-based approach for facility energy management with uncertainties, and, Power portfolio optimization in deregulated electricity markets with risk management

    NASA Astrophysics Data System (ADS)

    Xu, Jun

    Topic 1. An Optimization-Based Approach for Facility Energy Management with Uncertainties. Effective energy management for facilities is becoming increasingly important in view of the rising energy costs, the government mandate on the reduction of energy consumption, and the human comfort requirements. This part of dissertation presents a daily energy management formulation and the corresponding solution methodology for HVAC systems. The problem is to minimize the energy and demand costs through the control of HVAC units while satisfying human comfort, system dynamics, load limit constraints, and other requirements. The problem is difficult in view of the fact that the system is nonlinear, time-varying, building-dependent, and uncertain; and that the direct control of a large number of HVAC components is difficult. In this work, HVAC setpoints are the control variables developed on top of a Direct Digital Control (DDC) system. A method that combines Lagrangian relaxation, neural networks, stochastic dynamic programming, and heuristics is developed to predict the system dynamics and uncontrollable load, and to optimize the setpoints. Numerical testing and prototype implementation results show that our method can effectively reduce total costs, manage uncertainties, and shed the load, is computationally efficient. Furthermore, it is significantly better than existing methods. Topic 2. Power Portfolio Optimization in Deregulated Electricity Markets with Risk Management. In a deregulated electric power system, multiple markets of different time scales exist with various power supply instruments. A load serving entity (LSE) has multiple choices from these instruments to meet its load obligations. In view of the large amount of power involved, the complex market structure, risks in such volatile markets, stringent constraints to be satisfied, and the long time horizon, a power portfolio optimization problem is of critical importance but difficulty for an LSE to serve the

  1. Energy dissipation in Ni-containing concentrated solid solutions.

    NASA Astrophysics Data System (ADS)

    Samolyuk, German; Mu, Sai; Jin, Ke; Bei, Hongbin; Stocks, G. Malcolm

    Due to high disorder the diffusion processes are noticeably suppressed concentrated solid solution, so called high entropy alloys. It makes these alloys promising candidate for energy application under extreme conditions. Understanding of the energy dissipation in these alloys during the irradiation or interaction with laser bean is extremely important. In the metals and alloys the main channel of energy dissipation is provided by the electronic subsystem. The first principles approach was used to investigate the electronic structure properties of the alloys. The obtained results were used to calculate the electronic part of thermal resistivity caused by scattering of electrons on atomic disorder, magnetic and phonon excitations The contribution of last two excitations to the temperature dependence of thermal resistivity is discussed. The importance of magnetism in 3d transition metals based alloy was demonstrated. In particular, it was shown that antiferromagnetic ordering of chromium or manganese leads to significant increase of electron scattering in alloy containing these elements. It results in significant reduction of conductivity in chromium or manganese containing alloys. The comparison with the existing experimental data is discussed. This work was supported as part of the Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences.

  2. Carbon footprint analysis as a tool for energy and environmental management in small and medium-sized enterprises

    NASA Astrophysics Data System (ADS)

    Giama, E.; Papadopoulos, A. M.

    2018-01-01

    The reduction of carbon emissions has become a top priority in the decision-making process for governments and companies, the strict European legislation framework being a major driving force behind this effort. On the other hand, many companies face difficulties in estimating their footprint and in linking the results derived from environmental evaluation processes with an integrated energy management strategy, which will eventually lead to energy-efficient and cost-effective solutions. The paper highlights the need of companies to establish integrated environmental management practices, with tools such as carbon footprint analysis to monitor the energy performance of production processes. Concepts and methods are analysed, and selected indicators are presented by means of benchmarking, monitoring and reporting the results in order to be used effectively from the companies. The study is based on data from more than 90 Greek small and medium enterprises, followed by a comprehensive discussion of cost-effective and realistic energy-saving measures.

  3. Integrating energy and environmental management in wood furniture industry.

    PubMed

    Gordić, Dušan; Babić, Milun; Jelić, Dubravka; Konćalović, Davor; Vukašinović, Vladimir

    2014-01-01

    As energy costs continue to rise, industrial plants (even those of energy nonintensive industries such as furniture industry) need effective way to reduce the amount of energy they consume. Besides, there are a number of economic and environmental reasons why a company should consider environmental management initiatives. This paper provides a detailed guideline for implementing joint energy and environmental management system in wood furniture industrial company. It covers in detail all essential aspects of the system: initial system assessment, organization, policy development, energy and environmental auditing, action plan development, system promotion, checking system performance, and management review.

  4. Integrating Energy and Environmental Management in Wood Furniture Industry

    PubMed Central

    Babić, Milun; Jelić, Dubravka; Konćalović, Davor; Vukašinović, Vladimir

    2014-01-01

    As energy costs continue to rise, industrial plants (even those of energy nonintensive industries such as furniture industry) need effective way to reduce the amount of energy they consume. Besides, there are a number of economic and environmental reasons why a company should consider environmental management initiatives. This paper provides a detailed guideline for implementing joint energy and environmental management system in wood furniture industrial company. It covers in detail all essential aspects of the system: initial system assessment, organization, policy development, energy and environmental auditing, action plan development, system promotion, checking system performance, and management review. PMID:24587734

  5. Integrated Energy Solutions Research | Integrated Energy Solutions | NREL

    Science.gov Websites

    that spans the height and width of the wall they are facing. Decision Science and Informatics Enabling decision makers with rigorous, technology-neutral, data-backed decision support to maximize the impact of security in energy systems through analysis, decision support, advanced energy technology development, and

  6. FORESEE™ User-Centric Energy Automation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FORESEE™ is a home energy management system (HEMS) that provides a user centric energy automation solution for residential building occupants. Built upon advanced control and machine learning algorithms, FORESEE intelligently manages the home appliances and distributed energy resources (DERs) such as photovoltaics and battery storage in a home. Unlike existing HEMS in the market, FORESEE provides a tailored home automation solution for individual occupants by learning and adapting to their preferences on cost, comfort, convenience and carbon. FORESEE improves not only the energy efficiency of the home but also its capability to provide grid services such as demand response. Highlymore » reliable demand response services are likely to be incentivized by utility companies, making FORESEE economically viable for most homes.« less

  7. Chinese hotel general managers' perspectives on energy-saving practices

    NASA Astrophysics Data System (ADS)

    Zhu, Yidan

    As hotels' concern about sustainability and budget-control is growing steadily, energy-saving issues have become one of the important management concerns hospitality industry face. By executing proper energy-saving practices, previous scholars believed that hotel operation costs can decrease dramatically. Moreover, they believed that conducting energy-saving practices may eventually help the hotel to gain other benefits such as an improved reputation and stronger competitive advantage. The energy-saving issue also has become a critical management problem for the hotel industry in China. Previous research has not investigated energy-saving in China's hotel segment. To achieve a better understanding of the importance of energy-saving, this document attempts to present some insights into China's energy-saving practices in the tourist accommodations sector. Results of the study show the Chinese general managers' attitudes toward energy-saving issues and the differences among the diverse hotel managers who responded to the study. Study results indicate that in China, most of the hotels' energy bills decrease due to the implementation of energy-saving equipments. General managers of hotels in operation for a shorter period of time are typically responsible for making decisions about energy-saving issues; older hotels are used to choosing corporate level concerning to this issue. Larger Chinese hotels generally have official energy-saving usage training sessions for employees, but smaller Chinese hotels sometimes overlook the importance of employee training. The study also found that for the Chinese hospitality industry, energy-saving practices related to electricity are the most efficient and common way to save energy, but older hotels also should pay attention to other ways of saving energy such as water conservation or heating/cooling system.

  8. Solutions-based climate change education for K-Gray: Renewable energy and energy efficiency

    NASA Astrophysics Data System (ADS)

    Petrone, C.

    2017-12-01

    Through the National Science Foundation-funded MADE CLEAR (www.madeclear.org) climate change education project's Informal Climate Change Education (ICCE) Community, funds were received to collaboratively train teachers, informal educators, students, and university docents in climate change basics and solutions, specifically renewable energy and energy efficiency. In all, 10 docents, 50 classroom teachers, over 600 K-16 students, and several hundred science-interested citizens participated in programs and workshops lasting between one and seven hours. Using commercially available kits and other DIY projects, program participants used science content and engineering to develop models of wind turbines, wind mills, solar cells, solar cookers, solar stills, and wind-powered cars. Using thermal imaging cameras, Kill-a-Watt meters, "Carbon Food Print" kit, "Energy Matters" kit, and other tools, program participants learned about energy efficiency as not only a global climate change mitigation strategy, but also a way to save money. ICCE Community members and external partners, such as local electric cooperative personnel, university researchers, and state-sponsored energy efficiency program personnel, provided content presentations, discussions, and hands-on activities to program participants.

  9. Energy Storage Thermal Management | Transportation Research | NREL

    Science.gov Websites

    Thermal Management Energy Storage Thermal Management Infrared image of rectangular battery cell -designed thermal management system is critical to the life and performance of electric-drive vehicles (EDVs . NREL conducts thermal management research and development (R&D) to optimize battery performance and

  10. Topology Optimization for Energy Management in Underwater Sensor Networks

    DTIC Science & Technology

    2015-02-01

    1 To appear in International Journal of Control as a regular paper Topology Optimization for Energy Management in Underwater Sensor Networks ⋆ Devesh...K. Jha1 Thomas A. Wettergren2 Asok Ray1 Kushal Mukherjee3 Keywords: Underwater Sensor Network , Energy Management, Pareto Optimization, Adaptation...Optimization for Energy Management in Underwater Sensor Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  11. Saving Energy. Managing School Facilities, Guide 3.

    ERIC Educational Resources Information Center

    Department for Education and Employment, London (England). Architects and Building Branch.

    This guide offers information on how schools can implement an energy saving action plan to reduce their energy costs. Various low-cost energy-saving measures are recommended covering heating levels and heating systems, electricity demand reduction and lighting, ventilation, hot water usage, and swimming pool energy management. Additional…

  12. The solutions and thermodynamic dark energy in the accelerating universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demirel, E. C. Günay

    Recently, Tachyonic matter expressed in terms of scalar field is suggested to be the reason of acceleration of the universe as dark energy [1]-[3]. In this study, dynamic solutions and thermodynamic properties of matters such as Tachyonic matters were investigated.

  13. Automated lettuce nutrient solution management using an array of ion-selective electrodes

    USDA-ARS?s Scientific Manuscript database

    Automated sensing and control of macronutrients in hydroponic solutions would allow more efficient management of nutrients for crop growth in closed systems. This paper describes the development and evaluation of a computer-controlled nutrient management system with an array of ion-selective electro...

  14. Selected Energy Management Options for Small Business and Local Government.

    ERIC Educational Resources Information Center

    Wert, Jonathan M.; Worthington, Barry K.

    This document is a checklist of 257 energy management options for small business and local government. The energy management options are categorized under: (1) Energy management strategies; (2) Buildings; (3) Lighting; (4) Water; (5) Waste operations; (6) Equipment; (7) Transportation; and (8) Food preparation. To select options for…

  15. An IoT-Based Solution for Monitoring a Fleet of Educational Buildings Focusing on Energy Efficiency.

    PubMed

    Amaxilatis, Dimitrios; Akrivopoulos, Orestis; Mylonas, Georgios; Chatzigiannakis, Ioannis

    2017-10-10

    Raising awareness among young people and changing their behaviour and habits concerning energy usage is key to achieving sustained energy saving. Additionally, young people are very sensitive to environmental protection so raising awareness among children is much easier than with any other group of citizens. This work examines ways to create an innovative Information & Communication Technologies (ICT) ecosystem (including web-based, mobile, social and sensing elements) tailored specifically for school environments, taking into account both the users (faculty, staff, students, parents) and school buildings, thus motivating and supporting young citizens' behavioural change to achieve greater energy efficiency. A mixture of open-source IoT hardware and proprietary platforms on the infrastructure level, are currently being utilized for monitoring a fleet of 18 educational buildings across 3 countries, comprising over 700 IoT monitoring points. Hereon presented is the system's high-level architecture, as well as several aspects of its implementation, related to the application domain of educational building monitoring and energy efficiency. The system is developed based on open-source technologies and services in order to make it capable of providing open IT-infrastructure and support from different commercial hardware/sensor vendors as well as open-source solutions. The system presented can be used to develop and offer new app-based solutions that can be used either for educational purposes or for managing the energy efficiency of the building. The system is replicable and adaptable to settings that may be different than the scenarios envisioned here (e.g., targeting different climate zones), different IT infrastructures and can be easily extended to accommodate integration with other systems. The overall performance of the system is evaluated in real-world environment in terms of scalability, responsiveness and simplicity.

  16. An IoT-Based Solution for Monitoring a Fleet of Educational Buildings Focusing on Energy Efficiency

    PubMed Central

    Akrivopoulos, Orestis

    2017-01-01

    Raising awareness among young people and changing their behaviour and habits concerning energy usage is key to achieving sustained energy saving. Additionally, young people are very sensitive to environmental protection so raising awareness among children is much easier than with any other group of citizens. This work examines ways to create an innovative Information & Communication Technologies (ICT) ecosystem (including web-based, mobile, social and sensing elements) tailored specifically for school environments, taking into account both the users (faculty, staff, students, parents) and school buildings, thus motivating and supporting young citizens’ behavioural change to achieve greater energy efficiency. A mixture of open-source IoT hardware and proprietary platforms on the infrastructure level, are currently being utilized for monitoring a fleet of 18 educational buildings across 3 countries, comprising over 700 IoT monitoring points. Hereon presented is the system’s high-level architecture, as well as several aspects of its implementation, related to the application domain of educational building monitoring and energy efficiency. The system is developed based on open-source technologies and services in order to make it capable of providing open IT-infrastructure and support from different commercial hardware/sensor vendors as well as open-source solutions. The system presented can be used to develop and offer new app-based solutions that can be used either for educational purposes or for managing the energy efficiency of the building. The system is replicable and adaptable to settings that may be different than the scenarios envisioned here (e.g., targeting different climate zones), different IT infrastructures and can be easily extended to accommodate integration with other systems. The overall performance of the system is evaluated in real-world environment in terms of scalability, responsiveness and simplicity. PMID:28994719

  17. Critical Role of Surface Energy in Guiding Crystallization of Solution-Coated Conjugated Polymer Thin Films

    DOE PAGES

    Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi; ...

    2017-10-02

    It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substratedirected thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We performmore » in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. Here, we find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.« less

  18. Critical Role of Surface Energy in Guiding Crystallization of Solution-Coated Conjugated Polymer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi

    It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substratedirected thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We performmore » in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. Here, we find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.« less

  19. Managing the urban water-energy nexus

    NASA Astrophysics Data System (ADS)

    Escriva-Bou, Alvar; Pulido-Velazquez, Manuel; Lund, Jay R.

    2016-04-01

    Water use directly causes a significant amount of energy use in cities. In this paper we assess energy and greenhouse emissions related with each part of the urban water cycle and the consequences of several changes in residential water use for customers, water and energy utilities, and the environment. First, we develop an hourly model of urban water uses by customer category including water-related energy consumption. Next, using real data from East Bay Municipal Utility District in California, we calibrate a model of the energy used in water supply, treatment, pumping and wastewater treatment by the utility. Then, using data from the California Independent System Operator, we obtain hourly costs of energy for the energy utility. Finally, and using emission factors reported by the energy utilities we estimate greenhouse gas emissions for the entire urban water cycle. Results of the business-as-usual scenario show that water end uses account for almost 95% of all water-related energy use, but the 5% managed by the utility is still worth over 12 million annually. Several simulations analyze the potential benefits for water demand management actions showing that moving some water end-uses from peak to off-peak hours such as outdoor use, dishwasher or clothes washer use have large benefits for water and energy utilities, especially for locations with a high proportion of electric water heaters. Other interesting result is that under the current energy rate structures with low or no fixed charges, energy utilities burden most of the cost of the conservation actions.

  20. Energy Management Lesson Plans for Vocational Agriculture Instructors.

    ERIC Educational Resources Information Center

    Hedges, Lowell E., Ed.; Miller, Larry E., Ed.

    This notebook provides vocational agricultural teachers with 10 detailed lesson plans on the major topic of energy management in agriculture. The lesson plans present information about energy and the need to manage it wisely, using a problem-solving approach. Each lesson plan follows this format: lesson topic, lesson performance objectives,…

  1. 76 FR 2710 - Pitney Bowes, Inc., Mailing Solutions Management Division Including On-Site Leased Workers of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ...., Mailing Solutions Management Division Including On-Site Leased Workers of Guidant Group, and Teleworkers... Bowes, Inc., Mailing Solutions Management Division, Engineering Quality Assurance, Shelton, Connecticut... identity of the subject worker group. The worker group consists of workers of Pitney Bowes, Inc., the...

  2. The superior effect of nature based solutions in land management for enhancing ecosystem services.

    PubMed

    Keesstra, Saskia; Nunes, Joao; Novara, Agata; Finger, David; Avelar, David; Kalantari, Zahra; Cerdà, Artemi

    2018-01-01

    The rehabilitation and restoration of land is a key strategy to recover services -goods and resources- ecosystems offer to the humankind. This paper reviews key examples to understand the superior effect of nature based solutions to enhance the sustainability of catchment systems by promoting desirable soil and landscape functions. The use of concepts such as connectivity and the theory of system thinking framework allowed to review coastal and river management as a guide to evaluate other strategies to achieve sustainability. In land management NBSs are not mainstream management. Through a set of case studies: organic farming in Spain; rewilding in Slovenia; land restoration in Iceland, sediment trapping in Ethiopia and wetland construction in Sweden, we show the potential of Nature based solutions (NBSs) as a cost-effective long term solution for hydrological risks and land degradation. NBSs can be divided into two main groups of strategies: soil solutions and landscape solutions. Soil solutions aim to enhance the soil health and soil functions through which local eco-system services will be maintained or restored. Landscape solutions mainly focus on the concept of connectivity. Making the landscape less connected, facilitating less rainfall to be transformed into runoff and therefore reducing flood risk, increasing soil moisture and reducing droughts and soil erosion we can achieve the sustainability. The enhanced eco-system services directly feed into the realization of the Sustainable Development Goals of the United Nations. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Adaptive Critic Neural Network-Based Terminal Area Energy Management and Approach and Landing Guidance

    NASA Technical Reports Server (NTRS)

    Grantham, Katie

    2003-01-01

    Reusable Launch Vehicles (RLVs) have different mission requirements than the Space Shuttle, which is used for benchmark guidance design. Therefore, alternative Terminal Area Energy Management (TAEM) and Approach and Landing (A/L) Guidance schemes can be examined in the interest of cost reduction. A neural network based solution for a finite horizon trajectory optimization problem is presented in this paper. In this approach the optimal trajectory of the vehicle is produced by adaptive critic based neural networks, which were trained off-line to maintain a gradual glideslope.

  4. Developing Intelligent System Dynamic Management Instruments on Water-Food-Energy Nexus in Response to Urbanization

    NASA Astrophysics Data System (ADS)

    Tsai, W. P.; Chang, F. J.; Lur, H. S.; Fan, C. H.; Hu, M. C.; Huang, T. L.

    2016-12-01

    Water, food and energy are the most essential natural resources needed to sustain life. Water-Food-Energy Nexus (WFE Nexus) has nowadays caught global attention upon natural resources scarcity and their interdependency. In the past decades, Taiwan's integrative development has undergone drastic changes due to population growth, urbanization and excessive utilization of natural resources. The research intends to carry out interdisciplinary studies on WFE Nexus based on data collection and analysis as well as technology innovation, with a mission to develop a comprehensive solution to configure the synergistic utilization of WFE resources in an equal and secure manner for building intelligent dynamic green cities. This study aims to establish the WFE Nexus through interdisciplinary research. This study will probe the appropriate and secure resources distribution and coopetition relationship by applying and developing techniques of artificial intelligence, system dynamics, life cycle assessment, and synergy management under data mining, system analysis and scenario analysis. The issues of synergy effects, economic benefits and sustainable social development will be evaluated as well. First, we will apply the system dynamics to identify the interdependency indicators of WFE Nexus in response to urbanization and build the dynamic relationship among food production, irrigation water resource and energy consumption. Then, we conduct comparative studies of WFE Nexus between the urbanization and the un-urbanization area (basin) to provide a referential guide for optimal resource-policy nexus management. We expect to the proposed solutions can help achieve the main goals of the research, which is the promotion of human well-being and moving toward sustainable green economy and prosperous society.

  5. City-scale analysis of water-related energy identifies more cost-effective solutions.

    PubMed

    Lam, Ka Leung; Kenway, Steven J; Lant, Paul A

    2017-02-01

    Energy and greenhouse gas management in urban water systems typically focus on optimising within the direct system boundary of water utilities that covers the centralised water supply and wastewater treatment systems, despite a greater energy influence by the water end use. This work develops a cost curve of water-related energy management options from a city perspective for a hypothetical Australian city. It is compared with that from the water utility perspective. The curves are based on 18 water-related energy management options that have been implemented or evaluated in Australia. In the studied scenario, the cost-effective energy saving potential from a city perspective (292 GWh/year) is far more significant than that from a utility perspective (65 GWh/year). In some cases, for similar capital cost, if regional water planners invested in end use options instead of utility options, a greater energy saving potential at a greater cost-effectiveness could be achieved in urban water systems. For example, upgrading a wastewater treatment plant for biogas recovery at a capital cost of $27.2 million would save 31 GWh/year with a marginal cost saving of $63/MWh, while solar hot water system rebates at a cost of $28.6 million would save 67 GWh/year with a marginal cost saving of $111/MWh. Options related to hot water use such as water-efficient shower heads, water-efficient clothes washers and solar hot water system rebates are among the most cost-effective city-scale opportunities. This study demonstrates the use of cost curves to compare both utility and end use options in a consistent framework. It also illustrates that focusing solely on managing the energy use within the utility would miss substantial non-utility water-related energy saving opportunities. There is a need to broaden the conventional scope of cost curve analysis to include water-related energy and greenhouse gas at the water end use, and to value their management from a city perspective. This

  6. Helping Students Manage Their Energy: Taking Their Pulse with the Energy Audit

    ERIC Educational Resources Information Center

    Spreitzer, Gretchen M.; Grant, Traci

    2012-01-01

    This article introduces a tool to help students learn to better manage their energy. The tool asks students to assess their energy levels for each waking hour over at least 2 days in order to identify patterns of activities associated with high energy and with depleted energy. The article describes how to use the tool in the classroom by…

  7. Dark matter and dark energy from the solution of the strong CP problem.

    PubMed

    Mainini, Roberto; Bonometto, Silvio A

    2004-09-17

    The Peccei-Quinn (PQ) solution of the strong CP problem requires the existence of axions, which are viable candidates for dark matter. If the Nambu-Goldstone potential of the PQ model is replaced by a potential V(|Phi|) admitting a tracker solution, the scalar field |Phi| can account for dark energy, while the phase of Phi yields axion dark matter. If V is a supergravity (SUGRA) potential, the model essentially depends on a single parameter, the energy scale Lambda. Once we set Lambda approximately equal to 10(10) GeV at the quark-hadron transition, |Phi| naturally passes through values suitable to solve the strong CP problem, later growing to values providing fair amounts of dark matter and dark energy.

  8. Energy aspects of solid waste management: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cyclemore » in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.« less

  9. Energy aspects of solid waste management: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cyclemore » in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.« less

  10. Energy Management and the Infrastructure System.

    ERIC Educational Resources Information Center

    Blackburn, James M.

    1998-01-01

    Describes a state-of-the-art energy management program at Wake Forest University (North Carolina) designed to include all on-campus property, and explores the various aspects of cost/benefit analysis in its development. A campus profile, electrical and thermal energy analyses, and a summary table of utility budget data are included. (GR)

  11. Energy Data Management Manual for the Wastewater Treatment Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemar, Paul; De Fontaine, Andre

    Energy efficiency has become a higher priority within the wastewater treatment sector, with facility operators and state and local governments ramping up efforts to reduce energy costs and improve environmental performance. Across the country, municipal wastewater treatment plants are estimated to consume more than 30 terawatt hours per year of electricity, which equates to about $2 billion in annual electric costs. Electricity alone can constitute 25% to 40% of a wastewater treatment plant’s annual operating budget and make up a significant portion of a given municipality’s total energy bill. These energy needs are expected to grow over time, driven bymore » population growth and increasingly stringent water quality requirements. The purpose of this document is to describe the benefits of energy data management, explain how it can help drive savings when linked to a strong energy management program, and provide clear, step-by-step guidance to wastewater treatment plants on how to appropriately track energy performance. It covers the basics of energy data management and related concepts and describes different options for key steps, recognizing that a single approach may not work for all agencies. Wherever possible, the document calls out simpler, less time-intensive approaches to help smaller plants with more limited resources measure and track energy performance. Reviews of key, publicly available energy-tracking tools are provided to help organizations select a tool that makes the most sense for them. Finally, this document describes additional steps wastewater treatment plant operators can take to build on their energy data management systems and further accelerate energy savings.« less

  12. Facilitating Sound, Cost-Effective Federal Energy Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FEMP

    2016-07-01

    Fact sheet offers an overview of the Federal Energy Management Program (FEMP), which provides agencies and organizations with the information, tools, and assistance they need to achieve their energy-related requirements and goals through specialized initiatives.

  13. Innovative Approaches in Chronic Disease Management: Health Literacy Solutions and Opportunities for Research Validation.

    PubMed

    Villaire, Michael; Gonzalez, Diana Peña; Johnson, Kirby L

    2017-01-01

    This chapter discusses the need for innovative health literacy solutions to combat extensive chronic disease prevalence and costs. The authors explore the intersection of chronic disease management and health literacy. They provide specific examples of successful health literacy interventions for managing several highly prevalent chronic diseases. This is followed by suggestions on pairing research and practice to support effective disease management programs. In addition, the authors discuss strategies for collection and dissemination of knowledge gained from collaborations between researchers and practitioners. They identify current challenges specific to disseminating information from the health literacy field and offer potential solutions. The chapter concludes with a brief look at future directions and organizational opportunities to integrate health literacy practices to address the need for effective chronic disease management.

  14. Energy Management Control Systems: Tools for Energy Savings and Environmental Protection

    NASA Technical Reports Server (NTRS)

    Zsebik, Albin; Zala, Laszlo F.

    2002-01-01

    The change in the price of energy has encouraged the increase of energy efficiency. This report will discuss a tool to promote energy efficiency in intelligent buildings, energy management control systems (EMCS). In addition to the online control of energy production, supply, and consumption, the function of the EMCS is to support short- and long-term planning of the system operation as well as to collect, store, and regularly evaluate operation data. The strategies behind planning and implementing the EMCS as well as the manipulating the resulting data are discussed in this report.

  15. Development of integrated radioactive waste packaging and conditioning solutions in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibley, Peter; Butter, Kevin; Zimmerman, Ian

    2013-07-01

    In order to offer a more cost effective, safer and efficient Intermediate Level Waste (ILW) management service, EnergySolutions EU Ltd. and Gesellschaft fur Nuklear-Service mbH (GNS) have been engaged in the development of integrated radioactive waste retrieval, packaging and conditioning solutions in the UK. Recognising the challenges surrounding regulatory endorsement and on-site implementation in particular, this has resulted in an alternative approach to meeting customer, safety regulator and disposability requirements. By working closely with waste producers and the organisation(s) responsible for endorsing radioactive waste management operations in the UK, our proposed solutions are now being implemented. By combining GNS' off-the-shelf,more » proven Ductile Cast Iron Containers (DCICs) and water removal technologies, with EnergySolutions EU Ltd.'s experience and expertise in waste retrieval, safety case development and disposability submissions, a fully integrated service offering has been developed. This has involved significant effort to overcome technical challenges such as onsite equipment deployment, active commissioning, conditioning success criteria and disposability acceptance. Our experience in developing such integrated solutions has highlighted the importance of working in collaboration with all parties to achieve a successful and viable outcome. Ultimately, the goal is to ensure reliable, safe and effective delivery of waste management solutions. (authors)« less

  16. Closing the Loop--Improving Energy Management in Schools. Energy Research Group Report.

    ERIC Educational Resources Information Center

    Isaacs, Nigel; Donn, Michael

    A study of the energy savings potential in New Zealand schools demonstrates that considerable reductions in energy costs can be achieved through energy management. An initial examination of available 1985 light, heat, and water expenditures for 268 secondary schools (84 percent of the secondary schools in New Zealand) is followed by the selection…

  17. Solution-Processed Two-Dimensional Metal Dichalcogenide-Based Nanomaterials for Energy Storage and Conversion.

    PubMed

    Cao, Xiehong; Tan, Chaoliang; Zhang, Xiao; Zhao, Wei; Zhang, Hua

    2016-08-01

    The development of renewable energy storage and conversion devices is one of the most promising ways to address the current energy crisis, along with the global environmental concern. The exploration of suitable active materials is the key factor for the construction of highly efficient, highly stable, low-cost and environmentally friendly energy storage and conversion devices. The ability to prepare two-dimensional (2D) metal dichalcogenide (MDC) nanosheets and their functional composites in high yield and large scale via various solution-based methods in recent years has inspired great research interests in their utilization for renewable energy storage and conversion applications. Here, we will summarize the recent advances of solution-processed 2D MDCs and their hybrid nanomaterials for energy storage and conversion applications, including rechargeable batteries, supercapacitors, electrocatalytic hydrogen generation and solar cells. Moreover, based on the current progress, we will also give some personal insights on the existing challenges and future research directions in this promising field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Practical Materials for Teaching. Resource File: Edition I. Energy Management.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This directory lists energy education programs directed at increasing the energy conservation awareness of scientists, engineers, managers, and technicians working in fields where they are responsible for managing energy consumption. The resource is prepared to help with the process of identifying, selecting, and obtaining materials for promoting…

  19. Contingency Base Energy Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-06-09

    CB-EMS is the latest implementation of DSOM (Decision Support for Operations and Maintenance), which was previously patented by PNNL. CB-EMS WAS specifically designed for contingency bases for the US Army. It is a software package that is designed to monitor energy consumption at an Army contingency base to alert the camp manager when the systems are wasting energy. It's main feature that separates it from DSOM is it's ability to add systems using a plug and play menu system.

  20. 78 FR 75209 - Federal Leadership on Energy Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ... Leadership on Energy Management Memorandum for the Heads of Executive Departments and Agencies In order to create a clean energy economy that will increase our Nation's prosperity, promote energy security, combat... removing 1.5 million cars from the road. Today I am establishing new goals for renewable energy as well as...

  1. Blow-up of solutions to a quasilinear wave equation for high initial energy

    NASA Astrophysics Data System (ADS)

    Li, Fang; Liu, Fang

    2018-05-01

    This paper deals with blow-up solutions to a nonlinear hyperbolic equation with variable exponent of nonlinearities. By constructing a new control function and using energy inequalities, the authors obtain the lower bound estimate of the L2 norm of the solution. Furthermore, the concavity arguments are used to prove the nonexistence of solutions; at the same time, an estimate of the upper bound of blow-up time is also obtained. This result extends and improves those of [1,2].

  2. Load shifting with the use of home energy management system implemented in FPGA

    NASA Astrophysics Data System (ADS)

    Bazydło, Grzegorz; Wermiński, Szymon

    2017-08-01

    The increases for power demand in the Electrical Power System (EPS) causes a significant increase of power in daily load curve and transmission line overload. The large variability in energy consumption in EPS combined with unpredictable weather events can lead to a situation in which to save the stability of the EPS, the power limits must be introduced or even industrial customers in a given area have to be disconnected, which causes financial losses. Nowadays, a Transmission System Operator is looking for additional solutions to reduce peak power, because existing approaches (mainly building new intervention power unit or tariff programs) are not satisfactory due to the high cost of services in combination with insufficient power reduction effect. The paper presents an approach to load shifting with the use of home Energy Management System (EMS) installed at small end-users. The home energy management algorithm, executed by EMS controller, is modeled using Unified Modeling Language (UML). Then, the UML model is translated into Verilog description, and is finally implemented in the Field Programmable Gate Arrays. The advantages of the proposed approach are the relatively low cost of reduction service, small loss of end-users' comfort, and the convenient maintenance of EMS. A practical example illustrating the proposed approach and calculation of potential gains from its implementation are also presented.

  3. Thermodynamic analysis of energy density in pressure retarded osmosis: The impact of solution volumes and costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimund, Kevin K.; McCutcheon, Jeffrey R.; Wilson, Aaron D.

    A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy densitymore » of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π/(1+√w⁻¹), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at “maximum power density operating pressure” requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.« less

  4. Energy management and recovery

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.

    1989-01-01

    Energy management is treated by first exploring the energy requirements for a cryogenic tunnel. The requirement is defined as a function of Mach number, Reynolds number, temperature, and tunnel size. A simple program and correlation is described which allow calculation of the energy required. Usage of energy is also addressed in terms of tunnel control and research operation. The potential of a new wet expander is outlined in terms of cost saved by reliquefying a portion of the exhaust. The expander is described as a potentially more efficient way of recovering a fraction of the cold nitrogen gas normally exhausted to the atmosphere from a cryogenic tunnel. The role of tunnel insulation systems is explored in terms of requirements, safety, cost, maintenance, and efficiency. A detailed description of two external insulation systems is given. One is a rigid foam with a fiber glass and epoxy shell. The other is composed of glass fiber mats with a flexible outer vapor barrier; this system is nitrogen purged. The two systems are compared with the purged system being judged superior.

  5. Priority directions of the improvement of energy management at the enterprise

    NASA Astrophysics Data System (ADS)

    Dyakova, Galina; Izmaylova, Svetlana; Mottaeva, Angela; Karanina, Elena

    2017-10-01

    The relevance of article is caused by the fact that at the industrial enterprises pay little attention to the matters of energy saving or to the management of energy efficiency. The authors of the article defined that the potential of the increase in energy efficiency as well as the improvement of quality of strategic management at the enterprise, is connected with investment into the human capital. For the improvement of system of energy management, the key indicators of energy efficiency at the individual level are defined, the algorithm of the development of key indicators by means of which the energy efficiency of the human capital will be measured is developed, actions for support to the developed transitional strategy of power management are offered, positive results of formation of the human capital directed to increase in energy efficiency are designated.

  6. Managing Written Directives: A Software Solution to Streamline Workflow.

    PubMed

    Wagner, Robert H; Savir-Baruch, Bital; Gabriel, Medhat S; Halama, James R; Bova, Davide

    2017-06-01

    A written directive is required by the U.S. Nuclear Regulatory Commission for any use of 131 I above 1.11 MBq (30 μCi) and for patients receiving radiopharmaceutical therapy. This requirement has also been adopted and must be enforced by the agreement states. As the introduction of new radiopharmaceuticals increases therapeutic options in nuclear medicine, time spent on regulatory paperwork also increases. The pressure of managing these time-consuming regulatory requirements may heighten the potential for inaccurate or incomplete directive data and subsequent regulatory violations. To improve on the paper-trail method of directive management, we created a software tool using a Health Insurance Portability and Accountability Act (HIPAA)-compliant database. This software allows for secure data-sharing among physicians, technologists, and managers while saving time, reducing errors, and eliminating the possibility of loss and duplication. Methods: The software tool was developed using Visual Basic, which is part of the Visual Studio development environment for the Windows platform. Patient data are deposited in an Access database on a local HIPAA-compliant secure server or hard disk. Once a working version had been developed, it was installed at our institution and used to manage directives. Updates and modifications of the software were released regularly until no more significant problems were found with its operation. Results: The software has been used at our institution for over 2 y and has reliably kept track of all directives. All physicians and technologists use the software daily and find it superior to paper directives. They can retrieve active directives at any stage of completion, as well as completed directives. Conclusion: We have developed a software solution for the management of written directives that streamlines and structures the departmental workflow. This solution saves time, centralizes the information for all staff to share, and decreases

  7. Energy Management of An Extended Hybrid Renewable Energy System For Isolated Sites Using A Fuzzy Logic Controller

    NASA Astrophysics Data System (ADS)

    Faquir, Sanaa; Yahyaouy, Ali; Tairi, Hamid; Sabor, Jalal

    2018-05-01

    This paper presents the implementation of a fuzzy logic controller to manage the flow of energy in an extended hybrid renewable energy system employed to satisfy the load for a wide isolated site at the city of Essaouira in Morocco. To achieve Efficient energy management, the system is combining two important renewable energies: solar and wind. Lithium Ion batteries were also used as storage devices to store the excess of energy provided by the renewable sources or to supply the system with the required energy when the energy delivered by the input sources is not enough to satisfy the load demand. To manage the energy in the system, a controller based on fuzzy logic was implemented. Real data taken from previous research and meteorological sites was used to test the controller.

  8. Drowning in PC Management: Could a Linux Solution Save Us?

    ERIC Educational Resources Information Center

    Peters, Kathleen A.

    2004-01-01

    Short on funding and IT staff, a Western Canada library struggled to provide adequate public computing resources. Staff turned to a Linux-based solution that supports up to 10 users from a single computer, and blends Web browsing and productivity applications with session management, Internet filtering, and user authentication. In this article,…

  9. BestPractices Corporate Energy Management Case Study: Alcoa Teams with DOE to Reduce Energy Consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-05-01

    This is the first in a series of DOE Industrial Technologies Program case studies on corporate energy management. The case study highlights Alcoa Aluminum's successful results and activities through its corporate energy management approach and collaboration with DOE. Case studies in this series will be used to encourage other energy-intensive industrial plants to adopt a corporate strategy, and to promote the concept of replicating results with a company or industry.

  10. 1994 Department of Energy Records Management Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-09-01

    The Department of Energy (DOE) Records Management Group (RMG) provides a forum for DOE and its contractor personnel to review and discuss subjects, issues, and concerns of common interest. This forum will include the exchange of information, and interpretation of requirements, and a dialog to aid in cost-effective management of the DOE Records Management program. This report contains the contributions from this forum.

  11. Climate Leadership webinar on Integrating Energy and Climate Risk Management

    EPA Pesticide Factsheets

    Allergan, a multi-specialty healthcare company and pharmaceutical manufacturer, discusses how it manages climate and energy risks, how these areas are linked, and how energy and climate management strategies pervade critical business decisions.

  12. The water-energy nexus at water supply and its implications on the integrated water and energy management.

    PubMed

    Khalkhali, Masoumeh; Westphal, Kirk; Mo, Weiwei

    2018-09-15

    Water and energy are highly interdependent in the modern world, and hence, it is important to understand their constantly changing and nonlinear interconnections to inform the integrated management of water and energy. In this study, a hydrologic model, a water systems model, and an energy model were developed and integrated into a system dynamics modeling framework. This framework was then applied to a water supply system in the northeast US to capture its water-energy interactions under a set of future population, climate, and system operation scenarios. A hydrologic model was first used to simulate the system's hydrologic inflows and outflows under temperature and precipitation changes on a weekly-basis. A water systems model that combines the hydrologic model and management rules (e.g., water release and transfer) was then developed to dynamically simulate the system's water storage and water head. Outputs from the water systems model were used in the energy model to estimate hydropower generation. It was found that critical water-energy synergies and tradeoffs exist, and there is a possibility for integrated water and energy management to achieve better outcomes. This analysis also shows the importance of a holistic understanding of the systems as a whole, which would allow utility managers to make proactive long-term management decisions. The modeling framework is generalizable to other water supply systems with hydropower generation capacities to inform the integrated management of water and energy resources. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Algorithms for synthesizing management solutions based on OLAP-technologies

    NASA Astrophysics Data System (ADS)

    Pishchukhin, A. M.; Akhmedyanova, G. F.

    2018-05-01

    OLAP technologies are a convenient means of analyzing large amounts of information. An attempt was made in their work to improve the synthesis of optimal management decisions. The developed algorithms allow forecasting the needs and accepted management decisions on the main types of the enterprise resources. Their advantage is the efficiency, based on the simplicity of quadratic functions and differential equations of only the first order. At the same time, the optimal redistribution of resources between different types of products from the assortment of the enterprise is carried out, and the optimal allocation of allocated resources in time. The proposed solutions can be placed on additional specially entered coordinates of the hypercube representing the data warehouse.

  14. A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Xu, Jun; Cao, Binggang; Zhou, Xuan

    2015-05-01

    This paper proposes a novel topology of multimode hybrid energy storage system (HESS) and its energy management strategy for electric vehicles (EVs). Compared to the conventional HESS, the proposed multimode HESS has more operating modes and thus it could in further enhance the efficiency of the system. The rule-based control strategy and the power-balancing strategy are developed for the energy management strategy to realize mode selection and power distribution. Generally, the DC-DC converter will operate at peak efficiency to convey the energy from the batteries to the UCs. Otherwise, the pure battery mode or the pure ultracapacitors (UCs) mode will be utilized without the DC-DC converter. To extend the battery life, the UCs have the highest priority to recycle the energy and the batteries are isolated from being recharged directly during regenerative braking. Simulations and experiments are established to validate the proposed multimode HESS and its energy management strategy. The results reveal that the energy losses in the DC-DC converter, the total energy consumption and the overall system efficiency of the proposed multimode HESS are improved compared to the conventional HESS.

  15. Quasimonochromatic exact solutions to Maxwell's equations with finite total energy and arbitrary frequencies in the vacuum.

    PubMed

    Ma, Xiaolu; Thompson, Richard S

    2017-12-01

    We analyze a family of exact finite energy solutions to Maxwell's equations. These solutions are a subset of the modified-power-spectrum solutions found by Ziolkowski [Phys. Rev. A 39, 2005 (1989)10.1103/PhysRevA.39.2005]. There are three characteristic parameters in the solutions: q_{1},q_{2}, and k_{0}. q_{1} and q_{2} are related to the frequency bandwidth of the solution. In the parameter space of k_{0}q_{1}≫1 and k_{0}q_{2}≫1, they represent quasimonochromatic continuous wave fields with the main angular frequency k_{0}c and energy localized in the transverse directions. Under the restriction of q_{1}≪q_{2}, the beam propagates mainly in the +z direction with velocity c and limited diffraction.

  16. Managing Water-Food-Energy Futures in the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Wheater, H. S.; Hassanzadeh, E.; Nazemi, A.; Elshorbagy, A. A.

    2016-12-01

    The water-food-energy nexus is a convenient phrase to highlight competing societal uses for water and the need for cross-sectoral policy integration, but this can lead to oversimplification of the multiple dimensions of water (and energy) management. In practice, water managers must balance (and prioritize) demands for water for many uses, including environmental flows, and reservoir operation often involves managing conflicting demands, for example to maximize retention for supply, reduce storage to facilitate flood control, and constrain water levels and releases for habitat protection. Agriculture and water quality are also inextricably linked: irrigated agriculture requires appropriate water quality for product quality and certification, but agriculture can be a major source of nutrient pollution, with impacts on human and ecosystem health, drinking water treatment and amenity. And energy-water interactions include energy production (hydropower and cooling water for thermal power generation) and energy consumption (e.g. for pumping and water and wastewater treatment). These dependencies are illustrated for the Canadian prairies, and a risk-based approach to the management of climate change is presented. Trade-offs between economic benefits of hydropower and irrigation are illustrated for alternative climate futures, including implications for freshwater habitats. The results illustrate that inter-sector interactions vary as a function of climate and its variability, and that there is a need for policy to manage inter-sector allocations as a function of economic risk.

  17. Community Energy Storage Thermal Analysis and Management: Cooperative Research and Development Final Report, CRADA Number CRD-11-445

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kandler A.

    The goal of this project is to create thermal solutions and models for community energy storage devices using both purpose-designed batteries and EV or PHEV batteries. Modeling will be employed to identify major factors of a device's lifetime and performance. Simultaneously, several devices will be characterized to determine their electrical and thermal performance under controlled conditions. After the factors are identified, a variety of thermal design approaches will be evaluated to improve the performance of energy storage devices. Upon completion of this project, recommendations for community energy storage device enclosures, thermal management systems, and/or battery sourcing will be made. NREL'smore » interest is in both new and aged batteries.« less

  18. Community energy management in Sitka, Alaska: What strategies can help increase energy independence?

    Treesearch

    David Nicholls; Trista Patterson

    2013-01-01

    This report summarizes practical energy management strategies that could help communities in southeast Alaska move closer to energy independence while utilizing local resources more effectively. Our analysis focuses primarily on Sitka, Alaska, yet could be relevant to other communities having similar energy structures that rely primarily on hydroelectric power...

  19. Masters Study in Advanced Energy and Fuels Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondal, Kanchan

    2014-12-08

    There are currently three key drivers for the US energy sector a) increasing energy demand and b) environmental stewardship in energy production for sustainability and c) general public and governmental desire for domestic resources. These drivers are also true for energy nation globally. As a result, this sector is rapidly diversifying to alternate sources that would supplement or replace fossil fuels. These changes have created a need for a highly trained workforce with a the understanding of both conventional and emerging energy resources and technology to lead and facilitate the reinvention of the US energy production, rational deployment of alternatemore » energy technologies based on scientific and business criteria while invigorating the overall economy. In addition, the current trends focus on the the need of Science, Technology, Engineering and Math (STEM) graduate education to move beyond academia and be more responsive to the workforce needs of businesses and the industry. The SIUC PSM in Advanced Energy and Fuels Management (AEFM) program was developed in response to the industries stated need for employees who combine technical competencies and workforce skills similar to all PSM degree programs. The SIUC AEFM program was designed to provide the STEM graduates with advanced technical training in energy resources and technology while simultaneously equipping them with the business management skills required by professional employers in the energy sector. Technical training include core skills in energy resources, technology and management for both conventional and emerging energy technologies. Business skills training include financial, personnel and project management. A capstone internship is also built into the program to train students such that they are acclimatized to the real world scenarios in research laboratories, in energy companies and in government agencies. The current curriculum in the SIUC AEFM will help fill the need for training both

  20. Decision exploration lab: a visual analytics solution for decision management.

    PubMed

    Broeksema, Bertjan; Baudel, Thomas; Telea, Arthur G; Crisafulli, Paolo

    2013-12-01

    We present a visual analytics solution designed to address prevalent issues in the area of Operational Decision Management (ODM). In ODM, which has its roots in Artificial Intelligence (Expert Systems) and Management Science, it is increasingly important to align business decisions with business goals. In our work, we consider decision models (executable models of the business domain) as ontologies that describe the business domain, and production rules that describe the business logic of decisions to be made over this ontology. Executing a decision model produces an accumulation of decisions made over time for individual cases. We are interested, first, to get insight in the decision logic and the accumulated facts by themselves. Secondly and more importantly, we want to see how the accumulated facts reveal potential divergences between the reality as captured by the decision model, and the reality as captured by the executed decisions. We illustrate the motivation, added value for visual analytics, and our proposed solution and tooling through a business case from the car insurance industry.

  1. A Combined Energy Management Algorithm for Wind Turbine/Battery Hybrid System

    NASA Astrophysics Data System (ADS)

    Altin, Necmi; Eyimaya, Süleyman Emre

    2018-03-01

    From an energy management standpoint, natural phenomena such as solar irradiation and wind speed are uncontrolled variables, so the correlation between the energy generated by renewable energy sources and energy demand cannot always be predicted. For this reason, energy storage systems are used to provide more efficient renewable energy systems. In these systems, energy management systems are used to control the energy storage system and establish a balance between the generated power and the power demand. In addition, especially in wind turbines, rapidly varying wind speeds cause wind power fluctuations, which threaten the power system stability, especially at high power levels. Energy storage systems are also used to mitigate the power fluctuations and sustain the power system's stability. In these systems, another controller which controls the energy storage system power to mitigate power fluctuations is required. These two controllers are different from each other. In this study, a combined energy management algorithm is proposed which can perform both as an energy control system and a power fluctuation mitigation system. The proposed controller is tested with wind energy conversion system modeled in MATLAB/Simulink. Simulation results show that the proposed controller acts as an energy management system while, at the same time, mitigating power fluctuations.

  2. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    PubMed Central

    Wang, Xue; Ma, Jun-Jie; Wang, Sheng; Bi, Dao-Wei

    2007-01-01

    Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  3. Energy consumption quota management of Wanda commercial buildings in China

    NASA Astrophysics Data System (ADS)

    Sun, D. B.; Xiao, H.; Wang, X.; Liu, J. J.; Wang, X.; Jin, X. Q.; Wang, J.; Xie, X. K.

    2016-08-01

    There is limited research of commercial buildings’ energy use data conducted based on practical analysis in China nowadays. Some energy consumption quota tools like Energy Star in U.S or VDI 3807 in Germany have limitation in China's building sector. This study introduces an innovative methodology of applying energy use quota model and empirical management to commercial buildings, which was in accordance of more than one hundred opened shopping centers of a real estate group in China. On the basis of statistical benchmarking, a new concept of “Modified coefficient”, which considers weather, occupancy, business layout, operation schedule and HVAC efficiency, is originally introduced in this paper. Our study shows that the average energy use quota increases from north to south. The average energy use quota of sample buildings is 159 kWh/(m2.a) of severe cold climate zone, 179 kWh/(m2.a) of cold zone, 188 kWh/(m2.a) of hot summer and cold winter zone, and 200 kWh/(m2.a) of hot summer and warm winter zone. The energy use quota model has been validated in the property management for year 2016, providing a new method of commercial building energy management to the industry. As a key result, there is 180 million energy saving potential based on energy quota management in 2016, equals to 6.2% saving rate of actual energy use in 2015.

  4. Energy management study: A proposed case of government building

    NASA Astrophysics Data System (ADS)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal

    2015-05-01

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.

  5. An analytical solution for modeling thermal energy transfer in a confined aquifer system

    NASA Astrophysics Data System (ADS)

    Shaw-Yang, Yang; Hund-der, Yeh

    2008-12-01

    A mathematical model is developed for simulating the thermal energy transfer in a confined aquifer with different geological properties in the underlying and overlying rocks. The solutions for temperature distributions in the aquifer, underlying rock, and overlying rock are derived by the Laplace transforms and their corresponding time-domain solutions are evaluated by the modified Crump method. Field data adopted from the literature are used as examples to demonstrate the applicability of the solutions in modeling the heat transfer in an aquifer thermal energy storage (ATES) system. The results show that the aquifer temperature increases with time, injection flow rate, and water temperature. However, the temperature decreases with increasing radial and vertical distances. The heat transfer in the rocks is slow and has an effect on the aquifer temperature only after a long period of injection time. The influence distance depends on the aquifer physical and thermal properties, injection flow rate, and injected water temperature. A larger value of thermal diffusivity or injection flow rate will result in a longer influence distance. The present solution can be used as a tool for designing the heat injection facilities for an ATES system.

  6. The Need for a Strategic Foundation for Digital Learning and Knowledge Management Solutions

    ERIC Educational Resources Information Center

    Asgarkhani, Mehdi

    2004-01-01

    This paper elaborates on the importance of a strategic foundation when digital learning or knowledge management (KM) solutions are planned and developed. It looks at some key issues of e-Learning and knowledge management (KM) through discussing the various stages (technologies) and potential benefits of e-Learning; the state of the e-Learning…

  7. Power and Energy Management Strategy for Solid State Transformer Interfaced DC Microgrid

    NASA Astrophysics Data System (ADS)

    Yu, Xunwei

    As a result of more and more applications of renewable energy into our ordinary life, how to construct a microgrid (MG) based on the distributed renewable energy resources and energy storages, and then to supply a reliable and flexible power to the conventional power system are the hottest topics nowadays. Comparing to the AC microgrid (AC MG), DC microgrid (DC MG) gets more attentions, because it has its own advantages, such as high efficiency, easy to integrate the DC energy sources and energy storages, and so on. Furthermore, the interaction between DC MG system and the distribution system is also an important and practical issue. In Future Renewable Electric Energy Delivery and Management Systems Center (FREEDM), the Solid State Transformer (SST) is built, which can transform the distribution system to the low AC and DC system directly (usually home application level). Thus, the SST gives a new promising solution for low voltage level MG to interface the distribution level system instead of the traditional transformer. So a SST interfaced DC MG is proposed. However, it also brings new challenges in the design and control fields for this system because the system gets more complicated, which includes distributed energy sources and storages, load, and SST. The purpose of this dissertation is to design a reliable and flexible SST interfaced DC MG based on the renewable energy sources and energy storages, which can operate in islanding mode and SST-enabled mode. Dual Half Bridge (DHB) is selected as the topology for DC/DC converter in DC MG. The DHB operation procedure and average model are analyzed, which is the basis for the system modeling, control and operation. Furthermore, two novel power and energy management strategies are proposed. The first one is a distributed energy management strategy for the DC MG operating in the SST-enabled mode. In this method, the system is not only in distributed control to increase the system reliability, but the power sharing

  8. Energy monitoring and managing for electromobility purposes

    NASA Astrophysics Data System (ADS)

    Slanina, Zdenek; Docekal, Tomas

    2016-09-01

    This paper describes smart energy meter design and implementation focused on using in charging stations (stands) for electric vehicle (follows as EV) charging support and possible embedding into current smart building technology. In this article there are included results of research of commercial devices available in Czech republic for energy measuring for buildings as well as analysis of energy meter for given purposes. For example in described module there was required measurement of voltage, electric current and frequency of power network. Finally there was designed a communication module with common interface to energy meter for standard communication support between charging station and electric car. After integration into smart buildings (home automation, parking houses) there are pros and cons of such solution mentioned1,2.

  9. GD Friend, Inc. d/b/a Everlast Home Energy Solutions Information Sheet

    EPA Pesticide Factsheets

    GD Friend, Inc. d/b/a Everlast Home Energy Solutions (the Company) is located in Anaheim, California. The settlement involves renovation activities conducted at properties constructed prior to 1978, located in Anaheim and La Verne, California.

  10. EMERGING TECHNOLOGY BULLETIN: REMOVAL OF PHENOL FROM AQUEOUS SOLUTIONS USING HIGH ENERGY ELECTRON BEAM IRRADIATION

    EPA Science Inventory

    Irradiation of aqueous solutions with high-energy electrons results in the formation of the aqueous electron, hydrogen radical, H-, and the hydroxyl radical, OH-. These reactive transient species initiate chemical reactions capable of destroying organic compounds in aqueous solut...

  11. Large shipyard enlists EMS control capabilities. [Energy management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-10-01

    The energy management plan of the Ingalls Shipbuilding in Pascagoula, Mississippi, featuring computer technology, is described. An integral component of the plan is a plus 300-point energy management system with Phase II expansion envisaging to bring additional points under control Within the first ten months of operation, the system saved more than /89,763 in electricity costs alone.

  12. Federal Government Energy Management and Conservation Programs Fiscal Year 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energymore » Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).« less

  13. Federal Government Energy Management and Conservation Programs Fiscal Year 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energymore » Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).« less

  14. Energy solutions, neo-liberalism, and social diversity in Toronto, Canada.

    PubMed

    Teelucksingh, Cheryl; Poland, Blake

    2011-01-01

    In response to the dominance of green capitalist discourses in Canada's environmental movement, in this paper, we argue that strategies to improve energy policy must also provide mechanisms to address social conflicts and social disparities. Environmental justice is proposed as an alternative to mainstream environmentalism, one that seeks to address systemic social and spatial exclusion encountered by many racialized immigrants in Toronto as a result of neo-liberal and green capitalist municipal policy and that seeks to position marginalized communities as valued contributors to energy solutions. We examine Toronto-based municipal state initiatives aimed at reducing energy use while concurrently stimulating growth (specifically, green economy/green jobs and 'smart growth'). By treating these as instruments of green capitalism, we illustrate the utility of environmental justice applied to energy-related problems and as a means to analyze stakeholders' positions in the context of neo-liberalism and green capitalism, and as opening possibilities for resistance.

  15. Energy Solutions, Neo-Liberalism, and Social Diversity in Toronto, Canada

    PubMed Central

    Teelucksingh, Cheryl; Poland, Blake

    2011-01-01

    In response to the dominance of green capitalist discourses in Canada’s environmental movement, in this paper, we argue that strategies to improve energy policy must also provide mechanisms to address social conflicts and social disparities. Environmental justice is proposed as an alternative to mainstream environmentalism, one that seeks to address systemic social and spatial exclusion encountered by many racialized immigrants in Toronto as a result of neo-liberal and green capitalist municipal policy and that seeks to position marginalized communities as valued contributors to energy solutions. We examine Toronto-based municipal state initiatives aimed at reducing energy use while concurrently stimulating growth (specifically, green economy/green jobs and ‘smart growth’). By treating these as instruments of green capitalism, we illustrate the utility of environmental justice applied to energy-related problems and as a means to analyze stakeholders’ positions in the context of neo-liberalism and green capitalism, and as opening possibilities for resistance. PMID:21318023

  16. Advanced Micro Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy Security, and Power Quality at DoD Installations

    DTIC Science & Technology

    2016-10-28

    assumptions. List of Assumptions: Price of electrical energy : $0.07/kWh flat rate for energy at the base Price of peak power: $15/MW peak power...EW-201147) Advanced Micro-Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy Security, and...12-C-0002 5b. GRANT NUMBER Advanced Micro-Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy

  17. Improving energy efficiency via smart building energy management systems. A comparison with policy measures

    DOE PAGES

    Rocha, Paula; Siddiqui, Afzal; Stadler, Michael

    2014-12-09

    In this study, to foster the transition to more sustainable energy systems, policymakers have been approving measures to improve energy efficiency as well as promoting smart grids. In this setting, building managers are encouraged to adapt their energy operations to real-time market and weather conditions. Yet, most fail to do so as they rely on conventional building energy management systems (BEMS) that have static temperature set points for heating and cooling equipment. In this paper, we investigate how effective policy measures are at improving building-level energy efficiency compared to a smart BEMS with dynamic temperature set points. To this end,more » we present an integrated optimisation model mimicking the smart BEMS that combines decisions on heating and cooling systems operations with decisions on energy sourcing. Using data from an Austrian and a Spanish building, we find that the smart BEMS results in greater reduction in energy consumption than a conventional BEMS with policy measures.« less

  18. Household energy management strategies in Bulgaria's transitioning energy sector

    NASA Astrophysics Data System (ADS)

    Carper, Mark Daniel Lynn

    Recent transition literature of post-socialist states has addressed the shortcomings of a rapid blanket implementation of neo-liberal policies and practices placed upon a landscape barren of the needed institutions and experiences. Included in these observations are the policy-making oversight of spatial socioeconomic variations and their individual and diverse methods of coping with their individual challenges. Of such literature addressing the case of Bulgaria, a good portion deals with the spatial consequences of restructuring as well as with embedded disputes over access to and control of resources. With few exceptions, studies of Bulgaria's changing energy sector have largely been at the state level and have not been placed within the context of spatial disparities of socioeconomic response. By exploring the variations of household energy management strategies across space, my dissertation places this resource within such a theoretical context and offers analysis based on respective levels of economic and human development, inherited material infrastructures, the organization and activities of institutions, and fuel and technological availability. A closed survey was distributed to explore six investigational themes across four geographic realms. The investigational themes include materials of housing construction, methods of household heating, use of electrical appliances, energy conservation strategies, awareness and use of energy conservation technologies, and attitudes toward the transitioning energy sector. The geographic realms include countrywide results, the urban-rural divide, regional variations, and urban divisions of the capital city, Sofia. Results conclude that, indeed, energy management strategies at the household level have been shaped by multiple variables, many of which differ across space. These variables include price sensitivity, degree of dependence on remnant technologies, fuel and substitute availability, and level of human and

  19. Operational management of offshore energy assets

    NASA Astrophysics Data System (ADS)

    Kolios, A. J.; Martinez Luengo, M.

    2016-02-01

    Energy assets and especially those deployed offshore are subject to a variety of harsh operational and environmental conditions which lead to deterioration of their performance and structural capacity over time. The aim of reduction of CAPEX in new installations shifts focus to operational management to monitor and assess performance of critical assets ensuring their fitness for service throughout their service life and also to provide appropriate and effective information towards requalification or other end of life scenarios, optimizing the OPEX. Over the last decades, the offshore oil & gas industry has developed and applied various approaches in operational management of assets through Structural Health and Condition Monitoring (SHM/CM) systems which can be, at a certain level, transferable to offshore renewable installations. This paper aims to highlight the key differences between offshore oil & gas and renewable energy assets from a structural integrity and reliability perspective, provide a comprehensive overview of different approaches that are available and applicable, and distinguish the benefits of such systems in the efficient operation of offshore energy assets.

  20. Energy Management Programs at the John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Huang, Jeffrey H.

    2011-01-01

    The Energy Management internship over the summer of 2011 involved a series of projects related to energy management on the John. F. Kennedy Space Center (KSC). This internship saved KSC $14.3 million through budgetary projections, saved KSC $400,000 through implementation of the recycling program, updated KSC Environmental Management System's (EMS) water and energy-related List of Requirements (LoR) which changed 25.7% of the list, provided a incorporated a 45% design review of the Ordnance Operations Facility (OOF) which noted six errors within the design plans, created a certification system and timeline for implementation regarding compliance to the federal Guiding Principles, and gave off-shore wind as the preferred alternative to on-site renewable energy generation.

  1. Locomotive crash energy management coupling tests

    DOT National Transportation Integrated Search

    2017-04-04

    Research to develop new technologies for increasing the safety of passengers and crew in rail equipment is being directed by the Federal Railroad Administrations (FRAs) Office of Research, Development, and Technology. Crash energy management (C...

  2. Nonautonomous discrete bright soliton solutions and interaction management for the Ablowitz-Ladik equation.

    PubMed

    Yu, Fajun

    2015-03-01

    We present the nonautonomous discrete bright soliton solutions and their interactions in the discrete Ablowitz-Ladik (DAL) equation with variable coefficients, which possesses complicated wave propagation in time and differs from the usual bright soliton waves. The differential-difference similarity transformation allows us to relate the discrete bright soliton solutions of the inhomogeneous DAL equation to the solutions of the homogeneous DAL equation. Propagation and interaction behaviors of the nonautonomous discrete solitons are analyzed through the one- and two-soliton solutions. We study the discrete snaking behaviors, parabolic behaviors, and interaction behaviors of the discrete solitons. In addition, the interaction management with free functions and dynamic behaviors of these solutions is investigated analytically, which have certain applications in electrical and optical systems.

  3. Energy management study: A proposed case of government building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount ofmore » energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.« less

  4. Graphene for energy solutions and its industrialization.

    PubMed

    Wei, Di; Kivioja, Jani

    2013-11-07

    Graphene attracts intensive interest globally across academia and industry since the award of the Nobel Prize in Physics 2010. Within the last half decade, there has been an explosion in the number of scientific publications, patents and industry projects involved in this topic. On the other hand, energy is one of the biggest challenges of this century and related to the global sustainable economy. There are many reviews on graphene and its applications in various devices, however, few of the review articles connect the intrinsic properties of graphene with its energy. The IUPAC definition of graphene refers to a single carbon layer of graphite structure and its related superlative properties. A lot of scientific results on graphene published to date are actually dealing with multi-layer graphenes or reduced graphenes from insulating graphene oxides (GO) which contain defects and contaminants from the reactions and do not possess some of the intrinsic physical properties of pristine graphene. In this review, the focus is on the most recent advances in the study of pure graphene properties and novel energy solutions based on these properties. It also includes graphene metrology and analysis of both intellectual property and the value chain for the existing and forthcoming graphene industry that may cause a new 'industry revolution' with the strong and determined support of governments and industries across the European Union, U. S., Asia and many other countries in the world.

  5. Basic Energy Conservation and Management--Part 2: HVAC

    ERIC Educational Resources Information Center

    Krueger, Glenn

    2012-01-01

    Reducing school district energy expenditures has become a universal goal, and new technologies have brought greater energy efficiencies to the school environment. In Part 1 of this two-part series, the author discussed the steps required to establish an energy conservation and management program with an emphasis on lighting. In this article, he…

  6. Health Management Technology as a General Solution Framework

    NASA Astrophysics Data System (ADS)

    Nakajima, Hiroshi; Hasegawa, Yoshifumi; Tasaki, Hiroshi; Iwami, Taro; Tsuchiya, Naoki

    Health maintenance and improvement of humans, artifacts, and nature are pressing requirements considering the problems human beings have faced. In this article, the health management technology is proposed by centering cause-effect structure. The important aspect of the technology is evolvement through human-machine collaboration in response to changes of target systems. One of the reasons why the cause-effect structure is centered in the technology is its feature of transparency to humans by instinct point of view. The notion has been spreaded over wide application areas such as quality control, energy management, and healthcare. Some experiments were conducted to prove effectiveness of the technology in the article.

  7. Does the Department of Defense Possess Solutions for the Department of Homeland Security’s Personnel Management Issues?

    DTIC Science & Technology

    2015-12-01

    DEPARTMENT OF DEFENSE POSSESS SOLUTIONS FOR THE DEPARTMENT OF HOMELAND SECURITY’S PERSONNEL MANAGEMENT ISSUES? by Joshua D. Frizzell December 2015...22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank...SOLUTIONS FOR THE DEPARTMENT OF HOMELAND SECURITY’S PERSONNEL MANAGEMENT ISSUES? 5. FUNDING NUMBERS 6. AUTHOR(S) Joshua D. Frizzell 7

  8. A cryptographic key management solution for HIPAA privacy/security regulations.

    PubMed

    Lee, W-B; Lee, C-D

    2008-01-01

    The Health Insurance Portability and Accountability Act (HIPAA) privacy and security regulations are two crucial provisions in the protection of healthcare privacy. Privacy regulations create a principle to assure that patients have more control over their health information and set limits on the use and disclosure of health information. The security regulations stipulate the provisions implemented to guard data integrity, confidentiality, and availability. Undoubtedly, the cryptographic mechanisms are well defined to provide suitable solutions. In this paper, to comply with the HIPAA regulations, a flexible cryptographic key management solution is proposed to facilitate interoperations among the applied cryptographic mechanisms. In addition, case of consent exceptions intended to facilitate emergency applications and other possible exceptions can also be handled easily.

  9. 78 FR 31986 - In the Matter of Energy Solutions Inc.; Order Approving Indirect Transfer of Import and Export...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 11005621, 11005896, 11005620, 11005897, 11006061, 11005840, 11005941; License Nos. IW017, IW029, XW010, XW018, XW020, XCOM1211, XSOU8825] In the Matter of Energy Solutions Inc.; Order Approving Indirect Transfer of Import and Export Licenses I EnergySolutions...

  10. Deep Energy Retrofit Guidance for the Building America Solutions Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Less, Brennan; Walker, Iain

    2015-01-01

    The U.S. DOE Building America program has established a research agenda targeting market-relevant strategies to achieve 40% reductions in existing home energy use by 2030. Deep Energy Retrofits (DERs) are part of the strategy to meet and exceed this goal. DERs are projects that create new, valuable assets from existing residences, by bringing homes into alignment with the expectations of the 21st century. Ideally, high energy using, dated homes that are failing to provide adequate modern services to their owners and occupants (e.g., comfortable temperatures, acceptable humidity, clean, healthy), are transformed through comprehensive upgrades to the building envelope, services andmore » miscellaneous loads into next generation high performance homes. These guidance documents provide information to aid in the broader market adoption of DERs. They are intended for inclusion in the online resource the Building America Solutions Center (BASC). This document is an assemblage of multiple entries in the BASC, each of which addresses a specific aspect of Deep Energy Retrofit best practices for projects targeting at least 50% energy reductions. The contents are based upon a review of actual DERs in the U.S., as well as a mixture of engineering judgment, published guidance from DOE research in technologies and DERs, simulations of cost-optimal DERs, Energy Star and Consortium for Energy Efficiency (CEE) product criteria, and energy codes.« less

  11. Electrolyte solutions including a phosphoranimine compound, and energy storage devices including same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klaehn, John R.; Dufek, Eric J.; Rollins, Harry W.

    An electrolyte solution comprising at least one phosphoranimine compound and a metal salt. The at least one phosphoranimine compound comprises a compound of the chemical structure ##STR00001## where X is an organosilyl group or a tert-butyl group and each of R.sup.1, R.sup.2, and R.sup.3 is independently selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, or an aryloxy group. An energy storage device including the electrolyte solution is also disclosed.

  12. ENERGY MANAGEMENT INNOVATION IN THE US SKI INDUSTRY

    EPA Science Inventory

    Ski areas represent a unique opportunity to develop innovative energy management practices in an industrial setting. Through a unique synergy of onsite generation, preferably by renewable sources and innovative technologies, and the energy storage potential of exis...

  13. NREL Manages Program to Transform Mexico's Power Sector | Integrated Energy

    Science.gov Websites

    . Through 21CPP, NREL is helping Mexico with: Long-range planning of the power system for transmission , generation, and integration of renewable energy How best to operate the electric grid as Mexico increases the deep energy efficiency and smart grid solutions. Impact Mexico is on the brink of a major energy reform

  14. Smart Energy Management of Multiple Full Cell Powered Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MOhammad S. Alam

    2007-04-23

    In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. Themore » goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.« less

  15. Solar Systems and Energy Management Controls. Final Report, 1982-83.

    ERIC Educational Resources Information Center

    Bergen County Vocational-Technical High School, Hackensack, NJ.

    This project was conducted by the Bergen County Vocational-Technical Schools (1) to develop a practical awareness of energy conservation and management techniques for both commercial and domestic applications; (2) to develop four training courses to teach solar troubleshooting and maintenance, commercial energy management control, domestic energy…

  16. Building Energy Asset Score for Real Estate Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Building Technologies Office

    2015-01-01

    The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for real estate managers.

  17. Reducing energy costs at state agencies and institutions in Texas through the Governor's energy management center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, J.A.

    1989-01-01

    The one year internship required for partial fulfillment of the Doctor of Engineering Degree was completed at the Governor's Energy Management Center in Austin, Texas. The intern worked for the State Agencies Department of the Energy Management Center. The intern was involved in a variety of projects, but the primary projects requiring the greatest time were the involvement with the design reviews for energy efficiency of new prisons being constructed in Texas, conducting energy management audits at 18 major state universities, and the technical and administrative assistance to the State Cogeneration Council. Other project involvement included managing the preliminary engineeringmore » design of the cogeneration facility at Austin State Hospital, responsibility for applying for a $1.4 million dollar crude oil refund on the behalf of all state agencies in Texas, and assisting in the planning and coordination of the $48 million Revolving Loan Program for the state of Texas. The internship taught many things about management and communications. The experience also provided a better understanding of how the state and federal government operate. The greatest contribution of the internship experience was the improvement of the intern's written and oral communication skills.« less

  18. Load Balancing Integrated Least Slack Time-Based Appliance Scheduling for Smart Home Energy Management

    PubMed Central

    Silva, Bhagya Nathali; Khan, Murad; Han, Kijun

    2018-01-01

    The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism. PMID:29495346

  19. Load Balancing Integrated Least Slack Time-Based Appliance Scheduling for Smart Home Energy Management.

    PubMed

    Silva, Bhagya Nathali; Khan, Murad; Han, Kijun

    2018-02-25

    The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism.

  20. Comparative study of solute trapping and Gibbs free energy changes at the phase interface during alloy solidification under local nonequilibrium conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolev, S. L., E-mail: sobolev@icp.ac.ru

    An analytical model has been developed to describe the influence of solute trapping during rapid alloy solidification on the components of the Gibbs free energy change at the phase interface with emphasis on the solute drag energy. For relatively low interface velocity V < V{sub D}, where V{sub D} is the characteristic diffusion velocity, all the components, namely mixing part, local nonequilibrium part, and solute drag, significantly depend on solute diffusion and partitioning. When V ≥ V{sub D}, the local nonequilibrium effects lead to a sharp transition to diffusionless solidification. The transition is accompanied by complete solute trapping and vanishingmore » solute drag energy, i.e. partitionless and “dragless” solidification.« less

  1. Energy management and control of active distribution systems

    NASA Astrophysics Data System (ADS)

    Shariatzadeh, Farshid

    Advancements in the communication, control, computation and information technologies have driven the transition to the next generation active power distribution systems. Novel control techniques and management strategies are required to achieve the efficient, economic and reliable grid. The focus of this work is energy management and control of active distribution systems (ADS) with integrated renewable energy sources (RESs) and demand response (DR). Here, ADS mean automated distribution system with remotely operated controllers and distributed energy resources (DERs). DER as active part of the next generation future distribution system includes: distributed generations (DGs), RESs, energy storage system (ESS), plug-in hybrid electric vehicles (PHEV) and DR. Integration of DR and RESs into ADS is critical to realize the vision of sustainability. The objective of this dissertation is the development of management architecture to control and operate ADS in the presence of DR and RES. One of the most challenging issues for operating ADS is the inherent uncertainty of DR and RES as well as conflicting objective of DER and electric utilities. ADS can consist of different layers such as system layer and building layer and coordination between these layers is essential. In order to address these challenges, multi-layer energy management and control architecture is proposed with robust algorithms in this work. First layer of proposed multi-layer architecture have been implemented at the system layer. Developed AC optimal power flow (AC-OPF) generates fair price for all DR and non-DR loads which is used as a control signal for second layer. Second layer controls DR load at buildings using a developed look-ahead robust controller. Load aggregator collects information from all buildings and send aggregated load to the system optimizer. Due to the different time scale at these two management layers, time coordination scheme is developed. Robust and deterministic controllers

  2. Reduction of peak energy demand based on smart appliances energy consumption adjustment

    NASA Astrophysics Data System (ADS)

    Powroźnik, P.; Szulim, R.

    2017-08-01

    In the paper the concept of elastic model of energy management for smart grid and micro smart grid is presented. For the proposed model a method for reducing peak demand in micro smart grid has been defined. The idea of peak demand reduction in elastic model of energy management is to introduce a balance between demand and supply of current power for the given Micro Smart Grid in the given moment. The results of the simulations studies were presented. They were carried out on real household data available on UCI Machine Learning Repository. The results may have practical application in the smart grid networks, where there is a need for smart appliances energy consumption adjustment. The article presents a proposal to implement the elastic model of energy management as the cloud computing solution. This approach of peak demand reduction might have application particularly in a large smart grid.

  3. Solutions Network Formulation Report. The Potential Contributions of the Global Precipitation Measurement Mission to Estuary Management in Acadia National Park

    NASA Technical Reports Server (NTRS)

    Anderson, Daniel; Hilbert, Kent; Lewis, David

    2007-01-01

    This candidate solution suggests the use of GPM precipitation observations to enhance the Acadia National Park NLERDSS. Simulated GPM data should provide measurements that would enable analysis of how precipitation affects runoff and nutrient load in the park?s wetlands. This solution benefits society by aiding park and resource managers in making predictions based on hypothetical changes and in identifying effective mitigation scenarios. This solution supports the Coastal Management, Water Management, and Ecological Forecasting National Applications.

  4. Mapping the energy footprint of produced water management in New Mexico

    NASA Astrophysics Data System (ADS)

    Zemlick, Katie; Kalhor, Elmira; Thomson, Bruce M.; Chermak, Janie M.; Sullivan Graham, Enid J.; Tidwell, Vincent C.

    2018-02-01

    Hydraulic fracturing (HF) and horizontal drilling have revolutionized the fossil fuel industry by enabling production from unconventional oil and gas (UOG) reserves. However, UOG development requires large volumes of water, and subsequent oil and gas production from both conventional and unconventional wells generate large volumes of produced water (PW). While PW is usually considered a waste product, its reuse may lessen demand for freshwater supplies, reduce costs for transportation and disposal, and reduce the risks for injection-induced seismicity. Whether this water is disposed of or treated and reused, both methods require significant amounts of energy. The objective of this study was to identify the primary energy demands of alternative water management strategies, and to characterize and quantify their geographic variability in four oil and gas producing basins in New Mexico using a single year of production. Results illustrate the importance of each component of each produced water management strategy in determining its total energy footprint. Based on 2015 production and water use data, the energy to extract fresh groundwater for hydraulic fracturing (34 GWh-th yr-1.) exceeds the energy that would be required if the same volume of PW were treated chemically (19 GWh-th yr-1.). In addition, the energy required to transport fresh water and dispose of PW (167 GWh-th yr-1.) is far greater than that required to move treated PW (8 GWh-th yr-1.) to a point of reuse. Furthermore, transportation distances, which contribute significantly to the total energy footprint of a given management strategy, are underestimated by nearly 50% state-wide. This indicates that reuse may be an even more energy efficient way to manage PW, even with energy-intensive treatment strategies like electrocoagulation. Reuse of PW for HF is not only more energy efficient than conventional management techniques, it also reduces both demand for scarce fresh water resources and

  5. Involvement of Individuals in the Development of Technical Solutions and Rules of Management for Building Renovation Projects: A Case Study of Latvia

    NASA Astrophysics Data System (ADS)

    Pukite, I.; Grekis, A.; Geipele, I.; Zeltins, N.

    2017-08-01

    In March 2016, the Latvian government approved a new support program for increasing energy efficiency in residential apartment buildings. For the support of renovation of apartment buildings in the period from 2016 to 2023, 166 470 588 EUR will be available. Different persons, such as energy auditors, designers, architects, project managers and builders, will be involved in the process of planning, development and implementation of building renovation. At the development stage of the building renovation project, special attention should be devoted to the first stage - energy audit and technical project development. The problem arises due to the fact that each of these individuals, during the development of technical building documentation, does not work as a completely unified system. The implementation of construction project planning and organisational management system is one of the most important factors to guarantee that the quality of building renovation project is ensured in accordance with the laws and regulatory standards. The paper studies mutual cooperation, professionalism and the role of information feedback of personnel involved in the planning stage of building renovation, which is an essential prerequisite for the renovation process in order to achieve high quality of work and reduce the energy performance indicator. The present research includes the analysis of different technical solutions and their impact on energy efficiency. Mutual harmonisation of technical specifications is also investigated.

  6. Total energy management for nursing homes and other long-term care institutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-01-01

    The purpose of this publication is to provide the basic instruction needed to implement the most effective form of energy conservation--Total Energy Management, or TEM--in your long-term care facility. The effort required is worthwhile for many different reasons: TEM is self-paying; TEM promotes energy conservation without negative impact on health care services; and energy costs will continue to escalate. Following the introductory chapter, chapters are titled: Understanding Energy Consumption; Initiating a Total Energy Management Program; Developing Energy Consumption Data; Conducting the Facility Survey; Developing and Implementing the Basic Plan; Communication and Motivation; Monitoring Your Program and Keeping It Effective; andmore » Guidelines for Energy Conservation. Two appendices furnish information on building information for TEM and sources of information for energy management. (MCW)« less

  7. A Distributed Energy-Aware Trust Management System for Secure Routing in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Stelios, Yannis; Papayanoulas, Nikos; Trakadas, Panagiotis; Maniatis, Sotiris; Leligou, Helen C.; Zahariadis, Theodore

    Wireless sensor networks are inherently vulnerable to security attacks, due to their wireless operation. The situation is further aggravated because they operate in an infrastructure-less environment, which mandates the cooperation among nodes for all networking tasks, including routing, i.e. all nodes act as “routers”, forwarding the packets generated by their neighbours in their way to the sink node. This implies that malicious nodes (denying their cooperation) can significantly affect the network operation. Trust management schemes provide a powerful tool for the detection of unexpected node behaviours (either faulty or malicious). Once misbehaving nodes are detected, their neighbours can use this information to avoid cooperating with them either for data forwarding, data aggregation or any other cooperative function. We propose a secure routing solution based on a novel distributed trust management system, which allows for fast detection of a wide set of attacks and also incorporates energy awareness.

  8. Advanced building energy management system demonstration for Department of Defense buildings.

    PubMed

    O'Neill, Zheng; Bailey, Trevor; Dong, Bing; Shashanka, Madhusudana; Luo, Dong

    2013-08-01

    This paper presents an advanced building energy management system (aBEMS) that employs advanced methods of whole-building performance monitoring combined with statistical methods of learning and data analysis to enable identification of both gradual and discrete performance erosion and faults. This system assimilated data collected from multiple sources, including blueprints, reduced-order models (ROM) and measurements, and employed advanced statistical learning algorithms to identify patterns of anomalies. The results were presented graphically in a manner understandable to facilities managers. A demonstration of aBEMS was conducted in buildings at Naval Station Great Lakes. The facility building management systems were extended to incorporate the energy diagnostics and analysis algorithms, producing systematic identification of more efficient operation strategies. At Naval Station Great Lakes, greater than 20% savings were demonstrated for building energy consumption by improving facility manager decision support to diagnose energy faults and prioritize alternative, energy-efficient operation strategies. The paper concludes with recommendations for widespread aBEMS success. © 2013 New York Academy of Sciences.

  9. Energy demand analysis via small scale hydroponic systems in suburban areas - An integrated energy-food nexus solution.

    PubMed

    Xydis, George A; Liaros, Stelios; Botsis, Konstantinos

    2017-09-01

    The study is a qualitative approach and looks into new ways for the effective energy management of a wind farm (WF) operation in a suburban or near-urban environment in order the generated electricity to be utilised for hydroponic farming purposes as well. Since soilless hydroponic indoor systems gain more and more attention one basic goal, among others, is to take advantage of this not typical electricity demand and by managing it, offering to the grid a less fluctuating electricity generation signal. In this paper, a hybrid business model is presented where the Distributed Energy Resources (DER) producer is participating in the electricity markets under competitive processes (spot market, real-time markets etc.) and at the same time acts as a retailer offering - based on the demand - to the hydroponic units for their mass deployment in an area, putting forward an integrated energy-food nexus approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Topical Clonazepam Solution for the Management of Burning Mouth Syndrome: A Retrospective Study.

    PubMed

    Kuten-Shorrer, Michal; Treister, Nathaniel S; Stock, Shannon; Kelley, John M; Ji, Yisi D; Woo, Sook-Bin; Lerman, Mark A; Palmason, Stefan; Sonis, Stephen T; Villa, Alessandro

    2017-01-01

    To evaluate and compare the effectiveness of two concentrations of topical clonazepam solution in improving symptoms of burning mouth syndrome (BMS). A retrospective chart review was conducted of patients diagnosed with BMS and managed with topical clonazepam solution between 2008 and 2015. A 0.5-mg/mL solution was prescribed until 2012, when this was changed to a 0.1 mg/mL solution. Patients were instructed to swish with 5 mL for 5 minutes and spit two to four times daily. The efficacies of the two concentrations were compared using patient-reported outcome measures at the first follow-up, including the reported percentage of improvement in burning symptoms and the change in burning severity from baseline ranked on an 11-point numeric rating scale (NRS). Response to treatment was compared between the two concentrations using Wilcoxon rank sum test. A total of 57 subjects were included, 32 in the 0.1-mg/mL cohort and 25 in the 0.5-mg/mL cohort, and evaluated at a median follow-up of 7 weeks. The median overall percentage improvement was 32.5% in the 0.1-mg/mL cohort and 75% in the 0.5-mg/mL cohort. The median reduction in NRS score was 0.5 points in the 0.1-mg/mL cohort and 6 points in the 0.5-mg/mL cohort. The use of either outcome measure revealed that the response to treatment with the 0.5-mg/mL solution was superior to that of the 0.1 mg/mL solution (P < .01). These findings suggest that a 0.5-mg/mL topical clonazepam solution is effective in the management of BMS. Future randomized clinical trials are warranted.

  11. Global low-energy weak solution and large-time behavior for the compressible flow of liquid crystals

    NASA Astrophysics Data System (ADS)

    Wu, Guochun; Tan, Zhong

    2018-06-01

    In this paper, we consider the weak solution of the simplified Ericksen-Leslie system modeling compressible nematic liquid crystal flows in R3. When the initial data are of small energy and initial density is positive and essentially bounded, we prove the existence of a global weak solution in R3. The large-time behavior of a global weak solution is also established.

  12. Modifying Poisson equation for near-solute dielectric polarization and solvation free energy

    NASA Astrophysics Data System (ADS)

    Yang, Pei-Kun

    2016-06-01

    The dielectric polarization P is important for calculating the stability of protein conformation and the binding affinity of protein-protein/ligand interactions and for exploring the nonthermal effect of an external electric field on biomolecules. P was decomposed into the product of the electric dipole moment per molecule p; bulk solvent density Nbulk; and relative solvent molecular density g. For a molecular solute, 4πr2p(r) oscillates with the distance r to the solute, and g(r) has a large peak in the near-solute region, as observed in molecular dynamics (MD) simulations. Herein, the Poisson equation was modified for computing p based on the modified Gauss's law of Maxwell's equations, and the potential of the mean force was used for computing g. For one or two charged atoms in a water cluster, the solvation free energies of the solutes obtained by these equations were similar to those obtained from MD simulations.

  13. Energy storage management system with distributed wireless sensors

    DOEpatents

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  14. TAS::89 0927::TAS RECOVERY - The Lean Green Energy Controller Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teeter, John; Wang, Gene; Moss, David

    Achieving efficiency improvements and providing demand-response programs have been identified as key elements of our national energy initiative. The residential market is the largest, yet most difficult, segment to engage in efforts to meet these objectives. This project developed Energy Management System that engages the consumer and enables Smart Grid services, applications, and business processes to address this need. Our innovative solution provides smart controller providing dynamic optimization of energy consumption for the residential energy consumer. Our solution extends the technical platform to include a cloud based Internet of Things (IoT) aggregation of data sensors and actuators the go beyondmore » energy management and extend to life style services provided through compelling mobile and console based user experiences.« less

  15. The Library Manager's Deskbook: 102 Expert Solutions to 101 Common Dilemmas.

    ERIC Educational Resources Information Center

    Carson, Paula Phillips; And Others

    This is a handbook of advice for handling the everyday problems encountered in all types and sizes of libraries. It is designed to assist managers before, during, and after crises develop. Organized in an question-and-answer format, it tackles many dilemmas that can occur in the library, then offers solutions drawn from actual experience. The…

  16. Online benefits solutions--a new trend in managing employee benefits programs.

    PubMed

    Ala, Mohammad; Brunaczki, Bernadette

    2003-01-01

    This article focuses on the array of online benefits solutions offered by technology companies and reports the benefits to both employers and employees. Some of the benefits include reduced paperwork, reduced errors, and reduced administration costs. Companies that can deliver these benefits will be in great demand to help manage benefits programs and streamline the administrative processes.

  17. An integrative solution for managing, tracing and citing sensor-related information

    NASA Astrophysics Data System (ADS)

    Koppe, Roland; Gerchow, Peter; Macario, Ana; Schewe, Ingo; Rehmcke, Steven; Düde, Tobias

    2017-04-01

    In a data-driven scientific world, the need to capture information on sensors used in the data acquisition process has become increasingly important. Following the recommendations of the Open Geospatial Consortium (OGC), we started by adopting the SensorML standard for describing platforms, devices and sensors. However, it soon became obvious to us that understanding, implementing and filling such standards costs significant effort and cannot be expected from every scientist individually. So we developed a web-based sensor management solution (https://sensor.awi.de) for describing platforms, devices and sensors as hierarchy of systems which supports tracing changes to a system whereas hiding complexity. Each platform contains devices where each device can have sensors associated with specific identifiers, contacts, events, related online resources (e.g. manufacturer factsheets, calibration documentation, data processing documentation), sensor output parameters and geo-location. In order to better understand and address real world requirements, we have closely interacted with field-going scientists in the context of the key national infrastructure project "FRontiers in Arctic marine Monitoring ocean observatory" (FRAM) during the software development. We learned that not only the lineage of observations is crucial for scientists but also alert services using value ranges, flexible output formats and information on data providers (e.g. FTP sources) for example. Mostly important, persistent and citable versions of sensor descriptions are required for traceability and reproducibility allowing seamless integration with existing information systems, e.g. PANGAEA. Within the context of the EU-funded Ocean Data Interoperability Platform project (ODIP II) and in cooperation with 52north we are proving near real-time data via Sensor Observation Services (SOS) along with sensor descriptions based on our sensor management solution. ODIP II also aims to develop a harmonized

  18. Data-driven reinforcement learning–based real-time energy management system for plug-in hybrid electric vehicles

    DOE PAGES

    Qi, Xuewei; Wu, Guoyuan; Boriboonsomsin, Kanok; ...

    2016-01-01

    Plug-in hybrid electric vehicles (PHEVs) show great promise in reducing transportation-related fossil fuel consumption and greenhouse gas emissions. Designing an efficient energy management system (EMS) for PHEVs to achieve better fuel economy has been an active research topic for decades. Most of the advanced systems rely either on a priori knowledge of future driving conditions to achieve the optimal but not real-time solution (e.g., using a dynamic programming strategy) or on only current driving situations to achieve a real-time but nonoptimal solution (e.g., rule-based strategy). This paper proposes a reinforcement learning–based real-time EMS for PHEVs to address the trade-off betweenmore » real-time performance and optimal energy savings. The proposed model can optimize the power-split control in real time while learning the optimal decisions from historical driving cycles. Here, a case study on a real-world commute trip shows that about a 12% fuel saving can be achieved without considering charging opportunities; further, an 8% fuel saving can be achieved when charging opportunities are considered, compared with the standard binary mode control strategy.« less

  19. Data-driven reinforcement learning–based real-time energy management system for plug-in hybrid electric vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Xuewei; Wu, Guoyuan; Boriboonsomsin, Kanok

    Plug-in hybrid electric vehicles (PHEVs) show great promise in reducing transportation-related fossil fuel consumption and greenhouse gas emissions. Designing an efficient energy management system (EMS) for PHEVs to achieve better fuel economy has been an active research topic for decades. Most of the advanced systems rely either on a priori knowledge of future driving conditions to achieve the optimal but not real-time solution (e.g., using a dynamic programming strategy) or on only current driving situations to achieve a real-time but nonoptimal solution (e.g., rule-based strategy). This paper proposes a reinforcement learning–based real-time EMS for PHEVs to address the trade-off betweenmore » real-time performance and optimal energy savings. The proposed model can optimize the power-split control in real time while learning the optimal decisions from historical driving cycles. Here, a case study on a real-world commute trip shows that about a 12% fuel saving can be achieved without considering charging opportunities; further, an 8% fuel saving can be achieved when charging opportunities are considered, compared with the standard binary mode control strategy.« less

  20. Computation of the free energy due to electron density fluctuation of a solute in solution: A QM/MM method with perturbation approach combined with a theory of solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuoka, Daiki; Takahashi, Hideaki, E-mail: hideaki@m.tohoku.ac.jp; Morita, Akihiro

    2014-04-07

    We developed a perturbation approach to compute solvation free energy Δμ within the framework of QM (quantum mechanical)/MM (molecular mechanical) method combined with a theory of energy representation (QM/MM-ER). The energy shift η of the whole system due to the electronic polarization of the solute is evaluated using the second-order perturbation theory (PT2), where the electric field formed by surrounding solvent molecules is treated as the perturbation to the electronic Hamiltonian of the isolated solute. The point of our approach is that the energy shift η, thus obtained, is to be adopted for a novel energy coordinate of the distributionmore » functions which serve as fundamental variables in the free energy functional developed in our previous work. The most time-consuming part in the QM/MM-ER simulation can be, thus, avoided without serious loss of accuracy. For our benchmark set of molecules, it is demonstrated that the PT2 approach coupled with QM/MM-ER gives hydration free energies in excellent agreements with those given by the conventional method utilizing the Kohn-Sham SCF procedure except for a few molecules in the benchmark set. A variant of the approach is also proposed to deal with such difficulties associated with the problematic systems. The present approach is also advantageous to parallel implementations. We examined the parallel efficiency of our PT2 code on multi-core processors and found that the speedup increases almost linearly with respect to the number of cores. Thus, it was demonstrated that QM/MM-ER coupled with PT2 deserves practical applications to systems of interest.« less

  1. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    PubMed Central

    Zhang, Yanwen; Stocks, G. Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C.; Wang, Lumin; Béland, Laurent K.; Stoller, Roger E.; Samolyuk, German D.; Caro, Magdalena; Caro, Alfredo; Weber, William J.

    2015-01-01

    A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications. PMID:26507943

  2. Assistance Focus: Asia/Pacific Region; Clean Energy Solutions Center (CESC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Clean Energy Solutions Center Ask an Expert service connects governments seeking policy information and advice with one of more than 30 global policy experts who can provide reliable and unbiased quick-response advice and information. The service is available at no cost to government agency representatives from any country and the technical institutes assisting them. This publication presents summaries of assistance provided to governments in the Asia/Pacific region, including the benefits of that assistance.

  3. Energy Management Checklist for the Home.

    ERIC Educational Resources Information Center

    Pifer, Glenda

    This booklet contains a checklist of equipment and activities for the individual's use in home energy management. The categories covered include: (1) insulation; (2) windows; (3) temperature control; (4) lighting; (5) heating water; (6) laundry; (7) cleaning and maintenance; (8) cooking; (9) refrigeration; (10) dishwashing; (11) recreation; and…

  4. Reimagining Energy in the North: Developing Solutions for Improving Renewable Energy Security in Northern Communities

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Poelzer, G.; Noble, B.; Beatty, B.; Belcher, K.; Chung, T.; Loring, P. A.

    2017-12-01

    The global energy sector is at a crossroads. Efforts to reduce greenhouse gas emissions, volatile fossil fuel prices, the emergence of sustainability markets, and advances in renewable energy technologies are setting the foundation for what could be one of the most significant societal transitions since the industrial revolution. There is a growing movement to "re-energize" Canada, through embracing pathways to facilitate a societal transition a low-carbon future. For example, circumpolar jurisdictions are poised for a transition to renewable energy. There are more than 250 remote, off-grid communities across Canada's North, of which approximately 170 are Indigenous, that rely largely on diesel-fueled generators. Diesel-fueled generation is generally reliable when properly maintained; however, supply is limited, infrastructure is at capacity or in need of major upgrading, and the volatile price of fuel can mean significant social, community and economic opportunity loss. Renewable energy projects offer one possible opportunity to address these challenges. But, given the challenges of human capacity, limited fiscal resources, and regulatory barriers, how can Northern communities participate in the global energy transition and not be left behind? To answer this question, the University of Saskatchewan, together with partners from the circumpolar North, are leading an initiative to develop a cross-sectoral and multi-national consortium of communities, utilities, industries, governments, and academics engaged in renewable energy in the North. This consortium will reimagine energy security in the North by co-creating and brokering the knowledge and understanding to design renewable energy systems that enhance social and economic value. Northern communities and utilities will learn directly from other northern communities and utilities across Canada and internationally about what can be achieved in renewable energy development and the solutions to current and future

  5. Energy Transitions | Integrated Energy Solutions | NREL

    Science.gov Websites

    clean energy access to remote populations across West Africa. NREL Supports Effort to Take Distributed develops and implements pilot projects to accelerate the development of distributed photovoltaics Renewable Energy into India's Electric Grid Volume 1 Volume 2 Designing Distributed Generation in Mexico

  6. The Solutions Project: Educating the Public and Policy Makers About Solutions to Global Warming, Air Pollution, and Energy Security

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2015-12-01

    Three major global problems of our times are global warming, air pollution mortality and morbidity, and energy insecurity. Whereas, policy makers with the support of the public must implement solutions to these problems, it is scientists and engineers who are best equipped to evaluate technically sound, optimal, and efficient solutions. Yet, a disconnect exists between information provided by scientists and engineers and policies implemented. Part of the reason is that scientific information provided to policy makers and the public is swamped out by information provided by lobbyists and another part is the difficulty in providing information to the hundreds of millions of people who need it rather than to just a few thousand. What other ways are available, aside from issuing press releases on scientific papers, for scientists to disseminate information? Three growing methods are through social media, creative media, and storytelling. The Solutions Project is a non-profit non-governmental organization whose goal is to bring forth scientific information about 100% clean, renewable energy plans to the public, businesses, and policy makers using these and related tools. Through the use of social media, the development of engaging internet and video content, and storytelling, the group hopes to increase the dissemination of information for social good. This talk discusses the history and impacts to date of this group and its methods. Please see www.thesolutionsproject.org and 100.org for more information.

  7. Energy Management and Optimization Methods for Grid Energy Storage Systems

    DOE PAGES

    Byrne, Raymond H.; Nguyen, Tu A.; Copp, David A.; ...

    2017-08-24

    Today, the stability of the electric power grid is maintained through real time balancing of generation and demand. Grid scale energy storage systems are increasingly being deployed to provide grid operators the flexibility needed to maintain this balance. Energy storage also imparts resiliency and robustness to the grid infrastructure. Over the last few years, there has been a significant increase in the deployment of large scale energy storage systems. This growth has been driven by improvements in the cost and performance of energy storage technologies and the need to accommodate distributed generation, as well as incentives and government mandates. Energymore » management systems (EMSs) and optimization methods are required to effectively and safely utilize energy storage as a flexible grid asset that can provide multiple grid services. The EMS needs to be able to accommodate a variety of use cases and regulatory environments. In this paper, we provide a brief history of grid-scale energy storage, an overview of EMS architectures, and a summary of the leading applications for storage. These serve as a foundation for a discussion of EMS optimization methods and design.« less

  8. Energy Management and Optimization Methods for Grid Energy Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Raymond H.; Nguyen, Tu A.; Copp, David A.

    Today, the stability of the electric power grid is maintained through real time balancing of generation and demand. Grid scale energy storage systems are increasingly being deployed to provide grid operators the flexibility needed to maintain this balance. Energy storage also imparts resiliency and robustness to the grid infrastructure. Over the last few years, there has been a significant increase in the deployment of large scale energy storage systems. This growth has been driven by improvements in the cost and performance of energy storage technologies and the need to accommodate distributed generation, as well as incentives and government mandates. Energymore » management systems (EMSs) and optimization methods are required to effectively and safely utilize energy storage as a flexible grid asset that can provide multiple grid services. The EMS needs to be able to accommodate a variety of use cases and regulatory environments. In this paper, we provide a brief history of grid-scale energy storage, an overview of EMS architectures, and a summary of the leading applications for storage. These serve as a foundation for a discussion of EMS optimization methods and design.« less

  9. Community-based telemonitoring for hypertension management: practical challenges and potential solutions.

    PubMed

    Hovey, Lauren; Kaylor, Mary Beth; Alwan, Majd; Resnick, Helaine E

    2011-10-01

    Older adults residing in rural areas often lack convenient, patient-centered, community-based approaches to facilitate receipt of routine care to manage common chronic conditions. Without adequate access to appropriate disease management resources, the risk of seniors' experiencing acute events related to these common conditions increases substantially. Further, poorly managed chronic conditions are costly and place seniors at increased risk of institutionalization and permanent loss of independence. Novel, telehealth-based approaches to management of common chronic conditions like hypertension may not only improve the health of older adults, but may also lead to substantial cost savings associated with acute care episodes and institutionalization. The aim of this report is to summarize practical considerations related to operations and logistics of a unique community-based telemonitoring pilot study targeting rural seniors who utilize community-based senior centers. This article reviews the technological challenges encountered during the study and proposes solutions relevant to future research and implementation of telehealth in community-based, congregate settings.

  10. Crash energy management on the base of Movable cellular automata method

    NASA Astrophysics Data System (ADS)

    Psakhie, Serguei; Dmitriev, Andrei; Shilko, Evgueni; Tatarintsev, Evgueni; Korostelev, Serguei

    2001-06-01

    One of the main problems of materials science is increasing of structure's viability under dynamic loading. In general, a solution is the management of transformation of the energy of loading to the energy of destroying of the least important parts and details of the structure. It has to be noted that similar problem also exists in materials science, since a majority of modern materials are heterogeneous and have a complex internal structure. To optimize this structure for working under dynamic loading it is necessary to take into account the redistribution of elastic energy including phase transformation, generation and accumulation of micro-damages, etc. As far as real experiments on destroying the complex objects are sufficiently expensive and getting of detailed information is often associates with essential difficulties, the methods of computer modeling are used in solving the similar problems. As a rule, these are the methods of continuum mechanics. Although essential achievements have been obtained on the basis of these methods the continuum approach has several limitations, connected first of all with the possibility of description of generation of damages, formation and development of cracks and mass mixing effects. These problems may be solved on the basis of the Movable Cellular Automata (MCA) method, which has been successfully used for modeling fracture of the different material and structures In the paper behavior and peculiarities of failure of complex structures and materials under dynamic loading are studied on the basis of computer modeling. The results shown that sometimes even small changes of the internal structure leads to the significant increasing of the viability of the complex structures and materials. It is due to the elastic energy flux change over during the dynamical loading. This effect may be explained by the fact that elastic energy fluxes define the current stress concentration. Namely, because the area of inclusions are subjected

  11. Generalized essential energy space random walks to more effectively accelerate solute sampling in aqueous environment

    NASA Astrophysics Data System (ADS)

    Lv, Chao; Zheng, Lianqing; Yang, Wei

    2012-01-01

    Molecular dynamics sampling can be enhanced via the promoting of potential energy fluctuations, for instance, based on a Hamiltonian modified with the addition of a potential-energy-dependent biasing term. To overcome the diffusion sampling issue, which reveals the fact that enlargement of event-irrelevant energy fluctuations may abolish sampling efficiency, the essential energy space random walk (EESRW) approach was proposed earlier. To more effectively accelerate the sampling of solute conformations in aqueous environment, in the current work, we generalized the EESRW method to a two-dimension-EESRW (2D-EESRW) strategy. Specifically, the essential internal energy component of a focused region and the essential interaction energy component between the focused region and the environmental region are employed to define the two-dimensional essential energy space. This proposal is motivated by the general observation that in different conformational events, the two essential energy components have distinctive interplays. Model studies on the alanine dipeptide and the aspartate-arginine peptide demonstrate sampling improvement over the original one-dimension-EESRW strategy; with the same biasing level, the present generalization allows more effective acceleration of the sampling of conformational transitions in aqueous solution. The 2D-EESRW generalization is readily extended to higher dimension schemes and employed in more advanced enhanced-sampling schemes, such as the recent orthogonal space random walk method.

  12. Energy Management for Human Service Agencies. Second Edition.

    ERIC Educational Resources Information Center

    Academy for Educational Development, Washington, DC.

    Concerned about the effect rising energy costs would have on their local affiliates, building consultants for national social welfare agencies have been advocating the initiation of energy management and conservation programs. This manual, a three-part educational and planning tool, is a key element in a program developed to help local agencies…

  13. Research on the full life cycle management system of smart electric energy meter

    NASA Astrophysics Data System (ADS)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Guo, Dingying; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu

    2018-02-01

    At present, China’s smart electric energy meter life management is started from the procurement and acceptance. The related monitoring and management of the manufacturing sector has not yet been carried out. This article applies RFID technology and network cloud platform to full life cycle management system of smart electric energy meters, builds this full life cycle management system including design and manufacturing, process control, measurement and calibration testing, storage management, user acceptance, site operation, maintenance scrap and other aspects. Exploring smart electric energy meters on-line and off-line communication by the application of active RFID communication functions, and the actual functional application such as local data exchange and instrument calibration. This system provides technical supports on power demand side management and the improvement of smart electric energy meter reliability evaluation system.

  14. Challenges and Strength of Current Industrial Energy Efficiency Management Practices in Steam Industries

    NASA Astrophysics Data System (ADS)

    Nkosi, S. B.; Pretorius, J. H. C.

    2017-07-01

    The aim of this study is to achieve greater output by examining the existing way of coordinating the determined attempts of Steam Industries in South Africa to successfully reach a sustainable industrial development by using energy source adequately in a more competent way. Furthermore into the study we look at obstacles that prevent and those that leads to maximum utilization of energy management measures and also highlights the effects of implementing cheap available energy source in South Africa. The investigation and analysis have shown that energy is not well managed in Steam Industries and that the use of energy is minimized and not fully utilized due to poor management and lack of knowledge. Another detection was that lack of government structured and strategic measures of implementing and motivating the use of energy effectively. The effective and rational use of available power by Steam Industries in South Africa is a key player in developing a sustainable industrial development. The use of energy efficiency management strategies has contributed an increase in economic and improve environmentally friendly in the industrial sector. The slow pace adoption of energy saving and cost effective management programmes are negatively impacting on the benefits to Steam Industries in South Africa. In conclusion the study finds that the economy can be boosted by implementing energy efficiency management programmes and environmentally friendly. These will also stabilize the negative impact of energy raising prices.

  15. CRC Clinical Trials Management System (CTMS): An Integrated Information Management Solution for Collaborative Clinical Research

    PubMed Central

    Payne, Philip R.O.; Greaves, Andrew W.; Kipps, Thomas J.

    2003-01-01

    The Chronic Lymphocytic Leukemia (CLL) Research Consortium (CRC) consists of 9 geographically distributed sites conducting a program of research including both basic science and clinical components. To enable the CRC’s clinical research efforts, a system providing for real-time collaboration was required. CTMS provides such functionality, and demonstrates that the use of novel data modeling, web-application platforms, and management strategies provides for the deployment of an extensible, cost effective solution in such an environment. PMID:14728471

  16. Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Hu, Xiaosong; Moura, Scott; Yin, Xiaofeng; Pickert, Volker

    2016-11-01

    Energy management strategies are instrumental in the performance and economy of smart homes integrating renewable energy and energy storage. This article focuses on stochastic energy management of a smart home with PEV (plug-in electric vehicle) energy storage and photovoltaic (PV) array. It is motivated by the challenges associated with sustainable energy supplies and the local energy storage opportunity provided by vehicle electrification. This paper seeks to minimize a consumer's energy charges under a time-of-use tariff, while satisfying home power demand and PEV charging requirements, and accommodating the variability of solar power. First, the random-variable models are developed, including Markov Chain model of PEV mobility, as well as predictive models of home power demand and PV power supply. Second, a stochastic optimal control problem is mathematically formulated for managing the power flow among energy sources in the smart home. Finally, based on time-varying electricity price, we systematically examine the performance of the proposed control strategy. As a result, the electric cost is 493.6% less for a Tesla Model S with optimal stochastic dynamic programming (SDP) control relative to the no optimal control case, and it is by 175.89% for a Nissan Leaf.

  17. Formation of the priority directions of innovative strategic energy management

    NASA Astrophysics Data System (ADS)

    Mottaeva, Asiiat; Minnullina, Anna

    2017-10-01

    Article is devoted to the matter of the ensuring long-term potential of dynamic growth of the Russian economy, its sustainable development in which the special role is assigned to the energy industry. Inclusion of the stage of management of the human capital, which becomes one of priority levers in the field of management of the industrial enterprises, into the in structure of strategy of planning subsequently represents one of innovative steps at the heart of power management. In work the algorithm of the development of the key performance indicators of the human capital on the basis of stage-by-stage problem definition of energy saving, search of the centers of responsibility in energy consumption and quality control of the involved productions is offered in the article. The application of the offered innovative algorithm might promote the formation of high culture of energy saving and the decrease in the level of resistance to organizational changes.

  18. Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study.

    PubMed

    Albright, Rebecca; Anthony, Kenneth R N; Baird, Mark; Beeden, Roger; Byrne, Maria; Collier, Catherine; Dove, Sophie; Fabricius, Katharina; Hoegh-Guldberg, Ove; Kelly, Ryan P; Lough, Janice; Mongin, Mathieu; Munday, Philip L; Pears, Rachel J; Russell, Bayden D; Tilbrook, Bronte; Abal, Eva

    2016-11-01

    Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Energy management system for a rotary machine and method therefor

    DOEpatents

    Bowman, Michael John; Sinha, Gautam; Sheldon, Karl Edward

    2004-11-09

    In energy management system is provided for a power generating device having a working fluid intake in which the energy management system comprises an electrical dissipation device coupled to the power generating device and a dissipation device cooling system configured to direct a portion of a working fluid to the electrical dissipation device so as to provide thermal control to the electrical dissipation device.

  20. Co-Leadership - A Management Solution for Integrated Health and Social Care.

    PubMed

    Klinga, Charlotte; Hansson, Johan; Hasson, Henna; Sachs, Magna Andreen

    2016-05-23

    Co-leadership has been identified as one approach to meet the managerial challenges of integrated services, but research on the topic is limited. In the present study, co-leadership, practised by pairs of managers - each manager representing one of the two principal organizations in integrated health and social care services - was explored. To investigate co-leadership in integrated health and social care, identify essential preconditions in fulfilling the management assignment, its operationalization and impact on provision of sustainable integration of health and social care. Interviews with eight managers exercising co-leadership were analysed using directed content analysis. Respondent validation was conducted through additional interviews with the same managers. Key contextual preconditions were an organization-wide model supporting co-leadership and co-location of services. Perception of the management role as a collective activity, continuous communication and lack of prestige were essential personal and interpersonal preconditions. In daily practice, office sharing, being able to give and take and support each other contributed to provision of sustainable integration of health and social care. Co-leadership promoted robust management by providing broader competence, continuous learning and joint responsibility for services. Integrated health and social care services should consider employing co-leadership as a managerial solution to achieve sustainability.

  1. A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand

    PubMed Central

    Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim

    2015-01-01

    Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times. PMID:25807384

  2. A framework for understanding and generating integrated solutions for residential peak energy demand.

    PubMed

    Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim

    2015-01-01

    Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times.

  3. Self-similar cosmological solutions with dark energy. I. Formulation and asymptotic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, Tomohiro; Maeda, Hideki; Centro de Estudios Cientificos

    2008-01-15

    Based on the asymptotic analysis of ordinary differential equations, we classify all spherically symmetric self-similar solutions to the Einstein equations which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=({gamma}-1){mu} with 0<{gamma}<2/3. This corresponds to a 'dark energy' fluid and the Friedmann solution is accelerated in this case due to antigravity. This extends the previous analysis of spherically symmetric self-similar solutions for fluids with positive pressure ({gamma}>1). However, in the latter case there is an additional parameter associated with the weak discontinuity at the sonic point and the solutions are only asymptotically 'quasi-Friedmann',more » in the sense that they exhibit an angle deficit at large distances. In the 0<{gamma}<2/3 case, there is no sonic point and there exists a one-parameter family of solutions which are genuinely asymptotically Friedmann at large distances. We find eight classes of asymptotic behavior: Friedmann or quasi-Friedmann or quasistatic or constant-velocity at large distances, quasi-Friedmann or positive-mass singular or negative-mass singular at small distances, and quasi-Kantowski-Sachs at intermediate distances. The self-similar asymptotically quasistatic and quasi-Kantowski-Sachs solutions are analytically extendible and of great cosmological interest. We also investigate their conformal diagrams. The results of the present analysis are utilized in an accompanying paper to obtain and physically interpret numerical solutions.« less

  4. Managing post-therapy fatigue for cancer survivors using energy conservation training.

    PubMed

    Yuen, Hon Keung; Mitcham, Maralynne; Morgan, Larissa

    2006-01-01

    This pilot study evaluated the effectiveness of energy conservation training to help post-therapy cancer survivors manage their fatigue. Twelve post-therapy cancer survivors were randomly assigned to an energy conservation training or usual care control (6 in each group). Participants in the intervention group received 1 to 2 hours of individual, face-to-face energy conservation training from an occupational therapist followed by once-a-week telephone monitoring sessions in the subsequent three weeks. Participants in the control group received standard care from their oncologist. Analysis of pre- and post-training data from the Piper Fatigue Scale (PFS) revealed significant reduction only in the sensory subscale of the PFS (Z = 2.21; p = 0.027) for the intervention group; but no significant reduction in the four subscale or total scores of the PFS for the control group. Findings demonstrate partial support for the effectiveness of energy conservation training in helping post-therapy cancer survivors manage their fatigue. Energy conservation training seems to be a viable strategy for managing cancer-related fatigue, though its efficacy is modest. Incorporating specific energy restoration strategies such as relaxation and meditation for future research may help advance the growing body of knowledge in symptom management for post-therapy cancer survivors.

  5. Measured energy savings and performance of power-managed personal computers and monitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordman, B.; Piette, M.A.; Kinney, K.

    1996-08-01

    Personal computers and monitors are estimated to use 14 billion kWh/year of electricity, with power management potentially saving $600 million/year by the year 2000. The effort to capture these savings is lead by the US Environmental Protection Agency`s Energy Star program, which specifies a 30W maximum demand for the computer and for the monitor when in a {open_quote}sleep{close_quote} or idle mode. In this paper the authors discuss measured energy use and estimated savings for power-managed (Energy Star compliant) PCs and monitors. They collected electricity use measurements of six power-managed PCs and monitors in their office and five from two othermore » research projects. The devices are diverse in machine type, use patterns, and context. The analysis method estimates the time spent in each system operating mode (off, low-, and full-power) and combines these with real power measurements to derive hours of use per mode, energy use, and energy savings. Three schedules are explored in the {open_quotes}As-operated,{close_quotes} {open_quotes}Standardized,{close_quotes} and `Maximum` savings estimates. Energy savings are established by comparing the measurements to a baseline with power management disabled. As-operated energy savings for the eleven PCs and monitors ranged from zero to 75 kWh/year. Under the standard operating schedule (on 20% of nights and weekends), the savings are about 200 kWh/year. An audit of power management features and configurations for several dozen Energy Star machines found only 11% of CPU`s fully enabled and about two thirds of monitors were successfully power managed. The highest priority for greater power management savings is to enable monitors, as opposed to CPU`s, since they are generally easier to configure, less likely to interfere with system operation, and have greater savings. The difficulties in properly configuring PCs and monitors is the largest current barrier to achieving the savings potential from power management.« less

  6. Encouraging School Transportation Effective Energy Management (ESTEEM). Fuel Economy Management Handbook for Directors of Pupil Transportation; School District Administrators; Transportation Department Management.

    ERIC Educational Resources Information Center

    BRI Systems, Inc., Phoenix, AZ.

    This handbook offers a practical approach for pupil transportation energy management by suggesting ideas to save fuel in the purchasing, planning, routing, scheduling, driving, and maintenance areas of the pupil transportation operation. The handbook is divided into seven parts. Part 1 and 2 provide insight into energy management in pupil…

  7. Strategic Energy Management Plan for the Santa Ynez Band of Chumash Indians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, Lars; Smythe, Louisa; Sarquilla, Lindsey

    2015-03-27

    This plan outlines the Santa Ynez Band of Chumash Indians’ comprehensive energy management strategy including an assessment of current practices, a commitment to improving energy performance and reducing overall energy use, and recommended actions to achieve these goals. Vision Statement The primary objective of the Strategic Energy Management Plan is to implement energy efficiency, energy security, conservation, education, and renewable energy projects that align with the economic goals and cultural values of the community to improve the health and welfare of the tribe. The intended outcomes of implementing the energy plan include job creation, capacity building, and reduced energy costsmore » for tribal community members, and tribal operations. By encouraging energy independence and local power production the plan will promote self-sufficiency. Mission & Objectives The Strategic Energy Plan will provide information and suggestions to guide tribal decision-making and provide a foundation for effective management of energy resources within the Santa Ynez Band of Chumash Indians (SYBCI) community. The objectives of developing this plan include; Assess current energy demand and costs of all tribal enterprises, offices, and facilities; Provide a baseline assessment of the SYBCI’s energy resources so that future progress can be clearly and consistently measured, and current usage better understood; Project future energy demand; Establish a system for centralized, ongoing tracking and analysis of tribal energy data that is applicable across sectors, facilities, and activities; Develop a unifying vision that is consistent with the tribe’s long-term cultural, social, environmental, and economic goals; Identify and evaluate the potential of opportunities for development of long-term, cost effective energy sources, such as renewable energy, energy efficiency and conservation, and other feasible supply- and demand-side options; and Build the SYBCI’s capacity for

  8. Investigation of energy management strategies for photovoltaic systems - An analysis technique

    NASA Technical Reports Server (NTRS)

    Cull, R. C.; Eltimsahy, A. H.

    1982-01-01

    Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.

  9. Investigation of energy management strategies for photovoltaic systems - An analysis technique

    NASA Astrophysics Data System (ADS)

    Cull, R. C.; Eltimsahy, A. H.

    Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.

  10. Nonexistence of global solutions of abstract wave equations with high energies.

    PubMed

    Esquivel-Avila, Jorge A

    2017-01-01

    We consider an undamped second order in time evolution equation. For any positive value of the initial energy, we give sufficient conditions to conclude nonexistence of global solutions. The analysis is based on a differential inequality. The success of our result is based in a detailed analysis which is different from the ones commonly used to prove blow-up. Several examples are given improving known results in the literature.

  11. Energy Management of Manned Boost-Glide Vehicles: A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Day, Richard E.

    2004-01-01

    As flight progressed from propellers to jets to rockets, the propulsive energy grew exponentially. With the development of rocket-only boosted vehicles, energy management of these boost-gliders became a distinct requirement for the unpowered return to base, alternate landing site, or water-parachute landing, starting with the X-series rocket aircraft and terminating with the present-day Shuttle. The problem presented here consists of: speed (kinetic energy) - altitude (potential energy) - steep glide angles created by low lift-to-drag ratios (L/D) - distance to landing site - and the bothersome effects of the atmospheric characteristics varying with altitude. The primary discussion regards post-boost, stabilized glides; however, the effects of centrifugal and geopotential acceleration are discussed as well. The aircraft and spacecraft discussed here are the X-1, X-2, X-15, and the Shuttle; and to a lesser, comparative extent, Mercury, Gemini, Apollo, and lifting bodies. The footprints, landfalls, and methods developed for energy management are also described. The essential tools required for energy management - simulator planning, instrumentation, radar, telemetry, extended land or water range, Mission Control Center (with specialist controllers), and emergency alternate landing sites - were first established through development of early concepts and were then validated by research flight tests.

  12. Energy manager design for microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firestone, Ryan; Marnay, Chris

    2005-01-01

    On-site energy production, known as distributed energy resources (DER), offers consumers many benefits, such as bill savings and predictability, improved system efficiency, improved reliability, control over power quality, and in many cases, greener electricity. Additionally, DER systems can benefit electric utilities by reducing congestion on the grid, reducing the need for new generation and transmission capacity, and offering ancillary services such as voltage support and emergency demand response. Local aggregations of distributed energy resources (DER) that may include active control of on-site end-use energy devices can be called microgrids. Microgrids require control to ensure safe operation and to make dispatchmore » decisions that achieve system objectives such as cost minimization, reliability, efficiency and emissions requirements, while abiding by system constraints and regulatory rules. This control is performed by an energy manager (EM). Preferably, an EM will achieve operation reasonably close to the attainable optimum, it will do this by means robust to deviations from expected conditions, and it will not itself incur insupportable capital or operation and maintenance costs. Also, microgrids can include supervision over end-uses, such as curtailing or rescheduling certain loads. By viewing a unified microgrid as a system of supply and demand, rather than simply a system of on-site generation devices, the benefits of integrated supply and demand control can be exploited, such as economic savings and improved system energy efficiency.« less

  13. An SNMP-based solution to enable remote ISO/IEEE 11073 technical management.

    PubMed

    Lasierra, Nelia; Alesanco, Alvaro; García, José

    2012-07-01

    This paper presents the design and implementation of an architecture based on the integration of simple network management protocol version 3 (SNMPv3) and the standard ISO/IEEE 11073 (X73) to manage technical information in home-based telemonitoring scenarios. This architecture includes the development of an SNMPv3-proxyX73 agent which comprises a management information base (MIB) module adapted to X73. In the proposed scenario, medical devices (MDs) send information to a concentrator device [designated as compute engine (CE)] using the X73 standard. This information together with extra information collected in the CE is stored in the developed MIB. Finally, the information collected is available for remote access via SNMP connection. Moreover, alarms and events can be configured by an external manager in order to provide warnings of irregularities in the MDs' technical performance evaluation. This proposed SNMPv3 agent provides a solution to integrate and unify technical device management in home-based telemonitoring scenarios fully adapted to X73.

  14. Product Lifecycle Management and the Quest for Sustainable Space Exploration Solutions

    NASA Technical Reports Server (NTRS)

    Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael

    2011-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Marshall Space Flight Center (MSFC) Engineering Directorate, total lifecycle costs are important variables for critical decision-making. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful concept to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This briefing will demonstrate how the MSFC Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions and how that strategy aligns with the Agency and Center systems engineering policies and processes. Sustainable space exploration solutions demand that all lifecycle phases be optimized, and engineering the next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. Adopting PLM, which has been used by the aerospace and automotive industry for many years, for spacecraft applications provides a foundation for strong, disciplined systems engineering and accountable return on investment. PLM enables better solutions using fewer resources by making lifecycle considerations in an integrative decision-making process.

  15. System solution to improve energy efficiency of HVAC systems

    NASA Astrophysics Data System (ADS)

    Chretien, L.; Becerra, R.; Salts, N. P.; Groll, E. A.

    2017-08-01

    According to recent surveys, heating and air conditioning systems account for over 45% of the total energy usage in US households. Three main types of HVAC systems are available to homeowners: (1) fixed-speed systems, where the compressor cycles on and off to match the cooling load; (2) multi-speed (typically, two-speed) systems, where the compressor can operate at multiple cooling capacities, leading to reduced cycling; and (3) variable-speed systems, where the compressor speed is adjusted to match the cooling load of the household, thereby providing higher efficiency and comfort levels through better temperature and humidity control. While energy consumption could reduce significantly by adopting variable-speed compressor systems, the market penetration has been limited to less than 10% of the total HVAC units and a vast majority of systems installed in new construction remains single speed. A few reasons may explain this phenomenon such as the complexity of the electronic circuitry required to vary compressor speed as well as the associated system cost. This paper outlines a system solution to boost the Seasonal Energy Efficiency Rating (SEER) of a traditional single-speed unit through using a low power electronic converter that allows the compressor to operate at multiple low capacity settings and is disabled at high compressor speeds.

  16. Determination of Gibbs energies of formation in aqueous solution using chemical engineering tools.

    PubMed

    Toure, Oumar; Dussap, Claude-Gilles

    2016-08-01

    Standard Gibbs energies of formation are of primary importance in the field of biothermodynamics. In the absence of any directly measured values, thermodynamic calculations are required to determine the missing data. For several biochemical species, this study shows that the knowledge of the standard Gibbs energy of formation of the pure compounds (in the gaseous, solid or liquid states) enables to determine the corresponding standard Gibbs energies of formation in aqueous solutions. To do so, using chemical engineering tools (thermodynamic tables and a model enabling to predict activity coefficients, solvation Gibbs energies and pKa data), it becomes possible to determine the partial chemical potential of neutral and charged components in real metabolic conditions, even in concentrated mixtures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. An expanded conceptual framework for solution-focused management of chemical pollution in European waters.

    PubMed

    Munthe, John; Brorström-Lundén, Eva; Rahmberg, Magnus; Posthuma, Leo; Altenburger, Rolf; Brack, Werner; Bunke, Dirk; Engelen, Guy; Gawlik, Bernd Manfred; van Gils, Jos; Herráez, David López; Rydberg, Tomas; Slobodnik, Jaroslav; van Wezel, Annemarie

    2017-01-01

    This paper describes a conceptual framework for solutions-focused management of chemical contaminants built on novel and systematic approaches for identifying, quantifying and reducing risks of these substances. The conceptual framework was developed in interaction with stakeholders representing relevant authorities and organisations responsible for managing environmental quality of water bodies. Stakeholder needs were compiled via a survey and dialogue. The content of the conceptual framework was thereafter developed with inputs from relevant scientific disciplines. The conceptual framework consists of four access points: Chemicals, Environment, Abatement and Society, representing different aspects and approaches to engaging in the issue of chemical contamination of surface waters. It widens the scope for assessment and management of chemicals in comparison to a traditional (mostly) perchemical risk assessment approaches by including abatement- and societal approaches as optional solutions. The solution-focused approach implies an identification of abatement- and policy options upfront in the risk assessment process. The conceptual framework was designed for use in current and future chemical pollution assessments for the aquatic environment, including the specific challenges encountered in prioritising individual chemicals and mixtures, and is applicable for the development of approaches for safe chemical management in a broader sense. The four access points of the conceptual framework are interlinked by four key topics representing the main scientific challenges that need to be addressed, i.e.: identifying and prioritising hazardous chemicals at different scales; selecting relevant and efficient abatement options; providing regulatory support for chemicals management; predicting and prioritising future chemical risks. The conceptual framework aligns current challenges in the safe production and use of chemicals. The current state of knowledge and implementation

  18. Chapter 24: Strategic Energy Management (SEM) Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, James

    Strategic energy management (SEM) focuses on achieving energy-efficiency improvements through systematic and planned changes in facility operations, maintenance, and behaviors (OM&B) and capital equipment upgrades in large energy-using facilities, including industrial buildings, commercial buildings, and multi-facility organizations such as campuses or communities. Facilities can institute a spectrum of SEM actions, ranging from a simple process for regularly identifying energy-savings actions, to establishing a formal, third-party recognized or certified SEM framework for continuous improvement of energy performance. In general, SEM programs that would be considered part of a utility program will contain a set of energy-reducing goals, principles, and practices emphasizingmore » continuous improvements in energy performance or savings through energy management and an energy management system (EnMS).« less

  19. Integrated thermal and energy management of plug-in hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Shams-Zahraei, Mojtaba; Kouzani, Abbas Z.; Kutter, Steffen; Bäker, Bernard

    2012-10-01

    In plug-in hybrid electric vehicles (PHEVs), the engine temperature declines due to reduced engine load and extended engine off period. It is proven that the engine efficiency and emissions depend on the engine temperature. Also, temperature influences the vehicle air-conditioner and the cabin heater loads. Particularly, while the engine is cold, the power demand of the cabin heater needs to be provided by the batteries instead of the waste heat of engine coolant. The existing energy management strategies (EMS) of PHEVs focus on the improvement of fuel efficiency based on hot engine characteristics neglecting the effect of temperature on the engine performance and the vehicle power demand. This paper presents a new EMS incorporating an engine thermal management method which derives the global optimal battery charge depletion trajectories. A dynamic programming-based algorithm is developed to enforce the charge depletion boundaries, while optimizing a fuel consumption cost function by controlling the engine power. The optimal control problem formulates the cost function based on two state variables: battery charge and engine internal temperature. Simulation results demonstrate that temperature and the cabin heater/air-conditioner power demand can significantly influence the optimal solution for the EMS, and accordingly fuel efficiency and emissions of PHEVs.

  20. 77 FR 8252 - The International Consortium of Energy Managers; Notice of Preliminary Permit Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... International Consortium of Energy Managers; Notice of Preliminary Permit Application Accepted for Filing and... Consortium of Energy Managers filed an application, pursuant to section 4(f) of the Federal Power Act (FPA...: Rexford Wait, International Consortium of Energy Managers, 2416 Cades Way, Vista, CA 92083; (760) 599-0086...

  1. An overview of the sustainability of solid waste management at military installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borglin, S.; Shore, J.; Worden, H.

    2009-08-15

    Sustainable municipal solid waste management at military solutions necessitates a combined approach that includes waste reduction, alternative disposal techniques, and increased recycling. Military installations are unique because they often represent large employers in the region in which they are located, thereby making any practices they employ impact overall waste management strategies of the region. Solutions for waste sustainability will be dependent on operational directives and base location, availability of resources such as water and energy, and size of population. Presented in this paper are descriptions of available waste strategies that can be used to support sustainable waste management. Results presentedmore » indicate source reduction and recycling to be the most sustainable solutions. However, new waste-to-energy plants and composting have potential to improve on these well proven techniques and allow military installations to achieve sustainable waste management.« less

  2. NASA Earth Observations Informing Energy Management Decision Making

    NASA Technical Reports Server (NTRS)

    Eckman, Richard; Stackhouse, Paul

    2017-01-01

    The Energy Sector is experiencing increasing impacts from severe weather and shifting climatic trends, as well as facing a changing political climate, adding uncertainty for stakeholders as they make short- and long-term planning investments. Climate changes such as prolonged extreme heat and drought (leading to wildfire spread, for example), sea level rise, and extreme storms are changing the ways that utilities operate. Energy infrastructure located in coastal or flood-prone areas faces inundation risks, such as damage to energy facilities. The use of renewable energy resources is increasing, requiring more information about their intermittency and spatial patterns. In light of these challenges, public and private stakeholders have collaborated to identify potential data sources, tools, and programmatic ideas. For example, utilities across the country are using cutting-edge technology and data to plan for and adapt to these changes. In the Federal Government, NASA has invested in preliminary work to identify needs and opportunities for satellite data in energy sector application, and the Department of Energy has similarly brought together stakeholders to understand the landscape of climate vulnerability and resilience for utilities and others. However, have these efforts improved community-scale resilience and adaptation efforts? Further, some communities are more vulnerable to climate change and infrastructure impacts than others. This session has two goals. First, panelists seek to share existing and ongoing efforts related to energy management. Second, the session seeks to engage with attendees via group knowledge exchange to connect national energy management efforts to local practice for increased community resilience.

  3. Comparative management of offshore posidonia residues: composting vs. energy recovery.

    PubMed

    Cocozza, Claudio; Parente, Angelo; Zaccone, Claudio; Mininni, Carlo; Santamaria, Pietro; Miano, Teodoro

    2011-01-01

    Residues of the marine plant posidonia (Posidonia oceanica, PO) beached in tourist zones represent a great environmental, economical, social and hygienic problem in the Mediterranean Basin, in general, and in the Apulia Region in particular, because of the great disturb to the bathers and population, and the high costs that the administrations have to bear for their removal and disposal. In the present paper, Authors determined the heating values of leaves and fibres of PO, the main offshore residues found on beaches, and, meantime, composted those residues with mowing and olive pruning wood. The final composts were characterized for pH, electrical conductivity, elemental composition, dynamic respiration index, phytotoxicity, fluorescence and infrared spectroscopic fingerprints. The aim of the paper was to investigate the composting and energy recovery of PO leaves and fibres in order to suggest alternative solutions to the landfill when offshore residues have to be removed from recreational beaches. The fibrous portion of PO residues showed heating values close to those of other biofuels, thus suggesting a possible utilization as source of energy. At the same time, compost obtained from both PO wastes showed high quality features on condition that the electrical conductivity and Na content are lowered by a correct management of wetting during the composting. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Energy management and attitude control for spacecraft

    NASA Astrophysics Data System (ADS)

    Costic, Bret Thomas

    2001-07-01

    This PhD dissertation describes the design and implementation of various control strategies centered around spacecraft applications: (i) an attitude control system for spacecraft, (ii) flywheels used for combined attitude and energy tracking, and (iii) an adaptive autobalancing control algorithm. The theory found in each of these sections is demonstrated through simulation or experimental results. An introduction to each of these three primary chapters can be found in chapter one. The main problem addressed in the second chapter is the quaternion-based, attitude tracking control of rigid spacecraft without angular velocity measurements and in the presence of an unknown inertia matrix. As a stepping-stone, an adaptive, full-state feedback controller that compensates for parametric uncertainty while ensuring asymptotic attitude tracking errors is designed. The adaptive, full-state feedback controller is then redesigned such that the need for angular velocity measurements is eliminated. The proposed adaptive, output feedback controller ensures asymptotic attitude tracking. This work uses a four-parameter representation of the spacecraft attitude that does not exhibit singular orientations as in the case of the previous three-parameter representation-based results. To the best of my knowledge, this represents the first solution to the adaptive, output feedback, attitude tracking control problem for the quaternion representation. Simulation results are included to illustrate the performance of the proposed output feedback control strategy. The third chapter is devoted to the use of multiple flywheels that integrate the energy storage and attitude control functions in space vehicles. This concept, which is referred to as an Integrated Energy Management and Attitude Control (IEMAC) system, reduces the space vehicle bus mass, volume, cost, and maintenance requirements while maintaining or improving the space vehicle performance. To this end, two nonlinear IEMAC strategies

  5. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samolada, M.C.; Zabaniotou, A.A., E-mail: azampani@auth.gr

    2014-02-15

    Highlights: • The high output of MSS highlights the need for alternative routes of valorization. • Evaluation of 3 sludge-to-energy valorisation methods through SWOT analysis. • Pyrolysis is an energy and material recovery process resulting to ‘zero waste’. • Identification of challenges and barriers for MSS pyrolysis in Greece was investigated. • Adopters of pyrolysis systems face the challenge of finding new product markets. - Abstract: For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current statusmore » of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a ‘zero waste’ solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated.« less

  6. An energy-optimal solution for transportation control of cranes with double pendulum dynamics: Design and experiments

    NASA Astrophysics Data System (ADS)

    Sun, Ning; Wu, Yiming; Chen, He; Fang, Yongchun

    2018-03-01

    Underactuated cranes play an important role in modern industry. Specifically, in most situations of practical applications, crane systems exhibit significant double pendulum characteristics, which makes the control problem quite challenging. Moreover, most existing planners/controllers obtained with standard methods/techniques for double pendulum cranes cannot minimize the energy consumption when fulfilling the transportation tasks. Therefore, from a practical perspective, this paper proposes an energy-optimal solution for transportation control of double pendulum cranes. By applying the presented approach, the transportation objective, including fast trolley positioning and swing elimination, is achieved with minimized energy consumption, and the residual oscillations are suppressed effectively with all the state constrains being satisfied during the entire transportation process. As far as we know, this is the first energy-optimal solution for transportation control of underactuated double pendulum cranes with various state and control constraints. Hardware experimental results are included to verify the effectiveness of the proposed approach, whose superior performance is reflected by being experimentally compared with some comparative controllers.

  7. Water loss control using pressure management: life-cycle energy and air emission effects.

    PubMed

    Stokes, Jennifer R; Horvath, Arpad; Sturm, Reinhard

    2013-10-01

    Pressure management is one cost-effective and efficient strategy for controlling water distribution losses. This paper evaluates the life-cycle energy use and emissions for pressure management zones in Philadelphia, Pennsylvania, and Halifax, Nova Scotia. It compares water savings using fixed-outlet and flow-modulated pressure control to performance without pressure control, considering the embedded electricity and chemical consumption in the lost water, manufacture of pipe and fittings to repair breaks caused by excess pressure, and pressure management. The resulting energy and emissions savings are significant. The Philadelphia and Halifax utilities both avoid approximately 130 million liters in water losses annually using flow-modulated pressure management. The conserved energy was 780 GJ and 1900 GJ while avoided greenhouse gas emissions were 50 Mg and 170 Mg a year by Philadelphia and Halifax, respectively. The life-cycle financial and environmental performance of pressure management systems compares favorably to the traditional demand management strategy of installing low-flow toilets. The energy savings may also translate to cost-effective greenhouse gas emission reductions depending on the energy mix used, an important advantage in areas where water and energy are constrained and/or expensive and greenhouse gas emissions are regulated as in California, for example.

  8. Recent progress in solution plasma-synthesized-carbon-supported catalysts for energy conversion systems

    NASA Astrophysics Data System (ADS)

    Lun Li, Oi; Lee, Hoonseung; Ishizaki, Takahiro

    2018-01-01

    Carbon-based materials have been widely utilized as the electrode materials in energy conversion and storage technologies, such as fuel cells and metal-air batteries. In these systems, the oxygen reduction reaction is an important step that determines the overall performance. A novel synthesis route, named the solution plasma process, has been recently utilized to synthesize various types of metal-based and heteroatom-doped carbon catalysts. In this review, we summarize cutting-edge technologies involving the synthesis and modeling of carbon-supported catalysts synthesized via solution plasma process, followed by current progress on the electrocatalytic performance of these catalysts. This review provides the fundamental and state-of-the-art performance of solution-plasma-synthesized electrode materials, as well as the remaining scientific and technological challenges for this process.

  9. Energy-aware Thread and Data Management in Heterogeneous Multi-core, Multi-memory Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Chun-Yi

    By 2004, microprocessor design focused on multicore scaling—increasing the number of cores per die in each generation—as the primary strategy for improving performance. These multicore processors typically equip multiple memory subsystems to improve data throughput. In addition, these systems employ heterogeneous processors such as GPUs and heterogeneous memories like non-volatile memory to improve performance, capacity, and energy efficiency. With the increasing volume of hardware resources and system complexity caused by heterogeneity, future systems will require intelligent ways to manage hardware resources. Early research to improve performance and energy efficiency on heterogeneous, multi-core, multi-memory systems focused on tuning a single primitivemore » or at best a few primitives in the systems. The key limitation of past efforts is their lack of a holistic approach to resource management that balances the tradeoff between performance and energy consumption. In addition, the shift from simple, homogeneous systems to these heterogeneous, multicore, multi-memory systems requires in-depth understanding of efficient resource management for scalable execution, including new models that capture the interchange between performance and energy, smarter resource management strategies, and novel low-level performance/energy tuning primitives and runtime systems. Tuning an application to control available resources efficiently has become a daunting challenge; managing resources in automation is still a dark art since the tradeoffs among programming, energy, and performance remain insufficiently understood. In this dissertation, I have developed theories, models, and resource management techniques to enable energy-efficient execution of parallel applications through thread and data management in these heterogeneous multi-core, multi-memory systems. I study the effect of dynamic concurrent throttling on the performance and energy of multi-core, non-uniform memory

  10. Design of RF energy harvesting platforms for power management unit with start-up circuits

    NASA Astrophysics Data System (ADS)

    Costanzo, Alessandra; Masotti, Diego

    2013-12-01

    In this contribution we discuss an unconventional rectifier design dedicated to RF energy harvesting from ultra-low sources, such as ambient RF sources which are typically of the order of few to few tens of μW. In such conditions unsuccessful results may occur if the rectenna is directly connected to its actual load since either the minimum power or the minimum activation voltage may not be simultaneously available. For this reason a double-branch rectifier topology is considered for the power management unit (PMU), instead of traditional single-branch one. The new PMU, interposed between the rectenna and application circuits, allows the system to operate with significantly lower input power with respect to the traditional solution, while preserving efficiency during steady-state power conversion.

  11. The Wide-area Energy Management System Phase 2 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.

    2010-08-31

    The higher penetration of intermittent generation resources (including wind and solar generation) in the Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) balancing authorities (BAs) raises issue of requiring expensive additional fast grid balancing services in response to additional intermittency and fast up and down power ramps in the electric supply system. The overall goal of the wide-area energy management system (WAEMS) project is to develop the principles, algorithms, market integration rules, a functional design, and a technical specification for an energy storage system to help cope with unexpected rapid changes in renewable generation power output. The resultingmore » system will store excess energy, control dispatchable load and distributed generation, and utilize inter-area exchange of the excess energy between the California ISO and Bonneville Power Administration control areas. A further goal is to provide a cost-benefit analysis and develop a business model for an investment-based practical deployment of such a system. There are two tasks in Phase 2 of the WAEMS project: the flywheel field tests and the battery evaluation. Two final reports, the Wide-area Energy Management System Phase 2 Flywheel Field Tests Final Report and the Wide-area Energy Storage and Management System Battery Storage Evaluation, were written to summarize the results of the two tasks.« less

  12. IN2 Profile: Go Electric Provides Grid Stabilizing Energy Service Solutions to Utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pless, Shanti

    Through the Wells Fargo Innovation Incubator (IN²) program, Go Electric will validate their Link DR technology, which is an advanced, uninterruptable power supply that provides secure power, lowers facility energy costs, integrates renewables, and generates income from utility demand response programs. The IN² program launched in October 2014 and is part of Wells Fargo’s 2020 Environmental Commitment to provide $100 million to environmentally-focused nonprofits and universities. The goal is to create an ecosystem that fosters and accelerates the commercialization of promising commercial buildings technologies that can provide scalable solutions to reduce the energy impact of buildings. According to the Departmentmore » of Energy, nearly 40 percent of energy consumption in the U.S. today comes from buildings at an estimated cost of $413 billion.« less

  13. A power management system for energy harvesting and wireless sensor networks application based on a novel charge pump circuit

    NASA Astrophysics Data System (ADS)

    Aloulou, R.; De Peslouan, P.-O. Lucas; Mnif, H.; Alicalapa, F.; Luk, J. D. Lan Sun; Loulou, M.

    2016-05-01

    Energy Harvesting circuits are developed as an alternative solution to supply energy to autonomous sensor nodes in Wireless Sensor Networks. In this context, this paper presents a micro-power management system for multi energy sources based on a novel design of charge pump circuit to allow the total autonomy of self-powered sensors. This work proposes a low-voltage and high performance charge pump (CP) suitable for implementation in standard complementary metal oxide semiconductor (CMOS) technologies. The CP design was implemented using Cadence Virtuoso with AMS 0.35μm CMOS technology parameters. Its active area is 0.112 mm2. Consistent results were obtained between the measured findings of the chip testing and the simulation results. The circuit can operate with an 800 mV supply and generate a boosted output voltage of 2.835 V with 1 MHz as frequency.

  14. Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakobtorweihen, S., E-mail: jakobtorweihen@tuhh.de; Ingram, T.; Gerlach, T.

    2014-07-28

    Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realisticmore » solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations.« less

  15. Performance of the AMOEBA Water Model in the Vicinity of QM Solutes: A Diagnosis Using Energy Decomposition Analysis.

    PubMed

    Mao, Yuezhi; Shao, Yihan; Dziedzic, Jacek; Skylaris, Chris-Kriton; Head-Gordon, Teresa; Head-Gordon, Martin

    2017-05-09

    The importance of incorporating solvent polarization effects into the modeling of solvation processes has been well-recognized, and therefore a new generation of hybrid quantum mechanics/molecular mechanics (QM/MM) approaches that accounts for this effect is desirable. We present a fully self-consistent, mutually polarizable QM/MM scheme using the AMOEBA force field, in which the total energy of the system is variationally minimized with respect to both the QM electronic density and the MM induced dipoles. This QM/AMOEBA model is implemented through the Q-Chem/LibEFP code interface and then applied to the evaluation of solute-solvent interaction energies for various systems ranging from the water dimer to neutral and ionic solutes (NH 3 , NH 4 + , CN - ) surrounded by increasing numbers of water molecules (up to 100). In order to analyze the resulting interaction energies, we also utilize an energy decomposition analysis (EDA) scheme which identifies contributions from permanent electrostatics, polarization, and van der Waals (vdW) interaction for the interaction between the QM solute and the solvent molecules described by AMOEBA. This facilitates a component-wise comparison against full QM calculations where the corresponding energy components are obtained via a modified version of the absolutely localized molecular orbitals (ALMO)-EDA. The results show that the present QM/AMOEBA model can yield reasonable solute-solvent interaction energies for neutral and cationic species, while further scrutiny reveals that this accuracy highly relies on the delicate balance between insufficiently favorable permanent electrostatics and softened vdW interaction. For anionic solutes where the charge penetration effect becomes more pronounced, the QM/MM interface turns out to be unbalanced. These results are consistent with and further elucidate our findings in a previous study using a slightly different QM/AMOEBA model ( Dziedzic et al. J. Chem. Phys. 2016 , 145 , 124106 ). The

  16. Resource management tools based on renewable energy sources

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Boghrat, Pedram; Pradhan, Ranjit; Kostrzewski, Andrew

    2012-06-01

    Renewable energy is an important source of power for unattended sensors (ground, sea, air), tagging systems, and other remote platforms for Homeland Security and Homeland Defense. Also, Command, Control, Communication, and Intelligence (C3I) systems and technologies often require renewable energy sources for information assurance (IA), in general, and anti-tampering (AT), in particular. However, various geophysical and environmental conditions determine different types of energy harvesting: solar, thermal, vibration, acoustic, hydraulic, wind, and others. Among them, solar energy is usually preferable, but, both a solar habitat and the necessity for night operation can create a need for other types of renewable energy. In this paper, we introduce figures of merit (FoMs) for evaluating preferences of specific energy sources, as resource management tools, based on geophysical conditions. Also, Battery Systemic Modeling is discussed.

  17. A Multiagent Energy Management System for a Small Microgrid Equipped with Power Sources and Energy Storage Units

    NASA Astrophysics Data System (ADS)

    Radziszewska, Weronika; Nahorski, Zbigniew

    An Energy Management System (EMS) for a small microgrid is presented, with both demand and production side management. The microgrid is equipped with renewable and controllable power sources (like a micro gas turbine), energy storage units (batteries and flywheels). Energy load is partially scheduled to avoid extreme peaks of power demand and to possibly match forecasted energy supply from the renewable power sources. To balance the energy in the network on line, a multiagent system is used. Intelligent agents of each device are proactively acting towards balancing the energy in the network, and at the same time optimizing the cost of operation of the whole system. A semi-market mechanism is used to match a demand and a production of the energy. Simulations show that the time of reaching a balanced state does not exceed 1 s, which is fast enough to let execute proper balancing actions, e.g. change an operating point of a controllable energy source. Simulators of sources and consumption devices were implemented in order to carry out exhaustive tests.

  18. Finite element solution for energy conservation using a highly stable explicit integration algorithm

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.

    1972-01-01

    Theoretical derivation of a finite element solution algorithm for the transient energy conservation equation in multidimensional, stationary multi-media continua with irregular solution domain closure is considered. The complete finite element matrix forms for arbitrarily irregular discretizations are established, using natural coordinate function representations. The algorithm is embodied into a user-oriented computer program (COMOC) which obtains transient temperature distributions at the node points of the finite element discretization using a highly stable explicit integration procedure with automatic error control features. The finite element algorithm is shown to posses convergence with discretization for a transient sample problem. The condensed form for the specific heat element matrix is shown to be preferable to the consistent form. Computed results for diverse problems illustrate the versatility of COMOC, and easily prepared output subroutines are shown to allow quick engineering assessment of solution behavior.

  19. Energy Management in Higher Education: Value for Money Study.

    ERIC Educational Resources Information Center

    Scottish Higher Education Funding Council, Edinburgh.

    This Value for Money project provides an update of the 1996 "Energy Management Study in the Higher Education Sector: National Report." It reviews the management arrangement for utilities in the higher education (HE) sector, and it identifies key actions and future issues that must be addressed by HE institutions in developing a strategic…

  20. Material and energy recovery in integrated waste management systems: the potential for energy recovery.

    PubMed

    Consonni, Stefano; Viganò, Federico

    2011-01-01

    This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental

  1. Regulation of Renewable Energy Sources to Optimal Power Flow Solutions Using ADMM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Zhang, Yijian; Hong, Mingyi

    This paper considers power distribution systems featuring renewable energy sources (RESs), and develops a distributed optimization method to steer the RES output powers to solutions of AC optimal power flow (OPF) problems. The design of the proposed method leverages suitable linear approximations of the AC-power flow equations, and is based on the Alternating Direction Method of Multipliers (ADMM). Convergence of the RES-inverter output powers to solutions of the OPF problem is established under suitable conditions on the stepsize as well as mismatches between the commanded setpoints and actual RES output powers. In a broad sense, the methods and results proposedmore » here are also applicable to other distributed optimization problem setups with ADMM and inexact dual updates.« less

  2. SPS energy conversion and power management workshop. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-06-01

    In 1977 a four year study, the concept Development and Evaluation Program, was initiated by the US Department of Energy and the National Aeronautics and Space Administration. As part of this program, a series of peer reviews were carried out within the technical community to allow available information on SPS to be sifted, examined and, if need be, challenged. The SPS Energy Conversion and Power Management Workshop, held in Huntsville, Alabama, February 5 to 7, 1980, was one of these reviews. The results of studies in this particular field were presented to an audience of carefully selected scientists and engineers.more » This first report summarizes the results of that peer review. It is not intended to be an exhaustive treatment of the subject. Rather, it is designed to look at the SPS energy conversion and power management options in breadth, not depth, to try to foresee any troublesome and/or potentially unresolvable problems and to identify the most promising areas for future research and development. Topics include photovoltaic conversion, solar thermal conversion, and electric power distribution processing and power management. (WHK)« less

  3. Manage your energy, not your time.

    PubMed

    Schwartz, Tony

    2007-10-01

    As the demands of the workplace keep rising, many people respond by putting in ever longer hours, which inevitably leads to burnout that costs both the organization and the employee. Meanwhile, people take for granted what fuels their capacity to work--their energy. Increasing that capacity is the best way to get more done faster and better. Time is a finite resource, but energy is different. It has four wellsprings--the body, emotions, mind, and spirit--and in each, it can be systematically expanded and renewed. In this article, Schwartz, founder of the Energy Project, describes how to establish rituals that will build energy in the four key dimensions. For instance, harnessing the body's ultradian rhythms by taking intermittent breaks restores physical energy. Rejecting the role of a victim and instead viewing events through three hopeful lenses defuses energy-draining negative emotions. Avoiding the constant distractions that technology has introduced increases mental energy. And participating in activities that give you a sense of meaning and purpose boosts the energy of the spirit. The new workday rituals succeed only if leaders support their adoption, but when that happens, the results can be powerful. A group of Wachovia Bank employees who went through an energy management program outperformed a control group on important financial metrics like loans generated, and they reported substantially improved customer relationships, productivity, and personal satisfaction. These findings corroborated anecdotal evidence gathered about the effectiveness of this approach at other companies, including Ernst & Young, Sony, and Deutsche Bank. When organizations invest in all dimensions of their employees' lives, individuals respond by bringing all their energy wholeheartedly to work -and both companies and their people grow in value.

  4. Financial arrangement selection for energy management projects

    NASA Astrophysics Data System (ADS)

    Woodroof, Eric Aubrey

    Scope and method of study. The purpose of this study was to develop a model (E-FUND) to help facility managers select financial arrangements for energy management projects (EMPs). The model was developed with the help of a panel of expert financiers. The panel also helped develop a list of key objectives critical to the decision process. The E-FUND model was tested by a population of facility managers in four case studies. Findings and conclusions. The results may indicate that having a high economic benefit (from an EMP) is not overwhelmingly important, when compared to other qualitative objectives. The results may also indicate that the true lease and performance contract may be the most applicable financial arrangements for EMPs.

  5. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil thaw with conduction and advection

    USGS Publications Warehouse

    Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.

    2014-01-01

    Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.

  6. Energy-Water Nexus: Balancing the Tradeoffs between Two-Level Decision Makers

    DOE PAGES

    Zhang, Xiaodong; Vesselinov, Velimir Valentinov

    2016-09-03

    Energy-water nexus has substantially increased importance in the recent years. Synergistic approaches based on systems-analysis and mathematical models are critical for helping decision makers better understand the interrelationships and tradeoffs between energy and water. In energywater nexus management, various decision makers with different goals and preferences, which are often conflicting, are involved. These decision makers may have different controlling power over the management objectives and the decisions. They make decisions sequentially from the upper level to the lower level, challenging decision making in energy-water nexus. In order to address such planning issues, a bi-level decision model is developed, which improvesmore » upon the existing studies by integration of bi-level programming into energy-water nexus management. The developed model represents a methodological contribution to the challenge of sequential decisionmaking in energy-water nexus through provision of an integrated modeling framework/tool. An interactive fuzzy optimization methodology is introduced to seek a satisfactory solution to meet the overall satisfaction of the two-level decision makers. The tradeoffs between the two-level decision makers in energy-water nexus management are effectively addressed and quantified. Application of the proposed model to a synthetic example problem has demonstrated its applicability in practical energy-water nexus management. Optimal solutions for electricity generation, fuel supply, water supply including groundwater, surface water and recycled water, capacity expansion of the power plants, and GHG emission control are generated. In conclusion, these analyses are capable of helping decision makers or stakeholders adjust their tolerances to make informed decisions to achieve the overall satisfaction of energy-water nexus management where bi-level sequential decision making process is involved.« less

  7. Energy-Water Nexus: Balancing the Tradeoffs between Two-Level Decision Makers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaodong; Vesselinov, Velimir Valentinov

    Energy-water nexus has substantially increased importance in the recent years. Synergistic approaches based on systems-analysis and mathematical models are critical for helping decision makers better understand the interrelationships and tradeoffs between energy and water. In energywater nexus management, various decision makers with different goals and preferences, which are often conflicting, are involved. These decision makers may have different controlling power over the management objectives and the decisions. They make decisions sequentially from the upper level to the lower level, challenging decision making in energy-water nexus. In order to address such planning issues, a bi-level decision model is developed, which improvesmore » upon the existing studies by integration of bi-level programming into energy-water nexus management. The developed model represents a methodological contribution to the challenge of sequential decisionmaking in energy-water nexus through provision of an integrated modeling framework/tool. An interactive fuzzy optimization methodology is introduced to seek a satisfactory solution to meet the overall satisfaction of the two-level decision makers. The tradeoffs between the two-level decision makers in energy-water nexus management are effectively addressed and quantified. Application of the proposed model to a synthetic example problem has demonstrated its applicability in practical energy-water nexus management. Optimal solutions for electricity generation, fuel supply, water supply including groundwater, surface water and recycled water, capacity expansion of the power plants, and GHG emission control are generated. In conclusion, these analyses are capable of helping decision makers or stakeholders adjust their tolerances to make informed decisions to achieve the overall satisfaction of energy-water nexus management where bi-level sequential decision making process is involved.« less

  8. Energy-Water System Solutions | Energy Analysis | NREL

    Science.gov Websites

    simultaneously. Example Projects Energy, water, and renewable opportunities assessment at Bagram Air Force Base opportunity to plan integrated infrastructure. Example Projects Identification of critical water and campus-level opportunities. Example Projects Net Zero Energy-Water-Waste analysis for Fort Carson Net

  9. A note on blowup of smooth solutions for relativistic Euler equations with infinite initial energy

    NASA Astrophysics Data System (ADS)

    Dong, Jianwei; Zhu, Junhui

    2018-04-01

    We study the singularity formation of smooth solutions of the relativistic Euler equations in (3+1)-dimensional spacetime for infinite initial energy. We prove that the smooth solution blows up in finite time provided that the radial component of the initial generalized momentum is sufficiently large without the conditions M(0)>0 and s2<1/3c2 , which were two key constraints stated in Pan and Smoller (Commun Math Phys 262:729-755, 2006).

  10. Opportunities for energy conservation in transportation planning and systems management.

    DOT National Transportation Integrated Search

    1978-01-01

    This report is a summary, based primarily on a literature review, of the energy-savings potential of the elements in the transportation planning process and systems management. Within the scope of long-range planning, the energy aspects of land use a...

  11. Benchmark solutions for the galactic heavy-ion transport equations with energy and spatial coupling

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Lamkin, Stanley L.; Wilson, John W.

    1991-01-01

    Nontrivial benchmark solutions are developed for the galactic heavy ion transport equations in the straightahead approximation with energy and spatial coupling. Analytical representations of the ion fluxes are obtained for a variety of sources with the assumption that the nuclear interaction parameters are energy independent. The method utilizes an analytical LaPlace transform inversion to yield a closed form representation that is computationally efficient. The flux profiles are then used to predict ion dose profiles, which are important for shield design studies.

  12. Cost Minimization for Joint Energy Management and Production Scheduling Using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Shah, Rahul H.

    Production costs account for the largest share of the overall cost of manufacturing facilities. With the U.S. industrial sector becoming more and more competitive, manufacturers are looking for more cost and resource efficient working practices. Operations management and production planning have shown their capability to dramatically reduce manufacturing costs and increase system robustness. When implementing operations related decision making and planning, two fields that have shown to be most effective are maintenance and energy. Unfortunately, the current research that integrates both is limited. Additionally, these studies fail to consider parameter domains and optimization on joint energy and maintenance driven production planning. Accordingly, production planning methodology that considers maintenance and energy is investigated. Two models are presented to achieve well-rounded operating strategy. The first is a joint energy and maintenance production scheduling model. The second is a cost per part model considering maintenance, energy, and production. The proposed methodology will involve a Time-of-Use electricity demand response program, buffer and holding capacity, station reliability, production rate, station rated power, and more. In practice, the scheduling problem can be used to determine a joint energy, maintenance, and production schedule. Meanwhile, the cost per part model can be used to: (1) test the sensitivity of the obtained optimal production schedule and its corresponding savings by varying key production system parameters; and (2) to determine optimal system parameter combinations when using the joint energy, maintenance, and production planning model. Additionally, a factor analysis on the system parameters is conducted and the corresponding performance of the production schedule under variable parameter conditions, is evaluated. Also, parameter optimization guidelines that incorporate maintenance and energy parameter decision making in the

  13. Energy Efficiency Building Systems Regional Innovation Cluster Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krebs, Martha

    The Consortium for Building Energy Innovation (CBEI) was established through a Funding Opportunity Announcement led by the U.S. Department of Energy, under a cooperative agreement managed by the National Energy Technology Laboratory. CBEI is led by The Pennsylvania State University and is composed of partners from academia, the private sector, and economic development agencies. The Consortium has included as many as 24 different partners over the five years, but 14 have been core to the work over the five year cooperative agreement. CBEI primarily focused on developing energy efficiency solutions for the small and medium commercial building market, with amore » focus on buildings less than 50,000 square feet. This market has been underserved by the energy efficiency industry, which has focused on larger commercial buildings where the scale of an individual retrofit lends itself to the use of sophisticated modeling tools and more advanced solutions. Owners/operators and retrofit providers for larger buildings have a greater level of understanding of, and experience with different solutions. In contrast, smaller commercial building retrofits, like residential retrofits, often have owners with less knowledge about energy management and less time to learn about it. This market segment is also served by retrofit providers that are smaller and often focused on particular building systems, e.g. heating, ventilation and air conditioning (HVAC), lighting, roofing, or insulation. The size of a smaller commercial building retrofit does not lend itself, from a cost perspective, to the application of multiple, sophisticated design and modeling tools, which means that they are less likely to have integrated solutions.« less

  14. Modeling the Impact of Energy and Water Prices on Reservoir and Aquifer Management

    NASA Astrophysics Data System (ADS)

    Dale, L. L.; Vicuna, S.; Faybishenko, B.

    2008-12-01

    Climate change and polices to limit carbon emissions are likely to increase energy and water scarcity and raise prices. These price impacts affect the way that reservoirs and aquifers should be managed to maximize the value of water and energy outputs. In this paper, we use a model of storage in a specific region to illustrate how energy and water prices affect optimal reservoir and aquifer management. We evaluate reservoir-aquifer water management in the Merced water basin in California, applying an optimization model of storage benefits associated with different management options and input prices. The model includes two submodels: (a) a monthly nonlinear submodel for optimization of the conjunctive energy/water use and (b) an inter-annual stochastic dynamic programming submodel used for determining an operating rule matrix which maximizes system benefits for given economic and hydrologic conditions. The model input parameters include annual inflows, initial storage, crop water demands, crop prices and electricity prices. The model is used to determine changes in net energy generation and water delivery and associated changes in water storage levels caused by changes in water and energy output prices. For the scenario of water/energy tradeoffs for a pure reservoir (with no groundwater use), we illustrate the tradeoff between the agricultural water use and hydropower generation (MWh) for different energy/agriculture price ratios. The analysis is divided into four steps. The first and second steps describe these price impacts on reservoirs and aquifers, respectively. The third step covers price impacts on conjunctive reservoir and aquifer management. The forth step describes price impacts on reservoir and aquifer storage in the more common historical situation, when these facilities are managed separately. The study indicates that optimal reservoir and aquifer storage levels are a positive function of the energy to water price ratio. The study also concludes that

  15. Annual Report on Federal Government Energy Management and Conservation Programs, Fiscal Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energymore » Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).« less

  16. Annual Report on Federal Government Energy Management and Conservation Programs, Fiscal Year 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energymore » Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).« less

  17. Annual Report on Federal Government Energy Management and Conservation Programs, Fiscal Year 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energymore » Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).« less

  18. Annual Report on Federal Government Energy Management and Conservation Programs, Fiscal Year 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energymore » Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).« less

  19. Smart grids: A paradigm shift on energy generation and distribution with the emergence of a new energy management business model

    NASA Astrophysics Data System (ADS)

    Cardenas, Jesus Alvaro

    An energy and environmental crisis will emerge throughout the world if we continue with our current practices of generation and distribution of electricity. A possible solution to this problem is based on the Smart grid concept, which is heavily influenced by Information and Communication Technology (ICT). Although the electricity industry is mostly regulated, there are global models used as roadmaps for Smart Grids' implementation focusing on technologies and the basic generation-distribution-transmission model. This project aims to further enhance a business model for a future global deployment. It takes into consideration the many factors interacting in this energy provision process, based on the diffusion of technologies and literature surveys on the available documents in the Internet as well as peer-reviewed publications. Tariffs and regulations, distributed energy generation, integration of service providers, consumers becoming producers, self-healing devices, and many other elements are shifting this industry into a major change towards liberalization and deregulation of this sector, which has been heavily protected by the government due to the importance of electricity for consumers. We propose an Energy Management Business Model composed by four basic elements: Supply Chain, Information and Communication Technology (ICT), Stakeholders Response, and the resulting Green Efficient Energy (GEE). We support the developed model based on the literature survey, we support it with the diffusion analysis of these elements, and support the overall model with two surveys: one for peers and professionals, and other for experts in the field, based on the Smart Grid Carnegie Melon Maturity Model (CMU SEI SGMM). The contribution of this model is a simple path to follow for entities that want to achieve environmental friendly energy with the involvement of technology and all stakeholders.

  20. Resilient Energy Systems | Integrated Energy Solutions | NREL

    Science.gov Websites

    of microgrids Business model and valuation analysis for resilience Photovoltaic plus storage analysis Framework for Mini-Grids NREL has teamed with the Global Lighting and Energy Access Partnership and the U.S mini-grids. NREL Enhances Energy Resiliency at Marine Corps Air Station Miramar NREL has partnered with

  1. Workaholism and daily energy management at work: associations with self-reported health and emotional exhaustion

    PubMed Central

    SCHULZ, Anika Susanne; BLOOM, Jessica; KINNUNEN, Ulla

    2017-01-01

    Adequate energy management during the working day is essential for employees to remain healthy and vital. Research has investigated which energy management strategies are frequently used and which are most beneficial, but the results are inconclusive and research is still scarce. We aim to extend the current knowledge by considering individual differences in terms of working compulsively (as key feature of workaholism) with regard to energy management. Data were collected with an online survey in 1,253 employees from 12 different organizations. Employees’ levels of compulsiveness were expected to relate to 1) employees’ choice of which energy management strategies to use, and 2) the benefits (improved health and alleviated emotional exhaustion) of the chosen strategy. The results partly supported the hypotheses in that compulsiveness was associated with more frequent use of work-related energy management strategies. However, compulsiveness was not related to less frequent use of micro-breaks. Energy management (particularly work-related and physical micro-break strategies) improved health and alleviated emotional exhaustion regardless of compulsiveness levels, whereas private micro-break strategies were only beneficial for employees high in compulsiveness. PMID:28123137

  2. Managing total corporate electricity/energy market risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henney, A.; Keers, G.

    1998-10-01

    The banking industry has developed a tool kit of very useful value at risk techniques for hedging risk, but these techniques must be adapted to the special complexities of the electricity market. This paper starts with a short history of the use of value-at-risk (VAR) techniques in banking risk management and then examines the specific and, in many instances, complex risk management challenges faced by electric companies from the behavior of prices in electricity markets and from the character of generation and electric retailing risks. The third section describes the main methods for making VAR calculations along with an analysismore » of their suitability for analyzing the risks of electricity portfolios and the case for using profit at risk and downside risk as measures of risk. The final section draws the threads together and explains how to look at managing total corporate electricity market risk, which is a big step toward managing total corporate energy market risk.« less

  3. Heterogeneous Collaborative Sensor Network for Electrical Management of an Automated House with PV Energy

    PubMed Central

    Castillo-Cagigal, Manuel; Matallanas, Eduardo; Gutiérrez, Álvaro; Monasterio-Huelin, Félix; Caamaño-Martín, Estefaná; Masa-Bote, Daniel; Jiménez-Leube, Javier

    2011-01-01

    In this paper we present a heterogeneous collaborative sensor network for electrical management in the residential sector. Improving demand-side management is very important in distributed energy generation applications. Sensing and control are the foundations of the “Smart Grid” which is the future of large-scale energy management. The system presented in this paper has been developed on a self-sufficient solar house called “MagicBox” equipped with grid connection, PV generation, lead-acid batteries, controllable appliances and smart metering. Therefore, there is a large number of energy variables to be monitored that allow us to precisely manage the energy performance of the house by means of collaborative sensors. The experimental results, performed on a real house, demonstrate the feasibility of the proposed collaborative system to reduce the consumption of electrical power and to increase energy efficiency. PMID:22247680

  4. Heterogeneous collaborative sensor network for electrical management of an automated house with PV energy.

    PubMed

    Castillo-Cagigal, Manuel; Matallanas, Eduardo; Gutiérrez, Alvaro; Monasterio-Huelin, Félix; Caamaño-Martín, Estefaná; Masa-Bote, Daniel; Jiménez-Leube, Javier

    2011-01-01

    In this paper we present a heterogeneous collaborative sensor network for electrical management in the residential sector. Improving demand-side management is very important in distributed energy generation applications. Sensing and control are the foundations of the "Smart Grid" which is the future of large-scale energy management. The system presented in this paper has been developed on a self-sufficient solar house called "MagicBox" equipped with grid connection, PV generation, lead-acid batteries, controllable appliances and smart metering. Therefore, there is a large number of energy variables to be monitored that allow us to precisely manage the energy performance of the house by means of collaborative sensors. The experimental results, performed on a real house, demonstrate the feasibility of the proposed collaborative system to reduce the consumption of electrical power and to increase energy efficiency.

  5. Scenario analysis of carbon emissions' anti-driving effect on Qingdao's energy structure adjustment with an optimization model, Part II: Energy system planning and management.

    PubMed

    Wu, C B; Huang, G H; Liu, Z P; Zhen, J L; Yin, J G

    2017-03-01

    In this study, an inexact multistage stochastic mixed-integer programming (IMSMP) method was developed for supporting regional-scale energy system planning (EPS) associated with multiple uncertainties presented as discrete intervals, probability distributions and their combinations. An IMSMP-based energy system planning (IMSMP-ESP) model was formulated for Qingdao to demonstrate its applicability. Solutions which can provide optimal patterns of energy resources generation, conversion, transmission, allocation and facility capacity expansion schemes have been obtained. The results can help local decision makers generate cost-effective energy system management schemes and gain a comprehensive tradeoff between economic objectives and environmental requirements. Moreover, taking the CO 2 emissions scenarios mentioned in Part I into consideration, the anti-driving effect of carbon emissions on energy structure adjustment was studied based on the developed model and scenario analysis. Several suggestions can be concluded from the results: (a) to ensure the smooth realization of low-carbon and sustainable development, appropriate price control and fiscal subsidy on high-cost energy resources should be considered by the decision-makers; (b) compared with coal, natural gas utilization should be strongly encouraged in order to insure that Qingdao could reach the carbon discharges peak value in 2020; (c) to guarantee Qingdao's power supply security in the future, the construction of new power plants should be emphasised instead of enhancing the transmission capacity of grid infrastructure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Development of a methodology to compute solvation free energies on the basis of the theory of energy representation for solutions represented with a polarizable force field.

    PubMed

    Suzuoka, Daiki; Takahashi, Hideaki; Ishiyama, Tatsuya; Morita, Akihiro

    2012-12-07

    We have developed a method of molecular simulations utilizing a polarizable force field in combination with the theory of energy representation (ER) for the purpose of establishing an efficient and accurate methodology to compute solvation free energies. The standard version of the ER method is, however, based on the assumption that the solute-solvent interaction is pairwise additive for its construction. A crucial step in the present method is to introduce an intermediate state in the solvation process to treat separately the many-body interaction associated with the polarizable model. The intermediate state is chosen so that the solute-solvent interaction can be formally written in the pairwise form, though the solvent molecules are interacting with each other with polarizable charges dependent on the solvent configuration. It is, then, possible to extract the free energy contribution δμ due to the many-body interaction between solute and solvent from the total solvation free energy Δμ. It is shown that the free energy δμ can be computed by an extension of the recent development implemented in quantum mechanical∕molecular mechanical simulations. To assess the numerical robustness of the approach, we computed the solvation free energies of a water and a methanol molecule in water solvent, where two paths for the solvation processes were examined by introducing different intermediate states. The solvation free energies of a water molecule associated with the two paths were obtained as -5.3 and -5.8 kcal∕mol. Those of a methanol molecule were determined as -3.5 and -3.7 kcal∕mol. These results of the ER simulations were also compared with those computed by a numerically exact approach. It was demonstrated that the present approach produces the solvation free energies in comparable accuracies to simulations of thermodynamic integration (TI) method within a tenth of computational time used for the TI simulations.

  7. Vehicle to grid: electric vehicles as an energy storage solution

    NASA Astrophysics Data System (ADS)

    McGee, Rodney; Waite, Nicholas; Wells, Nicole; Kiamilev, Fouad E.; Kempton, Willett M.

    2013-05-01

    With increased focus on intermittent renewable energy sources such as wind turbines and photovoltaics, there comes a rising need for large-scale energy storage. The vehicle to grid (V2G) project seeks to meet this need using electric vehicles, whose high power capacity and existing power electronics make them a promising energy storage solution. This paper will describe a charging system designed by the V2G team that facilitates selective charging and backfeeding by electric vehicles. The system consists of a custom circuit board attached to an embedded linux computer that is installed both in the EVSE (electric vehicle supply equipment) and in the power electronics unit of the vehicle. The boards establish an in-band communication link between the EVSE and the vehicle, giving the vehicle internet connectivity and the ability to make intelligent decisions about when to charge and discharge. This is done while maintaining compliance with existing charging protocols (SAEJ1772, IEC62196) and compatibility with standard "nonintelligent" cars and chargers. Through this system, the vehicles in a test fleet have been able to successfully serve as portable temporary grid storage, which has implications for regulating the electrical grid, providing emergency power, or supplying power to forward military bases.

  8. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece.

    PubMed

    Samolada, M C; Zabaniotou, A A

    2014-02-01

    For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a 'zero waste' solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Nanobiotechnology for the Environment: Innovative Solutions for the Management of Harmful Algal Blooms.

    PubMed

    Gellert, Matthew R; Kim, Beum Jun; Reffsin, Samuel E; Jusuf, Sebastian E; Wagner, Nicole D; Winans, Stephen C; Wu, Mingming

    2017-12-04

    Nanobiotechnology has played important roles in solving contemporary health problems, including cancer and diabetes, but has not yet been widely exploited for problems in food security and environmental protection. Water scarcity is an emerging worldwide problem as a result of climate change and population increase. Current methods of managing water resources are not efficient or sustainable. In this perspective, we focus on harmful algal blooms to demonstrate how nanobiotechnology can be explored to understand microbe-environment interactions and allow for toxin/pollutant detection with significantly improved sensitivity. These capabilities hold potential for future development of sustainable solutions for drinking water management.

  10. The Environmental Management Project Manager`s Handbook for improved project definition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-02-01

    The United States Department of Energy (DOE) is committed to providing high quality products that satisfy customer needs and are the associated with this goal, DOE personnel must possess the knowledge, skills, and abilities to ensure successful job performance. In addition, there must be recognition that the greatest obstacle to proper project performance is inadequate project definition. Without strong project definition, DOE environmental management efforts are vulnerable to fragmented solutions, duplication of effort, and wastes resources. The primary means of ensuring environmental management projects meet cost and schedule milestones is through a structured and graded approach to project definition, whichmore » is the focus of this handbook.« less

  11. Towards integrated solutions for water, energy, and land using an integrated nexus modeling framework

    NASA Astrophysics Data System (ADS)

    Wada, Y.

    2017-12-01

    Humanity has already reached or even exceeded the Earth's carrying capacity. Growing needs for food, energy and water will only exacerbate existing challenges over the next decades. Consequently, the acceptance of "business as usual" is eroding and we are being challenged to adopt new, more integrated, and more inclusive development pathways that avoid dangerous interference with the local environment and global planetary boundaries. This challenge is embodied in the United Nation's Sustainable Development Goals (SDGs), which endeavor to set a global agenda for moving towards more sustainable development strategies. To improve and sustain human welfare, it is critical that access to modern, reliable, and affordable water, energy, and food is expanded and maintained. The Integrated Solutions for Water, Energy, and Land (IS-WEL) project has been launched by IIASA, together with the Global Environment Facility (GEF) and the United Nations Industrial Development Organization (UNIDO). This project focuses on the water-energy-land nexus in the context of other major global challenges such as urbanization, environmental degradation, and equitable and sustainable futures. It develops a consistent framework for looking at the water-energy-land nexus and identify strategies for achieving the needed transformational outcomes through an advanced assessment framework. A multi-scalar approach are being developed that aims to combine global and regional integrated assessment tools with local stakeholder knowledge in order to identify robust solutions to energy, water, food, and ecosystem security in selected regions of the world. These are regions facing multiple energy, water and land use challenges and rapid demographic and economic changes, and are hardest hit by increasing climate variability and change. This project combines the global integrated assessment model (MESSAGE) with the global land (GLOBIOM) and water (Community Water Model) model respectively, and the integrated

  12. Co-Leadership – A Management Solution for Integrated Health and Social Care

    PubMed Central

    Hansson, Johan; Hasson, Henna; Sachs, Magna Andreen

    2016-01-01

    Introduction: Co-leadership has been identified as one approach to meet the managerial challenges of integrated services, but research on the topic is limited. In the present study, co-leadership, practised by pairs of managers – each manager representing one of the two principal organizations in integrated health and social care services – was explored. Aim: To investigate co-leadership in integrated health and social care, identify essential preconditions in fulfilling the management assignment, its operationalization and impact on provision of sustainable integration of health and social care. Method: Interviews with eight managers exercising co-leadership were analysed using directed content analysis. Respondent validation was conducted through additional interviews with the same managers. Results: Key contextual preconditions were an organization-wide model supporting co-leadership and co-location of services. Perception of the management role as a collective activity, continuous communication and lack of prestige were essential personal and interpersonal preconditions. In daily practice, office sharing, being able to give and take and support each other contributed to provision of sustainable integration of health and social care. Conclusion and discussion: Co-leadership promoted robust management by providing broader competence, continuous learning and joint responsibility for services. Integrated health and social care services should consider employing co-leadership as a managerial solution to achieve sustainability. PMID:27616963

  13. [Principles of management of high-energy injuries of the leg].

    PubMed

    Jovanović, Mladen; Janjić, Zlata; Marić, Dusan

    2002-01-01

    High-energy traumas are open or closed injuries caused by force (missile, traffic injuries, crush or blust injuries, falling from heights), affecting the body surface and transferring high amount of kinetic energy inducing great damage to the tissue. Management of such lower extremity injuries has evolved over past several decades, but still remains a difficult task for every surgical team. Specific anatomic and functional characteristics combined with extensive injuries demands specific treatment protocols. In a multiple injured patient the first priority is management of life-threatening trauma. Despite other injuries, surgical treatment of limb-threatening injuries must start as soon as life-threatening condition has been managed. Algorithms are especially beneficial in management of severely injured, but salvageable extremities and in making decision on amputation. Insight into mechanisms of injury, as well as systematic examination of the affected limb, should help us understand the extensiveness of trauma and make an adequate management plan. Prevention of wound infection and surgical approach to high-energy limb trauma, which includes wound extension, wound excision, skeletal stabilization and if necessary muscle compartment release, should be done in the first 6 hours after injury. Commonly used methods for soft tissue defects must provide wound coverage in less than five days following injury. Early passive and active mobilization and verticalization of patients is very important for successful treatment. Good and timely evaluation of the injured and collaboration between plastic and orthopaedic surgeons from the beginning of treatment, are crucial for final outcome.

  14. Performance Efficiency of a Crash Energy Management System

    DOT National Transportation Integrated Search

    2007-03-13

    Previous work has led to the development of a crash energy : management (CEM) system designed to distribute crush : throughout unoccupied areas of a passenger train in a collision : event. This CEM system is comprised of crush zones at the : front an...

  15. Energy efficiency through integrated environmental management.

    PubMed

    Benromdhane, Souad Ahmed

    2015-05-01

    Integrated environmental management became an economic necessity after industrial development proved to be unsustainable without consideration of environmental direct and indirect impacts. Energy dependency and air pollution along with climate change grew into major challenges facing developed and developing countries alike. Thus, a new global market structure emerged and changed the way we do trade. The search intensified for alternatives to petroleum. However, scientists, policy makers, and environmental activists agreed to focus on strategic conservation and optimization of energy use. Environmental concerns will remain partially unaddressed with the current pace of consumption because greenhouse gas emissions will continue to rise with economic growth. This paper discusses energy efficiency, steady integration of alternative sources, and increased use of best available technologies. Energy criteria developed for environmental labeling certification are presented. Our intention is to encourage manufacturers and service providers to supply consumers with less polluting and energy-consuming goods and services, inform consumers of the environmental and energy impacts, and thereby instill sustainable and responsible consumption. As several programs were initiated in developed countries, environmental labeling requirements created barriers to many exports manufactured in developing countries, affecting current world trade and putting more pressure on countries to meet those requirements. Defining an institutional and legal framework of environmental labeling is a key challenge in implementing such programs for critical economic sectors like tourism, textiles, and food production where energy needs are the most important aspect to control. A case study of Tunisia and its experience with eco-labeling is presented.

  16. 75 FR 27182 - Energy Conservation Program: Web-Based Compliance and Certification Management System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Conservation Program: Web-Based Compliance and Certification Management System AGENCY: Office of Energy... certification reports to the Department of Energy (DOE) through an electronic Web-based tool, the Compliance and... following means: 1. Compliance and Certification Management System (CCMS)--via the Web portal: http...

  17. Looking for America's energy solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiBona, C.J.

    The United States has had to rely on imported oil in recent years. Neither increased coal production in the future nor increased use of nuclear energy will change this situation. Actually, all the projections regarding energy use over the next 25 years assume both increased production of these two sources of fuel as well as continued reliance on imported oil. Imported oil then will be a major factor in meeting the future demands of the industrial sector, which consumed 38.3 percent of U.S. total energy in 1975. Oil imports will also be necessary to meet the demands of the household/commercialmore » sector, which in 1975 accounted for 35.4 percent of the energy consumed in this country, and of the transportation sector, which used 26.1 percent of the energy. Conservation measures have been practiced, but this will not resolve the problem of increased reliance on imported oil over the next two decades. This country will need to continue its efforts in the research and development of alternate energy sources. It will also have to increase its production of all domestic energy supplies. (MCW)« less

  18. Interactive smart battery storage for a PV and wind hybrid energy management control based on conservative power theory

    NASA Astrophysics Data System (ADS)

    Godoy Simões, Marcelo; Davi Curi Busarello, Tiago; Saad Bubshait, Abdullah; Harirchi, Farnaz; Antenor Pomilio, José; Blaabjerg, Frede

    2016-04-01

    This paper presents interactive smart battery-based storage (BBS) for wind generator (WG) and photovoltaic (PV) systems. The BBS is composed of an asymmetric cascaded H-bridge multilevel inverter (ACMI) with staircase modulation. The structure is parallel to the WG and PV systems, allowing the ACMI to have a reduction in power losses compared to the usual solution for storage connected at the DC-link of the converter for WG or PV systems. Moreover, the BBS is embedded with a decision algorithm running real-time energy costs, plus a battery state-of-charge manager and power quality capabilities, making the described system in this paper very interactive, smart and multifunctional. The paper describes how BBS interacts with the WG and PV and how its performance is improved. Experimental results are presented showing the efficacy of this BBS for renewable energy applications.

  19. On the energy footprint of I/O management in Exascale HPC systems

    DOE PAGES

    Dorier, Matthieu; Yildiz, Orcun; Ibrahim, Shadi; ...

    2016-03-21

    The advent of unprecedentedly scalable yet energy hungry Exascale supercomputers poses a major challenge in sustaining a high performance-per-watt ratio. With I/O management acquiring a crucial role in supporting scientific simulations, various I/O management approaches have been proposed to achieve high performance and scalability. But, the details of how these approaches affect energy consumption have not been studied yet. Therefore, this paper aims to explore how much energy a supercomputer consumes while running scientific simulations when adopting various I/O management approaches. In particular, we closely examine three radically different I/O schemes including time partitioning, dedicated cores, and dedicated nodes. Tomore » accomplish this, we implement the three approaches within the Damaris I/O middleware and perform extensive experiments with one of the target HPC applications of the Blue Waters sustained-petaflop supercomputer project: the CM1 atmospheric model. Our experimental results obtained on the French Grid'5000 platform highlight the differences among these three approaches and illustrate in which way various configurations of the application and of the system can impact performance and energy consumption. Moreover, we propose and validate a mathematical model that estimates the energy consumption of a HPC simulation under different I/O approaches. This proposed model gives hints to pre-select the most energy-efficient I/O approach for a particular simulation on a particular HPC system and therefore provides a step towards energy-efficient HPC simulations in Exascale systems. To the best of our knowledge, our work provides the first in-depth look into the energy-performance tradeoffs of I/O management approaches.« less

  20. Publications | Integrated Energy Solutions | NREL

    Science.gov Websites

    Publications 2018 Federal Tax Incentives for Energy Storage Systems Solar Plus: Optimization of Distributed Resiliency REopt: A Platform for Energy System Integration and Optimization Solar Plus: A Holistic Approach Barriers for Residential Solar Photovoltaics with Energy Storage 2016 Quality Assurance Framework for Mini

  1. Electrodialyse inverse. Etude de l'energie electrique obtenue a partir de deux solutions de salinites differentes

    NASA Astrophysics Data System (ADS)

    Audinos, R.

    It is possible to obtain, in the form of electric power, the energy of mixing of two solutions of different salinity by reverse electrodialysis. The laboratory electrodialyzer used was fitted in turn with two different pairs of permselective membranes, AMV-CMV and ARP-CRP. Solutions of ZnSO 4 (216/18.8, 201/34.6, 110/40.2 and 127/14.2 g/l) and of NACl (245/13 and 250/1 g/l) were used in batch recirculation. Only NACl solutions (294/1, 295/1 and 150/1 g/l) were used in continuous flow operation. Results show the influence of type of membrane, composition and concentration of solutions and type of electrode. The maximum power obtained is 400 mW/m 2.

  2. Self-similar cosmological solutions with dark energy. II. Black holes, naked singularities, and wormholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, Hideki; Department of Physics, International Christian University, 3-10-2 Osawa, Mitaka-shi, Tokyo 181-8585; Graduate School of Science and Engineering, Waseda University, Tokyo 169-8555

    We use a combination of numerical and analytical methods, exploiting the equations derived in a preceding paper, to classify all spherically symmetric self-similar solutions which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=({gamma}-1){mu} with 0<{gamma}<2/3. The expansion of the Friedmann universe is accelerated in this case. We find a one-parameter family of self-similar solutions representing a black hole embedded in a Friedmann background. This suggests that, in contrast to the positive pressure case, black holes in a universe with dark energy can grow as fast as the Hubble horizon if they aremore » not too large. There are also self-similar solutions which contain a central naked singularity with negative mass and solutions which represent a Friedmann universe connected to either another Friedmann universe or some other cosmological model. The latter are interpreted as self-similar cosmological white hole or wormhole solutions. The throats of these wormholes are defined as two-dimensional spheres with minimal area on a spacelike hypersurface and they are all nontraversable because of the absence of a past null infinity.« less

  3. Free Energy and Equilibrium: The Basis of Change in G Degrees = -RT In K for Reactions in Solution.

    ERIC Educational Resources Information Center

    Barrow, Gordon M.

    1983-01-01

    Discusses the derivation of a thermodynamic relation. The relation is derived, for reactants in solution, from a treatment of the free energy of the reducing system as a function of the degree of advancement of the solution. Includes microcomputer figures/diagrams produced by programs developed to simulate this study. (JN)

  4. Interactions of solute (3p, 4p, 5p and 6p) with solute, vacancy and divacancy in bcc Fe

    NASA Astrophysics Data System (ADS)

    You, Yu-Wei; Kong, Xiang-Shan; Wu, Xue-Bang; Liu, Wei; Liu, C. S.; Fang, Q. F.; Chen, J. L.; Luo, G.-N.; Wang, Zhiguang

    2014-12-01

    Solute-vacancy binding energy is a key quantity in understanding solute diffusion kinetics and phase segregation, and may help choice of alloy compositions for future material design. However, the binding energy of solute with vacancy is notoriously difficult to measure and largely unknown in bcc Fe. With first-principles method, we systemically calculate the binding energies of solute (3p, 4p, 5p and 6p alloying solutes are included) with vacancy, divacancy and solute in bcc Fe. The binding energy of Si with vacancy in the present work is in good consistent with experimental value available. All the solutes considered are able to form stable solute-vacancy, solute-divacancy complexes, and the binding strength of solute-divacancy is about two times larger than that of solute-vacancy. Most solutes could not form stable solute-solute complexes except S, Se, In and Tl. The factors controlling the binding energies are analyzed at last.

  5. Energy and water quality management systems for water utility's operations: a review.

    PubMed

    Cherchi, Carla; Badruzzaman, Mohammad; Oppenheimer, Joan; Bros, Christopher M; Jacangelo, Joseph G

    2015-04-15

    Holistic management of water and energy resources is critical for water utilities facing increasing energy prices, water supply shortage and stringent regulatory requirements. In the early 1990s, the concept of an integrated Energy and Water Quality Management System (EWQMS) was developed as an operational optimization framework for solving water quality, water supply and energy management problems simultaneously. Approximately twenty water utilities have implemented an EWQMS by interfacing commercial or in-house software optimization programs with existing control systems. For utilities with an installed EWQMS, operating cost savings of 8-15% have been reported due to higher use of cheaper tariff periods and better operating efficiencies, resulting in the reduction in energy consumption of ∼6-9%. This review provides the current state-of-knowledge on EWQMS typical structural features and operational strategies and benefits and drawbacks are analyzed. The review also highlights the challenges encountered during installation and implementation of EWQMS and identifies the knowledge gaps that should motivate new research efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Review on Malaysian Rail Transit Operation and Management System: Issues and Solution in Integration

    NASA Astrophysics Data System (ADS)

    Masirin, Mohd Idrus Mohd; Salin, Aminah Mohd; Zainorabidin, Adnan; Martin, David; Samsuddin, Norshakina

    2017-08-01

    In any context, operation and management of transportation systems are key issues which may affect both life quality and economic development. In large urban agglomerations, an efficient public transportation system may help abate the negative externalities of private car use such as congestion, air and noise pollution, accident and fuel consumption, without excessively penalizing user travel times or zone accessibility. Thus, this study is conducted to appraise the Malaysian rural rail transit operation and management system, which are considered important as there are many issues and solution in integration of the services that need to be tackled more conscientiously. The purpose of this paper is to describe some of the most important issues on integration of services and rail transit system in Malaysian and how to solve or reduce these problems and conflicts. In this paper, it consists of the historical development of rail transit construction in Malaysia. This paper also attempts to identify the important issues related to rail transit services and integration in Malaysian rural rail operation and management system. Comparison is also conducted with other countries such as UK, France, and Japan. Finally, a critical analysis is presented in this paper by looking at the possible application for future Malaysian rail transit operation system and management, especially focusing on enhancing the quality of Malaysian rural rail transit. In conclusion, this paper is expected to successfully review and appraise the existing Malaysian rural rail transit operation and management system pertaining to issues & solution in integration. It is also hoped that reformation or transformation of present service delivery quality of the rail transit operation and management will enable Malaysia to succeed in transforming Malaysian transportation system to greater heights.

  7. Energy management and multi-layer control of networked microgrids

    NASA Astrophysics Data System (ADS)

    Zamora, Ramon

    Networked microgrids is a group of neighboring microgrids that has ability to interchange power when required in order to increase reliability and resiliency. Networked microgrid can operate in different possible configurations including: islanded microgrid, a grid-connected microgrid without a tie-line converter, a grid-connected microgrid with a tie-line converter, and networked microgrids. These possible configurations and specific characteristics of renewable energy offer challenges in designing control and management algorithms for voltage, frequency and power in all possible operating scenarios. In this work, control algorithm is designed based on large-signal model that enables microgrid to operate in wide range of operating points. A combination between PI controller and feed-forward measured system responses will compensate for the changes in operating points. The control architecture developed in this work has multi-layers and the outer layer is slower than the inner layer in time response. The main responsibility of the designed controls are to regulate voltage magnitude and frequency, as well as output power of the DG(s). These local controls also integrate with a microgrid level energy management system or microgrid central controller (MGCC) for power and energy balance for. the entire microgrid in islanded, grid-connected, or networked microgid mode. The MGCC is responsible to coordinate the lower level controls to have reliable and resilient operation. In case of communication network failure, the decentralized energy management will operate locally and will activate droop control. Simulation results indicate the superiority of designed control algorithms compared to existing ones.

  8. Partners | Integrated Energy Solutions | NREL

    Science.gov Websites

    Develops Off-Grid Energy Access through Quality Assurance Framework for Mini-Grids NREL has teamed with the Africa to develop a Quality Assurance Framework for isolated mini-grids. NREL Enhances Energy Resiliency Partnership Develops Off-Grid Energy Access through Quality Assurance Framework for Mini-Grids NREL has teamed

  9. Energy sustainability: consumption, efficiency, and ...

    EPA Pesticide Factsheets

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consumption began exceeding planetary supply in 1977 and by 2030, global energy demand, population, and gross domestic product are projected to greatly increase over 1977 levels. With the aim of finding sustainable energy solutions, we present a simple yet rigorous procedure for assessing and counterbalancing the relationship between energy demand, environmental impact, population, GDP, and energy efficiency. Our analyses indicated that infeasible increases in energy efficiency (over 100 %) would be required by 2030 to return to 1977 environmental impact levels and annual reductions (2 and 3 %) in energy demand resulted in physical, yet impractical requirements; hence, a combination of policy and technology approaches is needed to tackle this critical challenge. This work emphasizes the difficulty in moving toward energy sustainability and helps to frame possible solutions useful for policy and management. Based on projected energy consumption, environmental impact, human population, gross domestic product (GDP), and energy efficiency, for this study, we explore the increase in energy-use efficiency and the decrease in energy use intensity required to achieve sustainable environmental impact le

  10. High energy supercapattery with an ionic liquid solution of LiClO4.

    PubMed

    Yu, Linpo; Chen, George Z

    2016-08-15

    A supercapattery combining an ideally polarized capacitor-like electrode and a battery-like electrode is demonstrated theoretically and practically using an ionic liquid electrolyte containing 1-butyl-1-methylpyrrolidinium tri(pentafluoroethyl)trifluorophosphate (BMPyrrFAP), gamma-butyrolactone (γ-GBL) and LiClO4. The electrochemical deposition and dissolution of lithium metal on a platinum and glass carbon electrode were investigated in this ionic liquid solution. The CVs showed that the fresh electrochemically deposited lithium metal was stable in the electrolyte, which encouraged the investigation of this ionic liquid solution in a supercapattery with a lithium battery negative electrode. The active material counted specific energy of the supercapattery based on a lithium negative electrode and an activated carbon (Act-C) positive electrode could reach 230 W h kg(-1) under a galvanostatic charge-discharge current density of 1 mA cm(-2). The positive electrode material (Act-C) was also investigated by CV, AC impedance, SEM and BET. The non-uniform particle size and micropores dominated porous structure of the Act-C enabled its electric double layer capacitor (EDLC) behavior in the ionic liquid solution. The measured specific capacitance of the Act-C in this ionic liquid solution is higher than the same Act-C in aqueous solution, which indicates the Act-C can also perform well in the ionic liquid electrolyte.

  11. Electrical Load and Energy Management. Course Outline and Instructional Materials.

    ERIC Educational Resources Information Center

    Wang, Paul

    Presented are 13 lecture outlines with accompanying handouts and reference lists for teaching school administrators and maintenance personnel the use of electrical load management as an energy conservation tool. To aid course participants in making cost effective use of electrical power, methods of load management in a variety of situations are…

  12. Ergodicity, configurational entropy and free energy in pigment solutions and plant photosystems: influence of excited state lifetime.

    PubMed

    Jennings, Robert C; Zucchelli, Giuseppe

    2014-01-01

    We examine ergodicity and configurational entropy for a dilute pigment solution and for a suspension of plant photosystem particles in which both ground and excited state pigments are present. It is concluded that the pigment solution, due to the extreme brevity of the excited state lifetime, is non-ergodic and the configurational entropy approaches zero. Conversely, due to the rapid energy transfer among pigments, each photosystem is ergodic and the configurational entropy is positive. This decreases the free energy of the single photosystem pigment array by a small amount. On the other hand, the suspension of photosystems is non-ergodic and the configurational entropy approaches zero. The overall configurational entropy which, in principle, includes contributions from both the single excited photosystems and the suspension which contains excited photosystems, also approaches zero. Thus the configurational entropy upon photon absorption by either a pigment solution or a suspension of photosystem particles is approximately zero. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. MRI, Battelle and Bechtel to Manage National Renewable Energy Lab

    Science.gov Websites

    Research Institute (MRI), Battelle Memorial Institute and Bechtel Corp. "We believe this new team had won the competition to manage and operate NREL for the next five years. The contract signing next five years, depending on congressional appropriations for renewable energy and energy efficiency

  14. Innovation management in renewable energy sector

    NASA Astrophysics Data System (ADS)

    Ignat, V.

    2017-08-01

    As a result of the globalization of knowledge, shortening of the innovation cycle and the aggravation of the price situation, the diffusion of innovation has accelerated. The protection of innovation has become even more important for companies in technologyintensive industries. Legal and actual patent right strategies complement one another, in order to amortize the investment in product development. Climate change is one of today’s truly global challenges, affecting all aspects of socio-economic development in every region of the world. Technology development and its rapid diffusion are considered crucial for tackling the climate change challenge. At the global level, the last decades have seen a continuous expansion of inventive activity in renewable energy technologies. The growth in Renewable Energy (RE) inventions has been much faster than in other technologies, and RE today represents nearly 6% of global invention activity, up from 1.5% in 1990. This paper discusses about global innovation activity in the last five years in the renewable energy sector and describes the Innovation and Technology Management process for supporting managerial decision making.

  15. CFEST Coupled Flow, Energy & Solute Transport Version CFEST005 User’s Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Vicky L.; Chen, Yousu; Gilca, Alex

    2006-07-20

    The CFEST (Coupled Flow, Energy, and Solute Transport) simulator described in this User’s Guide is a three-dimensional finite-element model used to evaluate groundwater flow and solute mass transport. Confined and unconfined aquifer systems, as well as constant and variable density fluid flows can be represented with CFEST. For unconfined aquifers, the model uses a moving boundary for the water table, deforming the numerical mesh so that the uppermost nodes are always at the water table. For solute transport, changes in concentra¬tion of a single dissolved chemical constituent are computed for advective and hydrodynamic transport, linear sorption represented by a retardationmore » factor, and radioactive decay. Although several thermal parameters described in this User’s Guide are required inputs, thermal transport has not yet been fully implemented in the simulator. Once fully implemented, transport of thermal energy in the groundwater and solid matrix of the aquifer can also be used to model aquifer thermal regimes. The CFEST simulator is written in the FORTRAN 77 language, following American National Standards Institute (ANSI) standards. Execution of the CFEST simulator is controlled through three required text input files. These input file use a structured format of associated groups of input data. Example input data lines are presented for each file type, as well as a description of the structured FORTRAN data format. Detailed descriptions of all input requirements, output options, and program structure and execution are provided in this User’s Guide. Required inputs for auxillary CFEST utilities that aide in post-processing data are also described. Global variables are defined for those with access to the source code. Although CFEST is a proprietary code (CFEST, Inc., Irvine, CA), the Pacific Northwest National Laboratory retains permission to maintain its own source, and to distribute executables to Hanford subcontractors.« less

  16. Multi-time scale energy management of wind farms based on comprehensive evaluation technology

    NASA Astrophysics Data System (ADS)

    Xu, Y. P.; Huang, Y. H.; Liu, Z. J.; Wang, Y. F.; Li, Z. Y.; Guo, L.

    2017-11-01

    A novel energy management of wind farms is proposed in this paper. Firstly, a novel comprehensive evaluation system is proposed to quantify economic properties of each wind farm to make the energy management more economical and reasonable. Then, a combination of multi time-scale schedule method is proposed to develop a novel energy management. The day-ahead schedule optimizes unit commitment of thermal power generators. The intraday schedule is established to optimize power generation plan for all thermal power generating units, hydroelectric generating sets and wind power plants. At last, the power generation plan can be timely revised in the process of on-line schedule. The paper concludes with simulations conducted on a real provincial integrated energy system in northeast China. Simulation results have validated the proposed model and corresponding solving algorithms.

  17. Electric power processing, distribution, management and energy storage

    NASA Astrophysics Data System (ADS)

    Giudici, R. J.

    1980-07-01

    Power distribution subsystems are required for three elements of the SPS program: (1) orbiting satellite, (2) ground rectenna, and (3) Electric Orbiting Transfer Vehicle (EOTV). Power distribution subsystems receive electrical power from the energy conversion subsystem and provide the power busses rotary power transfer devices, switchgear, power processing, energy storage, and power management required to deliver control, high voltage plasma interactions, electric thruster interactions, and spacecraft charging of the SPS and the EOTV are also included as part of the power distribution subsystem design.

  18. Electric power processing, distribution, management and energy storage

    NASA Technical Reports Server (NTRS)

    Giudici, R. J.

    1980-01-01

    Power distribution subsystems are required for three elements of the SPS program: (1) orbiting satellite, (2) ground rectenna, and (3) Electric Orbiting Transfer Vehicle (EOTV). Power distribution subsystems receive electrical power from the energy conversion subsystem and provide the power busses rotary power transfer devices, switchgear, power processing, energy storage, and power management required to deliver control, high voltage plasma interactions, electric thruster interactions, and spacecraft charging of the SPS and the EOTV are also included as part of the power distribution subsystem design.

  19. Environmental management assessment of the National Institute for Petroleum and Energy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-08-01

    This report documents the results of the environmental management assessment of the National Institute for Petroleum and Energy Research (NIPER), located in Bartlesville, Oklahoma. The assessment was conducted August 15-26, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health. The assessment included reviews of documents and reports, as well as inspections and observations of selected facilities and operations. Further, the team conducted interviews with management and staff from the Bartlesville Project Office (BPO), the Office of Fossil Energy (FE), the Pittsburgh Energy Technology Center (PETC), state and local regulatory agencies, andmore » BDM Oklahoma (BDM-OK), which is the management and operating (M&O) contractor for NIPER. Because of the transition from a cooperative agreement to an M&O contract in January 1994, the scope of the assessment was to evaluate (1) the effectiveness of BDM-OK management systems being developed and BPO systems in place and under development to address environmental requirements; (2) the status of compliance with DOE Orders, guidance, and directives; and (3) conformance with accepted industry management practices. An environmental management assessment was deemed appropriate at this time in order to identify any systems modifications that would provide enhanced effectiveness of the management systems currently under development.« less

  20. Phase Change Materials as a solution to improve energy efficiency in Portuguese residential buildings

    NASA Astrophysics Data System (ADS)

    Araújo, C.; Pinheiro, A.; Castro, M. F.; Bragança, L.

    2017-10-01

    The buildings sector contributes to 30% of annual greenhouse gas emissions and consumes about 40% of energy. However, this consumption can be reduced by between 30% and 80% through commercially available technologies. The consumption of energy in the dwellings is mostly associated with the heating and cooling of the interior environment. One solution to reduce these consumptions is the implementation of technologies and Phase Change Materials (PCMs) for Thermal Energy Storage (TES). So, the aim of this work is to analyse the advantages, in terms of decreasing energy consumption, associated with the application of PCMs in Portuguese residential buildings. For this, eight PCMs with different melting ranges were analysed. These materials were analysed through a dynamic simulation performed with EnergyPlus software. The results achieved, showed that the materials studied allow to reduce up to 13% of the heating needs and up to 92% of the cooling needs of a building located in the North of Portugal, at an altitude higher than 100m.

  1. Experimental study of mini SCADA renewable energy management system on microgrid using Raspberry Pi

    NASA Astrophysics Data System (ADS)

    Tridianto, E.; Permatasari, P. D.; Ali, I. R.

    2018-03-01

    Renewable Energy Management System (REMS) is a device that can be able to monitor power through a microgrid. The purpose of this system is to optimize power usage that produced from renewable energy with the result that reduces power demand from the grid. To reach the goal this device manage the load power needs fully supplied by renewable energy when the power produced from renewable energy is higher than load demand, besides power surplus will be stored in battery in this way energy stored in battery can be used when it needed. When the power produced from renewable energy can not satisfy the power demand, power will supply by renewable energy and grid. This device uses power meters for record any power flow through microgrid. In order to manage power flow in microgrid this system use relay module. The user can find out energy consumption (consumed by the load) and production (produced by renewable energy) in a period of time so that the user can switch on the load in right time.

  2. Medical management of epileptic seizures: challenges and solutions.

    PubMed

    Sarma, Anand K; Khandker, Nabil; Kurczewski, Lisa; Brophy, Gretchen M

    2016-01-01

    Epilepsy is one of the most common neurologic illnesses. This condition afflicts 2.9 million adults and children in the US, leading to an economic impact amounting to $15.5 billion. Despite the significant burden epilepsy places on the population, it is not very well understood. As this understanding continues to evolve, it is important for clinicians to stay up to date with the latest advances to provide the best care for patients. In the last 20 years, the US Food and Drug Administration has approved 15 new antiepileptic drugs (AEDs), with many more currently in development. Other advances have been achieved in terms of diagnostic modalities like electroencephalography technology, treatment devices like vagal nerve and deep-brain stimulators, novel alternate routes of drug administration, and improvement in surgical techniques. Specific patient populations, such as the pregnant, elderly, those with HIV/AIDS, and those with psychiatric illness, present their own unique challenges, with AED side effects, drug interactions, and medical-psychiatric comorbidities adding to the conundrum. The purpose of this article is to review the latest literature guiding the management of acute epileptic seizures, focusing on the current challenges across different practice settings, and it discusses studies in various patient populations, including the pregnant, geriatric, those with HIV/AIDS, comatose, psychiatric, and "pseudoseizure" patients, and offers possible evidence-based solutions or the expert opinion of the authors. Also included is information on newer AEDs, routes of administration, and significant AED-related drug-interaction tables. This review has tried to address only some of these issues that any practitioner who deals with the acute management of seizures may encounter. The document also highlights the numerous avenues for new research that would help practitioners optimize epilepsy management.

  3. Effective management of combined renewable energy resources in Tajikistan.

    PubMed

    Karimov, Khasan S; Akhmedov, Khakim M; Abid, Muhammad; Petrov, Georgiy N

    2013-09-01

    Water is needed mostly in summer time for irrigation and in winter time for generation of electric power. This results in conflicts between downstream countries that utilize water mostly for irrigation and those upstream countries, which use water for generation of electric power. At present Uzbekistan is blocking railway connection that is going to Tajikistan to interfere to transportation of the equipment and materials for construction of Rogun hydropower plant. In order to avoid conflicts between Tajikistan and Uzbekistan a number of measures for the utilization of water resources of the trans-boundary Rivers Amu-Darya and Sir-Darya are discussed. In addition, utilization of water with the supplement of wind and solar energy projects for proper and efficient management of water resources in Central Asia; export-import exchanges of electric energy in summer and winter time between neighboring countries; development of small hydropower project, modern irrigation system in main water consuming countries and large water reservoir hydropower projects for control of water resources for hydropower and irrigation are also discussed. It is also concluded that an effective management of water resources can be achieved by signing Water treaty between upstream and downstream countries, first of all between Tajikistan and Uzbekistan. In this paper management of water as renewable energy resource in Tajikistan and Central Asian Republics are presented. Copyright © 2013. Published by Elsevier B.V.

  4. A quasichemical approach for protein-cluster free energies in dilute solution

    NASA Astrophysics Data System (ADS)

    Young, Teresa M.; Roberts, Christopher J.

    2007-10-01

    Reversible formation of protein oligomers or small clusters is a key step in processes such as protein polymerization, fibril formation, and protein phase separation from dilute solution. A straightforward, statistical mechanical approach to accurately calculate cluster free energies in solution is presented using a cell-based, quasichemical (QC) approximation for the partition function of proteins in an implicit solvent. The inputs to the model are the protein potential of mean force (PMF) and the corresponding subcell degeneracies up to relatively low particle densities. The approach is tested using simple two and three dimensional lattice models in which proteins interact with either isotropic or anisotropic nearest-neighbor attractions. Comparison with direct Monte Carlo simulation shows that cluster probabilities and free energies of oligomer formation (ΔGi0) are quantitatively predicted by the QC approach for protein volume fractions ˜10-2 (weight/volume concentration ˜10gl-1) and below. For small clusters, ΔGi0 depends weakly on the strength of short-ranged attractive interactions for most experimentally relevant values of the normalized osmotic second virial coefficient (b2*). For larger clusters (i ≫2), there is a small but non-negligible b2* dependence. The results suggest that nonspecific, hydrophobic attractions may not significantly stabilize prenuclei in processes such as non-native aggregation. Biased Monte Carlo methods are shown to accurately provide subcell degeneracies that are intractable to obtain analytically or by direct enumeration, and so offer a means to generalize the approach to mixtures and proteins with more complex PMFs.

  5. Green farming systems for the Southeast USA using manure-to-energy conversion platforms

    USDA-ARS?s Scientific Manuscript database

    Livestock operations in the Southeastern USA are faced with implementing holistic solutions to address effective manure treatment through efficient energy management and safeguarding of supporting natural resources. By integrating waste-to-energy conversion platforms, future green farming systems ca...

  6. 'Part of the solution': Developing sustainable energy through co-operatives and learning

    NASA Astrophysics Data System (ADS)

    Duguid, Fiona C. B.

    and understanding of WindShare's role in sustainable energy. WindShare Co-operative provided the structure whereby members felt a part of the solution in terms of sustainable energy development. Policies and practices at all levels of government should encourage the advancement of green energy co-operatives to support Canada's efforts at public involvement in combating climate change and pollution.

  7. Integration of energy management concepts into the flight deck

    NASA Technical Reports Server (NTRS)

    Morello, S. A.

    1981-01-01

    The rapid rise of fuel costs has become a major concern of the commercial aviation industry, and it has become mandatory to seek means by which to conserve fuel. A research program was initiated in 1979 to investigate the integration of fuel-conservative energy/flight management computations and information into today's and tomorrow's flight deck. One completed effort within this program has been the development and flight testing of a fuel-efficient, time-based metering descent algorithm in a research cockpit environment. Research flights have demonstrated that time guidance and control in the cockpit was acceptable to both pilots and ATC controllers. Proper descent planning and energy management can save fuel for the individual aircraft as well as the fleet by helping to maintain a regularized flow into the terminal area.

  8. Performance of the SMD and SM8 models for predicting solvation free energy of neutral solutes in methanol, dimethyl sulfoxide and acetonitrile.

    PubMed

    Zanith, Caroline C; Pliego, Josefredo R

    2015-03-01

    The continuum solvation models SMD and SM8 were developed using 2,346 solvation free energy values for 318 neutral molecules in 91 solvents as reference. However, no solvation data of neutral solutes in methanol was used in the parametrization, while only few solvation free energy values of solutes in dimethyl sulfoxide and acetonitrile were used. In this report, we have tested the performance of the models for these important solvents. Taking data from literature, we have generated solvation free energy, enthalpy and entropy values for 37 solutes in methanol, 21 solutes in dimethyl sulfoxide and 19 solutes in acetonitrile. Both SMD and SM8 models have presented a good performance in methanol and acetonitrile, with mean unsigned error equal or less than 0.66 and 0.55 kcal mol(-1) in methanol and acetonitrile, respectively. However, the correlation is worse in dimethyl sulfoxide, where the SMD and SM8 methods present mean unsigned error of 1.02 and 0.95 kcal mol(-1), respectively. Our results point out the SMx family of models need be improved for dimethyl sulfoxide solvent.

  9. Performance of the SMD and SM8 models for predicting solvation free energy of neutral solutes in methanol, dimethyl sulfoxide and acetonitrile

    NASA Astrophysics Data System (ADS)

    Zanith, Caroline C.; Pliego, Josefredo R.

    2015-03-01

    The continuum solvation models SMD and SM8 were developed using 2,346 solvation free energy values for 318 neutral molecules in 91 solvents as reference. However, no solvation data of neutral solutes in methanol was used in the parametrization, while only few solvation free energy values of solutes in dimethyl sulfoxide and acetonitrile were used. In this report, we have tested the performance of the models for these important solvents. Taking data from literature, we have generated solvation free energy, enthalpy and entropy values for 37 solutes in methanol, 21 solutes in dimethyl sulfoxide and 19 solutes in acetonitrile. Both SMD and SM8 models have presented a good performance in methanol and acetonitrile, with mean unsigned error equal or less than 0.66 and 0.55 kcal mol-1 in methanol and acetonitrile, respectively. However, the correlation is worse in dimethyl sulfoxide, where the SMD and SM8 methods present mean unsigned error of 1.02 and 0.95 kcal mol-1, respectively. Our results point out the SMx family of models need be improved for dimethyl sulfoxide solvent.

  10. Effective energy data management for low-carbon growth planning: An analytical framework for assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bo; Evans, Meredydd; Yu, Sha

    Readily available and reliable energy data is fundamental to effective analysis and policymaking for the energy sector. Energy statistics of high quality, systematically compiled and effectively disseminated, not only support governments to ensure national security and evaluate energy policies, but they also guide investment decisions in both the private and public sectors. Because of energy’s close link to greenhouse gas emissions, energy data has a particularly important role in assessing emissions and strategies to reduce emissions. In this study, energy data management in four countries – Canada, Germany, the United Kingdom and the United States – are examined from bothmore » organizational and operational perspectives. With insights from these best practices, we present a framework for the evaluation of national energy data management systems. It can be used by national statistics compilers to assess their chosen model and to identify areas for improvement. We then use India as a test case for this framework. Its government is working to enhance India’s energy data management to improve sustainable growth planning.« less

  11. Energy Management System Successful in Indiana Elementary School.

    ERIC Educational Resources Information Center

    School Business Affairs, 1984

    1984-01-01

    The new Oregon-Davis Elementary School in rural Indiana embodies state-of-the-art energy management. Its environmental systems include thorough insulation, dual heating and cooling equipment for flexible loads, and decentralized computer controls. A heat recovery unit and variable-air-volume discharge ducts also contribute to conservation. (MCG)

  12. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    DOE PAGES

    Zhang, Yanwen; Stocks, George Malcolm; Jin, Ke; ...

    2015-10-28

    A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel tomore » binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys.« less

  13. Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks

    PubMed Central

    Li, Ming; Chen, Pengpeng; Gao, Shouwan

    2016-01-01

    Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes. PMID:27649170

  14. Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks.

    PubMed

    Li, Ming; Chen, Pengpeng; Gao, Shouwan

    2016-09-13

    Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes.

  15. STAR: an integrated solution to management and visualization of sequencing data

    PubMed Central

    Wang, Tao; Liu, Jie; Shen, Li; Tonti-Filippini, Julian; Zhu, Yun; Jia, Haiyang; Lister, Ryan; Whitaker, John W.; Ecker, Joseph R.; Millar, A. Harvey; Ren, Bing; Wang, Wei

    2013-01-01

    Motivation: Easily visualization of complex data features is a necessary step to conduct studies on next-generation sequencing (NGS) data. We developed STAR, an integrated web application that enables online management, visualization and track-based analysis of NGS data. Results: STAR is a multilayer web service system. On the client side, STAR leverages JavaScript, HTML5 Canvas and asynchronous communications to deliver a smoothly scrolling desktop-like graphical user interface with a suite of in-browser analysis tools that range from providing simple track configuration controls to sophisticated feature detection within datasets. On the server side, STAR supports private session state retention via an account management system and provides data management modules that enable collection, visualization and analysis of third-party sequencing data from the public domain with over thousands of tracks hosted to date. Overall, STAR represents a next-generation data exploration solution to match the requirements of NGS data, enabling both intuitive visualization and dynamic analysis of data. Availability and implementation: STAR browser system is freely available on the web at http://wanglab.ucsd.edu/star/browser and https://github.com/angell1117/STAR-genome-browser. Contact: wei-wang@ucsd.edu PMID:24078702

  16. STAR: an integrated solution to management and visualization of sequencing data.

    PubMed

    Wang, Tao; Liu, Jie; Shen, Li; Tonti-Filippini, Julian; Zhu, Yun; Jia, Haiyang; Lister, Ryan; Whitaker, John W; Ecker, Joseph R; Millar, A Harvey; Ren, Bing; Wang, Wei

    2013-12-15

    Easily visualization of complex data features is a necessary step to conduct studies on next-generation sequencing (NGS) data. We developed STAR, an integrated web application that enables online management, visualization and track-based analysis of NGS data. STAR is a multilayer web service system. On the client side, STAR leverages JavaScript, HTML5 Canvas and asynchronous communications to deliver a smoothly scrolling desktop-like graphical user interface with a suite of in-browser analysis tools that range from providing simple track configuration controls to sophisticated feature detection within datasets. On the server side, STAR supports private session state retention via an account management system and provides data management modules that enable collection, visualization and analysis of third-party sequencing data from the public domain with over thousands of tracks hosted to date. Overall, STAR represents a next-generation data exploration solution to match the requirements of NGS data, enabling both intuitive visualization and dynamic analysis of data. STAR browser system is freely available on the web at http://wanglab.ucsd.edu/star/browser and https://github.com/angell1117/STAR-genome-browser.

  17. Modern Corneal Eye-Banking Using a Software-Based IT Management Solution.

    PubMed

    Kern, C; Kortuem, K; Wertheimer, C; Nilmayer, O; Dirisamer, M; Priglinger, S; Mayer, W J

    2018-01-01

    Increasing government legislation and regulations in manufacturing have led to additional documentation regarding the pharmaceutical product requirements of corneal grafts in the European Union. The aim of this project was to develop a software within a hospital information system (HIS) to support the documentation process, to improve the management of the patient waiting list and to increase informational flow between the clinic and eye bank. After an analysis of the current documentation process, a new workflow and software were implemented in our electronic health record (EHR) system. The software takes over most of the documentation and reduces the time required for record keeping. It guarantees real-time tracing of all steps during human corneal tissue processing from the start of production until allocation during surgery and includes follow-up within the HIS. Moreover, listing of the patient for surgery as well as waiting list management takes place in the same system. The new software for corneal eye banking supports the whole process chain by taking over both most of the required documentation and the management of the transplant waiting list. It may provide a standardized IT-based solution for German eye banks working within the same HIS.

  18. Stacking fault energies of face-centered cubic concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen

    2017-06-22

    We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less

  19. Stacking fault energies of face-centered cubic concentrated solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen

    We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less

  20. Agile Thermal Management STT-RX. Towards High Energy Density, High Conductivity Thermal Energy Storage Composites (PREPRINT)

    DTIC Science & Technology

    2011-12-01

    management system. This paper describes recent development of salt hydrate-based TES composites at the Air Force Research Laboratory. Salt hydrates are...composites. 15. SUBJECT TERMS thermal energy storage, composite, salt hydrate, graphic foam 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...part of a thermal management system. This paper describes recent development of salt hydrate-based TES composites at the Air Force Research

  1. Optimization-Based Management of Energy Systems

    DTIC Science & Technology

    2011-05-11

    Power [kW] F u e l co n su m p tio n [g a l/h ] 50 kW ~45 kWh 10 Energy Management Framework: Dealing with Uncertainties Test Cases used to exploit...collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE MAY 2011 2. REPORT TYPE 3. DATES COVERED 00-00...served under all operating conditions.  ‘Customizable’ power quality and reliability  Seamless transition between islanding and off-grid operation

  2. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion.

    PubMed

    Li, Fa-tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-11-14

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  3. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Li, Fa-Tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-10-01

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  4. Benchmark solutions for the galactic ion transport equations: Energy and spatially dependent problems

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Wilson, John W.

    1989-01-01

    Nontrivial benchmark solutions are developed for the galactic ion transport (GIT) equations in the straight-ahead approximation. These equations are used to predict potential radiation hazards in the upper atmosphere and in space. Two levels of difficulty are considered: (1) energy independent, and (2) spatially independent. The analysis emphasizes analytical methods never before applied to the GIT equations. Most of the representations derived have been numerically implemented and compared to more approximate calculations. Accurate ion fluxes are obtained (3 to 5 digits) for nontrivial sources. For monoenergetic beams, both accurate doses and fluxes are found. The benchmarks presented are useful in assessing the accuracy of transport algorithms designed to accommodate more complex radiation protection problems. In addition, these solutions can provide fast and accurate assessments of relatively simple shield configurations.

  5. Vibrational spectroscopic determination of local solvent electric field, solute-solvent electrostatic interaction energy, and their fluctuation amplitudes.

    PubMed

    Lee, Hochan; Lee, Gayeon; Jeon, Jonggu; Cho, Minhaeng

    2012-01-12

    IR probes have been extensively used to monitor local electrostatic and solvation dynamics. Particularly, their vibrational frequencies are highly sensitive to local solvent electric field around an IR probe. Here, we show that the experimentally measured vibrational frequency shifts can be inversely used to determine local electric potential distribution and solute-solvent electrostatic interaction energy. In addition, the upper limits of their fluctuation amplitudes are estimated by using the vibrational bandwidths. Applying this method to fully deuterated N-methylacetamide (NMA) in D(2)O and examining the solvatochromic effects on the amide I' and II' mode frequencies, we found that the solvent electric potential difference between O(═C) and D(-N) atoms of the peptide bond is about 5.4 V, and thus, the approximate solvent electric field produced by surrounding water molecules on the NMA is 172 MV/cm on average if the molecular geometry is taken into account. The solute-solvent electrostatic interaction energy is estimated to be -137 kJ/mol, by considering electric dipole-electric field interaction. Furthermore, their root-mean-square fluctuation amplitudes are as large as 1.6 V, 52 MV/cm, and 41 kJ/mol, respectively. We found that the water electric potential on a peptide bond is spatially nonhomogeneous and that the fluctuation in the electrostatic peptide-water interaction energy is about 10 times larger than the thermal energy at room temperature. This indicates that the peptide-solvent interactions are indeed important for the activation of chemical reactions in aqueous solution.

  6. Optimal Management and Design of Energy Systems under Atmospheric Uncertainty

    NASA Astrophysics Data System (ADS)

    Anitescu, M.; Constantinescu, E. M.; Zavala, V.

    2010-12-01

    The generation and distpatch of electricity while maintaining high reliability levels are two of the most daunting engineering problems of the modern era. This was demonstrated by the Northeast blackout of August 2003, which resulted in the loss of 6.2 gigawatts that served more than 50 million people and which resulted in economic losses on the order of $10 billion. In addition, there exist strong socioeconomic pressures to improve the efficiency of the grid. The most prominent solution to this problem is a substantial increase in the use of renewable energy such as wind and solar. In turn, its uncertain availability—which is due to the intrinsic weather variability—will increase the likelihood of disruptions. In this endeavors of current and next-generation power systems, forecasting atmospheric conditions with uncertainty can and will play a central role, at both the demand and the generation ends. User demands are strongly correlated to physical conditions such as temperature, humidity, and solar radiation. The reason is that the ambient temperature and solar radiation dictate the amount of air conditioning and lighting needed in residential and commercial buildings. But these potential benefits would come at the expense of increased variability in the dynamics of both production and demand, which would become even more dependent on weather state and its uncertainty. One of the important challenges for energy in our time is how to harness these benefits while “keeping the lights on”—ensuring that the demand is satisfied at all times and that no blackout occurs while all energy sources are optimally used. If we are to meet this challenge, accounting for uncertainty in the atmospheric conditions is essential, since this will allow minimizing the effects of false positives: committing too little baseline power in anticipation of demand that is underestimated or renewable energy levels that fail to materialize. In this work we describe a framework for the

  7. Expert assessment of the current state of the energy management system in the company

    NASA Astrophysics Data System (ADS)

    Minnullina, Anna; Abdrazakov, Rais

    2017-10-01

    The authors’ expert assessment of the current state of the energy management system in the company is proposed in the article. The experts are invited to assess the status of the energy management system in the following categories: energy policy, organizational structure, training, motivation, control, communication, investment, and energy consumption culture. For the purposes of interpretation of the results of the expert evaluation obtained, a gradation based on a possible range of values is proposed. The expert evaluation allows representing the status of the energy management system in general and at each of its individual levels, which makes it possible to identify the problem areas more accurately. To confirm the applied nature of the proposed methodology, the authors assessed the opinions of 8 experts, employed by the road construction company of the Tyumen Region and related in one way or another to the process of energy consumption in the company due to the nature of their activities.

  8. Dynamic Energy Management System for a Smart Microgrid.

    PubMed

    Venayagamoorthy, Ganesh Kumar; Sharma, Ratnesh K; Gautam, Prajwal K; Ahmadi, Afshin

    2016-08-01

    This paper presents the development of an intelligent dynamic energy management system (I-DEMS) for a smart microgrid. An evolutionary adaptive dynamic programming and reinforcement learning framework is introduced for evolving the I-DEMS online. The I-DEMS is an optimal or near-optimal DEMS capable of performing grid-connected and islanded microgrid operations. The primary sources of energy are sustainable, green, and environmentally friendly renewable energy systems (RESs), e.g., wind and solar; however, these forms of energy are uncertain and nondispatchable. Backup battery energy storage and thermal generation were used to overcome these challenges. Using the I-DEMS to schedule dispatches allowed the RESs and energy storage devices to be utilized to their maximum in order to supply the critical load at all times. Based on the microgrid's system states, the I-DEMS generates energy dispatch control signals, while a forward-looking network evaluates the dispatched control signals over time. Typical results are presented for varying generation and load profiles, and the performance of I-DEMS is compared with that of a decision tree approach-based DEMS (D-DEMS). The robust performance of the I-DEMS was illustrated by examining microgrid operations under different battery energy storage conditions.

  9. Cosmological solutions of low-energy heterotic M theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copeland, Edmund J.; Ellison, James; Roberts, Jonathan

    We derive a set of exact cosmological solutions to the D=4, N=1 supergravity description of heterotic M theory. Having identified a new and exact SU(3) Toda model solution, we then apply symmetry transformations to both this solution and to a previously known SU(2) Toda model, in order to derive two further sets of new cosmological solutions. In the symmetry-transformed SU(3) Toda case we find an unusual bouncing motion for the M5 brane, such that this brane can be made to reverse direction part way through its evolution. This bounce occurs purely through the interaction of nonstandard kinetic terms, as theremore » are no explicit potentials in the action. We also present a perturbation calculation which demonstrates that, in a simple static limit, heterotic M theory possesses a scale-invariant isocurvature mode. This mode persists in certain asymptotic limits of all the solutions we have derived, including the bouncing solution.« less

  10. Research of home energy management system based on technology of PLC and ZigBee

    NASA Astrophysics Data System (ADS)

    Wei, Qi; Shen, Jiaojiao

    2015-12-01

    In view of the problem of saving effectively energy and energy management in home, this paper designs a home energy intelligent control system based on power line carrier communication and wireless ZigBee sensor networks. The system is based on ARM controller, power line carrier communication and wireless ZigBee sensor network as the terminal communication mode, and realizes the centralized and intelligent control of home appliances. Through the combination of these two technologies, the advantages of the two technologies complement each other, and provide a feasible plan for the construction of energy-efficient, intelligent home energy management system.

  11. Solute atmospheres at dislocations

    DOE PAGES

    Hirth, John P.; Barnett, David M.; Hoagland, Richard G.

    2017-06-01

    In this study, a two-dimensional plane strain elastic solution is determined for the Cottrell solute atmosphere around an edge dislocation in an infinitely long cylinder of finite radius (the matrix), in which rows of solutes are represented by cylindrical rods with in-plane hydrostatic misfit (axial misfit is also considered). The periphery of the matrix is traction-free, thus introducing an image solute field which generates a solute-solute interaction energy that has not been considered previously. The relevant energy for the field of any distribution of solutes coexistent with a single edge dislocation along the (matrix) cylinder axis is determined, and coherencymore » effects are discussed and studied. Monte Carlo simulations accounting for all pertinent interactions over a range of temperatures are found to yield solute distributions different from classical results, namely, (1) Fermi-Dirac condensations at low temperatures at the free surface, (2) the majority of the atmosphere lying within an unexpectedly large non-linear interaction region near the dislocation core, and (3) temperature-dependent asymmetrical solute arrangements that promote bending. The solute distributions at intermediate temperatures show a 1/r dependence in agreement with previous linearized approximations. With a standard state of solute corresponding to a mean concentration, c 0, the relevant interaction energy expression presented in this work is valid when extended to large concentrations for which Henry's Law and Vegard's Law do not apply.« less

  12. Solute atmospheres at dislocations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirth, John P.; Barnett, David M.; Hoagland, Richard G.

    In this study, a two-dimensional plane strain elastic solution is determined for the Cottrell solute atmosphere around an edge dislocation in an infinitely long cylinder of finite radius (the matrix), in which rows of solutes are represented by cylindrical rods with in-plane hydrostatic misfit (axial misfit is also considered). The periphery of the matrix is traction-free, thus introducing an image solute field which generates a solute-solute interaction energy that has not been considered previously. The relevant energy for the field of any distribution of solutes coexistent with a single edge dislocation along the (matrix) cylinder axis is determined, and coherencymore » effects are discussed and studied. Monte Carlo simulations accounting for all pertinent interactions over a range of temperatures are found to yield solute distributions different from classical results, namely, (1) Fermi-Dirac condensations at low temperatures at the free surface, (2) the majority of the atmosphere lying within an unexpectedly large non-linear interaction region near the dislocation core, and (3) temperature-dependent asymmetrical solute arrangements that promote bending. The solute distributions at intermediate temperatures show a 1/r dependence in agreement with previous linearized approximations. With a standard state of solute corresponding to a mean concentration, c 0, the relevant interaction energy expression presented in this work is valid when extended to large concentrations for which Henry's Law and Vegard's Law do not apply.« less

  13. Causes and Solutions for High Energy Consumption in Traditional Buildings Located in Hot Climate Regions

    NASA Astrophysics Data System (ADS)

    Barayan, Olfat Mohammad

    A considerable amount of money for high-energy consumption is spent in traditional buildings located in hot climate regions. High-energy consumption is significantly influenced by several causes, including building materials, orientation, mass, and openings' sizes. This paper aims to identify these causes and find practical solutions to reduce the annual cost of bills. For the purpose of this study, simulation research method has been followed. A comparison between two Revit models has also been created to point out the major cause of high-energy consumption. By analysing different orientations, wall insulation, and window glazing and applying some other high performance building techniques, a conclusion was found to confirm that appropriate building materials play a vital role in affecting energy cost. Therefore, the ability to reduce the energy cost by more than 50% in traditional buildings depends on a careful balance of building materials, mass, orientation, and type of window glazing.

  14. Audit Report on "The Department's Management of the ENERGY STAR Program"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-10-01

    The American Recovery and Reinvestment Act (Recovery Act) authorized about $300 million in consumer rebate incentives for purchases of products rated under the 'ENERGY STAR' Program. ENERGY STAR, a voluntary labeling program established in 1992, provides consumers with energy efficiency data for a range of products so that they can make informed purchase judgments. The overall goal of the program is to encourage consumers to choose energy efficient products, advancing the nationwide goal of reducing energy consumption. The U.S. Environmental Protection Agency (EPA) managed the ENERGY STAR Program on a stand-alone basis until 1996 when it joined forces with themore » Department of Energy (Department). A Memorandum of Cooperation expanded the ENERGY STAR product categories, giving the Department responsibility for overseeing eight product categories such as windows, dishwashers, clothes washers, and refrigerators, while EPA retained responsibility for electronic product categories and heating, ventilating, and cooling equipment. Each agency is responsible for setting product efficiency specifications for those items under its control and for ensuring the proper use of the ENERGY STAR label in the marketplace. In August 2007, the EPA Office of Inspector General issued an audit report identifying significant control weaknesses in EPA's management of ENERGY STAR. The Department, concerned by the findings at EPA and eager to improve its own program, developed an approach to verify adherence to product specifications, ensure proper use of the ENERGY STAR label in the marketplace, and improve the establishment of product specifications. As evidenced by the commitment of $300 million in Recovery Act funds, the ENERGY STAR Program plays an important role in the U.S. efforts to reduce energy consumption. We initiated this audit to determine whether the Department had implemented the actions it announced in 2007 to strengthen the Program. The Department had not implemented

  15. Influential Effects of Intrinsic-Extrinsic Incentive Factors on Management Performance in New Energy Enterprises.

    PubMed

    Wang, Ping; Lu, Zhengnan; Sun, Jihong

    2018-02-08

    Background : New energy has become a key trend for global energy industry development. Talent plays a very critical role in the enhancement of new energy enterprise competitiveness. As a key component of talent, managers have been attracting more and more attention. The increase in job performance relies on, to a certain extent, incentive mechanism. Based on the Two-factor Theory, differences in influences and effects of different incentives on management performance have been checked in this paper from an empirical perspective. Methods : This paper selects the middle and low level managers in new energy enterprises as research samples and classifies the managers' performance into task performance, contextual performance and innovation performance. It uses manager performance questionnaires and intrinsic-extrinsic incentive factor questionnaires to investigate and study the effects and then uses Amos software to analyze the inner link between the intrinsic-extrinsic incentives and job performance. Results : Extrinsic incentives affect task performance and innovation performance positively. Intrinsic incentives impose active significant effects on task performance, contextual performance, and innovation performance. The intrinsic incentive plays a more important role than the extrinsic incentive. Conclusions : Both the intrinsic-extrinsic incentives affect manager performance positively and the intrinsic incentive plays a more important role than the extrinsic incentive. Several suggestions to management should be given based on these results.

  16. Management of corporate socio-economic policy by the energy corporations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, R.E. Jr.

    1982-01-01

    The purpose of this study was to investigate the role of the energy corporations in the mitigation of the socio-economic impacts of rapid development. The study employed an exploratory descriptive research design. The sample was limited to an in-depth study of the socio-economic managerial processes at the Standard Oil Company (Indiana) and the Standard Oil Company of California, two of the nation's largest and wealthiest energy corporations. Findings demonstrated that division managers believe that socio-economic expenses are a normal cost of doing business and can, in fact, lead to cost savings for the corporation. The study confirmed other research findingsmore » that corporate executive management has a further role to play in the design of administrative systems that govern the formulation, implementation, and evaluation of socio-economic policy. The study recommended the development of specific centralized corporate socio-economic policies for energy-impact development, decentralization of policy implementation, integration of trained socio-economic project managers into the formal authority hierarchy, inclusion of specific socio-economic criterion in the formal performance-evaluation system, incorporation of socio-economic expenses into the operating budget format, and the development of a formal corporate-level socio-economic policy-evaluation committee.« less

  17. Space shuttle entry terminal area energy management

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.

    1991-01-01

    A historical account of the development for Shuttle's Terminal Area Energy Management (TAEM) is presented. A derivation and explanation of logic and equations are provided as a supplement to the well documented guidance computation requirements contained within the official Functional Subsystem Software Requirements (FSSR) published by Rockwell for NASA. The FSSR contains the full set of equations and logic, whereas this document addresses just certain areas for amplification.

  18. Development & optimization of a rule-based energy management strategy for fuel economy improvement in hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Asfoor, Mostafa

    The gradual decline of oil reserves and the increasing demand for energy over the past decades has resulted in automotive manufacturers seeking alternative solutions to reduce the dependency on fossil-based fuels for transportation. A viable technology that enables significant improvements in the overall energy conversion efficiencies is the hybridization of conventional vehicle drive systems. This dissertation builds on prior hybrid powertrain development at the University of Idaho. Advanced vehicle models of a passenger car with a conventional powertrain and three different hybrid powertrain layouts were created using GT-Suite. These different powertrain models were validated against a variety of standard driving cycles. The overall fuel economy, energy consumption, and losses were monitored, and a comprehensive energy analysis was performed to compare energy sources and sinks. The GT-Suite model was then used to predict the formula hybrid SAE vehicle performance. Inputs to this model were a numerically predicted engine performance map, an electric motor torque curve, vehicle geometry, and road load parameters derived from a roll-down test. In this case study, the vehicle had a supervisory controller that followed a rule-based energy management strategy to insure a proper power split during hybrid mode operation. The supervisory controller parameters were optimized using discrete grid optimization method that minimized the total amount of fuel consumed during a specific urban driving cycle with an average speed of approximately 30 [mph]. More than a 15% increase in fuel economy was achieved by adding supervisory control and managing power split. The vehicle configuration without the supervisory controller displayed a fuel economy of 25 [mpg]. With the supervisory controller this rose to 29 [mpg]. Wider applications of this research include hybrid vehicle controller designs that can extend the range and survivability of military combat platforms. Furthermore, the

  19. EnergySolution's Clive Disposal Facility Operational Research Model - 13475

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissley, Paul; Berry, Joanne

    2013-07-01

    EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operatedmore » waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By

  20. Reclamation of landfills and dumps of municipal solid waste in a energy efficient waste management system: methodology and practice

    NASA Astrophysics Data System (ADS)

    Orlova, Tatyana; Melnichuk, Aleksandr; Klimenko, Kseniya; Vitvitskaya, Valentina; Popovych, Valentina; Dunaieva, Ielizaveta; Terleev, Vitaly; Nikonorov, Aleksandr; Togo, Issa; Volkova, Yulia; Mirschel, Wilfried; Garmanov, Vitaly

    2017-10-01

    The article considers the methodological and practical aspects of reclamation of landfills and dumps of municipal solid waste in a waste management system. The general tendencies of system development in the context of elements of the international concept of waste hierarchy are analyzed. Statistics of the formation and burial of domestic waste indicate a strategic non-alternative to the rejection of landfill technologies in favor of environmentally, energy efficient and economically expedient ways of utilization of municipal waste as a world trend. Practical approaches to the study of territories on which there are dumps and landfills are considered to justify the design solutions for reclamation.

  1. Electric vehicle energy management system

    NASA Astrophysics Data System (ADS)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  2. Energy management using virtual reality improves 2000-m rowing performance.

    PubMed

    Hoffmann, Charles P; Filippeschi, Alessandro; Ruffaldi, Emanuele; Bardy, Benoit G

    2014-01-01

    Elite-standard rowers tend to use a fast-start strategy followed by an inverted parabolic-shaped speed profile in 2000-m races. This strategy is probably the best to manage energy resources during the race and maximise performance. This study investigated the use of virtual reality (VR) with novice rowers as a means to learn about energy management. Participants from an avatar group (n = 7) were instructed to track a virtual boat on a screen, whose speed was set individually to follow the appropriate to-be-learned speed profile. A control group (n = 8) followed an indoor training programme. In spite of similar physiological characteristics in the groups, the avatar group learned and maintained the required profile, resulting in an improved performance (i.e. a decrease in race duration), whereas the control group did not. These results suggest that VR is a means to learn an energy-related skill and improve performance.

  3. Energy management and vehicle synthesis

    NASA Astrophysics Data System (ADS)

    Czysz, P.; Murthy, S. N. B.

    The major drivers in the development of launch vehicles for the twenty-first century are reduction in cost of vehicles and operations, continuous reusability, mission abort capability with vehicle recovery, and readiness. One approach to the design of such vehicles is to emphasize energy management and propulsion as being the principal means of improvements given the available industrial capability and the required freedom in selecting configuration concept geometries. A methodology has been developed for the rational synthesis of vehicles based on the setting up and utilization of available data and projections, and a reference vehicle. The application of the methodology is illustrated for a single stage to orbit (SSTO) with various limits for the use of airbreathing propulsion.

  4. Energy management and vehicle synthesis

    NASA Technical Reports Server (NTRS)

    Czysz, P.; Murthy, S. N. B.

    1995-01-01

    The major drivers in the development of launch vehicles for the twenty-first century are reduction in cost of vehicles and operations, continuous reusability, mission abort capability with vehicle recovery, and readiness. One approach to the design of such vehicles is to emphasize energy management and propulsion as being the principal means of improvements given the available industrial capability and the required freedom in selecting configuration concept geometries. A methodology has been developed for the rational synthesis of vehicles based on the setting up and utilization of available data and projections, and a reference vehicle. The application of the methodology is illustrated for a single stage to orbit (SSTO) with various limits for the use of airbreathing propulsion.

  5. Dietary energy density: Applying behavioural science to weight management.

    PubMed

    Rolls, B J

    2017-09-01

    Studies conducted by behavioural scientists show that energy density (kcal/g) provides effective guidance for healthy food choices to control intake and promote satiety. Energy density depends upon a number of dietary components, especially water (0 kcal/g) and fat (9 kcal/g). Increasing the proportion of water or water-rich ingredients, such as vegetables or fruit, lowers a food's energy density. A number of studies show that when the energy density of the diet is reduced, both adults and children spontaneously decrease their ad libitum energy intake. Other studies show that consuming a large volume of a low-energy-dense food such as soup, salad, or fruit as a first course preload can enhance satiety and reduce overall energy intake at a meal. Current evidence suggests that energy density influences intake through a complex interplay of cognitive, sensory, gastrointestinal, hormonal and neural influences. Other studies that focus on practical applications show how the strategic incorporation of foods lower in energy density into the diet allows people to eat satisfying portions while improving dietary patterns. This review discusses studies that have led to greater understanding of the importance of energy density for food intake regulation and weight management.

  6. Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zipperer, Adam; Aloise-Young, Patricia A.; Suryanarayanan, Siddharth

    2013-11-01

    Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and transforming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electric grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.

  7. Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zipperer, A.; Aloise-Young, P. A.; Suryanarayanan, S.

    2013-08-01

    Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and trans-forming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electricity grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.

  8. Copper Oxide Thin Films through Solution Based Methods for Electrical Energy Conversion and Storage

    NASA Astrophysics Data System (ADS)

    Zhu, Changqiong

    Copper oxides (Cu2O and CuO), composed of non-toxic and earth abundant elements, are promising materials for electrical energy generation and storage devices. Solution based techniques for creating thin films of these materials, such as electrodeposition, are important to understand and develop because of their potential for realizing substantial energy savings compared to traditional fabrication methods. Cuprous oxide (Cu2O), with its direct band gap, is a p-type semiconductor that is well suited for creating solution-processed photovoltaic devices (solar cells); several key advancements made toward this application are the primary focus of this thesis. Electrodeposition of single-phase, crystalline Cu2O thin films is demonstrated using previously unexplored, acidic lactate/Cu2+ solutions, which has provided additional understanding of the impacts of growth solution chemistry on film formation. The influence of pH on the resulting Cu2O thin film properties is revealed by using the same ligand (sodium lactate) at various solution pH values. Cu2O films grown from acidic lactate solutions can exhibit a distinctive flowerlike, dendritic morphology, in contrast to the faceted, dense films obtained using alkaline lactate solutions. Relative speciation distributions of the various metal complex ions present under different growth conditions are calculated using reported equilibrium association constants and experimentally supported by UV-Visible absorption spectroscopy. Dependence of thin film morphology on the lactate/Cu2+ molar ratio and applied potential is described. Cu2O/eutectic gallium-indium Schottky junction devices are formed and devices are tested under monochromatic green LED illumination. Further surface examination of the Cu2O films using X-ray photoelectron spectroscopy (XPS) reveals the fact that films grown from acidic lactate solution with a small lactate/Cu2+ molar ratio, which exhibit improved photovoltaic performance compared to films grown from

  9. Environmental and socio-economic methodologies and solutions towards integrated water resources management.

    PubMed

    Friesen, Jan; Rodriguez Sinobas, Leonor; Foglia, Laura; Ludwig, Ralf

    2017-03-01

    Semi-arid regions are facing the challenge of managing water resources under conditions of increasing scarcity and drought. These are recently pressured by the impact of climate change favoring the shifting from using surface water to groundwater without taking sustainability issues into account. Likewise, water scarcity raises the competition for water among users, increasing the risk of social conflicts, as the availability of fresh water in sufficient quality and quantity is already one of the major factors limiting socio-economic development. In terms of hydrology, semi-arid regions are characterized by very complex hydro- and hydrogeological systems. The complexity of the water cycle contrasts strongly with the poor data availability, (1) which limits the number of analysis techniques and methods available to researchers, (2) limits the accuracy of models and predictions, and (3) consequently challenges the capabilities to develop appropriate management measures to mitigate or adapt the environment to scarcity and drought conditions. Integrated water resources management is a holistic approach to focus on both environmental as well as on socio-economic factors influencing water availability and supply. The management approaches and solutions adopted, e.g. in form of decision support for specific water resources systems, are often highly specific for individual case studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The Energy-Water Nexus: Managing the Links between Energy and Water for a Sustainable Future

    NASA Astrophysics Data System (ADS)

    Hussey, Karen; Petit, Carine

    2010-05-01

    Water and energy are both indispensable inputs to modern economies but currently both resources are under threat owing to the impacts of an ever-increasing population and associated demand, unsustainable practices in agriculture and manufacturing, and the implications of a changing climate. However, it is where water and energy rely on each other that pose the most complex challenges for policy-makers. Water is needed for mining coal, drilling oil, refining gasoline, and generating and distributing electricity; and, conversely, vast amounts of energy are needed to pump, transport, treat and distribute water, particularly in the production of potable water through the use of desalination plants and waste water treatment plants. Despite the links, and the urgency in both sectors for security of supply, in existing policy frameworks energy and water policies are developed largely in isolation from one another. Worse still, some policies designed to encourage alternative energy supplies give little thought to the resultant consequences on water resources, and, similarly, policies designed to secure water supplies pay little attention to the resultant consequences on energy use. The development of new technologies presents both opportunities and challenges for managing the energy-water nexus but a better understanding of the links between energy and water is essential in any attempt to formulate policies for more resilient and adaptable societies. The energy-water nexus must be adequately integrated into policy and decision-making or governments run the risk of contradicting their efforts, and therefore failing in their objectives, in both sectors. A series of COST Exploratory Workshops, drawing on on-going research in the energy-water nexus from a number of international teams, identified the implications of the energy-water nexus on the development of (i) energy policies (ii) water resource management policies and (iii) climate adaptation and mitigation policies. A

  11. An Analysis of Information Technology Managers' and Executives' Security Concerns on Willingness to Adopt Cloud Computing Solutions

    ERIC Educational Resources Information Center

    Tanque, Marcus M.

    2012-01-01

    The research conducted in this study inquires about Information Technology (IT) managers' and executives' attitudes, beliefs, and knowledge on Cloud Computing (CC) security. The study evaluated how these factors affect IT managers' and executives' willingness to adopt CC solutions in their organizations. Confidentiality,…

  12. ICT Solutions for Highly-Customized Water Demand Management Strategies

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Cominola, A.; Castelletti, A.; Fraternali, P.; Guardiola, J.; Barba, J.; Pulido-Velazquez, M.; Rizzoli, A. E.

    2016-12-01

    The recent deployment of smart metering networks is opening new opportunities for advancing the design of residential water demand management strategies (WDMS) relying on improved understanding of water consumers' behaviors. Recent applications showed that retrieving information on users' consumption behaviors, along with their explanatory and/or causal factors, is key to spot potential areas where targeting water saving efforts, and to design user-tailored WDMS. In this study, we explore the potential of ICT-based solutions in supporting the design and implementation of highly customized WDMS. On one side, the collection of consumption data at high spatial and temporal resolutions requires big data analytics and machine learning techniques to extract typical consumption features from the metered population of water users. On the other side, ICT solutions and gamifications can be used as effective means for facilitating both users' engagement and the collection of socio-psychographic users' information. This latter allows interpreting and improving the extracted profiles, ultimately supporting the customization of WDMS, such as awareness campaigns or personalized recommendations. Our approach is implemented in the SmartH2O platform and demonstrated in a pilot application in Valencia, Spain. Results show how the analysis of the smart metered consumption data, combined with the information retrieved from an ICT gamified web user portal, successfully identify the typical consumption profiles of the metered users and supports the design of alternative WDMS targeting the different users' profiles.

  13. Wind energy Computerized Maintenance Management System (CMMS) : data collection recommendations for reliability analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Valerie A.; Ogilvie, Alistair B.

    2012-01-01

    This report addresses the general data requirements for reliability analysis of fielded wind turbines and other wind plant equipment. The report provides a rationale for why this data should be collected, a list of the data needed to support reliability and availability analysis, and specific data recommendations for a Computerized Maintenance Management System (CMMS) to support automated analysis. This data collection recommendations report was written by Sandia National Laboratories to address the general data requirements for reliability analysis of operating wind turbines. This report is intended to help develop a basic understanding of the data needed for reliability analysis frommore » a Computerized Maintenance Management System (CMMS) and other data systems. The report provides a rationale for why this data should be collected, a list of the data needed to support reliability and availability analysis, and specific recommendations for a CMMS to support automated analysis. Though written for reliability analysis of wind turbines, much of the information is applicable to a wider variety of equipment and analysis and reporting needs. The 'Motivation' section of this report provides a rationale for collecting and analyzing field data for reliability analysis. The benefits of this type of effort can include increased energy delivered, decreased operating costs, enhanced preventive maintenance schedules, solutions to issues with the largest payback, and identification of early failure indicators.« less

  14. Influential Effects of Intrinsic-Extrinsic Incentive Factors on Management Performance in New Energy Enterprises

    PubMed Central

    Wang, Ping; Lu, Zhengnan; Sun, Jihong

    2018-01-01

    Background: New energy has become a key trend for global energy industry development. Talent plays a very critical role in the enhancement of new energy enterprise competitiveness. As a key component of talent, managers have been attracting more and more attention. The increase in job performance relies on, to a certain extent, incentive mechanism. Based on the Two-factor Theory, differences in influences and effects of different incentives on management performance have been checked in this paper from an empirical perspective. Methods: This paper selects the middle and low level managers in new energy enterprises as research samples and classifies the managers’ performance into task performance, contextual performance and innovation performance. It uses manager performance questionnaires and intrinsic-extrinsic incentive factor questionnaires to investigate and study the effects and then uses Amos software to analyze the inner link between the intrinsic-extrinsic incentives and job performance. Results: Extrinsic incentives affect task performance and innovation performance positively. Intrinsic incentives impose active significant effects on task performance, contextual performance, and innovation performance. The intrinsic incentive plays a more important role than the extrinsic incentive. Conclusions: Both the intrinsic-extrinsic incentives affect manager performance positively and the intrinsic incentive plays a more important role than the extrinsic incentive. Several suggestions to management should be given based on these results. PMID:29419730

  15. Blocked urinary catheters: solutions are not the only solution.

    PubMed

    Williams, Cath; Tonkin, Sharon

    2003-07-01

    The use of catheter maintenance solutions to manage clients whose catheters block has long been a subject for debate. An understanding of the causes of blockage, and awareness of appropriate management may reduce frequency of blockage and reduce unnecessary interruptions to a closed urinary drainage system.

  16. Parameters optimization for the energy management system of hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Tseng, Chyuan-Yow; Hung, Yi-Hsuan; Tsai, Chien-Hsiung; Huang, Yu-Jen

    2007-12-01

    Hybrid electric vehicle (HEV) has been widely studied recently due to its high potential in reduction of fuel consumption, exhaust emission, and lower noise. Because of comprised of two power sources, the HEV requires an energy management system (EMS) to distribute optimally the power sources for various driving conditions. The ITRI in Taiwan has developed a HEV consisted of a 2.2L internal combustion engine (ICE), a 18KW motor/generator (M/G), a 288V battery pack, and a continuous variable transmission (CVT). The task of the present study is to design an energy management strategy of the EMS for the HEV. Due to the nonlinear nature and the fact of unknown system model of the system, a kind of simplex method based energy management strategy is proposed for the HEV system. The simplex method is a kind of optimization strategy which is generally used to find out the optimal parameters for un-modeled systems. The way to apply the simplex method for the design of the EMS is presented. The feasibility of the proposed method was verified by perform numerical simulation on the FTP75 drive cycles.

  17. Exact solution for the energy spectrum of Kelvin-wave turbulence in superfluids

    NASA Astrophysics Data System (ADS)

    Boué, Laurent; Dasgupta, Ratul; Laurie, Jason; L'Vov, Victor; Nazarenko, Sergey; Procaccia, Itamar

    2011-08-01

    We study the statistical and dynamical behavior of turbulent Kelvin waves propagating on quantized vortices in superfluids and address the controversy concerning the energy spectrum that is associated with these excitations. Finding the correct energy spectrum is important because Kelvin waves play a major role in the dissipation of energy in superfluid turbulence at near-zero temperatures. In this paper, we show analytically that the solution proposed by [L’vov and Nazarenko, JETP Lett.JTPLA20021-364010.1134/S002136401008014X 91, 428 (2010)] enjoys existence, uniqueness, and regularity of the prefactor. Furthermore, we present numerical results of the dynamical equation that describes to leading order the nonlocal regime of the Kelvin-wave dynamics. We compare our findings with the analytical results from the proposed local and nonlocal theories for Kelvin-wave dynamics and show an agreement with the nonlocal predictions. Accordingly, the spectrum proposed by L’vov and Nazarenko should be used in future theories of quantum turbulence. Finally, for weaker wave forcing we observe an intermittent behavior of the wave spectrum with a fluctuating dissipative scale, which we interpreted as a finite-size effect characteristic of mesoscopic wave turbulence.

  18. Fuzzy Energy Management for a Catenary-Battery-Ultracapacitor based Hybrid Tramway

    NASA Astrophysics Data System (ADS)

    Jibin, Yang; Jiye, Zhang; Pengyun, Song

    2017-05-01

    In this paper, an energy management strategy (EMS) based on fuzzy logic control for a catenary-battery-ultracapacitor powered hybrid modern tramway was presented. The fuzzy logic controller for the catenary zone and catenary-less zone was respectively designed by analyzing the structure and working mode of the hybrid system, then an energy management strategy based on double fuzzy logic control was proposed to enhance the fuel economy. The hybrid modern tramway simulation model was developed based on MATLAB/Simulink environment. The simulation results show that the proposed EMS can satisfy the demand of dynamic performance of the tramway and achieve the power distribution reasonably between the each power source.

  19. Building America FY 2016 Annual Report: Building America Is Driving Real Solutions in the Race to Zero Energy Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Sara; Rothgeb, Stacey; Polly, Ben

    The U.S. Department of Energy (DOE) Building America Program enables the transformation of the U.S. housing industry to achieve energy savings through energy-efficient, high-performance homes with improved durability, comfort, and health for occupants. Building America bridges the gap between the development of emerging technologies and the adoption of codes and standards by engaging industry partners in applied research, development, and demonstration of high-performance solutions.

  20. Proceedings of the National Conference on Energy Resource Management. Volume 2: Applications

    NASA Technical Reports Server (NTRS)

    Brumfield, J. O. (Editor); Schiffman, Y. M. (Editor)

    1982-01-01

    Subject areas related to the integration of remotely sensed data with geographic information systems for application in energy resource management are covered. The current trends and advances in the application of these systems to a number of energy concerns are addressed.

  1. 41 CFR 102-74.155 - What energy conservation policy must Federal agencies follow in the management of facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... policy must Federal agencies follow in the management of facilities? 102-74.155 Section 102-74.155 Public... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Energy Conservation § 102-74.155 What energy conservation policy must Federal agencies follow in the management of facilities...

  2. Energy management installation at North Middlesex Hospital.

    PubMed

    Hart, V A

    1986-05-01

    The author is the Energy Conservation Officer for the Haringey Health Authority. The North Middlesex Hospital is an acute unit with approximately 700 beds. Currently, twenty-one outstations control the maternity/radio therapy tower complex plus the outpatients' department. Plans have been approved to extend the system and Phase 2 will cover pathology, administration, medical and surgical blocks together with x-ray and casualty blocks. Transmitton Ltd, as in Phase 1, will supply the hardware and contract management.

  3. An interval-possibilistic basic-flexible programming method for air quality management of municipal energy system through introducing electric vehicles.

    PubMed

    Yu, L; Li, Y P; Huang, G H; Shan, B G

    2017-09-01

    Contradictions of sustainable transportation development and environmental issues have been aggravated significantly and been one of the major concerns for energy systems planning and management. A heavy emphasis is placed on stimulation of electric vehicles (EVs) to handle these problems associated with various complexities and uncertainties in municipal energy system (MES). In this study, an interval-possibilistic basic-flexible programming (IPBFP) method is proposed for planning MES of Qingdao, where uncertainties expressed as interval-flexible variables and interval-possibilistic parameters can be effectively reflected. Support vector regression (SVR) is used for predicting electricity demand of the city under various scenarios. Solutions of EVs stimulation levels and satisfaction levels in association with flexible constraints and predetermined necessity degrees are analyzed, which can help identify the optimized energy-supply patterns that could plunk for improvement of air quality and hedge against violation of soft constraints. Results disclose that largely developing EVs can help facilitate the city's energy system with an environment-effective way. However, compared to the rapid growth of transportation, the EVs' contribution of improving the city's air quality is limited. It is desired that, to achieve an environmentally sustainable MES, more concerns should be focused on the integration of increasing renewable energy resources, stimulating EVs as well as improving energy transmission, transport and storage. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Blueprint for Success: An Energy Education Unit Management Plan.

    ERIC Educational Resources Information Center

    National Energy Education Development Project, Reston, VA.

    This energy education unit contains activities and classroom management strategies that emphasize cooperative learning and peer teaching. The activities are designed to develop students' science, math, language arts, and social studies skills and knowledge. Students' critical thinking, leadership, and problem solving skills will be enhanced as…

  5. Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management

    NASA Astrophysics Data System (ADS)

    Tan, S. T.; Hashim, H.

    2014-02-01

    Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.

  6. Proceedings of the ERDC-CERL Net Zero Energy (NZE) Installation and Deployed Bases Workshop Held in Colorado Springs, CO. on 3-4 Feb 2009

    DTIC Science & Technology

    2009-06-01

    energy demand is projected to outgrow afford- able supplies even after accounting for the impact of anticipated energy efficiency and management ... management . The purpose of that change would be to facilitate development of a suite of ultra-low- energy solutions that would approach NZE usage by...enabling real-time op- timization of power supply, demand, and storage management for Army facilities, emplacements, or fixed installations of any

  7. National Aeronautics and Space Administration (NASA) Earth Science Research for Energy Management. Part 1; Overview of Energy Issues and an Assessment of the Potential for Application of NASA Earth Science Research

    NASA Technical Reports Server (NTRS)

    Zell, E.; Engel-Cox, J.

    2005-01-01

    Effective management of energy resources is critical for the U.S. economy, the environment, and, more broadly, for sustainable development and alleviating poverty worldwide. The scope of energy management is broad, ranging from energy production and end use to emissions monitoring and mitigation and long-term planning. Given the extensive NASA Earth science research on energy and related weather and climate-related parameters, and rapidly advancing energy technologies and applications, there is great potential for increased application of NASA Earth science research to selected energy management issues and decision support tools. The NASA Energy Management Program Element is already involved in a number of projects applying NASA Earth science research to energy management issues, with a focus on solar and wind renewable energy and developing interests in energy modeling, short-term load forecasting, energy efficient building design, and biomass production.

  8. Waste biomass-to-energy supply chain management: a critical synthesis.

    PubMed

    Iakovou, E; Karagiannidis, A; Vlachos, D; Toka, A; Malamakis, A

    2010-10-01

    The development of renewable energy sources has clearly emerged as a promising policy towards enhancing the fragile global energy system with its limited fossil fuel resources, as well as for reducing the related environmental problems. In this context, waste biomass utilization has emerged as a viable alternative for energy production, encompassing a wide range of potential thermochemical, physicochemical and bio-chemical processes. Two significant bottlenecks that hinder the increased biomass utilization for energy production are the cost and complexity of its logistics operations. In this manuscript, we present a critical synthesis of the relative state-of-the-art literature as this applies to all stakeholders involved in the design and management of waste biomass supply chains (WBSCs). We begin by presenting the generic system components and then the unique characteristics of WBSCs that differentiate them from traditional supply chains. We proceed by discussing state-of-the-art energy conversion technologies along with the resulting classification of all relevant literature. We then recognize the natural hierarchy of the decision-making process for the design and planning of WBSCs and provide a taxonomy of all research efforts as these are mapped on the relevant strategic, tactical and operational levels of the hierarchy. Our critical synthesis demonstrates that biomass-to-energy production is a rapidly evolving research field focusing mainly on biomass-to-energy production technologies. However, very few studies address the critical supply chain management issues, and the ones that do that, focus mainly on (i) the assessment of the potential biomass and (ii) the allocation of biomass collection sites and energy production facilities. Our analysis further allows for the identification of gaps and overlaps in the existing literature, as well as of critical future research areas. (c) 2010 Elsevier Ltd. All rights reserved.

  9. Heart of the Solution - Energy Frontiers (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Green, Peter F. (Director, Center for Solar and Thermal Energy Conversion, University of Michigan); CSTEC Staff

    2017-12-09

    'Heart of the Solution - Energy Frontiers' was submitted by the Center for Solar and Thermal Energy Conversion (CSTEC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was both the People's Choice Award winner and selected as one of five winners by a distinguished panel of judges for its 'exemplary explanation of the role of an Energy Frontier Research Center'. The Center for Solar and Thermal Energy Conversion is directed by Peter F. Green at the University of Michigan. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Solar and Thermal Energy Conversion is 'to study complex material structures on the nanoscale to identify key features for their potential use as materials to convert solar energy and heat to electricity.' Research topics are: solar photovoltaic, photonic, optics, solar thermal, thermoelectric, phonons, thermal conductivity, solar electrodes, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.

  10. Simple and exact approach to the electronic polarization effect on the solvation free energy: formulation for quantum-mechanical/molecular-mechanical system and its applications to aqueous solutions.

    PubMed

    Takahashi, Hideaki; Omi, Atsushi; Morita, Akihiro; Matubayasi, Nobuyuki

    2012-06-07

    We present a simple and exact numerical approach to compute the free energy contribution δμ in solvation due to the electron density polarization and fluctuation of a quantum-mechanical solute in the quantum-mechanical/molecular-mechanical (QM/MM) simulation combined with the theory of the energy representation (QM/MM-ER). Since the electron density fluctuation is responsible for the many-body QM-MM interactions, the standard version of the energy representation method cannot be applied directly. Instead of decomposing the QM-MM polarization energy into the pairwise additive and non-additive contributions, we take sum of the polarization energies in the QM-MM interaction and adopt it as a new energy coordinate for the method of energy representation. Then, it is demonstrated that the free energy δμ can be exactly formulated in terms of the energy distribution functions for the solution and reference systems with respect to this energy coordinate. The benchmark tests were performed to examine the numerical efficiency of the method with respect to the changes in the individual properties of the solvent and the solute. Explicitly, we computed the solvation free energy of a QM water molecule in ambient and supercritical water, and also the free-energy change associated with the isomerization reaction of glycine from neutral to zwitterionic structure in aqueous solution. In all the systems examined, it was demonstrated that the computed free energy δμ agrees with the experimental value, irrespective of the choice of the reference electron density of the QM solute. The present method was also applied to a prototype reaction of adenosine 5'-triphosphate hydrolysis where the effect of the electron density fluctuation is substantial due to the excess charge. It was demonstrated that the experimental free energy of the reaction has been accurately reproduced with the present approach.

  11. Interfacial free energy governs single polystyrene chain collapse in water and aqueous solutions.

    PubMed

    Li, Isaac T S; Walker, Gilbert C

    2010-05-12

    The hydrophobic interaction is significantly responsible for driving protein folding and self-assembly. To understand it, the thermodynamics, the role of water structure, the dewetting process surrounding hydrophobes, and related aspects have undergone extensive investigations. Here, we examine the hypothesis that polymer-solvent interfacial free energy is adequate to describe the energetics of the collapse of a hydrophobic homopolymer chain at fixed temperature, which serves as a much simplified model for studying the hydrophobic collapse of a protein. This implies that changes in polymer-solvent interfacial free energy should be directly proportional to the force to extend a collapsed polymer into a bad solvent. To test this hypothesis, we undertook single-molecule force spectroscopy on a collapsed, single, polystyrene chain in water-ethanol and water-salt mixtures where we measured the monomer solvation free energy from an ensemble average conformations. Different proportions within the binary mixture were used to create solvents with different interfacial free energies with polystyrene. In these mixed solvents, we observed a linear correlation between the interfacial free energy and the force required to extend the chain into solution, which is a direct measure of the solvation free energy per monomer on a single chain at room temperature. A simple analytical model compares favorably with the experimental results. This knowledge supports a common assumption that explicit water solvent may not be necessary for cases whose primary concerns are hydrophobic interactions and hydrophobic hydration.

  12. 48 CFR 970.5223-6 - Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management. 970.5223-6 Section 970.5223-6 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Solicitation...

  13. Solid Waste Management Solutions for a Rapidly Urbanizing Area in Thailand: Recommendations Based on Stakeholder Input.

    PubMed

    Yukalang, Nachalida; Clarke, Beverley; Ross, Kirstin

    2018-06-21

    Municipal solid waste is a significant problem, particularly in developing countries that lack sufficient infrastructure and useable land mass to process it in an appropriate manner. Some developing nations are experiencing a combination of issues that prevent proper management of solid waste. This paper reviews the management of municipal solid waste in northeast Thailand, using the Tha Khon Yang Sub-district Municipality (TKYSM) in Maha Sarakham Province as a case study. The combination of rapid population and economic growth and its associated affluence has led to an increase in the use of consumer items and a concomitant increase in the production of municipal solid waste. In the TKYSM there is pressure on local government to establish a suitable waste management program to resolve the escalating waste crisis. The aim of this study is to provide viable solutions to waste management challenges in the TKYSM, and potentially to offer guidance to other similar localities also facing the same challenges. It is well established that successful changes to waste management require an understanding of local context and consideration of specific issues within a region. Therefore, extensive community consultation and engagement with local experts was undertaken to develop an understanding of the particular waste management challenges of the TKYSM. Research methods included observations, one-on-one interviews and focus groups with a range of different stakeholders. The outcomes of this research highlight a number of opportunities to improve local infrastructure and operational capacity around solid waste management. Waste management in rural and urban areas needs to be approached differently. Solutions include: development of appropriate policy and implementation plans (based around the recommendations of this paper); reduction of the volume of waste going to landfill by establishing a waste separation system; initiation of a collection service that supports waste

  14. Factors influencing the adoption of self-management solutions: an interpretive synthesis of the literature on stakeholder experiences.

    PubMed

    Harvey, J; Dopson, S; McManus, R J; Powell, J

    2015-11-13

    In a research context, self-management solutions, which may range from simple book diaries to complex telehealth packages, designed to facilitate patients in managing their long-term conditions, have often shown cost-effectiveness, but their implementation in practice has frequently been challenging. We conducted an interpretive qualitative synthesis of relevant articles identified through systematic searches of bibliographic databases in July 2014. We searched PubMed (Medline/NLM), Web of Science, LISTA (EBSCO), CINAHL, Embase and PsycINFO. Coding and analysis was inductive, using the framework method to code and to categorise themes. We took a sensemaking approach to the interpretation of findings. Fifty-eight articles were selected for synthesis. Results showed that during adoption, factors identified as facilitators by some were experienced as barriers by others, and facilitators could change to barriers for the same adopter, depending on how adopters rationalise the solutions within their context when making decisions about (retaining) adoption. Sometimes, when adopters saw and experienced benefits of a solution, they continued using the solution but changed their minds when they could no longer see the benefits. Thus, adopters placed a positive value on the solution if they could constructively rationalise it (which increased adoption) and attached a negative rationale (decreasing adoption) if the solution did not meet their expectations. Key factors that influenced the way adopters rationalised the solutions consisted of costs and the added value of the solution to them and moral, social, motivational and cultural factors. Considering 'barriers' and 'facilitators' for implementation may be too simplistic. Implementers could instead iteratively re-evaluate how potential facilitators and barriers are being experienced by adopters throughout the implementation process, to help adopters to retain constructive evaluations of the solution. Implementers need to pay

  15. An IMS-Based Middleware Solution for Energy-Efficient and Cost-Effective Mobile Multimedia Services

    NASA Astrophysics Data System (ADS)

    Bellavista, Paolo; Corradi, Antonio; Foschini, Luca

    Mobile multimedia services have recently become of extreme industrial relevance due to the advances in both wireless client devices and multimedia communications. That has motivated important standardization efforts, such as the IP Multimedia Subsystem (IMS) to support session control, mobility, and interoperability in all-IP next generation networks. Notwithstanding the central role of IMS in novel mobile multimedia, the potential of IMS-based service composition for the development of new classes of ready-to-use, energy-efficient, and cost-effective services is still widely unexplored. The paper proposes an original solution for the dynamic and standard-compliant redirection of incoming voice calls towards WiFi-equipped smart phones. The primary design guideline is to reduce energy consumption and service costs for the final user by automatically switching from the 3G to the WiFi infrastructure whenever possible. The proposal is fully compliant with the IMS standard and exploits the recently released IMS presence service to update device location and current communication opportunities. The reported experimental results point out that our solution, in a simple way and with full compliance with state-of-the-art industrially-accepted standards, can significantly increase battery lifetime without negative effects on call initiation delay.

  16. Energy management system turns data into market info

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traynor, P.J.; Ackerman, W.J.

    1996-09-01

    The designers claim that Wisconsin Power & Light Co`s new energy management system is the first system of its type in the world in terms of the comprehensiveness and scope of its stored and retrievable data. Furthermore, the system`s link to the utility`s generating assets enables powerplant management to dispatch generation resources based on up-to-date unit characteristics. That means that the new system gives WP&L a competitive tool to optimize operations as well as fine-tune its EMS based on timely load and unit response information. Additionally, the EMS gives WP&L insight into the complex issues related to the unbundling ofmore » generation resources.« less

  17. Estimates of wood energy demand for residential use in Alaska: an update

    Treesearch

    Jean M. Daniels; Michael D. Paruszkiewicz

    2016-01-01

    Efforts to amend the Tongass National Forest Land Management Plan have necessitated the development of several management scenarios to assist with planning efforts. One scenario focuses on increasing the utilization of sawmill residues and low-grade material as feedstock for expanding biomass energy markets. The development of a biomass industry is viewed as a solution...

  18. Heart of the Solution - Energy Frontiers (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Peter F.

    "Heart of the Solution- Energy Frontiers" was submitted by the Center for Solar and Thermal Energy Conversion (CSTEC) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was both the People's Choice Award winner and selected as one of five winners by a distinguished panel of judges for its "exemplary explanation of the role of an Energy Frontier Research Center". The Center for Solar and Thermal Energymore » Conversion is directed by Peter F. Green at the University of Michigan. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Solar and Thermal Energy Conversion is 'to study complex material structures on the nanoscale to identify key features for their potential use as materials to convert solar energy and heat to electricity.' Research topics are: solar photovoltaic, photonic, optics, solar thermal, thermoelectric, phonons, thermal conductivity, solar electrodes, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.« less

  19. Municipal Solid Waste Management and its Energy Potential in Roorkee City, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Alam, Tabish; Kulkarni, Kishore

    2016-03-01

    Energy plays a vital role in the development of any country. With rapid economic growth and multifold urbanization, India faces the problem of municipal solid waste management and disposal. This problem can be mitigate through adoption of environment friendly technologies for treatment and processing of waste before it is disposed off. Currently, urban and industrial wastes throughout India receive partial treatment before its final disposal, except in few exceptional cases. This practice leads to severe environmental pollution problems including major threat to human health. There is an absolute need to provide adequate waste collection and treatment before its disposal. Municipal Solid Waste (MSW) is getting importance in recent years. The MSW management involves collection, transportation, handling and conversion to energy by biological and thermal routes. Based on the energy potential available, the energy conversion through biogas production using available waste is being carried out. Waste-to-energy is now a clean, renewable, sustainable source of energy. The estimation of energy content of MSW in Roorkee city is discussed in this paper. Furthermore this paper also takes into account the benefits of carbon credits.

  20. The Value of Seasonal Climate Forecasts in Managing Energy Resources.

    NASA Astrophysics Data System (ADS)

    Brown Weiss, Edith

    1982-04-01

    Research and interviews with officials of the United States energy industry and a systems analysis of decision making in a natural gas utility lead to the conclusion that seasonal climate forecasts would only have limited value in fine tuning the management of energy supply, even if the forecasts were more reliable and detailed than at present.On the other hand, reliable forecasts could be useful to state and local governments both as a signal to adopt long-term measures to increase the efficiency of energy use and to initiate short-term measures to reduce energy demand in anticipation of a weather-induced energy crisis.To be useful for these purposes, state governments would need better data on energy demand patterns and available energy supplies, staff competent to interpret climate forecasts, and greater incentive to conserve. The use of seasonal climate forecasts is not likely to be constrained by fear of legal action by those claiming to be injured by a possible incorrect forecast.

  1. Data management in automated external defibrillators: a call for a standardised solution.

    PubMed

    Nielsen, A M; Rasmussen, L S

    2011-07-01

    The ECG data stored in automated external defibrillators (AEDs) may be valuable for establishing a final diagnosis and deciding further diagnostics and treatment. Different data management systems are used and this may create significant problems for data storage and access for physicians treating victims in whom an AED has been used. In this descriptive study, we collected information (number, manufacturer and model) on 17 December 2010 from a web page used for the voluntary registration of AEDs in Denmark. The manufacturers were contacted and asked to provide information about data downloading. There were 12 different manufactures and 20 different AED models. Five models were registered in a quantity <5. We report data from the remaining 15 models (3603 AEDs). Several models stored only one case or 15 min of ECG data. All models had a data transfer option, but most had outdated 'hardware': Seven had infrared transfer; one had a cable with a serial port. Four had a removable memory device, but only one was a USB. The software was available as freeware only in a few cases. Otherwise, a CD ROM was needed, some even with a licence. The software for the second most common AED could not be installed. The development of data management solutions is not a high priority. We encourage the manufacturers to collaborate with researchers to develop a simple data transfer solution in order to improve patient care and facilitate research. © 2011 The Authors. Acta Anaesthesiologica Scandinavica © 2011 The Acta Anaesthesiologica Scandinavica Foundation.

  2. Patterns of daily energy management at work: relations to employee well-being and job characteristics.

    PubMed

    Kinnunen, Ulla; Feldt, Taru; de Bloom, Jessica; Korpela, Kalevi

    2015-11-01

    The present study aimed at identifying subgroups of employees with similar daily energy management strategies at work and finding out whether well-being indicators and job characteristics differ between these subgroups. The study was conducted by electronic questionnaire among 1122 Finnish employees. First, subgroups of employees with unique and distinctive patterns of energy management strategies were identified using latent profile analysis. Second, differences in well-being indicators and job characteristics between the subgroups were investigated by means of ANCOVA. Four subgroups (i.e., patterns) were identified and named: Passives (n = 371), Averages (n = 390), Casuals (n = 272) and Actives (n = 89). Passives used all three (i.e., work-related, private micro-break and physical micro-break) strategies less frequently than other subgroups, whereas Actives used work-related and physical energy management strategies more frequently than other subgroups. Averages used all strategies on an average level. Casuals' use of all strategies came close to that of Actives, notably in a shared low use of private micro-break strategies. Active and Casual patterns maintained vigor and vitality. Autonomy and social support at work played a significant role in providing opportunities for the use of beneficial energy management strategies. Autonomy and support at work seem to support active and casual use of daily energy management, which is important in staying energized throughout the working day.

  3. Integrated Practice Improvement Solutions-Practical Steps to Operating Room Management.

    PubMed

    Chernov, Mikhail; Pullockaran, Janet; Vick, Angela; Leyvi, Galina; Delphin, Ellise

    2016-10-01

    Perioperative productivity is a vital concern for surgeons, anesthesiologists, and administrators as the OR is a major source of hospital elective admissions and revenue. Based on elements of existing Practice Improvement Methodologies (PIMs), "Integrated Practice Improvement Solutions" (IPIS) is a practical and simple solution incorporating aspects of multiple management approaches into a single open source framework to increase OR efficiency and productivity by better utilization of existing resources. OR efficiency was measured both before and after IPIS implementation using the total number of cases versus room utilization, OR/anesthesia revenue and staff overtime (OT) costs. Other parameters of efficiency, such as the first case on-time start and the turnover time (TOT) were measured in parallel. IPIS implementation resulted in increased numbers of surgical procedures performed by an average of 10.7%, and OR and anesthesia revenue increases of 18.5% and 6.9%, respectively, with a simultaneous decrease in TOT (15%) and OT for anesthesia staff (26%). The number of perioperative adverse events was stable during the two-year study period which involved a total of 20,378 patients. IPIS, an effective and flexible practice improvement model, was designed to quickly, significantly, and sustainably improve OR efficiency by better utilization of existing resources. Success of its implementation directly correlates with the involvement of and acceptance by the entire OR team and hospital administration.

  4. Fluoroalkylsilane-Modified Textile-Based Personal Energy Management Device for Multifunctional Wearable Applications.

    PubMed

    Guo, Yinben; Li, Kerui; Hou, Chengyi; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi

    2016-02-01

    The rapid development of wearable electronics in recent years has brought increasing energy consumption, making it an urgent need to focus on personal energy harvesting, storage and management. Herein, a textile-based personal energy management device with multilayer-coating structure was fabricated by encapsulating commercial nylon cloth coated with silver nanowires into polydimethylsiloxane using continuous and facile dip-coating method. This multilayer-coating structure can not only harvest mechanical energy from human body motion to power wearable electronics but also save energy by keeping people warm without losing heat to surroundings and wasting energy to heat empty space and inanimate objects. Fluoroalkylsilanes (FAS) were grafted onto the surface of the film through one single dip-coating process to improve its energy harvesting performance, which has hardly adverse effect to heat insulation and Joule heating property. In the presence of FAS modification, the prepared film harvested mechanical energy to reach a maximum output power density of 2.8 W/m(2), charged commercial capacitors and lighted LEDs, showing its potential in powering wearable electronics. Furthermore, the film provided 8% more thermal insulation than normal cloth at 37 °C and efficiently heated to 40 °C within 4 min when applied the voltage of only 1.5 V due to Joule heating effect. The high flexibility and stability of the film ensures its wide and promising application in the wearable field.

  5. Evolving urban water and residuals management paradigms: water reclamation and reuse, decentralization, and resource recovery.

    PubMed

    Daigger, Glen T

    2009-08-01

    Population growth and improving standards of living, coupled with dramatically increased urbanization, are placing increased pressures on available water resources, necessitating new approaches to urban water management. The tradition linear "take, make, waste" approach to managing water increasingly is proving to be unsustainable, as it is leading to water stress (insufficient water supplies), unsustainable resource (energy and chemicals) consumption, the dispersion of nutrients into the aquatic environment (especially phosphorus), and financially unstable utilities. Different approaches are needed to achieve economic, environmental, and social sustainability. Fortunately, a toolkit consisting of stormwater management/rainwater harvesting, water conservation, water reclamation and reuse, energy management, nutrient recovery, and source separation is available to allow more closed-loop urban water and resource management systems to be developed and implemented. Water conservation and water reclamation and reuse (multiple uses) are becoming commonplace in numerous water-short locations. Decentralization, enabled by new, high-performance treatment technologies and distributed stormwater management/rainwater harvesting, is furthering this transition. Likewise, traditional approaches to residuals management are evolving, as higher levels of energy recovery are desired, and nutrient recovery and reuse is to be enhanced. A variety of factors affect selection of the optimum approach for a particular urban area, including local hydrology, available water supplies, water demands, local energy and nutrient-management situations, existing infrastructure, and utility governance structure. A proper approach to economic analysis is critical to determine the most sustainable solutions. Stove piping (i.e., separate management of drinking, storm, and waste water) within the urban water and resource management profession must be eliminated. Adoption of these new approaches to urban

  6. A reference-modified density functional theory: An application to solvation free-energy calculations for a Lennard-Jones solution.

    PubMed

    Sumi, Tomonari; Maruyama, Yutaka; Mitsutake, Ayori; Koga, Kenichiro

    2016-06-14

    In the conventional classical density functional theory (DFT) for simple fluids, an ideal gas is usually chosen as the reference system because there is a one-to-one correspondence between the external field and the density distribution function, and the exact intrinsic free-energy functional is available for the ideal gas. In this case, the second-order density functional Taylor series expansion of the excess intrinsic free-energy functional provides the hypernetted-chain (HNC) approximation. Recently, it has been shown that the HNC approximation significantly overestimates the solvation free energy (SFE) for an infinitely dilute Lennard-Jones (LJ) solution, especially when the solute particles are several times larger than the solvent particles [T. Miyata and J. Thapa, Chem. Phys. Lett. 604, 122 (2014)]. In the present study, we propose a reference-modified density functional theory as a systematic approach to improve the SFE functional as well as the pair distribution functions. The second-order density functional Taylor series expansion for the excess part of the intrinsic free-energy functional in which a hard-sphere fluid is introduced as the reference system instead of an ideal gas is applied to the LJ pure and infinitely dilute solution systems and is proved to remarkably improve the drawbacks of the HNC approximation. Furthermore, the third-order density functional expansion approximation in which a factorization approximation is applied to the triplet direct correlation function is examined for the LJ systems. We also show that the third-order contribution can yield further refinements for both the pair distribution function and the excess chemical potential for the pure LJ liquids.

  7. Turnkey Heating, Ventilating, and Air Conditioning and Lighting Retrofit Solution Combining Energy Efficiency and Demand Response Benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doebber, Ian; Deru, Michael; Trenbath, Kim

    NREL worked with the Bonneville Power Administration's Technology Innovation Office to demonstrate a turnkey, retrofit technology that combines demand response (DR) and energy efficiency (EE) benefits for HVAC and lighting in retail buildings. As a secondary benefit, we also controlled various plug loads and electric hot water heaters (EHWH). The technology demonstrated was Transformative Wave's eIQ Building Management System (BMS) automatically responding to DR signals. The BMS controlled the HVAC rooftop units (RTU) using the CATALYST retrofit solution also developed by Transformative Wave. The non-HVAC loads were controlled using both hardwired and ZigBee wireless communication. The wireless controllers, manufactured bymore » Autani, were used when the building's electrical layout was too disorganized to leverage less expensive hardwired control. The six demonstration locations are within the Seattle metro area. Based on the assets curtailed by the BMS at each location, we projected the DR resource. We were targeting a 1.7 W/ft2 shed for the summer Day-Ahead events and a 0.7 W/ft2 shed for the winter events. While summarized in Table ES-1, only one summer DR event was conducted at Casino #2.« less

  8. Does gasification and biochar amendment provide a viable solution to balance greenhouse gas emissions, energy requirements and orchard residue management?

    NASA Astrophysics Data System (ADS)

    Pereira, Engil; Suddick, Emma; Six, Johan

    2015-04-01

    By converting biomass residue to biochar, we can generate power cleanly and sequester carbon resulting in overall greenhouse gas (GHG) savings when compared to typical fossil fuel burning and waste disposal. This on-farm research study provides a long-term and high frequency assessment of GHG emissions from biochar amended-soils in an organic walnut orchard in the Central Valley of California, USA. We also estimated the GHG offsets from the conversion of walnut residue into energy through gasification at the on-site walnut processing plant. Soil fluxes of carbon dioxide (CO2) and nitrous oxide (N2O) were monitored over 29 months in a 3.6 ha walnut orchard following management and precipitation events. We compared four treatments: control, biochar, compost, and biochar combined with compost. Events involving resource inputs such as fertilization or cover crop mowing induced the largest N2O peaks with average 0.13 kg N2O-N ha-1 day-1, while precipitation events produced the highest CO2 fluxes in average 0.124 Mg CO2-C ha-1 day-1. Biochar alone decreased N2O fluxes in two out of 23 measured events, however, not with enough significant magnitude to modify annual or seasonal totals. This indicates that biochar-induced decreases in N2O fluxes may occasionally occur without significant changes in total emissions. Additionally, biochar alone or in combination with compost did not alter annual or seasonal cumulative CO2 emissions. For this particular study, the conversion of orchard waste into energy and C sequestration through biochar amendment offset 100.3 Mg CO2-Ceq year-1. Thus, given that biochar did not alter cumulative GHG emissions from soils, we conclude that, in the scenario of this study, the use of biochar as a strategy to decrease farm-level GHG emissions is obtained through the gasification of orchard residue into energy and through biochar C sequestration, and not as a tool to decrease soil CO2 and N2O emissions.

  9. Wireless Sensors and Networks for Advanced Energy Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, J.E.

    Numerous national studies and working groups have identified low-cost, very low-power wireless sensors and networks as a critical enabling technology for increasing energy efficiency, reducing waste, and optimizing processes. Research areas for developing such sensor and network platforms include microsensor arrays, ultra-low power electronics and signal conditioning, data/control transceivers, and robust wireless networks. A review of some of the research in the following areas will be discussed: (1) Low-cost, flexible multi-sensor array platforms (CO{sub 2}, NO{sub x}, CO, humidity, NH{sub 3}, O{sub 2}, occupancy, etc.) that enable energy and emission reductions in applications such as buildings and manufacturing; (2) Modelingmore » investments (energy usage and savings to drive capital investment decisions) and estimated uptime improvements through pervasive gathering of equipment and process health data and its effects on energy; (3) Robust, self-configuring wireless sensor networks for energy management; and (4) Quality-of-service for secure and reliable data transmission from widely distributed sensors. Wireless communications is poised to support technical innovations in the industrial community, with widespread use of wireless sensors forecasted to improve manufacturing production and energy efficiency and reduce emissions. Progress being made in wireless system components, as described in this paper, is helping bring these projected improvements to reality.« less

  10. Intelligent demand side management of residential building energy systems

    NASA Astrophysics Data System (ADS)

    Sinha, Maruti N.

    Advent of modern sensing technologies, data processing capabilities and rising cost of energy are driving the implementation of intelligent systems in buildings and houses which constitute 41% of total energy consumption. The primary motivation has been to provide a framework for demand-side management and to improve overall reliability. The entire formulation is to be implemented on NILM (Non-Intrusive Load Monitoring System), a smart meter. This is going to play a vital role in the future of demand side management. Utilities have started deploying smart meters throughout the world which will essentially help to establish communication between utility and consumers. This research is focused on investigation of a suitable thermal model of residential house, building up control system and developing diagnostic and energy usage forecast tool. The present work has considered measurement based approach to pursue. Identification of building thermal parameters is the very first step towards developing performance measurement and controls. The proposed identification technique is PEM (Prediction Error Method) based, discrete state-space model. The two different models have been devised. First model is focused toward energy usage forecast and diagnostics. Here one of the novel idea has been investigated which takes integral of thermal capacity to identify thermal model of house. The purpose of second identification is to build up a model for control strategy. The controller should be able to take into account the weather forecast information, deal with the operating point constraints and at the same time minimize the energy consumption. To design an optimal controller, MPC (Model Predictive Control) scheme has been implemented instead of present thermostatic/hysteretic control. This is a receding horizon approach. Capability of the proposed schemes has also been investigated.

  11. Optimizing resource and energy recovery for materials and waste management

    EPA Science Inventory

    Decisions affecting materials management today are generally based on cost and a presumption of favorable outcomes without an understanding of the environmental tradeoffs. However, there is a growing demand to better understand and quantify the net environmental and energy trade-...

  12. Impact test of a crash-energy management passenger rail car

    DOT National Transportation Integrated Search

    2004-04-06

    On December 3, 2003, a single-car impact test was : conducted to assess the crashworthiness performance of a : modified passenger rail car. A coach car retrofitted with a : Crash Energy Management (CEM) end structure impacted a : fixed barrier at app...

  13. Open Energy Information System version 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OpenEIS was created to provide standard methods for authoring, sharing, testing, using, and improving algorithms for operational building energy efficiency with building managers and building owners. OpenEIS is designed as a no-cost/low-cost solution that will propagate the fault detection and diagnostic (FDD) solutions into the marketplace by providing state- of- the-art analytical and diagnostic algorithms. As OpenEIS penetrates the market, demand by control system manufacturers and integrators serving small and medium commercial customers will help push these types of commercial software tool offerings into the broader marketplace.

  14. Personal Genomic Information Management and Personalized Medicine: Challenges, Current Solutions, and Roles of HIM Professionals

    PubMed Central

    Alzu'bi, Amal; Zhou, Leming; Watzlaf, Valerie

    2014-01-01

    In recent years, the term personalized medicine has received more and more attention in the field of healthcare. The increasing use of this term is closely related to the astonishing advancement in DNA sequencing technologies and other high-throughput biotechnologies. A large amount of personal genomic data can be generated by these technologies in a short time. Consequently, the needs for managing, analyzing, and interpreting these personal genomic data to facilitate personalized care are escalated. In this article, we discuss the challenges for implementing genomics-based personalized medicine in healthcare, current solutions to these challenges, and the roles of health information management (HIM) professionals in genomics-based personalized medicine. PMID:24808804

  15. A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices.

    PubMed

    Jebrail, Mais J; Renzi, Ronald F; Sinha, Anupama; Van De Vreugde, Jim; Gondhalekar, Carmen; Ambriz, Cesar; Meagher, Robert J; Branda, Steven S

    2015-01-07

    Digital microfluidics (DMF) is a powerful technique for sample preparation and analysis for a broad range of biological and chemical applications. In many cases, it is desirable to carry out DMF on an open surface, such that the matrix surrounding the droplets is ambient air. However, the utility of the air-matrix DMF format has been severely limited by problems with droplet evaporation, especially when the droplet-based biochemical reactions require high temperatures for long periods of time. We present a simple solution for managing evaporation in air-matrix DMF: just-in-time replenishment of the reaction volume using droplets of solvent. We demonstrate that this solution enables DMF-mediated execution of several different biochemical reactions (RNA fragmentation, first-strand cDNA synthesis, and PCR) over a range of temperatures (4-95 °C) and incubation times (up to 1 h or more) without use of oil, humidifying chambers, or off-chip heating modules. Reaction volumes and temperatures were maintained roughly constant over the course of each experiment, such that the reaction kinetics and products generated by the air-matrix DMF device were comparable to those of conventional benchscale reactions. This simple yet effective solution for evaporation management is an important advance in developing air-matrix DMF for a wide variety of new, high-impact applications, particularly in the biomedical sciences.

  16. A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jebrail, Mais J.; Renzi, Ronald F.; Sinha, Anupama

    Digital microfluidics (DMF) is a powerful technique for sample preparation and analysis for a broad range of biological and chemical applications. In many cases, it is desirable to carry out DMF on an open surface, such that the matrix surrounding the droplets is ambient air. However, the utility of the air-matrix DMF format has been severely limited by problems with droplet evaporation, especially when the droplet-based biochemical reactions require high temperatures for long periods of time. We present a simple solution for managing evaporation in air-matrix DMF: just-in-time replenishment of the reaction volume using droplets of solvent. We demonstrate thatmore » this solution enables DMF-mediated execution of several different biochemical reactions (RNA fragmentation, first-strand cDNA synthesis, and PCR) over a range of temperatures (4–95 °C) and incubation times (up to 1 h or more) without use of oil, humidifying chambers, or off-chip heating modules. Reaction volumes and temperatures were maintained roughly constant over the course of each experiment, such that the reaction kinetics and products generated by the air-matrix DMF device were comparable to those of conventional benchscale reactions. As a result, this simple yet effective solution for evaporation management is an important advance in developing air-matrix DMF for a wide variety of new, high-impact applications, particularly in the biomedical sciences.« less

  17. A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices

    DOE PAGES

    Jebrail, Mais J.; Renzi, Ronald F.; Sinha, Anupama; ...

    2014-10-01

    Digital microfluidics (DMF) is a powerful technique for sample preparation and analysis for a broad range of biological and chemical applications. In many cases, it is desirable to carry out DMF on an open surface, such that the matrix surrounding the droplets is ambient air. However, the utility of the air-matrix DMF format has been severely limited by problems with droplet evaporation, especially when the droplet-based biochemical reactions require high temperatures for long periods of time. We present a simple solution for managing evaporation in air-matrix DMF: just-in-time replenishment of the reaction volume using droplets of solvent. We demonstrate thatmore » this solution enables DMF-mediated execution of several different biochemical reactions (RNA fragmentation, first-strand cDNA synthesis, and PCR) over a range of temperatures (4–95 °C) and incubation times (up to 1 h or more) without use of oil, humidifying chambers, or off-chip heating modules. Reaction volumes and temperatures were maintained roughly constant over the course of each experiment, such that the reaction kinetics and products generated by the air-matrix DMF device were comparable to those of conventional benchscale reactions. As a result, this simple yet effective solution for evaporation management is an important advance in developing air-matrix DMF for a wide variety of new, high-impact applications, particularly in the biomedical sciences.« less

  18. The use of an Energy Monitor in the management of diabetes: a pilot study.

    PubMed

    Voon, Rudi; Celler, Branko G; Lovell, Nigel H

    2009-02-01

    This study evaluated the use of an accelerometer-based device in helping to manage blood glucose levels (BGLs) in people with diabetes mellitus. Five people with diabetes were given a triaxial accelerometer-based device (Energy Monitor) that measured energy levels associated with activities of daily living. For 3 months, they were required to wear the device and to continue with their usual diabetes therapy. The body mass index (BMI) and glycosylated hemoglobin (HbA(1c)) were recorded to assess any potential improvement in blood glucose control. The relationship between BGL and measured energy level was also investigated. Overall, there was a significant reduction of HbA(1c) from 7.48 +/- 1.21% to 6.98 +/- 1.44% (P < 0.05). There was no significant change in BMI. It was also found that higher energy levels resulted in much lower fluctuations in BGL change between meals compared to low energy levels. Moreover, the weekly mean activity score showed an increase in activity levels from the second week to the final week. This pilot study demonstrated that the Energy Monitor could improve the management of diabetes by allowing people with diabetes to view and manage daily physical activity in addition to their usual diabetes therapy.

  19. Co-designing the next generation of home energy management systems with lead-users.

    PubMed

    Peacock, Andrew D; Chaney, Joel; Goldbach, Kristin; Walker, Guy; Tuohy, Paul; Santonja, Salvador; Todoli, David; Owens, Edward H

    2017-04-01

    Home energy management systems are widely promoted as essential components of future low carbon economies. It is argued in this paper that assumptions surrounding their deployment, and the methods used to design them, emerge from discredited models of people and energy. This offers an explanation for why their field trial performance is so inconsistent. A first of a kind field trial is reported. Three eco communities took part in a comprehensive participatory design exercise as lead users. The challenge was to help users synchronise their energy use behaviours with the availability of locally generated renewable energy sources. To meet this aim, a set of highly novel Home Energy Management interfaces were co-designed and tested. Not only were the designs radically different to the norm, but they also yielded sustained user engagement over a six-month follow-up period. It is argued that user-centred design holds the key to unlocking the energy saving potential of new domestic technologies, and this study represents a bold step in that direction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. More Stamina, a Gamified mHealth Solution for Persons with Multiple Sclerosis: Research Through Design

    PubMed Central

    Mylonopoulou, Vasiliki; Rivera Romero, Octavio

    2018-01-01

    Background Multiple sclerosis (MS) is one of the world’s most common neurologic disorders. Fatigue is one of most common symptoms that persons with MS experience, having significant impact on their quality of life and limiting their activity levels. Self-management strategies are used to support them in the care of their health. Mobile health (mHealth) solutions are a way to offer persons with chronic conditions tools to successfully manage their symptoms and problems. Gamification is a current trend among mHealth apps used to create engaging user experiences and is suggested to be effective for behavioral change. To be effective, mHealth solutions need to be designed to specifically meet the intended audience needs. User-centered design (UCD) is a design philosophy that proposes placing end users’ needs and characteristics in the center of design and development, involving users early in the different phases of the software life cycle. There is a current gap in mHealth apps for persons with MS, which presents an interesting area to explore. Objective The purpose of this study was to describe the design and evaluation process of a gamified mHealth solution for behavioral change in persons with MS using UCD. Methods Building on previous work of our team where we identified needs, barriers, and facilitators for mHealth apps for persons with MS, we followed UCD to design and evaluate a mobile app prototype aimed to help persons with MS self-manage their fatigue. Design decisions were evidence-driven and guided by behavioral change models (BCM). Usability was assessed through inspection methods using Nielsen’s heuristic evaluation. Results The mHealth solution More Stamina was designed. It is a task organization tool designed to help persons with MS manage their energy to minimize the impact of fatigue in their day-to-day life. The tool acts as a to-do list where users can input tasks in a simple manner and assign Stamina Credits, a representation of perceived

  1. Perspectives of Urban Corner Store Owners and Managers on Community Health Problems and Solutions

    PubMed Central

    Young, Candace R.; Cannuscio, Carolyn C.; Karpyn, Allison; Kounaves, Sarah; Strupp, Emily; McDonough, Kevin; Shea, Judy A.

    2016-01-01

    Introduction Urban corner store interventions have been implemented to improve access to and promote purchase of healthy foods. However, the perspectives of store owners and managers, who deliver and shape these interventions in collaboration with nonprofit, government, and academic partners, have been largely overlooked. We sought to explore the views of store owners and managers on the role of their stores in the community and their beliefs about health problems and solutions in the community. Methods During 2013 and 2014, we conducted semistructured, in-depth interviews in Philadelphia, Pennsylvania, and Camden, New Jersey, with 23 corner store owners/managers who participated in the Healthy Corner Store Initiative spearheaded by The Food Trust, a nonprofit organization focused on food access in low-income communities. We oversampled high-performing store owners. Results Store owners/managers reported that their stores served multiple roles, including providing a convenient source of goods, acting as a community hub, supporting community members, working with neighborhood schools, and improving health. Owners/managers described many challenging aspects of running a small store, including obtaining high-quality produce at a good price and in small quantities. Store owners/managers believed that obesity, diabetes, high cholesterol, and poor diet are major problems in their communities. Some owners/managers engaged with customers to discuss healthy behaviors. Conclusion Our findings suggest that store owners and managers are crucial partners for healthy eating interventions. Corner store owners/managers interact with community members daily, are aware of community health issues, and are community providers of access to food. Corner store initiatives can be used to implement innovative programs to further develop the untapped potential of store owners/managers. PMID:27736054

  2. Perspectives of Urban Corner Store Owners and Managers on Community Health Problems and Solutions.

    PubMed

    Mayer, Victoria L; Young, Candace R; Cannuscio, Carolyn C; Karpyn, Allison; Kounaves, Sarah; Strupp, Emily; McDonough, Kevin; Shea, Judy A

    2016-10-13

    Urban corner store interventions have been implemented to improve access to and promote purchase of healthy foods. However, the perspectives of store owners and managers, who deliver and shape these interventions in collaboration with nonprofit, government, and academic partners, have been largely overlooked. We sought to explore the views of store owners and managers on the role of their stores in the community and their beliefs about health problems and solutions in the community. During 2013 and 2014, we conducted semistructured, in-depth interviews in Philadelphia, Pennsylvania, and Camden, New Jersey, with 23 corner store owners/managers who participated in the Healthy Corner Store Initiative spearheaded by The Food Trust, a nonprofit organization focused on food access in low-income communities. We oversampled high-performing store owners. Store owners/managers reported that their stores served multiple roles, including providing a convenient source of goods, acting as a community hub, supporting community members, working with neighborhood schools, and improving health. Owners/managers described many challenging aspects of running a small store, including obtaining high-quality produce at a good price and in small quantities. Store owners/managers believed that obesity, diabetes, high cholesterol, and poor diet are major problems in their communities. Some owners/managers engaged with customers to discuss healthy behaviors. Our findings suggest that store owners and managers are crucial partners for healthy eating interventions. Corner store owners/managers interact with community members daily, are aware of community health issues, and are community providers of access to food. Corner store initiatives can be used to implement innovative programs to further develop the untapped potential of store owners/managers.

  3. Design of Energy Storage Management System Based on FPGA in Micro-Grid

    NASA Astrophysics Data System (ADS)

    Liang, Yafeng; Wang, Yanping; Han, Dexiao

    2018-01-01

    Energy storage system is the core to maintain the stable operation of smart micro-grid. Aiming at the existing problems of the energy storage management system in the micro-grid such as Low fault tolerance, easy to cause fluctuations in micro-grid, a new intelligent battery management system based on field programmable gate array is proposed : taking advantage of FPGA to combine the battery management system with the intelligent micro-grid control strategy. Finally, aiming at the problem that during estimation of battery charge State by neural network, initialization of weights and thresholds are not accurate leading to large errors in prediction results, the genetic algorithm is proposed to optimize the neural network method, and the experimental simulation is carried out. The experimental results show that the algorithm has high precision and provides guarantee for the stable operation of micro-grid.

  4. 76 FR 81487 - Application of the Energy Planning and Management Program Power Marketing Initiative to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... Management Program Power Marketing Initiative to the Boulder Canyon Project Post-2017 Remarketing AGENCY... Department of Energy (DOE), is withdrawing its decisions and proposals relating to its Boulder Canyon Project... . Information regarding Western's BCP Post-2017 marketing efforts, the Energy Management and Planning Program...

  5. Investigation of the stochastic nature of temperature and humidity for energy management

    NASA Astrophysics Data System (ADS)

    Hadjimitsis, Evanthis; Demetriou, Evangelos; Sakellari, Katerina; Tyralis, Hristos; Iliopoulou, Theano; Koutsoyiannis, Demetris

    2017-04-01

    Atmospheric temperature and dew point, in addition to their role in atmospheric processes, influence the management of energy systems since they highly affect the energy demand and production. Both temperature and humidity depend on the climate conditions and geographical location. In this context, we analyze numerous of observations around the globe and we investigate the long-term behaviour and periodicities of the temperature and humidity processes. Also, we present and apply a parsimonious stochastic double-cyclostationary model for these processes to an island in the Aegean Sea and investigate their link to energy management. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  6. Evaluation of Proposed Solutions to Global Warming, Air Pollution, and Energy Security

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2008-12-01

    This study reviews and ranks major proposed solutions to global warming, air pollution mortality, and energy security while considering other impacts of the proposed solutions, such as on water supply, land use, wildlife, resource availability, thermal pollution, water chemical pollution, nuclear proliferation, and undernutrition. Nine electric power sources and two liquid fuel options are considered. The electricity sources include solar-photovoltaics (PV), concentrated solar power (CSP), wind, geothermal, hydroelectric, wave, tidal, nuclear, and coal with carbon capture and storage (CCS) technology. The liquid fuel options include corn-E85 and cellulosic E85. To place the electric and liquid fuel sources on an equal footing, we examine their comparative abilities to address the problems mentioned by powering new-technology vehicles, including battery-electric vehicles (BEVs), hydrogen fuel cell vehicles (HFCVs), and flex-fuel vehicles run on E85. Twelve combinations of energy source-vehicle type are considered. Upon ranking and weighting each combination with respect to each of 11 impact categories, four clear divisions of ranking, or tiers, emerge. Tier 1 (highest-ranked) includes wind-BEVs and wind-HFCVs. Tier 2 includes CSP-BEVs, geothermal-BEVs, PV-BEVs, tidal-BEVs, and wave-BEVs. Tier 3 includes hydro-BEVs, nuclear-BEVs, and CCS-BEVs. Tier 4 includes corn- and cellulosic-E85. Wind-BEVs ranked first in six out of 11 categories, including the two most important, mortality and climate damage reduction. Although HFCVs are less efficient than BEVs, wind- HFCVs ranked second among all combinations. Tier 2 options provide significant benefits and are recommended. Tier 3 options are less desirable. However, hydroelectricity, which was ranked ahead of coal- CCS and nuclear with respect to climate and health, is an excellent load balancer, thus strongly recommended. The Tier-4 combinations (cellulosic- and corn-E85) were ranked lowest overall and with respect to

  7. Quantum mechanics/molecular mechanics modeling of photoelectron spectra: the carbon 1s core-electron binding energies of ethanol-water solutions.

    PubMed

    Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H

    2014-11-20

    Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.

  8. General multicomponent Yajima-Oikawa system: Painlevé analysis, soliton solutions, and energy-sharing collisions.

    PubMed

    Kanna, T; Sakkaravarthi, K; Tamilselvan, K

    2013-12-01

    We consider the multicomponent Yajima-Oikawa (YO) system and show that the two-component YO system can be derived in a physical setting of a three-coupled nonlinear Schrödinger (3-CNLS) type system by the asymptotic reduction method. The derivation is further generalized to the multicomponent case. This set of equations describes the dynamics of nonlinear resonant interaction between a one-dimensional long wave and multiple short waves. The Painlevé analysis of the general multicomponent YO system shows that the underlying set of evolution equations is integrable for arbitrary nonlinearity coefficients which will result in three different sets of equations corresponding to positive, negative, and mixed nonlinearity coefficients. We obtain the general bright N-soliton solution of the multicomponent YO system in the Gram determinant form by using Hirota's bilinearization method and explicitly analyze the one- and two-soliton solutions of the multicomponent YO system for the above mentioned three choices of nonlinearity coefficients. We also point out that the 3-CNLS system admits special asymptotic solitons of bright, dark, anti-dark, and gray types, when the long-wave-short-wave resonance takes place. The short-wave component solitons undergo two types of energy-sharing collisions. Specifically, in the two-component YO system, we demonstrate that two types of energy-sharing collisions-(i) energy switching with opposite nature for a particular soliton in two components and (ii) similar kind of energy switching for a given soliton in both components-result for two different choices of nonlinearity coefficients. The solitons appearing in the long-wave component always exhibit elastic collision whereas those of short-wave components exhibit standard elastic collisions only for a specific choice of parameters. We have also investigated the collision dynamics of asymptotic solitons in the original 3-CNLS system. For completeness, we explore the three-soliton interaction

  9. Insulin in UW solution exacerbates hepatic ischemia / reperfusion injury by energy depletion through the IRS-2 / SREBP-1c pathway.

    PubMed

    Li, Xian Liang; Man, Kwan; Ng, Kevin T; Lee, Terence K; Lo, Chung Mau; Fan, Sheung Tat

    2004-09-01

    Ischemia / reperfusion (I / R) injury is related to tissue graft energy status. Insulin, which is currently used in the University of Wisconsin (UW) preservation solution with insulin (UWI), is an anabolic hormone and was shown to exacerbate the hepatic I / R injury in our previous study. In this study, the energy status and regulation of metabolism genes by insulin were investigated in liver grafts preserved by UW solution. Insulin could significantly decrease adenosine triphosphate (ATP) level after 3 hours of preservation, as well as total adenine nucleotides (TANs) and energy charge (EC) levels. Energy regeneration deteriorated in the grafts preserved by insulin in terms of ATP and EC levels at 24 hours after transplantation. The insulin signal was transduced through the insulin receptor substrate-2 (IRS-2) pathway and the activity of IRS-2 was decreased gradually at the messenger ribonucleic acid (mRNA) level during cold preservation. Downstream targeting genes such as sterol regulatory element-binding protein-1c (SREBP-1c), glucokinase (GKC), and fatty acid synthase (FAS) genes, as well as phospho-glycogen synthase kinase-3beta (GSK-3beta) were activated and they showed the similar expression profiles during cold preservation. Lipoprotein metabolism was accelerated by insulin through upregulation of the activity of apolipoprotein C-III (Apo C-III) during cold preservation. The insulin-like growth factor-binding protein-1 pathway was inhibited during cold preservation. In conclusion, insulin in UW solution exacerbates hepatic I / R injury by energy depletion as the graft maintains its anabolic activity. The key enzyme activities of the energy-consuming process of glycogen and fatty acid synthesis as well as lipoprotein metabolism were accelerated by insulin through the IRS-2 / SREBP-1c pathway.

  10. A Study of Energy Management Systems and its Failure Modes in Smart Grid Power Distribution

    NASA Astrophysics Data System (ADS)

    Musani, Aatif

    The subject of this thesis is distribution level load management using a pricing signal in a smart grid infrastructure. The project relates to energy management in a spe-cialized distribution system known as the Future Renewable Electric Energy Delivery and Management (FREEDM) system. Energy management through demand response is one of the key applications of smart grid. Demand response today is envisioned as a method in which the price could be communicated to the consumers and they may shift their loads from high price periods to the low price periods. The development and deployment of the FREEDM system necessitates controls of energy and power at the point of end use. In this thesis, the main objective is to develop the control model of the Energy Management System (EMS). The energy and power management in the FREEDM system is digitally controlled therefore all signals containing system states are discrete. The EMS is modeled as a discrete closed loop transfer function in the z-domain. A breakdown of power and energy control devices such as EMS components may result in energy con-sumption error. This leads to one of the main focuses of the thesis which is to identify and study component failures of the designed control system. Moreover, H-infinity ro-bust control method is applied to ensure effectiveness of the control architecture. A focus of the study is cyber security attack, specifically bad data detection in price. Test cases are used to illustrate the performance of the EMS control design, the effect of failure modes and the application of robust control technique. The EMS was represented by a linear z-domain model. The transfer function be-tween the pricing signal and the demand response was designed and used as a test bed. EMS potential failure modes were identified and studied. Three bad data detection meth-odologies were implemented and a voting policy was used to declare bad data. The run-ning mean and standard deviation analysis method proves to be

  11. Development of a fuel cell plug-in hybrid electric vehicle and vehicle simulator for energy management assessment

    NASA Astrophysics Data System (ADS)

    Meintz, Andrew Lee

    This dissertation offers a description of the development of a fuel cell plug-in hybrid electric vehicle focusing on the propulsion architecture selection, propulsion system control, and high-level energy management. Two energy management techniques have been developed and implemented for real-time control of the vehicle. The first method is a heuristic method that relies on a short-term moving average of the vehicle power requirements. The second method utilizes an affine function of the short-term and long-term moving average vehicle power requirements. The development process of these methods has required the creation of a vehicle simulator capable of estimating the effect of changes to the energy management control techniques on the overall vehicle energy efficiency. Furthermore, the simulator has allowed for the refinement of the energy management methods and for the stability of the method to be analyzed prior to on-road testing. This simulator has been verified through on-road testing of a constructed prototype vehicle under both highway and city driving schedules for each energy management method. The results of the finalized vehicle control strategies are compared with the simulator predictions and an assessment of the effectiveness of both strategies is discussed. The methods have been evaluated for energy consumption in the form of both hydrogen fuel and stored electricity from grid charging.

  12. A hierarchical scheduling and management solution for dynamic reconfiguration in FPGA-based embedded systems

    NASA Astrophysics Data System (ADS)

    Cervero, T.; Gómez, A.; López, S.; Sarmiento, R.; Dondo, J.; Rincón, F.; López, J. C.

    2013-05-01

    One of the limiting factors that have prevented a widely dissemination of the reconfigurable technology is the absence of an appropriate model for certain target applications capable of offering a reliable control. Moreover, the lack of flexible and easy-to-use scheduling and management systems are also relevant drawbacks to be considered. Under static scenarios, it is relatively easy to schedule and manage the reconfiguration process since all the variations corresponding to predetermined and well-known tasks. However, the difficulty increases when the adaptation needs of the overall system change semi-randomly according to the environmental fluctuations. In this context, this work proposes a change in the paradigm of dynamically reconfigurable systems, by attending to the dynamically reconfigurable control problematic as a whole, in which the scheduling and the placement issues are packed together as a hierarchical management structure, interacting together as one entity from the system point of view, but performing their tasks with certain degree of independence each other. In this sense, the top hierarchical level corresponds with a dynamic scheduler in charge of planning and adjusting all the reconfigurable modules according to the variations of the external stimulus. The lower level interacts with the physical layer of the device by means of instantiating, relocating, removing a reconfigurable module following the scheduler's instructions. In regards to how fast is the proposed solution, the total partial reconfiguration time achieved with this proposal has been measured and compared with other two approaches: 1) using traditional Xilinx's tools; 2) using an optimized version of the Xilinx's drivers. The collected numbers demonstrate that our solution reaches a gain up to 10 times faster than the other approaches.

  13. Wetlands as large-scale nature-based solutions: status and future challenges for research and management

    NASA Astrophysics Data System (ADS)

    Thorslund, Josefin; Jarsjö, Jerker; Destouni, Georgia

    2017-04-01

    Wetlands are often considered as nature-based solutions that can provide a multitude of services of great social, economic and environmental value to humankind. The services may include recreation, greenhouse gas sequestration, contaminant retention, coastal protection, groundwater level and soil moisture regulation, flood regulation and biodiversity support. Changes in land-use, water use and climate can all impact wetland functions and occur at scales extending well beyond the local scale of an individual wetland. However, in practical applications, management decisions usually regard and focus on individual wetland sites and local conditions. To understand the potential usefulness and services of wetlands as larger-scale nature-based solutions, e.g. for mitigating negative impacts from large-scale change pressures, one needs to understand the combined function multiple wetlands at the relevant large scales. We here systematically investigate if and to what extent research so far has addressed the large-scale dynamics of landscape systems with multiple wetlands, which are likely to be relevant for understanding impacts of regional to global change. Our investigation regards key changes and impacts of relevance for nature-based solutions, such as large-scale nutrient and pollution retention, flow regulation and coastal protection. Although such large-scale knowledge is still limited, evidence suggests that the aggregated functions and effects of multiple wetlands in the landscape can differ considerably from those observed at individual wetlands. Such scale differences may have important implications for wetland function-effect predictability and management under large-scale change pressures and impacts, such as those of climate change.

  14. How can small hydro energy and other renewable energy mitigate impact of climate change in remote Central Africa: Cameroon case study.

    NASA Astrophysics Data System (ADS)

    Kenfack, Joseph; Bignom, Blaise

    2015-04-01

    Central Africa owns important renewable energy potential, namely hydro, solar and biomass. This important potential is still suffering from poor development up to the point where the sub region is still abundantly using the fossil energy and biomass as main power source. This is harmful to the climate and the situation is still ongoing. The main cause of the poor use of renewable energy is the poor management of resources by governments who have not taken the necessary measures to boost the renewable energy sector. Since the region is experiencing power shortage, thermal plants are among other solutions planned or under construction. Firewood is heavily used in remote areas without a sustainability program behind. This solution is not environment friendly and hence is not a long term solution. Given the fact that the region has the highest hydro potential of the continent, up to one-quarter of the world's tropical forest, important oil production with poor purchase power, the aim of this paper is to identify actions for improved access to sustainable, friendly, affordable energy services to users as well as a significant improvement of energy infrastructure in Central Africa and the promotion of small hydro and other renewable energy. The work will show at first the potential for the three primary energy sources which are solar, biomass and hydro while showing where available the level of development, with an emphasis on small hydro. Then identified obstacles for the promotion of clean energy will be targeted. From lessons learned, suggestions will be made to help the countries develop an approach aiming at developing good clean energy policy to increase the status of renewable energy and better contribute to fight against climate change. Cameroon has a great renewable energy potential and some data are available on energy. From the overview of institutional structure reform of the Cameroon power sector and assessments, specific suggestions based on the weaknesses

  15. Intelligent Hybrid Vehicle Power Control. Part 2. Online Intelligent Energy Management

    DTIC Science & Technology

    2012-06-30

    IEC_HEV for vehicle energy optimization. IEC_HEV, the Figure 1. Power Split HEV configuration into VSC 5 online energy control is a component...in the Vehicle System Controller ( VSC ). The VSC for this configuration must manage the powertrain control in order to maintain a proper level of...charge in the battery. However, since two power sources are available to propel the vehicle, the VSC in this configuration has the additional

  16. Evaluating Battery-like Reactions to Harvest Energy from Salinity Differences using Ammonium Bicarbonate Salt Solutions.

    PubMed

    Kim, Taeyoung; Rahimi, Mohammad; Logan, Bruce E; Gorski, Christopher A

    2016-05-10

    Mixing entropy batteries (MEBs) are a new approach to generate electricity from salinity differences between two aqueous solutions. To date, MEBs have only been prepared from solutions containing chloride salts, owing to their relevance in natural salinity gradients created from seawater and freshwater. We hypothesized that MEBs could capture energy using ammonium bicarbonate (AmB), a thermolytic salt that can be used to convert waste heat into salinity gradients. We examined six battery electrode materials. Several of the electrodes were unstable in AmB solutions or failed to produce expected voltages. Of the electrode materials tested, a cell containing a manganese oxide electrode and a metallic lead electrode produced the highest power density (6.3 mW m(-2) ). However, this power density is still low relative to previously reported NaCl-based MEBs and heat recovery systems. This proof-of-concept study demonstrated that MEBs could indeed be used to generate electricity from AmB salinity gradients. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Novel third-order Lovelock wormhole solutions

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Mohammad Reza; Lobo, Francisco S. N.

    2016-06-01

    In this work, we consider wormhole geometries in third-order Lovelock gravity and investigate the possibility that these solutions satisfy the energy conditions. In this framework, by applying a specific equation of state, we obtain exact wormhole solutions, and by imposing suitable values for the parameters of the theory, we find that these geometries satisfy the weak energy condition in the vicinity of the throat, due to the presence of higher-order curvature terms. Finally, we trace out a numerical analysis, by assuming a specific redshift function, and find asymptotically flat solutions that satisfy the weak energy condition throughout the spacetime.

  18. RESTORATION PLUS: A COLLABORATIVE RESEARCH PROGRAM TO DEVELOP AND EVALUATE ECOSYSTEM RESTORATION AND MANAGEMENT OPTIONS TO ACHIEVE ECOLOGICALLY AND ECONOMICALLY SUSTAINABLE SOLUTIONS

    EPA Science Inventory

    EPA is evaluating ecosystem restoration and management techniques to ensure they create sustainable solutions for degraded watersheds. ORD NRMRL initiated the Restoration Plus (RePlus) program in 2002 to a) evaluate ecosystem restoration and management options, b) assess the non-...

  19. Impact of dual energy characterization of urinary calculus on management.

    PubMed

    Habashy, David; Xia, Ryan; Ridley, William; Chan, Lewis; Ridley, Lloyd

    2016-10-01

    Dual energy CT (DECT) is a recent technique that is increasingly being used to differentiate between calcium and uric acid urinary tract calculi. The aim of this study is to determine if urinary calculi composition analysis determined by DECT scanning results in a change of patient management. All patients presenting with symptoms of renal colic, who had not previously undergone DECT scanning underwent DECT KUB. DECT data of all patients between September 2013 and July 2015 were reviewed. Urinary calculi composition based on dual energy characterization was cross-matched with patient management and outcome. A total of 585 DECT KUB were performed. 393/585 (67%) DECT scans revealed urinary tract calculi. After excluding those with isolated bladder or small asymptomatic renal stones, 303 patients were found to have symptomatic stone(s) as an explanation for their presentation. Of these 303 patients, there were 273 (90.1%) calcium calculi, 19 (6.3%) uric acid calculi and 11 (3.4%) mixed calculi. Of those with uric acid calculi, 15 were commenced on dissolution therapy. Twelve of those commenced on dissolution therapy had a successful outcome, avoiding need for surgical intervention (lithotripsy or stone retrieval). Three patients failed dissolution therapy and required operative intervention for definitive management of the stone. Predicting urinary tract calculi composition by DECT plays an important role in identifying patients who may be managed with dissolution therapy. Identification of uric acid stone composition altered management in 15 of 303 (5.0%) patients, and was successful in 12, thereby avoiding surgery and its attendant risks. © 2016 The Royal Australian and New Zealand College of Radiologists.

  20. Integrated modeling approach for optimal management of water, energy and food security nexus

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Vesselinov, Velimir V.

    2017-03-01

    Water, energy and food (WEF) are inextricably interrelated. Effective planning and management of limited WEF resources to meet current and future socioeconomic demands for sustainable development is challenging. WEF production/delivery may also produce environmental impacts; as a result, green-house-gas emission control will impact WEF nexus management as well. Nexus management for WEF security necessitates integrated tools for predictive analysis that are capable of identifying the tradeoffs among various sectors, generating cost-effective planning and management strategies and policies. To address these needs, we have developed an integrated model analysis framework and tool called WEFO. WEFO provides a multi-period socioeconomic model for predicting how to satisfy WEF demands based on model inputs representing productions costs, socioeconomic demands, and environmental controls. WEFO is applied to quantitatively analyze the interrelationships and trade-offs among system components including energy supply, electricity generation, water supply-demand, food production as well as mitigation of environmental impacts. WEFO is demonstrated to solve a hypothetical nexus management problem consistent with real-world management scenarios. Model parameters are analyzed using global sensitivity analysis and their effects on total system cost are quantified. The obtained results demonstrate how these types of analyses can be helpful for decision-makers and stakeholders to make cost-effective decisions for optimal WEF management.