Sample records for array finely tuned

  1. Hydrothermal growth of ZnO nanowire arrays: fine tuning by precursor supersaturation

    DOE PAGES

    Yan, Danhua; Cen, Jiajie; Zhang, Wenrui; ...

    2016-12-20

    In this paper, we develop a technique that fine tunes the hydrothermal growth of ZnO nanowires to address the difficulties in controlling their growth in a conventional one-pot hydrothermal method. In our technique, precursors are separately and slowly supplied with the assistance of a syringe pump, through the entire course of the growth. Compared to the one-pot method, the significantly lowered supersaturation of precursors helps eliminating competitive homogeneous nucleation and improves the reproducibility. The supersaturation degree can be readily tuned by the precursor quantity and injection rate, thus forming ZnO nanowire arrays of various geometries and packing densities in amore » highly controllable fashion. The precise control of ZnO nanowire growth enables systematic studies on the correlation between the material's properties and its morphology. Finally, in this work, ZnO nanowire arrays of various morphologies are studied as photoelectrochemical (PEC) water splitting photoanodes, in which we establish clear correlations between the water splitting performance and the nanowires' size, shape, and packing density.« less

  2. Automated Camera Array Fine Calibration

    NASA Technical Reports Server (NTRS)

    Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang

    2008-01-01

    Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.

  3. Reducing the fine-tuning of gauge-mediated SUSY breaking

    NASA Astrophysics Data System (ADS)

    Casas, J. Alberto; Moreno, Jesús M.; Robles, Sandra; Rolbiecki, Krzysztof

    2016-08-01

    Despite their appealing features, models with gauge-mediated supersymmetry breaking (GMSB) typically present a high degree of fine-tuning, due to the initial absence of the top trilinear scalar couplings, A_t=0. In this paper, we carefully evaluate such a tuning, showing that is worse than per mil in the minimal model. Then, we examine some existing proposals to generate A_t≠ 0 term in this context. We find that, although the stops can be made lighter, usually the tuning does not improve (it may be even worse), with some exceptions, which involve the generation of A_t at one loop or tree level. We examine both possibilities and propose a conceptually simplified version of the latter; which is arguably the optimum GMSB setup (with minimal matter content), concerning the fine-tuning issue. The resulting fine-tuning is better than one per mil, still severe but similar to other minimal supersymmetric standard model constructions. We also explore the so-called "little A_t^2/m^2 problem", i.e. the fact that a large A_t-term is normally accompanied by a similar or larger sfermion mass, which typically implies an increase in the fine-tuning. Finally, we find the version of GMSB for which this ratio is optimized, which, nevertheless, does not minimize the fine-tuning.

  4. Why Cosmic Fine-Tuning Needs to BE Explained

    NASA Astrophysics Data System (ADS)

    Manson, Neil Alan

    Discoveries in modern physics and Big Bang cosmology indicate that if either the initial conditions of the universe or the physical laws governing its development had differed even slightly, life could never have developed. It is for this reason that the universe is said to be ``fine-tuned'' for life. I argue that cosmic fine-tuning, which some want to dismiss as the way things just happen to be, in fact needs to be explained. In Chapter One I provide an overview of the evidence that the universe is fine-tuned for life. In Chapter Two I present a set of sufficient conditions for a fact's needing to be explained. The conditions are that the fact is improbable and that a ``tidy'' explanation of it is available. A tidy explanation of a fact is considerably less improbable than that fact and makes the obtaining of that fact considerably less improbable. Chapters Three, Four, and Five are devoted to showing that cosmic Chapter Three I argue that the universe's being finely tuned for life can meaningfully be considered improbable. In Chapter Four I claim that there is at least one tidy explanation of cosmic fine-tuning: that the universe was created by some sort of extramundane designer. In Chapters Four and Five I respond to three objections. The first is that the design hypothesis is ad hoc. The second is that we have no reason to believe a supernatural designer would prefer life-permitting cosmoi to other possible cosmoi and that our tendency to believe otherwise is the result of anthropocentrism. The third is that the design hypothesis never buys us an explanatory advantage.

  5. Light stops and fine-tuning in MSSM

    NASA Astrophysics Data System (ADS)

    Çiçi, Ali; Kırca, Zerrin; Ün, Cem Salih

    2018-01-01

    We discuss the fine-tuning issue within the MSSM framework. Following the idea that the fine-tuning can measure effects of some missing mechanism, we impose non-universal gaugino masses at the GUT scale, and explore the low scale implications. We realize that the fine-tuning parametrized with Δ _{EW} can be as low as zero. We consider the stop mass with a special importance and focus on the mass scales as m_{\\tilde{t}} ≤ 700 GeV, which are excluded by the current experiments when the stop decays into a neutralino along with a top quark or a chargino along with a bottom quark. We find that the stop mass can be as low as about 250 GeV with Δ _{EW} ˜ 50. We find that the solutions in this region can be exluded only up to 60% when stop decays into a neutralino-top quark, and 50% when it decays into a chargino-b quark. Setting 65% CL to be potential exclusion and 95% to be pure exclusion limit such solutions will be tested in near future experiments, which are conducted with higher luminosity. In addition to stop, the region with low fine-tuning and light stops predicts masses for the other supersymmetric particles such as m_{\\tilde{b}} ≳ 700 GeV, m_{\\tilde{τ }} ≳ 1 TeV, m_{\\tilde{χ }1^{± }} ≳ 120 GeV. The details for the mass scales and decay rates are also provided by tables of benchmark points.

  6. Fine tuning may not be enough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, S.P.; Woodard, R.P., E-mail: spmiao5@mail.ncku.edu.tw, E-mail: woodard@phys.ufl.edu

    2015-09-01

    We argue that the fine tuning problems of scalar-driven inflation may be worse than is commonly believed. The reason is that reheating requires the inflaton to be coupled to other matter fields whose vacuum fluctuations alter the inflaton potential. The usual response has been that even more fine-tuning of the classical potential V(φ) can repair any damage done in this way. We point out that the effective potential in de Sitter background actually depends in a complicated way upon the dimensionless combination of φ/H. We also show that the factors of H which occur in de Sitter do not evenmore » correspond to local functionals of the metric for general geometries, nor are they Planck-suppressed.« less

  7. Implications for New Physics from Fine-Tuning Arguments: II. Little Higgs Models

    NASA Astrophysics Data System (ADS)

    Casas, J. A.; Espinosa, J. R.; Hidalgo, I.

    2005-03-01

    We examine the fine-tuning associated to electroweak breaking in Little Higgs scenarios and find it to be always substantial and, generically, much higher than suggested by the rough estimates usually made. This is due to implicit tunings between parameters that can be overlooked at first glance but show up in a more systematic analysis. Focusing on four popular and representative Little Higgs scenarios, we find that the fine-tuning is essentially comparable to that of the Little Hierarchy problem of the Standard Model (which these scenarios attempt to solve) and higher than in supersymmetric models. This does not demonstrate that all Little Higgs models are fine-tuned, but stresses the need of a careful analysis of this issue in model-building before claiming that a particular model is not fine-tuned. In this respect we identify the main sources of potential fine-tuning that should be watched out for, in order to construct a successful Little Higgs model, which seems to be a non-trivial goal.

  8. The Fine-Tuning of the Universe for Intelligent Life

    NASA Astrophysics Data System (ADS)

    Barnes, L. A.

    2012-06-01

    The fine-tuning of the universe for intelligent life has received a great deal of attention in recent years, both in the philosophical and scientific literature. The claim is that in the space of possible physical laws, parameters and initial conditions, the set that permits the evolution of intelligent life is very small. I present here a review of the scientific literature, outlining cases of fine-tuning in the classic works of Carter, Carr and Rees, and Barrow and Tipler, as well as more recent work. To sharpen the discussion, the role of the antagonist will be played by Victor Stenger's recent book The Fallacy of Fine-Tuning: Why the Universe is Not Designed for Us. Stenger claims that all known fine-tuning cases can be explained without the need for a multiverse. Many of Stenger's claims will be found to be highly problematic. We will touch on such issues as the logical necessity of the laws of nature; objectivity, invariance and symmetry; theoretical physics and possible universes; entropy in cosmology; cosmic inflation and initial conditions; galaxy formation; the cosmological constant; stars and their formation; the properties of elementary particles and their effect on chemistry and the macroscopic world; the origin of mass; grand unified theories; and the dimensionality of space and time. I also provide an assessment of the multiverse, noting the significant challenges that it must face. I do not attempt to defend any conclusion based on the fine-tuning of the universe for intelligent life. This paper can be viewed as a critique of Stenger's book, or read independently.

  9. Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?

    PubMed

    Tajbakhsh, Nima; Shin, Jae Y; Gurudu, Suryakanth R; Hurst, R Todd; Kendall, Christopher B; Gotway, Michael B; Jianming Liang

    2016-05-01

    Training a deep convolutional neural network (CNN) from scratch is difficult because it requires a large amount of labeled training data and a great deal of expertise to ensure proper convergence. A promising alternative is to fine-tune a CNN that has been pre-trained using, for instance, a large set of labeled natural images. However, the substantial differences between natural and medical images may advise against such knowledge transfer. In this paper, we seek to answer the following central question in the context of medical image analysis: Can the use of pre-trained deep CNNs with sufficient fine-tuning eliminate the need for training a deep CNN from scratch? To address this question, we considered four distinct medical imaging applications in three specialties (radiology, cardiology, and gastroenterology) involving classification, detection, and segmentation from three different imaging modalities, and investigated how the performance of deep CNNs trained from scratch compared with the pre-trained CNNs fine-tuned in a layer-wise manner. Our experiments consistently demonstrated that 1) the use of a pre-trained CNN with adequate fine-tuning outperformed or, in the worst case, performed as well as a CNN trained from scratch; 2) fine-tuned CNNs were more robust to the size of training sets than CNNs trained from scratch; 3) neither shallow tuning nor deep tuning was the optimal choice for a particular application; and 4) our layer-wise fine-tuning scheme could offer a practical way to reach the best performance for the application at hand based on the amount of available data.

  10. Beyond Fine Tuning: Adding capacity to leverage few labels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodas, Nathan O.; Shaffer, Kyle J.; Yankov, Artem

    2017-12-09

    In this paper we present a technique to train neural network models on small amounts of data. Current methods for training neural networks on small amounts of rich data typically rely on strategies such as fine-tuning a pre-trained neural networks or the use of domain-specific hand-engineered features. Here we take the approach of treating network layers, or entire networks, as modules and combine pre-trained modules with untrained modules, to learn the shift in distributions between data sets. The central impact of using a modular approach comes from adding new representations to a network, as opposed to replacing representations via fine-tuning.more » Using this technique, we are able surpass results using standard fine-tuning transfer learning approaches, and we are also able to significantly increase performance over such approaches when using smaller amounts of data.« less

  11. Quantum Cascade Laser Tuning by Digital Micromirror Array-controlled External Cavity

    DTIC Science & Technology

    2014-01-01

    P. Vujkovic-Cvijin, B. Gregor, A. C. Samuels, E. S. Roese, Quantum cascade laser tuning by digital micromirror array-controlled external cavity...REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Quantum cascade laser tuning by digital micromirror array-controlled...dimensional digital micromirror array (DMA) is described. The laser is tuned by modulating the reflectivity of DMA micromirror pixels under computer

  12. Fine-Tuning in a Design Experiment

    ERIC Educational Resources Information Center

    Ho, Foo Him; Toh, Pee Choon; Toh, Tin Lam

    2013-01-01

    Quek, Tay, Toh, Leong, and Dindyal (2011) proposed that a design-theory-practice troika should always be considered for a designed package to be acceptable to the research users who, in this case, are teachers and schools. This paper describes the fine-tuning to the MProSE problem-solving design made by the teachers in the school after first round…

  13. Audiologist-driven versus patient-driven fine tuning of hearing instruments.

    PubMed

    Boymans, Monique; Dreschler, Wouter A

    2012-03-01

    Two methods of fine tuning the initial settings of hearing aids were compared: An audiologist-driven approach--using real ear measurements and a patient-driven fine-tuning approach--using feedback from real-life situations. The patient-driven fine tuning was conducted by employing the Amplifit(®) II system using audiovideo clips. The audiologist-driven fine tuning was based on the NAL-NL1 prescription rule. Both settings were compared using the same hearing aids in two 6-week trial periods following a randomized blinded cross-over design. After each trial period, the settings were evaluated by insertion-gain measurements. Performance was evaluated by speech tests in quiet, in noise, and in time-reversed speech, presented at 0° and with spatially separated sound sources. Subjective results were evaluated using extensive questionnaires and audiovisual video clips. A total of 73 participants were included. On average, higher gain values were found for the audiologist-driven settings than for the patient-driven settings, especially at 1000 and 2000 Hz. Better objective performance was obtained for the audiologist-driven settings for speech perception in quiet and in time-reversed speech. This was supported by better scores on a number of subjective judgments and in the subjective ratings of video clips. The perception of loud sounds scored higher than when patient-driven, but the overall preference was in favor of the audiologist-driven settings for 67% of the participants.

  14. Localized electrical fine tuning of passive microwave and radio frequency devices

    DOEpatents

    Findikoglu, Alp T.

    2001-04-10

    A method and apparatus for the localized electrical fine tuning of passive multiple element microwave or RF devices in which a nonlinear dielectric material is deposited onto predetermined areas of a substrate containing the device. An appropriate electrically conductive material is deposited over predetermined areas of the nonlinear dielectric and the signal line of the device for providing electrical contact with the nonlinear dielectric. Individual, adjustable bias voltages are applied to the electrically conductive material allowing localized electrical fine tuning of the devices. The method of the present invention can be applied to manufactured devices, or can be incorporated into the design of the devices so that it is applied at the time the devices are manufactured. The invention can be configured to provide localized fine tuning for devices including but not limited to coplanar waveguides, slotline devices, stripline devices, and microstrip devices.

  15. Scanning electron microscope fine tuning using four-bar piezoelectric actuated mechanism

    NASA Astrophysics Data System (ADS)

    Hatamleh, Khaled S.; Khasawneh, Qais A.; Al-Ghasem, Adnan; Jaradat, Mohammad A.; Sawaqed, Laith; Al-Shabi, Mohammad

    2018-01-01

    Scanning Electron Microscopes are extensively used for accurate micro/nano images exploring. Several strategies have been proposed to fine tune those microscopes in the past few years. This work presents a new fine tuning strategy of a scanning electron microscope sample table using four bar piezoelectric actuated mechanisms. The introduced paper presents an algorithm to find all possible inverse kinematics solutions of the proposed mechanism. In addition, another algorithm is presented to search for the optimal inverse kinematic solution. Both algorithms are used simultaneously by means of a simulation study to fine tune a scanning electron microscope sample table through a pre-specified circular or linear path of motion. Results of the study shows that, proposed algorithms were able to minimize the power required to drive the piezoelectric actuated mechanism by a ratio of 97.5% for all simulated paths of motion when compared to general non-optimized solution.

  16. Understanding the Fine Tuning in Our Universe

    ERIC Educational Resources Information Center

    Cohen, Bernard L.

    2008-01-01

    It is often stated that the physical properties of our universe are "fine tuned"--that is, they must be almost exactly as they are to make the development of intelligent life possible. The implications of this statement, called the "anthropic principle," have been widely discussed in a philosophical context, but the scientific basis for the…

  17. Fine tuning and MOND in a metamaterial "multiverse".

    PubMed

    Smolyaninov, Igor I; Smolyaninova, Vera N

    2017-08-14

    We consider the recently suggested model of a multiverse based on a ferrofluid. When the ferrofluid is subjected to a modest external magnetic field, the nanoparticles inside the ferrofluid form small hyperbolic metamaterial domains, which from the electromagnetic standpoint behave as individual "Minkowski universes" exhibiting different "laws of physics", such as different strength of effective gravity, different versions of modified Newtonian dynamics (MOND) and different radiation lifetimes. When the ferrofluid "multiverse" is populated with atomic or molecular species, and these species are excited using an external laser source, the radiation lifetimes of atoms and molecules in these "universes" depend strongly on the individual physical properties of each "universe" via the Purcell effect. Some "universes" are better fine-tuned than others to sustain the excited states of these species. Thus, the ferrofluid-based metamaterial "multiverse" may be used to study models of MOND and to illustrate the fine-tuning mechanism in cosmology.

  18. Modern Cosmology and Anthropic Fine-Tuning: Three approaches

    NASA Astrophysics Data System (ADS)

    Collins, Robin

    The anthropic fine-tuning of the cosmos refers to the claim that the laws of nature, the constants of physics, and the initial conditions of the universe must be set to an enormous degree of precision for embodied conscious agents to exist. Three major responses have been offered to this fine-tuning: the multiverse explanation; theism; and the claim that it is just a brute fact that requires no further explanation. In this chapter, I will consider each explanation in turn, and provide some novel arguments for the superiority of a theistic or related explanation. In the last section, I will show how whether or not one adopts a theistic or related explanation can significantly influence what features of the universe one considers in need of further scientific explanation, and the type of scientific explanation that one should find satisfactory. In particular, I will argue that in some cases atheism, not theism, serves as a science stopper in discouraging a search for deeper scientific explanations of phenomena.

  19. Fine-tuning with brane-localized flux in 6D supergravity

    NASA Astrophysics Data System (ADS)

    Niedermann, Florian; Schneider, Robert

    2016-02-01

    There are claims in the literature that the cosmological constant problem could be solved in a braneworld model with two large (micron-sized) supersymmetric extra dimensions. The mechanism relies on two basic ingredients: first, the cosmological constant only curves the compact bulk geometry into a rugby shape while the 4D curvature stays flat. Second, a brane-localized flux term is introduced in order to circumvent Weinberg's fine-tuning argument, which otherwise enters here through a backdoor via the flux quantization condition. In this paper, we show that the latter mechanism does not work in the way it was designed: the only localized flux coupling that guarantees a flat on-brane geometry is one which preserves the scale invariance of the bulk theory. Consequently, Weinberg's argument applies, making a fine-tuning necessary again. The only remaining window of opportunity lies within scale invariance breaking brane couplings, for which the tuning could be avoided. Whether the corresponding 4D curvature could be kept under control and in agreement with the observed value will be answered in our companion paper [1].

  20. Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.

    PubMed

    Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N

    2016-06-01

    The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920  ps) together with a compact footprint (4.15  mm2) and optical loss <27  dB make this device particularly suitable for highly efficient steering in active phased-array antennas. The delay line includes two graphene-based Mach-Zehnder interferometer switches and two vertically stacked microring resonators between which a graphene capacitor is placed. The tuning range is obtained by varying the value of the voltage applied to the graphene electrodes, which controls the optical path of the light propagation and therefore the delay time. The graphene provides a faster reconfigurable time and low values of energy dissipation. Such significant advantages, together with a negligible beam-squint effect, allow us to overcome the limitations of conventional RF beamformers. A highly efficient fine-tunable optical delay line for the beamsteering of 20 radiating elements up to ±20° in the azimuth direction of a tile in a phased-array antenna of an X-band synthetic aperture radar has been designed.

  1. Fine-Tuning Neural Patient Question Retrieval Model with Generative Adversarial Networks.

    PubMed

    Tang, Guoyu; Ni, Yuan; Wang, Keqiang; Yong, Qin

    2018-01-01

    The online patient question and answering (Q&A) system attracts an increasing amount of users in China. Patient will post their questions and wait for doctors' response. To avoid the lag time involved with the waiting and to reduce the workload on the doctors, a better method is to automatically retrieve the semantically equivalent question from the archive. We present a Generative Adversarial Networks (GAN) based approach to automatically retrieve patient question. We apply supervised deep learning based approaches to determine the similarity between patient questions. Then a GAN framework is used to fine-tune the pre-trained deep learning models. The experiment results show that fine-tuning by GAN can improve the performance.

  2. Hearing aid fine-tuning based on Dutch descriptions.

    PubMed

    Thielemans, Thijs; Pans, Donné; Chenault, Michelene; Anteunis, Lucien

    2017-07-01

    The aim of this study was to derive an independent fitting assistant based on expert consensus. Two questions were asked: (1) what (Dutch) terms do hearing impaired listeners use nowadays to describe their specific hearing aid fitting problems? (2) What is the expert consensus on how to resolve these complaints by adjusting hearing aid parameters? Hearing aid dispensers provided descriptors that impaired listeners use to describe their reactions to specific hearing aid fitting problems. Hearing aid fitting experts were asked "How would you adjust the hearing aid if its user reports that the aid sounds…?" with the blank filled with each of the 40 most frequently mentioned descriptors. 112 hearing aid dispensers and 15 hearing aid experts. The expert solution with the highest weight value was considered the best solution for that descriptor. Principal component analysis (PCA) was performed to identify a factor structure in fitting problems. Nine fitting problems could be identified resulting in an expert-based, hearing aid manufacturer independent, fine-tuning fitting assistant for clinical use. The construction of an expert-based, hearing aid manufacturer independent, fine-tuning fitting assistant to be used as an additional tool in the iterative fitting process is feasible.

  3. Emission wavelength tuning of fluorescence by fine structural control of optical metamaterials with Fano resonance

    PubMed Central

    Moritake, Y.; Kanamori, Y.; Hane, K.

    2016-01-01

    We demonstrated fine emission wavelength tuning of quantum dot (QD) fluorescence by fine structural control of optical metamaterials with Fano resonance. An asymmetric-double-bar (ADB), which was composed of only two bars with slightly different bar lengths, was used to obtain Fano resonance in the optical region. By changing the short bar length of ADB structures with high dimensional accuracy in the order of 10 nm, resonant wavelengths of Fano resonance were controlled from 1296 to 1416 nm. Fluorescence of QDs embedded in a polymer layer on ADB metamaterials were modified due to coupling to Fano resonance and fine tuning from 1350 to 1376 nm was observed. Wavelength tuning of modified fluorescence was reproduced by analysis using absorption peaks of Fano resonance. Tuning range of modified fluorescence became narrow, which was interpreted by a simple Gaussian model and resulted from comparable FWHM in QD fluorescence and Fano resonant peaks. The results will help the design and fabrication of metamaterial devices with fluorophores such as light sources and biomarkers. PMID:27622503

  4. Fine-tuning convolutional deep features for MRI based brain tumor classification

    NASA Astrophysics Data System (ADS)

    Ahmed, Kaoutar B.; Hall, Lawrence O.; Goldgof, Dmitry B.; Liu, Renhao; Gatenby, Robert A.

    2017-03-01

    Prediction of survival time from brain tumor magnetic resonance images (MRI) is not commonly performed and would ordinarily be a time consuming process. However, current cross-sectional imaging techniques, particularly MRI, can be used to generate many features that may provide information on the patient's prognosis, including survival. This information can potentially be used to identify individuals who would benefit from more aggressive therapy. Rather than using pre-defined and hand-engineered features as with current radiomics methods, we investigated the use of deep features extracted from pre-trained convolutional neural networks (CNNs) in predicting survival time. We also provide evidence for the power of domain specific fine-tuning in improving the performance of a pre-trained CNN's, even though our data set is small. We fine-tuned a CNN initially trained on a large natural image recognition dataset (Imagenet ILSVRC) and transferred the learned feature representations to the survival time prediction task, obtaining over 81% accuracy in a leave one out cross validation.

  5. Post-LHC7 fine-tuning in the minimal supergravity/CMSSM model with a 125 GeV Higgs boson

    NASA Astrophysics Data System (ADS)

    Baer, Howard; Barger, Vernon; Huang, Peisi; Mickelson, Dan; Mustafayev, Azar; Tata, Xerxes

    2013-02-01

    The recent discovery of a 125 GeV Higgs-like resonance at LHC, coupled with the lack of evidence for weak scale supersymmetry (SUSY), has severely constrained SUSY models such as minimal supergravity (mSUGRA)/CMSSM. As LHC probes deeper into SUSY model parameter space, the little hierarchy problem—how to reconcile the Z and Higgs boson mass scale with the scale of SUSY breaking—will become increasingly exacerbated unless a sparticle signal is found. We evaluate two different measures of fine-tuning in the mSUGRA/CMSSM model. The more stringent of these, ΔHS, includes effects that arise from the high-scale origin of the mSUGRA parameters while the second measure, ΔEW, is determined only by weak scale parameters: hence, it is universal to any model with the same particle spectrum and couplings. Our results incorporate the latest constraints from LHC7 sparticle searches, LHCb limits from Bs→μ+μ- and also require a light Higgs scalar with mh˜123-127GeV. We present fine-tuning contours in the m0 vs m1/2 plane for several sets of A0 and tan⁡β values. We also present results for ΔHS and ΔEW from a scan over the entire viable model parameter space. We find a ΔHS≳103, or at best 0.1%, fine-tuning. For the less stringent electroweak fine-tuning, we find ΔEW≳102, or at best 1%, fine-tuning. Two benchmark points are presented that have the lowest values of ΔHS and ΔEW. Our results provide a quantitative measure for ascertaining whether or not the remaining mSUGRA/CMSSM model parameter space is excessively fine-tuned and so could provide impetus for considering alternative SUSY models.

  6. Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant.

    PubMed

    Asin-Cayuela, Jordi; Manas, Abdul-Rahman B; James, Andrew M; Smith, Robin A J; Murphy, Michael P

    2004-07-30

    The mitochondria-targeted antioxidant MitoQ comprises a ubiquinol moiety covalently attached through an aliphatic carbon chain to the lipophilic triphenylphosphonium cation. This cation drives the membrane potential-dependent accumulation of MitoQ into mitochondria, enabling the ubiquinol antioxidant to prevent mitochondrial oxidative damage far more effectively than untargeted antioxidants. We sought to fine-tune the hydrophobicity of MitoQ so as to control the extent of its membrane binding and penetration into the phospholipid bilayer, and thereby regulate its partitioning between the membrane and aqueous phases within mitochondria and cells. To do this, MitoQ variants with 3, 5, 10 and 15 carbon aliphatic chains were synthesised. These molecules had a wide range of hydrophobicities with octan-1-ol/phosphate buffered saline partition coefficients from 2.8 to 20000. All MitoQ variants were accumulated into mitochondria driven by the membrane potential, but their binding to phospholipid bilayers varied from negligible for MitoQ3 to essentially total for MitoQ15. Despite the span of hydrophobicites, all MitoQ variants were effective antioxidants. Therefore, it is possible to fine-tune the degree of membrane association of MitoQ and other mitochondria targeted compounds, without losing antioxidant efficacy. This indicates how the uptake and distribution of mitochondria-targeted compounds within mitochondria and cells can be controlled, thereby facilitating investigations of mitochondrial oxidative damage.

  7. Lithographic fine-tuning of vertical cavity surface emitting laser-pumped two-dimensional photonic crystal lasers.

    PubMed

    Cao, J R; Lee, Po-Tsung; Choi, Sang-Jun; O'Brien, John D; Dapkus, P Daniel

    2002-01-01

    Lithographic tuning of operating wavelengths in a photonic crystal laser array is demonstrated. The photonic crystal lattice constant is varied by 2 nm between elements of the array, and a wavelength spacing of approximately 4 nm is achieved.

  8. Thyroid Nodule Classification in Ultrasound Images by Fine-Tuning Deep Convolutional Neural Network.

    PubMed

    Chi, Jianning; Walia, Ekta; Babyn, Paul; Wang, Jimmy; Groot, Gary; Eramian, Mark

    2017-08-01

    With many thyroid nodules being incidentally detected, it is important to identify as many malignant nodules as possible while excluding those that are highly likely to be benign from fine needle aspiration (FNA) biopsies or surgeries. This paper presents a computer-aided diagnosis (CAD) system for classifying thyroid nodules in ultrasound images. We use deep learning approach to extract features from thyroid ultrasound images. Ultrasound images are pre-processed to calibrate their scale and remove the artifacts. A pre-trained GoogLeNet model is then fine-tuned using the pre-processed image samples which leads to superior feature extraction. The extracted features of the thyroid ultrasound images are sent to a Cost-sensitive Random Forest classifier to classify the images into "malignant" and "benign" cases. The experimental results show the proposed fine-tuned GoogLeNet model achieves excellent classification performance, attaining 98.29% classification accuracy, 99.10% sensitivity and 93.90% specificity for the images in an open access database (Pedraza et al. 16), while 96.34% classification accuracy, 86% sensitivity and 99% specificity for the images in our local health region database.

  9. Understanding the Fine Tuning in Our Universe

    NASA Astrophysics Data System (ADS)

    Cohen, Bernard L.

    2008-05-01

    I It is often stated that the physical properties of our universe are ``fine tuned''-that is, they must be almost exactly as they are to make the development of intelligent life possible.1 The implications of this statement, called the ``anthropic principle,'' have been widely discussed in a philosophical context,2 but the scientific basis for the statement3 is not widely understood outside the community of experts. My purpose here is to explain how I have presented some parts of this scientific basis, albeit with some glossing over of difficult and/or less important details, to undergraduate students majoring in humanities and social sciences and to senior citizens in ``lifetime learning'' programs who have no professional scientific background. In this paper, I concentrate on the vital processes of hydrogen burning and helium burning.

  10. A cyclic universe approach to fine tuning

    DOE PAGES

    Alexander, Stephon; Cormack, Sam; Gleiser, Marcelo

    2016-04-05

    We present a closed bouncing universe model where the value of coupling constants is set by the dynamics of a ghost-like dilatonic scalar field. We show that adding a periodic potential for the scalar field leads to a cyclic Friedmann universe where the values of the couplings vary randomly from one cycle to the next. While the shuffling of values for the couplings happens during the bounce, within each cycle their time-dependence remains safely within present observational bounds for physically-motivated values of the model parameters. Our model presents an alternative to solutions of the fine tuning problem based on stringmore » landscape scenarios. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  11. A cyclic universe approach to fine tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Stephon; Cormack, Sam; Gleiser, Marcelo

    We present a closed bouncing universe model where the value of coupling constants is set by the dynamics of a ghost-like dilatonic scalar field. We show that adding a periodic potential for the scalar field leads to a cyclic Friedmann universe where the values of the couplings vary randomly from one cycle to the next. While the shuffling of values for the couplings happens during the bounce, within each cycle their time-dependence remains safely within present observational bounds for physically-motivated values of the model parameters. Our model presents an alternative to solutions of the fine tuning problem based on stringmore » landscape scenarios. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  12. Automated tuning of an eight-channel cardiac transceive array at 7 tesla using piezoelectric actuators.

    PubMed

    Keith, Graeme A; Rodgers, Christopher T; Hess, Aaron T; Snyder, Carl J; Vaughan, J Thomas; Robson, Matthew D

    2015-06-01

    Ultra-high field (UHF) MR scanning in the body requires novel coil designs due to B1 field inhomogeneities. In the transverse electromagnetic field (TEM) design, maximum B1 transmit power can only be achieved if each individual transmit element is tuned and matched for different coil loads, which requires a considerable amount of valuable scanner time. An integrated system for autotuning a multichannel parallel transmit (pTx) cardiac TEM array was devised, using piezoelectric actuators, power monitoring equipment and control software. The reproducibility and performance of the system were tested and the power responses of the coil elements were profiled. An automated optimization method was devised and evaluated. The time required to tune an eight-element pTx cardiac RF array was reduced from a mean of 30 min to less than 10 min with the use of this system. Piezoelectric actuators are an attractive means of tuning RF coil arrays to yield more efficient B1 transmission into the subject. An automated mechanism for tuning these elements provides a practical solution for cardiac imaging at UHF, bringing this technology closer to clinical use. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  13. Automatic recognition of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNNs.

    PubMed

    Han, Guanghui; Liu, Xiabi; Zheng, Guangyuan; Wang, Murong; Huang, Shan

    2018-06-06

    Ground-glass opacity (GGO) is a common CT imaging sign on high-resolution CT, which means the lesion is more likely to be malignant compared to common solid lung nodules. The automatic recognition of GGO CT imaging signs is of great importance for early diagnosis and possible cure of lung cancers. The present GGO recognition methods employ traditional low-level features and system performance improves slowly. Considering the high-performance of CNN model in computer vision field, we proposed an automatic recognition method of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNN models in this paper. Our hybrid resampling is performed on multi-views and multi-receptive fields, which reduces the risk of missing small or large GGOs by adopting representative sampling panels and processing GGOs with multiple scales simultaneously. The layer-wise fine-tuning strategy has the ability to obtain the optimal fine-tuning model. Multi-CNN models fusion strategy obtains better performance than any single trained model. We evaluated our method on the GGO nodule samples in publicly available LIDC-IDRI dataset of chest CT scans. The experimental results show that our method yields excellent results with 96.64% sensitivity, 71.43% specificity, and 0.83 F1 score. Our method is a promising approach to apply deep learning method to computer-aided analysis of specific CT imaging signs with insufficient labeled images. Graphical abstract We proposed an automatic recognition method of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNN models in this paper. Our hybrid resampling reduces the risk of missing small or large GGOs by adopting representative sampling panels and processing GGOs with multiple scales simultaneously. The layer-wise fine-tuning strategy has ability to obtain the optimal fine-tuning model. Our method is a promising approach to apply deep learning method to computer-aided analysis

  14. Precision tests and fine tuning in twin Higgs models

    NASA Astrophysics Data System (ADS)

    Contino, Roberto; Greco, Davide; Mahbubani, Rakhi; Rattazzi, Riccardo; Torre, Riccardo

    2017-11-01

    We analyze the parametric structure of twin Higgs (TH) theories and assess the gain in fine tuning which they enable compared to extensions of the standard model with colored top partners. Estimates show that, at least in the simplest realizations of the TH idea, the separation between the mass of new colored particles and the electroweak scale is controlled by the coupling strength of the underlying UV theory, and that a parametric gain is achieved only for strongly-coupled dynamics. Motivated by this consideration we focus on one of these simple realizations, namely composite TH theories, and study how well such constructions can reproduce electroweak precision data. The most important effect of the twin states is found to be the infrared contribution to the Higgs quartic coupling, while direct corrections to electroweak observables are subleading and negligible. We perform a careful fit to the electroweak data including the leading-logarithmic corrections to the Higgs quartic up to three loops. Our analysis shows that agreement with electroweak precision tests can be achieved with only a moderate amount of tuning, in the range 5%-10%, in theories where colored states have mass of order 3-5 TeV and are thus out of reach of the LHC. For these levels of tuning, larger masses are excluded by a perturbativity bound, which makes these theories possibly discoverable, hence falsifiable, at a future 100 TeV collider.

  15. Poster - 53: Improving inter-linac DMLC IMRT dose precision by fine tuning of MLC leaf calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakonechny, Keith; Tran, Muoi; Sasaki, David

    Purpose: To develop a method to improve the inter-linac precision of DMLC IMRT dosimetry. Methods: The distance between opposing MLC leaf banks (“gap size”) can be finely tuned on Varian linacs. The dosimetric effect due to small deviations from the nominal gap size (“gap error”) was studied by introducing known errors for several DMLC sliding gap sizes, and for clinical plans based on the TG119 test cases. The plans were delivered on a single Varian linac and the relationship between gap error and the corresponding change in dose was measured. The plans were also delivered on eight Varian 2100 seriesmore » linacs (at two institutions) in order to quantify the inter-linac variation in dose before and after fine tuning the MLC calibration. Results: The measured dose differences for each field agreed well with the predictions of LoSasso et al. Using the default MLC calibration, the variation in the physical MLC gap size was determined to be less than 0.4 mm between all linacs studied. The dose difference between the linacs with the largest and smallest physical gap was up to 5.4% (spinal cord region of the head and neck TG119 test case). This difference was reduced to 2.5% after fine tuning the MLC gap calibration. Conclusions: The inter-linac dose precision for DMLC IMRT on Varian linacs can be improved using a simple modification of the MLC calibration procedure that involves fine adjustment of the nominal gap size.« less

  16. Discrete tuning concept for fiber-integrated lasers based on tailored FBG arrays and a theta cavity layout.

    PubMed

    Tiess, Tobias; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias

    2017-03-15

    We demonstrate a novel tuning concept for pulsed fiber-integrated lasers with a fiber Bragg grating (FBG) array as a discrete and tailored spectral filter, as well as a modified laser design. Based on a theta cavity layout, the structural delay lines originating from the FBG array are balanced, enabling a constant repetition rate and stable pulse properties over the full tuning range. The emission wavelength is electrically tuned with respect to the filter properties based on an adapted temporal gating scheme using an acousto-optic modulator. This concept has been investigated with an Yb-doped fiber laser, demonstrating excellent emission properties with high signal contrast (>35  dB) and narrow linewidth (<150  pm) over a tuning range of 25 nm.

  17. Do we live in the best of all possible worlds? The fine-tuning of the constants of nature

    NASA Astrophysics Data System (ADS)

    Naumann, Thomas

    2017-12-01

    Our existence depends on a variety of constants which appear to be extremely fine-tuned to allow for the existence of life. These include the number of spatial dimensions, the strengths of the forces, the masses of the particles, the composition of the Universe and others. On the occasion of the 300th anniversary of the death of G.W. Leibniz we discuss the question of whether we live in the "Best of all Worlds". The hypothesis of a multiverse could explain the mysterious fine tuning of so many fundamental quantities. Anthropic arguments are critically reviewed.

  18. Relaxion cosmology and the price of fine-tuning

    NASA Astrophysics Data System (ADS)

    Di Chiara, Stefano; Kannike, Kristjan; Marzola, Luca; Racioppi, Antonio; Raidal, Martti; Spethmann, Christian

    2016-05-01

    The relaxion scenario presents an intriguing extension of the standard model in which the particle introduced to solve to the strong C P problem, the axion, also achieves the dynamical relaxation of the Higgs boson mass term. In this work we complete this framework by proposing a scenario of inflationary cosmology that is consistent with all the observational constraints: the relaxion hybrid inflation with an asymmetric waterfall. In our scheme, the vacuum energy of the inflaton drives inflation in a natural way while the relaxion slow rolls. The constraints on the present inflationary observables are then matched through a subsequent inflationary epoch driven by the inflaton. We quantify the amount of fine-tuning of the proposed inflation scenario, concluding that the inflaton sector severely decreases the naturalness of the theory.

  19. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    PubMed

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-03

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  20. Classical Causal Models for Bell and Kochen-Specker Inequality Violations Require Fine-Tuning

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Eric G.

    2018-04-01

    Nonlocality and contextuality are at the root of conceptual puzzles in quantum mechanics, and they are key resources for quantum advantage in information-processing tasks. Bell nonlocality is best understood as the incompatibility between quantum correlations and the classical theory of causality, applied to relativistic causal structure. Contextuality, on the other hand, is on a more controversial foundation. In this work, I provide a common conceptual ground between nonlocality and contextuality as violations of classical causality. First, I show that Bell inequalities can be derived solely from the assumptions of no signaling and no fine-tuning of the causal model. This removes two extra assumptions from a recent result from Wood and Spekkens and, remarkably, does not require any assumption related to independence of measurement settings—unlike all other derivations of Bell inequalities. I then introduce a formalism to represent contextuality scenarios within causal models and show that all classical causal models for violations of a Kochen-Specker inequality require fine-tuning. Thus, the quantum violation of classical causality goes beyond the case of spacelike-separated systems and already manifests in scenarios involving single systems.

  1. Radiative natural supersymmetry: Reconciling electroweak fine-tuning and the Higgs boson mass

    NASA Astrophysics Data System (ADS)

    Baer, Howard; Barger, Vernon; Huang, Peisi; Mickelson, Dan; Mustafayev, Azar; Tata, Xerxes

    2013-06-01

    Models of natural supersymmetry seek to solve the little hierarchy problem by positing a spectrum of light Higgsinos ≲200-300GeV and light top squarks ≲600GeV along with very heavy squarks and TeV-scale gluinos. Such models have low electroweak fine-tuning and satisfy the LHC constraints. However, in the context of the minimal supersymmetric standard model, they predict too low a value of mh, are frequently in conflict with the measured b→sγ branching fraction, and the relic density of thermally produced Higgsino-like weakly interacting massive particles (WIMPs) falls well below dark matter measurements. We propose a framework dubbed radiative natural supersymmetry (RNS), which can be realized within the minimal supersymmetric standard model (avoiding the addition of extra exotic matter) and which maintains features such as gauge coupling unification and radiative electroweak symmetry breaking. The RNS model can be generated from supersymmetry (SUSY) grand unified theory type models with nonuniversal Higgs masses. Allowing for high-scale soft SUSY breaking Higgs mass mHu>m0 leads to automatic cancellations during renormalization group running and to radiatively-induced low fine-tuning at the electroweak scale. Coupled with large mixing in the top-squark sector, RNS allows for fine-tuning at the 3%-10% level with TeV-scale top squarks and a 125 GeV light Higgs scalar h. The model allows for at least a partial solution to the SUSY flavor, CP, and gravitino problems since first-/second-generation scalars (and the gravitino) may exist in the 10-30 TeV regime. We outline some possible signatures for RNS at the LHC, such as the appearance of low invariant mass opposite-sign isolated dileptons from gluino cascade decays. The smoking gun signature for RNS is the appearance of light Higgsinos at a linear e+e- collider. If the strong CP problem is solved by the Peccei-Quinn mechanism, then RNS naturally accommodates mixed axion-Higgsino cold dark matter, where the

  2. Coupling and tuning of modal frequencies in direct current biased microelectromechanical systems arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kambali, Prashant N.; Swain, Gyanadutta; Pandey, Ashok Kumar, E-mail: ashok@iith.ac.in

    2015-08-10

    Understanding the coupling of different modal frequencies and their tuning mechanisms has become essential to design multi-frequency MEMS devices. In this work, we fabricate a MEMS beam with fixed boundaries separated from two side electrodes and a bottom electrode. Subsequently, we perform experiments to obtain the frequency variation of in-plane and out-of-plane mechanical modes of the microbeam with respect to both DC bias and laser heating. We show that the frequencies of the two modes coincide at a certain DC bias, which in turn can also be varied due to temperature. Subsequently, we develop a theoretical model to predict themore » variation of the two modes and their coupling due to a variable gap between the microbeam and electrodes, initial tension, and fringing field coefficients. Finally, we discuss the influence of frequency tuning parameters in arrays of 3, 33, and 40 microbeams, respectively. It is also found that the frequency bandwidth of a microbeam array can be increased to as high as 25 kHz for a 40 microbeam array with a DC bias of 80 V.« less

  3. Nonparametric Fine Tuning of Mixtures: Application to Non-Life Insurance Claims Distribution Estimation

    NASA Astrophysics Data System (ADS)

    Sardet, Laure; Patilea, Valentin

    When pricing a specific insurance premium, actuary needs to evaluate the claims cost distribution for the warranty. Traditional actuarial methods use parametric specifications to model claims distribution, like lognormal, Weibull and Pareto laws. Mixtures of such distributions allow to improve the flexibility of the parametric approach and seem to be quite well-adapted to capture the skewness, the long tails as well as the unobserved heterogeneity among the claims. In this paper, instead of looking for a finely tuned mixture with many components, we choose a parsimonious mixture modeling, typically a two or three-component mixture. Next, we use the mixture cumulative distribution function (CDF) to transform data into the unit interval where we apply a beta-kernel smoothing procedure. A bandwidth rule adapted to our methodology is proposed. Finally, the beta-kernel density estimate is back-transformed to recover an estimate of the original claims density. The beta-kernel smoothing provides an automatic fine-tuning of the parsimonious mixture and thus avoids inference in more complex mixture models with many parameters. We investigate the empirical performance of the new method in the estimation of the quantiles with simulated nonnegative data and the quantiles of the individual claims distribution in a non-life insurance application.

  4. Polarization-tuned Dynamic Color Filters Incorporating a Dielectric-loaded Aluminum Nanowire Array

    PubMed Central

    Raj Shrestha, Vivek; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2015-01-01

    Nanostructured spectral filters enabling dynamic color-tuning are saliently attractive for implementing ultra-compact color displays and imaging devices. Realization of polarization-induced dynamic color-tuning via one-dimensional periodic nanostructures is highly challenging due to the absence of plasmonic resonances for transverse-electric polarization. Here we demonstrate highly efficient dynamic subtractive color filters incorporating a dielectric-loaded aluminum nanowire array, providing a continuum of customized color according to the incident polarization. Dynamic color filtering was realized relying on selective suppression in transmission spectra via plasmonic resonance at a metal-dielectric interface and guided-mode resonance for a metal-clad dielectric waveguide, each occurring at their characteristic wavelengths for transverse-magnetic and electric polarizations, respectively. A broad palette of colors, including cyan, magenta, and yellow, has been attained with high transmission beyond 80%, by tailoring the period of the nanowire array and the incident polarization. Thanks to low cost, high durability, and mass producibility of the aluminum adopted for the proposed devices, they are anticipated to be diversely applied to color displays, holographic imaging, information encoding, and anti-counterfeiting. PMID:26211625

  5. Multibeam Phased Array Antennas

    NASA Technical Reports Server (NTRS)

    Popovic, Zoya; Romisch, Stefania; Rondineau, Sebastien

    2004-01-01

    In this study, a new architecture for Ka-band multi-beam arrays was developed and demonstrated experimentally. The goal of the investigation was to demonstrate a new architecture that has the potential of reducing the cost as compared to standard expensive phased array technology. The goals of this specific part of the project, as stated in the yearly statement of work in the original proposal are: 1. Investigate bounds on performance of multi-beam lens arrays in terms of beamwidths, volume (size), isolation between beams, number of simultaneous beams, etc. 2. Design a small-scale array to demonstrate the principle. The array will be designed for operation around 3OGHz (Ka-band), with two 10-degree beamwidth beams. 3. Investigate most appropriate way to accomplish fine-tuning of the beam pointing within 5 degrees around the main beam pointing angle.

  6. Using membrane composition to fine-tune the pKa of an optical liposome pH sensor.

    PubMed

    Clear, Kasey J; Virga, Katelyn; Gray, Lawrence; Smith, Bradley D

    2016-04-14

    Liposomes containing membrane-anchored pH-sensitive optical probes are valuable sensors for monitoring pH in various biomedical samples. The dynamic range of the sensor is maximized when the probe p K a is close to the expected sample pH. While some biomedical samples are close to neutral pH there are several circumstances where the pH is 1 or 2 units lower. Thus, there is a need to fine-tune the probe p K a in a predictable way. This investigation examined two lipid-conjugated optical probes, each with appended deep-red cyanine dyes containing indoline nitrogen atoms that are protonated in acid. The presence of anionic phospholipids in the liposomes stabilized the protonated probes and increased the probe p K a values by < 1 unit. The results show that rational modification of the membrane composition is a general non-covalent way to fine-tune the p K a of an optical liposome sensor for optimal pH sensing performance.

  7. Survey of Current Practice in the Fitting and Fine-Tuning of Common Signal-Processing Features in Hearing Aids for Adults.

    PubMed

    Anderson, Melinda C; Arehart, Kathryn H; Souza, Pamela E

    2018-02-01

    Current guidelines for adult hearing aid fittings recommend the use of a prescriptive fitting rationale with real-ear verification that considers the audiogram for the determination of frequency-specific gain and ratios for wide dynamic range compression. However, the guidelines lack recommendations for how other common signal-processing features (e.g., noise reduction, frequency lowering, directional microphones) should be considered during the provision of hearing aid fittings and fine-tunings for adult patients. The purpose of this survey was to identify how audiologists make clinical decisions regarding common signal-processing features for hearing aid provision in adults. An online survey was sent to audiologists across the United States. The 22 survey questions addressed four primary topics including demographics of the responding audiologists, factors affecting selection of hearing aid devices, the approaches used in the fitting of signal-processing features, and the strategies used in the fine-tuning of these features. A total of 251 audiologists who provide hearing aid fittings to adults completed the electronically distributed survey. The respondents worked in a variety of settings including private practice, physician offices, university clinics, and hospitals/medical centers. Data analysis was based on a qualitative analysis of the question responses. The survey results for each of the four topic areas (demographics, device selection, hearing aid fitting, and hearing aid fine-tuning) are summarized descriptively. Survey responses indicate that audiologists vary in the procedures they use in fitting and fine-tuning based on the specific feature, such that the approaches used for the fitting of frequency-specific gain differ from other types of features (i.e., compression time constants, frequency lowering parameters, noise reduction strength, directional microphones, feedback management). Audiologists commonly rely on prescriptive fitting formulas and

  8. Graded nanowell arrays: a fine plasmonic "library" with an adjustable spectral range.

    PubMed

    Xue, Peihong; Ye, Shunsheng; Su, Hongyang; Wang, Shuli; Nan, Jingjie; Chen, Xingchi; Ruan, Weidong; Zhang, Junhu; Cui, Zhanchen; Yang, Bai

    2017-05-25

    We present an effective approach for fabricating graded plasmonic arrays based on ordered micro-/nanostructures with a geometric gradient. Ag nanowell arrays with graded geometric parameters were fabricated and systematically investigated. The order of the graded plasmonic arrays is generated by colloidal lithography, while the geometric gradient is the result of inclined reactive ion etching. The surface plasmon resonance (SPR) peaks were measured at different positions, which move gradually along the Ag nanowell arrays with a geometric gradient. Such micro-/nanostructure arrays with graded and integrated SPR peaks can work as a fine plasmonic "library" (FPL), and the spectral range can be controlled using a "coarse adjustment knob" (lattice constant) and a "fine adjustment knob" (pore diameter). Additionally, the spectral resolution of the FPL is high, which benefits from the high value of the full height/full width at half-maximum and the small step size of the wavelength shift (0.5 nm). Meanwhile, the FPL could be effectively applied as a well-defined model to verify the plasmonic enhancement in surface enhanced Raman scattering. As the FPL is an integrated optical material with graded individual SPR peaks, it can not only be a theoretical model for fundamental research, but also has great potential in high-throughput screening of optical materials, multiplex sensors, etc.

  9. Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation.

    PubMed

    Bachman, Daniel; Chen, Zhijiang; Fedosejevs, Robert; Tsui, Ying Y; Van, Vien

    2013-05-06

    We demonstrate the fine tuning capability of femtosecond laser surface modification as a permanent trimming mechanism for silicon photonic components. Silicon microring resonators with a 15 µm radius were irradiated with single 400 nm wavelength laser pulses at varying fluences. Below the laser ablation threshold, surface amorphization of the crystalline silicon waveguides yielded a tuning rate of 20 ± 2 nm/J · cm(-2)with a minimum resonance wavelength shift of 0.10nm. Above that threshold, ablation yielded a minimum resonance shift of -1.7 nm. There was some increase in waveguide loss for both trimming mechanisms. We also demonstrated the application of the method by using it to permanently correct the resonance mismatch of a second-order microring filter.

  10. Measured and calculated acoustic attenuation rates of tuned resonator arrays for two surface impedance distribution models with flow

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Abrahamson, A. Louis; Jones, Michael G.

    1988-01-01

    An experiment was performed to validate two analytical models for predicting low frequency attenuation of duct liner configurations built from an array of seven resonators that could be individually tuned via adjustable cavity depths. These analytical models had previously been developed for high frequency aero-engine inlet duct liner design. In the low frequency application, the liner surface impedance distribution is unavoidably spatially varying by virtue of available fabrication techniques. The characteristic length of this spatial variation may be a significant fraction of the acoustic wavelength. Comparison of measured and predicted attenuation rates and transmission losses for both modal decomposition and finite element propagation models were in good to excellent agreement for a test frequency range that included the first and second cavity resonance frequencies. This was true for either of two surface impedance distribution modeling procedures used to simplify the impedance boundary conditions. In the presence of mean flow, measurements revealed a fine scale structure of acoustic hot spots in the attenuation and phase profiles. These details were accurately predicted by the finite element model. Since no impedance changes due to mean flow were assumed, it is concluded that this fine scale structure was due to convective effects of the mean flow interacting with the surface impedance nonuniformities.

  11. Anthropic Reasoning about Fine-Tuning, and Neoclassical Cosmology: Providence, Omnipresence, and Observation Selection Theory

    NASA Astrophysics Data System (ADS)

    Walker, Theodore, Jr.

    2011-10-01

    Anthropic reasoning about observation selection effects upon the appearance of cosmic providential fine-tuning (fine-tuning that provides for life) is often motivated by a desire to avoid theological implications (implications favoring the idea of a divine cosmic provider) without appealing to sheer lucky-for-us-cosmic-jackpot happenstance and coincidence. Cosmic coincidence can be rendered less incredible by appealing to a multiverse context. Cosmic providence can be rendered non-theological by appealing to an agent-less providential purpose, or by appealing to less-than-omnipresent/local providers, such as alien intelligences creating life- providing baby universes. Instead of choosing either cosmic coincidence or cosmic providence, as though they were mutually exclusive; it is better to accept both. Neoclassical thought accepts coincidence and providence, plus many local providers and one omnipresent provider. Moreover, fundamental observation selection theory should distinguish the many local observers of some events from the one omnipresent observer of all events. Accepting both coincidence and providence avoids classical theology (providence without coincidence) and classical atheism (coincidence without providence), but not neoclassical theology (providence with coincidence). Cosmology cannot avoid the idea of an all-inclusive omnipresent providential dice-throwing living-creative whole of reality, an idea essential to neoclassical theology, and to neoclassical cosmology.

  12. Fine-Tuning Tomato Agronomic Properties by Computational Genome Redesign

    PubMed Central

    Carrera, Javier; Fernández del Carmen, Asun; Fernández-Muñoz, Rafael; Rambla, Jose Luis; Pons, Clara; Jaramillo, Alfonso; Elena, Santiago F.; Granell, Antonio

    2012-01-01

    Considering cells as biofactories, we aimed to optimize its internal processes by using the same engineering principles that large industries are implementing nowadays: lean manufacturing. We have applied reverse engineering computational methods to transcriptomic, metabolomic and phenomic data obtained from a collection of tomato recombinant inbreed lines to formulate a kinetic and constraint-based model that efficiently describes the cellular metabolism from expression of a minimal core of genes. Based on predicted metabolic profiles, a close association with agronomic and organoleptic properties of the ripe fruit was revealed with high statistical confidence. Inspired in a synthetic biology approach, the model was used for exploring the landscape of all possible local transcriptional changes with the aim of engineering tomato fruits with fine-tuned biotechnological properties. The method was validated by the ability of the proposed genomes, engineered for modified desired agronomic traits, to recapitulate experimental correlations between associated metabolites. PMID:22685389

  13. Knowledge-guided golf course detection using a convolutional neural network fine-tuned on temporally augmented data

    NASA Astrophysics Data System (ADS)

    Chen, Jingbo; Wang, Chengyi; Yue, Anzhi; Chen, Jiansheng; He, Dongxu; Zhang, Xiuyan

    2017-10-01

    The tremendous success of deep learning models such as convolutional neural networks (CNNs) in computer vision provides a method for similar problems in the field of remote sensing. Although research on repurposing pretrained CNN to remote sensing tasks is emerging, the scarcity of labeled samples and the complexity of remote sensing imagery still pose challenges. We developed a knowledge-guided golf course detection approach using a CNN fine-tuned on temporally augmented data. The proposed approach is a combination of knowledge-driven region proposal, data-driven detection based on CNN, and knowledge-driven postprocessing. To confront data complexity, knowledge-derived cooccurrence, composition, and area-based rules are applied sequentially to propose candidate golf regions. To confront sample scarcity, we employed data augmentation in the temporal domain, which extracts samples from multitemporal images. The augmented samples were then used to fine-tune a pretrained CNN for golf detection. Finally, commission error was further suppressed by postprocessing. Experiments conducted on GF-1 imagery prove the effectiveness of the proposed approach.

  14. Precision corrections to fine tuning in SUSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, Matthew R.; Monteux, Angelo; Shih, David

    Requiring that the contributions of supersymmetric particles to the Higgs mass are not highly tuned places upper limits on the masses of superpartners — in particular the higgsino, stop, and gluino. We revisit the details of the tuning calculation and introduce a number of improvements, including RGE resummation, two-loop effects, a proper treatment of UV vs. IR masses, and threshold corrections. This improved calculation more accurately connects the tuning measure with the physical masses of the superpartners at LHC-accessible energies. After these refinements, the tuning bound on the stop is now also sensitive to the masses of the 1st andmore » 2nd generation squarks, which limits how far these can be decoupled in Effective SUSY scenarios. We find that, for a fixed level of tuning, our bounds can allow for heavier gluinos and stops than previously considered. Despite this, the natural region of supersymmetry is under pressure from the LHC constraints, with high messenger scales particularly disfavored.« less

  15. Precision corrections to fine tuning in SUSY

    DOE PAGES

    Buckley, Matthew R.; Monteux, Angelo; Shih, David

    2017-06-20

    Requiring that the contributions of supersymmetric particles to the Higgs mass are not highly tuned places upper limits on the masses of superpartners — in particular the higgsino, stop, and gluino. We revisit the details of the tuning calculation and introduce a number of improvements, including RGE resummation, two-loop effects, a proper treatment of UV vs. IR masses, and threshold corrections. This improved calculation more accurately connects the tuning measure with the physical masses of the superpartners at LHC-accessible energies. After these refinements, the tuning bound on the stop is now also sensitive to the masses of the 1st andmore » 2nd generation squarks, which limits how far these can be decoupled in Effective SUSY scenarios. We find that, for a fixed level of tuning, our bounds can allow for heavier gluinos and stops than previously considered. Despite this, the natural region of supersymmetry is under pressure from the LHC constraints, with high messenger scales particularly disfavored.« less

  16. Fine-Tuning Medium-of-Instruction Policy in Hong Kong: Acquisition of Language and Content-Based Subject Knowledge

    ERIC Educational Resources Information Center

    Poon, Anita Y. K.; Lau, Connie M. Y.

    2016-01-01

    Facing a dramatic decline in English standards over the past decade, the Hong Kong Government introduced the "Fine-tuning Medium of Instruction (MOI) policy" in 2010 to address the grievances arising from different sectors in the community. Integrating content and language has become popular in second/foreign language teaching in recent…

  17. Myosin phosphatase Fine-tunes Zebrafish Motoneuron Position during Axonogenesis

    PubMed Central

    Granato, Michael

    2016-01-01

    During embryogenesis the spinal cord shifts position along the anterior-posterior axis relative to adjacent tissues. How motor neurons whose cell bodies are located in the spinal cord while their axons reside in adjacent tissues compensate for such tissue shift is not well understood. Using live cell imaging in zebrafish, we show that as motor axons exit from the spinal cord and extend through extracellular matrix produced by adjacent notochord cells, these cells shift several cell diameters caudally. Despite this pronounced shift, individual motoneuron cell bodies stay aligned with their extending axons. We find that this alignment requires myosin phosphatase activity within motoneurons, and that mutations in the myosin phosphatase subunit mypt1 increase myosin phosphorylation causing a displacement between motoneuron cell bodies and their axons. Thus, we demonstrate that spinal motoneurons fine-tune their position during axonogenesis and we identify the myosin II regulatory network as a key regulator. PMID:27855159

  18. Experimental methods of post-growth tuning of the excitonic fine structure splitting in semiconductor quantum dots

    PubMed Central

    2012-01-01

    Deterministic sources of polarization entangled photon pairs on demand are considered as important building blocks for quantum communication technology. It has been demonstrated that semiconductor quantum dots (QDs), which exhibit a sufficiently small excitonic fine structure splitting (FSS) can be used as triggered, on-chip sources of polarization entangled photon pairs. As-grown QDs usually do not have the required values of the FSS, making the availability of post-growth tuning techniques highly desired. This article reviews the effect of different post-growth treatments and external fields on the FSS such as thermal annealing, magnetic fields, the optical Stark effect, electric fields, and anisotropic stress. As a consequence of the tuning of the FSS, for some tuning techniques a rotation of the polarization of the emitted light is observed. The joint modification of polarization orientation and FSS can be described by an anticrossing of the bright excitonic states. PMID:22726724

  19. Fine-tuning the Mott metal-insulator transition and critical charge carrier dynamics in molecular conductors

    NASA Astrophysics Data System (ADS)

    Müller, Jens; Hartmann, Benedikt; Sasaki, Takahiko

    2017-12-01

    The unique possibilities of fine-tuning their physical properties in the vicinity of the Mott metal-insulator transition make the quasi-two-dimensional organic charge-transfer salts ?-(BEDT-TTF)?X unprecedented model systems for studying the fundamentals of electron-electron correlations and the coupling between charge, spin and lattice degrees of freedom in reduced dimensions. The critical properties and the universality class of the Mott transition, however, are controversially debated for these materials, and information on the low-frequency dynamical properties of the correlated electrons is rather limited. By introducing fluctuation (noise) spectroscopy as a powerful new tool for studying the slow dynamics of charge carriers, in the past years we have been able to extract spectroscopic information on the coupling of charge carriers to the vibrational degrees of freedom of the crystal lattice. This is related to a glassy freezing of the BEDT-TTF molecules' ethylene end-group (EEG) rotations at elevated temperatures, which (i) results in a small amount of (intrinsic) disorder and (ii) crucially influences the ratio of bandwidth to on-site Coulomb repulsion (W / U) and therefore the samples' position in the phase diagram, i.e. the electronic ground state. The low-frequency resistance fluctuations show a dramatic enhancement and divergent behaviour when tuning the sample close to the critical point of the Mott transition, accompanied by a strong shift of spectral weight to low frequencies and the onset of non-Gaussian behaviour. This indicates the critical slowing down of the order-parameter (doublon density) fluctuations and suggests a collective dynamics of the correlated electrons. In order to enable detailed investigations of this hypothesis in future experiments, by exploiting the structural EEG relaxation, a 'warming cycle' protocol can be established that allows for fine-tuning the sample across the Mott transition and therefore precisely accessing the

  20. Data fitting and image fine-tuning approach to solve the inverse problem in fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Gorpas, Dimitris; Politopoulos, Kostas; Yova, Dido; Andersson-Engels, Stefan

    2008-02-01

    One of the most challenging problems in medical imaging is to "see" a tumour embedded into tissue, which is a turbid medium, by using fluorescent probes for tumour labeling. This problem, despite the efforts made during the last years, has not been fully encountered yet, due to the non-linear nature of the inverse problem and the convergence failures of many optimization techniques. This paper describes a robust solution of the inverse problem, based on data fitting and image fine-tuning techniques. As a forward solver the coupled radiative transfer equation and diffusion approximation model is proposed and compromised via a finite element method, enhanced with adaptive multi-grids for faster and more accurate convergence. A database is constructed by application of the forward model on virtual tumours with known geometry, and thus fluorophore distribution, embedded into simulated tissues. The fitting procedure produces the best matching between the real and virtual data, and thus provides the initial estimation of the fluorophore distribution. Using this information, the coupled radiative transfer equation and diffusion approximation model has the required initial values for a computational reasonable and successful convergence during the image fine-tuning application.

  1. A voltage-dependent chloride channel fine-tunes photosynthesis in plants

    PubMed Central

    Herdean, Andrei; Teardo, Enrico; Nilsson, Anders K.; Pfeil, Bernard E.; Johansson, Oskar N.; Ünnep, Renáta; Nagy, Gergely; Zsiros, Ottó; Dana, Somnath; Solymosi, Katalin; Garab, Győző; Szabó, Ildikó; Spetea, Cornelia; Lundin, Björn

    2016-01-01

    In natural habitats, plants frequently experience rapid changes in the intensity of sunlight. To cope with these changes and maximize growth, plants adjust photosynthetic light utilization in electron transport and photoprotective mechanisms. This involves a proton motive force (PMF) across the thylakoid membrane, postulated to be affected by unknown anion (Cl−) channels. Here we report that a bestrophin-like protein from Arabidopsis thaliana functions as a voltage-dependent Cl− channel in electrophysiological experiments. AtVCCN1 localizes to the thylakoid membrane, and fine-tunes PMF by anion influx into the lumen during illumination, adjusting electron transport and the photoprotective mechanisms. The activity of AtVCCN1 accelerates the activation of photoprotective mechanisms on sudden shifts to high light. Our results reveal that AtVCCN1, a member of a conserved anion channel family, acts as an early component in the rapid adjustment of photosynthesis in variable light environments. PMID:27216227

  2. Enhanced processing in arrays of optimally tuned nonlinear biomimetic sensors: A coupling-mediated Ringelmann effect and its dynamical mitigation

    NASA Astrophysics Data System (ADS)

    Nikitin, Alexander P.; Bulsara, Adi R.; Stocks, Nigel G.

    2017-03-01

    Inspired by recent results on self-tunability in the outer hair cells of the mammalian cochlea, we describe an array of magnetic sensors where each individual sensor can self-tune to an optimal operating regime. The self-tuning gives the array its "biomimetic" features. We show that the overall performance of the array can, as expected, be improved by increasing the number of sensors but, however, coupling between sensors reduces the overall performance even though the individual sensors in the system could see an improvement. We quantify the similarity of this phenomenon to the Ringelmann effect that was formulated 103 years ago to account for productivity losses in human and animal groups. We propose a global feedback scheme that can be used to greatly mitigate the performance degradation that would, normally, stem from the Ringelmann effect.

  3. The Parametric Study and Fine-Tuning of Bow-Tie Slot Antenna with Loaded Stub

    PubMed Central

    2017-01-01

    A printed Bow-Tie slot antenna with loaded stub is proposed and the effects of changing the dimensions of the slot area, the stub and load sizes are considered in this paper. These parameters have a considerable effect on the antenna characteristics as well as its performance. An in-depth parametric study of these dimensions is presented. This paper proposes the necessary conditions for initial approximation of dimensions needed to design this antenna. In order to achieve the desired performance of the antenna fine tuning of all sizes of these parameters is required. The parametric studies used in this paper provide proper trends for initiation and tuning the design. A prototype of the antenna for 1.7GHz to 2.6GHz band is fabricated. Measurements conducted verify that the designed antenna has wideband characteristics with 50% bandwidth around the center frequency of 2.1GHz. Conducted measurements for reflection coefficient (S11) and radiation pattern also validate our simulation results. PMID:28114354

  4. The Parametric Study and Fine-Tuning of Bow-Tie Slot Antenna with Loaded Stub.

    PubMed

    Shafiei, M M; Moghavvemi, Mahmoud; Wan Mahadi, Wan Nor Liza

    2017-01-01

    A printed Bow-Tie slot antenna with loaded stub is proposed and the effects of changing the dimensions of the slot area, the stub and load sizes are considered in this paper. These parameters have a considerable effect on the antenna characteristics as well as its performance. An in-depth parametric study of these dimensions is presented. This paper proposes the necessary conditions for initial approximation of dimensions needed to design this antenna. In order to achieve the desired performance of the antenna fine tuning of all sizes of these parameters is required. The parametric studies used in this paper provide proper trends for initiation and tuning the design. A prototype of the antenna for 1.7GHz to 2.6GHz band is fabricated. Measurements conducted verify that the designed antenna has wideband characteristics with 50% bandwidth around the center frequency of 2.1GHz. Conducted measurements for reflection coefficient (S11) and radiation pattern also validate our simulation results.

  5. Tuning exciton energy and fine-structure splitting in single InAs quantum dots by applying uniaxial stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Dan; Dou, Xiuming; Wu, Xuefei

    2016-04-15

    Exciton and biexciton emission energies as well as excitonic fine-structure splitting (FSS) in single InAs/GaAs quantum dots (QDs) have been continuously tuned in situ in an optical cryostat using a developed uniaxial stress device. With increasing tensile stress, the red shift of excitonic emission is up to 5 nm; FSS decreases firstly and then increases monotonically, reaching a minimum value of approximately 10 μeV; biexciton binding energy decreases from 460 to 106 μeV. This technique provides a simple and convenient means to tune QD structural symmetry, exciton energy and biexciton binding energy and can be used for generating entangled andmore » indistinguishable photons.« less

  6. On-chip synthesis of fine-tuned bone-seeking hybrid nanoparticles.

    PubMed

    Hasani-Sadrabadi, Mohammad Mahdi; Dashtimoghadam, Erfan; Bahlakeh, Ghasem; Majedi, Fatemeh S; Keshvari, Hamid; Van Dersarl, Jules J; Bertsch, Arnaud; Panahifar, Arash; Renaud, Philippe; Tayebi, Lobat; Mahmoudi, Morteza; Jacob, Karl I

    2015-01-01

    Here we report a one-step approach for reproducible synthesis of finely tuned targeting multifunctional hybrid nanoparticles (HNPs). A microfluidic-assisted method was employed for controlled nanoprecipitation of bisphosphonate-conjugated poly(D,L-lactide-co-glycolide) chains, while coencapsulating superparamagnetic iron oxide nanoparticles and the anticancer drug Paclitaxel. Smaller and more compact HNPs with narrower size distribution and higher drug loading were obtained at microfluidic rapid mixing regimen compared with the conventional bulk method. The HNPs were shown to have a strong affinity for hydroxyapatite, as demonstrated in vitro bone-binding assay, which was further supported by molecular dynamics simulation results. In vivo proof of concept study verified the prolonged circulation of targeted microfluidic HNPs. Biodistribution as well as noninvasive bioimaging experiments showed high tumor localization and suppression of targeted HNPs to the bone metastatic tumor. The hybrid bone-targeting nanoparticles with adjustable characteristics can be considered as promising nanoplatforms for various theragnostic applications.

  7. Fine-tuning of electronic properties in donor-acceptor conjugated polymers based on oligothiophenes

    NASA Astrophysics Data System (ADS)

    Imae, Ichiro; Sagawa, Hitoshi; Harima, Yutaka

    2018-03-01

    A novel series of donor-acceptor conjugated polymers having oligothiophenes with well-defined structures were synthesized and their optical, electrochemical, and photovoltaic properties were investigated. It was found that the absorption bands of polymers were red-shifted with increasing number of ethylenedioxy groups added to each oligothiophene unit and that their band edges reached over 1000 nm. The systematical fine-tuning of the electronic properties was achieved using the chemical structures of oligothiophene units. Photovoltaic cells based on polymer/(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) exhibited power conversion efficiencies in the range from 0.004 to 1.10%, reflecting the electronic properties of the polymers.

  8. Photolithography and Selective Etching of an Array of Quartz Tuning Fork Resonators with Improved Impact Resistance Characteristics

    NASA Astrophysics Data System (ADS)

    Lee, Sungkyu

    2001-08-01

    Quartz tuning fork blanks with improved impact-resistant characteristics for use in Qualcomm mobile station modem (MSM)-3000 central processing unit (CPU) chips for code division multiple access (CDMA), personal communication system (PCS), and global system for mobile communication (GSM) systems were designed using finite element method (FEM) analysis and suitable processing conditions were determined for the reproducible precision etching of a Z-cut quartz wafer into an array of tuning forks. Negative photoresist photolithography for the additive process was used in preference to positive photoresist photolithography for the subtractive process to etch the array of quartz tuning forks. The tuning fork pattern was transferred via a conventional photolithographical chromium/quartz glass template using a standard single-sided aligner and subsequent negative photoresist development. A tightly adhering and pinhole-free 600/2000 Å chromium/gold mask was coated over the developed photoresist pattern which was subsequently stripped in acetone. This procedure was repeated on the back surface of the wafer. With the protective metallization area of the tuning fork geometry thus formed, etching through the quartz wafer was performed at 80°C in a ± 1.5°C controlled bath containing a concentrated solution of ammonium bifluoride to remove the unwanted areas of the quartz wafer. The quality of the quartz wafer surface finish after quartz etching depended primarily on the surface finish of the quartz wafer prior to etching and the quality of quartz crystals used. Selective etching of a 100 μm quartz wafer could be achieved within 90 min at 80°C. A selective etching procedure with reproducible precision has thus been established and enables the photolithographic mass production of miniature tuning fork resonators.

  9. Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis

    PubMed Central

    Bordi, Christophe; Lamy, Marie-Cécile; Ventre, Isabelle; Termine, Elise; Hachani, Abderrahman; Fillet, Sandy; Roche, Béatrice; Bleves, Sophie; Méjean, Vincent; Lazdunski, Andrée; Filloux, Alain

    2010-01-01

    Bacterial pathogenesis often depends on regulatory networks, two-component systems and small RNAs (sRNAs). In Pseudomonas aeruginosa, the RetS sensor pathway downregulates expression of two sRNAs, rsmY and rsmZ. Consequently, biofilm and the Type Six Secretion System (T6SS) are repressed, whereas the Type III Secretion System (T3SS) is activated. We show that the HptB signalling pathway controls biofilm and T3SS, and fine-tunes P. aeruginosa pathogenesis. We demonstrate that RetS and HptB intersect at the GacA response regulator, which directly controls sRNAs production. Importantly, RetS controls both sRNAs, whereas HptB exclusively regulates rsmY expression. We reveal that HptB signalling is a complex regulatory cascade. This cascade involves a response regulator, with an output domain belonging to the phosphatase 2C family, and likely an anti-anti-σ factor. This reveals that the initial input in the Gac system comes from several signalling pathways, and the final output is adjusted by a differential control on rsmY and rsmZ. This is exemplified by the RetS-dependent but HptB-independent control on T6SS. We also demonstrate a redundant action of the two sRNAs on T3SS gene expression, while the impact on pel gene expression is additive. These features underpin a novel mechanism in the fine-tuned regulation of gene expression. PMID:20398205

  10. Fine-tuning gene networks using simple sequence repeats

    PubMed Central

    Egbert, Robert G.; Klavins, Eric

    2012-01-01

    The parameters in a complex synthetic gene network must be extensively tuned before the network functions as designed. Here, we introduce a simple and general approach to rapidly tune gene networks in Escherichia coli using hypermutable simple sequence repeats embedded in the spacer region of the ribosome binding site. By varying repeat length, we generated expression libraries that incrementally and predictably sample gene expression levels over a 1,000-fold range. We demonstrate the utility of the approach by creating a bistable switch library that programmatically samples the expression space to balance the two states of the switch, and we illustrate the need for tuning by showing that the switch’s behavior is sensitive to host context. Further, we show that mutation rates of the repeats are controllable in vivo for stability or for targeted mutagenesis—suggesting a new approach to optimizing gene networks via directed evolution. This tuning methodology should accelerate the process of engineering functionally complex gene networks. PMID:22927382

  11. Active thermal fine laser tuning in a broad spectral range and optical properties of cholesteric liquid crystal.

    PubMed

    Jeong, Mi-Yun; Kwak, Keumcheol

    2016-11-20

    In this study, we achieved active fine laser tuning in a broad spectral range with dye-doped cholesteric liquid crystal wedge-type cells through temperature control. The spatial pitch gradient of each position of the wedge cell at room temperature was almost maintained after developing a temperature gradient. To achieve the maximum tuning range, the chiral dopant concentration, thickness, thickness gradient, and temperature gradient on the wedge cell should be matched properly. In order to understand the laser tuning mechanism for temperature change, we studied the temperature dependence of optical properties of the photonic bandgap of cholesteric liquid crystals. In our cholesteric liquid crystal samples, when temperature was increased, photonic bandgaps were shifted toward blue, while the width of the photonic bandgap was decreased, regardless of whether the helicity was left-handed or right-handed. This is mainly due to the combination of decreased refractive indices, higher molecular anisotropy of chiral molecules, and increased chiral molecular solubility. We envisage that this kind of study will prove useful in the development of practical active tunable CLC laser devices.

  12. Synthetic Core Promoters as Universal Parts for Fine-Tuning Expression in Different Yeast Species

    PubMed Central

    2016-01-01

    Synthetic biology and metabolic engineering experiments frequently require the fine-tuning of gene expression to balance and optimize protein levels of regulators or metabolic enzymes. A key concept of synthetic biology is the development of modular parts that can be used in different contexts. Here, we have applied a computational multifactor design approach to generate de novo synthetic core promoters and 5′ untranslated regions (UTRs) for yeast cells. In contrast to upstream cis-regulatory modules (CRMs), core promoters are typically not subject to specific regulation, making them ideal engineering targets for gene expression fine-tuning. 112 synthetic core promoter sequences were designed on the basis of the sequence/function relationship of natural core promoters, nucleosome occupancy and the presence of short motifs. The synthetic core promoters were fused to the Pichia pastoris AOX1 CRM, and the resulting activity spanned more than a 200-fold range (0.3% to 70.6% of the wild type AOX1 level). The top-ten synthetic core promoters with highest activity were fused to six additional CRMs (three in P. pastoris and three in Saccharomyces cerevisiae). Inducible CRM constructs showed significantly higher activity than constitutive CRMs, reaching up to 176% of natural core promoters. Comparing the activity of the same synthetic core promoters fused to different CRMs revealed high correlations only for CRMs within the same organism. These data suggest that modularity is maintained to some extent but only within the same organism. Due to the conserved role of eukaryotic core promoters, this rational design concept may be transferred to other organisms as a generic engineering tool. PMID:27973777

  13. SpxA1 and SpxA2 Act Coordinately To Fine-Tune Stress Responses and Virulence in Streptococcus pyogenes.

    PubMed

    Port, Gary C; Cusumano, Zachary T; Tumminello, Paul R; Caparon, Michael G

    2017-03-28

    SpxA is a unique transcriptional regulator highly conserved among members of the phylum Firmicutes that binds RNA polymerase and can act as an antiactivator. Why some Firmicutes members have two highly similar SpxA paralogs is not understood. Here, we show that the SpxA paralogs of the pathogen Streptococcus pyogenes , SpxA1 and SpxA2, act coordinately to regulate virulence by fine-tuning toxin expression and stress resistance. Construction and analysis of mutants revealed that SpxA1 - mutants were defective for growth under aerobic conditions, while SpxA2 - mutants had severely attenuated responses to multiple stresses, including thermal and oxidative stresses. SpxA1 - mutants had enhanced resistance to the cationic antimicrobial molecule polymyxin B, while SpxA2 - mutants were more sensitive. In a murine model of soft tissue infection, a SpxA1 - mutant was highly attenuated. In contrast, the highly stress-sensitive SpxA2 - mutant was hypervirulent, exhibiting more extensive tissue damage and a greater bacterial burden than the wild-type strain. SpxA1 - attenuation was associated with reduced expression of several toxins, including the SpeB cysteine protease. In contrast, SpxA2 - hypervirulence correlated with toxin overexpression and could be suppressed to wild-type levels by deletion of speB These data show that SpxA1 and SpxA2 have opposing roles in virulence and stress resistance, suggesting that they act coordinately to fine-tune toxin expression in response to stress. SpxA2 - hypervirulence also shows that stress resistance is not always essential for S. pyogenes pathogenesis in soft tissue. IMPORTANCE For many pathogens, it is generally assumed that stress resistance is essential for pathogenesis. For Streptococcus pyogenes , environmental stress is also used as a signal to alter toxin expression. The amount of stress likely informs the bacterium of the strength of the host's defense response, allowing it to adjust its toxin expression to produce the ideal

  14. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging.

    PubMed

    Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin

    2015-03-24

    A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.

  15. Tuning temperature and size of hot spots and hot-spot arrays.

    PubMed

    Saïdi, Elika; Babinet, Nicolas; Lalouat, Loïc; Lesueur, Jérôme; Aigouy, Lionel; Volz, Sébastian; Labéguerie-Egéa, Jessica; Mortier, Michel

    2011-01-17

    By using scanning thermal microscopy, it is shown that nanoscale constrictions in metallic microwires deposited on an oxidized silicon substrate can be tuned in terms of temperature and confinement size. High-resolution temperature maps indeed show that submicrometer hot spots and hot-spot arrays are obtained when the SiO(2) layer thickness decreases below 100 nm. When the SiO(2) thickness becomes larger, heat is less confined in the vicinity of the constrictions and laterally spreads all along the microwire. These results are in good agreement with numerical simulations, which provide dependences between silica-layer thickness and nanodot shape and temperature. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fine-Tuning the Antimicrobial Profile of Biocompatible Gold Nanoparticles by Sequential Surface Functionalization Using Polyoxometalates and Lysine

    PubMed Central

    Daima, Hemant K.; Selvakannan, P. R.; Shukla, Ravi; Bhargava, Suresh K.; Bansal, Vipul

    2013-01-01

    Antimicrobial action of nanomaterials is typically assigned to the nanomaterial composition, size and/or shape, whereas influence of complex corona stabilizing the nanoparticle surface is often neglected. We demonstrate sequential surface functionalization of tyrosine-reduced gold nanoparticles (AuNPsTyr) with polyoxometalates (POMs) and lysine to explore controlled chemical functionality-driven antimicrobial activity. Our investigations reveal that highly biocompatible gold nanoparticles can be tuned to be a strong antibacterial agent by fine-tuning their surface properties in a controllable manner. The observation from the antimicrobial studies on a gram negative bacterium Escherichia coli were further validated by investigating the anticancer properties of these step-wise surface-controlled materials against A549 human lung carcinoma cells, which showed a similar toxicity pattern. These studies highlight that the nanomaterial toxicity and biological applicability are strongly governed by their surface corona. PMID:24147146

  17. Fine-tuning the antimicrobial profile of biocompatible gold nanoparticles by sequential surface functionalization using polyoxometalates and lysine.

    PubMed

    Daima, Hemant K; Selvakannan, P R; Shukla, Ravi; Bhargava, Suresh K; Bansal, Vipul

    2013-01-01

    Antimicrobial action of nanomaterials is typically assigned to the nanomaterial composition, size and/or shape, whereas influence of complex corona stabilizing the nanoparticle surface is often neglected. We demonstrate sequential surface functionalization of tyrosine-reduced gold nanoparticles (AuNPs(Tyr)) with polyoxometalates (POMs) and lysine to explore controlled chemical functionality-driven antimicrobial activity. Our investigations reveal that highly biocompatible gold nanoparticles can be tuned to be a strong antibacterial agent by fine-tuning their surface properties in a controllable manner. The observation from the antimicrobial studies on a gram negative bacterium Escherichia coli were further validated by investigating the anticancer properties of these step-wise surface-controlled materials against A549 human lung carcinoma cells, which showed a similar toxicity pattern. These studies highlight that the nanomaterial toxicity and biological applicability are strongly governed by their surface corona.

  18. Superconducting micro-resonator arrays with ideal frequency spacing

    NASA Astrophysics Data System (ADS)

    Liu, X.; Guo, W.; Wang, Y.; Dai, M.; Wei, L. F.; Dober, B.; McKenney, C. M.; Hilton, G. C.; Hubmayr, J.; Austermann, J. E.; Ullom, J. N.; Gao, J.; Vissers, M. R.

    2017-12-01

    We present a wafer trimming technique for producing superconducting micro-resonator arrays with highly uniform frequency spacing. With the light-emitting diode mapper technique demonstrated previously, we first map the measured resonance frequencies to the physical resonators. Then, we fine-tune each resonator's frequency by lithographically trimming a small length, calculated from the deviation of the measured frequency from its design value, from the interdigitated capacitor. We demonstrate this technique on a 127-resonator array made from titanium-nitride and show that the uniformity of frequency spacing is greatly improved. The array yield in terms of frequency collisions improves from 84% to 97%, while the quality factors and noise properties are unaffected. The wafer trimming technique provides an easy-to-implement tool to improve the yield and multiplexing density of large resonator arrays, which is important for various applications in photon detection and quantum computing.

  19. Fine-Tuning Your Ensemble's Jazz Style.

    ERIC Educational Resources Information Center

    Garcia, Antonio J.

    1991-01-01

    Proposes instructional strategies for directors of jazz groups, including guidelines for developing of skills necessary for good performance. Includes effective methods for positive changes in ensemble style. Addresses jazz group problems such as beat, tempo, staying in tune, wind power, and solo/ensemble lines. Discusses percussionists, bassists,…

  20. Fine tuning of the dichroic behavior of Bragg reflectors based on anisotropically nanostructured silicon

    NASA Astrophysics Data System (ADS)

    Diener, J.; Künzner, N.; Kovalev, D.; Gross, E.; Koch, F.; Fujii, M.

    2003-05-01

    Electro-chemical etching of heavily doped, (110) oriented, p+ (boron) doped silicon wafers results in porous silicon (PSi) layers which exhibit a strong in-plane anisotropy of the refractive index (birefringence). Single- and multiple layers of anisotropically nanostructured silicon (Si) have been fabricated and studied by polarization-resolved reflection and transmission measurements. Dielectric stacks of birefringent PSi acting as distributed Bragg reflectors have two distinct reflection bands depending on the polarization of the incident linearly polarized light. This effect is caused by a three-dimensional (in plane and in-depth) variation of the refraction index. The possibility of fine tuning the two orthogonally polarized reflection bands and their spectral splitting is demonstrated.

  1. Metabolic control of respiratory levels in coenzyme Q biosynthesis-deficient Escherichia coli strains leading to fine-tune aerobic lactate fermentation.

    PubMed

    Wu, Hui; Bennett, George N; San, Ka-Yiu

    2015-08-01

    A novel strategy to finely control the electron transfer chain (ETC) activity of Escherichia coli was established. In this study, the fine-tuning of the ubiquinone biosynthesis pathway was applied to further controlling ETC function in coenzyme Q8 biosynthesis-deficient E. coli strains, HW108 and HW109, which contain mutations in ubiE and ubiG, respectively. A competing pathway on the intermediate substrates of the Q8 synthesis pathway, catalyzed by diphosphate:4-hydroxybenzoate geranyltransferase (PGT-1) of Lithospermum erythrorhizon, was introduced into these mutant strains. A nearly theoretical yield of lactate production can be achieved under fully aerobic conditions via an in vivo, genetically fine-tunable means to further control the activity of the ETC of the Q8 biosynthesis-deficient E. coli strains. © 2015 Wiley Periodicals, Inc.

  2. Weight Vector Fluctuations in Adaptive Antenna Arrays Tuned Using the Least-Mean-Square Error Algorithm with Quadratic Constraint

    NASA Astrophysics Data System (ADS)

    Zimina, S. V.

    2015-06-01

    We present the results of statistical analysis of an adaptive antenna array tuned using the least-mean-square error algorithm with quadratic constraint on the useful-signal amplification with allowance for the weight-coefficient fluctuations. Using the perturbation theory, the expressions for the correlation function and power of the output signal of the adaptive antenna array, as well as the formula for the weight-vector covariance matrix are obtained in the first approximation. The fluctuations are shown to lead to the signal distortions at the antenna-array output. The weight-coefficient fluctuations result in the appearance of additional terms in the statistical characteristics of the antenna array. It is also shown that the weight-vector fluctuations are isotropic, i.e., identical in all directions of the weight-coefficient space.

  3. Distinct roles of a tyrosine-associated hydrogen-bond network in fine-tuning the structure and function of heme proteins: two cases designed for myoglobin.

    PubMed

    Liao, Fei; Yuan, Hong; Du, Ke-Jie; You, Yong; Gao, Shu-Qin; Wen, Ge-Bo; Lin, Ying-Wu; Tan, Xiangshi

    2016-10-20

    A hydrogen-bond (H-bond) network, specifically a Tyr-associated H-bond network, plays key roles in regulating the structure and function of proteins, as exemplified by abundant heme proteins in nature. To explore an approach for fine-tuning the structure and function of artificial heme proteins, we herein used myoglobin (Mb) as a model protein and introduced a Tyr residue in the secondary sphere of the heme active site at two different positions (107 and 138). We performed X-ray crystallography, UV-Vis spectroscopy, stopped-flow kinetics, and electron paramagnetic resonance (EPR) studies for the two single mutants, I107Y Mb and F138Y Mb, and compared to that of wild-type Mb under the same conditions. The results showed that both Tyr107 and Tyr138 form a distinct H-bond network involving water molecules and neighboring residues, which fine-tunes ligand binding to the heme iron and enhances the protein stability, respectively. Moreover, the Tyr107-associated H-bond network was shown to fine-tune both H2O2 binding and activation. With two cases demonstrated for Mb, this study suggests that the Tyr-associated H-bond network has distinct roles in regulating the protein structure, properties and functions, depending on its location in the protein scaffold. Therefore, it is possible to design a Tyr-associated H-bond network in general to create other artificial heme proteins with improved properties and functions.

  4. Fine-tuning free paradigm of two-measures theory: k-essence, absence of initial singularity of the curvature, and inflation with graceful exit to the zero cosmological constant state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guendelman, E. I.; Kaganovich, A. B.

    2007-04-15

    The dilaton-gravity sector of the two-measures field theory (TMT) is explored in detail in the context of spatially flat Friedman-Robertson-Walker (FRW) cosmology. The model possesses scale invariance which is spontaneously broken due to the intrinsic features of the TMT dynamics. The dilaton {phi} dependence of the effective Lagrangian appears only as a result of the spontaneous breakdown of the scale invariance. If no fine-tuning is made, the effective {phi}-Lagrangian p({phi},X) depends quadratically upon the kinetic term X. Hence TMT represents an explicit example of the effective k-essence resulting from first principles without any exotic term in the underlying action intendedmore » for obtaining this result. Depending of the choice of regions in the parameter space (but without fine-tuning), TMT exhibits different possible outputs for cosmological dynamics: (a) Absence of initial singularity of the curvature while its time derivative is singular. This is a sort of sudden singularities studied by Barrow on purely kinematic grounds. (b) Power law inflation in the subsequent stage of evolution. Depending on the region in the parameter space the inflation ends with a graceful exit either into the state with zero cosmological constant (CC) or into the state driven by both a small CC and the field {phi} with a quintessencelike potential. (c) Possibility of resolution of the old CC problem. From the point of view of TMT, it becomes clear why the old CC problem cannot be solved (without fine-tuning) in conventional field theories. (d) TMT enables two ways for achieving small CC without fine-tuning of dimensionful parameters: either by a seesaw type mechanism or due to a correspondence principle between TMT and conventional field theories (i.e. theories with only the measure of integration {radical}(-g) in the action). (e) There is a wide range of the parameters such that in the late time universe: the equation of state w=p/{rho}<-1; w asymptotically (as t

  5. Fine-Tuning of the Fatty Acid Pathway by Synthetic Antisense RNA for Enhanced (2S)-Naringenin Production from l-Tyrosine in Escherichia coli

    PubMed Central

    Wu, Junjun; Yu, Oliver; Du, Guocheng

    2014-01-01

    Malonyl coenzyme A (malonyl-CoA) is an important precursor for the synthesis of natural products, such as polyketides and flavonoids. The majority of this cofactor often is consumed for producing fatty acids and phospholipids, leaving only a small amount of cellular malonyl-CoA available for producing the target compound. The tuning of malonyl-CoA into heterologous pathways yields significant phenotypic effects, such as growth retardation and even cell death. In this study, fine-tuning of the fatty acid pathway in Escherichia coli with antisense RNA (asRNA) to balance the demands on malonyl-CoA for target-product synthesis and cell health was proposed. To establish an efficient asRNA system, the relationship between sequence and function for asRNA was explored. It was demonstrated that the gene-silencing effect of asRNA could be tuned by directing asRNA to different positions in the 5′-UTR (untranslated region) of the target gene. Based on this principle, the activity of asRNA was quantitatively tailored to balance the need for malonyl-CoA in cell growth and the production of the main flavonoid precursor, (2S)-naringenin. Appropriate inhibitory efficiency of the anti-fabB/fabF asRNA improved the production titer by 431% (391 mg/liter). Therefore, the strategy presented in this study provided a useful tool for the fine-tuning of endogenous gene expression in bacteria. PMID:25239896

  6. Fine-Tuning of the Fatty Acid Pathway by Synthetic Antisense RNA for Enhanced (2S)-Naringenin Production from l-Tyrosine in Escherichia coli.

    PubMed

    Wu, Junjun; Yu, Oliver; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2014-12-01

    Malonyl coenzyme A (malonyl-CoA) is an important precursor for the synthesis of natural products, such as polyketides and flavonoids. The majority of this cofactor often is consumed for producing fatty acids and phospholipids, leaving only a small amount of cellular malonyl-CoA available for producing the target compound. The tuning of malonyl-CoA into heterologous pathways yields significant phenotypic effects, such as growth retardation and even cell death. In this study, fine-tuning of the fatty acid pathway in Escherichia coli with antisense RNA (asRNA) to balance the demands on malonyl-CoA for target-product synthesis and cell health was proposed. To establish an efficient asRNA system, the relationship between sequence and function for asRNA was explored. It was demonstrated that the gene-silencing effect of asRNA could be tuned by directing asRNA to different positions in the 5'-UTR (untranslated region) of the target gene. Based on this principle, the activity of asRNA was quantitatively tailored to balance the need for malonyl-CoA in cell growth and the production of the main flavonoid precursor, (2S)-naringenin. Appropriate inhibitory efficiency of the anti-fabB/fabF asRNA improved the production titer by 431% (391 mg/liter). Therefore, the strategy presented in this study provided a useful tool for the fine-tuning of endogenous gene expression in bacteria. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Fine tuning and orientation control of surface Cu complexes on TiO2(110) premodified with mercapto compounds: the effect of different mercapto group positions.

    PubMed

    Takakusagi, Satoru; Nojima, Hirotaka; Ariga, Hiroko; Uehara, Hiromitsu; Miyazaki, Kotaro; Chun, Wang-Jae; Iwasawa, Yasuhiro; Asakura, Kiyotaka

    2013-09-07

    Three-dimensional structures of vacuum-deposited Cu species formed on TiO2(110) surfaces premodified with three mercaptobenzoic acid (MBA) isomers were studied using polarization-dependent total reflection fluorescence X-ray absorption fine structure (PTRF-XAFS). We explored the possibility of fine tuning and orientation control of the surface Cu structures, including their coordination and configuration against the surface, according to the different mercapto group positions of the three MBA isomers (o-, m-, and p-MBA). Almost linear S-Cu-O (lattice O of TiO2) surface compounds were formed on the three MBA-modified TiO2(110) surfaces; however, the orientation of the Cu species on the o- and m-MBA-modified TiO2(110) surfaces (40-45° inclined from the surface normal) was different from that on the p-MBA-modified TiO2(110) surface (60° from the surface normal). This work suggests that the selection of a different MBA isomer for premodification of a single crystal TiO2(110) surface enables fine tuning and orientation control of surface Cu complexes.

  8. Nuclear Transcription Factors in the Mitochondria: A New Paradigm in Fine-Tuning Mitochondrial Metabolism.

    PubMed

    Sepuri, Naresh Babu V; Tammineni, Prasad; Mohammed, Fareed; Paripati, Arunkumar

    2017-01-01

    Noncanonical functions of several nuclear transcription factors in the mitochondria have been gaining exceptional traction over the years. These transcription factors include nuclear hormone receptors like estrogen, glucocorticoid, and thyroid hormone receptors: p53, IRF3, STAT3, STAT5, CREB, NF-kB, and MEF-2D. Mitochondria-localized nuclear transcription factors regulate mitochondrial processes like apoptosis, respiration and mitochondrial transcription albeit being nuclear in origin and having nuclear functions. Hence, the cell permits these multi-stationed transcription factors to orchestrate and fine-tune cellular metabolism at various levels of operation. Despite their ubiquitous distribution in different subcompartments of mitochondria, their targeting mechanism is poorly understood. Here, we review the current status of mitochondria-localized transcription factors and discuss the possible targeting mechanism besides the functional interplay between these factors.

  9. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  10. Tuning Parameters in Heuristics by Using Design of Experiments Methods

    NASA Technical Reports Server (NTRS)

    Arin, Arif; Rabadi, Ghaith; Unal, Resit

    2010-01-01

    With the growing complexity of today's large scale problems, it has become more difficult to find optimal solutions by using exact mathematical methods. The need to find near-optimal solutions in an acceptable time frame requires heuristic approaches. In many cases, however, most heuristics have several parameters that need to be "tuned" before they can reach good results. The problem then turns into "finding best parameter setting" for the heuristics to solve the problems efficiently and timely. One-Factor-At-a-Time (OFAT) approach for parameter tuning neglects the interactions between parameters. Design of Experiments (DOE) tools can be instead employed to tune the parameters more effectively. In this paper, we seek the best parameter setting for a Genetic Algorithm (GA) to solve the single machine total weighted tardiness problem in which n jobs must be scheduled on a single machine without preemption, and the objective is to minimize the total weighted tardiness. Benchmark instances for the problem are available in the literature. To fine tune the GA parameters in the most efficient way, we compare multiple DOE models including 2-level (2k ) full factorial design, orthogonal array design, central composite design, D-optimal design and signal-to-noise (SIN) ratios. In each DOE method, a mathematical model is created using regression analysis, and solved to obtain the best parameter setting. After verification runs using the tuned parameter setting, the preliminary results for optimal solutions of multiple instances were found efficiently.

  11. The WD40 Domain Protein MSI1 Functions in a Histone Deacetylase Complex to Fine-Tune Abscisic Acid Signaling.

    PubMed

    Mehdi, Saher; Derkacheva, Maria; Ramström, Margareta; Kralemann, Lejon; Bergquist, Jonas; Hennig, Lars

    2016-01-01

    MSI1 belongs to a family of histone binding WD40-repeat proteins. Arabidopsis thaliana contains five genes encoding MSI1-like proteins, but their functions in diverse chromatin-associated complexes are poorly understood. Here, we show that MSI1 is part of a histone deacetylase complex. We copurified HISTONE DEACETYLASE19 (HDA19) with MSI1 and transcriptional regulatory SIN3-like proteins and provide evidence that MSI1 and HDA19 associate into the same complex in vivo. These data suggest that MSI1, HDA19, and HISTONE DEACETYLATION COMPLEX1 protein form a core complex that can integrate various SIN3-like proteins. We found that reduction of MSI1 or HDA19 causes upregulation of abscisic acid (ABA) receptor genes and hypersensitivity of ABA-responsive genes. The MSI1-HDA19 complex fine-tunes ABA signaling by binding to the chromatin of ABA receptor genes and by maintaining low levels of acetylation of histone H3 at lysine 9, thereby affecting the expression levels of ABA receptor genes. Reduced MSI1 or HDA19 levels led to increased tolerance to salt stress corresponding to the increased ABA sensitivity of gene expression. Together, our results reveal the presence of an MSI1-HDA19 complex that fine-tunes ABA signaling in Arabidopsis. © 2016 American Society of Plant Biologists. All rights reserved.

  12. Three-dimensional cavity nanoantennas with resonant-enhanced surface plasmons as dynamic color-tuning reflectors.

    PubMed

    Fan, J R; Wu, W G; Chen, Z J; Zhu, J; Li, J

    2017-03-09

    As plasmonic antennas for surface-plasmon-assisted control of optical fields at specific frequencies, metallic nanostructures have recently emerged as crucial optical components for fascinating plasmonic color engineering. Particularly, plasmonic resonant nanocavities can concentrate lightwave energy to strongly enhance light-matter interactions, making them ideal candidates as optical elements for fine-tuning color displays. Inspired by the color mixing effect found on butterfly wings, a new type of plasmonic, multiresonant, narrow-band (the minimum is about 45 nm), high-reflectance (the maximum is about 95%), and dynamic color-tuning reflector is developed. This is achieved from periodic patterns of plasmonic resonant nanocavities in free-standing capped-pillar nanostructure arrays. Such cavity-coupling structures exhibit multiple narrow-band selective and continuously tunable reflections via plasmon standing-wave resonances. Consequently, they can produce a variety of dark-field vibrant reflective colors with good quality, strong color signal and fine tonal variation at the optical diffraction limit. This proposed multicolor scheme provides an elegant strategy for realizing personalized and customized applications in ultracompact photonic data storage and steganography, colorimetric sensing, 3D holograms and other plasmon-assisted photonic devices.

  13. Fine-tuned PEGylation of chitosan to maintain optimal siRNA-nanoplex bioactivity.

    PubMed

    Guţoaia, Andra; Schuster, Liane; Margutti, Simona; Laufer, Stefan; Schlosshauer, Burkhard; Krastev, Rumen; Stoll, Dieter; Hartmann, Hanna

    2016-06-05

    Polyethylene glycol (PEG) is a widely used modification for drug delivery systems. It reduces undesired interaction with biological components, aggregation of complexes and serves as a hydrophilic linker of ligands for targeted drug delivery. However, PEGylation can also lead to undesired changes in physicochemical characteristics of chitosan/siRNA nanoplexes and hamper gene silencing. To address this conflicting issue, PEG-chitosan copolymers were synthesized with stepwise increasing degrees of PEG substitution (1.5% to 8.0%). Subsequently formed PEG-chitosan/siRNA nanoplexes were characterized physicochemically and biologically. The results showed that small ratios of chitosan PEGylation did not affect nanoplex stability and density. However, higher PEGylation ratios reduced nanoplex size and charge, as well as cell uptake and final siRNA knockdown efficiency. Therefore, we recommend fine-tuning of PEGylation ratios to generate PEG-chitosan/siRNA delivery systems with maximum bioactivity. The degree of PEGylation for chitosan/siRNA nanoplexes should be kept low in order to maintain optimal nanoplex efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A novel approach for the fine tuning of resonance frequency of patch antenna

    NASA Astrophysics Data System (ADS)

    Mathur, Monika; Singh, Ghanshyam; Bhatnagar, S. K.

    2013-01-01

    When a patch antenna is fabricated, dimensions of the patch may be slightly different from the designed values due to tolerances in the fabrication process. This alters the resonance frequency of the antenna. To overcome this problem this paper presents a new design approach for fine tuning the resonance frequency by dielectric constant engineering. This approach is especially suited to low temperature co-fired ceramic (LTCC) and similar processes where the antenna dielectric is composed of several layers. Composite dielectric constant of this multilayer structure is altered in such a way that the resonant frequency is set back to the designed value. It has been verified that for proposed micro strip antenna (MSA) design, the frequency-area curve follows a quadratic relation with a variable R (Ratio of cavity area to the patch area). This mathematical model is true up to R 1.27. After this saturation effects set in and the curve follows a straight line behavior.≡

  15. A Transcriptional Regulatory Mechanism Finely Tunes the Firing of Type VI Secretion System in Response to Bacterial Enemies.

    PubMed

    Lazzaro, Martina; Feldman, Mario F; García Véscovi, Eleonora

    2017-08-22

    also recently identified as one major component of the gut microbiome in familial Crohn disease dysbiosis. Type VI secretion systems (T6SSs) stand among the array of survival strategies that Serratia displays. They are contractile multiprotein complexes able to deliver toxic effectors directed to kill bacterial species sharing the same niche and, thus, competing for vital resources. Here, we show that Serratia is able to detect and measure the extent of damage generated through T6SS-delivered toxins from neighboring bacteria and responds by transcriptionally adjusting the expression level of its own T6SS machinery to counterattack the rival. This strategy allows Serratia to finely tune the production of costly T6SS devices to maximize the chances of successfully fighting against enemies and minimize energy investment. The knowledge of this novel mechanism provides insight to better understand bacterial interactions and design alternative treatments for polymicrobial infections. Copyright © 2017 Lazzaro et al.

  16. Natural tuning: towards a proof of concept

    NASA Astrophysics Data System (ADS)

    Dubovsky, Sergei; Gorbenko, Victor; Mirbabayi, Mehrdad

    2013-09-01

    The cosmological constant problem and the absence of new natural physics at the electroweak scale, if confirmed by the LHC, may either indicate that the nature is fine-tuned or that a refined notion of naturalness is required. We construct a family of toy UV complete quantum theories providing a proof of concept for the second possibility. Low energy physics is described by a tuned effective field theory, which exhibits relevant interactions not protected by any symmetries and separated by an arbitrary large mass gap from the new "gravitational" physics, represented by a set of irrelevant operators. Nevertheless, the only available language to describe dynamics at all energy scales does not require any fine-tuning. The interesting novel feature of this construction is that UV physics is not described by a fixed point, but rather exhibits asymptotic fragility. Observation of additional unprotected scalars at the LHC would be a smoking gun for this scenario. Natural tuning also favors TeV scale unification.

  17. Fine tuning of nanopipettes using atomic layer deposition for single molecule sensing.

    PubMed

    Sze, Jasmine Y Y; Kumar, Shailabh; Ivanov, Aleksandar P; Oh, Sang-Hyun; Edel, Joshua B

    2015-07-21

    Nanopipettes are an attractive single-molecule tool for identification and characterisation of nucleic acids and proteins in solutions. They enable label-free analysis and reveal individual molecular properties, which are generally masked by ensemble averaging. Having control over the pore dimensions is vital to ensure that the dimensions of the molecules being probed match those of the pore for optimization of the signal to noise. Although nanopipettes are simple and easy to fabricate, challenges exist, especially when compared to more conventional solid-state analogues. For example, a sub-20 nm pore diameter can be difficult to fabricate and the batch-to-batch reproducibility is often poor. To improve on this limitation, atomic layer deposition (ALD) is used to deposit ultrathin layers of alumina (Al2O3) on the surface of the quartz nanopipettes enabling sub-nm tuning of the pore dimensions. Here, Al2O3 with a thickness of 8, 14 and 17 nm was deposited onto pipettes with a starting pore diameter of 75 ± 5 nm whilst a second batch had 5 and 8 nm Al2O3 deposited with a starting pore diameter of 25 ± 3 nm respectively. This highly conformal process coats both the inner and outer surfaces of pipettes and resulted in the fabrication of pore diameters as low as 7.5 nm. We show that Al2O3 modified pores do not interfere with the sensing ability of the nanopipettes and can be used for high signal-to-noise DNA detection. ALD provides a quick and efficient (batch processing) for fine-tuning nanopipettes for a broad range of applications including the detection of small biomolecules like RNA, aptamers and DNA-protein interactions at the single molecule level.

  18. “Rapid Estrogen Signaling in the Brain: Implications for the Fine-Tuning of Neuronal Circuitry”

    PubMed Central

    Srivastava, Deepak P.; Waters, Elizabeth M.; Mermelstein, Paul G.; Kramár, Enikö A.; Shors, Tracey J.; Liu, Feng

    2011-01-01

    Rapid actions of estrogens were first described over 40 years ago. However, the importance of rapid estrogen-mediated actions in the central nervous system (CNS) has only now becoming apparent. Several lines of evidence demonstrate that rapid estrogen-mediated signaling elicits potent effects on molecular and cellular events, resulting in the fine-tuning of neuronal circuitry. At an ultrastructural level, the details of estrogen receptor localization and how these are regulated by the circulating hormone and age, are now becoming evident. Furthermore, the mechanisms that allow membrane-associated estrogen receptors to couple with intracellular signaling pathways are also now being revealed. Elucidation of complex actions of rapid estrogen-mediated signaling on synaptic proteins, connectivity and synaptic function in pyramidal neurons has demonstrated that this neurosteroid engage specific mechanisms in different areas of the brain. The regulation of synaptic properties most likely underlies the ‘fine-tuning’ of neuronal circuitry. This in turn may influence how learned behaviors are encoded by different circuitry in male and female subjects. Importantly, as estrogens have been suggested as potential treatments of a number of disorders of the CNS, advancements in our understanding of rapid estrogen signaling in the brain will serve to aid in the development of potential novel estrogen-based treatments. PMID:22072656

  19. Efficient receiver tuning using differential evolution strategies

    NASA Astrophysics Data System (ADS)

    Wheeler, Caleb H.; Toland, Trevor G.

    2016-08-01

    Differential evolution (DE) is a powerful and computationally inexpensive optimization strategy that can be used to search an entire parameter space or to converge quickly on a solution. The Kilopixel Array Pathfinder Project (KAPPa) is a heterodyne receiver system delivering 5 GHz of instantaneous bandwidth in the tuning range of 645-695 GHz. The fully automated KAPPa receiver test system finds optimal receiver tuning using performance feedback and DE. We present an adaptation of DE for use in rapid receiver characterization. The KAPPa DE algorithm is written in Python 2.7 and is fully integrated with the KAPPa instrument control, data processing, and visualization code. KAPPa develops the technologies needed to realize heterodyne focal plane arrays containing 1000 pixels. Finding optimal receiver tuning by investigating large parameter spaces is one of many challenges facing the characterization phase of KAPPa. This is a difficult task via by-hand techniques. Characterizing or tuning in an automated fashion without need for human intervention is desirable for future large scale arrays. While many optimization strategies exist, DE is ideal for time and performance constraints because it can be set to converge to a solution rapidly with minimal computational overhead. We discuss how DE is utilized in the KAPPa system and discuss its performance and look toward the future of 1000 pixel array receivers and consider how the KAPPa DE system might be applied.

  20. Fine-tuning the onset of myogenesis by homeobox proteins that interact with the Myf5 limb enhancer

    PubMed Central

    Daubas, Philippe; Duval, Nathalie; Bajard, Lola; Langa Vives, Francina; Robert, Benoît; Mankoo, Baljinder S.; Buckingham, Margaret

    2015-01-01

    ABSTRACT Skeletal myogenesis in vertebrates is initiated at different sites of skeletal muscle formation during development, by activation of specific control elements of the myogenic regulatory genes. In the mouse embryo, Myf5 is the first myogenic determination gene to be expressed and its spatiotemporal regulation requires multiple enhancer sequences, extending over 120 kb upstream of the Mrf4-Myf5 locus. An enhancer, located at −57/−58 kb from Myf5, is responsible for its activation in myogenic cells derived from the hypaxial domain of the somite, that will form limb muscles. Pax3 and Six1/4 transcription factors are essential activators of this enhancer, acting on a 145-bp core element. Myogenic progenitor cells that will form the future muscle masses of the limbs express the factors necessary for Myf5 activation when they delaminate from the hypaxial dermomyotome and migrate into the forelimb bud, however they do not activate Myf5 and the myogenic programme until they have populated the prospective muscle masses. We show that Msx1 and Meox2 homeodomain-containing transcription factors bind in vitro and in vivo to specific sites in the 145-bp element, and are implicated in fine-tuning activation of Myf5 in the forelimb. Msx1, when bound between Pax and Six sites, prevents the binding of these key activators, thus inhibiting transcription of Myf5 and consequent premature myogenic differentiation. Meox2 is required for Myf5 activation at the onset of myogenesis via direct binding to other homeodomain sites in this sequence. Thus, these homeodomain factors, acting in addition to Pax3 and Six1/4, fine-tune the entry of progenitor cells into myogenesis at early stages of forelimb development. PMID:26538636

  1. The NRF2-related interactome and regulome contain multifunctional proteins and fine-tuned autoregulatory loops.

    PubMed

    Papp, Diána; Lenti, Katalin; Módos, Dezső; Fazekas, Dávid; Dúl, Zoltán; Türei, Dénes; Földvári-Nagy, László; Nussinov, Ruth; Csermely, Péter; Korcsmáros, Tamás

    2012-06-21

    NRF2 is a well-known, master transcription factor (TF) of oxidative and xenobiotic stress responses. Recent studies uncovered an even wider regulatory role of NRF2 influencing carcinogenesis, inflammation and neurodegeneration. Prompted by these advances here we present a systems-level resource for NRF2 interactome and regulome that includes 289 protein-protein, 7469 TF-DNA and 85 miRNA interactions. As systems-level examples of NRF2-related signaling we identified regulatory loops of NRF2 interacting proteins (e.g., JNK1 and CBP) and a fine-tuned regulatory system, where 35 TFs regulated by NRF2 influence 63 miRNAs that down-regulate NRF2. The presented network and the uncovered regulatory loops may facilitate the development of efficient, NRF2-based therapeutic agents. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch

    PubMed Central

    Poole, Kate; Herget, Regina; Lapatsina, Liudmila; Ngo, Ha-Duong; Lewin, Gary R.

    2014-01-01

    In sensory neurons, mechanotransduction is sensitive, fast and requires mechanosensitive ion channels. Here we develop a new method to directly monitor mechanotransduction at defined regions of the cell-substrate interface. We show that molecular-scale (~13 nm) displacements are sufficient to gate mechanosensitive currents in mouse touch receptors. Using neurons from knockout mice, we show that displacement thresholds increase by one order of magnitude in the absence of stomatin-like protein 3 (STOML3). Piezo1 is the founding member of a class of mammalian stretch-activated ion channels, and we show that STOML3, but not other stomatin-domain proteins, brings the activation threshold for Piezo1 and Piezo2 currents down to ~10 nm. Structure–function experiments localize the Piezo modulatory activity of STOML3 to the stomatin domain, and higher-order scaffolds are a prerequisite for function. STOML3 is the first potent modulator of Piezo channels that tunes the sensitivity of mechanically gated channels to detect molecular-scale stimuli relevant for fine touch. PMID:24662763

  3. A phosphate-regulated promoter for fine-tuned and reversible overexpression in Ostreococcus: application to circadian clock functional analysis.

    PubMed

    Djouani-Tahri, El Batoul; Sanchez, Frédéric; Lozano, Jean-Claude; Bouget, François-Yves

    2011-01-01

    The green picoalga Ostreococcus tauri (Prasinophyceae), which has been described as the smallest free-living eukaryotic organism, has minimal cellular ultra-structure and a very small genome. In recent years, O. tauri has emerged as a novel model organism for systems biology approaches that combine functional genomics and mathematical modeling, with a strong emphasis on light regulated processes and circadian clock. These approaches were made possible through the implementation of a minimal molecular toolbox for gene functional analysis including overexpression and knockdown strategies. We have previously shown that the promoter of the High Affinity Phosphate Transporter (HAPT) gene drives the expression of a luciferase reporter at high and constitutive levels under constant light. Here we report, using a luciferase reporter construct, that the HAPT promoter can be finely and reversibly tuned by modulating the level and nature of phosphate in culture medium. This HAPT regulation was additionally used to analyze the circadian clock gene Time of Cab expression 1 (TOC1). The phenotype of a TOC1ox/CCA1:Luc line was reverted from arrhythmic to rhythmic simply by adding phosphate to the culture medium. Furthermore, since the time of phosphate injection had no effect on the phase of CCA1:Luc expression, this study suggests further that TOC1 is a central clock gene in Ostreococcus. We have developed a phosphate-regulated expression system that allows fine gene function analysis in Ostreococcus. Recently, there has been a growing interest in microalgae as cell factories. This non-toxic phosphate-regulated system may prove useful in tuning protein expression levels quantitatively and temporally for biotechnological applications.

  4. Dynamically avoiding fine-tuning the cosmological constant: the ``Relaxed Universe''

    NASA Astrophysics Data System (ADS)

    Bauer, Florian; Solà, Joan; Štefancić, Hrvoje

    2010-12-01

    We demonstrate that there exists a large class of Script F(R,Script G) action functionals of the scalar curvature and of the Gauß-Bonnet invariant which are able to relax dynamically a large cosmological constant (CC), whatever it be its starting value in the early universe. Hence, it is possible to understand, without fine-tuning, the very small current value Λ0 ~ H02 of the CC as compared to its theoretically expected large value in quantum field theory and string theory. In our framework, this relaxation appears as a pure gravitational effect, where no ad hoc scalar fields are needed. The action involves a positive power of a characteristic mass parameter, Script M, whose value can be, interestingly enough, of the order of a typical particle physics mass of the Standard Model of the strong and electroweak interactions or extensions thereof, including the neutrino mass. The model universe emerging from this scenario (the ``Relaxed Universe'') falls within the class of the so-called ΛXCDM models of the cosmic evolution. Therefore, there is a ``cosmon'' entity X (represented by an effective object, not a field), which in this case is generated by the effective functional Script F(R,Script G) and is responsible for the dynamical adjustment of the cosmological constant. This model universe successfully mimics the essential past epochs of the standard (or ``concordance'') cosmological model (ΛCDM). Furthermore, it provides interesting clues to the coincidence problem and it may even connect naturally with primordial inflation.

  5. Mechanisms of input and output synaptic specificity: finding partners, building synapses, and fine-tuning communication.

    PubMed

    Rawson, Randi L; Martin, E Anne; Williams, Megan E

    2017-08-01

    For most neurons to function properly, they need to develop synaptic specificity. This requires finding specific partner neurons, building the correct types of synapses, and fine-tuning these synapses in response to neural activity. Synaptic specificity is common at both a neuron's input and output synapses, whereby unique synapses are built depending on the partnering neuron. Neuroscientists have long appreciated the remarkable specificity of neural circuits but identifying molecular mechanisms mediating synaptic specificity has only recently accelerated. Here, we focus on recent progress in understanding input and output synaptic specificity in the mammalian brain. We review newly identified circuit examples for both and the latest research identifying molecular mediators including Kirrel3, FGFs, and DGLα. Lastly, we expect the pace of research on input and output specificity to continue to accelerate with the advent of new technologies in genomics, microscopy, and proteomics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Origin of the fundamental plane of elliptical galaxies in the Coma cluster without fine-tuning

    NASA Astrophysics Data System (ADS)

    Chiu, Mu-Chen; Ko, Chung-Ming; Shu, Chenggang

    2017-03-01

    Thirty years after the discovery of the fundamental plane, explanations of the tilt of the fundamental plane with respect to the virial plane are still in need of fine-tuning. In this paper, we try to explore the origin of this tilt from the perspective of modified Newtonian dynamics (MOND) by applying the 16 Coma galaxies available in J. Thomas et al. [Mon. Not. R. Astron. Soc. 415, 545 (2011), 10.1111/j.1365-2966.2011.18725.x]. Based on the mass models that can reproduce de Vaucouleurs' law closely, we find that the tilt of the traditional fundamental plane is naturally explained by the simple form of the MONDian interpolating function, if we assume a well motivated choice of anisotropic velocity distribution, and adopt the Kroupa or Salpeter stellar mass-to-light ratio. Our analysis does not necessarily rule out a varying stellar mass-to-light ratio.

  7. An optimal tuning strategy for tidal turbines

    PubMed Central

    2016-01-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This ‘impatient-tuning strategy’ results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing ‘patient-tuning strategy’ which maximizes the power output averaged over the tidal cycle. This paper presents a ‘smart patient tuning strategy’, which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine’s average power output. PMID:27956870

  8. An optimal tuning strategy for tidal turbines

    NASA Astrophysics Data System (ADS)

    Vennell, Ross

    2016-11-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This `impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing `patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a `smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.

  9. An optimal tuning strategy for tidal turbines.

    PubMed

    Vennell, Ross

    2016-11-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This 'impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing 'patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a 'smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.

  10. Fine-tuning of process conditions to improve product uniformity of polystyrene particles used for wind tunnel velocimetry

    NASA Technical Reports Server (NTRS)

    Ray, Asit K.

    1990-01-01

    Monodisperse polymer particles (having uniform diameter) were used for the last two decades in physical, biological, and chemical sciences. In NASA Langley Research Center monodisperse polystyrene particles are used in wind tunnel laser velocimeters. These polystyrene (PS) particles in latex form were formulated at the Engineering Laboratory of FENGD using emulsion-free emulsion polymerization. Monodisperse PS latices particles having different particle diameters were formulated and useful experimental data involving effects of process conditions on particle size were accumulated. However, similar process conditions and chemical recipes for polymerization of styrene monomer have often yielded monodisperse particles having varying diameters. The purpose was to improve the PS latex product uniformity by fine-tuning the process parameters based on the knowledge of suspension and emulsion polymerization.

  11. MicroRNA inhibition fine-tunes and provides robustness to the restriction point switch of the cell cycle.

    PubMed

    Del Rosario, Ricardo C H; Damasco, Joseph Ray Clarence G; Aguda, Baltazar D

    2016-09-09

    The restriction point marks a switch in G1 from growth factor-dependent to growth factor-independent progression of the cell cycle. The proper regulation of this switch is important for normal cell processes; aberrations could result in a number of diseases such as cancer, neurodegenerative disorders, stroke and myocardial infarction. To further understand the regulation of the restriction point, we extended a mathematical model of the Rb-E2F pathway to include members of the microRNA cluster miR-17-92. Our mathematical analysis shows that microRNAs play an essential role in fine-tuning and providing robustness to the switch. We also demonstrate how microRNA regulation can steer cells in or out of cancer states.

  12. MicroRNA inhibition fine-tunes and provides robustness to the restriction point switch of the cell cycle

    PubMed Central

    del Rosario, Ricardo C. H.; Damasco, Joseph Ray Clarence G.; Aguda, Baltazar D.

    2016-01-01

    The restriction point marks a switch in G1 from growth factor-dependent to growth factor-independent progression of the cell cycle. The proper regulation of this switch is important for normal cell processes; aberrations could result in a number of diseases such as cancer, neurodegenerative disorders, stroke and myocardial infarction. To further understand the regulation of the restriction point, we extended a mathematical model of the Rb-E2F pathway to include members of the microRNA cluster miR-17-92. Our mathematical analysis shows that microRNAs play an essential role in fine-tuning and providing robustness to the switch. We also demonstrate how microRNA regulation can steer cells in or out of cancer states. PMID:27610602

  13. Tuning of Muscle Synergies During Walking Along Rectilinear and Curvilinear Trajectories in Humans.

    PubMed

    Chia Bejarano, Noelia; Pedrocchi, Alessandra; Nardone, Antonio; Schieppati, Marco; Baccinelli, Walter; Monticone, Marco; Ferrigno, Giancarlo; Ferrante, Simona

    2017-05-01

    The aim of this study was to develop a methodology based on muscle synergies to investigate whether rectilinear and curvilinear walking shared the same neuro-motor organization, and how this organization was fine-tuned by the walking condition. Thirteen healthy subjects walked on rectilinear and curvilinear paths. Electromyographic data from thirteen back and lower-limb muscles were acquired, together with kinematic data using inertial sensors. Four macroscopically invariant muscle synergies, extracted through non-negative matrix factorization, proved a shared modular organization across conditions. The fine-tuning of muscle synergies was studied through non-negative matrix reconstruction, applied by fixing muscle weights or activation profiles to those of the rectilinear condition. The activation profiles tended to be recruited for a longer period and with a larger amplitude during curvilinear walking. The muscles of the posterior side of the lower limb were those mainly influenced by the fine-tuning, with the muscles inside the rotation path being more active than the outer muscles. This study shows that rectilinear and curvilinear walking share a unique motor command. However, a fine-tuning in muscle synergies is introduced during curvilinear conditions, adapting the kinematic strategy to the new biomechanical needs.

  14. The BBX subfamily IV: additional cogs and sprockets to fine-tune light-dependent development.

    PubMed

    Sarmiento, Felipe

    2013-04-01

    Plants depend on light during all phases of its life cycle, and have evolved a complex signaling network to constantly monitor its surroundings. Photomorphogenesis, a process during which the plant reprograms itself in order to dwell life in presence of light is one of the most studied phenomena in plants. Recent mutant analyses using model plant Arabidopsis thaliana and protein interaction assays have unraveled a new set of players, an 8-member subfamily of B-box proteins, known as BBX subfamily IV. For the members of this subfamily, positive (BBX21, BBX22) as well as negative (BBX24) functions have been described for its members, showing a strong association to two major players of the photomorphogenic cascade, HY5 and COP1. The roles of these new BBX regulators are not restricted to photomorphogenesis, but also have functions in other facets of light-dependent development. Therefore this newly identified set of regulators has opened up new insights into the understanding of the fine-tuning of this complex process.

  15. Fine-tuning the Wall Thickness of Ordered Mesoporous Graphene by Exploiting Ligand Exchange of Colloidal Nanocrystals

    NASA Astrophysics Data System (ADS)

    Han, Dandan; Yan, Yancui; Wei, Jishi; Wang, Biwei; Li, Tongtao; Guo, Guannan; Yang, Dong; Xie, Songhai; Dong, Angang

    2017-12-01

    Because of their unique physical properties, three-dimensional (3D) graphene has attracted enormous attention over the past years. However, it is still a challenge to precisely control the layer thickness of 3D graphene. Here, we report a novel strategy to rationally adjust the wall thickness of ordered mesoporous graphene (OMG). By taking advantage of ligand exchange capability of colloidal Fe3O4 nanocrystals, we are able to fine-tune the wall thickness of OMG from 2 to 6 layers of graphene by tailoring the hydrocarbon ligands attached to the nanocrystal surface. When evaluated as electrocatalyst for oxygen reduction reaction upon S and N doping, the 4-layer OMG is found to show better catalytic performance compared with its 2- and 6-layer counterparts, which we attribute to the enhanced exposure of active sites resulting from its ultrathin wall thickness and high surface area.

  16. Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections.

    PubMed

    Xiong, Xiaoli; Tortorici, M Alejandra; Snijder, Joost; Yoshioka, Craig; Walls, Alexandra C; Li, Wentao; McGuire, Andrew T; Rey, Félix A; Bosch, Berend-Jan; Veesler, David

    2017-11-01

    Coronaviruses recently emerged as major human pathogens causing outbreaks of severe acute respiratory syndrome and Middle-East respiratory syndrome. They utilize the spike (S) glycoprotein anchored in the viral envelope to mediate host attachment and fusion of the viral and cellular membranes to initiate infection. The S protein is a major determinant of the zoonotic potential of coronaviruses and is also the main target of the host humoral immune response. We report here the 3.5 Å resolution cryo-electron microscopy structure of the S glycoprotein trimer from the pathogenic porcine deltacoronavirus (PDCoV), which belongs to the recently identified delta genus. Structural and glycoproteomics data indicate that the glycans of PDCoV S are topologically conserved when compared with the human respiratory coronavirus HCoV-NL63 S, resulting in similar surface areas being shielded from neutralizing antibodies and implying that both viruses are under comparable immune pressure in their respective hosts. The structure further reveals a shortened S 2 ' activation loop, containing a reduced number of basic amino acids, which participates to rendering the spike largely protease-resistant. This property distinguishes PDCoV S from recently characterized betacoronavirus S proteins and suggests that the S protein of enterotropic PDCoV has evolved to tolerate the protease-rich environment of the small intestine and to fine-tune its fusion activation to avoid premature triggering and reduction of infectivity. IMPORTANCE Coronaviruses use transmembrane spike (S) glycoprotein trimers to promote host attachment and fusion of the viral and cellular membranes. We determined a near-atomic resolution cryo-electron microscopy structure of the S ectodomain trimer from the pathogenic porcine deltacoronavirus (PDCoV), which is responsible for diarrhea in piglets and has had devastating consequences for the swine industry worldwide. Structural and glycoproteomics data reveal that PDCoV S is

  17. Deep learning in breast cancer risk assessment: evaluation of fine-tuned convolutional neural networks on a clinical dataset of FFDMs

    NASA Astrophysics Data System (ADS)

    Li, Hui; Mendel, Kayla R.; Lee, John H.; Lan, Li; Giger, Maryellen L.

    2018-02-01

    We evaluated the potential of deep learning in the assessment of breast cancer risk using convolutional neural networks (CNNs) fine-tuned on full-field digital mammographic (FFDM) images. This study included 456 clinical FFDM cases from two high-risk datasets: BRCA1/2 gene-mutation carriers (53 cases) and unilateral cancer patients (75 cases), and a low-risk dataset as the control group (328 cases). All FFDM images (12-bit quantization and 100 micron pixel) were acquired with a GE Senographe 2000D system and were retrospectively collected under an IRB-approved, HIPAA-compliant protocol. Regions of interest of 256x256 pixels were selected from the central breast region behind the nipple in the craniocaudal projection. VGG19 pre-trained on the ImageNet dataset was used to classify the images either as high-risk or as low-risk subjects. The last fully-connected layer of pre-trained VGG19 was fine-tuned on FFDM images for breast cancer risk assessment. Performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) in the task of distinguishing between high-risk and low-risk subjects. AUC values of 0.84 (SE=0.05) and 0.72 (SE=0.06) were obtained in the task of distinguishing between the BRCA1/2 gene-mutation carriers and low-risk women and between unilateral cancer patients and low-risk women, respectively. Deep learning with CNNs appears to be able to extract parenchymal characteristics directly from FFDMs which are relevant to the task of distinguishing between cancer risk populations, and therefore has potential to aid clinicians in assessing mammographic parenchymal patterns for cancer risk assessment.

  18. Fine-tunable plasma nano-machining for fabrication of 3D hollow nanostructures: SERS application

    NASA Astrophysics Data System (ADS)

    Mehrvar, L.; Hajihoseini, H.; Mahmoodi, H.; Tavassoli, S. H.; Fathipour, M.; Mohseni, S. M.

    2017-08-01

    Novel processing sequences for the fabrication of artificial nanostructures are in high demand for various applications. In this paper, we report on a fine-tunable nano-machining technique for the fabrication of 3D hollow nanostructures. This technique originates from redeposition effects occurring during Ar dry etching of nano-patterns. Different geometries of honeycomb, double ring, nanotube, cone and crescent arrays have been successfully fabricated from various metals such as Au, Ag, Pt and Ti. The geometrical parameters of the 3D hollow nanostructures can be straightforwardly controlled by tuning the discharge plasma pressure and power. The structure and morphology of nanostructures are probed using atomic force microscopy (AFM), scanning electron microscopy (SEM), optical emission spectroscopy (OES) and energy dispersive x-ray spectroscopy (EDS). Finally, a Ag nanotube array was assayed for application in surface enhanced Raman spectroscopy (SERS), resulting in an enhancement factor (EF) of 5.5 × 105, as an experimental validity proof consistent with the presented simulation framework. Furthermore, it was found that the theoretical EF value for the honeycomb array is in the order of 107, a hundred times greater than that found in nanotube array.

  19. Multifunctional potentiometric gas sensor array with an integrated temperature control and temperature sensors

    DOEpatents

    Blackburn, Bryan M; Wachsman, Eric D

    2015-05-12

    Embodiments of the subject invention relate to a gas sensor and method for sensing one or more gases. An embodiment incorporates an array of sensing electrodes maintained at similar or different temperatures, such that the sensitivity and species selectivity of the device can be fine tuned between different pairs of sensing electrodes. A specific embodiment pertains to a gas sensor array for monitoring combustion exhausts and/or chemical reaction byproducts. An embodiment of the subject device related to this invention operates at high temperatures and can withstand harsh chemical environments. Embodiments of the device are made on a single substrate. The devices can also be made on individual substrates and monitored individually as if they were part of an array on a single substrate. The device can incorporate sensing electrodes in the same environment, which allows the electrodes to be coplanar and, thus, keep manufacturing costs low. Embodiments of the device can provide improvements to sensitivity, selectivity, and signal interference via surface temperature control.

  20. Fine-tuned Remote Laser Welding of Aluminum to Copper with Local Beam Oscillation

    NASA Astrophysics Data System (ADS)

    Fetzer, Florian; Jarwitz, Michael; Stritt, Peter; Weber, Rudolf; Graf, Thomas

    Local beam oscillation in remote laser welding of aluminum to copper was investigated. Sheets of 1 mm thickness were welded in overlap configuration with aluminum as top material. The laser beam was scanned in a sinusoidal mode perpendicular to the direction of feed and the influence of the oscillation parameters frequency and amplitude on the weld geometry was investigated. Scanning frequencies up to 1 kHz and oscillation amplitudes in the range from 0.25 mm to 1 mm were examined. Throughout the experiments the laser power and the feed rate were kept constant. A decrease of welding depth with amplitude and frequency is found. The scanning amplitude had a strong influence and allowed coarse setting of the welding depth into the lower material, while the frequency allowed fine tuning in the order of 10% of the obtained depth. The oscillation parameters were found to act differently on the aluminum sheet compared to copper sheet regarding the amount of fused material. It is possible to influence the geometry of the fused zones separately for both sheets. Therefore the average composition in the weld can be set with high precision via the oscillation parameters. A setting of the generated intermetallics in the weld zone is possible without adjustment of laser power and feed rate.

  1. Fine tuning of optical signals in nanoporous anodic alumina photonic crystals by apodized sinusoidal pulse anodisation.

    PubMed

    Santos, Abel; Law, Cheryl Suwen; Chin Lei, Dominique Wong; Pereira, Taj; Losic, Dusan

    2016-11-03

    In this study, we present an advanced nanofabrication approach to produce gradient-index photonic crystal structures based on nanoporous anodic alumina. An apodization strategy is for the first time applied to a sinusoidal pulse anodisation process in order to engineer the photonic stop band of nanoporous anodic alumina (NAA) in depth. Four apodization functions are explored, including linear positive, linear negative, logarithmic positive and logarithmic negative, with the aim of finely tuning the characteristic photonic stop band of these photonic crystal structures. We systematically analyse the effect of the amplitude difference (from 0.105 to 0.840 mA cm -2 ), the pore widening time (from 0 to 6 min), the anodisation period (from 650 to 950 s) and the anodisation time (from 15 to 30 h) on the quality and the position of the characteristic photonic stop band and the interferometric colour of these photonic crystal structures using the aforementioned apodization functions. Our results reveal that a logarithmic negative apodisation function is the most optimal approach to obtain unprecedented well-resolved and narrow photonic stop bands across the UV-visible-NIR spectrum of NAA-based gradient-index photonic crystals. Our study establishes a fully comprehensive rationale towards the development of unique NAA-based photonic crystal structures with finely engineered optical properties for advanced photonic devices such as ultra-sensitive optical sensors, selective optical filters and all-optical platforms for quantum computing.

  2. Seam tracking with adaptive image capture for fine-tuning of a high power laser welding process

    NASA Astrophysics Data System (ADS)

    Lahdenoja, Olli; Säntti, Tero; Laiho, Mika; Paasio, Ari; Poikonen, Jonne K.

    2015-02-01

    This paper presents the development of methods for real-time fine-tuning of a high power laser welding process of thick steel by using a compact smart camera system. When performing welding in butt-joint configuration, the laser beam's location needs to be adjusted exactly according to the seam line in order to allow the injected energy to be absorbed uniformly into both steel sheets. In this paper, on-line extraction of seam parameters is targeted by taking advantage of a combination of dynamic image intensity compression, image segmentation with a focal-plane processor ASIC, and Hough transform on an associated FPGA. Additional filtering of Hough line candidates based on temporal windowing is further applied to reduce unrealistic frame-to-frame tracking variations. The proposed methods are implemented in Matlab by using image data captured with adaptive integration time. The simulations are performed in a hardware oriented way to allow real-time implementation of the algorithms on the smart camera system.

  3. Functional Role of PPARs in Ruminants: Potential Targets for Fine-Tuning Metabolism during Growth and Lactation

    PubMed Central

    Chen, Shuowen; Khan, Muhammad J.; Loor, Juan J.

    2013-01-01

    Characterization and biological roles of the peroxisome proliferator-activated receptor (PPAR) isotypes are well known in monogastrics, but not in ruminants. However, a wealth of information has accumulated in little more than a decade on ruminant PPARs including isotype tissue distribution, response to synthetic and natural agonists, gene targets, and factors affecting their expression. Functional characterization demonstrated that, as in monogastrics, the PPAR isotypes control expression of genes involved in lipid metabolism, anti-inflammatory response, development, and growth. Contrary to mouse, however, the PPARγ gene network appears to controls milk fat synthesis in lactating ruminants. As in monogastrics, PPAR isotypes in ruminants are activated by long-chain fatty acids, therefore, making them ideal candidates for fine-tuning metabolism in this species via nutrients. In this regard, using information accumulated in ruminants and monogastrics, we propose a model of PPAR isotype-driven biological functions encompassing key tissues during the peripartal period in dairy cattle. PMID:23737762

  4. Dendrites are dispensable for basic motoneuron function but essential for fine tuning of behavior.

    PubMed

    Ryglewski, Stefanie; Kadas, Dimitrios; Hutchinson, Katie; Schuetzler, Natalie; Vonhoff, Fernando; Duch, Carsten

    2014-12-16

    Dendrites are highly complex 3D structures that define neuronal morphology and connectivity and are the predominant sites for synaptic input. Defects in dendritic structure are highly consistent correlates of brain diseases. However, the precise consequences of dendritic structure defects for neuronal function and behavioral performance remain unknown. Here we probe dendritic function by using genetic tools to selectively abolish dendrites in identified Drosophila wing motoneurons without affecting other neuronal properties. We find that these motoneuron dendrites are unexpectedly dispensable for synaptic targeting, qualitatively normal neuronal activity patterns during behavior, and basic behavioral performance. However, significant performance deficits in sophisticated motor behaviors, such as flight altitude control and switching between discrete courtship song elements, scale with the degree of dendritic defect. To our knowledge, our observations provide the first direct evidence that complex dendrite architecture is critically required for fine-tuning and adaptability within robust, evolutionarily constrained behavioral programs that are vital for mating success and survival. We speculate that the observed scaling of performance deficits with the degree of structural defect is consistent with gradual increases in intellectual disability during continuously advancing structural deficiencies in progressive neurological disorders.

  5. Auto-Regulatory RNA Editing Fine-Tunes mRNA Re-Coding and Complex Behaviour in Drosophila

    PubMed Central

    Savva, Yiannis A.; Jepson, James E.C; Sahin, Asli; Sugden, Arthur U.; Dorsky, Jacquelyn S.; Alpert, Lauren; Lawrence, Charles; Reenan, Robert A.

    2014-01-01

    Auto-regulatory feedback loops are a common molecular strategy used to optimize protein function. In Drosophila many mRNAs involved in neuro-transmission are re-coded at the RNA level by the RNA editing enzyme dADAR, leading to the incorporation of amino acids that are not directly encoded by the genome. dADAR also re-codes its own transcript, but the consequences of this auto-regulation in vivo are unclear. Here we show that hard-wiring or abolishing endogenous dADAR auto-regulation dramatically remodels the landscape of re-coding events in a site-specific manner. These molecular phenotypes correlate with altered localization of dADAR within the nuclear compartment. Furthermore, auto-editing exhibits sexually dimorphic patterns of spatial regulation and can be modified by abiotic environmental factors. Finally, we demonstrate that modifying dAdar auto-editing affects adaptive complex behaviors. Our results reveal the in vivo relevance of auto-regulatory control over post-transcriptional mRNA re-coding events in fine-tuning brain function and organismal behavior. PMID:22531175

  6. Neuronal Target Identification Requires AHA-1-Mediated Fine-Tuning of Wnt Signaling in C. elegans

    PubMed Central

    Zhang, Jingyan; Li, Xia; Jevince, Angela R.; Guan, Liying; Wang, Jiaming; Hall, David H.; Huang, Xun; Ding, Mei

    2013-01-01

    Electrical synaptic transmission through gap junctions is a vital mode of intercellular communication in the nervous system. The mechanism by which reciprocal target cells find each other during the formation of gap junctions, however, is poorly understood. Here we show that gap junctions are formed between BDU interneurons and PLM mechanoreceptors in C. elegans and the connectivity of BDU with PLM is influenced by Wnt signaling. We further identified two PAS-bHLH family transcription factors, AHA-1 and AHR-1, which function cell-autonomously within BDU and PLM to facilitate the target identification process. aha-1 and ahr-1 act genetically upstream of cam-1. CAM-1, a membrane-bound receptor tyrosine kinase, is present on both BDU and PLM cells and likely serves as a Wnt antagonist. By binding to a cis-regulatory element in the cam-1 promoter, AHA-1 enhances cam-1 transcription. Our study reveals a Wnt-dependent fine-tuning mechanism that is crucial for mutual target cell identification during the formation of gap junction connections. PMID:23825972

  7. Photoassisted photoluminescence fine-tuning of gold nanodots through free radical-mediated ligand-assembly

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Ting; Cherng, Rochelle; Harroun, Scott G.; Yuan, Zhiqin; Lin, Tai-Yuan; Wu, Chien-Wei; Chang, Huan-Tsung; Huang, Chih-Ching

    2016-05-01

    In this study, we have developed a simple photoassisted ligand assembly to fine-tune the photoluminescence (PL) of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide-capped gold nanodots (11-MUTAB-Au NDs). The 11-MUTAB-Au NDs (size: ca. 1.8 nm), obtained from the reaction of gold nanoparticles (ca. 3 nm) and 11-MUTAB, exhibited weak, near-infrared (NIR) PL at 700 nm with a quantum yield (QY) of 0.37% upon excitation at 365 nm. The PL QY of the Au NDs increased to 11.43% after reaction with 11-mercaptoundecanoic acid (11-MUA) for 30 min under ultraviolet (UV) light, which was accompanied by a PL wavelength shift to the green region (~520 nm). UV-light irradiation accelerates 11-MUA assembly on the 11-MUTABAu NDs (11-MUA/11-MUTAB-Au NDs) through a radical-mediated reaction. Furthermore, the PL wavelength of the 11-MUA/11-MUTAB-Au NDs can be switched to 640 nm via cysteamine under UV-light irradiation. We propose that the PL of the Au NDs with NIR and visible emissions was originally from the surface thiol-Au complexes and the Au core, respectively. These dramatically different optical properties of the Au NDs were due to variation in the surface ligands, as well as the densities and surface oxidant states of the surface Au atoms/ions. These effects can be controlled by assembling surface thiol ligands and accelerated by UV irradiation.In this study, we have developed a simple photoassisted ligand assembly to fine-tune the photoluminescence (PL) of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide-capped gold nanodots (11-MUTAB-Au NDs). The 11-MUTAB-Au NDs (size: ca. 1.8 nm), obtained from the reaction of gold nanoparticles (ca. 3 nm) and 11-MUTAB, exhibited weak, near-infrared (NIR) PL at 700 nm with a quantum yield (QY) of 0.37% upon excitation at 365 nm. The PL QY of the Au NDs increased to 11.43% after reaction with 11-mercaptoundecanoic acid (11-MUA) for 30 min under ultraviolet (UV) light, which was accompanied by a PL wavelength shift to the green region

  8. Tuning supersymmetric models at the LHC: a comparative analysis at two-loop level.

    NASA Astrophysics Data System (ADS)

    Ghilencea, D. M.; Lee, H. M.; Park, M.

    2012-07-01

    We provide a comparative study of the fine tuning amount (Δ) at the two-loop leading log level in supersymmetric models commonly used in SUSY searches at the LHC. These are the constrained MSSM (CMSSM), non-universal Higgs masses models (NUHM1, NUHM2), non-universal gaugino masses model (NUGM) and GUT related gaugino masses models (NUGMd). Two definitions of the fine tuning are used, the first (Δmax) measures maximal fine-tuning w.r.t. individual parameters while the second (Δ q ) adds their contribution in "quadrature". As a direct consequence of two theoretical constraints (the EW minimum conditions), fine tuning (Δ q ) emerges at the mathematical level as a suppressing factor (effective prior) of the averaged likelihood ( L ) under the priors, under the integral of the global probability of measuring the data (Bayesian evidence p( D)). For each model, there is little difference between Δ q , Δmax in the region allowed by the data, with similar behaviour as functions of the Higgs, gluino, stop mass or SUSY scale ( {m_{{SUSY}}} = {( {{m_{{overline t 1}}}{m_{{overline t 2}}}} )^{{{{1} / {2} .}}}} ) or dark matter and g - 2 constraints. The analysis has the advantage that by replacing any of these mass scales or constraints by their latest bounds one easily infers for each model the value of Δ q , Δmax or vice versa. For all models, minimal fine tuning is achieved for M higgs near 115 GeV with a Δ q ≈ Δmax ≈ 10 to 100 depending on the model, and in the CMSSM this is actually a global minimum. Due to a strong (≈ exponential) dependence of Δ on M higgs, for a Higgs mass near 125 GeV, the above values of Δ q ≈ Δmax increase to between 500 and 1000. Possible corrections to these values are briefly discussed.

  9. One-dimensional array of gold nanoparticles fabricated using biotemplate and its application to fine FET

    NASA Astrophysics Data System (ADS)

    Ban, Takahiko; Uenuma, Mutsunori; Migita, Shinji; Okamoto, Naofumi; Ishikawa, Yasuaki; Uraoka, Yukiharu; Yamashita, Ichiro; Yamamoto, Shin-ichi

    2018-06-01

    By synthesizing AuS nanoparticles (NPs) with spherical shell protein (ferritin) and using a V-groove, a one-dimensional array of NPs was formed at the bottom of the V-groove. It has been reported that AuS NPs are converted to Au NPs by UV/ozone treatment. Floating gate memory (FGM) was fabricated by applying this one-dimensional array to V-grooved junctionless (JL) FETs, V-grooved nin-like-type FETs, and pip-like-type FETs, which are fine FETs. In JL-FETs, it is considered that conversion occurred because of good charge storage efficiency, and operation in the opposite direction to normal FGM operation was seen. In the nin-like and pip-like types devices, the same operation as in conventional FGM was shown, and the width of the memory window was about the same size as when one electron entered one NP. The one-dimensional arrangement of the metal NPs used in this study is considered to be applicable to various fields of nanotechnology.

  10. Self-assembled pit arrays as templates for the integration of Au nanocrystals in oxide surfaces.

    PubMed

    Konstantinović, Z; Sandiumenge, F; Santiso, J; Balcells, Ll; Martínez, B

    2013-02-07

    We report on the fabrication of long-range ordered arrays of Au nanocrystals (sub-50 nm range) on top of manganite (La(2/3)Sr(1/3)MnO(3)) thin films achieving area densities around 2 × 10(10) gold nanocrystals per cm(2), well above the densities achievable by using conventional nanofabrication techniques. The gold-manganite interface exhibits excellent conduction properties. Long-range order is achieved by a guided self-assembling process of Au nanocrystals on self-organized pit-arrays acting as a template for the nucleation of gold nanocrystals. Self-organization of pits on the manganite film surface promoted by the underlying stepped SrTiO(3) substrate is achieved by a fine tuning of the growth kinetic pathway, taking advantage of the unusual misfit strain relaxation behaviour of manganite films.

  11. Tuned Chamber Core Panel Acoustic Test Results

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  12. A three-component signalling system fine-tunes expression kinetics of HPPK responsible for folate synthesis by positive feedback loop during stress response of Xanthomonas campestris.

    PubMed

    Wang, Fang-Fang; Deng, Chao-Ying; Cai, Zhen; Wang, Ting; Wang, Li; Wang, Xiao-Zheng; Chen, Xiao-Ying; Fang, Rong-Xiang; Qian, Wei

    2014-07-01

    During adaptation to environments, bacteria employ two-component signal transduction systems, which contain histidine kinases and response regulators, to sense and respond to exogenous and cellular stimuli in an accurate spatio-temporal manner. Although the protein phosphorylation process between histidine kinase and response regulator has been well documented, the molecular mechanism fine-tuning phosphorylation levels of response regulators is comparatively less studied. Here we combined genetic and biochemical approaches to reveal that a hybrid histidine kinase, SreS, is involved in the SreK-SreR phosphotransfer process to control salt stress response in the bacterium Xanthomonas campestris. The N-terminal receiver domain of SreS acts as a phosphate sink by competing with the response regulator SreR to accept the phosphoryl group from the latter's cognate histidine kinase SreK. This regulatory process is critical for bacterial survival because the dephosphorylated SreR protein participates in activating one of the tandem promoters (P2) at the 5' end of the sreK-sreR-sreS-hppK operon, and then modulates a transcriptional surge of the stress-responsive gene hppK, which is required for folic acid synthesis. Therefore, our study dissects the biochemical process of a positive feedback loop in which a 'three-component' signalling system fine-tunes expression kinetics of downstream genes. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Full-mesh T- and O-band wavelength router based on arrayed waveguide gratings.

    PubMed

    Idris, Nazirul A; Yoshizawa, Katsumi; Tomomatsu, Yasunori; Sudo, Makoto; Hajikano, Tadashi; Kubo, Ryogo; Zervas, Georgios; Tsuda, Hiroyuki

    2016-01-11

    We propose an ultra-broadband full-mesh wavelength router supporting the T- and O-bands using 3 stages of cascaded arrayed waveguide gratings (AWGs). The router architecture is based on a combination of waveband and channel routing by coarse and fine AWGs, respectively. We fabricated several T-band-specific silica-based AWGs and quantum dot semiconductor optical ampliers as part of the router, and demonstrated 10 Gbps data transmission for several wavelengths throughout a range of 7.4 THz. The power penalties were below 1 dB. Wavelength routing was also demonstrated, where tuning time within a 9.4-nm-wide waveband was below 400 ms.

  14. Capability for Fine Tuning of the Refractive Index Sensing Properties of Long-Period Gratings by Atomic Layer Deposited Al2O3 Overlays

    PubMed Central

    Śmietana, Mateusz; Myśliwiec, Marcin; Mikulic, Predrag; Witkowski, Bartłomiej S.; Bock, Wojtek J.

    2013-01-01

    This work presents an application of thin aluminum oxide (Al2O3) films obtained using atomic layer deposition (ALD) for fine tuning the spectral response and refractive-index (RI) sensitivity of long-period gratings (LPGs) induced in optical fibers. The technique allows for an efficient and well controlled deposition at monolayer level (resolution ∼ 0.12 nm) of excellent quality nano-films as required for optical sensors. The effect of Al2O3 deposition on the spectral properties of the LPGs is demonstrated experimentally and numerically. We correlated both the increase in Al2O3 thickness and changes in optical properties of the film with the shift of the LPG resonance wavelength and proved that similar films are deposited on fibers and oxidized silicon reference samples in the same process run. Since the thin overlay effectively changes the distribution of the cladding modes and thus also tunes the device's RI sensitivity, the tuning can be simply realized by varying number of cycles, which is proportional to thickness of the high-refractive-index (n > 1.6 in infrared spectral range) Al2O3 film. The advantage of this approach is the precision in determining the film properties resulting in RI sensitivity of the LPGs. To the best of our knowledge, this is the first time that an ultra-precise method for overlay deposition has been applied on LPGs for RI tuning purposes and the results have been compared with numerical simulations based on LP mode approximation.

  15. Fine-Tuning the Quasi-3D Geometry: Enabling Efficient Nonfullerene Organic Solar Cells Based on Perylene Diimides.

    PubMed

    Liu, Zhitian; Zhang, Linhua; Shao, Ming; Wu, Yao; Zeng, Di; Cai, Xiang; Duan, Jiashun; Zhang, Xiaolu; Gao, Xiang

    2018-01-10

    The geometries of acceptors based on perylene diimides (PDIs) are important for improving the phase separation and charge transport in organic solar cells. To fine-tune the geometry, biphenyl, spiro-bifluorene, and benzene were used as the core moiety to construct quasi-three-dimensional nonfullerene acceptors based on PDI building blocks. The molecular geometries, energy levels, optical properties, photovoltaic properties, and exciton kinetics were systematically studied. The structure-performance relationship was discussed as well. Owing to the finest phase separation, the highest charge mobility and smallest nongeminate recombination, the power conversion efficiency of nonfullerene solar cells using PDI derivatives with biphenyl core (BP-PDI 4 ) as acceptor reached 7.3% when high-performance wide band gap donor material poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] was blended.

  16. Vapor-melt Ratio in Laser Fine Cutting of Slot Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xuyue; Meng Qingxuan; Kang Renke

    In order to improve cut quality for slot arrays, a new method of laser fine cutting under the consideration of the ratio of vapor to melt is presented. Laser cutting of 6063 aluminum alloy sheet, 0.5 mm in thickness, was carried out on a JK701H Nd:YAG pulse laser cutting system. The effects of vapor-melt ratio on kerf width, surface roughness and recast layer were studied which relate cutting qualities. Observation on the cut samples with different vapor-melt ratios (0.687, 1.574, 3.601 varied with laser power increasing, and 1.535, 3.601, 7.661 with decreasing of beam cutting speed) shows that high vapor-meltmore » ratio improves laser cut quality clearly. Kerf width 0.2 mm of smooth area on kerf top area and thickness 2.03 {mu}m of recast layer are obtained. No dross was found on the kerf bottom and the percentage of the smooth area is up to 40% out of whole kerf side. The research on vapor-melt ratio provides a deeper understanding of laser cutting and improves laser cut quality effectively.« less

  17. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism.

    PubMed

    Ezawa, Tatsuhiro; Saito, Katsuharu

    2018-04-27

    Contents Summary I. Introduction II. Foraging for phosphate III. Fine-tuning of phosphate homeostasis IV. The frontiers: phosphate translocation and export V. Conclusions and outlook Acknowledgements References SUMMARY: Arbuscular mycorrhizal fungi form symbiotic associations with most land plants and deliver mineral nutrients, in particular phosphate, to the host. Therefore, understanding the mechanisms of phosphate acquisition and delivery in the fungi is critical for full appreciation of the mutualism in this association. Here, we provide updates on physical, chemical, and biological strategies of the fungi for phosphate acquisition, including interactions with phosphate-solubilizing bacteria, and those on the regulatory mechanisms of phosphate homeostasis based on resurveys of published genome sequences and a transcriptome with reference to the latest findings in a model fungus. For the mechanisms underlying phosphate translocation and export to the host, which are major research frontiers in this field, not only recent advances but also testable hypotheses are proposed. Lastly, we briefly discuss applicability of the latest tools to gene silencing in the fungi, which will be breakthrough techniques for comprehensive understanding of the molecular basis of fungal phosphate metabolism. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  18. High energy, widely tunable Si-prism-array coupled terahertz-wave parametric oscillator with a deformed pump and optimal crystal location for angle tuning.

    PubMed

    Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Chen, Zhenlei

    2017-03-20

    A high energy, widely tunable Si-prism-array coupled terahertz-wave parametric oscillator (TPO) has been demonstrated by using a deformed pump. The deformed pump is cut from a beam spot of 2 mm in diameter by a 1-mm-wide slit. In comparison with a small pump spot (1-mm diameter), the THz-wave coupling area for the deformed pump is increased without limitation to the low-frequency end of the tuning range. Besides, the crystal location is specially designed to eliminate the alteration of the output position of the pump during angle tuning, so the initially adjusted nearest pumped region to the THz-wave exit surface is maintained throughout the tuning range. The tuning range is 0.58-2.5 THz for the deformed pump, while its low frequency end is limited at approximately 1.2 THz for the undeformed pump with 2 mm diameter. The highest THz-wave output of 2 μJ, which is 2.25 times as large as that from the pump of 1 mm in diameter, is obtained at 1.15 THz under 38 mJ (300  MW/cm2) pumping. The energy conversion efficiency is 5.3×10-5.

  19. Simultaneous multispectral framing infrared camera using an embedded diffractive optical lenslet array

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele

    2011-06-01

    Recent advances in micro-optical element fabrication using gray scale technology have opened up the opportunity to create simultaneous multi-spectral imaging with fine structure diffractive lenses. This paper will discuss an approach that uses diffractive optical lenses configured in an array (lenslet array) and placed in close proximity to the focal plane array which enables a small compact simultaneous multispectral imaging camera [1]. The lenslet array is designed so that all lenslets have a common focal length with each lenslet tuned for a different wavelength. The number of simultaneous spectral images is determined by the number of individually configured lenslets in the array. The number of spectral images can be increased by a factor of 2 when using it with a dual-band focal plane array (MWIR/LWIR) by exploiting multiple diffraction orders. In addition, modulation of the focal length of the lenslet array with piezoelectric actuation will enable spectral bin fill-in allowing additional spectral coverage while giving up simultaneity. Different lenslet array spectral imaging concept designs are presented in this paper along with a unique concept for prefiltering the radiation focused on the detector. This approach to spectral imaging has applications in the detection of chemical agents in both aerosolized form and as a liquid on a surface. It also can be applied to the detection of weaponized biological agent and IED detection in various forms from manufacturing to deployment and post detection during forensic analysis.

  20. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides.

    PubMed

    Charnukha, A; Evtushinsky, D V; Matt, C E; Xu, N; Shi, M; Büchner, B; Zhigadlo, N D; Batlogg, B; Borisenko, S V

    2015-12-18

    In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.

  1. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides

    NASA Astrophysics Data System (ADS)

    Charnukha, A.; Evtushinsky, D. V.; Matt, C. E.; Xu, N.; Shi, M.; Büchner, B.; Zhigadlo, N. D.; Batlogg, B.; Borisenko, S. V.

    2015-12-01

    In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.

  2. Model-independent particle accelerator tuning

    DOE PAGES

    Scheinker, Alexander; Pang, Xiaoying; Rybarcyk, Larry

    2013-10-21

    We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: 1) It has the ability to handle unknown, time-varying systems, 2) It gives known bounds on parameter update rates, 3) We give an analytic proof of its convergence and its stability, and 4) It has a simple digital implementation through a control system such as the Experimental Physics and Industrial Control System (EPICS). Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme formore » uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multi-particle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of twenty two quadrupole magnets and two RF buncher cavities in the Los Alamos Neutron Science Center Linear Accelerator’s transport region, while the beam properties and RF phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.« less

  3. Proton-Coupled Electron Transfer and Substituent Effects in Catechol-Based Deep Eutectic Solvents: Gross and Fine Tuning of Redox Activity.

    PubMed

    Smith, Parker J; Goeltz, John C

    2017-12-07

    The 1,2-diol moiety in a variety of substituted catechols allows formation of room temperature ionic melts in a 2:1 ratio with choline chloride or choline dihydrogen citrate. These deep eutectic solvents were 4.3-6.6 M in redox active catechols. Substituents on 3- and 4-substituted catechols shift both E° and pK a such that Hammett parameters predict the observed E p for oxidation in square wave voltammetry. The proton acceptor for the proton-coupled oxidation shifts the observed E p more strongly than the substituents within the substituents and acceptors reported here. The shift is predicted well by the pK a of the conjugate acid of the proton acceptor, i.e., water in aqueous solutions or chloride or dihydrogen citrate in the DESs in this study. Together, the substituent and the proton acceptor allow gross and fine-tuning of the oxidation potential for catechol over 750 mV, the first demonstration of control of the thermodynamics of proton-coupled electron transfer in deep eutectic solvents. Changing the substituents on the HBD affords fine control in tens of millivolts, while changing the base strength of the anion of the organic salt affords gross control across hundreds of millivolts.

  4. Characterization of electronic structures from CdS/Si nanoheterostructure array based on silicon nanoporous pillar array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yong, E-mail: liyong@pdsu.edu.cn; Song, Xiao Yan; Song, Yue Li

    2016-02-15

    Highlights: • CdS/Si nanoheterostructure array has been fabricated through a CBD method. • The electronic properties have been investigated by the I–V and C–V techniques. • The onset voltages, characteristic frequency and built-in potential are investigated. • The electronic structures can be tuned through the annealing treatments. - Abstract: The electronic properties of heterostructures are very important to its applications in the field of optoelectronic devices. Understanding and control of electronic properties are very necessary. CdS/Si nanoheterostructure array have been fabricated through growing CdS nanocrystals on the silicon nanoporous pillar array using a chemical bath deposition method. The electronic propertiesmore » of CdS nanoheterostructure array have been investigated by the current–voltage, complex impedance spectroscopy and capacitance–voltage techniques. The onset voltages, characteristic frequency and built-in potential are gradually increased with increasing the annealing temperature. It is indicated that the electronic structures of CdS/Si nanoheterostructure array can be tuned through the annealing treatments.« less

  5. Fine-tuning of Notch signaling sets the boundary of the organ of Corti and establishes sensory cell fates

    PubMed Central

    Basch, Martin L; Brown, Rogers M; Jen, Hsin-I; Semerci, Fatih; Depreux, Frederic; Edlund, Renée K; Zhang, Hongyuan; Norton, Christine R; Gridley, Thomas; Cole, Susan E; Doetzlhofer, Angelika; Maletic-Savatic, Mirjana; Segil, Neil; Groves, Andrew K

    2016-01-01

    The signals that induce the organ of Corti and define its boundaries in the cochlea are poorly understood. We show that two Notch modifiers, Lfng and Mfng, are transiently expressed precisely at the neural boundary of the organ of Corti. Cre-Lox fate mapping shows this region gives rise to inner hair cells and their associated inner phalangeal cells. Mutation of Lfng and Mfng disrupts this boundary, producing unexpected duplications of inner hair cells and inner phalangeal cells. This phenotype is mimicked by other mouse mutants or pharmacological treatments that lower but not abolish Notch signaling. However, strong disruption of Notch signaling causes a very different result, generating many ectopic hair cells at the expense of inner phalangeal cells. Our results show that Notch signaling is finely calibrated in the cochlea to produce precisely tuned levels of signaling that first set the boundary of the organ of Corti and later regulate hair cell development. DOI: http://dx.doi.org/10.7554/eLife.19921.001 PMID:27966429

  6. Efficiency analysis of using tailored individual doses of radioiodine and fine tuning using a low-dose antithyroid drug in the treatment of Graves' disease.

    PubMed

    Liu, Chang-Jiang; Dong, Yan-Yu; Wang, Yi-Wei; Wang, Kai-Hua; Zeng, Qun-Yan

    2011-03-01

    To evaluate the effect of using tailored individual doses of radioiodine (¹³¹I) and fine tuning using low-dose antithyroid drug (ATD) in the treatment of Graves' disease, and an attempt to establish a therapeutic strategy that can keep both high rate of euthyroidism and low incidence of hypothyroidism. The dose of radioiodine was calculated using the calculated dose formula, and low-dose ATD was used as a way of fine tuning during follow-up. The intended dose of radioiodine was modified according to the patient's age at radioiodine therapy, thyroid size, and duration of hyperthyroidism before radioiodine therapy in the study group; it was set as 2.96 MBq/g of thyroid in the control group. Twenty patients with Graves' disease were nonrandomly assigned to the control group and 98 patients with Graves' disease to the study group. The outcomes, which included euthyroidism, hypothyroidism, and persistent hyperthyroidism, were determined according to the patients' states at the end of follow-up. In the study group, 74 patients (75.5%) achieved the euthyroid state, six patients (6.1%) became hypothyroid, and 18 patients (18.4%) remained hyperthyroid. The rate of euthyroidism was statistically different between the study group and the control group (75.5 vs. 50%, P=0.03). Of 98 patients with Graves' disease in the study group, 19 patients were additionally treated with ATD during follow-up, and 12 patients achieved euthyroidism. In different age groups or duration of hyperthyroidism groups, the rate of euthyroidism was not statistically different among subgroups of goiter grade 1, grade 2, and grade 3 (P>0.05). Similarly, in different age groups or duration of hyperthyroidism groups, the incidence of hypothyroidism was not statistically different among subgroups of goiter grade 1, grade 2, and grade 3 (P>0.05). However, binary logistic regression analysis showed that thyroid size was associated with overtreatment and undertreatment in our study. Individual doses of

  7. Experimental Profiling of a Non-truncated Focused Gaussian Beam and Fine-tuning of the Quadratic Phase in the Fresnel Gaussian Shape Invariant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S., Juan Manuel Franco; Cywiak, Moises; Cywiak, David

    2015-06-24

    A homodyne profiler is used for recording the intensity distribution of focused non-truncated Gaussian beams. The spatial distributions are obtained at planes in the vicinity of the back-focal plane of a focusing lens placed at different distances from a He–Ne laser beam with a Gaussian intensity profile. Comparisons of the experimental data with those obtained from the analytical equations for an ideal focusing lens allow us to propose formulae to fine-tune the quadratic term in the Fresnel Gaussian shape invariant at each interface of the propagated field. Furthermore, we give analytical expressions to calculate adequately the propagation of the fieldmore » through an optical system.« less

  8. Tuning Metamaterials by using Amorphous Magnetic Microwires

    NASA Astrophysics Data System (ADS)

    Lopez-Dominguez, Victor; Garcia, Miguel Angel; Marin, Pilar; Hernando, Antonio

    Tuning the electromagnetic properties of metamaterials using external stimulus result appealing for both, fundamental and applied reasons. Little work has been developed in the tuning of the properties of a metamaterial by magnetic fields. The main reason relies on the fact that most magnetic materials tale off their response at the microwave band, or they are moderately active only at their Ferromagnetic Resonance, as it is the case of ferrites. These limitations can be overcome using Co-based Magnetic microwires with a quasi-zero magnetostriction that leads to a high permeability at microwave frequencies. The inclusion of magnetic microwires in a metamaterial type Split Ring Resonator array (SRR) allows tuning their electromagnetic properties with low magnetic fields. The results clearly show an effective tune of the S-coefficients up-to 8 dB using 100 microwires per SRR for DC fields between 0 and 20 Oe.

  9. 'Fine-tuning' blood flow to the exercising muscle with advancing age: an update.

    PubMed

    Wray, D Walter; Richardson, Russell S

    2015-06-01

    What is the topic of this review? This review focuses on age-related changes in the regulatory pathways that exist at the unique interface between the vascular smooth muscle and the endothelium of the skeletal muscle vasculature, and how these changes contribute to impairments in exercising skeletal muscle blood flow in the elderly. What advances does it highlight? Several recent in vivo human studies from our group and others are highlighted that have examined age-related changes in nitric oxide, endothelin-1, alpha adrenergic, and renin-angiotensin-aldosterone (RAAS) signaling. During dynamic exercise, oxygen demand from the exercising muscle is dramatically elevated, requiring a marked increase in skeletal muscle blood flow that is accomplished through a combination of systemic sympathoexcitation and local metabolic vasodilatation. With advancing age, the balance between these factors appears to be disrupted in favour of vasoconstriction, leading to an impairment in exercising skeletal muscle blood flow in the elderly. This 'hot topic' review aims to provide an update to our current knowledge of age-related changes in the neural and local mechanisms that contribute to this 'fine-tuning' of blood flow during exercise. The focus is on results from recent human studies that have adopted a reductionist approach to explore how age-related changes in both vasodilators (nitric oxide) and vasoconstrictors (endothelin-1, α-adrenergic agonists and angiotensin II) interact and how these changes impact blood flow to the exercising skeletal muscle with advancing age. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  10. Renewable Lignosulfonate-Assisted Synthesis of Hierarchical Nanoflake-Array-Flower ZnO Nanomaterials in Mixed Solvents and Their Photocatalytic Performance

    NASA Astrophysics Data System (ADS)

    Li, Yue; Zuo, Hong-Fen; Guo, Yuan-Ru; Miao, Ting-Ting; Pan, Qing-Jiang

    2016-05-01

    With the assistance of sodium lignosulfonate, hierarchical nanoflake-array-flower nanostructure of ZnO has been fabricated by a facile precipitation method in mixed solvents. The sodium lignosulfonate amount used in our synthetic route is able to fine-tune ZnO morphology and an abundance of pores have been observed in the nanoflake-array-flower ZnO, which result in specific surface area reaching as high as 82.9 m2 · g-1. The synthesized ZnO exhibits superior photocatalytic activity even under low-power UV illumination (6 W). It is conjectured that both nanoflake-array structure and plenty of pores embedded in ZnO flakes may provide scaffold microenvironments to enhance photocatalytic activity. Additionally, this catalyst can be used repeatedly without a significant loss in photocatalytic activity. The low-cost, simple synthetic approach as well as high photocatalytic and recycling efficiency of our ZnO nanomaterials allows for application to treat wastewater containing organic pollutants in an effective way.

  11. Maximizing T2-exchange in Dy3+DOTA-(amide)X chelates: Fine-tuning the water molecule exchange rate for enhanced T2 contrast in MRI

    PubMed Central

    Soesbe, Todd C.; Ratnakar, S. James; Milne, Mark; Zhang, Shanrong; Do, Quyen N.; Kovacs, Zoltan; Sherry, A. Dean

    2014-01-01

    Purpose The water molecule exchange rates in a series of DyDOTA-(amide)X chelates were fine-tuned to maximize the effects of T2-exchange line broadening and improve T2 contrast. Methods Four DyDOTA-(amide)X chelates having a variable number of glycinate side-arms were prepared and characterized as T2-exchange agents. The non-exchanging DyTETA chelate was also used to measure the bulk water T2 reduction due solely to T2*. The total transverse relaxivity (r2tot) at 22, 37, and 52 °C for each chelate was measured in vitro at 9.4 T (400 MHz) by fitting plots of total T2−1 versus concentration. The water molecule exchange rates for each complex were measured by fitting 17O line-width versus temperature data taken at 9.4 T (54.3 MHz). Results The measured transverse relaxivities due to water molecule exchange (r2ex) and bound water lifetimes (τM) were in excellent agreement with Swift-Connick theory, with DyDOTA-(gly)3 giving the largest r2ex = 11.8 s−1 mM−1 at 37 °C. Conclusion By fine-tuning the water molecule exchange rate at 37 °C, the transverse relaxivity has been increased by 2 to 30 times compared to previously studied Dy3+-based chelates. Polymerization or dendrimerization of the optimal chelate could yield a highly sensitive, molecule-sized T2 contrast agent for improved molecular imaging applications. PMID:24390729

  12. A Ka-Band (26 GHz) Circularly Polarized 2x2 Microstrip Patch Sub-Array with Compact Feed

    NASA Technical Reports Server (NTRS)

    Chrysler, Andrew; Furse, Cynthia; Simons, Rainee N.; Miranda, Felix A.

    2017-01-01

    A Ka-Band (26 gigahertz) 2 by 2 sub-array with square-shaped microstrip patch antenna elements having two truncated corners for circular polarization (CP) is presented. In addition, the layout for a new compact microstrip feed network for the sub-array is also presented. The compact feed network offers a footprint size reduction of near 60 percent over traditional sub-array at 26 gigahertz. Experimental data indicates that a truncation amount a equals 0.741 millimeters for an isolated patch element results in a return loss (S (sub II)) of minus 35 decibels at 26.3 gigahertz. Furthermore, the measured S (sub II) for the proof-of-concept sub-array with the above elements is better than minus 10.0 decibels at 27.7 gigahertz. However, the impedance match and the operating frequency can be fine-tuned to 26 gigahertz by adjusting the feed network dimensions. Lastly, good agreement is observed between the measured and simulated S (sub II) for the subarray for both right hand and left hand CP. The goal of this effort is utilize the above sub-array as a building block for a larger N by N element array, which would serve as a feed for a reflector antenna for satellite communications.

  13. Fine-grained, local maps and coarse, global representations support human spatial working memory.

    PubMed

    Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni

    2014-01-01

    While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall.

  14. Fine-Grained, Local Maps and Coarse, Global Representations Support Human Spatial Working Memory

    PubMed Central

    Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni

    2014-01-01

    While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall. PMID:25259601

  15. Fine-tuned evaluation of olfactory function in patients operated for nasal polyposis.

    PubMed

    Sonnet, Marie-Hortense; Nguyen, Duc Trung; Nguyen-Thi, Phi-Linh; Arous, Fabien; Jankowski, Roger; Rumeau, Cécile

    2017-07-01

    Given the forced-choice procedure of the identification test, patients with profound anosmia are more likely to have higher identification scores by chance than patients with hyposmia or normosmia. This may be a confusing factor when assessing the sense of smell, which alters the appreciation of real olfaction improvement. The aim of this study was to fine-tune the results of the identification Sniffin' Sticks test before and 6 weeks after surgery using the real identification score. A total of 133 patients underwent the Identification (I) and Threshold (T) tests the day before and 6 weeks after nasalization surgery. The scores of the identification test, called I G (global identification), were ranked from 0 to 16. Patients had to specify if their forced-choice answers were given either surely or randomly, called I H (hazard identification). The real score of identification I R was obtained as follow: I R  = I G  - I H . Patients with an immeasurable threshold according to the T test were more prone to give randomly correct answers. On the basis of I G scores, 43.6% of patients remained hypo-anosmic after surgery compared to 72.9% before surgery. Using I R scores, only 3.8% of patients remained anosmic (I R  = 0) at 6 weeks after surgery. Hence, patients with real anosmia (I R  = 0) were less prone to improve their olfaction than patients with I R  > 0. The analysis of random factor when using identification test allows differentiating a real anosmia from a hyposmia. An I G  ≤ 4 could be considered as a profound/real anosmia or a severe hyposmia. This procedure cannot, however, replace the forced-choice method in odor identification testing.

  16. Grating tuned unstable resonator laser cavity

    DOEpatents

    Johnson, Larry C.

    1982-01-01

    An unstable resonator to be used in high power, narrow line CO.sub.2 pump lasers comprises an array of four reflectors in a ring configuration wherein spherical and planar wavefronts are separated from each other along separate optical paths and only the planar wavefronts are impinged on a plane grating for line tuning. The reflector array comprises a concave mirror for reflecting incident spherical waves as plane waves along an output axis to form an output beam. A plane grating on the output axis is oriented to reflect a portion of the output beam off axis onto a planar relay mirror spaced apart from the output axis in proximity to the concave mirror. The relay mirror reflects plane waves from the grating to impinge on a convex expanding mirror spaced apart from the output axis in proximity to the grating. The expanding mirror reflects the incident planar waves as spherical waves to illuminate the concave mirror. Tuning is provided by rotating the plane grating about an axis normal to the output axis.

  17. Fine tuning of the spectral properties of LH2 by single amino acid residues.

    PubMed

    Silber, Martina V; Gabriel, Günther; Strohmann, Brigitte; Garcia-Martin, Adela; Robert, Bruno; Braun, Paula

    2008-05-01

    The peripheral light-harvesting complex, LH2, of Rhodobacter sphaeroides consists of an assembly of membrane-spanning alpha and beta polypeptides which assemble the photoactive bacteriochlorophyll and carotenoid molecules. In this study we systematically investigated bacteriochlorophyll-protein interactions and their effect on functional bacteriochlorophyll assembly by site-directed mutations of the LH2 alpha-subunit. The amino acid residues, isoleucine at position -1 and serine at position -4 were replaced by 12 and 13 other residues, respectively. All residues replacing isoleucine at position -1 supported the functional assembly of LH2. The replacement of isoleucine by glycine, glutamine or asparagine, however, produced LH2 complex with significantly altered spectral properties in comparison to LH2 WT. As indicated by resonance Raman spectroscopy extensive rearrangement of the bacteriochlorophyll-B850 macrocycle(s) took place in LH2 in which isoleucine -1 was replaced by glycine. The replacement results in disruption of the H-bond between the C3 acetyl groups and the aromatic residues +13/+14 without affecting the H-bond involving the C13(1) keto group. In contrast, nearly all amino acid replacements of serine at position -4 resulted in shifting of the bacteriochlorophyll-B850 red most absorption maximum. Interestingly, the extent of shifting closely correlated with the volume of the residue at position -4. These results illustrate that fine tuning of the spectral properties of the bacteriochlorophyll-B850 molecules depend on their packing with single amino acid residues at distinct positions.

  18. An Agile Beam Transmit Array Using Coupled Oscillator Phase Control

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald S.; Scaramastra, Rocco P.; Huang, John; Beckon, Robert J.; Petree, Steve M.; Chavez, Cosme

    1993-01-01

    A few years ago York and colleagues suggested that injection locking of voltage controlled oscillators could be used to implement beam steering in a phased array [I]. The scheme makes use of the fact that when an oscillator is injection locked to an external signal, the phase difference between the output of the oscillator and the injection signal is governed by the difference between the injection frequency and the free running frequency of the oscillator (the frequency to which the oscillator is tuned). Thus, if voltage controlled oscillators (VCOs) are used, this phase difference is controlled by an applied voltage. Now, if a set of such oscillators are coupled to nearest neighbors, they can be made to mutually injection lock and oscillate as an ensemble. If they are all tuned to the same frequency, they will all oscillate in phase. Thus, if the outputs are connected to radiating elements forming a linear array, the antenna will radiate normal to the line of elements. Scanning is accomplished by antisymmetrically detuning the end oscillators in the array by application of a pair of appropriate voltages to their tuning ports. This results in a linear phase progression across the array which is just the phasing required to scan the beam. The scan angle is determined by the degree of detuning. We have constructed a seven element one dimensional agile beam array at S-band based on the above principle. Although, a few such arrays have been built in the past, this array possesses two unique features. First, the VCO MMICs have buffer amplifiers which isolate the output from the tuning circuit, and second, the oscillators are weakly coupled to each other at their resonant circuits rather than their outputs. This results in a convenient isolation between the oscillator array design and the radiating aperture design. An important parameter in the design is the so called coupling phase which determines the phase shift of the signals passing from one oscillator to its

  19. Fine tuning of social integration by two myrmecophiles of the ponerine army ant, Leptogenys distinguenda.

    PubMed

    Witte, Volker; Foitzik, Susanne; Hashim, Rosli; Maschwitz, Ulrich; Schulz, Stefan

    2009-03-01

    Myrmecophiles are animals that live in close association with ants and that frequently develop elaborate mechanisms to infiltrate their well-defended host societies. We compare the social integration strategies of two myrmecophilic species, the spider, Gamasomorpha maschwitzi, and the newly described silverfish, Malayatelura ponerophila gen. n. sp. n., into colonies of the ponerine army ant, Leptogenys distinguenda (Emery) (Hymenoptera: Formicidae). Both symbionts use chemical mimicry through adoption of host cuticular hydrocarbons. Exchange experiments between L. distinguenda and an undetermined Leptogenys species demonstrate that reduced aggression toward alien ants and increased social acceptance occurred with individuals of higher chemical similarity in their cuticular hydrocarbon profiles. We found striking differences in chemical and behavioral strategies between the two myrmecophiles. Spider cuticular hydrocarbon profiles were chemically less similar to the host than silverfish profiles were. Nevertheless, spiders received significantly fewer attacks from host ants and survived longer in laboratory colonies, whereas silverfish were treated with high aggression and were killed more frequently. When discovered and confronted by the host, silverfish tended to escape and were chased aggressively, whereas spiders remained in contact with the confronting host ant until aggression ceased. Thus, spiders relied less on chemical mimicry but were nevertheless accepted more frequently by the host on the basis of behavioral mechanisms. These findings give insights into the fine tuning of social integration mechanisms and show the significance of qualitative differences among strategies.

  20. Fine tuning of Rac1 and RhoA alters cuspal shapes by remolding the cellular geometry

    PubMed Central

    Li, Liwen; Tang, Qinghuang; Nakamura, Takashi; Suh, Jun-Gyo; Ohshima, Hayato; Jung, Han-Sung

    2016-01-01

    The anatomic and functional combinations of cusps and lophs (ridges) define the tooth shape of rodent molars, which distinguishes species. The species-specific cusp patterns result from the spatiotemporal induction of enamel knots (EKs), which require precisely controlled cellular behavior to control the epithelial invagination. Despite the well-defined roles of EK in cusp patterning, the determinants of the ultimate cuspal shapes and involvement of epithelial cellular geometry are unknown. Using two typical tooth patterns, the lophodont in gerbils and the bunodont in mice, we showed that the cuspal shape is determined by the dental epithelium at the cap stage, whereas the cellular geometry in the inner dental epithelium (IDE) is correlated with the cuspal shape. Intriguingly, fine tuning Rac1 and RhoA interconvert cuspal shapes between two species by remolding the cellular geometry. Either inhibition of Rac1 or ectopic expression of RhoA could region-distinctively change the columnar shape of IDE cells in gerbils to drive invagination to produce cusps. Conversely, RhoA reduction in mice inhibited invagination and developed lophs. Furthermore, we found that Rac1 and RhoA modulate the choices of cuspal shape by coordinating adhesion junctions, actin distribution, and fibronectin localization to drive IDE invagination. PMID:27892530

  1. Fine tuning the color-transition temperature of thermoreversible polydiacetylene/zinc oxide nanocomposites: The effect of photopolymerization time.

    PubMed

    Traiphol, Nisanart; Faisadcha, Kunruethai; Potai, Ruttayapon; Traiphol, Rakchart

    2015-02-01

    An ability to control the thermochromic behaviors of polydiacetylene (PDA)-based materials is very important for their utilization. Recently, our group has developed the PDA/zinc oxide (ZnO) nanocomposites, which exhibit reversible thermochromism (Traiphol et al., 2011). In this study, we present our continuation work demonstrating a rather simple method for fine tuning their color-transition temperature. The PDA/ZnO nanocomposites are prepared by varying photopolymerization time, which in turn affects the length of PDA conjugated backbone. We have found that the increase of photopolymerization time from 1 to 120min results in systematically decrease of the color-transition temperature from about 85 to 40°C. These PDA/ZnO nanocomposites still exhibit reversible thermochromism. The PDA/ZnO nanocomposites embedded in polyvinyl alcohol films show two-step color-transition processes, the reversible blue to purple and then irreversible purple to orange. Interestingly, the increase of photopolymerization time causes an increase of the irreversible color-transition temperature. Our method is quite simple and cheap, which can provide a library of PDA-based materials with controllable color-transition temperature. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Guided wave phased array sensor tuning for improved defect detection and characterization

    NASA Astrophysics Data System (ADS)

    Philtron, Jason H.; Rose, Joseph L.

    2014-03-01

    Ultrasonic guided waves are finding increased use in a variety of Nondestructive Evaluation and Structural Health Monitoring applications due to their efficiency in defect detection using a sensor at a single location to inspect a large area of a structure and an ability to inspect hidden and coated areas for example. With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. For example, in a sample problem presented here to access bond integrity, researchers may choose to use a guided wave mode which has high in-plane displacement, stress, or other feature at the interface. However, since material properties used for modeling work may not be precise for the development of dispersion curves, in many cases guided wave mode and frequency selection should be adjusted for increased inspection efficiency in the field. In this work, a phased array comb transducer is used to sweep over phase velocity - frequency space to tune mode excitation for improved defect characterization performance. A thin polycarbonate layer bonded to a thick metal plate is considered with a contaminated surface prior to bonding. Physicallybased features are used to correlate wave signals with defect detection. Features assessed include arrival time and the frequency of maximum amplitude. A pseudo C-scan plot is presented which can be used to simplify data analysis. Excellent results are obtained.

  3. Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties.

    PubMed

    Jehl, Z; Rousset, J; Donsanti, F; Renou, G; Naghavi, N; Lincot, D

    2010-10-01

    The electrodeposition of ZnO nanorods on ZnO:Al films with different orientations is reported. The influence of the total charge exchanged during electrodeposition on the nanorod's geometry (length, diameter, aspect ratio and surface density) and the optical transmission properties of the nanorod arrays is studied on a [0001]-oriented ZnO:Al substrate. The nanorods are highly vertically oriented along the c axis, following the lattice matching with the substrate. The growth on a [1010] and [1120] ZnO:Al-oriented substrate with c axis parallel to the substrate leads to a systematic deviation angle of 55 degrees from the perpendicular direction. This finding has been explained by the occurrence of a minority orientation with the [1011] planes parallel to the surface, with a preferential growth on corresponding [0001] termination. Substrate crystalline orientation is thereby found to be a major parameter in finely tuning the orientation of the nanorod array. This new approach allows us to optimize the light scattering properties of the films.

  4. Structural Coloration of a Colloidal Amorphous Array is Intensified by Carbon Nanolayers.

    PubMed

    Takeoka, Yukikazu; Iwata, Masanori; Seki, Takahiro; Nueangnoraj, Khanin; Nishihara, Hirotomo; Yoshioka, Shinya

    2018-04-10

    In this study, we introduce the possibility of applying a colloidal amorphous array composed of fine silica particles as a structural-color material to invisible information technology. The appearance of a thick filmlike colloidal amorphous array formed from fine silica particles is considerably influenced by incoherent light scattering across the entire visible region. Therefore, regardless of the diameter of the fine silica particles, the thick colloidal amorphous array exhibits a white color to the naked eye. When carbon is uniformly deposited in the colloidal amorphous array by a pressure-pulsed chemical vapor deposition method, incoherent light scattering in the colloidal amorphous array is suppressed. As a result, coherent light scattering due to the short-range order in the colloidal amorphous array becomes conspicuous and the array exhibits a vivid structural color. As structures, such as letters and pictures, can be drawn using this technology, the colloidal amorphous array as a structural-colored material may also be applicable for invisible information technology.

  5. Sox2 in the dermal papilla niche controls hair growth by fine-tuning Bmp signaling in differentiating hair shaft progenitors

    PubMed Central

    Clavel, Carlos; Grisanti, Laura; Zemla, Roland; Rezza, Amelie; Barros, Rita; Sennett, Rachel; Mazloom, Amin; Chung, Chi-Yeh; Cai, Xiaoqiang; Cai, Chen-Leng; Pevny, Larysa; Nicolis, Silvia; Ma’ayan, Avi; Rendl, Michael

    2012-01-01

    SUMMARY How dermal papilla (DP) niche cells regulate hair follicle progenitors to control hair growth remains unclear. Using Tbx18Cre to target embryonic DP precursors, we ablate the transcription factor Sox2 early and efficiently, resulting in diminished hair shaft outgrowth. We find that DP niche expression of Sox2 controls the migration rate of differentiating hair shaft progenitors. Transcriptional profiling of Sox2 null DPs reveals increased Bmp6 and decreased Bmp inhibitor Sostdc1, a direct Sox2 transcriptional target. Subsequently, we identify upregulated Bmp signaling in knockout hair shaft progenitors and demonstrate that Bmps inhibit cell migration, an effect that can be attenuated by Sostdc1. A shorter and Sox2-negative hair type lacks Sostdc1 in the DP and shows reduced migration and increased Bmp activity of hair shaft progenitors. Collectively, our data identify Sox2 as a key regulator of hair growth that controls progenitor migration by fine-tuning Bmp-mediated mesenchymal-epithelial crosstalk. PMID:23153495

  6. ATP4A gene regulatory network for fine-tuning of proton pump and ion channels.

    PubMed

    Singh, Vijai; Mani, Indra; Chaudhary, Dharmendra Kumar

    2013-06-01

    The ATP4A encodes α subunit of H(+), K(+)-ATPase that contains catalytic sites of the enzyme forming pores through cell membrane which allows the ion transport. H(+), K(+)-ATPase is a membrane bound P-type ATPase enzyme which is found on the surface of parietal cells and uses the energy derived from each cycle of ATP hydrolysis that can help in exchanging ions (H(+), K(+) and Cl(-)) across the cell membrane secreting acid into the gastric lumen. The 3-D model of α-subunit of H(+), K(+)-ATPase was generated by homology modeling. It was evaluated and validated on the basis of free energies and amino acid residues. The inhibitor binding amino acid active pockets were identified in the 3-D model by molecular docking. The two drugs Omeprazole and Rabeprazole were found more potent interactions with generated model of α-subunit of H(+), K(+)-ATPase on the basis of their affinity between drug-protein interactions. We have generated ATP4A gene regulatory networks for interactions with other proteins which involved in regulation that can help in fine-tuning of proton pump and ion channels. These findings provide a new dimension for discovery and development of proton pump inhibitors and gene regulation of the ATPase. It can be helpful in better understanding of human physiology and also using synthetic biology strategy for reprogramming of parietal cells for control of gastric ulcers.

  7. Multimodal tuned dynamic absorber for split Stirling linear cryocooler

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Tuito, A.

    2017-02-01

    Forthcoming low size, weight, power and price split Stirling linear cryocoolers may rely on electro-dynamically driven single-piston compressors and pneumatically driven expanders interconnected by the configurable transfer line. For compactness, compressor and expander units may be placed in a side-by-side manner, thus producing tonal vibration export comprising force and moment components. In vibration sensitive applications, this may result in excessive angular line of sight jitter and translational defocusing affecting the image quality. The authors present Multimodal Tuned Dynamic Absorber (MTDA), having one translational and two tilting modes essentially tuned to the driving frequency. The dynamic reactions (force and moment) produced by such a MTDA are simultaneously counterbalancing force and moment vibration export produced by the cryocooler. The authors reveal the design details, the method of fine modal tuning and outcomes of numerical simulation on attainable performance.

  8. Realization of integral 3-dimensional image using fabricated tunable liquid lens array

    NASA Astrophysics Data System (ADS)

    Lee, Muyoung; Kim, Junoh; Kim, Cheol Joong; Lee, Jin Su; Won, Yong Hyub

    2015-03-01

    Electrowetting has been widely studied for various optical applications such as optical switch, sensor, prism, and display. In this study, vari-focal liquid lens array is developed using electrowetting principle to construct integral 3-dimensional imaging. The electrowetting principle that changes the surface tension by applying voltage has several advantages to realize active optical device such as fast response time, low electrical consumption, and no mechanical moving parts. Two immiscible liquids that are water and oil are used for forming lens. By applying a voltage to the water, the focal length of the lens could be tuned as changing contact angle of water. The fabricated electrowetting vari-focal liquid lens array has 1mm diameter spherical lens shape that has 1.6mm distance between each lens. The number of lenses on the panel is 23x23 and the focal length of the lens array is simultaneously tuned from -125 to 110 diopters depending on the applied voltage. The fabricated lens array is implemented to integral 3-dimensional imaging. A 3D object is reconstructed by fabricated liquid lens array with 23x23 elemental images that are generated by 3D max tools. When liquid lens array is tuned as convex state. From vari-focal liquid lens array implemented integral imaging system, we expect that depth enhanced integral imaging can be realized in the near future.

  9. Large-Scale Phenomics Identifies Primary and Fine-Tuning Roles for CRKs in Responses Related to Oxidative Stress

    PubMed Central

    Rayapuram, Channabasavangowda; Idänheimo, Niina; Hunter, Kerri; Kimura, Sachie; Merilo, Ebe; Vaattovaara, Aleksia; Oracz, Krystyna; Kaufholdt, David; Pallon, Andres; Anggoro, Damar Tri; Glów, Dawid; Lowe, Jennifer; Zhou, Ji; Mohammadi, Omid; Puukko, Tuomas; Albert, Andreas; Lang, Hans; Ernst, Dieter; Kollist, Hannes; Brosché, Mikael; Durner, Jörg; Borst, Jan Willem; Collinge, David B.; Karpiński, Stanisław; Lyngkjær, Michael F.; Robatzek, Silke; Wrzaczek, Michael; Kangasjärvi, Jaakko

    2015-01-01

    Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins characterized by the presence of two domains of unknown function 26 (DUF26) in their ectodomain. The CRKs form one of the largest groups of receptor-like protein kinases in plants, but their biological functions have so far remained largely uncharacterized. We conducted a large-scale phenotyping approach of a nearly complete crk T-DNA insertion line collection showing that CRKs control important aspects of plant development and stress adaptation in response to biotic and abiotic stimuli in a non-redundant fashion. In particular, the analysis of reactive oxygen species (ROS)-related stress responses, such as regulation of the stomatal aperture, suggests that CRKs participate in ROS/redox signalling and sensing. CRKs play general and fine-tuning roles in the regulation of stomatal closure induced by microbial and abiotic cues. Despite their great number and high similarity, large-scale phenotyping identified specific functions in diverse processes for many CRKs and indicated that CRK2 and CRK5 play predominant roles in growth regulation and stress adaptation, respectively. As a whole, the CRKs contribute to specificity in ROS signalling. Individual CRKs control distinct responses in an antagonistic fashion suggesting future potential for using CRKs in genetic approaches to improve plant performance and stress tolerance. PMID:26197346

  10. Tuning the ferromagnetic resonance frequency of soft magnetic film by patterned permalloy micro-stripes with stripe-domain

    NASA Astrophysics Data System (ADS)

    Pan, Lining; Xie, Hongkang; Cheng, Xiaohong; Zhao, Chenbo; Feng, Hongmei; Cao, Derang; Wang, Jianbo; Liu, Qingfang

    2018-07-01

    Periodic micro-stripes arrays with stripe domains structures upon continuous permalloy (Py) film were fabricated by sputtering, photolithography and ion beam etching technology. These samples display in-plane magnetic anisotropy, and stripe domains structure is observed by the magnetic force microscopy (MFM) in the area of the micro-stripes. The periodic micro-stripes show an effective impact on static and dynamic magnetic properties of Py continuous film. In the case of dynamic magnetic properties, the resonance frequency fr of these samples can be tuned by periodic micro-stripes arrays. Compared to continuous film with resonance frequency fr of 0.64 GHz, the fr of composite structures can be tuned by the separation gap of periodic micro-stripes arrays from 0.8 GHz to 2.3 GHz at zero-field. At the same time, the fr could be also tuned by rotating the samples within the plane. This attributes to the competition of shape anisotropy induced by micro-stripes and the dynamic anisotropy originating by stripe domains structure.

  11. Lysine succinylation of Mycobacterium tuberculosis isocitrate lyase (ICL) fine-tunes the microbial resistance to antibiotics.

    PubMed

    Zhou, Mingliang; Xie, Longxiang; Yang, Zhaozhen; Zhou, Jiahai; Xie, Jianping

    2017-04-01

    Lysine succinylation (Ksucc) is a newly identified protein posttranslational modification (PTM), which may play an important role in cellular physiology. However, the role of lysine succinylation in antibiotic resistance remains elusive. Isocitrate lyase (ICL) is crucial for broad-spectrum antibiotics tolerance in Mycobacterium tuberculosis (Mtb). We previously found that MtbICL (Rv0467) has at least three succinylated lysine residues, namely K189, K322, and K334.To explore the effect of succinylation on the activity of MtbICL, mutants' mimicry of the lysine succinylation were generated by site-directed mutagenesis. ICL-K189E mutant strain is more sensitive than the wild-type to rifampicin and streptomycin, but not isoniazid. For the in vitro activity of the purified isocitrate lyase, only K189E mutant showed significantly decreased activity. Crystal structure analysis showed that Lys189 Glu dramatically increased the pKa of Glu188 and decreased the pKa of Lys190, whereas had negligible effect on other residues within 5 Å as well as disruption of the electrostatic interaction between Lys189 and Glu182, which might prevent the closure of the active site loop and cause severe reduction of the enzyme activity. Considering the genetic, biochemical, and crystallographical evidences together, the succinylation of specific ICL residue can fine-tune the bacterial resistance to selected antibiotics. The decreased enzymatic activity resulting from the succinylation-changed electrostatic interaction might underlie this phenotype. This study provided the first insight into the link between lysine succinylation and antibiotic resistance.

  12. Deep learning-based fine-grained car make/model classification for visual surveillance

    NASA Astrophysics Data System (ADS)

    Gundogdu, Erhan; Parıldı, Enes Sinan; Solmaz, Berkan; Yücesoy, Veysel; Koç, Aykut

    2017-10-01

    Fine-grained object recognition is a potential computer vision problem that has been recently addressed by utilizing deep Convolutional Neural Networks (CNNs). Nevertheless, the main disadvantage of classification methods relying on deep CNN models is the need for considerably large amount of data. In addition, there exists relatively less amount of annotated data for a real world application, such as the recognition of car models in a traffic surveillance system. To this end, we mainly concentrate on the classification of fine-grained car make and/or models for visual scenarios by the help of two different domains. First, a large-scale dataset including approximately 900K images is constructed from a website which includes fine-grained car models. According to their labels, a state-of-the-art CNN model is trained on the constructed dataset. The second domain that is dealt with is the set of images collected from a camera integrated to a traffic surveillance system. These images, which are over 260K, are gathered by a special license plate detection method on top of a motion detection algorithm. An appropriately selected size of the image is cropped from the region of interest provided by the detected license plate location. These sets of images and their provided labels for more than 30 classes are employed to fine-tune the CNN model which is already trained on the large scale dataset described above. To fine-tune the network, the last two fully-connected layers are randomly initialized and the remaining layers are fine-tuned in the second dataset. In this work, the transfer of a learned model on a large dataset to a smaller one has been successfully performed by utilizing both the limited annotated data of the traffic field and a large scale dataset with available annotations. Our experimental results both in the validation dataset and the real field show that the proposed methodology performs favorably against the training of the CNN model from scratch.

  13. Neuroelectric Tuning of Cortical Oscillations by Apical Dendrites in Loop Circuits.

    PubMed

    LaBerge, David; Kasevich, Ray S

    2017-01-01

    Bundles of relatively long apical dendrites dominate the neurons that make up the thickness of the cerebral cortex. It is proposed that a major function of the apical dendrite is to produce sustained oscillations at a specific frequency that can serve as a common timing unit for the processing of information in circuits connected to that apical dendrite. Many layer 5 and 6 pyramidal neurons are connected to thalamic neurons in loop circuits. A model of the apical dendrites of these pyramidal neurons has been used to simulate the electric activity of the apical dendrite. The results of that simulation demonstrated that subthreshold electric pulses in these apical dendrites can be tuned to specific frequencies and also can be fine-tuned to narrow bandwidths of less than one Hertz (1 Hz). Synchronous pulse outputs from the circuit loops containing apical dendrites can tune subthreshold membrane oscillations of neurons they contact. When the pulse outputs are finely tuned, they function as a local "clock," which enables the contacted neurons to synchronously communicate with each other. Thus, a shared tuning frequency can select neurons for membership in a circuit. Unlike layer 6 apical dendrites, layer 5 apical dendrites can produce burst firing in many of their neurons, which increases the amplitude of signals in the neurons they contact. This difference in amplitude of signals serves as basis of selecting a sub-circuit for specialized processing (e.g., sustained attention) within the typically larger layer 6-based circuit. After examining the sustaining of oscillations in loop circuits and the processing of spikes in network circuits, we propose that cortical functioning can be globally viewed as two systems: a loop system and a network system. The loop system oscillations influence the network system's timing and amplitude of pulse signals, both of which can select circuits that are momentarily dominant in cortical activity.

  14. Recent Developments in the Analysis of Couple Oscillator Arrays

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2000-01-01

    This presentation considers linear arrays of coupled oscillators. Our purpose in coupling oscillators together is to achieve high radiated power through the spatial power combining which results when the oscillators are injection locked to each other. York, et. al. have shown that, left to themselves, the ensemble of injection locked oscillators oscillate at the average of the tuning frequencies of all the oscillators. Coupling these arrays achieves high radiated power through coherent spatial power combining. The coupled oscillators are usually designed to produce constant aperture phase. Oscillators are injection locked to each other or to a master oscillator to produce coherent radiation. Oscillators do not necessarily oscillate at their tuning frequency.

  15. Transition metals in coarse, fine, very fine and ultra-fine particles from an interstate highway transect near Detroit

    NASA Astrophysics Data System (ADS)

    Cahill, Thomas A.; Barnes, David E.; Lawton, Jonathan A.; Miller, Roger; Spada, Nicholas; Willis, Robert D.; Kimbrough, Sue

    2016-11-01

    As one component of a study investigating the impact of vehicle emissions on near-road air quality, human exposures, and potential health effects, particles were measured from September 21 to October 30, 2010 on both sides of a major roadway (Interstate-96) in Detroit. Traffic moved freely on this 12 lane freeway with a mean velocity of 69 mi/hr. with little braking and acceleration. The UC Davis DELTA Group rotating drum (DRUM) impactors were used to collect particles in 8 size ranges at sites nominally 100 m south, 10 m north, 100 m north, and 300 m north of the highway. Ultra-fine particles were continuously collected at the 10 m north and 100 m north sites. Samples were analyzed every 3 h for mass (soft beta ray transmission), 42 elements (synchrotron-induced x-ray fluorescence) and optical attenuation (350-800 nm spectroscopy). A three day period of steady southerly winds along the array allowed direct measurement of freeway emission rates for coarse (10 > Dp > 1.0 μm), PM2.5, very fine (0.26 > Dp > 0.09 μm), and ultra-fine (Dp < 0.09 μm) particles. The PM2.5 mass concentrations were modeled using literature emission rates during the south to north wind periods, and averaged 1.6 ± 0.5 μg/m3, versus the measured value of 2.0 ± 0.7 μg/m3. Using European freeway emission rates from 2010, and modeling them at the I-96 site, we would predict roughly 3.1 μg/m3 of PM2.5 particles, corrected from the 4.9 PM10 value by their measured road dust contributions. Using California car and truck emission rates of 1973, this value would have been about 16 μg/m3, corrected down from the 19 μg/m3 PM5.0 using measured roadway dust contributions. This would have included 2.7 μg/m3 of lead, versus the 0.0033 μg/m3 measured. Very fine particles were distributed across the array with a relatively weak falloff versus distance. For the ultra-fine particles, emissions of soot and metals seen in vehicular braking studies correlated with traffic at the 10 m site, but only the

  16. Fine tuning of transmission features in nanoporous anodic alumina distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Lim, Siew Yee; Law, Cheryl Suwen; Santos, Abel

    2018-01-01

    This study introduces an innovative apodisation strategy to tune the filtering features of distributed Bragg reflectors based on nanoporous anodic alumina (NAA-DBRs). The effective medium of NAA-DBRs, which is modulated in a stepwise fashion by a pulse-like anodisation approach, is apodised following a logarithmic negative function to engineer the transmission features of NAA-DBRs. We investigate the effect of various apodisation parameters such as apodisation amplitude difference, anodisation period, current density offset and pore widening time, to tune and optimise the optical properties of NAA-DBRs in terms of central wavelength position, full width at half maximum and quality of photonic stop band. The transmission features of NAA-DBRs are shown to be fully controllable with precision across the spectral regions by means of the apodisation parameters. Our study demonstrates that an apodisation strategy can significantly narrow the width and enhance the quality of the characteristic photonic stop band of NAA-DBRs. This rationally designed anodisation approach based on the combination of apodisation and stepwise pulse anodisation enables the development of optical filters with tuneable filtering features to be integrated into optical technologies acting as essential photonic elements in devices such as optical sensors and biosensors.

  17. Hierarchical interactions between Fnr orthologs allows fine-tuning of transcription in response to oxygen in Herbaspirillum seropedicae

    PubMed Central

    Batista, Marcelo Bueno; Chandra, Govind; Monteiro, Rose Adele; de Souza, Emanuel Maltempi; Dixon, Ray

    2018-01-01

    Abstract Bacteria adjust the composition of their electron transport chain (ETC) to efficiently adapt to oxygen gradients. This involves differential expression of various ETC components to optimize energy generation. In Herbaspirillum seropedicae, reprogramming of gene expression in response to oxygen availability is controlled at the transcriptional level by three Fnr orthologs. Here, we characterised Fnr regulons using a combination of RNA-Seq and ChIP-Seq analysis. We found that Fnr1 and Fnr3 directly regulate discrete groups of promoters (Groups I and II, respectively), and that a third group (Group III) is co-regulated by both transcription factors. Comparison of DNA binding motifs between the three promoter groups suggests Group III promoters are potentially co-activated by Fnr3–Fnr1 heterodimers. Specific interaction between Fnr1 and Fnr3, detected in two-hybrid assays, was dependent on conserved residues in their dimerization interfaces, indicative of heterodimer formation in vivo. The requirements for co-activation of the fnr1 promoter, belonging to Group III, suggest either sequential activation by Fnr3 and Fnr1 homodimers or the involvement of Fnr3–Fnr1 heterodimers. Analysis of Fnr proteins with swapped activation domains provides evidence that co-activation by Fnr1 and Fnr3 at Group III promoters optimises interactions with RNA polymerase to fine-tune transcription in response to prevailing oxygen concentrations. PMID:29529262

  18. Hierarchical interactions between Fnr orthologs allows fine-tuning of transcription in response to oxygen in Herbaspirillum seropedicae.

    PubMed

    Batista, Marcelo Bueno; Chandra, Govind; Monteiro, Rose Adele; de Souza, Emanuel Maltempi; Dixon, Ray

    2018-05-04

    Bacteria adjust the composition of their electron transport chain (ETC) to efficiently adapt to oxygen gradients. This involves differential expression of various ETC components to optimize energy generation. In Herbaspirillum seropedicae, reprogramming of gene expression in response to oxygen availability is controlled at the transcriptional level by three Fnr orthologs. Here, we characterised Fnr regulons using a combination of RNA-Seq and ChIP-Seq analysis. We found that Fnr1 and Fnr3 directly regulate discrete groups of promoters (Groups I and II, respectively), and that a third group (Group III) is co-regulated by both transcription factors. Comparison of DNA binding motifs between the three promoter groups suggests Group III promoters are potentially co-activated by Fnr3-Fnr1 heterodimers. Specific interaction between Fnr1 and Fnr3, detected in two-hybrid assays, was dependent on conserved residues in their dimerization interfaces, indicative of heterodimer formation in vivo. The requirements for co-activation of the fnr1 promoter, belonging to Group III, suggest either sequential activation by Fnr3 and Fnr1 homodimers or the involvement of Fnr3-Fnr1 heterodimers. Analysis of Fnr proteins with swapped activation domains provides evidence that co-activation by Fnr1 and Fnr3 at Group III promoters optimises interactions with RNA polymerase to fine-tune transcription in response to prevailing oxygen concentrations.

  19. Fine-Tuning of the Carbon Dioxide Capture Capability of Diamine-Grafted Metal-Organic Framework Adsorbents Through Amine Functionalization.

    PubMed

    Jo, Hyuna; Lee, Woo Ram; Kim, Nam Woo; Jung, Hyun; Lim, Kwang Soo; Kim, Jeong Eun; Kang, Dong Won; Lee, Hanyeong; Hiremath, Vishwanath; Seo, Jeong Gil; Jin, Hailian; Moon, Dohyun; Han, Sang Soo; Hong, Chang Seop

    2017-02-08

    A combined sonication and microwave irradiation procedure provides the most effective functionalization of ethylenediamine (en) and branched primary diamines of 1-methylethylenediamine (men) and 1,1-dimethylethylenediamine (den) onto the open metal sites of Mg 2 (dobpdc) (1). The CO 2 capacities of the advanced adsorbents 1-en and 1-men under simulated flue gas conditions are 19 wt % and 17.4 wt %, respectively, which are the highest values reported among amine-functionalized metal-organic frameworks (MOFs) to date. Moreover, 1-den exhibits both a significant working capacity (12.2 wt %) and superb CO 2 uptake (11 wt %) at 3 % CO 2 . Additionally, this framework showcases the superior recyclability; ultrahigh stability after exposure to O 2 , moisture, and SO 2 ; and exceptional CO 2 adsorption capacity under humid conditions, which are unprecedented among MOFs. We also elucidate that the performance of CO 2 adsorption can be controlled by the structure of the diamine ligands grafted such as the number of amine end groups or the presence of side groups, which provides the first systematic and comprehensive demonstration of fine-tuning of CO 2 uptake capability using different amines. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Realizing up-conversion fluorescence tuning in lanthanide-doped nanocrystals by femtosecond pulse shaping method

    PubMed Central

    Zhang, Shian; Yao, Yunhua; Shuwu, Xu; Liu, Pei; Ding, Jingxin; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong

    2015-01-01

    The ability to tune color output of nanomaterials is very important for their applications in laser, optoelectronic device, color display and multiplexed biolabeling. Here we first propose a femtosecond pulse shaping technique to realize the up-conversion fluorescence tuning in lanthanide-doped nanocrystals dispersed in the glass. The multiple subpulse formation by a square phase modulation can create different excitation pathways for various up-conversion fluorescence generations. By properly controlling these excitation pathways, the multicolor up-conversion fluorescence can be finely tuned. This color tuning by the femtosecond pulse shaping technique is realized in single material by single-color laser field, which is highly desirable for further applications of the lanthanide-doped nanocrystals. This femtosecond pulse shaping technique opens an opportunity to tune the color output in the lanthanide-doped nanocrystals, which may bring a new revolution in the control of luminescence properties of nanomaterials. PMID:26290391

  1. Quantitative (23) Na MRI of human knee cartilage using dual-tuned (1) H/(23) Na transceiver array radiofrequency coil at 7 tesla.

    PubMed

    Moon, Chan Hong; Kim, Jung-Hwan; Zhao, Tiejun; Bae, Kyongtae Ty

    2013-11-01

    To develop quantitative dual-tuned (DT) (1) H/(23) Na MRI of human knee cartilage in vivo at 7 Tesla (T). A sensitive (23) Na transceiver array RF coil was developed at 7T. B1 fields generated by the transceiver array coil were characterized and corrected in the (23) Na images. Point spread function (PSF) of the (23) Na images was measured, and the signal decrease due to partial-volume-effect was compensated in [(23) Na] quantification of knee cartilage. SNR and [(23) Na] in anterior femoral cartilage were measured from seven healthy subjects. SNR of (23) Na image with the transceiver array coil was higher than that of birdcage coil. SNR in the cartilage at 2-mm isotropic resolution was 26.80 ± 3.69 (n = 7). B1 transmission and reception fields produced by the DT coil at 7T were similar to each other. Effective full-width-half-maximum of (23) Na image was ∼5 mm at 2-mm resolution. Mean [(23) Na] was 288.13 ± 29.50 mM (n = 7) in the anterior femoral cartilage of normal subjects. We developed a new high-sensitivity (23) Na RF coil for knee MRI at 7T. Our (1) H/(23) Na MRI allowed quantitative measurement of [(23) Na] in knee cartilage by measuring PSF and cartilage thickness from (23) Na and (1) H image, respectively. Copyright © 2013 Wiley Periodicals, Inc.

  2. Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays

    DTIC Science & Technology

    2010-02-28

    Final Project Report Contract/Grant Title: Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays...factor (HFF) micromirror array (MMA) has been proposed, fabricated and tested. Optical-phased-array (OPA) beam steering based on the HFF MMA has also...electrically tuned to multiple 2. 1. Background High-fill-factor (HFF) micromirror arrays (MMAs) can form optical phased arrays (OPAs) for laser beam

  3. Controllability of the Coulomb charging energy in close-packed nanoparticle arrays.

    PubMed

    Duan, Chao; Wang, Ying; Sun, Jinling; Guan, Changrong; Grunder, Sergio; Mayor, Marcel; Peng, Lianmao; Liao, Jianhui

    2013-11-07

    We studied the electronic transport properties of metal nanoparticle arrays, particularly focused on the Coulomb charging energy. By comparison, we confirmed that it is more reasonable to estimate the Coulomb charging energy using the activation energy from the temperature-dependent zero-voltage conductance. Based on this, we systematically and comprehensively investigated the parameters that could be used to tune the Coulomb charging energy in nanoparticle arrays. We found that four parameters, including the particle core size, the inter-particle distance, the nearest neighboring number, and the dielectric constant of ligand molecules, could significantly tune the Coulomb charging energy.

  4. Pendant chain engineering to fine-tune the nanomorphologies and solid state luminescence of naphthalimide AIEEgens: application to phenolic nitro-explosive detection in water.

    PubMed

    Meher, Niranjan; Iyer, Parameswar Krishnan

    2017-06-08

    Strategically, a series of five angular "V" shaped naphthalimide AIEEgens with varying pendant chains (butyl, hexyl, octyl, cyclohexyl and methylcyclohexyl) have been synthesized to fine-tune their nanomorphological and photophysical properties. With similar aromatic cores and electronic states, unexpected tuning of the condensed state emission colors and nanomorphologies (reproducible on any kind of surface) of naphthalimides has been achieved for the first time simply by varying their side chains. Conclusive analysis by various spectroscopic techniques (SC-XRD, powder-XRD, DLS, FESEM) and DFT computational studies confirmed the full control of the pendant chain (in terms of bulkiness around the naphthalimide core, which restricts the ease of intermolecular π-π interactions) over the nanoaggregate morphology and solid state emissive properties of the AIEEgens; this can be rationalized to all aggregation-prone systems. These comprehensive studies establish a conceptually unique yet simple and effective method to precisely tune the nanomorphologies and the emission colors of aggregation-prone small organic molecules by judicious choice of the non-conjugated pendant chain. Thus, considering the prime role of the active layer nanomorphology in all organic optoelectronic devices, this methodology may emerge as a promising tool to improve device performance. Among all the congeners, the hexyl chain-containing congener (HNQ) forms well-defined nanoribbons with smaller diameters (as confirmed from DLS: 166 nm and FESEM: 150 nm) and provides a larger surface area. Consequently, the HNQ-nanoribbons were employed as a fluorescent sensor for the discriminative detection of trinitrophenol (TNP) in pure aqueous media. FE-SEM images revealed that, upon gradual addition of TNP (10 nM to 100 μM), these nanoribbons undergo an aggregation/disaggregation process, forming non-fluorescent co-aggregates with TNP, and provide highly enhanced sensitivity compared to existing state

  5. Topological interface modes in graphene multilayer arrays

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Ke, Shaolin; Qin, Chengzhi; Wang, Bing; Long, Hua; Wang, Kai; Lu, Peixiang

    2018-07-01

    We investigate the topological interface modes of surface plasmon polaritons in a multilayer system composed of graphene waveguide arrays. The topological interface modes emerge when two topologically distinct graphene multilayer arrays are connected. In such multilayer system, the non-trivial topological interface modes and trivial modes coexist. By tuning the configuration of the graphene multilayer arrays, the associated non-trivial interface modes present robust against structural disorder. The total number of topological modes is related to that of graphene layers in a unit cell of the graphene multilayer array. The results provide a new paradigm for topologically protected plasmonics in the graphene multilayer arrays. The study suggests a promising approach to realize light transport and optical switching on a deep-subwavelength scale.

  6. Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption.

    PubMed

    Hägglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; Thomann, Isabell; Lee, Han-Bo-Ram; Brongersma, Mark L; Bent, Stacey F

    2013-07-10

    Achieving complete absorption of visible light with a minimal amount of material is highly desirable for many applications, including solar energy conversion to fuel and electricity, where benefits in conversion efficiency and economy can be obtained. On a fundamental level, it is of great interest to explore whether the ultimate limits in light absorption per unit volume can be achieved by capitalizing on the advances in metamaterial science and nanosynthesis. Here, we combine block copolymer lithography and atomic layer deposition to tune the effective optical properties of a plasmonic array at the atomic scale. Critical coupling to the resulting nanocomposite layer is accomplished through guidance by a simple analytical model and measurements by spectroscopic ellipsometry. Thereby, a maximized absorption of light exceeding 99% is accomplished, of which up to about 93% occurs in a volume-equivalent thickness of gold of only 1.6 nm. This corresponds to a record effective absorption coefficient of 1.7 × 10(7) cm(-1) in the visible region, far exceeding those of solid metals, graphene, dye monolayers, and thin film solar cell materials. It is more than a factor of 2 higher than that previously obtained using a critically coupled dye J-aggregate, with a peak width exceeding the latter by 1 order of magnitude. These results thereby substantially push the limits for light harvesting in ultrathin, nanoengineered systems.

  7. Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions

    NASA Astrophysics Data System (ADS)

    Hua, Wang; Du, Xiaogang; Su, Wenming; Lin, Wenjing; Zhang, Dongyu

    2014-02-01

    In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4'-N,N'-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N')iridium(III) (Ir(2-phq)3) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2']picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m2. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.

  8. Glutathione Fine-Tunes the Innate Immune Response toward Antiviral Pathways in a Macrophage Cell Line Independently of Its Antioxidant Properties

    PubMed Central

    Diotallevi, Marina; Checconi, Paola; Palamara, Anna Teresa; Celestino, Ignacio; Coppo, Lucia; Holmgren, Arne; Abbas, Kahina; Peyrot, Fabienne; Mengozzi, Manuela; Ghezzi, Pietro

    2017-01-01

    Glutathione (GSH), a major cellular antioxidant, is considered an inhibitor of the inflammatory response involving reactive oxygen species (ROS). However, evidence is largely based on experiments with exogenously added antioxidants/reducing agents or pro-oxidants. We show that depleting macrophages of 99% of GSH does not exacerbate the inflammatory gene expression profile in the RAW264 macrophage cell line or increase expression of inflammatory cytokines in response to the toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS); only two small patterns of LPS-induced genes were sensitive to GSH depletion. One group, mapping to innate immunity and antiviral responses (Oas2, Oas3, Mx2, Irf7, Irf9, STAT1, il1b), required GSH for optimal induction. Consequently, GSH depletion prevented the LPS-induced activation of antiviral response and its inhibition of influenza virus infection. LPS induction of a second group of genes (Prdx1, Srxn1, Hmox1, GSH synthase, cysteine transporters), mapping to nrf2 and the oxidative stress response, was increased by GSH depletion. We conclude that the main function of endogenous GSH is not to limit inflammation but to fine-tune the innate immune response to infection. PMID:29033950

  9. Multiple wavelength tunable surface-emitting laser arrays

    NASA Astrophysics Data System (ADS)

    Chang-Hasnain, Connie J.; Harbison, J. P.; Zah, Chung-En; Maeda, M. W.; Florez, L. T.; Stoffel, N. G.; Lee, Tien-Pei

    1991-06-01

    Techniques to achieve wavelength multiplexing and tuning capabilities in vertical-cavity surface-emitting lasers (VCSELs) are described, and experimental results are given. The authors obtained 140 unique, uniformly separated, single-mode wavelength emissions from a 7 x 20 VCSEL array. Large total wavelength span (about 430 A) and small wavelength separation (about 3 A) are obtained simultaneously with uncompromised laser performance. All 140 lasers have nearly the same threshold currents, voltages, and resistances. Wavelength tuning is obtained by using a three-mirror coupled-cavity configuration. The three-mirror laser is a two-terminal device and requires only one top contact. Discrete tuning with a range as large as 61 A is achieved with a small change in drive current of only 10.5 mA. The VCSEL output power variation is within 5 dB throughout the entire tuning range.

  10. Exploiting sequence similarity to validate the sensitivity of SNP arrays in detecting fine-scaled copy number variations.

    PubMed

    Wong, Gerard; Leckie, Christopher; Gorringe, Kylie L; Haviv, Izhak; Campbell, Ian G; Kowalczyk, Adam

    2010-04-15

    High-density single nucleotide polymorphism (SNP) genotyping arrays are efficient and cost effective platforms for the detection of copy number variation (CNV). To ensure accuracy in probe synthesis and to minimize production costs, short oligonucleotide probe sequences are used. The use of short probe sequences limits the specificity of binding targets in the human genome. The specificity of these short probeset sequences has yet to be fully analysed against a normal reference human genome. Sequence similarity can artificially elevate or suppress copy number measurements, and hence reduce the reliability of affected probe readings. For the purpose of detecting narrow CNVs reliably down to the width of a single probeset, sequence similarity is an important issue that needs to be addressed. We surveyed the Affymetrix Human Mapping SNP arrays for probeset sequence similarity against the reference human genome. Utilizing sequence similarity results, we identified a collection of fine-scaled putative CNVs between gender from autosomal probesets whose sequence matches various loci on the sex chromosomes. To detect these variations, we utilized our statistical approach, Detecting REcurrent Copy number change using rank-order Statistics (DRECS), and showed that its performance was superior and more stable than the t-test in detecting CNVs. Through the application of DRECS on the HapMap population datasets with multi-matching probesets filtered, we identified biologically relevant SNPs in aberrant regions across populations with known association to physical traits, such as height, covered by the span of a single probe. This provided empirical confirmation of the existence of naturally occurring narrow CNVs as well as the sensitivity of the Affymetrix SNP array technology in detecting them. The MATLAB implementation of DRECS is available at http://ww2.cs.mu.oz.au/ approximately gwong/DRECS/index.html.

  11. MicroRNA miR-124 Controls the Choice between Neuronal and Astrocyte Differentiation by Fine-tuning Ezh2 Expression*

    PubMed Central

    Neo, Wen Hao; Yap, Karen; Lee, Suet Hoay; Looi, Liang Sheng; Khandelia, Piyush; Neo, Sheng Xiong; Makeyev, Eugene V.; Su, I-hsin

    2014-01-01

    Polycomb group protein Ezh2 is a histone H3 Lys-27 histone methyltransferase orchestrating an extensive epigenetic regulatory program. Several nervous system-specific genes are known to be repressed by Ezh2 in stem cells and derepressed during neuronal differentiation. However, the molecular mechanisms underlying this regulation remain poorly understood. Here we show that Ezh2 levels are dampened during neuronal differentiation by brain-enriched microRNA miR-124. Expression of miR-124 in a neuroblastoma cells line was sufficient to up-regulate a significant fraction of nervous system-specific Ezh2 target genes. On the other hand, naturally elevated expression of miR-124 in embryonic carcinoma cells undergoing neuronal differentiation correlated with down-regulation of Ezh2 levels. Importantly, overexpression of Ezh2 mRNA with a 3′-untranslated region (3′-UTR) lacking a functional miR-124 binding site, but not with the wild-type Ezh2 3′-UTR, hampered neuronal and promoted astrocyte-specific differentiation in P19 and embryonic mouse neural stem cells. Overall, our results uncover a molecular mechanism that allows miR-124 to balance the choice between alternative differentiation possibilities through fine-tuning the expression of a critical epigenetic regulator. PMID:24878960

  12. MicroRNA miR-124 controls the choice between neuronal and astrocyte differentiation by fine-tuning Ezh2 expression.

    PubMed

    Neo, Wen Hao; Yap, Karen; Lee, Suet Hoay; Looi, Liang Sheng; Khandelia, Piyush; Neo, Sheng Xiong; Makeyev, Eugene V; Su, I-hsin

    2014-07-25

    Polycomb group protein Ezh2 is a histone H3 Lys-27 histone methyltransferase orchestrating an extensive epigenetic regulatory program. Several nervous system-specific genes are known to be repressed by Ezh2 in stem cells and derepressed during neuronal differentiation. However, the molecular mechanisms underlying this regulation remain poorly understood. Here we show that Ezh2 levels are dampened during neuronal differentiation by brain-enriched microRNA miR-124. Expression of miR-124 in a neuroblastoma cells line was sufficient to up-regulate a significant fraction of nervous system-specific Ezh2 target genes. On the other hand, naturally elevated expression of miR-124 in embryonic carcinoma cells undergoing neuronal differentiation correlated with down-regulation of Ezh2 levels. Importantly, overexpression of Ezh2 mRNA with a 3'-untranslated region (3'-UTR) lacking a functional miR-124 binding site, but not with the wild-type Ezh2 3'-UTR, hampered neuronal and promoted astrocyte-specific differentiation in P19 and embryonic mouse neural stem cells. Overall, our results uncover a molecular mechanism that allows miR-124 to balance the choice between alternative differentiation possibilities through fine-tuning the expression of a critical epigenetic regulator.

  13. Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation.

    PubMed

    Kume, Atsushi; Akitsu, Tomoko; Nasahara, Kenlo Nishida

    2016-07-01

    The spectral distributions of light absorption rates by intact leaves are notably different from the incident solar radiation spectra, for reasons that remain elusive. Incident global radiation comprises two main components; direct radiation from the direction of the sun, and diffuse radiation, which is sunlight scattered by molecules, aerosols and clouds. Both irradiance and photon flux density spectra differ between direct and diffuse radiation in their magnitude and profile. However, most research has assumed that the spectra of photosynthetically active radiation (PAR) can be averaged, without considering the radiation classes. We used paired spectroradiometers to sample direct and diffuse solar radiation, and obtained relationships between the PAR spectra and the absorption spectra of photosynthetic pigments and organs. As monomers in solvent, the spectral absorbance of Chl a decreased with the increased spectral irradiance (W m(-2) nm(-1)) of global PAR at noon (R(2) = 0.76), and was suitable to avoid strong spectral irradiance (λmax = 480 nm) rather than absorb photon flux density (μmol m(-2) s(-1) nm(-1)) efficiently. The spectral absorption of photosystems and the intact thallus and leaves decreased linearly with the increased spectral irradiance of direct PAR at noon (I dir-max), where the wavelength was within the 450-650 nm range (R(2) = 0.81). The higher-order structure of photosystems systematically avoided the strong spectral irradiance of I dir-max. However, when whole leaves were considered, leaf anatomical structure and light scattering in leaf tissues made the leaves grey bodies for PAR and enabled high PAR use efficiency. Terrestrial green plants are fine-tuned to spectral dynamics of incident solar radiation and PAR absorption is increased in various structural hierarchies.

  14. Neuroelectric Tuning of Cortical Oscillations by Apical Dendrites in Loop Circuits

    PubMed Central

    LaBerge, David; Kasevich, Ray S.

    2017-01-01

    Bundles of relatively long apical dendrites dominate the neurons that make up the thickness of the cerebral cortex. It is proposed that a major function of the apical dendrite is to produce sustained oscillations at a specific frequency that can serve as a common timing unit for the processing of information in circuits connected to that apical dendrite. Many layer 5 and 6 pyramidal neurons are connected to thalamic neurons in loop circuits. A model of the apical dendrites of these pyramidal neurons has been used to simulate the electric activity of the apical dendrite. The results of that simulation demonstrated that subthreshold electric pulses in these apical dendrites can be tuned to specific frequencies and also can be fine-tuned to narrow bandwidths of less than one Hertz (1 Hz). Synchronous pulse outputs from the circuit loops containing apical dendrites can tune subthreshold membrane oscillations of neurons they contact. When the pulse outputs are finely tuned, they function as a local “clock,” which enables the contacted neurons to synchronously communicate with each other. Thus, a shared tuning frequency can select neurons for membership in a circuit. Unlike layer 6 apical dendrites, layer 5 apical dendrites can produce burst firing in many of their neurons, which increases the amplitude of signals in the neurons they contact. This difference in amplitude of signals serves as basis of selecting a sub-circuit for specialized processing (e.g., sustained attention) within the typically larger layer 6-based circuit. After examining the sustaining of oscillations in loop circuits and the processing of spikes in network circuits, we propose that cortical functioning can be globally viewed as two systems: a loop system and a network system. The loop system oscillations influence the network system’s timing and amplitude of pulse signals, both of which can select circuits that are momentarily dominant in cortical activity. PMID:28659768

  15. Design and Development of 256x256 Linear Mode Low-Noise Avalanche Photodiode Arrays

    NASA Technical Reports Server (NTRS)

    Yuan, Ping; Sudharsanan, Rengarajan; Bai, Xiaogang; Boisvert, Joseph; McDonald, Paul; Chang, James

    2011-01-01

    A larger format photodiode array is always desirable for many LADAR imaging applications. However, as the array format increases, the laser power or the lens aperture has to increase to maintain the same flux per pixel thus increasing the size, weight and power of the imaging system. In order to avoid this negative impact, it is essential to improve the pixel sensitivity. The sensitivity of a short wavelength infrared linear-mode avalanche photodiode (APD) is a delicate balance of quantum efficiency, usable gain, excess noise factor, capacitance, and dark current of APD as well as the input equivalent noise of the amplifier. By using InA1As as a multiplication layer in an InP-based APD, the ionization coefficient ratio, k, is reduced from 0.40 (lnP) to 0.22, and the excess noise is reduced by about 50%. An additional improvement in excess noise of 25% was achieved by employing an impact-ionization-engineering structure with a k value of 0.15. Compared with the traditional InP structure, about 30% reduction in the noise-equivalent power with the following amplifier can be achieved. Spectrolab demonstrated 30-um mesa APD pixels with a dark current less than 10 nA and a capacitance of 60 fF at gain of 10. APD gain uninformity determines the usable gain of most pixels in an array, which is critical to focal plane array sensitivity. By fine tuning the material growth and device process, a break-down-voltage standard deviation of 0.1 V and gain of 30 on individual pixels were demonstrated in our 256x256 linear-mode APD arrays.

  16. Process-morphology scaling relations quantify self-organization in capillary densified nanofiber arrays.

    PubMed

    Kaiser, Ashley L; Stein, Itai Y; Cui, Kehang; Wardle, Brian L

    2018-02-07

    Capillary-mediated densification is an inexpensive and versatile approach to tune the application-specific properties and packing morphology of bulk nanofiber (NF) arrays, such as aligned carbon nanotubes. While NF length governs elasto-capillary self-assembly, the geometry of cellular patterns formed by capillary densified NFs cannot be precisely predicted by existing theories. This originates from the recently quantified orders of magnitude lower than expected NF array effective axial elastic modulus (E), and here we show via parametric experimentation and modeling that E determines the width, area, and wall thickness of the resulting cellular pattern. Both experiments and models show that further tuning of the cellular pattern is possible by altering the NF-substrate adhesion strength, which could enable the broad use of this facile approach to predictably pattern NF arrays for high value applications.

  17. Thermal expansion behavior study of Co nanowire array with in situ x-ray diffraction and x-ray absorption fine structure techniques

    NASA Astrophysics Data System (ADS)

    Mo, Guang; Cai, Quan; Jiang, Longsheng; Wang, Wei; Zhang, Kunhao; Cheng, Weidong; Xing, Xueqing; Chen, Zhongjun; Wu, Zhonghua

    2008-10-01

    In situ x-ray diffraction and x-ray absorption fine structure techniques were used to study the structural change of ordered Co nanowire array with temperature. The results show that the Co nanowires are polycrystalline with hexagonal close packed structure without phase change up until 700 °C. A nonlinear thermal expansion behavior has been found and can be well described by a quadratic equation with the first-order thermal expansion coefficient of 4.3×10-6/°C and the second-order thermal expansion coefficient of 5.9×10-9/°C. The mechanism of this nonlinear thermal expansion behavior is discussed.

  18. NGST fine guidance sensor

    NASA Astrophysics Data System (ADS)

    Rowlands, Neil; Hutchings, John; Murowinski, Richard G.; Alexander, Russ

    2003-03-01

    Instrumentation for the Next Generation Space Telescope (NGST) is currently in the Phase A definition stage. We have developed a concept for the NGST Fine Guidance Sensor or FGS. The FGS is a detector array based imager which resides in the NGST focal plane. We report here on tradeoff studies aimed at defining an overall configuration of the FGS which will meet the performance and interface requirements. A key performance requirement is a noise equivalent angle of 3 milli-arcseconds to be achieved with 95% probability for any pointing of the observatory in the celestial sphere. A key interface requirement is compatibility with the architecture of the Integrated Science Instrument Module (ISIM). The concept developed consists of two independent and redundant FGS modules, each with a 4' x 2' field of view covered by two 2048 x 2048 infrared detector arrays, providing 60 milli-arcsecond sampling. Performance modeling supporting the choice of this architecture and the trade space considered is presented. Each module has a set of readout electronics which perform star detection, pixel-by-pixel correction, and in fine guiding mode, centroid calculation. These readout electronics communicate with the ISIM Command &Data Handling Units where the FGS control software is based. Rationale for this choice of architecture is also presented.

  19. Light-Directed Tuning of Plasmon Resonances via Plasmon-Induced Polymerization Using Hot Electrons

    PubMed Central

    2017-01-01

    The precise morphology of nanoscale gaps between noble-metal nanostructures controls their resonant wavelengths. Here we show photocatalytic plasmon-induced polymerization can locally enlarge the gap size and tune the plasmon resonances. We demonstrate light-directed programmable tuning of plasmons can be self-limiting. Selective control of polymer growth around individual plasmonic nanoparticles is achieved, with simultaneous real-time monitoring of the polymerization process in situ using dark-field spectroscopy. Even without initiators present, we show light-triggered chain growth of various monomers, implying plasmon initiation of free radicals via hot-electron transfer to monomers at the Au surface. This concept not only provides a programmable way to fine-tune plasmons for many applications but also provides a window on polymer chemistry at the sub-nanoscale. PMID:28670601

  20. Imaging spectroscopy using embedded diffractive optical arrays

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Hinnrichs, Bradford

    2017-09-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera based on diffractive optic arrays. This approach to hyperspectral imaging has been demonstrated in all three infrared bands SWIR, MWIR and LWIR. The hyperspectral optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of this infrared hyperspectral sensor. This new and innovative approach to an infrared hyperspectral imaging spectrometer uses micro-optics that are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a small satellite, mini-UAV, commercial quadcopter or man portable. Also, an application of how this spectral imaging technology can easily be used to quantify the mass and volume flow rates of hydrocarbon gases. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. The detector array is divided into sub-images covered by each lenslet. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the number of simultaneous different spectral images collected each frame of the camera. A 2 x 2 lenslet array will image

  1. A silicon-based microelectrode array with a microdrive for monitoring brainstem regions of freely moving rats

    NASA Astrophysics Data System (ADS)

    Márton, G.; Baracskay, P.; Cseri, B.; Plósz, B.; Juhász, G.; Fekete, Z.; Pongrácz, A.

    2016-04-01

    Objective. Exploring neural activity behind synchronization and time locking in brain circuits is one of the most important tasks in neuroscience. Our goal was to design and characterize a microelectrode array (MEA) system specifically for obtaining in vivo extracellular recordings from three deep-brain areas of freely moving rats, simultaneously. The target areas, the deep mesencephalic reticular-, pedunculopontine tegmental- and pontine reticular nuclei are related to the regulation of sleep-wake cycles. Approach. The three targeted nuclei are collinear, therefore a single-shank MEA was designed in order to contact them. The silicon-based device was equipped with 3*4 recording sites, located according to the geometry of the brain regions. Furthermore, a microdrive was developed to allow fine actuation and post-implantation relocation of the probe. The probe was attached to a rigid printed circuit board, which was fastened to the microdrive. A flexible cable was designed in order to provide not only electronic connection between the probe and the amplifier system, but sufficient freedom for the movements of the probe as well. Main results. The microdrive was stable enough to allow precise electrode targeting into the tissue via a single track. The microelectrodes on the probe were suitable for recording neural activity from the three targeted brainstem areas. Significance. The system offers a robust solution to provide long-term interface between an array of precisely defined microelectrodes and deep-brain areas of a behaving rodent. The microdrive allowed us to fine-tune the probe location and easily scan through the regions of interest.

  2. Large format imaging arrays for the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Wollack, E. J.; Marraige, T.; Staggs, S.; Niemack, M.; Doriese, B.

    2006-01-01

    We describe progress in the fabrication, characterization, and production of detector arrays for the Atacama Cosmology Telescope (ACT). The completed ACT instrument is specified to image simultaneously at 145, 225, and 265 GHz using three 32x32 filled arrays of superconducting transition edge sensors (TES) read out with time-division-multiplexed SQUID amplifiers. We present details of the pixel design and testing including the optimization of the electrical parameters for multiplexed readout. Using geometric noise suppression and careful tuning of operation temperature and device bias resistance, the excess noise in the TES devices is balanced with detector speed for interfacing with the ACT optics. The design also accounts for practical tolerances such as transition temperature gradients and scatter that occur in the production of multiple wafers to populate fully the kilopixel cameras. We have developed an implanted absorber layer compatible with our silicon-on-insulator process that allows for tunable optical resistance with requisite on-wafer uniformity and wafer-to-wafer reproducibility. Arrays of 32 elements have been tested in the laboratory environment including electrical, optical, and multiplexed performance. Given this pixel design, optical tests and modeling are used to predict the performance of the filled array under anticipated viewing conditions. Integration of the filled array of pixels with a tuned backshort and dielectric plate in front of the array maximize absorption and the focal plane and suppress reflections. A mechanical design for the build of the full structure is completed and we report on progress toward the construction of a prototype array for first light on the ACT.

  3. Listeria monocytogenes CadC Regulates Cadmium Efflux and Fine-tunes Lipoprotein Localization to Escape the Host Immune Response and Promote Infection.

    PubMed

    Pombinho, Rita; Camejo, Ana; Vieira, Ana; Reis, Olga; Carvalho, Filipe; Almeida, Maria Teresa; Pinheiro, Jorge Campos; Sousa, Sandra; Cabanes, Didier

    2017-05-01

    Listeria monocytogenes is a major intracellular human foodborne bacterial pathogen. We previously revealed L. monocytogenes cadC as highly expressed during mouse infection. Here we show that L. monocytogenes CadC is a sequence-specific, DNA-binding and cadmium-dependent regulator of CadA, an efflux pump conferring cadmium resistance. CadC but not CadA is required for L. monocytogenes infection in vivo. Interestingly, CadC also directly represses lspB, a gene encoding a lipoprotein signal peptidase whose expression appears detrimental for infection. lspB overexpression promotes the release of the LpeA lipoprotein to the extracellular medium, inducing tumor necrosis factor α and interleukin 6 expression, thus impairing L. monocytogenes survival in macrophages. We propose that L. monocytogenes uses CadC to repress lspB expression during infection to avoid LpeA exposure to the host immune system, diminishing inflammatory cytokine expression and promoting intramacrophagic survival and virulence. CadC appears as the first metal efflux pump regulator repurposed during infection to fine-tune lipoprotein processing and host responses. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  4. A fine-tuned vector-parasite dialogue in tsetse's cardia determines peritrophic matrix integrity and trypanosome transmission success

    PubMed Central

    Aksoy, Emre; Weiss, Brian L.; Zhao, Xin; Awuoche, Erick O.; Wu, Yineng; Aksoy, Serap

    2018-01-01

    Arthropod vectors have multiple physical and immunological barriers that impede the development and transmission of parasites to new vertebrate hosts. These barriers include the peritrophic matrix (PM), a chitinous barrier that separates the blood bolus from the midgut epithelia and modulates vector-pathogens interactions. In tsetse flies, a sleeve-like PM is continuously produced by the cardia organ located at the fore- and midgut junction. African trypanosomes, Trypanosoma brucei, must bypass the PM twice; first to colonize the midgut and secondly to reach the salivary glands (SG), to complete their transmission cycle in tsetse. However, not all flies with midgut infections develop mammalian transmissible SG infections—the reasons for which are unclear. Here, we used transcriptomics, microscopy and functional genomics analyses to understand the factors that regulate parasite migration from midgut to SG. In flies with midgut infections only, parasites fail to cross the PM as they are eliminated from the cardia by reactive oxygen intermediates (ROIs)—albeit at the expense of collateral cytotoxic damage to the cardia. In flies with midgut and SG infections, expression of genes encoding components of the PM is reduced in the cardia, and structural integrity of the PM barrier is compromised. Under these circumstances trypanosomes traverse through the newly secreted and compromised PM. The process of PM attrition that enables the parasites to re-enter into the midgut lumen is apparently mediated by components of the parasites residing in the cardia. Thus, a fine-tuned dialogue between tsetse and trypanosomes at the cardia determines the outcome of PM integrity and trypanosome transmission success. PMID:29614112

  5. ADAR1-mediated 3' UTR editing and expression control of antiapoptosis genes fine-tunes cellular apoptosis response.

    PubMed

    Yang, Chang-Ching; Chen, Yi-Tung; Chang, Yi-Feng; Liu, Hsuan; Kuo, Yu-Ping; Shih, Chieh-Tien; Liao, Wei-Chao; Chen, Hui-Wen; Tsai, Wen-Sy; Tan, Bertrand Chin-Ming

    2017-05-25

    Adenosine-to-inosine RNA editing constitutes a crucial component of the cellular transcriptome and critically underpins organism survival and development. While recent high-throughput approaches have provided comprehensive documentation of the RNA editome, its functional output remains mostly unresolved, particularly for events in the non-coding regions. Gene ontology analysis of the known RNA editing targets unveiled a preponderance of genes related to apoptosis regulation, among which proto-oncogenes XIAP and MDM2 encode two the most abundantly edited transcripts. To further decode this potential functional connection, here we showed that the main RNA editor ADAR1 directly targets this 3' UTR editing of XIAP and MDM2, and further exerts a negative regulation on the expression of their protein products. This post-transcriptional silencing role was mediated via the inverted Alu elements in the 3' UTR but independent of alteration in transcript stability or miRNA targeting. Rather, we discovered that ADAR1 competes transcript occupancy with the RNA shuttling factor STAU1 to facilitate nuclear retention of the XIAP and MDM2 mRNAs. As a consequence, ADAR1 may acquire functionality in part by conferring spatial distribution and translation efficiency of the target transcripts. Finally, abrogation of ADAR1 expression or catalytic activity elicited a XIAP-dependent suppression of apoptotic response, whereas ectopic expression reversed this protective effect on cell death. Together, our results extended the known functions of ADAR1 and RNA editing to the critical fine-tuning of the intracellular apoptotic signaling and also provided mechanistic explanation for ADAR1's roles in development and tumorigenesis.

  6. Macromolecular scaffolding: the relationship between nanoscale architecture and function in multichromophoric arrays for organic electronics.

    PubMed

    Palermo, Vincenzo; Schwartz, Erik; Finlayson, Chris E; Liscio, Andrea; Otten, Matthijs B J; Trapani, Sara; Müllen, Klaus; Beljonne, David; Friend, Richard H; Nolte, Roeland J M; Rowan, Alan E; Samorì, Paolo

    2010-02-23

    The optimization of the electronic properties of molecular materials based on optically or electrically active organic building blocks requires a fine-tuning of their self-assembly properties at surfaces. Such a fine-tuning can be obtained on a scale up to 10 nm by mastering principles of supramolecular chemistry, i.e., by using suitably designed molecules interacting via pre-programmed noncovalent forces. The control and fine-tuning on a greater length scale is more difficult and challenging. This Research News highlights recent results we obtained on a new class of macromolecules that possess a very rigid backbone and side chains that point away from this backbone. Each side chain contains an organic semiconducting moiety, whose position and electronic interaction with neighboring moieties are dictated by the central macromolecular scaffold. A combined experimental and theoretical approach has made it possible to unravel the physical and chemical properties of this system across multiple length scales. The (opto)electronic properties of the new functional architectures have been explored by constructing prototypes of field-effect transistors and solar cells, thereby providing direct insight into the relationship between architecture and function.

  7. Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Wang, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Du, Xiaogang; Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024

    2014-02-15

    In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4{sup ′}-N,N{sup ′}-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N{sup ′})iridium(III) (Ir(2-phq){sub 3}) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2{sup ′}]picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m{sup 2}. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37)more » as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.« less

  8. The Catalytic and Non-catalytic Functions of the Brahma Chromatin-Remodeling Protein Collaborate to Fine-Tune Circadian Transcription in Drosophila

    PubMed Central

    Kwok, Rosanna S.; Li, Ying H.; Lei, Anna J.; Edery, Isaac; Chiu, Joanna C.

    2015-01-01

    Daily rhythms in gene expression play a critical role in the progression of circadian clocks, and are under regulation by transcription factor binding, histone modifications, RNA polymerase II (RNAPII) recruitment and elongation, and post-transcriptional mechanisms. Although previous studies have shown that clock-controlled genes exhibit rhythmic chromatin modifications, less is known about the functions performed by chromatin remodelers in animal clockwork. Here we have identified the Brahma (Brm) complex as a regulator of the Drosophila clock. In Drosophila, CLOCK (CLK) is the master transcriptional activator driving cyclical gene expression by participating in an auto-inhibitory feedback loop that involves stimulating the expression of the main negative regulators, period (per) and timeless (tim). BRM functions catalytically to increase nucleosome density at the promoters of per and tim, creating an overall restrictive chromatin landscape to limit transcriptional output during the active phase of cycling gene expression. In addition, the non-catalytic function of BRM regulates the level and binding of CLK to target promoters and maintains transient RNAPII stalling at the per promoter, likely by recruiting repressive and pausing factors. By disentangling its catalytic versus non-catalytic functions at the promoters of CLK target genes, we uncovered a multi-leveled mechanism in which BRM fine-tunes circadian transcription. PMID:26132408

  9. PhMYB4 fine-tunes the floral volatile signature of Petunia x hybrida through PhC4H.

    PubMed

    Colquhoun, Thomas A; Kim, Joo Young; Wedde, Ashlyn E; Levin, Laura A; Schmitt, Kyle C; Schuurink, Robert C; Clark, David G

    2011-01-01

    In Petunia × hybrida cv 'Mitchell Diploid' (MD), floral volatile benzenoid/phenylpropanoid (FVBP) biosynthesis is controlled spatially, developmentally, and daily at molecular, metabolic, and biochemical levels. Multiple genes have been shown to encode proteins that either directly catalyse a biochemical reaction yielding FVBP compounds or are involved in metabolite flux prior to the formation of FVBP compounds. It was hypothesized that multiple transcription factors are involved in the precise regulation of all necessary genes, resulting in the specific volatile signature of MD flowers. After acquiring all available petunia transcript sequences with homology to Arabidopsis thaliana R2R3-MYB transcription factors, PhMYB4 (named for its close identity to AtMYB4) was identified, cloned, and characterized. PhMYB4 transcripts accumulate to relatively high levels in floral tissues at anthesis and throughout open flower stages, which coincides with the spatial and developmental distribution of FVBP production and emission. Upon RNAi suppression of PhMYB4 (ir-PhMYB4) both petunia cinnamate-4-hydroxylase (PhC4H1 and PhC4H2) gene transcript levels were significantly increased. In addition, ir-PhMYB4 plants emit higher levels of FVBP compounds derived from p-coumaric acid (isoeugenol and eugenol) compared with MD. Together, these results indicate that PhMYB4 functions in the repression of C4H transcription, indirectly controlling the balance of FVBP production in petunia floral tissue (i.e. fine-tunes).

  10. A Hardware Platform for Tuning of MEMS Devices Using Closed-Loop Frequency Response

    NASA Technical Reports Server (NTRS)

    Ferguson, Michael I.; MacDonald, Eric; Foor, David

    2005-01-01

    We report on the development of a hardware platform for integrated tuning and closed-loop operation of MEMS gyroscopes. The platform was developed and tested for the second generation JPL/Boeing Post-Resonator MEMS gyroscope. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). A software interface allows the user to configure, calibrate, and tune the bias voltages on the micro-gyro. The interface easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.

  11. Bottom-up photonic crystal approach with top-down defect and heterostructure fine-tuning.

    PubMed

    Ding, Tao; Song, Kai; Clays, Koen; Tung, Chen-Ho

    2010-03-16

    We combine the most efficient (chemical) approach toward three-dimensional photonic crystals with the most convenient (physical) technique for creating non-close-packed crystalline structures. Self-assembly of colloidal particles in artificial opals is followed by a carefully tuned plasma etching treatment. By covering the resulting top layer of more open structure with original dense opal, embedded defect layers and heterostructures can be conveniently designed for advanced photonic band gap and band edge engineering.

  12. Perspective. Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy

    DOE PAGES

    Wu, J.; Bozovic, I.

    2015-04-06

    Chemical doping provides an effective method to control the electric properties of complex oxides. However, the state-of-art accuracy in controlling doping is limited to about 1%. This hampers elucidation of the precise doping dependences of physical properties and phenomena of interest, such as quantum phase transitions. Using the combinatorial molecular beam epitaxy, we improve the accuracy in tuning the doping level by two orders of magnitude. We illustrate this novel method by two examples: a systematic investigation of the doping dependence of interface superconductivity, and a study of the competing ground states in the vicinity of the insulator-to-superconductor transition.

  13. Hardware platforms for MEMS gyroscope tuning based on evolutionary computation using open-loop and closed -loop frequency response

    NASA Technical Reports Server (NTRS)

    Keymeulen, Didier; Ferguson, Michael I.; Fink, Wolfgang; Oks, Boris; Peay, Chris; Terrile, Richard; Cheng, Yen; Kim, Dennis; MacDonald, Eric; Foor, David

    2005-01-01

    We propose a tuning method for MEMS gyroscopes based on evolutionary computation to efficiently increase the sensitivity of MEMS gyroscopes through tuning. The tuning method was tested for the second generation JPL/Boeing Post-resonator MEMS gyroscope using the measurement of the frequency response of the MEMS device in open-loop operation. We also report on the development of a hardware platform for integrated tuning and closed loop operation of MEMS gyroscopes. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). The hardware platform easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.

  14. Orientation tuning of contrast masking caused by motion streaks.

    PubMed

    Apthorp, Deborah; Cass, John; Alais, David

    2010-08-01

    We investigated whether the oriented trails of blur left by fast-moving dots (i.e., "motion streaks") effectively mask grating targets. Using a classic overlay masking paradigm, we varied mask contrast and target orientation to reveal underlying tuning. Fast-moving Gaussian blob arrays elevated thresholds for detection of static gratings, both monoptically and dichoptically. Monoptic masking at high mask (i.e., streak) contrasts is tuned for orientation and exhibits a similar bandwidth to masking functions obtained with grating stimuli (∼30 degrees). Dichoptic masking fails to show reliable orientation-tuned masking, but dichoptic masks at very low contrast produce a narrowly tuned facilitation (∼17 degrees). For iso-oriented streak masks and grating targets, we also explored masking as a function of mask contrast. Interestingly, dichoptic masking shows a classic "dipper"-like TVC function, whereas monoptic masking shows no dip and a steeper "handle". There is a very strong unoriented component to the masking, which we attribute to transiently biased temporal frequency masking. Fourier analysis of "motion streak" images shows interesting differences between dichoptic and monoptic functions and the information in the stimulus. Our data add weight to the growing body of evidence that the oriented blur of motion streaks contributes to the processing of fast motion signals.

  15. Investigating a Quadrant Surface Coil Array for NQR Remote Sensing

    DTIC Science & Technology

    2014-10-23

    UNCLASSIFIED 1  Abstract—this paper is on the design and fabrication of a surface coil array in a quadrant layout for NQR (Nuclear Quadrupole...coupling and SNR (Signal-to-Noise Ratio) at standoff distances perpendicular from each coil. Index Terms— Nuclear Quadrupole Resonance, NQR ...Coil Array, probe, Nuclear Magnetic Resonance, tuning, decoupling, RLC, mutual coupling, RLC I. INTRODUCTION N Nuclear quadrupole resonance ( NQR

  16. Design of Complex BPF with Automatic Digital Tuning Circuit for Low-IF Receivers

    NASA Astrophysics Data System (ADS)

    Kondo, Hideaki; Sawada, Masaru; Murakami, Norio; Masui, Shoichi

    This paper describes the architecture and implementations of an automatic digital tuning circuit for a complex bandpass filter (BPF) in a low-power and low-cost transceiver for applications such as personal authentication and wireless sensor network systems. The architectural design analysis demonstrates that an active RC filter in a low-IF architecture can be at least 47.7% smaller in area than a conventional gm-C filter; in addition, it features a simple implementation of an associated tuning circuit. The principle of simultaneous tuning of both the center frequency and bandwidth through calibration of a capacitor array is illustrated as based on an analysis of filter characteristics, and a scalable automatic digital tuning circuit with simple analog blocks and control logic having only 835 gates is introduced. The developed capacitor tuning technique can achieve a tuning error of less than ±3.5% and lower a peaking in the passband filter characteristics. An experimental complex BPF using 0.18µm CMOS technology can successfully reduce the tuning error from an initial value of -20% to less than ±2.5% after tuning. The filter block dimensions are 1.22mm × 1.01mm; and in measurement results of the developed complex BPF with the automatic digital tuning circuit, current consumption is 705µA and the image rejection ratio is 40.3dB. Complete evaluation of the BPF indicates that this technique can be applied to low-power, low-cost transceivers.

  17. Resonance spectra of diabolo optical antenna arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Hong; Guo, Junpeng, E-mail: guoj@uah.edu; Simpkins, Blake

    A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlatedmore » to the shift of the resonance wavelength.« less

  18. Rectangle Surface Coil Array in a Grid Arrangement for Resonance Imaging

    DTIC Science & Technology

    2016-02-13

    switchable array, RF magnetic field, NQR , MRI, NMR, tuning, decoupling I. INTRODUCTION ESONANCE imaging can be accomplished using Nuclear Magnetic...Resonance (NMR) or Nuclear Quadrupole Resonance ( NQR ) techniques. REF [1] and [6] explain the differences between NMR and NQR . What NMR and NQR ...of resonance NQR frequency of 28.1MHz. The matching and tuning is explain in detail in the next section of this paper. Rectangle Surface Coil

  19. Multicolor tuning of manganese-doped ZnS colloidal nanocrystals.

    PubMed

    Quan, Zewei; Yang, Dongmei; Li, Chunxia; Kong, Deyan; Yang, Piaoping; Cheng, Ziyong; Lin, Jun

    2009-09-01

    In this paper, we report a facile route which is based on tuning doping concentration of Mn(2+) ions in ZnS nanocrystals, to achieve deliberate color modulation from blue to orange-yellow under single-wavelength excitation. X-ray diffraction (XRD), transmission electron microscopy (TEM), as well as photoluminescence (PL) spectra were employed to characterize the obtained samples. In this process, the relative emission intensities of both ZnS host (blue) and Mn(2+) dopant (orange-yellow) are sensitive to the Mn(2+) doping concentration, due to the energy transfer from ZnS host to Mn(2+) dopant. As a result of fine-tuning of these two emission components, white emission can be realized for Mn(2+)-doped ZnS nanocrystals. Furthermore, the as-synthesized doped nanocrystals possess extremely narrow size distribution and can be readily transferred into aqueous solution for the next potential applications.

  20. Fine-Tuning Nanoparticle Packing at Water-Oil Interfaces Using Ionic Strength.

    PubMed

    Chai, Yu; Lukito, Alysia; Jiang, Yufeng; Ashby, Paul D; Russell, Thomas P

    2017-10-11

    Nanoparticle-surfactants (NPSs) assembled at water-oil interfaces can significantly lower the interfacial tension and can be used to stabilize liquids. Knowing the formation and assembly and actively tuning the packing of these NPSs is of significant fundamental interest for the interfacial behavior of nanoparticles and of interest for water purification, drug encapsulation, enhanced oil recovery, and innovative energy transduction applications. Here, we demonstrate by means of interfacial tension measurements the high ionic strength helps the adsorption of NPSs to the water-oil interface leading to a denser packing of NPSs at the interface. With the reduction of interfacial area, the phase transitions from a "gas"-like to "liquid" to "solid" states of NPSs in two dimensions are observed. Finally, we provide the first in situ real-space imaging of NPSs at the water-oil interface by atomic force microcopy.

  1. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating.

    PubMed

    Knutson, Jeremy L; Martin, James D; Mitzi, David B

    2005-06-27

    Structural distortions within the extensive family of organic/inorganic hybrid tin iodide perovskite semiconductors are correlated with their experimental exciton energies and calculated band gaps. The extent of the in- and out-of-plane angular distortion of the SnI4(2-) perovskite sheets is largely determined by the relative charge density and steric requirements of the organic cations. Variation of the in-plane Sn-I-Sn bond angle was demonstrated to have the greatest impact on the tuning of the band gap, and the equatorial Sn-I bond distances have a significant secondary influence. Extended Hückel tight-binding band calculations are employed to decipher the crystal orbital origins of the structural effects that fine-tune the band structure. The calculations suggest that it may be possible to tune the band gap by as much as 1 eV using the templating influence of the organic cation.

  2. Scalable high-precision tuning of photonic resonators by resonant cavity-enhanced photoelectrochemical etching

    PubMed Central

    Gil-Santos, Eduardo; Baker, Christopher; Lemaître, Aristide; Gomez, Carmen; Leo, Giuseppe; Favero, Ivan

    2017-01-01

    Photonic lattices of mutually interacting indistinguishable cavities represent a cornerstone of collective phenomena in optics and could become important in advanced sensing or communication devices. The disorder induced by fabrication technologies has so far hindered the development of such resonant cavity architectures, while post-fabrication tuning methods have been limited by complexity and poor scalability. Here we present a new simple and scalable tuning method for ensembles of microphotonic and nanophotonic resonators, which enables their permanent collective spectral alignment. The method introduces an approach of cavity-enhanced photoelectrochemical etching in a fluid, a resonant process triggered by sub-bandgap light that allows for high selectivity and precision. The technique is presented on a gallium arsenide nanophotonic platform and illustrated by finely tuning one, two and up to five resonators. It opens the way to applications requiring large networks of identical resonators and their spectral referencing to external etalons. PMID:28117394

  3. Design of an iterative auto-tuning algorithm for a fuzzy PID controller

    NASA Astrophysics Data System (ADS)

    Saeed, Bakhtiar I.; Mehrdadi, B.

    2012-05-01

    Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.

  4. Intensity dynamics in a waveguide array laser

    NASA Astrophysics Data System (ADS)

    Feng, Mingming; Williams, Matthew O.; Kutz, J. Nathan; Silverman, Kevin L.; Mirin, Richard P.; Cundiff, Steven T.

    2011-02-01

    We consider experimentally and theoretically the optical field dynamics of a five-emitter laser array subject to a ramped injection current. We have achieved experimentally an array that produces a robust oscillatory power output with a nearly constant π phase shift between the oscillations from each waveguide. The output power also decreases linearly as a function of waveguide number. Those behaviors persisted for pump currents varying between 380 and 500 mA with only a slight change in phase. Of note is the fact that the fundamental frequency of oscillation increases with injection current, and higher harmonics are produced above a threshold current of approximately 380 mA. Experimental observations and theoretical predictions are in agreement. A low dimensional model was also developed and the impact of the nonuniform injection current studied. A nonuniform injection current is capable of shifting the bifurcations of the waveguide array providing a valuable method of array tuning without additional gain or structural alterations to the array.

  5. MKID digital readout tuning with deep learning

    NASA Astrophysics Data System (ADS)

    Dodkins, R.; Mahashabde, S.; O'Brien, K.; Thatte, N.; Fruitwala, N.; Walter, A. B.; Meeker, S. R.; Szypryt, P.; Mazin, B. A.

    2018-04-01

    Microwave Kinetic Inductance Detector (MKID) devices offer inherent spectral resolution, simultaneous read out of thousands of pixels, and photon-limited sensitivity at optical wavelengths. Before taking observations the readout power and frequency of each pixel must be individually tuned, and if the equilibrium state of the pixels change, then the readout must be retuned. This process has previously been performed through manual inspection, and typically takes one hour per 500 resonators (20 h for a ten-kilo-pixel array). We present an algorithm based on a deep convolution neural network (CNN) architecture to determine the optimal bias power for each resonator. The bias point classifications from this CNN model, and those from alternative automated methods, are compared to those from human decisions, and the accuracy of each method is assessed. On a test feed-line dataset, the CNN achieves an accuracy of 90% within 1 dB of the designated optimal value, which is equivalent accuracy to a randomly selected human operator, and superior to the highest scoring alternative automated method by 10%. On a full ten-kilopixel array, the CNN performs the characterization in a matter of minutes - paving the way for future mega-pixel MKID arrays.

  6. Self-tuning bistable parametric feedback oscillator: Near-optimal amplitude maximization without model information

    NASA Astrophysics Data System (ADS)

    Braun, David J.; Sutas, Andrius; Vijayakumar, Sethu

    2017-01-01

    Theory predicts that parametrically excited oscillators, tuned to operate under resonant condition, are capable of large-amplitude oscillation useful in diverse applications, such as signal amplification, communication, and analog computation. However, due to amplitude saturation caused by nonlinearity, lack of robustness to model uncertainty, and limited sensitivity to parameter modulation, these oscillators require fine-tuning and strong modulation to generate robust large-amplitude oscillation. Here we present a principle of self-tuning parametric feedback excitation that alleviates the above-mentioned limitations. This is achieved using a minimalistic control implementation that performs (i) self-tuning (slow parameter adaptation) and (ii) feedback pumping (fast parameter modulation), without sophisticated signal processing past observations. The proposed approach provides near-optimal amplitude maximization without requiring model-based control computation, previously perceived inevitable to implement optimal control principles in practical application. Experimental implementation of the theory shows that the oscillator self-tunes itself near to the onset of dynamic bifurcation to achieve extreme sensitivity to small resonant parametric perturbations. As a result, it achieves large-amplitude oscillations by capitalizing on the effect of nonlinearity, despite substantial model uncertainties and strong unforeseen external perturbations. We envision the present finding to provide an effective and robust approach to parametric excitation when it comes to real-world application.

  7. Representation of pitch chroma by multi-peak spectral tuning in human auditory cortex

    PubMed Central

    Moerel, Michelle; De Martino, Federico; Santoro, Roberta; Yacoub, Essa; Formisano, Elia

    2015-01-01

    Musical notes played at octave intervals (i.e., having the same pitch chroma) are perceived as similar. This well-known perceptual phenomenon lays at the foundation of melody recognition and music perception, yet its neural underpinnings remain largely unknown to date. Using fMRI with high sensitivity and spatial resolution, we examined the contribution of multi-peak spectral tuning to the neural representation of pitch chroma in human auditory cortex in two experiments. In experiment 1, our estimation of population spectral tuning curves from the responses to natural sounds confirmed—with new data—our recent results on the existence of cortical ensemble responses finely tuned to multiple frequencies at one octave distance (Moerel et al., 2013). In experiment 2, we fitted a mathematical model consisting of a pitch chroma and height component to explain the measured fMRI responses to piano notes. This analysis revealed that the octave-tuned populations—but not other cortical populations—harbored a neural representation of musical notes according to their pitch chroma. These results indicate that responses of auditory cortical populations selectively tuned to multiple frequencies at one octave distance predict well the perceptual similarity of musical notes with the same chroma, beyond the physical (frequency) distance of notes. PMID:25479020

  8. Representation of pitch chroma by multi-peak spectral tuning in human auditory cortex.

    PubMed

    Moerel, Michelle; De Martino, Federico; Santoro, Roberta; Yacoub, Essa; Formisano, Elia

    2015-02-01

    Musical notes played at octave intervals (i.e., having the same pitch chroma) are perceived as similar. This well-known perceptual phenomenon lays at the foundation of melody recognition and music perception, yet its neural underpinnings remain largely unknown to date. Using fMRI with high sensitivity and spatial resolution, we examined the contribution of multi-peak spectral tuning to the neural representation of pitch chroma in human auditory cortex in two experiments. In experiment 1, our estimation of population spectral tuning curves from the responses to natural sounds confirmed--with new data--our recent results on the existence of cortical ensemble responses finely tuned to multiple frequencies at one octave distance (Moerel et al., 2013). In experiment 2, we fitted a mathematical model consisting of a pitch chroma and height component to explain the measured fMRI responses to piano notes. This analysis revealed that the octave-tuned populations-but not other cortical populations-harbored a neural representation of musical notes according to their pitch chroma. These results indicate that responses of auditory cortical populations selectively tuned to multiple frequencies at one octave distance predict well the perceptual similarity of musical notes with the same chroma, beyond the physical (frequency) distance of notes. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Improvement of Electrochemical Water Oxidation by Fine-Tuning the Structure of Tetradentate N4 Ligands of Molecular Copper Catalysts.

    PubMed

    Shen, Junyu; Wang, Mei; Gao, Jinsuo; Han, Hongxian; Liu, Hong; Sun, Licheng

    2017-11-23

    Two copper complexes, [(L1)Cu(OH 2 )](BF 4 ) 2 [1; L1=N,N'-dimethyl-N,N'-bis(pyridin-2-ylmethyl)-1,2-diaminoethane] and [(L2)Cu(OH 2 )](BF 4 ) 2 [2, L2=2,7-bis(2-pyridyl)-3,6-diaza-2,6-octadiene], were prepared as molecular water oxidation catalysts. Complex 1 displayed an overpotential (η) of 1.07 V at 1 mA cm -2 and an observed rate constant (k obs ) of 13.5 s -1 at η 1.0 V in pH 9.0 phosphate buffer solution, whereas 2 exhibited a significantly smaller η (0.70 V) to reach 1 mA cm -2 and a higher k obs (50.4 s -1 ) than 1 under identical test conditions. Additionally, 2 displayed better stability than 1 in controlled potential electrolysis experiments with a faradaic efficiency of 94 % for O 2 evolution at 1.58 V, when a casing tube was used for the Pt cathode. A possible mechanism for 1- and 2-catalyzed O 2 evolution reactions is discussed based on the experimental evidence. These comparative results indicate that fine-tuning the structures of tetradentate N 4 ligands can bring about significant change in the performance of copper complexes for electrochemical water oxidation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Multilayered membranes with tuned well arrays to be used as regenerative patches.

    PubMed

    Martins, Nádia I; Sousa, Maria P; Custódio, Catarina A; Pinto, Vânia C; Sousa, Paulo J; Minas, Graça; Cleymand, Franck; Mano, João F

    2017-07-15

    Membranes have been explored as patches in tissue repair and regeneration, most of them presenting a flat geometry or a patterned texture at the nano/micrometer scale. Herein, a new concept of a flexible membrane featuring well arrays forming pore-like environments to accommodate cell culture is proposed. The processing of such membranes using polysaccharides is based on the production of multilayers using the layer-by-layer methodology over a patterned PDMS substrate. The detached multilayered membrane exhibits a layer of open pores at one side and a total thickness of 38±2.2µm. The photolithography technology used to produce the molds allows obtaining wells on the final membranes with a tuned shape and micro-scale precision. The influence of post-processing procedures over chitosan/alginate films with 100 double layers, including crosslinking with genipin or fibronectin immobilization, on the adhesion and proliferation of human osteoblast-like cells is also investigated. The results suggest that the presence of patterned wells affects positively cell adhesion, morphology and proliferation. In particular, it is seen that cells colonized preferentially the well regions. The geometrical features with micro to sub-millimeter patterned wells, together with the nano-scale organization of the polymeric components along the thickness of the film will allow to engineer highly versatile multilayered membranes exhibiting a pore-like microstructure in just one of the sides, that could be adaptable in the regeneration of multiple tissues. Flexible multilayered membranes containing multiple micro-reservoirs are found as potential regenerative patches. Layer-by-layer (LbL) methodology over a featured PDMS substrate is used to produce patterned membranes, composed only by natural-based polymers, that can be easily detached from the PDMS substrate. The combination of nano-scale control of the polymeric organization along the thickness of the chitosan/alginate (CHT

  11. Structural control of ultra-fine CoPt nanodot arrays via electrodeposition process

    NASA Astrophysics Data System (ADS)

    Wodarz, Siggi; Hasegawa, Takashi; Ishio, Shunji; Homma, Takayuki

    2017-05-01

    CoPt nanodot arrays were fabricated by combining electrodeposition and electron beam lithography (EBL) for the use of bit-patterned media (BPM). To achieve precise control of deposition uniformity and coercivity of the CoPt nanodot arrays, their crystal structure and magnetic properties were controlled by controlling the diffusion state of metal ions from the initial deposition stage with the application of bath agitation. Following bath agitation, the composition gradient of the CoPt alloy with thickness was mitigated to have a near-ideal alloy composition of Co:Pt =80:20, which induces epitaxial-like growth from Ru substrate, thus resulting in the improvement of the crystal orientation of the hcp (002) structure from its initial deposition stages. Furthermore, the cross-sectional transmission electron microscope (TEM) analysis of the nanodots deposited with bath agitation showed CoPt growth along its c-axis oriented in the perpendicular direction, having uniform lattice fringes on the hcp (002) plane from the Ru underlayer interface, which is a significant factor to induce perpendicular magnetic anisotropy. Magnetic characterization of the CoPt nanodot arrays showed increase in the perpendicular coercivity and squareness of the hysteresis loops from 2.0 kOe and 0.64 (without agitation) to 4.0 kOe and 0.87 with bath agitation. Based on the detailed characterization of nanodot arrays, the precise crystal structure control of the nanodot arrays with ultra-high recording density by electrochemical process was successfully demonstrated.

  12. Coumaraz-2-on-4-ylidene: Ambiphilic N-heterocyclic Carbenes with a Fine-Tunable Electronic Structure.

    PubMed

    Song, Hayoung; Kim, Hyunho; Lee, Eunsung

    2018-05-16

    Herein, a coumaraz-2-on-4-ylidene (1) as a new example of ambiphilic N-heterocyclic carbenes with fine tunable electronic properties is reported. The N-carbamic and aryl groups on carbene carbon provide exceptionally high electrophilicity and nucleophilicity simultaneously to the carbene center, as evidenced by the 77Se NMR chemical shifts of their selenoketone derivatives and the CO stretching strengths of their rhodium carbonyl complexes. Since the precursors of 1 could be synthesized from various functionalized Schiff bases in a practical and scalable manner, the electronic properties of 1 can be fine-tuned in quantitative and predictable way using the Hammett σ constant of the functional groups on aryl ring. The facile electronic tuning capability of 1 may be further applicable to eliciting novel properties in main-group and transition metal chemistry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. New biphenol-based, fine-tunable monodentate phosphoramidite ligands for catalytic asymmetric transformations

    PubMed Central

    Hua, Zihao; Vassar, Victor C.; Choi, Hojae; Ojima, Iwao

    2004-01-01

    Monodentate phosphoramidite ligands have been developed based on enantiopure 6,6′-dimethylbiphenols with axial chirality. These chiral ligands are easy to prepare and flexible for modifications. The fine-tuning capability of these ligands plays a significant role in achieving high enantioselectivity in the asymmetric hydroformylation of allyl cyanide and the conjugate addition of diethylzinc to cycloalkenones. PMID:15020764

  14. Extendable nickel complex tapes that reach NIR absorptions.

    PubMed

    Audi, Hassib; Chen, Zhongrui; Charaf-Eddin, Azzam; D'Aléo, Anthony; Canard, Gabriel; Jacquemin, Denis; Siri, Olivier

    2014-12-14

    Stepwise synthesis of linear nickel complex oligomer tapes with no need for solid-phase support has been achieved. The control of the length in flat arrays allows a fine-tuning of the absorption properties from the UV to the NIR region.

  15. Electrodeposited highly-ordered manganese oxide nanowire arrays for supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Haifeng; Lu, Bingqiang; Wei, Shuiqiang; Bao, Mi; Wen, Yanxuan; Wang, Fan

    2012-07-01

    Large arrays of well-aligned Mn oxide nanowires were prepared by electrodeposition using anodic aluminum oxide templates. The sizes of nanowires were tuned by varying the electrotype solution involved and the MnO2 nanowires with 10 μm in length were obtained in a neutral KMnO4 bath for 1 h. MnO2 nanowire arrays grown on conductor substance save the tedious electrode-making process, and electrochemical characterization demonstrates that the MnO2 nanowire arrays electrode has good capacitive behavior. Due to the limited mass transportation in narrow spacing, the spacing effects between the neighbor nanowires have show great influence to the electrochemical performance.

  16. Enhanced photovoltaic performance of an inclined nanowire array solar cell.

    PubMed

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2015-11-30

    An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays.

  17. 2-Dimensional beamsteering using dispersive deflectors and wavelength tuning.

    PubMed

    Chan, Trevor; Myslivets, Evgeny; Ford, Joseph E

    2008-09-15

    We introduce a 2D beamscanner which is controlled by wavelength tuning. Two passive dispersive devices are aligned orthogonally to deflect the optical beam in two dimensions. We provide a proof of principle demonstration by combining an arrayed waveguide grating with a free space optical grating and using various input sources to characterize the beamscanner. This achieved a discrete 10.3 degrees by 11 degrees output field of view with attainable angles existing on an 8 by 6 grid of directions. The entire range was reached by scanning over a 40 nm wavelength range. We also analyze an improved system combining a virtually imaged phased array with a diffraction grating. This device is much more compact and produces a continuous output scan in one direction while being discrete in the other.

  18. Tuning In to Sound: Frequency-Selective Attentional Filter in Human Primary Auditory Cortex

    PubMed Central

    Da Costa, Sandra; van der Zwaag, Wietske; Miller, Lee M.; Clarke, Stephanie

    2013-01-01

    Cocktail parties, busy streets, and other noisy environments pose a difficult challenge to the auditory system: how to focus attention on selected sounds while ignoring others? Neurons of primary auditory cortex, many of which are sharply tuned to sound frequency, could help solve this problem by filtering selected sound information based on frequency-content. To investigate whether this occurs, we used high-resolution fMRI at 7 tesla to map the fine-scale frequency-tuning (1.5 mm isotropic resolution) of primary auditory areas A1 and R in six human participants. Then, in a selective attention experiment, participants heard low (250 Hz)- and high (4000 Hz)-frequency streams of tones presented at the same time (dual-stream) and were instructed to focus attention onto one stream versus the other, switching back and forth every 30 s. Attention to low-frequency tones enhanced neural responses within low-frequency-tuned voxels relative to high, and when attention switched the pattern quickly reversed. Thus, like a radio, human primary auditory cortex is able to tune into attended frequency channels and can switch channels on demand. PMID:23365225

  19. Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response.

    PubMed

    Liu, Ziyan; Jia, Yuxin; Ding, Yanglin; Shi, Yiting; Li, Zhen; Guo, Yan; Gong, Zhizhong; Yang, Shuhua

    2017-04-06

    In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Real-Time Ozone Detection Based on a Microfabricated Quartz Crystal Tuning Fork Sensor

    PubMed Central

    Wang, Rui; Tsow, Francis; Zhang, Xuezhi; Peng, Jhih-Hong; Forzani, Erica S.; Chen, Yongsheng; Crittenden, John C.; Destaillats, Hugo; Tao, Nongjian

    2009-01-01

    A chemical sensor for ozone based on an array of microfabricated tuning forks is described. The tuning forks are highly sensitive and stable, with low power consumption and cost. The selective detection is based on the specific reaction of the polymer with ozone. With a mass detection limit of ∼2 pg/mm2 and response time of 1 second, the sensor coated with a polymer sensing material can detect ppb-level ozone in air. The sensor is integrated into a miniaturized wearable device containing a detection circuit, filtration, battery and wireless communication chip, which is ideal for personal and microenvironmental chemical exposure monitoring. PMID:22346720

  1. Boron Nitride Coated Carbon Nanotube Arrays with Enhanced Compressive Mechanical Property

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Tan, Dunlin; Zhang, Bowei; Tok, Alfred Iing Yoong; Teo, Edwin Hang Tong

    Vertically aligned carbon nanotube (CNT) array is one of the most promising energy dissipating materials due to its excellent temperature invariant mechanical property. However, the CNT arrays with desirable recoverability after compression is still a challenge. Here, we report on the mechanical enhancement of the CNT arrays reinforced by coating with boron nitride (BN) layers. These BN coated CNT (BN/CNT) arrays exhibit excellent compressive strength and recoverability as compared to those of the as-prepared CNT arrays which totally collapsed after compression. In addition, the BN coating also provides better resistance to oxidation due to its intrinsic thermal stability. This work presented here opens a new pathway towards tuning mechanical behavior of any arbitrary CNT arrays for promising potential such as damper, vibration isolator and shock absorber applications.

  2. Fine golden rings: Tunable surface plasmon resonance from assembled nanorods in topological defects of liquid crystals

    DOE PAGES

    Lee, Elaine; Xia, Yu; Ferrier, Jr., Robert C.; ...

    2016-02-08

    Unprecedented, reversible, and dynamic control over an assembly of gold nanorods dispersed in liquid crystals (LC) is demonstrated. The LC director field is dynamically tuned at the nanoscale using microscale ring confinement through the interplay of elastic energy at different temperatures, thus fine-tuning its core replacement energy to reversibly sequester nanoscale inclusions at the microscale. As a result, this leads to shifts of 100 nm or more in the surface plasmon resonance peak, an order of magnitude greater than any previous work with AuNR composites.

  3. Individual differences in attention strategies during detection, fine discrimination, and coarse discrimination

    PubMed Central

    Hecker, Elizabeth A.; Serences, John T.; Srinivasan, Ramesh

    2013-01-01

    Interacting with the environment requires the ability to flexibly direct attention to relevant features. We examined the degree to which individuals attend to visual features within and across Detection, Fine Discrimination, and Coarse Discrimination tasks. Electroencephalographic (EEG) responses were measured to an unattended peripheral flickering (4 or 6 Hz) grating while individuals (n = 33) attended to orientations that were offset by 0°, 10°, 20°, 30°, 40°, and 90° from the orientation of the unattended flicker. These unattended responses may be sensitive to attentional gain at the attended spatial location, since attention to features enhances early visual responses throughout the visual field. We found no significant differences in tuning curves across the three tasks in part due to individual differences in strategies. We sought to characterize individual attention strategies using hierarchical Bayesian modeling, which grouped individuals into families of curves that reflect attention to the physical target orientation (“on-channel”) or away from the target orientation (“off-channel”) or a uniform distribution of attention. The different curves were related to behavioral performance; individuals with “on-channel” curves had lower thresholds than individuals with uniform curves. Individuals with “off-channel” curves during Fine Discrimination additionally had lower thresholds than those assigned to uniform curves, highlighting the perceptual benefits of attending away from the physical target orientation during fine discriminations. Finally, we showed that a subset of individuals with optimal curves (“on-channel”) during Detection also demonstrated optimal curves (“off-channel”) during Fine Discrimination, indicating that a subset of individuals can modulate tuning optimally for detection and discrimination. PMID:23678013

  4. A Transcriptional Regulatory Mechanism Finely Tunes the Firing of Type VI Secretion System in Response to Bacterial Enemies

    PubMed Central

    Lazzaro, Martina; Feldman, Mario F.

    2017-01-01

    ABSTRACT The ability to detect and measure danger from an environmental signal is paramount for bacteria to respond accordingly, deploying strategies that halt or counteract potential cellular injury and maximize survival chances. Type VI secretion systems (T6SSs) are complex bacterial contractile nanomachines able to target toxic effectors into neighboring bacteria competing for the same colonization niche. Previous studies support the concept that either T6SSs are constitutively active or they fire effectors in response to various stimuli, such as high bacterial density, cell-cell contact, nutrient depletion, or components from dead sibling cells. For Serratia marcescens, it has been proposed that its T6SS is stochastically expressed, with no distinction between harmless or aggressive competitors. In contrast, we demonstrate that the Rcs regulatory system is responsible for finely tuning Serratia T6SS expression levels, behaving as a transcriptional rheostat. When confronted with harmless bacteria, basal T6SS expression levels suffice for Serratia to eliminate the competitor. A moderate T6SS upregulation is triggered when, according to the aggressor-prey ratio, an unbalanced interplay between homologous and heterologous effectors and immunity proteins takes place. Higher T6SS expression levels are achieved when Serratia is challenged by a contender like Acinetobacter, which indiscriminately fires heterologous effectors able to exert lethal cellular harm, threatening the survival of the Serratia population. We also demonstrate that Serratia’s RcsB-dependent T6SS regulatory mechanism responds not to general stress signals but to the action of specific effectors from competitors, displaying an exquisite strategy to weigh risks and keep the balance between energy expenditure and fitness costs. PMID:28830939

  5. Muon g -2 in an alternative quasi-Yukawa unification with a less fine-tuned seesaw mechanism

    NASA Astrophysics Data System (ADS)

    Altın, Zafer; Ã-zdal, Ã.-zer; Ün, Cem Salih

    2018-03-01

    We explore the low-scale implications of the Pati-Salam Model including the TeV scale right-handed neutrinos interacting and mixing with the MSSM fields through the inverse seesaw (IS) mechanism in light of the muon anomalous magnetic moment (muon g -2 ) resolution and highlight the solutions which are compatible with the quasi-Yukawa unification condition (QYU). We find that the presence of the right-handed neutrinos causes heavy smuons as mμ ˜≳800 GeV in order to avoid tachyonic staus at the low scale. On the other hand, the sneutrinos can be as light as about 100 GeV, and along with the light charginos of mass ≲400 GeV , they can yield such large contributions to muon g -2 that the discrepancy between the experiment and the theory can be resolved. These solutions also require mχ˜1 ±≲400 GeV and mχ˜10≲200 . We also discuss such light chargino and neutralino along with the light stau (mτ ˜≳200 GeV ) in the light of current LHC results. Besides, the gluino mass lies in a range ˜[2.5 - 3.5 ] TeV , which is tested in near future experiments. In addition, the model predicts relatively light Higgsinos (μ ≲700 GeV ); hence, the second chargino mass is also light enough (≲700 GeV ) to contribute to muon g -2 . Light Higgsinos also yield less fine-tuning at the electroweak scale, and the regions compatible with muon g -2 restrict ΔEW≲100 strictly, and this region also satisfies the QYU condition. In addition, the ratios among the Yukawa couplings should be 1.8 ≲yt/yb≲2.6 , yτ/yb˜1.3 to yield correct fermion masses. Even though the right-handed neutrino Yukawa coupling can be varied freely, the solutions bound its range to 0.8 ≲yν/yb≲1.7 .

  6. A facile strategy for fine-tuning the stability and drug release of stimuli-responsive cross-linked micellar nanoparticles towards precision drug delivery.

    PubMed

    Xiao, Kai; Lin, Tzu-Yin; Lam, Kit S; Li, Yuanpei

    2017-06-14

    Precision drug delivery has a great impact on the application of precision oncology for better patient care. Here we report a facile strategy for fine-tuning the stability, drug release and responsiveness of stimuli-responsive cross-linked nanoparticles towards precision drug delivery. A series of micellar nanoparticles with different levels of intramicellar disulfide crosslinkages could be conveniently produced with a mixed micelle approach. These micellar nanoparticles were all within a size range of 25-40 nm so that they could take full advantage of the enhanced permeability and retention (EPR) effect for tumor-targeted drug delivery. The properties of these nanoparticles such as critical micelle concentration (CMC), stability, drug release and responsiveness to a reductive environment could be well correlated with the levels of crosslinking (LOC). Compared to the micellar nanoparticles with a LOC at 0% that caused the death of animals of two species (mouse and rat) due to the acute toxicity such as hemolysis, the nanoparticles at all other levels of crosslinking were much safer to be administered into animals. The in vitro antitumor efficacy of micellar nanoparticles crosslinked at lower levels (20% & 50%) were much more effective than that of 100% crosslinked micellar nanoparticles in SKOV-3 ovarian cancer cells.

  7. The CCR4 Deadenylase Acts with Nanos and Pumilio in the Fine-Tuning of Mei-P26 Expression to Promote Germline Stem Cell Self-Renewal

    PubMed Central

    Joly, Willy; Chartier, Aymeric; Rojas-Rios, Patricia; Busseau, Isabelle; Simonelig, Martine

    2013-01-01

    Summary Translational regulation plays an essential role in Drosophila ovarian germline stem cell (GSC) biology. GSC self-renewal requires two translational repressors, Nanos (Nos) and Pumilio (Pum), which repress the expression of differentiation factors in the stem cells. The molecular mechanisms underlying this translational repression remain unknown. Here, we show that the CCR4 deadenylase is required for GSC self-renewal and that Nos and Pum act through its recruitment onto specific mRNAs. We identify mei-P26 mRNA as a direct and major target of Nos/Pum/CCR4 translational repression in the GSCs. mei-P26 encodes a protein of the Trim-NHL tumor suppressor family that has conserved functions in stem cell lineages. We show that fine-tuning Mei-P26 expression by CCR4 plays a key role in GSC self-renewal. These results identify the molecular mechanism of Nos/Pum function in GSC self-renewal and reveal the role of CCR4-NOT-mediated deadenylation in regulating the balance between GSC self-renewal and differentiation. PMID:24286029

  8. The CCR4 deadenylase acts with Nanos and Pumilio in the fine-tuning of Mei-P26 expression to promote germline stem cell self-renewal.

    PubMed

    Joly, Willy; Chartier, Aymeric; Rojas-Rios, Patricia; Busseau, Isabelle; Simonelig, Martine

    2013-01-01

    Translational regulation plays an essential role in Drosophila ovarian germline stem cell (GSC) biology. GSC self-renewal requires two translational repressors, Nanos (Nos) and Pumilio (Pum), which repress the expression of differentiation factors in the stem cells. The molecular mechanisms underlying this translational repression remain unknown. Here, we show that the CCR4 deadenylase is required for GSC self-renewal and that Nos and Pum act through its recruitment onto specific mRNAs. We identify mei-P26 mRNA as a direct and major target of Nos/Pum/CCR4 translational repression in the GSCs. mei-P26 encodes a protein of the Trim-NHL tumor suppressor family that has conserved functions in stem cell lineages. We show that fine-tuning Mei-P26 expression by CCR4 plays a key role in GSC self-renewal. These results identify the molecular mechanism of Nos/Pum function in GSC self-renewal and reveal the role of CCR4-NOT-mediated deadenylation in regulating the balance between GSC self-renewal and differentiation.

  9. Receptor arrays optimized for natural odor statistics.

    PubMed

    Zwicker, David; Murugan, Arvind; Brenner, Michael P

    2016-05-17

    Natural odors typically consist of many molecules at different concentrations. It is unclear how the numerous odorant molecules and their possible mixtures are discriminated by relatively few olfactory receptors. Using an information theoretic model, we show that a receptor array is optimal for this task if it achieves two possibly conflicting goals: (i) Each receptor should respond to half of all odors and (ii) the response of different receptors should be uncorrelated when averaged over odors presented with natural statistics. We use these design principles to predict statistics of the affinities between receptors and odorant molecules for a broad class of odor statistics. We also show that optimal receptor arrays can be tuned to either resolve concentrations well or distinguish mixtures reliably. Finally, we use our results to predict properties of experimentally measured receptor arrays. Our work can thus be used to better understand natural olfaction, and it also suggests ways to improve artificial sensor arrays.

  10. Tuning the cosmological constant, broken scale invariance, unitarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Förste, Stefan; Manz, Paul; Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn

    2016-06-10

    We study gravity coupled to a cosmological constant and a scale but not conformally invariant sector. In Minkowski vacuum, scale invariance is spontaneously broken. We consider small fluctuations around the Minkowski vacuum. At the linearised level we find that the trace of metric perturbations receives a positive or negative mass squared contribution. However, only for the Fierz-Pauli combination the theory is free of ghosts. The mass term for the trace of metric perturbations can be cancelled by explicitly breaking scale invariance. This reintroduces fine-tuning. Models based on four form field strength show similarities with explicit scale symmetry breaking due tomore » quantisation conditions.« less

  11. A microlens array based on polymer network liquid crystal

    NASA Astrophysics Data System (ADS)

    Xu, Miao; Zhou, Zuowei; Ren, Hongwen; Hee Lee, Seung; Wang, Qionghua

    2013-02-01

    Using UV light to expose a homogeneous cell containing liquid crystal (LC)/monomer mixture through a patterned photomask, we prepared a polymer network liquid crystal (PNLC) microlens array. In each microlens, the formed polymer network presents a central-symmetrical inhomogeneous morphology and LC exhibits a gradient refractive index distribution. By applying an external voltage to the cell, the gradient of the LC refractive index is changed. As a result, the focal length of the microlens can be tuned. Our PNLC microlens array has the advantages of low operating voltage, easy fabrication, and good stability. This kind of microlens array has potential applications in image processing, optical communications, and switchable 2D/3D displays.

  12. Adaptive Injection-locking Oscillator Array for RF Spectrum Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Daniel

    2011-04-19

    A highly parallel radio frequency receiver using an array of injection-locking oscillators for on-chip, rapid estimation of signal amplitudes and frequencies is considered. The oscillators are tuned to different natural frequencies, and variable gain amplifiers are used to provide negative feedback to adapt the locking band-width with the input signal to yield a combined measure of input signal amplitude and frequency detuning. To further this effort, an array of 16 two-stage differential ring oscillators and 16 Gilbert-cell mixers is designed for 40-400 MHz operation. The injection-locking oscillator array is assembled on a custom printed-circuit board. Control and calibration is achievedmore » by on-board microcontroller.« less

  13. Neural tuning matches frequency-dependent time differences between the ears

    PubMed Central

    Benichoux, Victor; Fontaine, Bertrand; Franken, Tom P; Karino, Shotaro; Joris, Philip X; Brette, Romain

    2015-01-01

    The time it takes a sound to travel from source to ear differs between the ears and creates an interaural delay. It varies systematically with spatial direction and is generally modeled as a pure time delay, independent of frequency. In acoustical recordings, we found that interaural delay varies with frequency at a fine scale. In physiological recordings of midbrain neurons sensitive to interaural delay, we found that preferred delay also varies with sound frequency. Similar observations reported earlier were not incorporated in a functional framework. We find that the frequency dependence of acoustical and physiological interaural delays are matched in key respects. This suggests that binaural neurons are tuned to acoustical features of ecological environments, rather than to fixed interaural delays. Using recordings from the nerve and brainstem we show that this tuning may emerge from neurons detecting coincidences between input fibers that are mistuned in frequency. DOI: http://dx.doi.org/10.7554/eLife.06072.001 PMID:25915620

  14. Angular tuning of the magnetic birefringence in rippled cobalt films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arranz, Miguel A., E-mail: MiguelAngel.Arranz@uclm.es; Colino, José M.

    We report the measurement of magnetically induced birefringence in rippled Co films. For this purpose, the magneto-optical properties of ion beam eroded ferromagnetic films were studied using Kerr magnetometry and magnetic birefringence in the transmitted light intensity. Upon sufficient ion sculpting, these ripple surface nanostructures developed a defined uniaxial anisotropy in the in-plane magnetization, finely tuning the magnetic birefringence effect. We have studied its dependence on the relative orientation between the ripple direction and the magnetic field, and found this effect to be dramatically correlated with the capability to neatly distinguish the mechanisms for the in-plane magnetization reversal, i.e., rotationmore » and nucleation. This double refraction corresponds univocally to the two magnetization axes, parallel and perpendicular to the ripples direction. We have also observed that tuned birefringence in stack assemblies of rippled Co films, which enables us to technically manipulate the number and direction of refraction axes.« less

  15. Optical phased arrays with evanescently-coupled antennas

    DOEpatents

    Sun, Jie; Watts, Michael R; Yaacobi, Ami; Timurdogan, Erman

    2015-03-24

    An optical phased array formed of a large number of nanophotonic antenna elements can be used to project complex images into the far field. These nanophotonic phased arrays, including the nanophotonic antenna elements and waveguides, can be formed on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) processes. Directional couplers evanescently couple light from the waveguides to the nanophotonic antenna elements, which emit the light as beams with phases and amplitudes selected so that the emitted beams interfere in the far field to produce the desired pattern. In some cases, each antenna in the phased array may be optically coupled to a corresponding variable delay line, such as a thermo-optically tuned waveguide or a liquid-filled cell, which can be used to vary the phase of the antenna's output (and the resulting far-field interference pattern).

  16. Tunable absorption resonances in the ultraviolet for InP nanowire arrays.

    PubMed

    Aghaeipour, Mahtab; Anttu, Nicklas; Nylund, Gustav; Samuelson, Lars; Lehmann, Sebastian; Pistol, Mats-Erik

    2014-11-17

    The ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires. We show that we can tune absorption resonances for the nanowire arrays into the ultraviolet by decreasing the diameter of the nanowires. When we compare our measurements with electromagnetic modeling, we generally find good agreement. Interestingly, the remaining differences between modeled and measured spectra are attributed to a crystal-phase dependence in the refractive index of InP. Specifically, we find indication of significant differences in the refractive index between the modeled zinc-blende InP nanowires and the measured wurtzite InP nanowires in the ultraviolet. We believe that such crystal-phase dependent differences in the refractive index affect the possibility to excite optical resonances in the large wavelength range of 345 < λ < 390 nm. To support this claim, we investigated how resonances in nanostructures can be shifted in wavelength by geometrical tuning. We find that dispersion in the refractive index can dominate over geometrical tuning and stop the possibility for such shifting. Our results open the door for using crystal-phase engineering to optimize the absorption in InP nanowire-based solar cells and photodetectors.

  17. Coarse-to-fine construction for high-resolution representation in visual working memory.

    PubMed

    Gao, Zaifeng; Ding, Xiaowei; Yang, Tong; Liang, Junying; Shui, Rende

    2013-01-01

    This study explored whether the high-resolution representations created by visual working memory (VWM) are constructed in a coarse-to-fine or all-or-none manner. The coarse-to-fine hypothesis suggests that coarse information precedes detailed information in entering VWM and that its resolution increases along with the processing time of the memory array, whereas the all-or-none hypothesis claims that either both enter into VWM simultaneously, or neither does. We tested the two hypotheses by asking participants to remember two or four complex objects. An ERP component, contralateral delay activity (CDA), was used as the neural marker. CDA is higher for four objects than for two objects when coarse information is primarily extracted; yet, this CDA difference vanishes when detailed information is encoded. Experiment 1 manipulated the comparison difficulty of the task under a 500-ms exposure time to determine a condition in which the detailed information was maintained. No CDA difference was found between two and four objects, even in an easy-comparison condition. Thus, Experiment 2 manipulated the memory array's exposure time under the easy-comparison condition and found a significant CDA difference at 100 ms while replicating Experiment 1's results at 500 ms. In Experiment 3, the 500-ms memory array was blurred to block the detailed information; this manipulation reestablished a significant CDA difference. These findings suggest that the creation of high-resolution representations in VWM is a coarse-to-fine process.

  18. Design of diffractive microlens array integration with focal plane arrays

    NASA Astrophysics Data System (ADS)

    Chen, Sihai; Yi, Xinjian; Li, Yi; He, Miao; Chen, Sixiang; Kong, Lingbin

    2000-10-01

    The IR spectrum from 3 to 5micrometers has numerous applications in both military and civil industries. High performance at high operating temperature is often important in these applications. Conventional Focal Plane Arrays (FPAs) without integration with concentrator such as microlens have poor sensitivity and low signal-to-noise ratio because of their lower fill factor. The binary optics microlens arrays reported in this paper are designed for integration with FPAs. Thus, the FPAs' fill factor, sensitivity, and signal- to-noise ratio can be improved while retaining a given image resolution and optical collection area. In the paper, we discussed the 256(Horizontal)x290(Vertical) microlens arrays designed for a center wavelength of 4micrometers , with 50micrometers (Horizontalx33micrometers (Vertical) quadrate pixel dimension and a speed (F number) of F/1.96. PtSi FPAs were fabricated on the front side of a 400-micrometers -thick Si substrate. The designed diffractive microlens arrays will be etched on the back side of the same wafer in a register fashion and it will be reported in other paper. Considering the diffraction efficiency, 8-phase-level approximation is enough. For the diffraction efficiency of 8-phase-level diffractive microlens reaches 95%. The process only need three mask-level, so we designed and fabricated three masks with the same dimension 4'x4'. Also, a set of fine verniers was designed and fabricated on each mask to allow accurate alignment during the fabrication process. Through a computer simulation, the microlens arrays are nearly diffraction limited, with the diffraction efficiency of 93%, a bit lower than the theoretical value of 95%. Introduction of microlens arrays has the ability to increase the FPAs' fill factor to 100%, while it is only about 21.6% without microlens. To our knowledge, this is the first trial of integration large area microlens arrays with FPAs at home.

  19. Development of high-polarization Fe/Ge neutron polarizing supermirror: Possibility of fine-tuning of scattering length density in ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Maruyama, R.; Yamazaki, D.; Akutsu, K.; Hanashima, T.; Miyata, N.; Aoki, H.; Takeda, M.; Soyama, K.

    2018-04-01

    The multilayer structure of Fe/Si and Fe/Ge systems fabricated by ion beam sputtering (IBS) was investigated using X-ray and polarized neutron reflectivity measurements and scanning transmission electron microscopy with energy-dispersive X-ray analysis. The obtained result revealed that the incorporation of sputtering gas particles (Ar) in the Ge layer gives rise to a marked reduction in the neutron scattering length density (SLD) and contributes to the SLD contrast between the Fe and Ge layers almost vanishing for spin-down neutrons. Bundesmann et al. (2015) have shown that the implantation of primary Ar ions backscattered at the target is responsible for the incorporation of Ar particles and that the fraction increases with increasing ion incidence angle and increasing polar emission angle. This leads to a possibility of fine-tuning of the SLD for the IBS, which is required to realize a high polarization efficiency of a neutron polarizing supermirror. Fe/Ge polarizing supermirror with m = 5 fabricated under the same condition showed a spin-up reflectivity of 0.70 at the critical momentum transfer. The polarization was higher than 0.985 for the qz range where the correction for the polarization inefficiencies of the beamline works properly. The result of the polarized neutron reflectivity measurement suggests that the "magnetically-dead" layers formed at both sides of the Fe layer, together with the SLD contrast, play a critical role in determining the polarization performance of a polarizing supermirror.

  20. S5H/DMR6 Encodes a Salicylic Acid 5-Hydroxylase That Fine-Tunes Salicylic Acid Homeostasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanjun; Zhao, Li; Zhao, Jiangzhe

    The phytohormone salicylic acid (SA) plays essential roles in biotic and abiotic responses, plant development, and leaf senescence. 2,5-Dihydroxybenzoic acid (2,5-DHBA or gentisic acid) is one of the most commonly occurring aromatic acids in green plants and is assumed to be generated from SA, but the enzymes involved in its production remain obscure. DMR6 (Downy Mildew Resistant 6, At5g24530) has been proven essential in plant immunity of Arabidopsis, but its biochemical properties are not well understood. Here in this paper, we report the discovery and functional characterization of DMR6 as a SA 5-hydroxylase (S5H) that catalyzes the formation of 2,5-DHBAmore » by hydroxylating SA at the C5 position of its phenyl ring in Arabidopsis. S5H/DMR6 specifically converts SA to 2,5-DHBA in vitro and displays higher catalytic efficiency (K cat/K m=4.96×10 4 M -1s -1) than the previously reported SA 3-hydroxylase (S3H, K cat/K m=6.09 × 10 3 M -1s -1) for SA. Interestingly, S5H/DMR6 displays a substrate inhibition property that may enable automatic control of its enzyme activities. The s5h mutant and s5hs3h double mutant over accumulate SA and display phenotypes such as a smaller growth size, early senescence and a loss of susceptibility to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). S5H/DMR6 is sensitively induced by SA/pathogen treatment and is widely expressed from young seedlings to senescing plants, whereas S3H is more specifically expressed at the mature and senescing stages. Collectively, our results disclose the identity of the enzyme required for 2,5-DHBA formation and reveal a mechanism by which plants fine-tune SA homeostasis by mediating SA 5-hydroxylation.« less

  1. Dynamical Upheaval in Ice Giant Formation: A Solution to the Fine-tuning Problem in the Formation Story

    NASA Astrophysics Data System (ADS)

    Frelikh, Renata; Murray-Clay, Ruth

    2018-04-01

    We report on our recent theoretical work, where we suggest that a protoplanetary disk dynamical instability may have played a crucial role in determining the atmospheric size of the solar system’s ice giants. In contrast to the gas giants, the intermediate-size ice giants never underwent runaway gas accretion in a full gas disk. However, as their substantial core masses are comparable to those of the gas giants, they would have gone runaway, given enough time. In the standard scenario, the ice giants stay at roughly their current size for most of the disk lifetime, undergoing period of slow gas accretion onto ~full-sized cores that formed early-on. The gas disk dissipates before the ice giants accumulate too much gas, but we believe this is fine tuned. A considerable amount of solids is observed in outer disks in mm-to-cm sized particles (pebbles). Assisted by gas drag, these pebbles rapidly accrete onto cores. This would cause the growing ice giants to exceed their current core masses, and quickly turn into gas giants. To resolve this problem, we propose that Uranus and Neptune stayed small for the bulk of the disk lifetime. They only finished their core and atmospheric growth in a short timeframe just as the disk gas dissipated, accreting most of their gas from a disk depleted to ~1% of its original mass. The ice giants have atmospheric mass fractions comparable to the disk gas-to-solid ratio of this depleted disk. This coincides with a disk dynamical upheaval onset by the depletion of gas. We propose that the cores started growing closer-in, where they were kept small by proximity to Jupiter and Saturn. As the gas cleared, the cores were kicked out by the gas giants. Then, they finished their core growth and accreted their atmospheres from the remaining, sparse gas at their current locations. We predict that the gas giants may play a key role in forming intermediate-size atmospheres in the outer disk.

  2. S5H/DMR6 Encodes a Salicylic Acid 5-Hydroxylase That Fine-Tunes Salicylic Acid Homeostasis

    DOE PAGES

    Zhang, Yanjun; Zhao, Li; Zhao, Jiangzhe; ...

    2017-09-12

    The phytohormone salicylic acid (SA) plays essential roles in biotic and abiotic responses, plant development, and leaf senescence. 2,5-Dihydroxybenzoic acid (2,5-DHBA or gentisic acid) is one of the most commonly occurring aromatic acids in green plants and is assumed to be generated from SA, but the enzymes involved in its production remain obscure. DMR6 (Downy Mildew Resistant 6, At5g24530) has been proven essential in plant immunity of Arabidopsis, but its biochemical properties are not well understood. Here in this paper, we report the discovery and functional characterization of DMR6 as a SA 5-hydroxylase (S5H) that catalyzes the formation of 2,5-DHBAmore » by hydroxylating SA at the C5 position of its phenyl ring in Arabidopsis. S5H/DMR6 specifically converts SA to 2,5-DHBA in vitro and displays higher catalytic efficiency (K cat/K m=4.96×10 4 M -1s -1) than the previously reported SA 3-hydroxylase (S3H, K cat/K m=6.09 × 10 3 M -1s -1) for SA. Interestingly, S5H/DMR6 displays a substrate inhibition property that may enable automatic control of its enzyme activities. The s5h mutant and s5hs3h double mutant over accumulate SA and display phenotypes such as a smaller growth size, early senescence and a loss of susceptibility to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). S5H/DMR6 is sensitively induced by SA/pathogen treatment and is widely expressed from young seedlings to senescing plants, whereas S3H is more specifically expressed at the mature and senescing stages. Collectively, our results disclose the identity of the enzyme required for 2,5-DHBA formation and reveal a mechanism by which plants fine-tune SA homeostasis by mediating SA 5-hydroxylation.« less

  3. Anteriorly located zonular fibres as a tool for fine regulation in accommodation

    PubMed Central

    Flügel-Koch, Cassandra; Croft, Mary Ann; Kaufman, Paul L.; Lütjen-Drecoll, Elke

    2015-01-01

    Purpose To describe an anteriorly located system of zonular fibres that could be involved in fine-tuning of accommodation Methods Forty six human and 28 rhesus monkey eyes were dissected and special preparations were processed for scanning electron microscopy and reflected-light microscopy. Additional series of frontal and sagittal histological and ultrathin sections were analysed in respect to the origin and insertion of anteriorly located zonules. The presence of sensory terminals at the site of the originating zonules within the connective tissue of the ciliary body was studied by immunohistochemistry. For in-vivo visualization ultrasound biomicroscopy (UBM) was performed on 12 human subjects. Results Fine zonular fibres originated from the valleys and lateral walls of the most anterior pars plicata that covers the anterior and inner circular ciliary muscle portion. These most anterior zonules (MAZ) showed attachments either to the anterior or posterior tines or they inserted directly onto the surface of the lens. At the site of origin, the course of the MAZ merged into the connective tissue fibres connecting the adjacent pigmented epithelium to the ciliary muscle. Numerous afferent terminals directly at the site of this MAZ-origin were connected to the intrinsic nervous network of the ciliary muscle. Conclusions A newly described set of zonular fibres features the capabilities to register the tensions of the zonular fork and lens capsule. The close location and neural connection towards the circular ciliary muscle portion could provide the basis for stabilization and readjustment of focusing that serves fast and fine-tuned accommodation and disaccommodation. PMID:26490669

  4. Enhancing long-term memory with stimulation tunes visual attention in one trial.

    PubMed

    Reinhart, Robert M G; Woodman, Geoffrey F

    2015-01-13

    Scientists have long proposed that memory representations control the mechanisms of attention that focus processing on the task-relevant objects in our visual field. Modern theories specifically propose that we rely on working memory to store the object representations that provide top-down control over attentional selection. Here, we show that the tuning of perceptual attention can be sharply accelerated after 20 min of noninvasive brain stimulation over medial-frontal cortex. Contrary to prevailing theories of attention, these improvements did not appear to be caused by changes in the nature of the working memory representations of the search targets. Instead, improvements in attentional tuning were accompanied by changes in an electrophysiological signal hypothesized to index long-term memory. We found that this pattern of effects was reliably observed when we stimulated medial-frontal cortex, but when we stimulated posterior parietal cortex, we found that stimulation directly affected the perceptual processing of the search array elements, not the memory representations providing top-down control. Our findings appear to challenge dominant theories of attention by demonstrating that changes in the storage of target representations in long-term memory may underlie rapid changes in the efficiency with which humans can find targets in arrays of objects.

  5. Laser tailored nanoparticle arrays to detect molecules at dilute concentration

    NASA Astrophysics Data System (ADS)

    Zanchi, Chiara; Lucotti, Andrea; Tommasini, Matteo; Trusso, Sebastiano; de Grazia, Ugo; Ciusani, Emilio; Ossi, Paolo M.

    2017-02-01

    By nanosecond pulsed laser ablation in an ambient gas gold nanoparticles (NPs) were produced that self-assemble on a substrate resulting in increasingly elaborated architectures of growing thickness, from isolated NP arrays up to percolated films. NPs nucleate and grow in the plasma plume propagating through the gas. Process parameters including laser wavelength, laser energy density, target to substrate distance, nature and pressure of the gas affect plasma expansion, thus asymptotic NP size and kinetic energy. NP size, energy and mobility at landing determine film growth and morphology that affect the physico-chemical properties of the film. Keeping fixed the other process parameters, we discuss the sensitive dependence of film surface nanostructure on Ar pressure and on laser pulse number. The initial plume velocity and average ablated mass per pulse allow predicting the asymptotic NP size. The control of growth parameters favors fine-tuning of NP aggregation, relevant to plasmonics to get optimized substrates for surface enhanced Raman spectroscopy (SERS). Their behavior is discussed for testing conditions of interest for clinical application. Both in aqueous and in biological solutions we obtained good sensitivity and reproducibility of the SERS signals for the anti-Parkinson drug apomorphine, and for the anti-epilepsy drug carbamazepine.

  6. Two dimensional thermo-optic beam steering using a silicon photonic optical phased array

    NASA Astrophysics Data System (ADS)

    Mahon, Rita; Preussner, Marcel W.; Rabinovich, William S.; Goetz, Peter G.; Kozak, Dmitry A.; Ferraro, Mike S.; Murphy, James L.

    2016-03-01

    Components for free space optical communication terminals such as lasers, amplifiers, and receivers have all seen substantial reduction in both size and power consumption over the past several decades. However, pointing systems, such as fast steering mirrors and gimbals, have remained large, slow and power-hungry. Optical phased arrays provide a possible solution for non-mechanical beam steering devices that can be compact and lower in power. Silicon photonics is a promising technology for phased arrays because it has the potential to scale to many elements and may be compatible with CMOS technology thereby enabling batch fabrication. For most free space optical communication applications, two-dimensional beam steering is needed. To date, silicon photonic phased arrays have achieved two-dimensional steering by combining thermo-optic steering, in-plane, with wavelength tuning by means of an output grating to give angular tuning, out-of-plane. While this architecture might work for certain static communication links, it would be difficult to implement for moving platforms. Other approaches have required N2 controls for an NxN element phased array, which leads to complexity. Hence, in this work we demonstrate steering using the thermo-optic effect for both dimensions with a simplified steering mechanism requiring only two control signals, one for each steering dimension.

  7. Adaptive and mobile ground sensor array.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzrichter, Michael Warren; O'Rourke, William T.; Zenner, Jennifer

    The goal of this LDRD was to demonstrate the use of robotic vehicles for deploying and autonomously reconfiguring seismic and acoustic sensor arrays with high (centimeter) accuracy to obtain enhancement of our capability to locate and characterize remote targets. The capability to accurately place sensors and then retrieve and reconfigure them allows sensors to be placed in phased arrays in an initial monitoring configuration and then to be reconfigured in an array tuned to the specific frequencies and directions of the selected target. This report reviews the findings and accomplishments achieved during this three-year project. This project successfully demonstrated autonomousmore » deployment and retrieval of a payload package with an accuracy of a few centimeters using differential global positioning system (GPS) signals. It developed an autonomous, multisensor, temporally aligned, radio-frequency communication and signal processing capability, and an array optimization algorithm, which was implemented on a digital signal processor (DSP). Additionally, the project converted the existing single-threaded, monolithic robotic vehicle control code into a multi-threaded, modular control architecture that enhances the reuse of control code in future projects.« less

  8. Experiments on Adaptive Self-Tuning of Seismic Signal Detector Parameters

    NASA Astrophysics Data System (ADS)

    Knox, H. A.; Draelos, T.; Young, C. J.; Chael, E. P.; Peterson, M. G.; Lawry, B.; Phillips-Alonge, K. E.; Balch, R. S.; Ziegler, A.

    2016-12-01

    Scientific applications, including underground nuclear test monitoring and microseismic monitoring can benefit enormously from data-driven dynamic algorithms for tuning seismic and infrasound signal detection parameters since continuous streams are producing waveform archives on the order of 1TB per month. Tuning is a challenge because there are a large number of data processing parameters that interact in complex ways, and because the underlying populating of true signal detections is generally unknown. The largely manual process of identifying effective parameters, often performed only over a subset of stations over a short time period, is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. We present improvements to an Adaptive Self-Tuning algorithm for continuously adjusting detection parameters based on consistency with neighboring sensors. Results are shown for 1) data from a very dense network ( 120 stations, 10 km radius) deployed during 2008 on Erebus Volcano, Antarctica, and 2) data from a continuous downhole seismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project. Performance is assessed in terms of missed detections and false detections relative to human analyst detections, simulated waveforms where ground-truth detections exist and visual inspection.

  9. Tuning Light Emission of a Pressure-Sensitive Silicon/ZnO Nanowires Heterostructure Matrix through Piezo-phototronic Effects.

    PubMed

    Chen, Mengxiao; Pan, Caofeng; Zhang, Taiping; Li, Xiaoyi; Liang, Renrong; Wang, Zhong Lin

    2016-06-28

    Based on white light emission at silicon (Si)/ZnO hetrerojunction, a pressure-sensitive Si/ZnO nanowires heterostructure matrix light emitting diode (LED) array is developed. The light emission intensity of a single heterostructure LED is tuned by external strain: when the applied stress keeps increasing, the emission intensity first increases and then decreases with a maximum value at a compressive strain of 0.15-0.2%. This result is attributed to the piezo-phototronic effect, which can efficiently modulate the LED emission intensity by utilizing the strain-induced piezo-polarization charges. It could tune the energy band diagrams at the junction area and regulate the optoelectronic processes such as charge carriers generation, separation, recombination, and transport. This study achieves tuning silicon based devices through piezo-phototronic effect.

  10. Detection of regional infrasound signals using array data: Testing, tuning, and physical interpretation.

    PubMed

    Park, Junghyun; Stump, Brian W; Hayward, Chris; Arrowsmith, Stephen J; Che, Il-Young; Drob, Douglas P

    2016-07-01

    This work quantifies the physical characteristics of infrasound signal and noise, assesses their temporal variations, and determines the degree to which these effects can be predicted by time-varying atmospheric models to estimate array and network performance. An automated detector that accounts for both correlated and uncorrelated noise is applied to infrasound data from three seismo-acoustic arrays in South Korea (BRDAR, CHNAR, and KSGAR), cooperatively operated by Korea Institute of Geoscience and Mineral Resources (KIGAM) and Southern Methodist University (SMU). Arrays located on an island and near the coast have higher noise power, consistent with both higher wind speeds and seasonably variable ocean wave contributions. On the basis of the adaptive F-detector quantification of time variable environmental effects, the time-dependent scaling variable is shown to be dependent on both weather conditions and local site effects. Significant seasonal variations in infrasound detections including daily time of occurrence, detection numbers, and phase velocity/azimuth estimates are documented. These time-dependent effects are strongly correlated with atmospheric winds and temperatures and are predicted by available atmospheric specifications. This suggests that commonly available atmospheric specifications can be used to predict both station and network detection performance, and an appropriate forward model improves location capabilities as a function of time.

  11. Tuning Higher Education

    NASA Astrophysics Data System (ADS)

    Carroll, Bradley

    2011-03-01

    In April 2009, the Lumina Foundation launched its Tuning USA project. Faculty teams in selected disciplines from Indiana, Minnesota, and Utah started pilot Tuning programs at their home institutions. Using Europe's Bologna Process as a guide, Utah physicists worked to reach a consensus about the knowledge and skills that should characterize the 2-year, batchelor's, and master's degree levels. I will share my experience as a member of Utah's physics Tuning team, and describe our progress, frustrations, and evolving understanding of the Tuning project's history, methods, and goals.

  12. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO{sub 2} nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocer, Hasan; Department of Electrical Engineering, Turkish Military Academy, 06654 Ankara; Butun, Serkan

    2015-04-20

    Resonant absorbers based on plasmonic materials, metamaterials, and thin films enable spectrally selective absorption filters, where absorption is maximized at the resonance wavelength. By controlling the geometrical parameters of nano/microstructures and materials' refractive indices, resonant absorbers are designed to operate at wide range of wavelengths for applications including absorption filters, thermal emitters, thermophotovoltaic devices, and sensors. However, once resonant absorbers are fabricated, it is rather challenging to control and tune the spectral absorption response. Here, we propose and demonstrate thermally tunable infrared resonant absorbers using hybrid gold-vanadium dioxide (VO{sub 2}) nanostructure arrays. Absorption intensity is tuned from 90% to 20%more » and 96% to 32% using hybrid gold-VO{sub 2} nanowire and nanodisc arrays, respectively, by heating up the absorbers above the phase transition temperature of VO{sub 2} (68 °C). Phase change materials such as VO{sub 2} deliver useful means of altering optical properties as a function of temperature. Absorbers with tunable spectral response can find applications in sensor and detector applications, in which external stimulus such as heat, electrical signal, or light results in a change in the absorption spectrum and intensity.« less

  13. Impact of Isothermal Aging on Long-Term Reliability of Fine-Pitch Ball Grid Array Packages with Sn-Ag-Cu Solder Interconnects: Surface Finish Effects

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Kyu; Ma, Hongtao; Liu, Kuo-Chuan; Xue, Jie

    2010-12-01

    The interaction between isothermal aging and the long-term reliability of fine-pitch ball grid array (BGA) packages with Sn-3.0Ag-0.5Cu (wt.%) solder ball interconnects was investigated. In this study, 0.4-mm fine-pitch packages with 300- μm-diameter Sn-Ag-Cu solder balls were used. Two different package substrate surface finishes were selected to compare their effects on the final solder composition, especially the effect of Ni, during thermal cycling. To study the impact on thermal performance and long-term reliability, samples were isothermally aged and thermally cycled from 0°C to 100°C with 10 min dwell time. Based on Weibull plots for each aging condition, package lifetime was reduced by approximately 44% by aging at 150°C. Aging at 100°C showed a smaller impact but similar trend. The microstructure evolution was observed during thermal aging and thermal cycling with different phase microstructure transformations between electrolytic Ni/Au and organic solderability preservative (OSP) surface finishes, focusing on the microstructure evolution near the package-side interface. Different mechanisms after aging at various conditions were observed, and their impacts on the fatigue lifetime of solder joints are discussed.

  14. Multicolor photonic crystal laser array

    DOEpatents

    Wright, Jeremy B; Brener, Igal; Subramania, Ganapathi S; Wang, George T; Li, Qiming

    2015-04-28

    A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.

  15. Ultrafast Pulse Generation in an Organic Nanoparticle-Array Laser.

    PubMed

    Daskalakis, Konstantinos S; Väkeväinen, Aaro I; Martikainen, Jani-Petri; Hakala, Tommi K; Törmä, Päivi

    2018-04-11

    Nanoscale coherent light sources offer potentially ultrafast modulation speeds, which could be utilized for novel sensors and optical switches. Plasmonic periodic structures combined with organic gain materials have emerged as promising candidates for such nanolasers. Their plasmonic component provides high intensity and ultrafast nanoscale-confined electric fields, while organic gain materials offer fabrication flexibility and a low acquisition cost. Despite reports on lasing in plasmonic arrays, lasing dynamics in these structures have not been experimentally studied yet. Here we demonstrate, for the first time, an organic dye nanoparticle-array laser with more than a 100 GHz modulation bandwidth. We show that the lasing modulation speed can be tuned by the array parameters. Accelerated dynamics is observed for plasmonic lasing modes at the blue side of the dye emission.

  16. Free-standing bimetallic nanorings and nanoring arrays made by on-wire lithography.

    PubMed

    Liusman, Cipto; Li, Shuzhou; Chen, Xiaodong; Wei, Wei; Zhang, Hua; Schatz, George C; Boey, Freddy; Mirkin, Chad A

    2010-12-28

    This paper describes a new strategy for synthesizing free-standing bimetallic nanorings and nanoring arrays based upon on-wire lithography and a galvanic replacement reaction. The strategy allows one to tune the diameter, length, and therefore aspect ratio of the nanorings. In addition, it can be used to produce arrays of nanorings in high yield with control over number and spacing. Spectroscopic studies and discrete dipole approximation calculations show that nanoring dimers exhibit greater surface enhanced Raman scattering than the analogous nanodisk dimers.

  17. Nine-channel wavelength tunable single mode laser array based on slots.

    PubMed

    Guo, Wei-Hua; Lu, Qiaoyin; Nawrocka, Marta; Abdullaev, Azat; O'Callaghan, James; Donegan, John F

    2013-04-22

    A 9-channel wavelength tunable single-mode laser array based on slots is presented. The fabricated laser array demonstrated a threshold current in a range of 19~21 mA with the SOA unbiased at 20°C under continuous wave condition. Stable single mode performances have been observed with side-mode suppression-ratio (SMSR) > 50 dB. The output power higher than 37 mW was obtained at the SOA injected current of 70 mA for all the 9 channels within the laser array. A wavelength quasi-continuous tuning range of about 27 nm has been achieved for the laser array with the temperature variations from 10°C to 45°C. This array platform is of a single growth and monolithically integrable. It can be easily fabricated by standard photolithography. In addition, it potentially removes the yield problem due to the uncertainty of the facet cleaving.

  18. LOITA: Lunar Optical/Infrared Telescope Array

    NASA Technical Reports Server (NTRS)

    1993-01-01

    LOITA (Lunar Optical/Infrared Telescope Array) is a lunar-based interferometer composed of 18 alt-azimuth telescopes arranged in a circular geometry. This geometry results in excellent uv coverage and allows baselines up to 5 km long. The angular resolution will be 25 micro-arcsec at 500 nm and the main spectral range of the array will be 200 to 1100 nm. For infrared planet detection, the spectral range may be extended to nearly 10 mu m. The telescope mirrors have a Cassegrain configuration using a 1.75 m diameter primary mirror and a 0.24 m diameter secondary mirror. A three-stage (coarse, intermediate, and fine) optical delay system, controlled by laser metrology, is used to equalize path lengths from different telescopes to within a few wavelengths. All instruments and the fine delay system are located within the instrument room. Upon exiting the fine delay system, all beams enter the beam combiner and are then directed to the various scientific instruments and detectors. The array instrumentation will consist of CCD detectors optimized for both the visible and infrared as well as specially designed cameras and spectrographs. For direct planet detection, a beam combiner employing achromatic nulling interferometry will be used to reduce star light (by several orders of magnitude) while passing the planet light. A single telescope will be capable of autonomous operation. This telescope will be equipped with four instruments: wide field and planetary camera, faint object camera, high resolution spectrograph, and faint object spectrograph. These instruments will be housed beneath the telescope. The array pointing and control system is designed to meet the fine pointing requirement of one micro-arcsec stability and to allow precise tracking of celestial objects for up to 12 days. During the lunar night, the optics and the detectors will be passively cooled to 70-80 K temperature. To maintain a continuous communication with the earth a relay satellite placed at the L4

  19. Surface charge fine tuning of reversed-phase/weak anion-exchange type mixed-mode stationary phases for milder elution conditions.

    PubMed

    Zimmermann, Aleksandra; Horak, Jeannie; Sánchez-Muñoz, Orlando L; Lämmerhofer, Michael

    2015-08-28

    A series of new mixed-mode reversed-phase/weak anion-exchange (RP/WAX) phases have been synthesized by immobilization of N-undecenyl-3-α-aminotropane onto thiol-modified silica gel by thiol-ene click chemistry and subsequent introduction of acidic thiol-endcapping functionalities of different type and surface densities. Click chemistry allowed to adjust a controlled surface concentration of the RP/WAX ligand in such a way that a sufficient quantity of residual thiols remained unmodified which have been capped by thiol click with either 3-butenoic acid or allylsulfonic acid as co-ligands. In another embodiment, performic acid oxidation of N-undecenyl-3-α-aminotropane-derivatized thiol-modified silica gave a RP/WAX phase with high density of sulfonic acid end-capping groups. ζ-Potential determinations confirmed the fine-tuned pI of these mixed-mode stationary phases which was shifted from 9.5 to 8.2, 7.8, and 6.5 with 3-butenoic acid and allylsulfonic acid end-capping as well as performic acid oxidation. For acidic solutes, the co-ionic endcapping leads to strongly reduced retention times and clearly allowed elution of these analytes under lower ionic strength thus milder elution conditions. In spite of the acidic endcapping, the new mixed-mode phases maintained their hydrophobic and anion-exchange selectivity as well as their multimodal nature featuring RP and HILIC elution domains at acetonitrile percentages below and above 50%, respectively. Column classification by principal component analysis of an extended retention map in comparison to a set of polar commercial and in-house synthesized stationary phases confirmed complementarity of the new mixed-mode phases with respect to HILIC, polar RP, amino and commercial mixed-mode phases. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Fine-tuning of chromatin composition and Polycomb recruitment by two Mi2 homologues during C. elegans early embryonic development.

    PubMed

    Käser-Pébernard, Stéphanie; Pfefferli, Catherine; Aschinger, Caroline; Wicky, Chantal

    2016-01-01

    The nucleosome remodeling and deacetylase complex promotes cell fate decisions throughout embryonic development. Its core enzymatic subunit, the SNF2-like ATPase and Helicase Mi2, is well conserved throughout the eukaryotic kingdom and can be found in multiple and highly homologous copies in all vertebrates and some invertebrates. However, the reasons for such duplications and their implications for embryonic development are unknown. Here we studied the two C. elegans Mi2 homologues, LET-418 and CHD-3, which displayed redundant activities during early embryonic development. At the transcriptional level, these two Mi2 homologues redundantly repressed the expression of a large gene population. We found that LET-418 physically accumulated at TSS-proximal regions on transcriptionally active genomic targets involved in growth and development. Moreover, LET-418 acted redundantly with CHD-3 to block H3K4me3 deposition at these genes. Our study also revealed that LET-418 was partially responsible for recruiting Polycomb to chromatin and for promoting H3K27me3 deposition. Surprisingly, CHD-3 displayed opposite activities on Polycomb, as it was capable of moderating its LET-418-dependent recruitment and restricted the amount of H3K27me3 on the studied target genes. Although closely homologous, LET-418 and CHD-3 showed both redundant and opposite functions in modulating the chromatin environment at developmental target genes. We identified the interplay between LET-418 and CHD-3 to finely tune the levels of histone marks at developmental target genes. More than just repressors, Mi2-containing complexes appear as subtle modulators of gene expression throughout development. The study of such molecular variations in vertebrate Mi2 counterparts might provide crucial insights to our understanding of the epigenetic control of early development.

  1. Detection of regional infrasound signals using array data: Testing, tuning, and physical interpretation

    DOE PAGES

    Park, Junghyun; Stump, Brian W.; Hayward, Chris; ...

    2016-07-14

    This work quantifies the physical characteristics of infrasound signal and noise, assesses their temporal variations, and determines the degree to which these effects can be predicted by time-varying atmospheric models to estimate array and network performance. An automated detector that accounts for both correlated and uncorrelated noise is applied to infrasound data from three seismo-acoustic arrays in South Korea (BRDAR, CHNAR, and KSGAR), cooperatively operated by Korea Institute of Geoscience and Mineral Resources (KIGAM) and Southern Methodist University (SMU). Arrays located on an island and near the coast have higher noise power, consistent with both higher wind speeds and seasonablymore » variable ocean wave contributions. On the basis of the adaptive F-detector quantification of time variable environmental effects, the time-dependent scaling variable is shown to be dependent on both weather conditions and local site effects. Significant seasonal variations in infrasound detections including daily time of occurrence, detection numbers, and phase velocity/azimuth estimates are documented. These time-dependent effects are strongly correlated with atmospheric winds and temperatures and are predicted by available atmospheric specifications. As a result, this suggests that commonly available atmospheric specifications can be used to predict both station and network detection performance, and an appropriate forward model improves location capabilities as a function of time.« less

  2. Field-programmable analogue arrays for the sensorless control of DC motors

    NASA Astrophysics Data System (ADS)

    Rivera, J.; Dueñas, I.; Ortega, S.; Del Valle, J. L.

    2018-02-01

    This work presents the analogue implementation of a sensorless controller for direct current motors based on the super-twisting (ST) sliding mode technique, by means of field programmable analogue arrays (FPAA). The novelty of this work is twofold, first is the use of the ST algorithm in a sensorless scheme for DC motors, and the implementation method of this type of sliding mode controllers in FPAAs. The ST algorithm reduces the chattering problem produced with the deliberate use of the sign function in classical sliding mode approaches. On the other hand, the advantages of the implementation method over a digital one are that the controller is not digitally approximated, the controller gains are not fine tuned and the implementation does not require the use of analogue-to-digital and digital-to-analogue converter circuits. In addition to this, the FPAA is a reconfigurable, lower cost and power consumption technology. Simulation and experimentation results were registered, where a more accurate transient response and lower power consumption were obtained by the proposed implementation method when compared to a digital implementation. Also, a more accurate performance by the DC motor is obtained with proposed sensorless ST technique when compared with a classical sliding mode approach.

  3. Preliminary Results from Small-Pixel CdZnTe and CdTe Arrays

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Sharma, D. P.; Meisner, J.; Austin, R. A.

    1999-01-01

    We have evaluated 2 small-pixel (0.75 mm) Cadmium-Zinc-Telluride arrays, and one Cadmium-Telluride array, all fabricated for MSFC by Metorex (Finland) and Baltic Science Institute (Riga, Latvia). Each array was optimized for operating temperature and collection bias. It was then exposed to Cadmium-109 and Iron-55 laboratory isotopes, to measure the energy resolution for each pixel and was then scanned with a finely-collimated x-ray beam, of width 50 micron, to examine pixel to pixel and inter-pixel charge collections efficiency. Preliminary results from these array tests will be presented.

  4. APRON: A Cellular Processor Array Simulation and Hardware Design Tool

    NASA Astrophysics Data System (ADS)

    Barr, David R. W.; Dudek, Piotr

    2009-12-01

    We present a software environment for the efficient simulation of cellular processor arrays (CPAs). This software (APRON) is used to explore algorithms that are designed for massively parallel fine-grained processor arrays, topographic multilayer neural networks, vision chips with SIMD processor arrays, and related architectures. The software uses a highly optimised core combined with a flexible compiler to provide the user with tools for the design of new processor array hardware architectures and the emulation of existing devices. We present performance benchmarks for the software processor array implemented on standard commodity microprocessors. APRON can be configured to use additional processing hardware if necessary and can be used as a complete graphical user interface and development environment for new or existing CPA systems, allowing more users to develop algorithms for CPA systems.

  5. Transceiver-Phased Arrays for Human Brain Studies at 7 T

    PubMed Central

    2013-01-01

    The paper describes technological advances in high-field (7 T) transceiver-phased arrays developed for magnetic resonance imaging of the human brain. The first part of this work describes an 8-element inductively decoupled split elliptical transceiver-phased array with selectable geometry, which provides an easy and efficient way of compensating for changes in mutual inductive coupling associated with difference in loading due to variability in head shape and size. The second part of the work describes a double-row 16-element (2 × 8) transceiver array to extend the homogeneous transmit B1 profile in the longitudinal direction. Multiplexing eight transmit channels between the two rows of the array provides homogeneous excitation over the entire volume. The final section describes design and construction of a double-tuned 31P/1H 16-element (8 at each frequency) array. The array improves transmission efficiency and B1 homogeneity at 1H frequency in comparison with 31P/1H quadrature transverse electromagnetic volume coil. For 31P studies, the array also improves transmission efficiency (38%), signal-to-noise ratio (SNR) for central brain locations (20%) and provides substantially greater SNR (up to 400%) for peripheral locations. PMID:23516332

  6. Charge Sharing and Charge Loss in a Cadmium-Zinc-Telluride Fine-Pixel Detector Array

    NASA Technical Reports Server (NTRS)

    Gaskin, J. A.; Sharma, D. P.; Ramsey, B. D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Because of its high atomic number, room temperature operation, low noise, and high spatial resolution a Cadmium-Zinc-Telluride (CZT) multi-pixel detector is ideal for hard x-ray astrophysical observation. As part of on-going research at MSFC (Marshall Space Flight Center) to develop multi-pixel CdZnTe detectors for this purpose, we have measured charge sharing and charge loss for a 4x4 (750micron pitch), lmm thick pixel array and modeled these results using a Monte-Carlo simulation. This model was then used to predict the amount of charge sharing for a much finer pixel array (with a 300micron pitch). Future work will enable us to compare the simulated results for the finer array to measured values.

  7. FITNESS, a CCT domain-containing protein, deregulates reactive oxygen species levels and leads to fine-tuning trade-offs between reproductive success and defense responses in Arabidopsis.

    PubMed

    Osella, Ana Virginia; Mengarelli, Diego Alberto; Mateos, Julieta; Dong, Shuchao; Yanovsky, Marcelo J; Balazadeh, Salma; Valle, Estela Marta; Zanor, María Inés

    2018-05-31

    Environmental stresses are the major factors that limit productivity in plants. Here, we report on the function of an uncharacterized gene At1g07050, encoding a CCT domain-containing protein, from Arabidopsis thaliana. At1g07050 expression is highly repressed by oxidative stress. We used metabolomics, biochemical and genomic approaches to analyze performance of transgenic lines with altered expression of At1g07050 under normal and oxidative stress conditions. At1g07050 overexpressing lines showed increased levels of reactive oxygen species (ROS) while knock-out mutants exhibited decreased levels of ROS and higher tolerance to oxidative stress generated in the chloroplast. Our results uncover a role for At1g07050 in cellular redox homeostasis controlling H 2 O 2 levels, due to changes in enzymes, metabolites and transcripts related to ROS detoxification. Therefore, we call this gene FITNESS. Additionally, several genes such as ACD6, PCC1, and ICS1 related to SA signalling and defense were found differentially expressed among the lines. Notably, FITNESS absence significantly improved seed yield suggesting an effective fine-tuning trade-off between reproductive success and defense responses. This article is protected by copyright. All rights reserved.

  8. Distortion-product otoacoustic emission reflection-component delays and cochlear tuning: estimates from across the human lifespan.

    PubMed

    Abdala, Carolina; Guérit, François; Luo, Ping; Shera, Christopher A

    2014-04-01

    A consistent relationship between reflection-emission delay and cochlear tuning has been demonstrated in a variety of mammalian species, as predicted by filter theory and models of otoacoustic emission (OAE) generation. As a step toward the goal of studying cochlear tuning throughout the human lifespan, this paper exploits the relationship and explores two strategies for estimating delay trends-energy weighting and peak picking-both of which emphasize data at the peaks of the magnitude fine structure. Distortion product otoacoustic emissions (DPOAEs) at 2f1-f2 were recorded, and their reflection components were extracted in 184 subjects ranging in age from prematurely born neonates to elderly adults. DPOAEs were measured from 0.5-4 kHz in all age groups and extended to 8 kHz in young adults. Delay trends were effectively estimated using either energy weighting or peak picking, with the former method yielding slightly shorter delays and the latter somewhat smaller confidence intervals. Delay and tuning estimates from young adults roughly match those obtained from SFOAEs. Although the match is imperfect, reflection-component delays showed the expected bend (apical-basal transition) near 1 kHz, consistent with a break in cochlear scaling. Consistent with other measures of tuning, the term newborn group showed the longest delays and sharpest tuning over much of the frequency range.

  9. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties.

    PubMed

    Guan, Dongsheng; Cai, Chuan; Wang, Ying

    2011-04-01

    We have employed a simple process of anodizing Ti foils to prepare TiO2 nanotube arrays which show enhanced electrochemical properties for applications as Li-ion battery electrode materials. The lengths and pore diameters of TiO2 nanotubes can be finely tuned by varying voltage, electrolyte composition, or anodization time. The as-prepared nanotubes are amorphous and can be converted into anatase nanotubes with heat treatment at 480 degrees C. Rutile crystallites emerge in the anatase nanotube when the annealing temperature is increased to 580 degrees C, resulting in TiO2 nanotubes of mixed phases. The morphological features of nanotubes remain unchanged after annealing. Li-ion insertion performance has been studied for amorphous and crystalline TiO2 nanotube arrays. Amorphous nanotubes with a length of 3.0 microm and an outer diameter of 125 nm deliver a capacity of 91.2 microA h cm(-2) at a current density of 400 microA cm(-2), while those with a length of 25 microm and an outer diameter of 158 nm display a capacity of 533 microA h cm-2. When the 3-microm long nanotubes become crystalline, they deliver lower capacities: the anatase nanotubes and nanotubes of mixed phases show capacities of 53.8 microA h cm-2 and 63.1 microA h cm(-2), respectively at the same current density. The amorphous nanotubes show excellent capacity retention ability over 50 cycles. The cycled nanotubes show little change in morphology compared to the nanotubes before electrochemical cycling. All the TiO2 nanotubes demonstrate higher capacities than amorphous TiO2 compact layer reported in literature. The amorphous TiO2 nanotubes with a length of 1.9 microm exhibit a capacity five times higher than that of TiO2 compact layer even when the nanotube array is cycled at a current density 80 times higher than that for the compact layer. These results suggest that anodic TiO2 nanotube arrays are promising electrode materials for rechargeable Li-ion batteries.

  10. Chemical and biological sensing using tuning forks

    DOEpatents

    Tao, Nongjian; Boussaad, Salah

    2012-07-10

    A device for sensing a chemical analyte is disclosed. The device is comprised of a vibrating structure having first and second surfaces and having an associated resonant frequency and a wire coupled between the first and second surfaces of the vibrating structure, wherein the analyte interacts with the wire and causes a change in the resonant frequency of the vibrating structure. The vibrating structure can include a tuning fork. The vibrating structure can be comprised of quartz. The wire can be comprised of polymer. A plurality of vibrating structures are arranged in an array to increase confidence by promoting a redundancy of measurement or to detect a plurality of chemical analytes. A method of making a device for sensing a chemical analyte is also disclosed.

  11. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays

    DOE PAGES

    Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; ...

    2015-01-15

    Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, themore » Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process.« less

  12. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays

    PubMed Central

    Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; Lu, M.; Chen, X.; Zheng, Y. X.; Chen, L. Y.; Ye, Z.; Wang, C. Z.; Ho, K. M.

    2015-01-01

    Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, the Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process. PMID:25589290

  13. Laser-phased-array beam steering based on crystal fiber

    NASA Astrophysics Data System (ADS)

    Yang, Deng-cai; Zhao, Si-si; Wang, Da-yong; Wang, Zhi-yong; Zhang, Xiao-fei

    2011-06-01

    Laser-phased-array system provides an elegant means for achieving the inertial-free, high-resolution, rapid and random beam steering. In laser-phased-array system, phase controlling is the most important factor that impacts the system performance. A novel scheme is provided in this paper, the beam steering is accomplished by using crystal fiber array, the difference length between adjacent fiber is fixed. The phase difference between adjacent fiber decides the direction of the output beam. When the wavelength of the input fiber laser is tuned, the phase difference between the adjacent elements has changed. Therefore, the laser beam direction has changed and the beam steering has been accomplished. In this article, based on the proposed scheme, the steering angle of the laser beam is calculated and analyzed theoretically. Moreover, the far-field steering beam quality is discussed.

  14. Effect of type of noise and loudspeaker array on the performance of omnidirectional and directional microphones.

    PubMed

    Valente, Michael; Mispagel, Karen M; Tchorz, Juergen; Fabry, David

    2006-06-01

    Differences in performance between omnidirectional and directional microphones were evaluated between two loudspeaker conditions (single loudspeaker at 180 degrees; diffuse using eight loudspeakers set 45 degrees apart) and two types of noise (steady-state HINT noise; R-Space restaurant noise). Twenty-five participants were fit bilaterally with Phonak Perseo hearing aids using the manufacturer's recommended procedure. After wearing the hearing aids for one week, the parameters were fine-tuned based on subjective comments. Four weeks later, differences in performance between omnidirectional and directional microphones were assessed using HINT sentences presented at 0 degrees with the two types of background noise held constant at 65 dBA and under the two loudspeaker conditions. Results revealed significant differences in Reception Thresholds for Sentences (RTS in dB) where directional performance was significantly better than omnidirectional. Performance in the 180 degrees condition was significantly better than the diffuse condition, and performance was significantly better using the HINT noise in comparison to the R-Space restaurant noise. In addition, results revealed that within each loudspeaker array, performance was significantly better for the directional microphone. Looking across loudspeaker arrays, however, significant differences were not present in omnidirectional performance, but directional performance was significantly better in the 180 degrees condition when compared to the diffuse condition. These findings are discussed in terms of results reported in the past and counseling patients on the potential advantages of directional microphones as the listening situation and type of noise changes.

  15. High-frequency ultrasound annular array imaging. Part II: digital beamformer design and imaging.

    PubMed

    Hu, Chang-Hong; Snook, Kevin A; Cao, Pei-Jie; Shung, K Kirk

    2006-02-01

    This is the second part of a two-paper series reporting a recent effort in the development of a high-frequency annular array ultrasound imaging system. In this paper an imaging system composed of a six-element, 43 MHz annular array transducer, a six-channel analog front-end, a field programmable gate array (FPGA)-based beamformer, and a digital signal processor (DSP) microprocessor-based scan converter will be described. A computer is used as the interface for image display. The beamformer that applies delays to the echoes for each channel is implemented with the strategy of combining the coarse and fine delays. The coarse delays that are integer multiples of the clock periods are achieved by using a first-in-first-out (FIFO) structure, and the fine delays are obtained with a fractional delay (FD) filter. Using this principle, dynamic receiving focusing is achieved. The image from a wire phantom obtained with the imaging system was compared to that from a prototype ultrasonic backscatter microscope with a 45 MHz single-element transducer. The improved lateral resolution and depth of field from the wire phantom image were observed. Images from an excised rabbit eye sample also were obtained, and fine anatomical structures were discerned.

  16. Nearly bound states in the radiation continuum in a circular array of dielectric rods

    NASA Astrophysics Data System (ADS)

    Bulgakov, Evgeny N.; Sadreev, Almas F.

    2018-03-01

    We consider E -polarized bound states in the radiation continuum (BICs) in circular periodical arrays of N infinitely long dielectric rods. We find that each true BIC which occurs in an infinite linear array has its counterpart in the circular array as a near-BIC with extremely large quality factor. We argue analytically as well as numerically that the quality factor of the symmetry-protected near-BICs diverges as eλ N, where λ is a material parameter dependent on the radius and the refraction index of the rods. By tuning of the radius of rods, we also find numerically non-symmetry-protected near-BICs. These near-BICs are localized with exponential accuracy outside the circular array, but fill the whole inner space of the array carrying orbital angular momentum.

  17. Design and fabrication of adjustable red-green-blue LED light arrays for plant research

    PubMed Central

    Folta, Kevin M; Koss, Lawrence L; McMorrow, Ryan; Kim, Hyeon-Hye; Kenitz, J Dustin; Wheeler, Raymond; Sager, John C

    2005-01-01

    Background Although specific light attributes, such as color and fluence rate, influence plant growth and development, researchers generally cannot control the fine spectral conditions of artificial plant-growth environments. Plant growth chambers are typically outfitted with fluorescent and/or incandescent fixtures that provide a general spectrum that is accommodating to the human eye and not necessarily supportive to plant development. Many studies over the last several decades, primarily in Arabidopsis thaliana, have clearly shown that variation in light quantity, quality and photoperiod can be manipulated to affect growth and control developmental transitions. Light emitting diodes (LEDs) has been used for decades to test plant responses to narrow-bandwidth light. LEDs are particularly well suited for plant growth chambers, as they have an extraordinary life (about 100,000 hours), require little maintenance, and use negligible energy. These factors render LED-based light strategies particularly appropriate for space-biology as well as terrestrial applications. However, there is a need for a versatile and inexpensive LED array platform where individual wavebands can be specifically tuned to produce a series of light combinations consisting of various quantities and qualities of individual wavelengths. Two plans are presented in this report. Results In this technical report we describe the practical construction of tunable red-green-blue LED arrays to support research in plant growth and development. Two light fixture designs and corresponding circuitry are presented. The first is well suited for a laboratory environment for use in a finite area with small plants, such as Arabidopsis. The second is expandable and appropriate for growth chambers. The application of these arrays to early plant developmental studies has been validated with assays of hypocotyl growth inhibition/promotion and phototropic curvature in Arabidopsis seedlings. Conclusion The presentation

  18. Tuning resistance states by thickness control in an electroforming-free nanometallic complementary resistance random access memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiang; Lu, Yang; Lee, Jongho

    2016-01-04

    Tuning low resistance state is crucial for resistance random access memory (RRAM) that aims to achieve optimal read margin and design flexibility. By back-to-back stacking two nanometallic bipolar RRAMs with different thickness into a complementary structure, we have found that its low resistance can be reliably tuned over several orders of magnitude. Such high tunability originates from the exponential thickness dependence of the high resistance state of nanometallic RRAM, in which electron wave localization in a random network gives rise to the unique scaling behavior. The complementary nanometallic RRAM provides electroforming-free, multi-resistance-state, sub-100 ns switching capability with advantageous characteristics formore » memory arrays.« less

  19. Pore radius fine tuning of a silica matrix (MCM-41) based on the synthesis of alumina nanolayers with different thicknesses by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemtsova, Elena G., E-mail: ezimtsova@yandex.ru; Arbenin, Andrei Yu.; Plotnikov, Alexander F.

    2015-03-15

    The authors investigated a new approach to modify the surface of the mesoporous silica matrix MCM-41. This approach is based on manipulating the chemical composition of the porous surface layer and also on fine tuning the pore radius by applying the atomic layer deposition (ALD) technique. The synthesis of alumina nanolayers was performed on the planar and the porous matrix (MCM-41) by the ALD technique using aluminum tri-sec-butoxide and water as precursors. The authors show that one cycle on silicon, using aluminum tri-sec-butoxide and water as precursors, results in a 1–1.2 Å increase in alumina nanolayer thickness. This is comparable tomore » the increase in thickness per cycle for other precursors such as trimethylaluminum and aluminum chloride. The authors show that the synthesis of an Al{sub 2}O{sub 3} nanolayer on the pore surface of the mesoporous silica matrix MCM-41 by the ALD technique results in a regular change in the porous structure of the samples. The specific porosity (ml/g) of the MCM-41 was 0.95 and that of MCM-41 after 5 ALD cycles was 0.39. The pore diameter (nm) of MCM-41 was 3.3 and that of MCM-41 after 5 ALD cycles was 2.3.« less

  20. Tuning without over-tuning: parametric uncertainty quantification for the NEMO ocean model

    NASA Astrophysics Data System (ADS)

    Williamson, Daniel B.; Blaker, Adam T.; Sinha, Bablu

    2017-04-01

    In this paper we discuss climate model tuning and present an iterative automatic tuning method from the statistical science literature. The method, which we refer to here as iterative refocussing (though also known as history matching), avoids many of the common pitfalls of automatic tuning procedures that are based on optimisation of a cost function, principally the over-tuning of a climate model due to using only partial observations. This avoidance comes by seeking to rule out parameter choices that we are confident could not reproduce the observations, rather than seeking the model that is closest to them (a procedure that risks over-tuning). We comment on the state of climate model tuning and illustrate our approach through three waves of iterative refocussing of the NEMO (Nucleus for European Modelling of the Ocean) ORCA2 global ocean model run at 2° resolution. We show how at certain depths the anomalies of global mean temperature and salinity in a standard configuration of the model exceeds 10 standard deviations away from observations and show the extent to which this can be alleviated by iterative refocussing without compromising model performance spatially. We show how model improvements can be achieved by simultaneously perturbing multiple parameters, and illustrate the potential of using low-resolution ensembles to tune NEMO ORCA configurations at higher resolutions.

  1. Predicting plasmonic coupling with Mie-Gans theory in silver nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Ranjan, M.

    2013-09-01

    Plasmonic coupling is observed in the self-aligned arrays of silver nanoparticles grown on ripple-patterned substrate. Large differences observed in the plasmon resonance wavelength, measured and calculated using Mie-Gans theory, predict that strong plasmonic coupling exists in the nanoparticles arrays. Even though plasmonic coupling exists both along and across the arrays, but it is found to be much stronger along the arrays due to shorter interparticle gap and particle elongation. This effect is responsible for observed optical anisotropy in such arrays. Measured red-shift even in the transverse plasmon resonance mode with the increasing nanoparticles aspect ratio in the arrays, deviate from the prediction of Mie-Gans theory. This essentially means that plasmonic coupling is dominating over the shape anisotropy. Plasmon resonance tuning is presented by varying the plasmonic coupling systematically with nanoparticles aspect ratio and ripple wavelength. Plasmon resonance red-shifts with the increasing aspect ratio along the ripple, and blue-shifts with the increasing ripple wavelength across the ripple. Therefore, reported bottom-up approach for fabricating large area-coupled nanoparticle arrays can be used for various field enhancement-based plasmonic applications.

  2. Could there be a fine-tuning role for brain-derived adipokines in the regulation of bodyweight and prevention of obesity?

    PubMed Central

    Brown, Russell E.

    2008-01-01

    Obesity is one of the most prevalent medical conditions, often associated with several negative stereotypes. Although it is true that weight gain occurs when food intake exceeds energy expenditure, it is important to note that even a 1% mismatch between the two can lead to a substantial weight gain after only a few years. Further, the body appears to balance energy metabolism via an endogenous lipostatic loop in which adipose stores send hormonal signals (e.g. adipokines such as leptin) to the hypothalamus in order to reduce appetite and increase energy expenditure. However, the brain is also a novel site of expression of many of these adipokine genes. This led to the hypothesis that hypothalamic-derived adipokines might also be involved in bodyweight regulation by exerting some effect on the control of appetite or hypothalamic function. When RNA interference (RNAi) was used to specifically silence adipokine gene expression in various in vitro models, this led to increases in cell death, modification of the expression of key signaling genes (i.e. suppressor of cytokine signaling-3; SOCS-3), and modulation of the activation of cellular energy sensors (i.e. adenosine monophosphate-activated protein kinase; AMPK). Subsequently, when RNAi was used to inhibit the expression of brain-derived leptin in adult rats this resulted in minor increases in weight gain in addition to modifying the expression of other adipokine genes (eg. resistin). In summary, although adipokines secreted by adipose tissue appear to the main regulator of lipostatic loop, this review shows that the fine tuning that is required to maintain a stable bodyweight by this system might be accomplished by hypothalamic-derived adipokines. Perturbations in this central adipokine system could lead to alterations in normal hypothalamic function which leads to unintended weight gain. PMID:19148319

  3. Wettability control of micropore-array films by altering the surface nanostructures.

    PubMed

    Chang, Chi-Jung; Hung, Shao-Tsu

    2010-07-01

    By controlling the surface nanostructure, the wettability of films with similar pore-array microstructure can be tuned from hydrophilic to nearly superhydrophobic without variation of the chemical composition. PA1 pore-array film consisting of the horizontal ZnO nanosheets was nearly superhydrophobic. PA2 pore-array film consisting of growth-hindered vertically-aligned ZnO nanorods was hydrophilic. The influences of the nanostructure shape, orientation and the micropore size on the contact angle of the PA1 films were studied. This study provides a new approach to control the wettability of films with similar pore-array structure at the micro-scale by changing their surface nanostructure. PA1 films exhibited irradiation induced reversible wettability transition. The feasibility of creating a wetted radial pattern by selective UV irradiation of PA1 film through a mask with radial pattern and water vapor condensation was also evaluated.

  4. A High-Frequency Linear Ultrasonic Array Utilizing an Interdigitally Bonded 2-2 Piezo-Composite

    PubMed Central

    Cannata, Jonathan M.; Williams, Jay A.; Zhang, Lequan; Hu, Chang-Hong; Shung, K. Kirk

    2011-01-01

    This paper describes the development of a high-frequency 256-element linear ultrasonic array utilizing an interdigitally bonded (IB) piezo-composite. Several IB composites were fabricated with different commercial and experimental piezoelectric ceramics and evaluated to determine a suitable formulation for use in high-frequency linear arrays. It was found that the fabricated fine-scale 2–2 IB composites outperformed 1–3 IB composites with identical pillar- and kerf-widths. This result was not expected and lead to the conclusion that dicing damage was likely the cause of the discrepancy. Ultimately, a 2–2 composite fabricated using a fine-grain piezoelectric ceramic was chosen for the array. The composite was manufactured using one IB operation in the azimuth direction to produce approximately 19-μm-wide pillars separated by 6-μm-wide kerfs. The array had a 50 μm (one wavelength in water) azimuth pitch, two matching layers, and 2 mm elevation length focused to 7.3 mm using a polymethylpentene (TPX) lens. The measured pulse-echo center frequency for a representative array element was 28 MHz and −6-dB band-width was 61%. The measured single-element transmit −6-dB directivity was estimated to be 50°. The measured insertion loss was 19 dB after compensating for the effects of attenuation and diffraction in the water bath. A fine-wire phantom was used to assess the lateral and axial resolution of the array when paired with a prototype system utilizing a 64-channel analog beamformer. The −6-dB lateral and axial resolutions were estimated to be 125 and 68 μm, respectively. An anechoic cyst phantom was also imaged to determine the minimum detectable spherical inclusion, and thus the 3-D resolution of the array and beamformer. The minimum anechoic cyst detected was approximately 300 μm in diameter. PMID:21989884

  5. First Tests of Prototype SCUBA-2 Superconducting Bolometer Array

    NASA Astrophysics Data System (ADS)

    Woodcraft, Adam L.; Ade, Peter A. R.; Bintley, Dan; Hunt, Cynthia L.; Sudiwala, Rashmi V.; Hilton, Gene C.; Irwin, Kent D.; Reintsema, Carl D.; Audley, Michael D.; Holland, Wayne S.; MacIntosh, Mike

    2006-09-01

    We present results of the first tests on a 1280 pixel superconducting bolometer array, a prototype for SCUBA-2, a sub-mm camera being built for the James Clerk Maxwell Telescope in Hawaii. The bolometers are TES (transition edge sensor) detectors; these take advantage of the large variation of resistance with temperature through the superconducting transition. To keep the number of wires reasonable, a multiplexed read-out is used. Each pixel is read out through an individual DC SQUID; room temperature electronics switch between rows in the array by biasing the appropriate SQUIDs in turn. Arrays of 100 SQUIDs in series for each column then amplify the output. Unlike previous TES arrays, the multiplexing elements are located beneath each pixel, making large arrays possible, but construction more challenging. The detectors are constructed from Mo/Cu bi-layers; this technique enables the transition temperature to be tuned using the proximity effect by choosing the thickness of the normal and superconducting materials. To achieve the required performance, the detectors are operated at a temperature of approximately 120 mK. We describe the results of a basic characterisation of the array, demonstrating that it is fully operational, and give the results of signal to noise measurements.

  6. A case study of tuning MapReduce for efficient Bioinformatics in the cloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Lizhen; Wang, Zhong; Yu, Weikuan

    The combination of the Hadoop MapReduce programming model and cloud computing allows biological scientists to analyze next-generation sequencing (NGS) data in a timely and cost-effective manner. Cloud computing platforms remove the burden of IT facility procurement and management from end users and provide ease of access to Hadoop clusters. However, biological scientists are still expected to choose appropriate Hadoop parameters for running their jobs. More importantly, the available Hadoop tuning guidelines are either obsolete or too general to capture the particular characteristics of bioinformatics applications. In this paper, we aim to minimize the cloud computing cost spent on bioinformatics datamore » analysis by optimizing the extracted significant Hadoop parameters. When using MapReduce-based bioinformatics tools in the cloud, the default settings often lead to resource underutilization and wasteful expenses. We choose k-mer counting, a representative application used in a large number of NGS data analysis tools, as our study case. Experimental results show that, with the fine-tuned parameters, we achieve a total of 4× speedup compared with the original performance (using the default settings). Finally, this paper presents an exemplary case for tuning MapReduce-based bioinformatics applications in the cloud, and documents the key parameters that could lead to significant performance benefits.« less

  7. Prospects for quantum computing with an array of ultracold polar paramagnetic molecules.

    PubMed

    Karra, Mallikarjun; Sharma, Ketan; Friedrich, Bretislav; Kais, Sabre; Herschbach, Dudley

    2016-03-07

    Arrays of trapped ultracold molecules represent a promising platform for implementing a universal quantum computer. DeMille [Phys. Rev. Lett. 88, 067901 (2002)] has detailed a prototype design based on Stark states of polar (1)Σ molecules as qubits. Herein, we consider an array of polar (2)Σ molecules which are, in addition, inherently paramagnetic and whose Hund's case (b) free-rotor pair-eigenstates are Bell states. We show that by subjecting the array to combinations of concurrent homogeneous and inhomogeneous electric and magnetic fields, the entanglement of the array's Stark and Zeeman states can be tuned and the qubit sites addressed. Two schemes for implementing an optically controlled CNOT gate are proposed and their feasibility discussed in the face of the broadening of spectral lines due to dipole-dipole coupling and the inhomogeneity of the electric and magnetic fields.

  8. Two-dimensional beam steering using a thermo-optic silicon photonic optical phased array

    NASA Astrophysics Data System (ADS)

    Rabinovich, William S.; Goetz, Peter G.; Pruessner, Marcel W.; Mahon, Rita; Ferraro, Mike S.; Park, Doe; Fleet, Erin; DePrenger, Michael J.

    2016-11-01

    Many components for free-space optical (FSO) communication systems have shrunken in size over the last decade. However, the steering systems have remained large and power hungry. Nonmechanical beam steering offers a path to reducing the size of these systems. Optical phased arrays can allow integrated beam steering elements. One of the most important aspects of an optical phased array technology is its scalability to a large number of elements. Silicon photonics can potentially offer this scalability using CMOS foundry techniques. A phased array that can steer in two dimensions using the thermo-optic effect is demonstrated. No wavelength tuning of the input laser is needed and the design allows a simple control system with only two inputs. A benchtop FSO link with the phased array in both transmit and receive mode is demonstrated.

  9. Dynamic-Receive Focusing with High-Frequency Annular Arrays

    NASA Astrophysics Data System (ADS)

    Ketterling, J. A.; Mamou, J.; Silverman, R. H.

    High-frequency ultrasound is commonly employed for ophthalmic and small-animal imaging because of the fine-resolution images it affords. Annular arrays allow improved depth of field and lateral resolution versus commonly used single-element, focused transducers. The best image quality from an annular array is achieved by using synthetic transmit-to-receive focusing while utilizing data from all transmit-to-receive element combinations. However, annular arrays must be laterally scanned to form an image and this requires one pass for each of the array elements when implementing full synthetic transmit-to-receive focusing. A dynamic-receive focusing approach permits a single pass, although at a sacrifice of depth of field and lateral resolution. A five-element, 20-MHz annular array is examined to determine the acoustic beam properties for synthetic and dynamic-receive focusing. A spatial impulse response model is used to simulate the acoustic beam properties for each focusing case and then data acquired from a human eye-bank eye are processed to demonstrate the effect of each approach on image quality.

  10. Self-Tuning of Design Variables for Generalized Predictive Control

    NASA Technical Reports Server (NTRS)

    Lin, Chaung; Juang, Jer-Nan

    2000-01-01

    Three techniques are introduced to determine the order and control weighting for the design of a generalized predictive controller. These techniques are based on the application of fuzzy logic, genetic algorithms, and simulated annealing to conduct an optimal search on specific performance indexes or objective functions. Fuzzy logic is found to be feasible for real-time and on-line implementation due to its smooth and quick convergence. On the other hand, genetic algorithms and simulated annealing are applicable for initial estimation of the model order and control weighting, and final fine-tuning within a small region of the solution space, Several numerical simulations for a multiple-input and multiple-output system are given to illustrate the techniques developed in this paper.

  11. Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis.

    PubMed

    Shekhar, Shashank; Stokes, Paul; Khondaker, Saiful I

    2011-03-22

    We report ultrahigh density assembly of aligned single-walled carbon nanotube (SWNT) two-dimensional arrays via AC dielectrophoresis using high-quality surfactant-free and stable SWNT solutions. After optimization of frequency and trapping time, we can reproducibly control the linear density of the SWNT between prefabricated electrodes from 0.5 SWNT/μm to more than 30 SWNT/μm by tuning the concentration of the nanotubes in the solution. Our maximum density of 30 SWNT/μm is the highest for aligned arrays via any solution processing technique reported so far. Further increase of SWNT concentration results in a dense array with multiple layers. We discuss how the orientation and density of the nanotubes vary with concentrations and channel lengths. Electrical measurement data show that the densely packed aligned arrays have low sheet resistances. Selective removal of metallic SWNTs via controlled electrical breakdown produced field-effect transistors with high current on-off ratio. Ultrahigh density alignment reported here will have important implications in fabricating high-quality devices for digital and analog electronics.

  12. Shape calibration of a conformal ultrasound therapy array.

    PubMed

    McGough, R J; Cindric, D; Samulski, T V

    2001-03-01

    A conformal ultrasound phased array prototype with 96 elements was recently calibrated for electronic steering and focusing in a water tank. The procedure for calibrating the shape of this 2D therapy array consists of two steps. First, a least squares triangulation algorithm determines the element coordinates from a 21 x 21 grid of time delays. The triangulation algorithm also requires temperature measurements to compensate for variations in the speed of sound. Second, a Rayleigh-Sommerfeld formulation of the acoustic radiation integral is aligned to a second grid of measured pressure amplitudes in a least squares sense. This shape calibration procedure, which is applicable to a wide variety of ultrasound phased arrays, was tested on a square array panel consisting of 7- x 7-mm elements operating at 617 kHz. The simulated fields generated by an array of 96 equivalent elements are consistent with the measured data, even in the fine structure away from the primary focus and sidelobes. These two calibration steps are sufficient for the simulation model to predict successfully the pressure field generated by this conformal ultrasound phased array prototype.

  13. Fine Structure in Helium-like Fluorine by Fast-Beam Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Myers, E. G.; Thompson, J. K.; Silver, J. D.

    1998-05-01

    With the aim of providing an additional precise test of higher-order corrections to high precision calculations of fine structure in helium and helium-like ions(T. Zhang, Z.-C. Yan and G.W.F. Drake, Phys. Rev. Lett. 77), 1715 (1996)., a measurement of the 2^3P_2,F - 2^3P_1,F' fine structure in ^19F^7+ is in progress. The method involves doppler-tuned laser spectroscopy using a CO2 laser on a foil-stripped fluorine ion beam. We aim to achieve a higher precision, compared to an earlier measurement(E.G. Myers, P. Kuske, H.J. Andrae, I.A. Armour, H.A. Klein, J.D. Silver, and E. Traebert, Phys. Rev. Lett. 47), 87 (1981)., by using laser beams parallel and anti-parallel to the ion beam, to obtain partial cancellation of the doppler shift(J.K. Thompson, D.J.H. Howie and E.G. Myers, Phys. Rev. A 57), 180 (1998).. A calculation of the hyperfine structure, allowing for relativistic, QED and nuclear size effects, will be required to obtain the ``hyperfine-free'' fine structure interval from the measurements.

  14. A drone detection with aircraft classification based on a camera array

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Qu, Fangchao; Liu, Yingjian; Zhao, Wei; Chen, Yitong

    2018-03-01

    In recent years, because of the rapid popularity of drones, many people have begun to operate drones, bringing a range of security issues to sensitive areas such as airports and military locus. It is one of the important ways to solve these problems by realizing fine-grained classification and providing the fast and accurate detection of different models of drone. The main challenges of fine-grained classification are that: (1) there are various types of drones, and the models are more complex and diverse. (2) the recognition test is fast and accurate, in addition, the existing methods are not efficient. In this paper, we propose a fine-grained drone detection system based on the high resolution camera array. The system can quickly and accurately recognize the detection of fine grained drone based on hd camera.

  15. Integrated Electrode Arrays for Neuro-Prosthetic Implants

    NASA Technical Reports Server (NTRS)

    Brandon, Erik; Mojarradi, Mohammede

    2003-01-01

    Arrays of electrodes integrated with chip-scale packages and silicon-based integrated circuits have been proposed for use as medical electronic implants, including neuro-prosthetic devices that might be implanted in brains of patients who suffer from strokes, spinal-cord injuries, or amyotrophic lateral sclerosis. The electrodes of such a device would pick up signals from neurons in the cerebral cortex, and the integrated circuit would perform acquisition and preprocessing of signal data. The output of the integrated circuit could be used to generate, for example, commands for a robotic arm. Electrode arrays capable of acquiring electrical signals from neurons already exist, but heretofore, there has been no convenient means to integrate these arrays with integrated-circuit chips. Such integration is needed in order to eliminate the need for the extensive cabling now used to pass neural signals to data-acquisition and -processing equipment outside the body. The proposed integration would enable progress toward neuro-prostheses that would be less restrictive of patients mobility. An array of electrodes would comprise a set of thin wires of suitable length and composition protruding from and supported by a fine-pitch micro-ball grid array or chip-scale package (see figure). The associated integrated circuit would be mounted on the package face opposite the probe face, using the solder bumps (the balls of the ball grid array) to make the electrical connections between the probes and the input terminals of the integrated circuit. The key innovation is the insertion of probe wires of the appropriate length and material into the solder bumps through a reflow process, thereby fixing the probes in place and electrically connecting them with the integrated circuit. The probes could be tailored to any distribution of lengths and made of any suitable metal that could be drawn into fine wires. Furthermore, the wires could be coated with an insulating layer using anodization or

  16. In situ fabrication of cleavable peptide arrays on polydimethylsiloxane and applications for kinase activity assays.

    PubMed

    Chen, Huang-Han; Hsiao, Yu-Chieh; Li, Jie-Ren; Chen, Shu-Hui

    2015-03-20

    Polydimethylsiloxane (PDMS) is widely used for microfabrication and bioanalysis; however, its surface functionalization is limited due to the lack of active functional groups and incompatibility with many solvents. We presented a novel approach for in situ fabrication of cleavable peptide arrays on polydimethylsiloxane (PDMS) viatert-butyloxycarbonyl (t-Boc)/trifluoroacetic acid (TFA) chemistry using gold nanoparticles (AuNPs) as the anchor and a disulfide/amine terminated hetero-polyethylene glycol as the cleavable linker. The method was fine tuned to use reagents compatible with the PDMS. Using 5-mer pentapeptide, Trp5, as a model, step-by-step covalent coupling during the reaction cycles was monitored by Attenuated total reflectance-Fourier transform infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), or atomic force microscopy (AFM), and further confirmed by mass spectrometry (MS) detection of the cleaved peptides. Using such a method, heptapeptides of the PKA substrate, LRRASLG (Kemptide), and its point mutated analogs were fabricated in an array format for comparative studies of cAMP-dependent protein kinase (PKA) activity. Based on on-chip detection, Kemptide sequence exhibited the highest phosphorylation activity, which was detected to a 1.5-time lesser extent for the point mutated sequence (LRRGSLG) containing the recognition motif (RRXS), and was nearly undetectable for another point mutated sequence (LRLASLG) that lacked the recognition motif. These results indicate that the reported fabrication method is able to yield highly specific peptide sequences on PDMS, leading to a highly motif-sensitive enzyme activity assay. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Disorder engineering of undoped TiO2 nanotube arrays for highly efficient solar-driven oxygen evolution.

    PubMed

    Salari, M; Aboutalebi, S H; Aghassi, A; Wagner, P; Mozer, A J; Wallace, G G

    2015-02-28

    The trade-off between performance and complexity of the device manufacturing process should be balanced to enable the economic harvest of solar energy. Here, we demonstrate a conceptual, yet practical and well-regulated strategy to achieve efficient solar photocatalytic activity in TiO2 through controlled phase transformation and disorder engineering in the surface layers of TiO2 nanotubes. This approach enabled us to fine-tune the bandgap structure of undoped TiO2 according to our needs while simultaneously obtaining robust separation of photo-excited charge carriers. Introduction of specific surface defects also assisted in utilization of the visible part of sunlight to split water molecules for the production of oxygen. The strategy proposed here can serve as a guideline to overcome the practical limitation in the realization of efficient, non-toxic, chemically stable photoelectrochemical systems with high catalytic activity at neutral pH under visible illumination conditions. We also successfully incorporated TiO2 nanotube arrays (TNTAs) with free-based porphyrin affording a pathway with an overall 140% enhanced efficiency, an oxygen evolution rate of 436 μL h(-1) and faradic efficiencies over 100%.

  18. Optimization of a nanotechnology based antimicrobial platform for food safety applications using Engineered Water Nanostructures (EWNS)

    PubMed Central

    Pyrgiotakis, Georgios; Vedantam, Pallavi; Cirenza, Caroline; McDevitt, James; Eleftheriadou, Mary; Leonard, Stephen S.; Demokritou, Philip

    2016-01-01

    A chemical free, nanotechnology-based, antimicrobial platform using Engineered Water Nanostructures (EWNS) was recently developed. EWNS have high surface charge, are loaded with reactive oxygen species (ROS), and can interact-with, and inactivate an array of microorganisms, including foodborne pathogens. Here, it was demonstrated that their properties during synthesis can be fine tuned and optimized to further enhance their antimicrobial potential. A lab based EWNS platform was developed to enable fine-tuning of EWNS properties by modifying synthesis parameters. Characterization of EWNS properties (charge, size and ROS content) was performed using state-of-the art analytical methods. Further their microbial inactivation potential was evaluated with food related microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum, and Saccharomyces cerevisiae inoculated onto the surface of organic grape tomatoes. The results presented here indicate that EWNS properties can be fine-tuned during synthesis resulting in a multifold increase of the inactivation efficacy. More specifically, the surface charge quadrupled and the ROS content increased. Microbial removal rates were microorganism dependent and ranged between 1.0 to 3.8 logs after 45 mins of exposure to an EWNS aerosol dose of 40,000 #/cm3. PMID:26875817

  19. Optimization of a nanotechnology based antimicrobial platform for food safety applications using Engineered Water Nanostructures (EWNS)

    NASA Astrophysics Data System (ADS)

    Pyrgiotakis, Georgios; Vedantam, Pallavi; Cirenza, Caroline; McDevitt, James; Eleftheriadou, Mary; Leonard, Stephen S.; Demokritou, Philip

    2016-02-01

    A chemical free, nanotechnology-based, antimicrobial platform using Engineered Water Nanostructures (EWNS) was recently developed. EWNS have high surface charge, are loaded with reactive oxygen species (ROS), and can interact-with, and inactivate an array of microorganisms, including foodborne pathogens. Here, it was demonstrated that their properties during synthesis can be fine tuned and optimized to further enhance their antimicrobial potential. A lab based EWNS platform was developed to enable fine-tuning of EWNS properties by modifying synthesis parameters. Characterization of EWNS properties (charge, size and ROS content) was performed using state-of-the art analytical methods. Further their microbial inactivation potential was evaluated with food related microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum, and Saccharomyces cerevisiae inoculated onto the surface of organic grape tomatoes. The results presented here indicate that EWNS properties can be fine-tuned during synthesis resulting in a multifold increase of the inactivation efficacy. More specifically, the surface charge quadrupled and the ROS content increased. Microbial removal rates were microorganism dependent and ranged between 1.0 to 3.8 logs after 45 mins of exposure to an EWNS aerosol dose of 40,000 #/cm3.

  20. Optimization of a nanotechnology based antimicrobial platform for food safety applications using Engineered Water Nanostructures (EWNS).

    PubMed

    Pyrgiotakis, Georgios; Vedantam, Pallavi; Cirenza, Caroline; McDevitt, James; Eleftheriadou, Mary; Leonard, Stephen S; Demokritou, Philip

    2016-02-15

    A chemical free, nanotechnology-based, antimicrobial platform using Engineered Water Nanostructures (EWNS) was recently developed. EWNS have high surface charge, are loaded with reactive oxygen species (ROS), and can interact-with, and inactivate an array of microorganisms, including foodborne pathogens. Here, it was demonstrated that their properties during synthesis can be fine tuned and optimized to further enhance their antimicrobial potential. A lab based EWNS platform was developed to enable fine-tuning of EWNS properties by modifying synthesis parameters. Characterization of EWNS properties (charge, size and ROS content) was performed using state-of-the art analytical methods. Further their microbial inactivation potential was evaluated with food related microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum, and Saccharomyces cerevisiae inoculated onto the surface of organic grape tomatoes. The results presented here indicate that EWNS properties can be fine-tuned during synthesis resulting in a multifold increase of the inactivation efficacy. More specifically, the surface charge quadrupled and the ROS content increased. Microbial removal rates were microorganism dependent and ranged between 1.0 to 3.8 logs after 45 mins of exposure to an EWNS aerosol dose of 40,000 #/cm(3).

  1. The signaling symphony: T cell receptor tunes cytokine-mediated T cell differentiation

    PubMed Central

    Huang, Weishan; August, Avery

    2015-01-01

    T cell development, differentiation, and maintenance are orchestrated by 2 key signaling axes: the antigen-specific TCR and cytokine-mediated signals. The TCR signals the recognition of self- and foreign antigens to control T cell homeostasis for immune tolerance and immunity, which is regulated by a variety of cytokines to determine T cell subset homeostasis and differentiation. TCR signaling can synergize with or antagonize cytokine-mediated signaling to fine tune T cell fate; however, the latter is less investigated. Murine models with attenuated TCR signaling strength have revealed that TCR signaling can function as regulatory feedback machinery for T cell homeostasis and differentiation in differential cytokine milieus, such as IL-2-mediated Treg development; IL-7-mediated, naïve CD8+ T cell homeostasis; and IL-4-induced innate memory CD8+ T cell development. In this review, we discuss the symphonic cross-talk between TCR and cytokine-mediated responses that differentially control T cell behavior, with a focus on the negative tuning by TCR activation on the cytokine effects. PMID:25525115

  2. Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays

    NASA Astrophysics Data System (ADS)

    Proenca, M. P.; Sousa, C. T.; Escrig, J.; Ventura, J.; Vazquez, M.; Araujo, J. P.

    2013-03-01

    Ordered hexagonal arrays of Co nanowires (NWs) and nanotubes (NTs), with diameters between 40 and 65 nm, were prepared by potentiostatic electrodeposition into suitably modified nanoporous alumina templates. The geometrical parameters of the NW/NT arrays were tuned by the pore etching process and deposition conditions. The magnetic interactions between NWs/NTs with different diameters were studied using first-order reversal curves (FORCs). From a quantitative analysis of the FORC measurements, we are able to obtain the profiles of the magnetic interactions and the coercive field distributions. In both NW and NT arrays, the magnetic interactions were found to increase with the diameter of the NWs/NTs, exhibiting higher values for NW arrays. A comparative study of the magnetization reversal processes was also performed by analyzing the angular dependence of the coercivity and correlating the experimental data with theoretical calculations based on a simple analytical model. The magnetization in the NW arrays is found to reverse by the nucleation and propagation of a transverse-like domain wall; on the other hand, for the NT arrays a non-monotonic behavior occurs above a diameter of ˜50 nm, revealing a transition between the vortex and transverse reversal modes.

  3. A 0.7 V 6.66-9.36 GHz wide tuning range CMOS LC VCO with small chip size

    NASA Astrophysics Data System (ADS)

    Chen, Jun-Da; Zhang, Jie

    2017-10-01

    The circuit designs are based on TSMC 0.18 μm CMOS standard technology model. The designed circuit uses transformer coupling technology in order to decrease chip area and increase the Q value. The switched-capacitor topology array enables the voltage-controlled oscillator (VCO) to be tuned between 6.66 and 9.36 GHz with 4.9 mW power consumption at supply voltage of 0.7 V, and the tuning range of the circuit can reach 33.7%. The measured phase noise is -110.5 dBc/Hz at 1 MHz offset from the carrier frequency of 7.113 GHz. The output power level is about -1.22 dBm. The figure-of-merit and figure-of-merit-with-tuning range of the VCO are about -180.7 and -191.25 dBc/Hz, respectively. The chip area is 0.429 mm2 excluding the pads. The presented ultra-wideband VCO leads to a better performance in terms of power consumption, tuning range, chip size and output power level for low supply voltage.

  4. Time-resolved second-harmonic generation from gold nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Ferrara, D. W.; Tetz, K. A.; McMahon, M. D.; Haglund, R. F., Jr.

    2007-09-01

    We have studied the effects of planar inversion symmetry and particle-coupling of gold nanoparticle (NP) arrays by angle dependent second-harmonic generation (SHG). Time- and angle- resolved measurements were made using a mode-locked Ti:sapphire 800 nm laser onto gold NP arrays with plasmon resonance tuned to match the laser wavelength in order to produce maximum SHG signal. Finite-difference time domain simulations are used to model the near-field distributions for the various geometries and compared to experiment. The arrays were fabricated by focused ion-beam lithography and metal vapor deposition followed by standard lift-off protocols, producing NPs approximately 20nm high with various in-plane dimensions and interparticle gaps. Above a threshold fluence of ~ 7.3 × 10 -5 mJ/cm2 we find that the SHG scales with the third power of intensity, rather than the second, and atomic-force microscopy shows that the NPs have undergone a reshaping process leading to more nearly spherical shapes.

  5. Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers.

    PubMed

    Hu, Chang-Hong; Xu, Xiao-Chen; Cannata, Jonathan M; Yen, Jesse T; Shung, K Kirk

    2006-02-01

    A real-time digital beamformer for high-frequency (>20 MHz) linear ultrasonic arrays has been developed. The system can handle up to 64-element linear array transducers and excite 16 channels and receive simultaneously at 100 MHz sampling frequency with 8-bit precision. Radio frequency (RF) signals are digitized, delayed, and summed through a real-time digital beamformer, which is implemented using a field programmable gate array (FPGA). Using fractional delay filters, fine delays as small as 2 ns can be implemented. A frame rate of 30 frames per second is achieved. Wire phantom (20 microm tungsten) images were obtained and -6 dB axial and lateral widths were measured. The results showed that, using a 30 MHz, 48-element array with a pitch of 100 microm produced a -6 dB width of 68 microm in the axial and 370 microm in the lateral direction at 6.4 mm range. Images from an excised rabbit eye sample also were acquired, and fine anatomical structures, such as the cornea and lens, were resolved.

  6. Fine-tuning Philippine transactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitale, R.

    1994-11-01

    Expanding the power generation and distribution capability of the Philippines remains a top priority of the Philippine government. It is therefore not surprising that a number of the most significant legislative initiatives approved by the Philippine legislature in the past few years have been designed to encourage these activities in particular. There are several recent, significant statutes that will affect both power and non-power projects undertaken in the Philippines.

  7. Fine Tuning the CJ Detonation Speed of a High Explosive products Equation of State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    For high explosive (HE) simulations, inaccuracies of a per cent or two in the detonation wave speed can result from not suficiently resolving the reaction zone width or from small inaccuracies in calibrating the products equation of state (EOS) or from variation of HE lots. More accurate detonation speeds can be obtained by ne tuning the equation of state to compensate. Here we show that two simple EOS transformations can be used to adjust the CJ detonation speed by a couple of per cent with minimal effect on the CJ release isentrope. The two transformations are (1) a shift inmore » the energy origin and (2) a linear scaling of the speci c volume. The effectiveness of the transformations is demonstrated with simulations of the cylinder test for PBX 9502 starting with a products EOS for which the CJ detonation speed is 1 per cent too low.« less

  8. Convenient divergent strategy for the synthesis of TunePhos-type chiral diphosphine ligands and their applications in highly enantioselective Ru-catalyzed hydrogenations.

    PubMed

    Sun, Xianfeng; Zhou, Le; Li, Wei; Zhang, Xumu

    2008-02-01

    A convenient, divergent strategy for the synthesis of a series of modular and fine-tunable C3-TunePhos-type chiral diphosphine ligands and their applications in highly efficient Ru-catalyzed asymmetric hydrogenations were explored. Up to 97 and 99% ee values were achieved for the enantioselective synthesis of beta-methyl chiral amines and alpha-hydroxy acid derivatives, respectively.

  9. Apertureless cantilever-free pen arrays for scanning photochemical printing.

    PubMed

    Zhou, Yu; Xie, Zhuang; Brown, Keith A; Park, Daniel J; Zhou, Xiaozhu; Chen, Peng-Cheng; Hirtz, Michael; Lin, Qing-Yuan; Dravid, Vinayak P; Schatz, George C; Zheng, Zijian; Mirkin, Chad A

    2015-02-25

    A novel, apertureless, cantilever-free pen array can be used for dual scanning photochemical and molecular printing. Serial writing with light is enabled by combining self-focusing pyramidal pens with an opaque backing between pens. The elastomeric pens also afford force-tuned illumination and simultaneous delivery of materials and optical energy. These attributes make the technique a promising candidate for maskless high-resolution photopatterning and combinatorial chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High energy collimating fine grids for HESP program

    NASA Technical Reports Server (NTRS)

    Eberhard, Carol D.; Frazier, Edward

    1993-01-01

    There is a need to develop fine pitch x-ray collimator grids as an enabling technology for planned future missions. The grids consist of an array of thin parallel strips of x-ray absorbing material, such as tungsten, with pitches ranging from 34 microns to 2.036 millimeters. The grids are the key components of a new class of spaceborne instruments known as 'x-ray modulation collimators.' These instruments are the first to produce images of celestial sources in the hard x-ray and gamma-ray spectral regions.

  11. Simultaneous gains tuning in boiler/turbine PID-based controller clusters using iterative feedback tuning methodology.

    PubMed

    Zhang, Shu; Taft, Cyrus W; Bentsman, Joseph; Hussey, Aaron; Petrus, Bryan

    2012-09-01

    Tuning a complex multi-loop PID based control system requires considerable experience. In today's power industry the number of available qualified tuners is dwindling and there is a great need for better tuning tools to maintain and improve the performance of complex multivariable processes. Multi-loop PID tuning is the procedure for the online tuning of a cluster of PID controllers operating in a closed loop with a multivariable process. This paper presents the first application of the simultaneous tuning technique to the multi-input-multi-output (MIMO) PID based nonlinear controller in the power plant control context, with the closed-loop system consisting of a MIMO nonlinear boiler/turbine model and a nonlinear cluster of six PID-type controllers. Although simplified, the dynamics and cross-coupling of the process and the PID cluster are similar to those used in a real power plant. The particular technique selected, iterative feedback tuning (IFT), utilizes the linearized version of the PID cluster for signal conditioning, but the data collection and tuning is carried out on the full nonlinear closed-loop system. Based on the figure of merit for the control system performance, the IFT is shown to deliver performance favorably comparable to that attained through the empirical tuning carried out by an experienced control engineer. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Stay tuned: active amplification tunes tree cricket ears to track temperature-dependent song frequency.

    PubMed

    Mhatre, Natasha; Pollack, Gerald; Mason, Andrew

    2016-04-01

    Tree cricket males produce tonal songs, used for mate attraction and male-male interactions. Active mechanics tunes hearing to conspecific song frequency. However, tree cricket song frequency increases with temperature, presenting a problem for tuned listeners. We show that the actively amplified frequency increases with temperature, thus shifting mechanical and neuronal auditory tuning to maintain a match with conspecific song frequency. Active auditory processes are known from several taxa, but their adaptive function has rarely been demonstrated. We show that tree crickets harness active processes to ensure that auditory tuning remains matched to conspecific song frequency, despite changing environmental conditions and signal characteristics. Adaptive tuning allows tree crickets to selectively detect potential mates or rivals over large distances and is likely to bestow a strong selective advantage by reducing mate-finding effort and facilitating intermale interactions. © 2016 The Author(s).

  13. Adaptive Self-Tuning Networks

    NASA Astrophysics Data System (ADS)

    Knox, H. A.; Draelos, T.; Young, C. J.; Lawry, B.; Chael, E. P.; Faust, A.; Peterson, M. G.

    2015-12-01

    The quality of automatic detections from seismic sensor networks depends on a large number of data processing parameters that interact in complex ways. The largely manual process of identifying effective parameters is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. Yet, achieving superior automatic detection of seismic events is closely related to these parameters. We present an automated sensor tuning (AST) system that learns near-optimal parameter settings for each event type using neuro-dynamic programming (reinforcement learning) trained with historic data. AST learns to test the raw signal against all event-settings and automatically self-tunes to an emerging event in real-time. The overall goal is to reduce the number of missed legitimate event detections and the number of false event detections. Reducing false alarms early in the seismic pipeline processing will have a significant impact on this goal. Applicable both for existing sensor performance boosting and new sensor deployment, this system provides an important new method to automatically tune complex remote sensing systems. Systems tuned in this way will achieve better performance than is currently possible by manual tuning, and with much less time and effort devoted to the tuning process. With ground truth on detections in seismic waveforms from a network of stations, we show that AST increases the probability of detection while decreasing false alarms.

  14. Kernel Tuning and Nonuniform Influence on Optical and Electrochemical Gaps of Bimetal Nanoclusters.

    PubMed

    He, Lizhong; Yuan, Jinyun; Xia, Nan; Liao, Lingwen; Liu, Xu; Gan, Zibao; Wang, Chengming; Yang, Jinlong; Wu, Zhikun

    2018-03-14

    Fine tuning nanoparticles with atomic precision is exciting and challenging and is critical for tuning the properties, understanding the structure-property correlation and determining the practical applications of nanoparticles. Some ultrasmall thiolated metal nanoparticles (metal nanoclusters) have been shown to be precisely doped, and even the protecting staple metal atom could be precisely reduced. However, the precise addition or reduction of the kernel atom while the other metal atoms in the nanocluster remain the same has not been successful until now, to the best of our knowledge. Here, by carefully selecting the protecting ligand with adequate steric hindrance, we synthesized a novel nanocluster in which the kernel can be regarded as that formed by the addition of two silver atoms to both ends of the Pt@Ag 12 icosohedral kernel of the Ag 24 Pt(SR) 18 (SR: thiolate) nanocluster, as revealed by single crystal X-ray crystallography. Interestingly, compared with the previously reported Ag 24 Pt(SR) 18 nanocluster, the as-obtained novel bimetal nanocluster exhibits a similar absorption but a different electrochemical gap. One possible explanation for this result is that the kernel tuning does not essentially change the electronic structure, but obviously influences the charge on the Pt@Ag 12 kernel, as demonstrated by natural population analysis, thus possibly resulting in the large electrochemical gap difference between the two nanoclusters. This work not only provides a novel strategy to tune metal nanoclusters but also reveals that the kernel change does not necessarily alter the optical and electrochemical gaps in a uniform manner, which has important implications for the structure-property correlation of nanoparticles.

  15. Electronically Tuned Local Oscillators for the NOEMA Interferometer

    NASA Astrophysics Data System (ADS)

    Mattiocco, Francois; Garnier, Olivier; Maier, Doris; Navarrini, Alessandro; Serres, Patrice

    2016-03-01

    We present an overview of the electronically tuned local oscillator (LO) system developed at the Institut de RadioAstronomie millimetrique (IRAM) for the superconductor-insulator-superconductor (SIS) receivers of the NOrthern Extended Millimeter Array interferometer (NOEMA). We modified the frequency bands and extended the bandwidths of the LO designs developed by the National Radio Astronomy Observatory (NRAO) for the Atacama Large Millimeter Array (ALMA) project to cover the four NOEMA LO frequency ranges 82-108.3 GHz (Band 1), 138.6-171.3 GHz (Band 2), 207.7-264.4 GHz (Band 3), and 283-365 GHz (Band 4). The NOEMA LO system employs commercially available MMICs and GaAs millimeter MMICs from NRAO which are micro-assembled into active multiplied chain (AMC) and power amplifier (PA) modules. We discuss the problem of the LO spurious harmonics and of the LO signal directly multiplied by the SIS mixers that add extra noise and lead to detections of unwanted spectral lines from higher order sidebands. A waveguide filter in the LO path is used to reduce the higher order harmonics level of the LO at the output of the final frequency multiplier, thus mitigating the undesired effects and improving the system noise temperature.

  16. Tuning History: The French Experience

    ERIC Educational Resources Information Center

    Lamboley, Jean-Luc

    2017-01-01

    The paper shows that Tuning Project has generated indifference more than resistance within the French academic community. It proposes an analysis of the reasons of this situation: difficulties arising from Tuning itself, the resistance of the French academic tradition, the institutional inhibitors and facilitators. The impact of Tuning on French…

  17. Experimental realization of a metamaterial detector focal plane array.

    PubMed

    Shrekenhamer, David; Xu, Wangren; Venkatesh, Suresh; Schurig, David; Sonkusale, Sameer; Padilla, Willie J

    2012-10-26

    We present a metamaterial absorber detector array that enables room-temperature, narrow-band detection of gigahertz (GHz) radiation in the S band (2-4 GHz). The system is implemented in a commercial printed circuit board process and we characterize the detector sensitivity and angular dependence. A modified metamaterial absorber geometry allows for each unit cell to act as an isolated detector pixel and to collectively form a focal plane array . Each pixel can have a dedicated microwave receiver chain and functions together as a hybrid device tuned to maximize the efficiency of detected power. The demonstrated subwavelength pixel shows detected sensitivity of -77 dBm, corresponding to a radiation power density of 27 nW/m(2), with pixel to pixel coupling interference below -14 dB at 2.5 GHz.

  18. Modulation of the Substitution Pattern of 5-Aryl-2-Aminoimidazoles Allows Fine-Tuning of Their Antibiofilm Activity Spectrum and Toxicity

    PubMed Central

    Peeters, Elien; Hooyberghs, Geert; Robijns, Stijn; Waldrant, Kai; De Weerdt, Ami; Delattin, Nicolas; Liebens, Veerle; Kucharíková, Soňa; Tournu, Hélène; Verstraeten, Natalie; Dovgan, Barbara; Girandon, Lenart; Fröhlich, Mirjam; De Brucker, Katrijn; Michiels, Jan; Cammue, Bruno P. A.; Thevissen, Karin; Vanderleyden, Jozef; Van der Eycken, Erik

    2016-01-01

    We previously synthesized several series of compounds, based on the 5-aryl-2-aminoimidazole scaffold, that showed activity preventing the formation of Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa biofilms. Here, we further studied the activity spectrum of a number of the most active N1- and 2N-substituted 5-aryl-2-aminoimidazoles against a broad panel of biofilms formed by monospecies and mixed species of bacteria and fungi. An N1-substituted compound showed very strong activity against the biofilms formed by Gram-negative and Gram-positive bacteria and the fungus Candida albicans but was previously shown to be toxic against various eukaryotic cell lines. In contrast, 2N-substituted compounds were nontoxic and active against biofilms formed by Gram-negative bacteria and C. albicans but had reduced activity against biofilms formed by Gram-positive bacteria. In an attempt to develop nontoxic compounds with potent activity against biofilms formed by Gram-positive bacteria for application in antibiofilm coatings for medical implants, we synthesized novel compounds with substituents at both the N1 and 2N positions and tested these compounds for antibiofilm activity and toxicity. Interestingly, most of these N1-,2N-disubstituted 5-aryl-2-aminoimidazoles showed very strong activity against biofilms formed by Gram-positive bacteria and C. albicans in various setups with biofilms formed by monospecies and mixed species but lost activity against biofilms formed by Gram-negative bacteria. In light of application of these compounds as anti-infective coatings on orthopedic implants, toxicity against two bone cell lines and the functionality of these cells were tested. The N1-,2N-disubstituted 5-aryl-2-aminoimidazoles in general did not affect the viability of bone cells and even induced calcium deposition. This indicates that modulating the substitution pattern on positions N1 and 2N of the 5-aryl-2-aminoimidazole scaffold allows fine-tuning of both the

  19. Experimental implementation of array-compressed parallel transmission at 7 tesla.

    PubMed

    Yan, Xinqiang; Cao, Zhipeng; Grissom, William A

    2016-06-01

    To implement and validate a hardware-based array-compressed parallel transmission (acpTx) system. In array-compressed parallel transmission, a small number of transmit channels drive a larger number of transmit coils, which are connected via an array compression network that implements optimized coil-to-channel combinations. A two channel-to-eight coil array compression network was developed using power splitters, attenuators and phase shifters, and a simulation was performed to investigate the effects of coil coupling on power dissipation in a simplified network. An eight coil transmit array was constructed using induced current elimination decoupling, and the coil and network were validated in benchtop measurements, B1+ mapping scans, and an accelerated spiral excitation experiment. The developed attenuators came within 0.08 dB of the desired attenuations, and reflection coefficients were -22 dB or better. The simulation demonstrated that up to 3× more power was dissipated in the network when coils were poorly isolated (-9.6 dB), versus well-isolated (-31 dB). Compared to split circularly-polarized coil combinations, the additional degrees of freedom provided by the array compression network led to 54% lower squared excitation error in the spiral experiment. Array-compressed parallel transmission was successfully implemented in a hardware system. Further work is needed to develop remote network tuning and to minimize network power dissipation. Magn Reson Med 75:2545-2552, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Mapping the fine structure of cortical activity with different micro-ECoG electrode array geometries

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Gkogkidis, C. Alexis; Iljina, Olga; Fiederer, Lukas D. J.; Henle, Christian; Mader, Irina; Kaminsky, Jan; Stieglitz, Thomas; Gierthmuehlen, Mortimer; Ball, Tonio

    2017-10-01

    Objective. Innovations in micro-electrocorticography (µECoG) electrode array manufacturing now allow for intricate designs with smaller contact diameters and/or pitch (i.e. inter-contact distance) down to the sub-mm range. The aims of the present study were: (i) to investigate whether frequency ranges up to 400 Hz can be reproducibly observed in µECoG recordings and (ii) to examine how differences in topographical substructure between these frequency bands and electrode array geometries can be quantified. We also investigated, for the first time, the influence of blood vessels on signal properties and assessed the influence of cortical vasculature on topographic mapping. Approach. The present study employed two µECoG electrode arrays with different contact diameters and inter-contact distances, which were used to characterize neural activity from the somatosensory cortex of minipigs in a broad frequency range up to 400 Hz. The analysed neural data were recorded in acute experiments under anaesthesia during peripheral electrical stimulation. Main results. We observed that µECoG recordings reliably revealed multi-focal cortical somatosensory response patterns, in which response peaks were often less than 1 cm apart and would thus not have been resolvable with conventional ECoG. The response patterns differed by stimulation site and intensity, they were distinct for different frequency bands, and the results of functional mapping proved independent of cortical vascular. Our analysis of different frequency bands exhibited differences in the number of activation peaks in topographical substructures. Notably, signal strength and signal-to-noise ratios differed between the two electrode arrays, possibly due to their different sensitivity for variations in spatial patterns and signal strengths. Significance. Our findings that the geometry of µECoG electrode arrays can strongly influence their recording performance can help to make informed decisions that maybe

  1. Neural mechanisms of coarse-to-fine discrimination in the visual cortex.

    PubMed

    Purushothaman, Gopathy; Chen, Xin; Yampolsky, Dmitry; Casagrande, Vivien A

    2014-12-01

    Vision is a dynamic process that refines the spatial scale of analysis over time, as evidenced by a progressive improvement in the ability to detect and discriminate finer details. To understand coarse-to-fine discrimination, we studied the dynamics of spatial frequency (SF) response using reverse correlation in the primary visual cortex (V1) of the primate. In a majority of V1 cells studied, preferred SF either increased monotonically with time (group 1) or changed nonmonotonically, with an initial increase followed by a decrease (group 2). Monotonic shift in preferred SF occurred with or without an early suppression at low SFs. Late suppression at high SFs always accompanied nonmonotonic SF dynamics. Bayesian analysis showed that SF discrimination performance and best discriminable SF frequencies changed with time in different ways in the two groups of neurons. In group 1 neurons, SF discrimination performance peaked on both left and right flanks of the SF tuning curve at about the same time. In group 2 neurons, peak discrimination occurred on the right flank (high SFs) later than on the left flank (low SFs). Group 2 neurons were also better discriminators of high SFs. We examined the relationship between the time at which SF discrimination performance peaked on either flank of the SF tuning curve and the corresponding best discriminable SFs in both neuronal groups. This analysis showed that the population best discriminable SF increased with time in V1. These results suggest neural mechanisms for coarse-to-fine discrimination behavior and that this process originates in V1 or earlier. Copyright © 2014 the American Physiological Society.

  2. Lithographically Patterned Nanoscale Electrodeposition of Plasmonic, Bimetallic, Semiconductor, Magnetic, and Polymer Nanoring Arrays

    PubMed Central

    2015-01-01

    Large area arrays of magnetic, semiconducting, and insulating nanorings were created by coupling colloidal lithography with nanoscale electrodeposition. This versatile nanoscale fabrication process allows for the independent tuning of the spacing, diameter, and width of the nanorings with typical values of 1.0 μm, 750 nm, and 100 nm, respectively, and was used to form nanorings from a host of materials: Ni, Co, bimetallic Ni/Au, CdSe, and polydopamine. These nanoring arrays have potential applications in memory storage, optical materials, and biosensing. A modified version of this nanoscale electrodeposition process was also used to create arrays of split gold nanorings. The size of the split nanoring opening was controlled by the angle of photoresist exposure during the fabrication process and could be varied from 50% down to 10% of the ring circumference. The large area (cm2 scale) gold split nanoring array surfaces exhibited strong polarization-dependent plasmonic absorption bands for wavelengths from 1 to 5 μm. Plasmonic nanoscale split ring arrays are potentially useful as tunable dichroic materials throughout the infrared and near-infrared spectral regions. PMID:25553204

  3. Magnetic and plasmonic properties in noncompensated Fe-Sn codoped In2O3 nanodot arrays

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Nan; Jiang, Feng-Xian; Yan, Li-Juan; Xu, Xiao-Hong

    2018-05-01

    The noncompensated Fe-Sn codoped In2O3 nanodot arrays with the Sn concentration of 0.02, 0.05, 0.1, 0.15 and 0.2 were deposited on Al2O3 (0 0 0 1) substrates using laser molecular beam epitaxy with the aid of anodic aluminium oxide templates. The structural and compositional results reveal that the nanodot arrays show the single phase cubic In2O3 structure and Sn and Fe dopant ions substitute In3+ sites of the In2O3 lattice with a tetravalence (Sn4+) and a mixed-valence (Fe2+/Fe3+), respectively. All the nanodot arrays exhibit the obvious room temperature ferromagnetic behavior and the localized surface plasmon resonance (LSPR) band. Moreover, the ferromagnetism and the LSPR absorption peak can be tuned by the Sn concentration or sizes of nanodot arrays.

  4. Millimeter-Sized Suspended Plasmonic Nanohole Arrays for Surface-Tension-Driven Flow-Through SERS

    PubMed Central

    2015-01-01

    We present metallic nanohole arrays fabricated on suspended membranes as an optofluidic substrate. Millimeter-sized suspended nanohole arrays were fabricated using nanoimprint lithography. We demonstrate refractive-index-based tuning of the optical spectra using a sucrose solution for the optimization of SERS signal intensity, leading to a Raman enhancement factor of 107. Furthermore, compared to dead-ended nanohole arrays, suspended nanohole arrays capable of flow-through detection increased the measured SERS signal intensity by 50 times. For directed transport of analytes, we present a novel methodology utilizing surface tension to generate spontaneous flow through the nanoholes with flow rates of 1 μL/min, obviating the need for external pumps or microfluidic interconnects. Using this method for SERS, we obtained a 50 times higher signal as compared to diffusion-limited transport and could detect 100 pM 4-mercaptopyridine. The suspended nanohole substrates presented herein possess a uniform and reproducible geometry and show the potential for improved analyte transport and SERS detection. PMID:25678744

  5. Challenging aspects of contemporary cochlear implant electrode array design.

    PubMed

    Mistrík, Pavel; Jolly, Claude; Sieber, Daniel; Hochmair, Ingeborg

    2017-12-01

    A design comparison of current perimodiolar and lateral wall electrode arrays of the cochlear implant (CI) is provided. The focus is on functional features such as acoustic frequency coverage and tonotopic mapping, battery consumption and dynamic range. A traumacity of their insertion is also evaluated. Review of up-to-date literature. Perimodiolar electrode arrays are positioned in the basal turn of the cochlea near the modiolus. They are designed to initiate the action potential in the proximity to the neural soma located in spiral ganglion. On the other hand, lateral wall electrode arrays can be inserted deeper inside the cochlea, as they are located along the lateral wall and such insertion trajectory is less traumatic. This class of arrays targets primarily surviving neural peripheral processes. Due to their larger insertion depth, lateral wall arrays can deliver lower acoustic frequencies in manner better corresponding to cochlear tonotopicity. In fact, spiral ganglion sections containing auditory nerve fibres tuned to low acoustic frequencies are located deeper than 1 and half turn inside the cochlea. For this reason, a significant frequency mismatch might be occurring for apical electrodes in perimodiolar arrays, detrimental to speech perception. Tonal languages such as Mandarin might be therefore better treated with lateral wall arrays. On the other hand, closer proximity to target tissue results in lower psychophysical threshold levels for perimodiolar arrays. However, the maximal comfort level is also lower, paradoxically resulting in narrower dynamic range than that of lateral wall arrays. Battery consumption is comparable for both types of arrays. Lateral wall arrays are less likely to cause trauma to cochlear structures. As the current trend in cochlear implantation is the maximal protection of residual acoustic hearing, the lateral wall arrays seem more suitable for hearing preservation CI surgeries. Future development could focus on combining the

  6. Tamm plasmon sub-wavelength structuration for loss reduction and resonance tuning

    NASA Astrophysics Data System (ADS)

    Gubaydullin, A. R.; Symonds, C.; Benoit, J.-M.; Ferrier, L.; Benyattou, T.; Jamois, C.; Lemaître, A.; Senellart, P.; Kaliteevski, M. A.; Bellessa, J.

    2017-12-01

    We have demonstrated experimentally and theoretically that losses in Tamm plasmon structures can be reduced by using a subwavelength structuration of the metal layer. The structures consist of a GaAs/Al0.95Ga0.05As Bragg reflector covered with a sub-wavelength silver grating. An active quantum dot layer is inserted to perform photoluminescence experiments. Experimental results show that the quality factor of the Tamm plasmon mode with grating increases substantially, with respect to the same structure without a grating. Moreover, a fine-tuning of the Tamm spectral position is obtained by changing the grating parameters. Finite element method simulations are in good agreement with the experimental values. Our results will promote the realization of lasing with the TP based devices at room temperature.

  7. Adaptive Sensor Tuning for Seismic Event Detection in Environment with Electromagnetic Noise

    NASA Astrophysics Data System (ADS)

    Ziegler, Abra E.

    The goal of this research is to detect possible microseismic events at a carbon sequestration site. Data recorded on a continuous downhole microseismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project, were evaluated using machine learning and reinforcement learning techniques to determine their effectiveness at seismic event detection on a dataset with electromagnetic noise. The data were recorded from a passive vertical monitoring array consisting of 16 levels of 3-component 15 Hz geophones installed in the field and continuously recording since January 2014. Electromagnetic and other noise recorded on the array has significantly impacted the utility of the data and it was necessary to characterize and filter the noise in order to attempt event detection. Traditional detection methods using short-term average/long-term average (STA/LTA) algorithms were evaluated and determined to be ineffective because of changing noise levels. To improve the performance of event detection and automatically and dynamically detect seismic events using effective data processing parameters, an adaptive sensor tuning (AST) algorithm developed by Sandia National Laboratories was utilized. AST exploits neuro-dynamic programming (reinforcement learning) trained with historic event data to automatically self-tune and determine optimal detection parameter settings. The key metric that guides the AST algorithm is consistency of each sensor with its nearest neighbors: parameters are automatically adjusted on a per station basis to be more or less sensitive to produce consistent agreement of detections in its neighborhood. The effects that changes in neighborhood configuration have on signal detection were explored, as it was determined that neighborhood-based detections significantly reduce the number of both missed and false detections in ground-truthed data. The performance of the AST algorithm was

  8. Coexisting synchronous and asynchronous states in locally coupled array of oscillators by partial self-feedback control

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Ghosh, Dibakar; Parmananda, Punit; Osipov, G. V.; Dana, Syamal K.

    2017-07-01

    We report the emergence of coexisting synchronous and asynchronous subpopulations of oscillators in one dimensional arrays of identical oscillators by applying a self-feedback control. When a self-feedback is applied to a subpopulation of the array, similar to chimera states, it splits into two/more sub-subpopulations coexisting in coherent and incoherent states for a range of self-feedback strength. By tuning the coupling between the nearest neighbors and the amount of self-feedback in the perturbed subpopulation, the size of the coherent and the incoherent sub-subpopulations in the array can be controlled, although the exact size of them is unpredictable. We present numerical evidence using the Landau-Stuart system and the Kuramoto-Sakaguchi phase model.

  9. Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies.

    PubMed

    Littler, Ian C M; Gray, Malcolm B; Chow, Jong H; Shaddock, Daniel A; McClelland, David E

    2009-06-22

    An integrated sensor system is presented which displays passive long range operation to 100 km at pico-strain (pepsilon) sensitivity to low frequencies (4 Hz) in wavelength division multiplexed operation with negligible cross-talk (better than -75 dB). This has been achieved by pre-stabilizing and multiplexing all interrogation lasers for the sensor array to a single optical frequency reference. This single frequency reference allows each laser to be locked to an arbitrary wavelength and independently tuned, while maintaining suppression of laser frequency noise. With appropriate packaging, such a multiplexed strain sensing system can form the core of a low frequency accelerometer or hydrophone array.

  10. An automatically tuning intrusion detection system.

    PubMed

    Yu, Zhenwei; Tsai, Jeffrey J P; Weigert, Thomas

    2007-04-01

    An intrusion detection system (IDS) is a security layer used to detect ongoing intrusive activities in information systems. Traditionally, intrusion detection relies on extensive knowledge of security experts, in particular, on their familiarity with the computer system to be protected. To reduce this dependence, various data-mining and machine learning techniques have been deployed for intrusion detection. An IDS is usually working in a dynamically changing environment, which forces continuous tuning of the intrusion detection model, in order to maintain sufficient performance. The manual tuning process required by current systems depends on the system operators in working out the tuning solution and in integrating it into the detection model. In this paper, an automatically tuning IDS (ATIDS) is presented. The proposed system will automatically tune the detection model on-the-fly according to the feedback provided by the system operator when false predictions are encountered. The system is evaluated using the KDDCup'99 intrusion detection dataset. Experimental results show that the system achieves up to 35% improvement in terms of misclassification cost when compared with a system lacking the tuning feature. If only 10% false predictions are used to tune the model, the system still achieves about 30% improvement. Moreover, when tuning is not delayed too long, the system can achieve about 20% improvement, with only 1.3% of the false predictions used to tune the model. The results of the experiments show that a practical system can be built based on ATIDS: system operators can focus on verification of predictions with low confidence, as only those predictions determined to be false will be used to tune the detection model.

  11. Musical experience sharpens human cochlear tuning.

    PubMed

    Bidelman, Gavin M; Nelms, Caitlin; Bhagat, Shaum P

    2016-05-01

    The mammalian cochlea functions as a filter bank that performs a spectral, Fourier-like decomposition on the acoustic signal. While tuning can be compromised (e.g., broadened with hearing impairment), whether or not human cochlear frequency resolution can be sharpened through experiential factors (e.g., training or learning) has not yet been established. Previous studies have demonstrated sharper psychophysical tuning curves in trained musicians compared to nonmusicians, implying superior peripheral tuning. However, these findings are based on perceptual masking paradigms, and reflect engagement of the entire auditory system rather than cochlear tuning, per se. Here, by directly mapping physiological tuning curves from stimulus frequency otoacoustic emissions (SFOAEs)-cochlear emitted sounds-we show that estimates of human cochlear tuning in a high-frequency cochlear region (4 kHz) is further sharpened (by a factor of 1.5×) in musicians and improves with the number of years of their auditory training. These findings were corroborated by measurements of psychophysical tuning curves (PTCs) derived via simultaneous masking, which similarly showed sharper tuning in musicians. Comparisons between SFOAE and PTCs revealed closer correspondence between physiological and behavioral curves in musicians, indicating that tuning is also more consistent between different levels of auditory processing in trained ears. Our findings demonstrate an experience-dependent enhancement in the resolving power of the cochlear sensory epithelium and the spectral resolution of human hearing and provide a peripheral account for the auditory perceptual benefits observed in musicians. Both local and feedback (e.g., medial olivocochlear efferent) mechanisms are discussed as potential mechanisms for experience-dependent tuning. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Broadband perfect infrared absorption by tuning epsilon-near-zero and epsilon-near-pole resonances of multilayer ITO nanowires.

    PubMed

    Zhou, Kun; Cheng, Qiang; Song, Jinlin; Lu, Lu; Jia, Zhihao; Li, Junwei

    2018-01-01

    We numerically investigate the broadband perfect infrared absorption by tuning epsilon-near-zero (ENZ) and epsilon-near-pole (ENP) resonances of multilayer indium tin oxide nanowires (ITO NWs). The monolayer ITO NWs array shows intensive absorption at ENZ and ENP wavelengths for p polarization, while only at the ENP wavelength for s polarization. Moreover, the ENP resonances are almost omnidirectional and the ENZ resonances are angularly dependent. Therefore, the absorption bandwidth is broader for p polarization than that for s polarization when polarized waves are incident obliquely. The ENZ resonances can be tuned by altering the doping concentration and volume filling factor of ITO NWs. However, the ENP resonances only can be tuned by changing the doping concentration of ITO NWs, and volume filling factor impacts little on the ENP resonances. Based on the strong absorption properties of each layer at their own ENP and ENZ resonances, the tuned absorption of the bilayer ITO NWs with the different doping concentrations can be broader and stronger. Furthermore, multilayer ITO NWs can achieve broadband perfect absorption by controlling the doping concentration, volume filling factor, and length of the NWs in each layer. This study has the potential to apply to applications requiring efficient absorption and energy conversion.

  13. Ultra-high-aspect-orthogonal and tunable three dimensional polymeric nanochannel stack array for BioMEMS applications

    NASA Astrophysics Data System (ADS)

    Heo, Joonseong; Kwon, Hyukjin J.; Jeon, Hyungkook; Kim, Bumjoo; Kim, Sung Jae; Lim, Geunbae

    2014-07-01

    Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (~106 with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even roll the stack array to form a radial-uniformly distributed nanochannel array. The roll can be cut at discretionary lengths for incorporation with a micro/nanofluidic device. As examples, we demonstrated ion concentration polarization with the device for Ohmic-limiting/overlimiting current-voltage characteristics and preconcentrated charged species. The density of the nanochannel array was lower than conventional nanoporous membranes, such as anodic aluminum oxide membranes (AAO). However, accurate controllability over the nanochannel array dimensions enabled multiplexed one microstructure-on-one nanostructure interfacing for valuable biological/biomedical microelectromechanical system (BioMEMS) platforms, such as nano-electroporation.Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (~106 with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even

  14. Superconducting Detector Arrays for Astrophysics

    NASA Technical Reports Server (NTRS)

    Chervenak, James

    2008-01-01

    The next generation of astrophysics instruments will feature an order of magnitude more photon sensors or sensors that have an order of magnitude greater sensitivity. Since detector noise scales with temperature, a number of candidate technologies have been developed that use the intrinsic advantages of detector systems that operate below 1 Kelvin. Many of these systems employ of the superconducting phenomena that occur in metals at these temperatures to build ultrasensitive detectors and low-noise, low-power readout architectures. I will present one such system in use today to meet the needs of the astrophysics community at millimeter and x-ray wavelengths. Our group at NASA in collaboration with Princeton, NIST, Boulder and a number of other groups is building large format arrays of superconducting transition edge sensors (TES) read out with multiplexed superconducting quantum interference devices (SQUID). I will present the high sensitivity we have achieved in multiplexed x-ray sensors with the TES technology and describe the construction of a 1000-sensor TES/SQUID array for microwave measurements. With our collaboration's deployment of a kilopixel TES array for 2 mm radiation at the Atacarna Cosmology Telescope in November 2007, we have first images of the lensed Cosmic Microwave Background at fine angular scales.

  15. Laser-tuned whispering gallery modes in a solid-core microstructured optical fibre integrated with magnetic fluids

    PubMed Central

    Lin, Wei; Zhang, Hao; Liu, Bo; Song, Binbin; Li, Yuetao; Yang, Chengkun; Liu, Yange

    2015-01-01

    A laser-assisted tuning method of whispering gallery modes (WGMs) in a cylindrical microresonator based on magnetic-fluids-infiltrated microstructured optical fibres (MFIMOFs, where MF and MOF respectively refer to magnetic fluid and microstructured optical fibre) is proposed, experimentally demonstrated and theoretically analysed in detail. The MFIMOF is prepared by infiltrating the air-hole array of the MOF using capillary action effect. A fibre-coupling system is set up for the proposed MFIMOF-based microresonator to acquire an extinction ratio up to 25 dB and a Q-factor as large as 4.0 × 104. For the MF-infiltrated MOF, the light propagating in the fibre core region would rapidly spread out and would be absorbed by the MF-rod array cladding to induce significant thermal effect. This has been exploited to achieve a WGM resonance wavelength sensitivity of 0.034 nm/mW, which is ~20 times higher than it counterpart without MF infiltration. The wavelength response of the resonance dips exhibit linear power dependence, and owing to such desirable merits as ease of fabrication, high sensitivity and laser-assisted tunability, the proposed optical tuning approach of WGMs in the MFIMOF would find promising applications in the areas of optical filtering, sensing, and signal processing, as well as future all-optical networking systems. PMID:26632445

  16. Phage displayed scFv: pIII scaffold may fine tune binding specificity.

    PubMed

    Goswami, Pooja; Saini, Deepti; Sinha, Subrata

    2009-10-01

    The fine specificity of antibodies is important for their discriminating powers during diagnostics and in vivo therapy. We have attempted to isolate human scFv antibodies to the oncofetal antigen, the placental isozyme of alkaline phosphatase (PLAP) in which it is important to distinguish between the closely related intestinal alkaline phosphatase (IAP) and bone alkaline phosphatase (BAP) isozymes. As the antibodies are selected in the phage displayed form and might be finally used as different entities, including the soluble scFv form, it may be important to look at the influence of scaffolds in determining specificity. There have been earlier reports of the role of the constant region and other scaffolding proteins in determining specificity. In this paper, we report isolation of one such clone, E6, which showed specificity to PLAP in phage antibody form but lost the specificity when soluble scFv was tested for same, and showed partial cross reactivity to BAP. We suggest that the altered specificity of scFv might be the result of loss of phage pIII scaffold, which is present in phage-displayed antibody and may help the displayed antibody to assume specific conformational structure, which may govern binding characteristics of the same.

  17. Development of a 35-MHz piezo-composite ultrasound array for medical imaging.

    PubMed

    Cannata, Jonathan M; Williams, Jay A; Zhou, Qifa; Ritter, Timothy A; Shung, K Kirk

    2006-01-01

    This paper discusses the development of a 64-element 35-MHz composite ultrasonic array. This array was designed primarily for ocular imaging applications, and features 2-2 composite elements mechanically diced out of a fine-grain high-density Navy Type VI ceramic. Array elements were spaced at a 50-micron pitch, interconnected via a custom flexible circuit and matched to the 50-ohm system electronics via a 75-ohm transmission line coaxial cable. Elevation focusing was achieved using a cylindrically shaped epoxy lens. One functional 64-element array was fabricated and tested. Bandwidths averaging 55%, 23-dB insertion loss, and crosstalk less than -24 dB were measured. An image of a tungsten wire target phantom was acquired using a synthetic aperture reconstruction algorithm. The results from this imaging test demonstrate resolution exceeding 50 microm axially and 100 microm laterally.

  18. Cochlear microphonic broad tuning curves

    NASA Astrophysics Data System (ADS)

    Ayat, Mohammad; Teal, Paul D.; Searchfield, Grant D.; Razali, Najwani

    2015-12-01

    It is known that the cochlear microphonic voltage exhibits much broader tuning than does the basilar membrane motion. The most commonly used explanation for this is that when an electrode is inserted at a particular point inside the scala media, the microphonic potentials of neighbouring hair cells have different phases, leading to cancelation at the electrodes location. In situ recording of functioning outer hair cells (OHCs) for investigating this hypothesis is exceptionally difficult. Therefore, to investigate the discrepancy between the tuning curves of the basilar membrane and those of the cochlear microphonic, and the effect of phase cancellation of adjacent hair cells on the broadness of the cochlear microphonic tuning curves, we use an electromechanical model of the cochlea to devise an experiment. We explore the effect of adjacent hair cells (i.e., longitudinal phase cancellation) on the broadness of the cochlear microphonic tuning curves in different locations. The results of the experiment indicate that active longitudinal coupling (i.e., coupling with active adjacent outer hair cells) only slightly changes the broadness of the CM tuning curves. The results also demonstrate that there is a π phase difference between the potentials produced by the hair bundle and the soma near the place associated with the characteristic frequency based on place-frequency maps (i.e., the best place). We suggest that the transversal phase cancellation (caused by the phase difference between the hair bundle and the soma) plays a far more important role than longitudinal phase cancellation in the broadness of the cochlear microphonic tuning curves. Moreover, by increasing the modelled longitudinal resistance resulting the cochlear microphonic curves exhibiting sharper tuning. The results of the simulations suggest that the passive network of the organ of Corti determines the phase difference between the hair bundle and soma, and hence determines the sharpness of the

  19. A complex carotenoid palette tunes avian color vision.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timlin, Jerilyn A.; Toomey, Matthew B.; Collins, Aaron M.

    The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pigmented with carotenoids, their precise composition has remained uncertain owing to the technical challenges of measuring these very small, dense and highly refractile optical organelles. In this study, we integrated results from high-performance liquid chromatography, hyperspectral microscopy and microspectrophotometry to obtain a comprehensive understanding of oil droplet carotenoid pigmentation in the chicken ( Gallus gallus). Wemore » find that each of the four carotenoid-containing droplet types consists of a complex mixture of carotenoids, with a single predominant carotenoid determining the wavelength of the spectral filtering cut-off. Consistent with previous reports, we find that the predominant carotenoid type in the oil droplets of long-wavelength-sensitive, medium-wavelength-sensitive and short-wavelength-sensitive type 2 cones are astaxanthin, zeaxanthin and galloxanthin, respectively. In addition, the oil droplet of the principal member of the double cone contains a mixture of galloxanthin and two hydroxycarotenoids (lutein and zeaxanthin). Short-wavelength-absorbing apocarotenoids are present in all of the droplet types, providing filtering of light in a region of the spectrum where filtering by hydroxy- and ketocarotenoids may be incomplete. Furthermore, birds rely on a complex palette of carotenoid pigments within their cone oil droplets to achieve finely tuned spectral filtering.« less

  20. A complex carotenoid palette tunes avian color vision.

    DOE PAGES

    Timlin, Jerilyn A.; Toomey, Matthew B.; Collins, Aaron M.; ...

    2015-10-07

    The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pigmented with carotenoids, their precise composition has remained uncertain owing to the technical challenges of measuring these very small, dense and highly refractile optical organelles. In this study, we integrated results from high-performance liquid chromatography, hyperspectral microscopy and microspectrophotometry to obtain a comprehensive understanding of oil droplet carotenoid pigmentation in the chicken ( Gallus gallus). Wemore » find that each of the four carotenoid-containing droplet types consists of a complex mixture of carotenoids, with a single predominant carotenoid determining the wavelength of the spectral filtering cut-off. Consistent with previous reports, we find that the predominant carotenoid type in the oil droplets of long-wavelength-sensitive, medium-wavelength-sensitive and short-wavelength-sensitive type 2 cones are astaxanthin, zeaxanthin and galloxanthin, respectively. In addition, the oil droplet of the principal member of the double cone contains a mixture of galloxanthin and two hydroxycarotenoids (lutein and zeaxanthin). Short-wavelength-absorbing apocarotenoids are present in all of the droplet types, providing filtering of light in a region of the spectrum where filtering by hydroxy- and ketocarotenoids may be incomplete. Furthermore, birds rely on a complex palette of carotenoid pigments within their cone oil droplets to achieve finely tuned spectral filtering.« less

  1. Adaptive microlens array based on electrically charged polyvinyl chloride/dibutyl phthalate gel

    NASA Astrophysics Data System (ADS)

    Xu, Miao; Ren, Hongwen

    2016-09-01

    We prepared an adaptive microlens array (MLA) using a polyvinyl chloride/dibutyl phthalate gel and an indium-tin-oxide (ITO) glass substrate. The gel forms a membrane on the glass substrate and the ITO electrode has a ring array pattern. When the membrane is electrically charged by a DC voltage, the surface of the membrane above each circular electrode in the ring array can be deformed with a convex shape. As a result, the membrane functions as an MLA. By applying a voltage from 20 to ˜65 V to the electrode, the focal length of each microlens can be tuned from 300 to ˜160 μm. The dynamic response time can by reduced largely by changing the polarity of the DC voltage. Due to the advantages of optical isotropy, compact structure, and good stability, our MLA has potential applications in imaging, biometrics, and electronic displays.

  2. Multispectral interference filter arrays with compensation of angular dependence or extended spectral range.

    PubMed

    Frey, Laurent; Masarotto, Lilian; Armand, Marilyn; Charles, Marie-Lyne; Lartigue, Olivier

    2015-05-04

    Thin film Fabry-Perot filter arrays with high selectivity can be realized with a single patterning step, generating a spatial modulation of the effective refractive index in the optical cavity. In this paper, we investigate the ability of this technology to address two applications in the field of image sensors. First, the spectral tuning may be used to compensate the blue-shift of the filters in oblique incidence, provided the filter array is located in an image plane of an optical system with higher field of view than aperture angle. The technique is analyzed for various types of filters and experimental evidence is shown with copper-dielectric infrared filters. Then, we propose a design of a multispectral filter array with an extended spectral range spanning the visible and near-infrared range, using a single set of materials and realizable on a single substrate.

  3. Confined surface plasmon sensors based on strongly coupled disk-in-volcano arrays.

    PubMed

    Ai, Bin; Wang, Limin; Möhwald, Helmuth; Yu, Ye; Zhang, Gang

    2015-02-14

    Disk-in-volcano arrays are reported to greatly enhance the sensing performance due to strong coupling in the nanogaps between the nanovolcanos and nanodisks. The designed structure, which is composed of a nanovolcano array film and a disk in each cavity, is fabricated by a simple and efficient colloidal lithography method. By tuning structural parameters, the disk-in-volcano arrays show greatly enhanced resonances in the nanogaps formed by the disks and the inner wall of the volcanos. Therefore they respond to the surrounding environment with a sensitivity as high as 977 nm per RIU and with excellent linear dependence on the refraction index. Moreover, through mastering the fabrication process, biological sensing can be easily confined to the cavities of the nanovolcanos. The local responsivity has the advantages of maximum surface plasmon energy density in the nanogaps, reducing the sensing background and saving expensive reagents. The disk-in-volcano arrays also possess great potential in applications of optical and electrical trapping and single-molecule analysis, because they enable establishment of electric fields across the gaps.

  4. Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator.

    PubMed

    Doylend, J K; Heck, M J R; Bovington, J T; Peters, J D; Coldren, L A; Bowers, J E

    2011-10-24

    We demonstrate a 16-channel, independently tuned waveguide surface grating optical phased array in silicon for two dimensional beam steering with a total field of view of 20° x 14°, beam width of 0.6° x 1.6°, and full-window background peak suppression of 10 dB. © 2011 Optical Society of America

  5. Functional Characterization of MODY2 Mutations Highlights the Importance of the Fine-Tuning of Glucokinase and Its Role in Glucose Sensing

    PubMed Central

    García-Herrero, Carmen-María; Rubio-Cabezas, Oscar; Azriel, Sharona; Gutierrez-Nogués, Angel; Aragonés, Angel; Vincent, Olivier; Campos-Barros, Angel; Argente, Jesús; Navas, María-Angeles

    2012-01-01

    Glucokinase (GK) acts as a glucose sensor in the pancreatic beta-cell and regulates insulin secretion. Heterozygous mutations in the human GK-encoding GCK gene that reduce the activity index increase the glucose-stimulated insulin secretion threshold and cause familial, mild fasting hyperglycaemia, also known as Maturity Onset Diabetes of the Young type 2 (MODY2). Here we describe the biochemical characterization of five missense GK mutations: p.Ile130Thr, p.Asp205His, p.Gly223Ser, p.His416Arg and p.Ala449Thr. The enzymatic analysis of the corresponding bacterially expressed GST-GK mutant proteins show that all of them impair the kinetic characteristics of the enzyme. In keeping with their position within the protein, mutations p.Ile130Thr, p.Asp205His, p.Gly223Ser, and p.His416Arg strongly decrease the activity index of GK, affecting to one or more kinetic parameters. In contrast, the p.Ala449Thr mutation, which is located in the allosteric activator site, does not affect significantly the activity index of GK, but dramatically modifies the main kinetic parameters responsible for the function of this enzyme as a glucose sensor. The reduced Kcat of the mutant (3.21±0.28 s−1 vs 47.86±2.78 s−1) is balanced by an increased glucose affinity (S0.5 = 1.33±0.08 mM vs 7.86±0.09 mM) and loss of cooperativity for this substrate. We further studied the mechanism by which this mutation impaired GK kinetics by measuring the differential effects of several competitive inhibitors and one allosteric activator on the mutant protein. Our results suggest that this mutation alters the equilibrium between the conformational states of glucokinase and highlights the importance of the fine-tuning of GK and its role in glucose sensing. PMID:22291974

  6. How safe is tuning a radio?: using the radio tuning task as a benchmark for distracted driving.

    PubMed

    Lee, Ja Young; Lee, John D; Bärgman, Jonas; Lee, Joonbum; Reimer, Bryan

    2018-01-01

    Drivers engage in non-driving tasks while driving, such as interactions entertainment systems. Studies have identified glance patterns related to such interactions, and manual radio tuning has been used as a reference task to set an upper bound on the acceptable demand of interactions. Consequently, some view the risk associated with radio tuning as defining the upper limit of glance measures associated with visual-manual in-vehicle activities. However, we have little knowledge about the actual degree of crash risk that radio tuning poses and, by extension, the risk of tasks that have similar glance patterns as the radio tuning task. In the current study, we use counterfactual simulation to take the glance patterns for manual radio tuning tasks from an on-road experiment and apply these patterns to lead-vehicle events observed in naturalistic driving studies. We then quantify how often the glance patterns from radio tuning are associated with rear-end crashes, compared to driving only situations. We used the pre-crash kinematics from 34 crash events from the SHRP2 naturalistic driving study to investigate the effect of radio tuning in crash-imminent situations, and we also investigated the effect of radio tuning on 2,475 routine braking events from the Safety Pilot project. The counterfactual simulation showed that off-road glances transform some near-crashes that could have been avoided into crashes, and glance patterns observed in on-road radio tuning experiment produced 2.85-5.00 times more crashes than baseline driving. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fabrication and characterization of microsieve electrode array (µSEA) enabling cell positioning on 3D electrodes

    NASA Astrophysics Data System (ADS)

    Schurink, B.; Tiggelaar, R. M.; Gardeniers, J. G. E.; Luttge, R.

    2017-01-01

    Here the fabrication and characterization of a novel microelectrode array for electrophysiology applications is described, termed a micro sieve electrode array (µSEA). This silicon based µSEA device allows for hydrodynamic parallel positioning of single cells on 3D electrodes realized on the walls of inverted pyramidal shaped pores. To realize the µSEA, a previously realized silicon sieving structure is provided with a patterned boron doped poly-silicon, connecting the contact electrodes with the 3D sensing electrodes in the pores. A LPCVD silicon-rich silicon nitride layer was used as insulation. The selective opening of this insulation layer at the ends of the wiring lines allows to generate well-defined contact and sensing electrodes according to the layout used in commercial microelectrode array readers. The main challenge lays in the simultaneously selective etching of material at both the planar surface (contact electrode) as well as in the sieving structure containing the (3D) pores (sensing electrodes). For the generation of 3D electrodes in the pores a self-aligning technique was developed using the pore geometry to our advantage. This technique, based on sacrificial layer etching, allows for the fine tuning of the sensing electrode surface area and thus supports the positioning and coupling of single cells on the electrode surface in relation to the cell size. Furthermore, a self-aligning silicide is formed on the sensing electrodes to favour the electrical properties. Experiments were performed to demonstrate the working principle of the µSEA using different types of neuronal cells. Capture efficiency in the pores was  >70% with a 70% survival rate of the cell maintained for up to 14 DIV. The TiSi2-boron-doped-poly-silicon sensing electrodes of the µSEA were characterized, which indicated noise levels of  <15 µV and impedance values of 360 kΩ. These findings potentially allow for future electrophysiological measurements using the µSEA.

  8. Fine-grained parallel RNAalifold algorithm for RNA secondary structure prediction on FPGA

    PubMed Central

    Xia, Fei; Dou, Yong; Zhou, Xingming; Yang, Xuejun; Xu, Jiaqing; Zhang, Yang

    2009-01-01

    Background In the field of RNA secondary structure prediction, the RNAalifold algorithm is one of the most popular methods using free energy minimization. However, general-purpose computers including parallel computers or multi-core computers exhibit parallel efficiency of no more than 50%. Field Programmable Gate-Array (FPGA) chips provide a new approach to accelerate RNAalifold by exploiting fine-grained custom design. Results RNAalifold shows complicated data dependences, in which the dependence distance is variable, and the dependence direction is also across two dimensions. We propose a systolic array structure including one master Processing Element (PE) and multiple slave PEs for fine grain hardware implementation on FPGA. We exploit data reuse schemes to reduce the need to load energy matrices from external memory. We also propose several methods to reduce energy table parameter size by 80%. Conclusion To our knowledge, our implementation with 16 PEs is the only FPGA accelerator implementing the complete RNAalifold algorithm. The experimental results show a factor of 12.2 speedup over the RNAalifold (ViennaPackage – 1.6.5) software for a group of aligned RNA sequences with 2981-residue running on a Personal Computer (PC) platform with Pentium 4 2.6 GHz CPU. PMID:19208138

  9. Strain induced plasmon tuning in planar square-shaped aluminum nanoparticles array

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb

    2018-06-01

    Metal nanoparticle aggregate is an exciting platform for manipulating light-matter interactions at the nanoscale, thanks to the optically driven free electrons couple electrically across the inter-particle gap region. We use time dependent density functional theory calculations to investigate the optical response modulations in planar square-shaped aluminum nanoparticles array via morphology deformation (varying the inter-particle gap distance in the range of 2-20 Å) separately along one and two directions. We report the surprising observation that irrespective of the different morphology deformations, there exists a unique inter-particle gap distance of 12 Å for which, a maximum optical field enhancement can be achieved. We remark that plasmonic interaction between metal nanoparticles in an aggregate is controlled to a large extent by the size of the inter-particle gap distance. We believe that our quantum mechanical calculations will inspire and contribute to the design, control, and exploitation of aluminum based plasmonic devices.

  10. Fine structure constant and quantized optical transparency of plasmonic nanoarrays.

    PubMed

    Kravets, V G; Schedin, F; Grigorenko, A N

    2012-01-24

    Optics is renowned for displaying quantum phenomena. Indeed, studies of emission and absorption lines, the photoelectric effect and blackbody radiation helped to build the foundations of quantum mechanics. Nevertheless, it came as a surprise that the visible transparency of suspended graphene is determined solely by the fine structure constant, as this kind of universality had been previously reserved only for quantized resistance and flux quanta in superconductors. Here we describe a plasmonic system in which relative optical transparency is determined solely by the fine structure constant. The system consists of a regular array of gold nanoparticles fabricated on a thin metallic sublayer. We show that its relative transparency can be quantized in the near-infrared, which we attribute to the quantized contact resistance between the nanoparticles and the metallic sublayer. Our results open new possibilities in the exploration of universal dynamic conductance in plasmonic nanooptics.

  11. Tuning a Tetrahertz Wire Laser

    NASA Technical Reports Server (NTRS)

    Qin, Qi; Williams, Benjamin S.; Kumar, Sushil; Reno, John L.; Hu, Qing

    2009-01-01

    Tunable terahertz lasers are desirable in applications in sensing and spectroscopy because many biochemical species have strong spectral fingerprints at terahertz frequencies. Conventionally, the frequency of a laser is tuned in a similar manner to a stringed musical instrument, in which pitch is varied by changing the length of the string (the longitudinal component of the wave vector) and/ or its tension (the refractive index). However, such methods are difficult to implement in terahertz semiconductor lasers because of their poor outcoupling efficiencies. Here, we demonstrate a novel tuning mechanism based on a unique 'wire laser' device for which the transverse dimension w is much much less than lambda. Placing a movable object close to the wire laser manipulates a large fraction of the waveguided mode propagating outside the cavity, thereby tuning its resonant frequency. Continuous single-mode redshift and blueshift tuning is demonstrated for the same device by using either a dielectric or metallic movable object. In combination, this enables a frequency tuning of approximately equal to 137 GHz (3.6%) from a single laser device at approximately equal to 3.8 THz.

  12. 21 CFR 882.1525 - Tuning fork.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tuning fork. 882.1525 Section 882.1525 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1525 Tuning fork. (a) Identification. A tuning fork...

  13. 21 CFR 882.1525 - Tuning fork.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tuning fork. 882.1525 Section 882.1525 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1525 Tuning fork. (a) Identification. A tuning fork...

  14. A Global Perspective of Fine Particulate Matter Pollution and Its Health Effects.

    PubMed

    Mukherjee, Arideep; Agrawal, Madhoolika

    Fine particulate matter (PM) in the ambient air is implicated in a variety of human health issues throughout the globe. Regulation of fine PM in the atmosphere requires information on the dimension of the problem with respect to variations in concentrations and sources. To understand the current status of fine particles in the atmosphere and their potential harmful health effects in different regions of the world this review article was prepared based on peer-reviewed scientific papers, scientific reports, and database from government organizations published after the year 2000 to evaluate the global scenario of the PM 2.5 (particles <2.5 μm in aerodynamic diameter), its exceedance of national and international standards, sources, mechanism of toxicity, and harmful health effects of PM 2.5 and its components. PM 2.5 levels and exceedances of national and international standards were several times higher in Asian countries, while levels in Europe and USA were mostly well below the respective standards. Vehicular traffic has a significant influence on PM 2.5 levels in urban areas; followed by combustion activities (biomass, industrial, and waste burning) and road dust. In urban atmosphere, fine particles are mostly associated with different health effects with old aged people, pregnant women, and more so children being the most susceptible ones. Fine PM chemical constituents severely effect health due to their carcinogenic or mutagenic nature. Most of the research indicated an exceedance of fine PM level of the standards with a diverse array of health effects based on PM 2.5 chemical constituents. Emission reduction policies with epidemiological studies are needed to understand the benefits of sustainable control measures for fine PM mitigation.

  15. A Measurement and Simulation Based Methodology for Cache Performance Modeling and Tuning

    NASA Technical Reports Server (NTRS)

    Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    We present a cache performance modeling methodology that facilitates the tuning of uniprocessor cache performance for applications executing on shared memory multiprocessors by accurately predicting the effects of source code level modifications. Measurements on a single processor are initially used for identifying parts of code where cache utilization improvements may significantly impact the overall performance. Cache simulation based on trace-driven techniques can be carried out without gathering detailed address traces. Minimal runtime information for modeling cache performance of a selected code block includes: base virtual addresses of arrays, virtual addresses of variables, and loop bounds for that code block. Rest of the information is obtained from the source code. We show that the cache performance predictions are as reliable as those obtained through trace-driven simulations. This technique is particularly helpful to the exploration of various "what-if' scenarios regarding the cache performance impact for alternative code structures. We explain and validate this methodology using a simple matrix-matrix multiplication program. We then apply this methodology to predict and tune the cache performance of two realistic scientific applications taken from the Computational Fluid Dynamics (CFD) domain.

  16. Fine-grained visual marine vessel classification for coastal surveillance and defense applications

    NASA Astrophysics Data System (ADS)

    Solmaz, Berkan; Gundogdu, Erhan; Karaman, Kaan; Yücesoy, Veysel; Koç, Aykut

    2017-10-01

    The need for capabilities of automated visual content analysis has substantially increased due to presence of large number of images captured by surveillance cameras. With a focus on development of practical methods for extracting effective visual data representations, deep neural network based representations have received great attention due to their success in visual categorization of generic images. For fine-grained image categorization, a closely related yet a more challenging research problem compared to generic image categorization due to high visual similarities within subgroups, diverse applications were developed such as classifying images of vehicles, birds, food and plants. Here, we propose the use of deep neural network based representations for categorizing and identifying marine vessels for defense and security applications. First, we gather a large number of marine vessel images via online sources grouping them into four coarse categories; naval, civil, commercial and service vessels. Next, we subgroup naval vessels into fine categories such as corvettes, frigates and submarines. For distinguishing images, we extract state-of-the-art deep visual representations and train support-vector-machines. Furthermore, we fine tune deep representations for marine vessel images. Experiments address two scenarios, classification and verification of naval marine vessels. Classification experiment aims coarse categorization, as well as learning models of fine categories. Verification experiment embroils identification of specific naval vessels by revealing if a pair of images belongs to identical marine vessels by the help of learnt deep representations. Obtaining promising performance, we believe these presented capabilities would be essential components of future coastal and on-board surveillance systems.

  17. Myosin filament activation in the heart is tuned to the mechanical task

    PubMed Central

    Reconditi, Massimo; Caremani, Marco; Pinzauti, Francesca; Powers, Joseph D.; Narayanan, Theyencheri; Stienen, Ger J. M.; Linari, Marco; Lombardi, Vincenzo

    2017-01-01

    The mammalian heart pumps blood through the vessels, maintaining the dynamic equilibrium in a circulatory system driven by two pumps in series. This vital function is based on the fine-tuning of cardiac performance by the Frank–Starling mechanism that relates the pressure exerted by the contracting ventricle (end systolic pressure) to its volume (end systolic volume). At the level of the sarcomere, the structural unit of the cardiac myocytes, the Frank–Starling mechanism consists of the increase in active force with the increase of sarcomere length (length-dependent activation). We combine sarcomere mechanics and micrometer–nanometer-scale X-ray diffraction from synchrotron light in intact ventricular trabeculae from the rat to measure the axial movement of the myosin motors during the diastole–systole cycle under sarcomere length control. We find that the number of myosin motors leaving the off, ATP hydrolysis-unavailable state characteristic of the diastole is adjusted to the sarcomere length-dependent systolic force. This mechanosensing-based regulation of the thick filament makes the energetic cost of the systole rapidly tuned to the mechanical task, revealing a prime aspect of the Frank–Starling mechanism. The regulation is putatively impaired by cardiomyopathy-causing mutations that affect the intramolecular and intermolecular interactions controlling the off state of the motors. PMID:28265101

  18. Bit-systolic arithmetic arrays using dynamic differential gallium arsenide circuits

    NASA Technical Reports Server (NTRS)

    Beagles, Grant; Winters, Kel; Eldin, A. G.

    1992-01-01

    A new family of gallium arsenide circuits for fine grained bit-systolic arithmetic arrays is introduced. This scheme combines features of two recent techniques of dynamic gallium arsenide FET logic and differential dynamic single-clock CMOS logic. The resulting circuits are fast and compact, with tightly constrained series FET propagation paths, low fanout, no dc power dissipation, and depletion FET implementation without level shifting diodes.

  19. RAID-2: Design and implementation of a large scale disk array controller

    NASA Technical Reports Server (NTRS)

    Katz, R. H.; Chen, P. M.; Drapeau, A. L.; Lee, E. K.; Lutz, K.; Miller, E. L.; Seshan, S.; Patterson, D. A.

    1992-01-01

    We describe the implementation of a large scale disk array controller and subsystem incorporating over 100 high performance 3.5 inch disk drives. It is designed to provide 40 MB/s sustained performance and 40 GB capacity in three 19 inch racks. The array controller forms an integral part of a file server that attaches to a Gb/s local area network. The controller implements a high bandwidth interconnect between an interleaved memory, an XOR calculation engine, the network interface (HIPPI), and the disk interfaces (SCSI). The system is now functionally operational, and we are tuning its performance. We review the design decisions, history, and lessons learned from this three year university implementation effort to construct a truly large scale system assembly.

  20. Fabrication and analysis of microfiber array platform for optogenetics with cellular resolution

    PubMed Central

    Chen, Jian-Hong; Chou, Ming-Yi; Pan, Chien-Yuan; Wang, Lon A.

    2016-01-01

    Optogenetics has emerged as a revolutionary technology especially for neuroscience and has advanced continuously over the past decade. Conventional approaches for patterned in vivo optical illumination have a limitation on the implanted device size and achievable spatio-temporal resolution. In this work, we developed a fabrication process for a microfiber array platform. Arrayed poly(methyl methacrylate) (PMMA) microfibers were drawn from a polymer solution and packaged with polydimethylsiloxane (PDMS). The exposed end face of a packaged microfiber was tuned to have a size corresponding to a single cell. To demonstrate its capability for single cell optogenetics, HEK293T cells expressing channelrhodopsin-2 (ChR2) were cultured on the platform and excited with UV laser. We could then observe an elevation in the intracellular Ca2+ concentrations due to the influx of Ca2+ through the activated ChR2 into the cytosol. The statistical and simulation results indicate that the proposed microfiber array platform can be used for single cell optogenetic applications. PMID:27895984

  1. Polarization-independent absorption enhancement in a graphene square array with a cascaded grating structure.

    PubMed

    Wu, Jun

    2018-03-01

    The polarization-independent enhanced absorption effect of graphene in the near-infrared range is investigated. This is achieved by placing a graphene square array on top of a dielectric square array backed by a two-dimensional multilayer grating. Total optical absorption in graphene can be attributed to critical coupling, which is achieved through the combined effect of guided-mode resonance with the dielectric square array and the photonic band gap with the two-dimensional multilayer grating. To reveal the physical origin of such a phenomenon, the electromagnetic field distributions for both polarizations are illustrated. The designed graphene absorber exhibits near-unity polarization-independent absorption at resonance with an ultra-narrow spectrum. Moreover, the polarization-independent absorption can be tuned simply by changing the geometric parameters. The results may have promising potential for the design of graphene-based optoelectronic devices.

  2. A 1-MHz 2-D CMUT array for HIFU thermal ablation

    NASA Astrophysics Data System (ADS)

    Yoon, Hyo-Seon; Vaithilingam, Srikant; Park, Kwan Kyu; Nikoozadeh, Amin; Firouzi, Kamyar; Choe, Jung Woo; Watkins, Ronald D.; Oguz, Huseyin Kagan; Kupnik, Mario; Pauly, Kim Butts; Khuri-Yakub, Pierre

    2017-03-01

    We developed a fully-populated 2-D capacitive micromachined ultrasonic transducer (CMUT) array for high intensity focused ultrasound (HIFU) treatment. The 2-D CMUT array, which consists of 20 × 20 square CMUT elements with an element-to-element pitch of 1 mm, was designed and fabricated using the thick-buried-oxide (BOX) fabrication process. It was then assembled on a custom interface board that can provide various array configurations depending on the desired applications. In this study, the interface board groups the CMUT array elements into eight channels, based on the phase delay from the element to the targeted focal point at a 20-mm distance from the array surface, which corresponds to an F-number of 1. An 8-channel phase generating system supplies continuous waves with eight different phases to the eight channels of the CMUT array through bias-tees and amplifiers. This array aperture, grouped into eight channels, gives a focusing gain of 6.09 according to field simulation using Field II. Assuming a peak-to-peak pressure of 1 MPa at the surface of the array, our custom temperature simulator predicts successful tissue ablation at the focus. During the measurements, each channel was tuned with a series inductor for an operational frequency of 1 MHz. With a CMUT DC bias of 100 V and a 1-MHz AC input voltage of 55 V, we achieved peak-to-peak output pressures of 173.9 kPa and 568.7 kPa at the array surface and at the focus, respectively. The focusing gain calculated from this measurement is 3.27, which is lower than the simulated gain of 6.09 because of the mutual radiation impedance among the CMUT cells. Further optimization of the operating condition of this array and design improvements for reducing the effect of mutual radiation impedance are currently on-going.

  3. Fully parallel write/read in resistive synaptic array for accelerating on-chip learning

    NASA Astrophysics Data System (ADS)

    Gao, Ligang; Wang, I.-Ting; Chen, Pai-Yu; Vrudhula, Sarma; Seo, Jae-sun; Cao, Yu; Hou, Tuo-Hung; Yu, Shimeng

    2015-11-01

    A neuro-inspired computing paradigm beyond the von Neumann architecture is emerging and it generally takes advantage of massive parallelism and is aimed at complex tasks that involve intelligence and learning. The cross-point array architecture with synaptic devices has been proposed for on-chip implementation of the weighted sum and weight update in the learning algorithms. In this work, forming-free, silicon-process-compatible Ta/TaO x /TiO2/Ti synaptic devices are fabricated, in which >200 levels of conductance states could be continuously tuned by identical programming pulses. In order to demonstrate the advantages of parallelism of the cross-point array architecture, a novel fully parallel write scheme is designed and experimentally demonstrated in a small-scale crossbar array to accelerate the weight update in the training process, at a speed that is independent of the array size. Compared to the conventional row-by-row write scheme, it achieves >30× speed-up and >30× improvement in energy efficiency as projected in a large-scale array. If realistic synaptic device characteristics such as device variations are taken into an array-level simulation, the proposed array architecture is able to achieve ∼95% recognition accuracy of MNIST handwritten digits, which is close to the accuracy achieved by software using the ideal sparse coding algorithm.

  4. PID Tuning Using Extremum Seeking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Killingsworth, N; Krstic, M

    2005-11-15

    Although proportional-integral-derivative (PID) controllers are widely used in the process industry, their effectiveness is often limited due to poor tuning. Manual tuning of PID controllers, which requires optimization of three parameters, is a time-consuming task. To remedy this difficulty, much effort has been invested in developing systematic tuning methods. Many of these methods rely on knowledge of the plant model or require special experiments to identify a suitable plant model. Reviews of these methods are given in [1] and the survey paper [2]. However, in many situations a plant model is not known, and it is not desirable to openmore » the process loop for system identification. Thus a method for tuning PID parameters within a closed-loop setting is advantageous. In relay feedback tuning [3]-[5], the feedback controller is temporarily replaced by a relay. Relay feedback causes most systems to oscillate, thus determining one point on the Nyquist diagram. Based on the location of this point, PID parameters can be chosen to give the closed-loop system a desired phase and gain margin. An alternative tuning method, which does not require either a modification of the system or a system model, is unfalsified control [6], [7]. This method uses input-output data to determine whether a set of PID parameters meets performance specifications. An adaptive algorithm is used to update the PID controller based on whether or not the controller falsifies a given criterion. The method requires a finite set of candidate PID controllers that must be initially specified [6]. Unfalsified control for an infinite set of PID controllers has been developed in [7]; this approach requires a carefully chosen input signal [8]. Yet another model-free PID tuning method that does not require opening of the loop is iterative feedback tuning (IFT). IFT iteratively optimizes the controller parameters with respect to a cost function derived from the output signal of the closed-loop system

  5. Silicon-on-insulator multimode-interference waveguide-based arrayed optical tweezers (SMART) for two-dimensional microparticle trapping and manipulation.

    PubMed

    Lei, Ting; Poon, Andrew W

    2013-01-28

    We demonstrate two-dimensional optical trapping and manipulation of 1 μm and 2.2 μm polystyrene particles in an 18 μm-thick fluidic cell at a wavelength of 1565 nm using the recently proposed Silicon-on-insulator Multimode-interference (MMI) waveguide-based ARrayed optical Tweezers (SMART) technique. The key component is a 100 μm square-core silicon waveguide with mm length. By tuning the fiber-coupling position at the MMI waveguide input facet, we demonstrate various patterns of arrayed optical tweezers that enable optical trapping and manipulation of particles. We numerically simulate the physical mechanisms involved in the arrayed trap, including the optical force, the heat transfer and the thermal-induced microfluidic flow.

  6. Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging

    NASA Astrophysics Data System (ADS)

    Noroozian, Omid

    Superconducting microwave resonators have the potential to revolutionize submillimeter and far-infrared astronomy, and with it our understanding of the universe. The field of low-temperature detector technology has reached a point where extremely sensitive devices like transition-edge sensors are now capable of detecting radiation limited by the background noise of the universe. However, the size of these detector arrays are limited to only a few thousand pixels. This is because of the cost and complexity of fabricating large-scale arrays of these detectors that can reach up to 10 lithographic levels on chip, and the complicated SQUID-based multiplexing circuitry and wiring for readout of each detector. In order to make substantial progress, next-generation ground-based telescopes such as CCAT or future space telescopes require focal planes with large-scale detector arrays of 104--10 6 pixels. Arrays using microwave kinetic inductance detectors (MKID) are a potential solution. These arrays can be easily made with a single layer of superconducting metal film deposited on a silicon substrate and pattered using conventional optical lithography. Furthermore, MKIDs are inherently multiplexable in the frequency domain, allowing ˜ 10 3 detectors to be read out using a single coaxial transmission line and cryogenic amplifier, drastically reducing cost and complexity. An MKID uses the change in the microwave surface impedance of a superconducting thin-film microresonator to detect photons. Absorption of photons in the superconductor breaks Cooper pairs into quasiparticles, changing the complex surface impedance, which results in a perturbation of resonator frequency and quality factor. For excitation and readout, the resonator is weakly coupled to a transmission line. The complex amplitude of a microwave probe signal tuned on-resonance and transmitted on the feedline past the resonator is perturbed as photons are absorbed in the superconductor. The perturbation can be

  7. Self-assembly of ordered graphene nanodot arrays

    DOE PAGES

    Camilli, Luca; Jørgensen, Jakob H.; Tersoff, Jerry; ...

    2017-06-29

    Our ability to fabricate nanoscale domains of uniform size in two-dimensional materials could potentially enable new applications in nanoelectronics and the development of innovative metamaterials. But, achieving even minimal control over the growth of two-dimensional lateral heterostructures at such extreme dimensions has proven exceptionally challenging. Here we show the spontaneous formation of ordered arrays of graphene nano-domains (dots), epitaxially embedded in a two-dimensional boron–carbon–nitrogen alloy. These dots exhibit a strikingly uniform size of 1.6 ± 0.2 nm and strong ordering, and the array periodicity can be tuned by adjusting the growth conditions. Furthemore, we explain this behaviour with a modelmore » incorporating dot-boundary energy, a moiré-modulated substrate interaction and a long-range repulsion between dots. This new two-dimensional material, which theory predicts to be an ordered composite of uniform-size semiconducting graphene quantum dots laterally integrated within a larger-bandgap matrix, holds promise for novel electronic and optoelectronic properties, with a variety of potential device applications.« less

  8. Development of orientation tuning in simple cells of primary visual cortex

    PubMed Central

    Moore, Bartlett D.

    2012-01-01

    Orientation selectivity and its development are basic features of visual cortex. The original model of orientation selectivity proposes that elongated simple cell receptive fields are constructed from convergent input of an array of lateral geniculate nucleus neurons. However, orientation selectivity of simple cells in the visual cortex is generally greater than the linear contributions based on projections from spatial receptive field profiles. This implies that additional selectivity may arise from intracortical mechanisms. The hierarchical processing idea implies mainly linear connections, whereas cortical contributions are generally considered to be nonlinear. We have explored development of orientation selectivity in visual cortex with a focus on linear and nonlinear factors in a population of anesthetized 4-wk postnatal kittens and adult cats. Linear contributions are estimated from receptive field maps by which orientation tuning curves are generated and bandwidth is quantified. Nonlinear components are estimated as the magnitude of the power function relationship between responses measured from drifting sinusoidal gratings and those predicted from the spatial receptive field. Measured bandwidths for kittens are slightly larger than those in adults, whereas predicted bandwidths are substantially broader. These results suggest that relatively strong nonlinearities in early postnatal stages are substantially involved in the development of orientation tuning in visual cortex. PMID:22323631

  9. A mixed-signal implementation of a polychronous spiking neural network with delay adaptation

    PubMed Central

    Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan C.; van Schaik, André

    2014-01-01

    We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits. PMID:24672422

  10. A mixed-signal implementation of a polychronous spiking neural network with delay adaptation.

    PubMed

    Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan C; van Schaik, André

    2014-01-01

    We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits.

  11. Neural Tuning to Numerosity Relates to Perceptual Tuning in 3-6-Year-Old Children.

    PubMed

    Kersey, Alyssa J; Cantlon, Jessica F

    2017-01-18

    Neural representations of approximate numerical value, or numerosity, have been observed in the intraparietal sulcus (IPS) in monkeys and humans, including children. Using functional magnetic resonance imaging, we show that children as young as 3-4 years old exhibit neural tuning to cardinal numerosities in the IPS and that their neural responses are accounted for by a model of numerosity coding that has been used to explain neural responses in the adult IPS. We also found that the sensitivity of children's neural tuning to number in the right IPS was comparable to their numerical discrimination sensitivity observed behaviorally, outside of the scanner. Children's neural tuning curves in the right IPS were significantly sharper than in the left IPS, indicating that numerical representations are more precise and mature more rapidly in the right hemisphere than in the left. Further, we show that children's perceptual sensitivity to numerosity can be predicted by the development of their neural sensitivity to numerosity. This research provides novel evidence of developmental continuity in the neural code underlying numerical representation and demonstrates that children's neural sensitivity to numerosity is related to their cognitive development. Here we test for the existence of neural tuning to numerosity in the developing brain in the youngest sample of children tested with fMRI to date. Although previous research shows evidence of numerical distance effects in the intraparietal sulcus of the developing brain, those effects could be explained by patterns of neural activity that do not represent neural tuning to numerosity. These data provide the first robust evidence that from as early as 3-4 years of age there is developmental continuity in how the intraparietal sulcus represents the values of numerosities. Moreover, the study goes beyond previous research by examining the relation between neural tuning and perceptual tuning in children. Copyright © 2017 the

  12. Self-tuning bandpass filter

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.; Hedlund, R. C. (Inventor)

    1973-01-01

    An electronic filter is described which simultaneously maintains a constant bandwidth and a constant center frequency gain as the input signal frequency varies, and remains self-tuning to that center frequency over a decade range. The filter utilizes a field effect transistor (FET) as a voltage variable resistance in the bandpass frequency determining circuit. The FET is responsive to a phase detector to achieve self-tuning.

  13. Mechanism for Tuning the Hydrophobicity of Microfibrillated Cellulose Films by Controlled Thermal Release of Encapsulated Wax

    PubMed Central

    Rastogi, Vibhore Kumar; Stanssens, Dirk; Samyn, Pieter

    2014-01-01

    Although films of microfibrillated cellulose (MFC) have good oxygen barrier properties due to its fine network structure, properties strongly deteriorate after absorption of water. In this work, a new approach has been followed for actively tuning the water resistance of a MFC fiber network by the inclusion of dispersed organic nanoparticles with encapsulated plant wax. The modified pulp suspensions have been casted into films and were subsequently cured at 40 to 220 °C. As such, static water contact angles can be specifically tuned from 120 to 150° by selection of the curing temperature in relation with the intrinsic transition temperatures of the modified pulp, as determined by thermal analysis. The appearance of encapsulated wax after curing was followed by a combination of morphological analysis, infrared spectroscopy and Raman mapping, showing balanced mechanisms of progressive release and migration of wax into the fiber network controlling the surface properties and water contact angles. Finally, the appearance of nanoparticles covered with a thin wax layer after complete thermal release provides highest hydrophobicity. PMID:28788241

  14. Bioinspired polyethylene terephthalate nanocone arrays with underwater superoleophobicity and anti-bioadhesion properties

    NASA Astrophysics Data System (ADS)

    Liu, Wendong; Liu, Xueyao; Fangteng, Jiaozi; Wang, Shuli; Fang, Liping; Shen, Huaizhong; Xiang, Siyuan; Sun, Hongchen; Yang, Bai

    2014-10-01

    This paper presents a facile method to fabricate bioinspired polyethylene terephthalate (PET) nanocone arrays via colloidal lithography. The aspect ratio (AR) of the nanocones can be finely modulated ranging from 1 to 6 by regulating the etching time. The samples with the AR value of 6 can present underwater superoleophobicity with the underwater oil contact angle (OCA) of 171.8°. The as-prepared PET nanocone arrays perform anti-bioadhesion behavior, which inhibits the formation of the actin cytoskeleton when it used as the substrate for cell culture. Moreover, the oil wettability is temperature controlled after modifying the PET nanocone arrays with PNIPAAm film, and the oil wettability of the functionalized nanocone arrays can be transformed from the superoleophobic state with OCA about 151° to the oleophilic state with OCA about 25° reversibly. Due to the high-throughput, parallel fabrication and cost-efficiency of this method, it will be favourable for researchers to introduce oleophobic properties to various substrate and device surfaces. Due to the superoleophobicity and simple functionalizing properties, the PET nanocone arrays are very promising surfaces for anti-adhesion, self-cleaning and have potential applications in material, medical, and biological fields.This paper presents a facile method to fabricate bioinspired polyethylene terephthalate (PET) nanocone arrays via colloidal lithography. The aspect ratio (AR) of the nanocones can be finely modulated ranging from 1 to 6 by regulating the etching time. The samples with the AR value of 6 can present underwater superoleophobicity with the underwater oil contact angle (OCA) of 171.8°. The as-prepared PET nanocone arrays perform anti-bioadhesion behavior, which inhibits the formation of the actin cytoskeleton when it used as the substrate for cell culture. Moreover, the oil wettability is temperature controlled after modifying the PET nanocone arrays with PNIPAAm film, and the oil wettability of the

  15. Cryogenic phased-array for high resolution magnetic resonance imaging (MRI); assessment of clinical and research applications

    NASA Astrophysics Data System (ADS)

    Ip, Flora S.

    Magnetic Resonance (MR) imaging is one of the most powerful tools in diagnostic medicine for soft tissue imaging. Image acquisition techniques and hardware receivers are very important in achieving high contrast and high resolution MR images. An aim of this dissertation is to design single and multi-element room and cryogenic temperature arrays and make assessments of their signal-to-noise ratio (SNR) and SNR gain. In this dissertation, four sets of MR receiver coils are built. They are the receiver-only cryo-coils that are not commercially available. A tuning and matching circuit is attached to each coil. The tuning and matching circuits are simple; however, each device component has to operate at a high magnetic field and cryogenic temperature environment. Remote DC bias of the varactor controls the tuning and matching outside the scanner room. Active detuning of the resonator is done by two p-i-n junction (PIN) diodes. Cooling of the receiver is done by a customized liquid nitrogen cryostat. The first application is to build a 3-Tesla 2x1 horseshoe counter-rotating current (CRC) cryogenic array to image the tibia in a human body. With significant increase in SNR, the surface coil should deliver high contrast and resolution images that can show the trabecular bone and bone marrow structure. This structural image will be used to model the mechanical strength of the bone as well as bone density and chance of fracture. The planar CRC is a unique design of this surface array. The second application is to modify the coil design to 7-Tesla to study the growth of infant rhesus monkey eyes. Fast scan MR images of the infant monkey heads are taken for monitoring shapes of their eyeballs. The monkeys are induced with shortsightedness by eye lenses, and they are scanned periodically to get images of their eyeballs. The field-of-view (FOV) of these images is about five centimeters and the area of interest is two centimeters deep from the surface. Because of these reasons

  16. High precision single qubit tuning via thermo-magnetic field control

    NASA Astrophysics Data System (ADS)

    Broadway, David A.; Lillie, Scott E.; Dontschuk, Nikolai; Stacey, Alastair; Hall, Liam T.; Tetienne, Jean-Philippe; Hollenberg, Lloyd C. L.

    2018-03-01

    Precise control of the resonant frequency of a spin qubit is of fundamental importance to quantum sensing protocols. We demonstrate a control technique on a single nitrogen-vacancy (NV) centre in diamond where the applied magnetic field is modified by fine-tuning a permanent magnet's magnetisation via temperature control. Through this control mechanism, nanoscale cross-relaxation spectroscopy of both electron and nuclear spins in the vicinity of the NV centre is performed. We then show that through maintaining the magnet at a constant temperature, an order of magnitude improvement in the stability of the NV qubit frequency can be achieved. This improved stability is tested in the polarisation of a small ensemble of nearby 13C spins via resonant cross-relaxation, and the lifetime of this polarisation explored. The effectiveness and relative simplicity of this technique may find use in the realisation of portable spectroscopy and/or hyperpolarisation systems.

  17. Gene expression analyses in tomato near isogenic lines provide evidence for ethylene and abscisic acid biosynthesis fine-tuning during arbuscular mycorrhiza development.

    PubMed

    Fracetto, Giselle Gomes Monteiro; Peres, Lázaro Eustáquio Pereira; Lambais, Marcio Rodrigues

    2017-07-01

    colonization in tomato roots, indicating that, besides hormonal interactions, a fine-tuning of each hormone level is required for AM development.

  18. Efficient Perovskite Solar Cells Depending on TiO2 Nanorod Arrays.

    PubMed

    Li, Xin; Dai, Si-Min; Zhu, Pei; Deng, Lin-Long; Xie, Su-Yuan; Cui, Qian; Chen, Hong; Wang, Ning; Lin, Hong

    2016-08-24

    Perovskite solar cells (PSCs) with TiO2 materials have attracted much attention due to their high photovoltaic performance. Aligned TiO2 nanorods have long been used for potential application in highly efficient perovskite solar cells, but the previously reported efficiencies of perovskite solar cells based on TiO2 nanorod arrays were underrated. Here we show a solvothermal method based on a modified ketone-HCl system with the addition of organic acids suitable for modulation of the TiO2 nanorod array films to fabricate highly efficient perovskite solar cells. Photovoltaic measurements indicated that efficient nanorod-structured perovskite solar cells can be achieved with the length of the nanorods as long as approximately 200 nm. A record efficiency of 18.22% under the reverse scan direction has been optimized by avoiding direct contact between the TiO2 nanorods and the hole transport materials, eliminating the organic residues on the nanorod surfaces using UV-ozone treatment and tuning the nanorod array morphologies through addition of different organic acids in the solvothermal process.

  19. Mechanism of Fine-tuning pH Sensors in Proprotein Convertases: IDENTIFICATION OF A pH-SENSING HISTIDINE PAIR IN THE PROPEPTIDE OF PROPROTEIN CONVERTASE 1/3.

    PubMed

    Williamson, Danielle M; Elferich, Johannes; Shinde, Ujwal

    2015-09-18

    The propeptides of proprotein convertases (PCs) regulate activation of cognate protease domains by sensing pH of their organellar compartments as they transit the secretory pathway. Earlier experimental work identified a conserved histidine-encoded pH sensor within the propeptide of the canonical PC, furin. To date, whether protonation of this conserved histidine is solely responsible for PC activation has remained unclear because of the observation that various PC paralogues are activated at different organellar pH values. To ascertain additional determinants of PC activation, we analyzed PC1/3, a paralogue of furin that is activated at a pH of ∼5.4. Using biophysical, biochemical, and cell-based methods, we mimicked the protonation status of various histidines within the propeptide of PC1/3 and examined how such alterations can modulate pH-dependent protease activation. Our results indicate that whereas the conserved histidine plays a crucial role in pH sensing and activation of this protease an additional histidine acts as a "gatekeeper" that fine-tunes the sensitivity of the PC1/3 propeptide to facilitate the release inhibition at higher proton concentrations when compared with furin. Coupled with earlier analyses that highlighted the enrichment of the amino acid histidine within propeptides of secreted eukaryotic proteases, our work elucidates how secreted proteases have evolved to exploit the pH of the secretory pathway by altering the spatial juxtaposition of titratable groups to regulate their activity in a spatiotemporal fashion. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Fine-tuned broad binding capability of human lipocalin-type prostaglandin D synthase for various small lipophilic ligands.

    PubMed

    Kume, Satoshi; Lee, Young-Ho; Nakatsuji, Masatoshi; Teraoka, Yoshiaki; Yamaguchi, Keisuke; Goto, Yuji; Inui, Takashi

    2014-03-18

    The hydrophobic cavity of lipocalin-type prostaglandin D synthase (L-PGDS) has been suggested to accommodate various lipophilic ligands through hydrophobic effects, but its energetic origin remains unknown. We characterized 18 buffer-independent binding systems between human L-PGDS and lipophilic ligands using isothermal titration calorimetry. Although the classical hydrophobic effect was mostly detected, all complex formations were driven by favorable enthalpic gains. Gibbs energy changes strongly correlated with the number of hydrogen bond acceptors of ligand. Thus, the broad binding capability of L-PGDS for ligands should be viewed as hydrophilic interactions delicately tuned by enthalpy-entropy compensation using combined effects of hydrophilic and hydrophobic interactions. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Bio-Inspired Bright Structurally Colored Colloidal Amorphous Array Enhanced by Controlling Thickness and Black Background.

    PubMed

    Iwata, Masanori; Teshima, Midori; Seki, Takahiro; Yoshioka, Shinya; Takeoka, Yukikazu

    2017-07-01

    Inspired by Steller's jay, which displays angle-independent structural colors, angle-independent structurally colored materials are created, which are composed of amorphous arrays of submicrometer-sized fine spherical silica colloidal particles. When the colloidal amorphous arrays are thick, they do not appear colorful but almost white. However, the saturation of the structural color can be increased by (i) appropriately controlling the thickness of the array and (ii) placing the black background substrate. This is similar in the case of the blue feather of Steller's jay. Based on the knowledge gained through the biomimicry of structural colored materials, colloidal amorphous arrays on the surface of a black particle as the core particle are also prepared as colorful photonic pigments. Moreover, a structural color on-off system is successfully built by controlling the background brightness of the colloidal amorphous arrays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Self-Tuning Impact Damper for Rotating Blades

    NASA Technical Reports Server (NTRS)

    Pufy, Kirsten P. (Inventor); Brown, Gerald V. (Inventor); Bagley, Ronald L. (Inventor)

    2004-01-01

    A self-tuning impact damper is disclosed that absorbs and dissipates vibration energy in the blades of rotors in compressors and/or turbines thereby dramatically extending their service life and operational readiness. The self-tuning impact damper uses the rotor speed to tune the resonant frequency of a rattling mass to an engine order excitation frequency. The rating mass dissipates energy through collisions between the rattling mass and the walls of a cavity of the self-tuning impact damper, as well as though friction between the rattling mass and the base of the cavity. In one embodiment, the self-tuning impact damper has a ball-in-trough configuration with tire ball serving as the rattling mass.

  3. Optically Tuned Fiber Gratings

    DTIC Science & Technology

    1998-03-01

    why we use a bulk polarization beam splitter . The fibre grating length was 50 cm with centre wavelength at 1550 nm. Fig.8 shows results of the...characteristics of glasses with enhanced non -linearity. In accordance with the specification, a fiber grating should be tuned within the range of 1...intensity pulse and has successfully demonstrated optically-tuned fiber grating. 19980617 115 14. SUBJECT TERMS Fibre Optics, Non -linear Optical

  4. Disformally self-tuning gravity

    NASA Astrophysics Data System (ADS)

    Emond, William T.; Saffin, Paul M.

    2016-03-01

    We extend a previous self-tuning analysis of the most general scalar-tensor theory of gravity in four dimensions with second order field equations by considering a generalized coupling to the matter sector. Through allowing a disformal coupling to matter we are able to extend the Fab Four model and construct a new class of theories that are able to tune away the cosmological constant on Friedmann-Lemaitre-Robertson-Walker backgrounds.

  5. A Simplified Theory of Coupled Oscillator Array Phase Control

    NASA Technical Reports Server (NTRS)

    Pogorzelski, R. J.; York, R. A.

    1997-01-01

    Linear and planar arrays of coupled oscillators have been proposed as means of achieving high power rf sources through coherent spatial power combining. In such - applications, a uniform phase distribution over the aperture is desired. However, it has been shown that by detuning some of the oscillators away from the oscillation frequency of the ensemble of oscillators, one may achieve other useful aperture phase distributions. Notable among these are linear phase distributions resulting in steering of the output rf beam away from the broadside direction. The theory describing the operation of such arrays of coupled oscillators is quite complicated since the phenomena involved are inherently nonlinear. This has made it difficult to develop an intuitive understanding of the impact of oscillator tuning on phase control and has thus impeded practical application. In this work a simpl!fied theory is developed which facilitates intuitive understanding by establishing an analog of the phase control problem in terms of electrostatics.

  6. Cavity-assisted emission of polarization-entangled photons from biexcitons in quantum dots with fine-structure splitting.

    PubMed

    Schumacher, Stefan; Förstner, Jens; Zrenner, Artur; Florian, Matthias; Gies, Christopher; Gartner, Paul; Jahnke, Frank

    2012-02-27

    We study the quantum properties and statistics of photons emitted by a quantum-dot biexciton inside a cavity. In the biexciton-exciton cascade, fine-structure splitting between exciton levels degrades polarization-entanglement for the emitted pair of photons. However, here we show that the polarization-entanglement can be preserved in such a system through simultaneous emission of two degenerate photons into cavity modes tuned to half the biexciton energy. Based on detailed theoretical calculations for realistic quantum-dot and cavity parameters, we quantify the degree of achievable entanglement.

  7. Solar observations with the prototype of the Brazilian Decimetric Array

    NASA Astrophysics Data System (ADS)

    Sawant, H. S.; Ramesh, R.; Faria, C.; Cecatto, J. R.; Fernandes, F. C. R.; Madsen, F. H. R.; Subramanian, K. R.; Sundararajan, M. S.

    The prototype of the Brazilian Decimetric Array BDA consists of 5 element alt-az mounted parabolic mesh type dishes of 4-meter diameter having base lines up to 220 meters in the E--W direction The array was put into regular operation at Cachoeira Paulista Brazil longitude 45 r 00 20 W and latitude 22 r 41 19 S This array operates in the frequency range of 1 2 -- 1 7 GHz Solar observations are carried at sim 1 4 GHz in transit and tracking modes Spatial fine structures superimposed on the one dimensional brightness map of the sun associated with active regions and or with solar activity and their time evolution will be presented In the second phase of the project the frequency range will be increased to 1 2 - 1 7 2 8 and 5 6 GHz Central part of the array will consist of 26 antennas with 4-meter diameter laid out randomically in the square of 256 by 256 meter with minimum and maximum base lines of 8 and 256 meters respectively Details of this array with imaging capabilities in snap shot mode for solar observations and procedure of the phase and amplitude calibrations will be presented The development of instrument will be completed by the beginning of 2008

  8. Selective enhancement of orientation tuning before saccades.

    PubMed

    Ohl, Sven; Kuper, Clara; Rolfs, Martin

    2017-11-01

    Saccadic eye movements cause a rapid sweep of the visual image across the retina and bring the saccade's target into high-acuity foveal vision. Even before saccade onset, visual processing is selectively prioritized at the saccade target. To determine how this presaccadic attention shift exerts its influence on visual selection, we compare the dynamics of perceptual tuning curves before movement onset at the saccade target and in the opposite hemifield. Participants monitored a 30-Hz sequence of randomly oriented gratings for a target orientation. Combining a reverse correlation technique previously used to study orientation tuning in neurons and general additive mixed modeling, we found that perceptual reports were tuned to the target orientation. The gain of orientation tuning increased markedly within the last 100 ms before saccade onset. In addition, we observed finer orientation tuning right before saccade onset. This increase in gain and tuning occurred at the saccade target location and was not observed at the incongruent location in the opposite hemifield. The present findings suggest, therefore, that presaccadic attention exerts its influence on vision in a spatially and feature-selective manner, enhancing performance and sharpening feature tuning at the future gaze location before the eyes start moving.

  9. Wide Tuning Capability for Spacecraft Transponders

    NASA Technical Reports Server (NTRS)

    Lux, James; Mysoor, Narayan; Shah, Biren; Cook, Brian; Smith, Scott

    2007-01-01

    A document presents additional information on the means of implementing a capability for wide tuning of microwave receiver and transmitter frequencies in the development reported in the immediately preceding article, VCO PLL Frequency Synthesizers for Spacecraft Transponders (NPO- 42909). The reference frequency for a PLL-based frequency synthesizer is derived from a numerically controlled oscillator (NCO) implemented in digital logic, such that almost any reference frequency can be derived from a fixed crystal reference oscillator with microhertz precision. The frequency of the NCO is adjusted to track the received signal, then used to create another NCO frequency used to synthesize the transmitted signal coherent with, and at a specified frequency ratio to, the received signal. The frequencies can be changed, even during operation, through suitable digital programming. The NCOs and the related tracking loops and coherent turnaround logic are implemented in a field-programmable gate array (FPGA). The interface between the analog microwave receiver and transmitter circuits and the FPGA includes analog-to-digital and digital-toanalog converters, the sampling rates of which are chosen to minimize spurious signals and otherwise optimize performance. Several mixers and filters are used to properly route various signals.

  10. Improvement of mechanical behaviors of a superlight Mg-Li base alloy by duplex phases and fine precipitates

    DOE PAGES

    Zou, Yun; Zhang, Lehao; Li, Yang; ...

    2017-12-06

    Limitations of strength and formability are the major obstacles to the industrial application of magnesium alloys. Here, we demonstrate, by producing the duplex phases and fine intermetallic particles in composition-optimized superlight Mg-Li-Al alloys, a unique approach to simultaneously improve the comprehensive mechanical properties (a strength-ductility balance). In conclusion, the phase components and microstructures, including the size, morphology, and distribution of precipitated-intermetallic particles can be optimized by tuning the Li content, which strongly influences the work-hardening behavior and tension-compression yield asymmetry.

  11. High-throughput controllable generation of droplet arrays with low consumption

    NASA Astrophysics Data System (ADS)

    Lin, Yinyin; Wu, Zhongsheng; Gao, Yibo; Wu, Jinbo; Wen, Weijia

    2018-06-01

    We describe a controllable sliding method for fabricating millions of isolated femto- to nanoliter-sized droplets with defined volume, geometry and position and a speed of up to 375 kHz. In this work, without using a superhydrophobic or superoleophobic surface, arrays of droplets are instantly formed on the patterned substrate by sliding a strip of liquid, including water, low-surface-tension organic solvents and solution, along the substrate. To precisely control the volume of the droplets, we systemically investigate the effects of the size of the wettable pattern, the viscosity of the liquid and sliding speed, which were found to vary independently to tune the height and volume of the droplets. Through this method, we successfully fabricated an oriented single metal-organic framework crystal array with control over their XY positioning on the surface, as characterized by microscopy and X-ray diffraction (XRD) techniques.

  12. Engineering the on-axis intensity of Bessel beam by a feedback tuning loop

    NASA Astrophysics Data System (ADS)

    Li, Runze; Yu, Xianghua; Yang, Yanlong; Peng, Tong; Yao, Baoli; Zhang, Chunmin; Ye, Tong

    2018-02-01

    The Bessel beam belongs to a typical class of non-diffractive optical fields that are characterized by their invariant focal profiles along the propagation direction. However, ideal Bessel beams only rigorously exist in theory; Bessel beams generated in the lab are quasi-Bessel beams with finite focal extensions and varying intensity profiles along the propagation axis. The ability to engineer the on-axis intensity profile to the desired shape is essential for many applications. Here we demonstrate an iterative optimization-based approach to engineering the on-axis intensity of Bessel beams. The genetic algorithm is used to demonstrate this approach. Starting with a traditional axicon phase mask, in the design process, the computed on-axis beam profile is fed into a feedback tuning loop of an iterative optimization process, which searches for an optimal radial phase distribution that can generate a generalized Bessel beam with the desired onaxis intensity profile. The experimental implementation involves a fine-tuning process that adjusts the originally targeted profile so that the optimization process can optimize the phase mask to yield an improved on-axis profile. Our proposed method has been demonstrated in engineering several zeroth-order Bessel beams with customized on-axis profiles. High accuracy and high energy throughput merit its use in many applications.

  13. A 30-MHz piezo-composite ultrasound array for medical imaging applications.

    PubMed

    Ritter, Timothy A; Shrout, Thomas R; Tutwiler, Rick; Shung, K Kirk

    2002-02-01

    Ultrasound imaging at frequencies above 20 MHz is capable of achieving improved resolution in clinical applications requiring limited penetration depth. High frequency arrays that allow real-time imaging are desired for these applications but are not yet currently available. In this work, a method for fabricating fine-scale 2-2 composites suitable for 30-MHz linear array transducers was successfully demonstrated. High thickness coupling, low mechanical loss, and moderate electrical loss were achieved. This piezo-composite was incorporated into a 30-MHz array that included acoustic matching, an elevation focusing lens, electrical matching, and an air-filled kerf between elements. Bandwidths near 60%, 15-dB insertion loss, and crosstalk less than -30 dB were measured. Images of both a phantom and an ex vivo human eye were acquired using a synthetic aperture reconstruction method, resulting in measured lateral and axial resolutions of approximately 100 microm.

  14. Optical intensity dynamics in a five-emitter semiconductor array laser

    NASA Astrophysics Data System (ADS)

    Williams, Matthew O.; Kutz, J. Nathan

    2009-06-01

    The intensity dynamics of a five-emitter laser array subject to a linearly decreasing injection current are examined numerically. We have matched the results of the numerical model to an experimental AlGaAs quantum-dot array laser and have achieved the same robust oscillatory power output with a nearly π phase shift between emitters that was observed in experiments. Due to the linearly decreasing injection current, the output power of the waveguide decreases as a function of waveguide number. For injection currents ranging from 380 to 500 mA, the oscillatory behavior persists with only a slight change in phase difference. However, the fundamental frequency of oscillation increases with injection current, and higher harmonics as well as some fine structures are produced.

  15. Learning and Tuning of Fuzzy Rules

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1997-01-01

    In this chapter, we review some of the current techniques for learning and tuning fuzzy rules. For clarity, we refer to the process of generating rules from data as the learning problem and distinguish it from tuning an already existing set of fuzzy rules. For learning, we touch on unsupervised learning techniques such as fuzzy c-means, fuzzy decision tree systems, fuzzy genetic algorithms, and linear fuzzy rules generation methods. For tuning, we discuss Jang's ANFIS architecture, Berenji-Khedkar's GARIC architecture and its extensions in GARIC-Q. We show that the hybrid techniques capable of learning and tuning fuzzy rules, such as CART-ANFIS, RNN-FLCS, and GARIC-RB, are desirable in development of a number of future intelligent systems.

  16. Auto-tuning for NMR probe using LabVIEW

    NASA Astrophysics Data System (ADS)

    Quen, Carmen; Pham, Stephanie; Bernal, Oscar

    2014-03-01

    Typical manual NMR-tuning method is not suitable for broadband spectra spanning several megahertz linewidths. Among the main problems encountered during manual tuning are pulse-power reproducibility, baselines, and transmission line reflections, to name a few. We present a design of an auto-tuning system using graphic programming language, LabVIEW, to minimize these problems. The program uses a simplified model of the NMR probe conditions near perfect tuning to mimic the tuning process and predict the position of the capacitor shafts needed to achieve the desirable impedance. The tuning capacitors of the probe are controlled by stepper motors through a LabVIEW/computer interface. Our program calculates the effective capacitance needed to tune the probe and provides controlling parameters to advance the motors in the right direction. The impedance reading of a network analyzer can be used to correct the model parameters in real time for feedback control.

  17. Telling in-tune from out-of-tune: widespread evidence for implicit absolute intonation.

    PubMed

    Van Hedger, Stephen C; Heald, Shannon L M; Huang, Alex; Rutstein, Brooke; Nusbaum, Howard C

    2017-04-01

    Absolute pitch (AP) is the rare ability to name or produce an isolated musical note without the aid of a reference note. One skill thought to be unique to AP possessors is the ability to provide absolute intonation judgments (e.g., classifying an isolated note as "in-tune" or "out-of-tune"). Recent work has suggested that absolute intonation perception among AP possessors is not crystallized in a critical period of development, but is dynamically maintained by the listening environment, in which the vast majority of Western music is tuned to a specific cultural standard. Given that all listeners of Western music are constantly exposed to this specific cultural tuning standard, our experiments address whether absolute intonation perception extends beyond AP possessors. We demonstrate that non-AP listeners are able to accurately judge the intonation of completely isolated notes. Both musicians and nonmusicians showed evidence for absolute intonation recognition when listening to familiar timbres (piano and violin). When testing unfamiliar timbres (triangle and inverted sine waves), only musicians showed weak evidence of absolute intonation recognition (Experiment 2). Overall, these results highlight a previously unknown similarity between AP and non-AP possessors' long-term musical note representations, including evidence of sensitivity to frequency.

  18. Fast and wide tuning wavelength-swept source based on dispersion-tuned fiber optical parametric oscillator.

    PubMed

    Zhou, Yue; Cheung, Kim K Y; Li, Qin; Yang, Sigang; Chui, P C; Wong, Kenneth K Y

    2010-07-15

    We demonstrate a dispersion-tuned fiber optical parametric oscillator (FOPO)-based swept source with a sweep rate of 40 kHz and a wavelength tuning range of 109 nm around 1550 nm. The cumulative speed exceeds 4,000,000 nm/s. The FOPO is pumped by a sinusoidally modulated pump, which is driven by a clock sweeping linearly from 1 to 1.0006 GHz. A spool of dispersion-compensating fiber is added inside the cavity to perform dispersion tuning. The instantaneous linewidth is 0.8 nm without the use of any wavelength selective element inside the cavity. 1 GHz pulses with pulse width of 150 ps are generated.

  19. Direct electronic communication at bio-interfaces assisted by layered-metal-hydroxide slab arrays with controlled nano-micro structures.

    PubMed

    An, Zhe; He, Jing

    2011-10-28

    The electronic transfer (eT) at bio-interfaces has been achieved by orientating 2D inorganic slabs in a regular arrangement with the slab ab-planes vertical to the electrode substrate. The eT rate is effectively promoted by tuning the nano-micro scale structures of perpendicular LDH arrays. This journal is © The Royal Society of Chemistry 2011

  20. The Art and Science of Climate Model Tuning

    DOE PAGES

    Hourdin, Frederic; Mauritsen, Thorsten; Gettelman, Andrew; ...

    2017-03-31

    The process of parameter estimation targeting a chosen set of observations is an essential aspect of numerical modeling. This process is usually named tuning in the climate modeling community. In climate models, the variety and complexity of physical processes involved, and their interplay through a wide range of spatial and temporal scales, must be summarized in a series of approximate submodels. Most submodels depend on uncertain parameters. Tuning consists of adjusting the values of these parameters to bring the solution as a whole into line with aspects of the observed climate. Tuning is an essential aspect of climate modeling withmore » its own scientific issues, which is probably not advertised enough outside the community of model developers. Optimization of climate models raises important questions about whether tuning methods a priori constrain the model results in unintended ways that would affect our confidence in climate projections. Here, we present the definition and rationale behind model tuning, review specific methodological aspects, and survey the diversity of tuning approaches used in current climate models. We also discuss the challenges and opportunities in applying so-called objective methods in climate model tuning. Here, we discuss how tuning methodologies may affect fundamental results of climate models, such as climate sensitivity. The article concludes with a series of recommendations to make the process of climate model tuning more transparent.« less

  1. The Art and Science of Climate Model Tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hourdin, Frederic; Mauritsen, Thorsten; Gettelman, Andrew

    The process of parameter estimation targeting a chosen set of observations is an essential aspect of numerical modeling. This process is usually named tuning in the climate modeling community. In climate models, the variety and complexity of physical processes involved, and their interplay through a wide range of spatial and temporal scales, must be summarized in a series of approximate submodels. Most submodels depend on uncertain parameters. Tuning consists of adjusting the values of these parameters to bring the solution as a whole into line with aspects of the observed climate. Tuning is an essential aspect of climate modeling withmore » its own scientific issues, which is probably not advertised enough outside the community of model developers. Optimization of climate models raises important questions about whether tuning methods a priori constrain the model results in unintended ways that would affect our confidence in climate projections. Here, we present the definition and rationale behind model tuning, review specific methodological aspects, and survey the diversity of tuning approaches used in current climate models. We also discuss the challenges and opportunities in applying so-called objective methods in climate model tuning. Here, we discuss how tuning methodologies may affect fundamental results of climate models, such as climate sensitivity. The article concludes with a series of recommendations to make the process of climate model tuning more transparent.« less

  2. A 15-MHz 1-3 Piezocomposite Concave Array Transducer for Ophthalmic Imaging.

    PubMed

    Cha, Jung Hyui; Kang, Byungwoo; Jang, Jihun; Chang, Jin Ho

    2015-11-01

    Because of the spherical shape of the human eye, the anterior segments of the eye, particularly the cornea and the lens, create high levels of refraction and reflection of ultrasound which negatively affect the performance of linear and convex arrays. To minimize the ultrasound energy loss, a 15-MHz concave array transducer was designed, fabricated, and characterized; its footprint is able to mesh well with the shape of the cornea. The concave array has a curvature with a radius of 15 mm and 128 elements with a 1.44- pitch. Its elevational focus and view angle are 30 mm and 72.3°, respectively, thus allowing the imaging area to cover the retinal region of interest in the posterior segment. As an active layer, a 1-3 piezocomposite was designed and fabricated in response to the bidirectional (i.e., azimuthal and elevational) curvature of the concave array and the high coupling coefficient. From the performance evaluation, it was found that the completed concave array is able to provide a center frequency of 15.95 MHz and a -6-dB fractional bandwidth of 67.8% after electrical tuning has been conducted. The crosstalk level was measured to be less than -25 dB. It was verified that the concave array is robust to the refraction and reflection from the cornea through pulse-echo testing using a custom-made eye-mimicking phantom. Furthermore, images of both the wire-target phantom and the ex vivo porcine eye were acquired by the finished concave array, which was connected to a commercial ultrasound scanner equipped with a research package. The evaluation results demonstrated that the developed concave array transducer is a possible alternative to conventional arrays for effectively imaging the posterior segment of the eye.

  3. Demonstration of 1024x1024 pixel dual-band QWIP focal plane array

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Ting, D. Z.; Hill, C. J.; Nguyen, J.; Rafol, S. B.

    2010-04-01

    QWIPs are well known for their stability, high pixel-pixel uniformity and high pixel operability which are quintessential parameters for large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). The dual-band QWIP device was developed by stacking two multi-quantum-well stacks tuned to absorb two different infrared wavelengths. The full width at half maximum (FWHM) of the mid-wave infrared (MWIR) band extends from 4.4 - 5.1 μm and FWHM of the long-wave infrared (LWIR) band extends from 7.8 - 8.8 μm. Dual-band QWIP detector arrays were hybridized with direct injection 30 μm pixel pitch megapixel dual-band simultaneously readable CMOS read out integrated circuits using the indium bump hybridization technique. The initial dual-band megapixel QWIP FPAs were cooled to 68K operating temperature. The preliminary data taken from the first megapixel QWIP FPA has shown system NE▵T of 27 and 40 mK for MWIR and LWIR bands respectively.

  4. Twist-induced tuning in tapered fiber couplers.

    PubMed

    Birks, T A

    1989-10-01

    The power-splitting ratio of fused tapered single-mode fiber couplers can be reversibly tuned by axial twisting without affecting loss. The twist-tuning behavior of a range of different tapered couplers is described. A simple expression for twist-tuning can be derived by representing the effects of twist by a change in the refractive index profile. Good agreement between this expression and experimental results is demonstrated. Repeated tuning over tens of thousands of cycles is found not to degrade coupler performance, and a number of practical applications, including a freely tunable tapered coupler, are described.

  5. Novel design of highly [110]-oriented barium titanate nanorod array and its application in nanocomposite capacitors.

    PubMed

    Yao, Lingmin; Pan, Zhongbin; Zhai, Jiwei; Chen, Haydn H D

    2017-03-23

    Nanocomposites in capacitors combining highly aligned one dimension ferroelectric nanowires with polymer would be more desirable for achieving higher energy density. However, the synthesis of the well-isolated ferroelectric oxide nanorod arrays with a high orientation has been rather scant, especially using glass-made substrates. In this study, a novel design that is capable of fabricating a highly [110]-oriented BaTiO 3 (BT) nanorod array was proposed first, using a three-step hydrothermal reaction on glass-made substrates. The details for controlling the dispersion of the nanorod array, the orientation and the aspect ratio are also discussed. It is found that the alkaline treatment of the TiO 2 (TO) nanorod array, rather than the completing transformation into sodium titanate, favors the transformation of the TO into the BT nanorod array, as well as protecting the glass-made substrate. The dispersity of the nanorod array can be controlled by the introduction of a glycol ether-deionized water mixed solvent and soluble salts. Moreover, the orientation of the nanorod arrays could be tuned by the ionic strength of the solution. This novel BT nanorod array was used as a filler in a nanocomposite capacitor, demonstrating that a large energy density (11.82 J cm -3 ) can be achieved even at a low applied electric field (3200 kV cm -1 ), which opens us a new application in nanocomposite capacitors.

  6. Monolithically integrated distributed feedback laser array wavelength-selectable light sources for WDM-PON application

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Zhao, Jianyi; Zhou, Ning; Huang, Xiaodong; Cao, Mingde; Wang, Lei; Liu, Wen

    2015-01-01

    The monolithic integration of 1.5-μm four channels phase shift distributed feedback lasers array (DFB-LD array) with 4×1 multi-mode interference (MMI) optical combiner is demonstrated. A home developed process mainly consists of butt-joint regrowth (BJR) and simultaneous thermal and ultraviolet nanoimprint lithography (STU-NIL) is implemented to fabricate gratings and integrated devices. The threshold currents of the lasers are less than 10 mA and the side mode suppression ratios (SMSR) are better than 40 dB for all channels. Quasi-continuous tuning is realized over 7.5 nm wavelength region with the 30 °C temperature variation. The results indicate that the integration device we proposed can be used in wavelength division multiplexing passive optical networks (WDM-PON).

  7. Highly organised and dense vertical silicon nanowire arrays grown in porous alumina template on <100> silicon wafers

    PubMed Central

    2013-01-01

    In this work, nanoimprint lithography combined with standard anodization etching is used to make perfectly organised triangular arrays of vertical cylindrical alumina nanopores onto standard <100>−oriented silicon wafers. Both the pore diameter and the period of alumina porous array are well controlled and can be tuned: the periods vary from 80 to 460 nm, and the diameters vary from 15 nm to any required diameter. These porous thin layers are then successfully used as templates for the guided epitaxial growth of organised mono-crystalline silicon nanowire arrays in a chemical vapour deposition chamber. We report the densities of silicon nanowires up to 9 × 109 cm−2 organised in highly regular arrays with excellent diameter distribution. All process steps are demonstrated on surfaces up to 2 × 2 cm2. Specific emphasis was made to select techniques compatible with microelectronic fabrication standards, adaptable to large surface samples and with a reasonable cost. Achievements made in the quality of the porous alumina array, therefore on the silicon nanowire array, widen the number of potential applications for this technology, such as optical detectors or biological sensors. PMID:23773702

  8. The Relationship between Fine-Motor Play and Fine-Motor Skill

    ERIC Educational Resources Information Center

    Marr, Deborah; Cermak, Sharon; Cohn, Ellen S.; Henderson, Anne

    2004-01-01

    This study examined the relationship between free-play choices and fine-motor skill in 4-year-old children attending Head Start. Children with poor fine-motor skill were matched for age and gender with children in the same classroom that exhibited good fine-motor skill. Each pair was observed during free-play sessions to examine the degree of…

  9. Application of genetic algorithms to tuning fuzzy control systems

    NASA Technical Reports Server (NTRS)

    Espy, Todd; Vombrack, Endre; Aldridge, Jack

    1993-01-01

    Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.

  10. Evolutionarily Conserved, Growth Plate Zone-Specific Regulation of the Matrilin-1 Promoter: L-Sox5/Sox6 and Nfi Factors Bound near TATA Finely Tune Activation by Sox9 ▿

    PubMed Central

    Nagy, Andrea; Kénesi, Erzsébet; Rentsendorj, Otgonchimeg; Molnár, Annamária; Szénási, Tibor; Sinkó, Ildikó; Zvara, Ágnes; Thottathil Oommen, Sajit; Barta, Endre; Puskás, László G.; Lefebvre, Veronique; Kiss, Ibolya

    2011-01-01

    To help uncover the mechanisms underlying the staggered expression of cartilage-specific genes in the growth plate, we dissected the transcriptional mechanisms driving expression of the matrilin-1 gene (Matn1). We show that a unique assembly of evolutionarily conserved cis-acting elements in the Matn1 proximal promoter restricts expression to the proliferative and prehypertrophic zones of the growth plate. These elements functionally interact with distal elements and likewise are capable of restricting the domain of activity of a pancartilaginous Col2a1 enhancer. The proximal elements include a Pe1 element binding the chondrogenic L-Sox5, Sox6, and Sox9 proteins, a SI element binding Nfi proteins, and an initiator Ine element binding the Sox trio and other factors. Sox9 binding to Pe1 is indispensable for functional interaction with the distal promoter. Binding of L-Sox5/Sox6 to Ine and Nfib to SI modulates Sox9 transactivation in a protein dose-dependent manner, possibly to enhance Sox9 activity in early stages of chondrogenesis and repress it at later stages. Hence, our data suggest a novel model whereby Sox and Nfi proteins bind to conserved Matn1 proximal elements and functionally interact with each other to finely tune gene expression in specific zones of the cartilage growth plate. PMID:21173167

  11. N-terminal splicing extensions of the human MYO1C gene fine-tune the kinetics of the three full-length myosin IC isoforms.

    PubMed

    Zattelman, Lilach; Regev, Ronit; Ušaj, Marko; Reinke, Patrick Y A; Giese, Sven; Samson, Abraham O; Taft, Manuel H; Manstein, Dietmar J; Henn, Arnon

    2017-10-27

    The MYO1C gene produces three alternatively spliced isoforms, differing only in their N-terminal regions (NTRs). These isoforms, which exhibit both specific and overlapping nuclear and cytoplasmic functions, have different expression levels and nuclear-cytoplasmic partitioning. To investigate the effect of NTR extensions on the enzymatic behavior of individual isoforms, we overexpressed and purified the three full-length human isoforms from suspension-adapted HEK cells. MYO1C C favored the actomyosin closed state (AM C ), MYO1C 16 populated the actomyosin open state (AM O ) and AM C equally, and MYO1C 35 favored the AM O state. Moreover, the full-length constructs isomerized before ADP release, which has not been observed previously in truncated MYO1C C constructs. Furthermore, global numerical simulation analysis predicted that MYO1C 35 populated the actomyosin·ADP closed state (AMD C ) 5-fold more than the actomyosin·ADP open state (AMD O ) and to a greater degree than MYO1C C and MYO1C 16 (4- and 2-fold, respectively). On the basis of a homology model of the 35-amino acid NTR of MYO1C 35 (NTR 35 ) docked to the X-ray structure of MYO1C C , we predicted that MYO1C 35 NTR residue Arg-21 would engage in a specific interaction with post-relay helix residue Glu-469, which affects the mechanics of the myosin power stroke. In addition, we found that adding the NTR 35 peptide to MYO1C C yielded a protein that transiently mimics MYO1C 35 kinetic behavior. By contrast, NTR 35 , which harbors the R21G mutation, was unable to confer MYO1C 35 -like kinetic behavior. Thus, the NTRs affect the specific nucleotide-binding properties of MYO1C isoforms, adding to their kinetic diversity. We propose that this level of fine-tuning within MYO1C broadens its adaptability within cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Software for the First Station of the Long Wavelength Array

    NASA Astrophysics Data System (ADS)

    Dowell, J.; LWA Collaboration

    2014-05-01

    The first station of the Long Wavelength Array, LWA1, is currently operating at frequencies between 10 and 88 MHz in the Southwest United States. LWA1 consists of 256 cross-polarization dipole pairs spread over a 100 m aperture with five total-power outriggers up to ˜500 m from the center of the station. The raw voltages from the antennas are digitized and digitally combined to form four independent dual polarization beams, each with two tunings with up to 19.6 MHz of bandwidth. The telescope is designed to be a general-purpose instrument and supports a wide variety of science projects from the ionosphere to the cosmic dark ages. I will present the software behind this telescope and discuss the challenges associated with calibrating and maintaining an array of 261 dipoles. I will also discuss some of the challenges of handling the large data volume that LWA1 produces and how the LWA User Computing Facility helps address those problems.

  13. True time-delay photonic beamforming with fine steerability and frequency-agility for spaceborne phased-arrays: a proof-of-concept demonstration

    NASA Astrophysics Data System (ADS)

    Paul, Dilip K.; Razdan, Rajender; Goldman, Alfred M.

    1996-10-01

    Feasibility of photonics in beam forming and steering of large phased-array antennas onboard communications satellite/avionics systems is addressed in this paper. Specifically, a proof-of-concept demonstration of phased- array antenna feed network using fiber optic true time-delay (TTD) elements is reported for SATCOM phased-array antennas operating at C-band. Results of the photonic hardware design and performance analysis, including the measured radiation patterns of the antenna array fed by the photonic BFN, are presented. An excellent agreement between the analysis and measured data has been observed. In addition to being light- weight and compact, several unique characteristics such as rf carrier frequency agility and continuous steerability of the radiated beam achieved by the fiber optic TTD architecture are clear evidences of its superiority over other competing photonic architectures.

  14. High-volume image quality assessment systems: tuning performance with an interactive data visualization tool

    NASA Astrophysics Data System (ADS)

    Bresnahan, Patricia A.; Pukinskis, Madeleine; Wiggins, Michael

    1999-03-01

    Image quality assessment systems differ greatly with respect to the number and types of mags they need to evaluate, and their overall architectures. Managers of these systems, however, all need to be able to tune and evaluate system performance, requirements often overlooked or under-designed during project planning. Performance tuning tools allow users to define acceptable quality standards for image features and attributes by adjusting parameter settings. Performance analysis tools allow users to evaluate and/or predict how well a system performs in a given parameter state. While image assessment algorithms are becoming quite sophisticated, duplicating or surpassing the human decision making process in their speed and reliability, they often require a greater investment in 'training' or fine tuning of parameters in order to achieve optimum performance. This process may involve the analysis of hundreds or thousands of images, generating a large database of files and statistics that can be difficult to sort through and interpret. Compounding the difficulty is the fact that personnel charged with tuning and maintaining the production system may not have the statistical or analytical background required for the task. Meanwhile, hardware innovations have greatly increased the volume of images that can be handled in a given time frame, magnifying the consequences of running a production site with an inadequately tuned system. In this paper, some general requirements for a performance evaluation and tuning data visualization system are discussed. A custom engineered solution to the tuning and evaluation problem is then presented, developed within the context of a high volume image quality assessment, data entry, OCR, and image archival system. A key factor influencing the design of the system was the context-dependent definition of image quality, as perceived by a human interpreter. This led to the development of a five-level, hierarchical approach to image quality

  15. Coronal plasma development in wire-array z-pinches made of twisted-pairs

    NASA Astrophysics Data System (ADS)

    Hoyt, C. L.; Greenly, J. B.; Gourdain, P. A.; Knapp, P. F.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R.

    2009-11-01

    We have investigated coronal and core plasma development in wire array z-pinches in which single fine wires are replaced by twisted-pairs (``cable'') on the 1 MA, 100 ns rise time COBRA pulsed power generator. X-ray radiography, employed to investigate dense wire core expansion, showed periodic axial nonuniformity and evidence for shock waves developing where the individual wire plasmas collide. Laser shadowgraphy images indicated that the axial instability properties of the coronal plasma are substantially modified from ordinary wire arrays. Cable mass per unit length, material and the twist wavelength were varied in order to study their effects upon the instability wavelength. Implosion uniformity and bright-spot formation, as well as magnetic topology evolution, have also been investigated using self-emission imaging, x-ray diagnostics and small B-dot probes, respectively. Results from the cable-array z-pinches will be compared with results from ordinary wire-array z-pinches. This research was supported by the SSAA program of the National Nuclear Security Administration under DOE Cooperative agreement DE-FC03-02NA00057.

  16. An electrically tunable plenoptic camera using a liquid crystal microlens array

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Tong, Qing; Zhang, Xinyu; Sang, Hongshi; Ji, An; Xie, Changsheng

    2015-05-01

    Plenoptic cameras generally employ a microlens array positioned between the main lens and the image sensor to capture the three-dimensional target radiation in the visible range. Because the focal length of common refractive or diffractive microlenses is fixed, the depth of field (DOF) is limited so as to restrict their imaging capability. In this paper, we propose a new plenoptic camera using a liquid crystal microlens array (LCMLA) with electrically tunable focal length. The developed LCMLA is fabricated by traditional photolithography and standard microelectronic techniques, and then, its focusing performance is experimentally presented. The fabricated LCMLA is directly integrated with an image sensor to construct a prototyped LCMLA-based plenoptic camera for acquiring raw radiation of targets. Our experiments demonstrate that the focused region of the LCMLA-based plenoptic camera can be shifted efficiently through electrically tuning the LCMLA used, which is equivalent to the extension of the DOF.

  17. An electrically tunable plenoptic camera using a liquid crystal microlens array.

    PubMed

    Lei, Yu; Tong, Qing; Zhang, Xinyu; Sang, Hongshi; Ji, An; Xie, Changsheng

    2015-05-01

    Plenoptic cameras generally employ a microlens array positioned between the main lens and the image sensor to capture the three-dimensional target radiation in the visible range. Because the focal length of common refractive or diffractive microlenses is fixed, the depth of field (DOF) is limited so as to restrict their imaging capability. In this paper, we propose a new plenoptic camera using a liquid crystal microlens array (LCMLA) with electrically tunable focal length. The developed LCMLA is fabricated by traditional photolithography and standard microelectronic techniques, and then, its focusing performance is experimentally presented. The fabricated LCMLA is directly integrated with an image sensor to construct a prototyped LCMLA-based plenoptic camera for acquiring raw radiation of targets. Our experiments demonstrate that the focused region of the LCMLA-based plenoptic camera can be shifted efficiently through electrically tuning the LCMLA used, which is equivalent to the extension of the DOF.

  18. Controllable synthesis of hierarchical MgMoO4 nanosheet-arrays and nano-flowers assembled with mesoporous ultrathin nanosheets

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng; He, Wenjie; Shen, Kechao; Liu, Yi; Guo, Shouwu

    2018-04-01

    Self-standing hierarchical mesoporous MgMoO4 nanosheet-arrays and nano-flowers have been built via the self-assembly of ultrathin mesoporous nanosheets. The arrays and flower nanostructures can be facilely controlled by tuning the surfactant dosage. The formation mechanism of such special nanostructures has also been proposed. The flower structure has larger surface area than the arrays, owing to the more mesoporous nature of the former. Additionally, the as-prepared MgMoO4 nanomaterials not doped by any other ion have important optical properties, that enable the generation of strong red light with excitation wavelengths of 369 and 534 nm and emission of bright green light under irradiation by blue light (423 and 451 nm), demonstrating their potential applications in blue phototherapy and fluorescence labeling.

  19. In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis

    PubMed Central

    Brouwer, Bastiaan; Gardeström, Per; Keech, Olivier

    2014-01-01

    Phytochrome is thought to control the induction of leaf senescence directly, however, the signalling and molecular mechanisms remain unclear. In the present study, an ecophysiological approach was used to establish a functional connection between phytochrome signalling and the physiological processes underlying the induction of leaf senescence in response to shade. With shade it is important to distinguish between complete and partial shading, during which either the whole or only a part of the plant is shaded, respectively. It is first shown here that, while PHYB is required to maintain chlorophyll content in a completely shaded plant, only PHYA is involved in maintaining the leaf chlorophyll content in response to partial plant shading. Second, it is shown that leaf yellowing associated with strong partial shading in phyA-mutant plants actually correlates to a decreased biosynthesis of chlorophyll rather than to an increase of its degradation. Third, it is shown that the physiological impact of this decreased biosynthesis of chlorophyll in strongly shaded phyA-mutant leaves is accompanied by a decreased capacity to adjust the Light Compensation Point. However, the increased leaf yellowing in phyA-mutant plants is not accompanied by an increase of senescence-specific molecular markers, which argues against a direct role of PHYA in inducing leaf senescence in response to partial shade. In conclusion, it is proposed that PHYA, but not PHYB, is essential for fine-tuning the chlorophyll biosynthetic pathway in response to partial shading. In turn, this mechanism allows the shaded leaf to adjust its photosynthetic machinery to very low irradiances, thus maintaining a positive carbon balance and repressing the induction of leaf senescence, which can occur under prolonged periods of shade. PMID:24604733

  20. Cylindrical heat conduction and structural acoustic models for enclosed fiber array thermophones.

    PubMed

    Dzikowicz, Benjamin R; Tressler, James F; Baldwin, Jeffrey W

    2017-11-01

    Calculation of the heat loss for thermophone heating elements is a function of their geometry and the thermodynamics of their surroundings. Steady-state behavior is difficult to establish or evaluate as heat is only flowing in one direction in the device. However, for a heating element made from an array of carbon fibers in a planar enclosure, several assumptions can be made, leading to simple solutions of the heat equation. These solutions can be used to more carefully determine the efficiency of thermophones of this geometry. Acoustic response is predicted with the application of a Helmholtz resonator and thin plate structural acoustics models. A laboratory thermophone utilizing a sparse horizontal array of fine (6.7 μm diameter) carbon fibers is designed and tested. Experimental results are compared with the model. The model is also used to examine the optimal array density for maximal efficiency.

  1. Contralateral Bias of High Spatial Frequency Tuning and Cardinal Direction Selectivity in Mouse Visual Cortex

    PubMed Central

    Zeitoun, Jack H.; Kim, Hyungtae

    2017-01-01

    Binocular mechanisms for visual processing are thought to enhance spatial acuity by combining matched input from the two eyes. Studies in the primary visual cortex of carnivores and primates have confirmed that eye-specific neuronal response properties are largely matched. In recent years, the mouse has emerged as a prominent model for binocular visual processing, yet little is known about the spatial frequency tuning of binocular responses in mouse visual cortex. Using calcium imaging in awake mice of both sexes, we show that the spatial frequency preference of cortical responses to the contralateral eye is ∼35% higher than responses to the ipsilateral eye. Furthermore, we find that neurons in binocular visual cortex that respond only to the contralateral eye are tuned to higher spatial frequencies. Binocular neurons that are well matched in spatial frequency preference are also matched in orientation preference. In contrast, we observe that binocularly mismatched cells are more mismatched in orientation tuning. Furthermore, we find that contralateral responses are more direction-selective than ipsilateral responses and are strongly biased to the cardinal directions. The contralateral bias of high spatial frequency tuning was found in both awake and anesthetized recordings. The distinct properties of contralateral cortical responses may reflect the functional segregation of direction-selective, high spatial frequency-preferring neurons in earlier stages of the central visual pathway. Moreover, these results suggest that the development of binocularity and visual acuity may engage distinct circuits in the mouse visual system. SIGNIFICANCE STATEMENT Seeing through two eyes is thought to improve visual acuity by enhancing sensitivity to fine edges. Using calcium imaging of cellular responses in awake mice, we find surprising asymmetries in the spatial processing of eye-specific visual input in binocular primary visual cortex. The contralateral visual pathway is

  2. Tune variations in the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Aquilina, N.; Giovannozzi, M.; Lamont, M.; Sammut, N.; Steinhagen, R.; Todesco, E.; Wenninger, J.

    2015-04-01

    The horizontal and vertical betatron tunes of the Large Hadron Collider (LHC) mainly depend on the strength of the quadrupole magnets, but are also affected by the quadrupole component in the main dipoles. In case of systematic misalignments, the sextupole component from the main dipoles and sextupole corrector magnets also affect the tunes due to the feed down effect. During the first years of operation of the LHC, the tunes have been routinely measured and corrected through either a feedback or a feed forward system. In this paper, the evolution of the tunes during injection, ramp and flat top are reconstructed from the beam measurements and the settings of the tune feedback loop and of the feed forward corrections. This gives the obtained precision of the magnetic model of the machine with respect to quadrupole and sextupole components. Measurements at the injection plateau show an unexpected large decay whose origin is not understood. This data is discussed together with the time constants and the dependence on previous cycles. We present results of dedicated experiments that show that this effect does not originate from the decay of the main dipole component. During the ramp, the tunes drift by about 0.022. It is shown that this is related to the precision of tracking the quadrupole field in the machine and this effect is reduced to about 0.01 tune units during flat top.

  3. Construction of 3D Metallic Nanowire Arrays on Arbitrarily-Shaped Substrate.

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Li, Jingning; Yu, Fangfang; Peng, Ru-Wen; Wang, Mu; Mu Wang Team

    Formation of three-dimensional (3D) nanostructures is an important step of advanced manufacture for new concept devices with novel functionality. Despite of great achievements in fabricating nanostructures with state of the art lithography approaches, these nanostructures are normally limited on flat substrates. Up to now it remains challenging to build metallic nanostructures directly on a rough and bumpy surface. Here we demonstrate a unique approach to fabricate metallic nanowire arrays on an arbitrarily-shaped surface by electrodeposition, which is unknown before 2016. Counterintuitively here the growth direction of the nanowires is perpendicular to their longitudinal axis, and the specific geometry of nanowires can be achieved by introducing specially designed shaped substrate. The spatial separation and the width of the nanowires can be tuned by voltage, electrolyte concentration and temperature in electrodeposition. By taking cobalt nanowire array as an example, we demonstrate that head-to-head and tail-to-tail magnetic domain walls can be easily introduced and modulated in the nanowire arrays, which is enlightening to construct new devices such as domain wall racetrack memory. We acknowledge the foundation from MOST and NSF(China).

  4. Frequency Tuning of Vibration Absorber Using Topology Optimization

    NASA Astrophysics Data System (ADS)

    Harel, Swapnil Subhash

    A tuned mass absorber is a system for reducing the amplitude in one oscillator by coupling it to a second oscillator. If tuned correctly, the maximum amplitude of the first oscillator in response to a periodic driver will be lowered, and much of the vibration will be 'transferred' to the second oscillator. The tuned vibration absorber (TVA) has been utilized for vibration control purposes in many sectors of Civil/Automotive/Aerospace Engineering for many decades since its inception. Time and again we come across a situation in which a vibratory system is required to run near resonance. In the past, approaches have been made to design such auxiliary spring mass tuned absorbers for the safety of the structures. This research focuses on the development and optimization of continuously tuned mass absorbers as a substitute to the discretely tuned mass absorbers (spring- mass system). After conducting the study of structural behavior, the boundary condition and frequency to which the absorber is to be tuned are determined. The Modal analysis approach is used to determine mode shapes and frequencies. The absorber is designed and optimized using the topology optimization tool, which simultaneously designs, optimizes and tunes the absorber to the desired frequency. The tuned, optimized absorber, after post processing, is attached to the target structure. The number of the absorbers are increased to amplify bandwidth and thereby upgrade the safety of structure for a wide range of frequency. The frequency response analysis is carried out using various combinations of structure and number of absorber cell.

  5. Electric Field Tuning Molecular Packing and Electrical Properties of Solution-Shearing Coated Organic Semiconducting Thin Films

    DOE PAGES

    Molina-Lopez, Francisco; Yan, Hongping; Gu, Xiaodan; ...

    2017-01-17

    Recent improvements in solution-coated organic semiconductors (OSCs) evidence their high potential for cost-efficient organic electronics and sensors. Molecular packing structure determines the charge transport property of molecular solids. However, it remains challenging to control the molecular packing structure for a given OSC. Here, the application of alternating electric fields is reported to fine-tune the crystal packing of OSC solution-shearing coated at ambient conditions. First, a theoretical model based on dielectrophoresis is developed to guide the selection of the optimal conditions (frequency and amplitude) of the electric field applied through the solution-shearing blade during coating of OSC thin films. Next, electricmore » field-induced polymorphism is demonstrated for OSCs with both herringbone and 2D brick-wall packing motifs in 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene and 6,13-bis(triisopropylsilylethynyl) pentacene, respectively. Favorable molecular packing can be accessible in some cases, resulting in higher charge carrier mobilities. In conclusion, this work provides a new approach to tune the properties of solution-coated OSCs in functional devices for high-performance printed electronics.« less

  6. Sample Skewness as a Statistical Measurement of Neuronal Tuning Sharpness

    PubMed Central

    Samonds, Jason M.; Potetz, Brian R.; Lee, Tai Sing

    2014-01-01

    We propose using the statistical measurement of the sample skewness of the distribution of mean firing rates of a tuning curve to quantify sharpness of tuning. For some features, like binocular disparity, tuning curves are best described by relatively complex and sometimes diverse functions, making it difficult to quantify sharpness with a single function and parameter. Skewness provides a robust nonparametric measure of tuning curve sharpness that is invariant with respect to the mean and variance of the tuning curve and is straightforward to apply to a wide range of tuning, including simple orientation tuning curves and complex object tuning curves that often cannot even be described parametrically. Because skewness does not depend on a specific model or function of tuning, it is especially appealing to cases of sharpening where recurrent interactions among neurons produce sharper tuning curves that deviate in a complex manner from the feedforward function of tuning. Since tuning curves for all neurons are not typically well described by a single parametric function, this model independence additionally allows skewness to be applied to all recorded neurons, maximizing the statistical power of a set of data. We also compare skewness with other nonparametric measures of tuning curve sharpness and selectivity. Compared to these other nonparametric measures tested, skewness is best used for capturing the sharpness of multimodal tuning curves defined by narrow peaks (maximum) and broad valleys (minima). Finally, we provide a more formal definition of sharpness using a shape-based information gain measure and derive and show that skewness is correlated with this definition. PMID:24555451

  7. The Effect of Fin Pitch on Fluid Elastic Instability of Tube Arrays Subjected to Cross Flow of Water

    NASA Astrophysics Data System (ADS)

    Desai, Sandeep Rangrao; Pavitran, Sampat

    2018-02-01

    Failure of tubes in shell and tube exchangers is attributed to flow induced vibrations of such tubes. There are different excitations mechanisms due to which flow induced vibration occurs and among such mechanisms, fluid elastic instability is the most prominent one as it causes the most violent vibrations and may lead to rapid tube failures within short time. Fluid elastic instability is the fluid-structure interaction phenomenon which occurs when energy input by the fluid force exceeds energy expended in damping. This point is referred as instability threshold and corresponding velocity is referred as critical velocity. Once flow velocity exceeds critical flow velocity, the vibration amplitude increases very rapidly with flow velocity. An experimental program is carried out to determine the critical velocity at instability for plain and finned tube arrays subjected to cross flow of water. The tube array geometry is parallel triangular with cantilever end condition and pitch ratios considered are 2.6 and 2.1. The objective of research is to determine the effect of increase in pitch ratio on instability threshold for plain tube arrays and to assess the effect of addition of fins as well as increase in fin density on instability threshold for finned tube arrays. Plain tube array with two different pitch ratios; 2.1 and 2.6 and finned tube arrays with same pitch ratio; 2.6 but with two different fin pitches; such as fine (10 fpi) and coarse (4 fpi) are considered for the experimentation. Connors' equation that relates critical velocity at instability to different parameters, on which instability depends, has been used as the basis for analysis and the concept of effective diameter is used for the present investigation. The modal parameters are first suitably modified using natural frequency reduction setup that is already designed and developed to reduce natural frequency and hence to achieve experimental simulation of fluid elastic instability within the limited

  8. An Array of Optical Receivers for Deep-Space Communications

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Chi-Wung; Srinivasan, Meera; Andrews, Kenneth

    2007-01-01

    An array of small optical receivers is proposed as an alternative to a single large optical receiver for high-data-rate communications in NASA s Deep Space Network (DSN). Because the telescope for a single receiver capable of satisfying DSN requirements must be greater than 10 m in diameter, the design, building, and testing of the telescope would be very difficult and expensive. The proposed array would utilize commercially available telescopes of 1-m or smaller diameter and, therefore, could be developed and verified with considerably less difficulty and expense. The essential difference between a single-aperture optical-communications receiver and an optical-array receiver is that a single-aperture receiver focuses all of the light energy it collects onto the surface of an optical detector, whereas an array receiver focuses portions of the total collected energy onto separate detectors, optically detects each fractional energy component, then combines the electrical signal from the array of detector outputs to form the observable, or "decision statistic," used to decode the transmitted data. A conceptual block diagram identifying the key components of the optical-array receiver suitable for deep-space telemetry reception is shown in the figure. The most conspicuous feature of the receiver is the large number of small- to medium-size telescopes, with individual apertures and number of telescopes selected to make up the desired total collecting area. This array of telescopes is envisioned to be fully computer- controlled via the user interface and prediction-driven to achieve rough pointing and tracking of the desired spacecraft. Fine-pointing and tracking functions then take over to keep each telescope pointed toward the source, despite imperfect pointing predictions, telescope-drive errors, and vibration caused by wind.

  9. Adaptive Self Tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Matthew; Draelos, Timothy; Knox, Hunter

    2017-05-02

    The AST software includes numeric methods to 1) adjust STA/LTA signal detector trigger level (TL) values and 2) filter detections for a network of sensors. AST adapts TL values to the current state of the environment by leveraging cooperation within a neighborhood of sensors. The key metric that guides the dynamic tuning is consistency of each sensor with its nearest neighbors: TL values are automatically adjusted on a per station basis to be more or less sensitive to produce consistent agreement of detections in its neighborhood. The AST algorithm adapts in near real-time to changing conditions in an attempt tomore » automatically self-tune a signal detector to identify (detect) only signals from events of interest.« less

  10. Sharpening coarse-to-fine stereo vision by perceptual learning: asymmetric transfer across the spatial frequency spectrum

    PubMed Central

    Tran, Truyet T.; Craven, Ashley P.; Leung, Tsz-Wing; Chat, Sandy W.; Levi, Dennis M.

    2016-01-01

    Neurons in the early visual cortex are finely tuned to different low-level visual features, forming a multi-channel system analysing the visual image formed on the retina in a parallel manner. However, little is known about the potential ‘cross-talk’ among these channels. Here, we systematically investigated whether stereoacuity, over a large range of target spatial frequencies, can be enhanced by perceptual learning. Using narrow-band visual stimuli, we found that practice with coarse (low spatial frequency) targets substantially improves performance, and that the improvement spreads from coarse to fine (high spatial frequency) three-dimensional perception, generalizing broadly across untrained spatial frequencies and orientations. Notably, we observed an asymmetric transfer of learning across the spatial frequency spectrum. The bandwidth of transfer was broader when training was at a high spatial frequency than at a low spatial frequency. Stereoacuity training is most beneficial when trained with fine targets. This broad transfer of stereoacuity learning contrasts with the highly specific learning reported for other basic visual functions. We also revealed strategies to boost learning outcomes ‘beyond-the-plateau’. Our investigations contribute to understanding the functional properties of the network subserving stereovision. The ability to generalize may provide a key principle for restoring impaired binocular vision in clinical situations. PMID:26909178

  11. The fine-tuning of TRAF2–GSTP1-1 interaction: effect of ligand binding and in situ detection of the complex

    PubMed Central

    De Luca, A; Mei, G; Rosato, N; Nicolai, E; Federici, L; Palumbo, C; Pastore, A; Serra, M; Caccuri, A M

    2014-01-01

    We provide the first biochemical evidence of a direct interaction between the glutathione transferase P1-1 (GSTP1-1) and the TRAF domain of TNF receptor-associated factor 2 (TRAF2), and describe how ligand binding modulates such an equilibrium. The dissociation constant of the heterocomplex is Kd=0.3 μM; however the binding affinity strongly decreases when the active site of GSTP1-1 is occupied by the substrate GSH (Kd≥2.6 μM) or is inactivated by oxidation (Kd=1.7 μM). This indicates that GSTP1-1's TRAF2-binding region involves the GSH-binding site. The GSTP1-1 inhibitor NBDHEX further decreases the complex's binding affinity, as compared with when GSH is the only ligand; this suggests that the hydrophobic portion of the GSTP1-1 active site also contributes to the interaction. We therefore hypothesize that TRAF2 binding inactivates GSTP1-1; however, analysis of the data, using a model taking into account the dimeric nature of GSTP1-1, suggests that GSTP1-1 engages only one subunit in the complex, whereas the second subunit maintains the catalytic activity or binds to other proteins. We also analyzed GSTP1-1's association with TRAF2 at the cellular level. The TRAF2–GSTP1-1 complex was constitutively present in U-2OS cells, but strongly decreased in S, G2 and M phases. Thus the interaction appears regulated in a cell cycle-dependent manner. The variations in the levels of individual proteins seem too limited to explain the complex's drastic decline observed in cells progressing from the G0/G1 to the S–G2–M phases. Moreover, GSH's intracellular content was so high that it always saturated GSTP1-1. Interestingly, the addition of NBDHEX maintains the TRAF2–GSTP1-1 complex at low levels, thus causing a prolonged cell cycle arrest in the G2/M phase. Overall, these findings suggest that a reversible sequestration of TRAF2 into the complex may be crucial for cell cycle progression and that multiple factors are involved in the fine-tuning of this

  12. Precise precursor rebalancing for isoprenoids production by fine control of gapA expression in Escherichia coli.

    PubMed

    Jung, Juyoung; Lim, Jae Hyung; Kim, Se Yeon; Im, Dae-Kyun; Seok, Joo Yeon; Lee, Seung-Jae V; Oh, Min-Kyu; Jung, Gyoo Yeol

    2016-11-01

    Biosynthesis of isoprenoids via the 1-deoxy-D-xylulose-5-phosphate (DXP) pathway requires equimolar glyceraldehyde 3-phosphate and pyruvate to divert carbon flux toward the products of interest. Here, we demonstrate that precursor balancing is one of the critical steps for the production of isoprenoids in Escherichia coli. First, the implementation of the synthetic lycopene production pathway as a model system and the amplification of the native DXP pathway were accomplished using synthetic constitutive promoters and redesigned 5'-untranslated regions (5'-UTRs). Next, fine-controlled precursor balancing was investigated by tuning phosphoenolpyruvate synthase (PpsA) or glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The results showed that tuning-down of gapA improved the specific lycopene content by 45% compared to the overexpression of ppsA. The specific lycopene content in the strains with down-regulated gapA increased by 97% compared to that in the parental strain. Our results indicate that gapA is the best target for precursor balancing to increase biosynthesis of isoprenoids. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Optical Antenna Arrays on a Fiber Facet for In Situ Surface Enhanced Raman Scattering Detection

    PubMed Central

    Smythe, Elizabeth J.; Dickey, Michael D.; Bao, Jiming; Whitesides, George M.

    2009-01-01

    This paper reports a bidirectional fiber optic probe for the detection of surface enhanced Raman scattering (SERS). One facet of the probe features an array of gold optical antennas designed to enhance Raman signal, while the other facet of the fiber is used for the input and collection of light. Simultaneous detection of benzenethiol and 2-[(E)-2-pyridin-4-ylethenyl]pyridine is demonstrated through a 35 cm long fiber. The array of nanoscale optical antennas was first defined by electron-beam lithography on a silicon wafer. The array was subsequently stripped from the wafer and then transferred to the facet of a fiber. Lithographic definition of the antennas provides a method for producing two-dimensional arrays with well-defined geometry, which allows (i) the optical response of the probe to be tuned and (ii) the density of ‘hot spots’ generating the enhanced Raman signal to be controlled. It is difficult to determine the Raman signal enhancement factor (EF) of most fiber optic Raman sensors featuring ‘hot spots’ because the geometry of the Raman enhancing nanostructures is poorly defined. The ability to control the size and spacing of the antennas enables the EF of the transferred array to be estimated. EF values estimated after focusing a laser directly onto the transferred array ranged from 2.6 × 105 to 5.1 × 105. PMID:19236032

  14. Quantitative Evaluation of Musical Scale Tunings

    ERIC Educational Resources Information Center

    Hall, Donald E.

    1974-01-01

    The acoustical and mathematical basis of the problem of tuning the twelve-tone chromatic scale is reviewed. A quantitative measurement showing how well any tuning succeeds in providing just intonation for any specific piece of music is explained and applied to musical examples using a simple computer program. (DT)

  15. Stress-tuned conductor-polymer composite for use in sensors

    DOEpatents

    Martin, James E; Read, Douglas H

    2013-10-22

    A method for making a composite polymeric material with electrical conductivity determined by stress-tuning of the conductor-polymer composite, and sensors made with the stress-tuned conductor-polymer composite made by this method. Stress tuning is achieved by mixing a miscible liquid into the polymer precursor solution or by absorbing into the precursor solution a soluble compound from vapor in contact with the polymer precursor solution. The conductor may or may not be ordered by application of a magnetic field. The composite is formed by polymerization with the stress-tuning agent in the polymer matrix. The stress-tuning agent is removed following polymerization to produce a conductor-polymer composite with a stress field that depends on the amount of stress-tuning agent employed.

  16. Musician's and Physicist's View on Tuning Keyboard Instruments

    ERIC Educational Resources Information Center

    Lubenow, Martin; Meyn, Jan-Peter

    2007-01-01

    The simultaneous sound of several voices or instruments requires proper tuning to achieve consonance for certain intervals and chords. Most instruments allow enough frequency variation to enable pure tuning while being played. Keyboard instruments such as organ and piano have given frequencies for individual notes and the tuning must be based on a…

  17. Tuning the Fermi velocity in Dirac materials with an electric field.

    PubMed

    Díaz-Fernández, A; Chico, Leonor; González, J W; Domínguez-Adame, F

    2017-08-14

    Dirac materials are characterized by energy-momentum relations that resemble those of relativistic massless particles. Commonly denominated Dirac cones, these dispersion relations are considered to be their essential feature. These materials comprise quite diverse examples, such as graphene and topological insulators. Band-engineering techniques should aim to a full control of the parameter that characterizes the Dirac cones: the Fermi velocity. We propose a general mechanism that enables the fine-tuning of the Fermi velocity in Dirac materials in a readily accessible way for experiments. By embedding the sample in a uniform electric field, the Fermi velocity is substantially modified. We first prove this result analytically, for the surface states of a topological insulator/semiconductor interface, and postulate its universality in other Dirac materials. Then we check its correctness in carbon-based Dirac materials, namely graphene nanoribbons and nanotubes, thus showing the validity of our hypothesis in different Dirac systems by means of continuum, tight-binding and ab-initio calculations.

  18. Sloppy morphological tuning in identified neurons of the crustacean stomatogastric ganglion

    PubMed Central

    Otopalik, Adriane G; Goeritz, Marie L; Sutton, Alexander C; Brookings, Ted; Guerini, Cosmo; Marder, Eve

    2017-01-01

    Neuronal physiology depends on a neuron’s ion channel composition and unique morphology. Variable ion channel compositions can produce similar neuronal physiologies across animals. Less is known regarding the morphological precision required to produce reliable neuronal physiology. Theoretical studies suggest that moraphology is tightly tuned to minimize wiring and conduction delay of synaptic events. We utilize high-resolution confocal microscopy and custom computational tools to characterize the morphologies of four neuron types in the stomatogastric ganglion (STG) of the crab Cancer borealis. Macroscopic branching patterns and fine cable properties are variable within and across neuron types. We compare these neuronal structures to synthetic minimal spanning neurite trees constrained by a wiring cost equation and find that STG neurons do not adhere to prevailing hypotheses regarding wiring optimization principles. In this highly modulated and oscillating circuit, neuronal structures appear to be governed by a space-filling mechanism that outweighs the cost of inefficient wiring. DOI: http://dx.doi.org/10.7554/eLife.22352.001 PMID:28177286

  19. An electrically tunable plenoptic camera using a liquid crystal microlens array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Yu; School of Automation, Huazhong University of Science and Technology, Wuhan 430074; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074

    2015-05-15

    Plenoptic cameras generally employ a microlens array positioned between the main lens and the image sensor to capture the three-dimensional target radiation in the visible range. Because the focal length of common refractive or diffractive microlenses is fixed, the depth of field (DOF) is limited so as to restrict their imaging capability. In this paper, we propose a new plenoptic camera using a liquid crystal microlens array (LCMLA) with electrically tunable focal length. The developed LCMLA is fabricated by traditional photolithography and standard microelectronic techniques, and then, its focusing performance is experimentally presented. The fabricated LCMLA is directly integrated withmore » an image sensor to construct a prototyped LCMLA-based plenoptic camera for acquiring raw radiation of targets. Our experiments demonstrate that the focused region of the LCMLA-based plenoptic camera can be shifted efficiently through electrically tuning the LCMLA used, which is equivalent to the extension of the DOF.« less

  20. Even subtle cultural differences affect face tuning.

    PubMed

    Pavlova, Marina A; Heiz, Julie; Sokolov, Alexander N; Fallgatter, Andreas J; Barisnikov, Koviljka

    2018-01-01

    Culture shapes social cognition in many ways. Yet cultural impact on face tuning remains largely unclear. Here typically developing females and males from the French-speaking part of Switzerland were presented with a set of Arcimboldo-like Face-n-Food images composed of food ingredients and in different degree resembling a face. The outcome had been compared with previous findings obtained in young adults of the South-West Germany. In that study, males exhibit higher thresholds for face tuning on the Face-n-Food task than females. In Swiss participants, no gender differences exist in face tuning. Strikingly, males from the French-speaking part of Switzerland possess higher sensitivity to faces than their German peers, whereas no difference in face tuning occurs between females. The outcome indicates that even relatively subtle cultural differences as well as culture by gender interaction can modulate social cognition. Clarification of the nature of cultural impact on face tuning as well as social cognition at large is of substantial value for understanding a wide range of neuropsychiatric and neurodevelopmental conditions.

  1. Array observations and analyses of Cascadia deep tremor

    NASA Astrophysics Data System (ADS)

    McCausland, W. A.; Malone, S.; Creager, K.; Crosson, R.; La Rocca, M.; Saccoretti, G.

    2004-12-01

    The July 8-24, 2004 Cascadia Episodic Tremor and Slip (ETS) event was observed using three small aperture seismic arrays located near Sooke, BC, Sequim, WA, and on Lopez Island, WA. Initial tremor burst epicenters located in the Strait of Juan de Fuca and were calculated using the relative arrivals of band-passed, rectified regional network signals. Most subsequent epicenters migrated to the northwest along Vancouver Island and a few occurred in the central to southern Puget Sound. Tremor bursts lasting on the order of a few seconds can be identified across the stations of any of the three arrays. Individual bursts from distinct back-azimuths often occur within five seconds of each other, indicating the presence of spatially distributed but near simultaneous tremor. None of this was visible at such a fine scale using Pacific Northwest Seismograph Network (PNSN). Several array processing techniques, including beam-forming, zero-lag cross correlation and multiple signal classification (MUSIC), are being investigated to determine the optimal technique for exploring the temporal and spatial evolution of the tremor signals during the whole ETS. The back-azimuth and slowness of consecutive time windows for a one half-hour period of strong tremor were calculated using beam-forming with a linear stack, with an nth-root stack, and using zero-lag cross-correlation. Results for each array and each method yield consistent estimates of back azimuth and slowness. Beam-forming with a nonlinear stack produces results similar to the linear case but with larger uncertainty. Among the arrays, the back-azimuths give a reasonable estimate of the tremor epicenter that is consistent with the network determined epicentral locations.

  2. Plasmonic Library Based on Substrate-Supported Gradiential Plasmonic Arrays

    PubMed Central

    2014-01-01

    We present a versatile approach to produce macroscopic, substrate-supported arrays of plasmonic nanoparticles with well-defined interparticle spacing and a continuous particle size gradient. The arrays thus present a “plasmonic library” of locally noncoupling plasmonic particles of different sizes, which can serve as a platform for future combinatorial screening of size effects. The structures were prepared by substrate assembly of gold-core/poly(N-isopropylacrylamide)-shell particles and subsequent post-modification. Coupling of the localized surface plasmon resonance (LSPR) could be avoided since the polymer shell separates the encapsulated gold cores. To produce a particle array with a broad range of well-defined but laterally distinguishable particle sizes, the substrate was dip-coated in a growth solution, which resulted in an overgrowth of the gold cores controlled by the local exposure time. The kinetics was quantitatively analyzed and found to be diffusion rate controlled, allowing for precise tuning of particle size by adjusting the withdrawal speed. We determined the kinetics of the overgrowth process, investigated the LSPRs along the gradient by UV–vis extinction spectroscopy, and compared the spectroscopic results to the predictions from Mie theory, indicating the absence of local interparticle coupling. We finally discuss potential applications of these substrate-supported plasmonic particle libraries and perspectives toward extending the concept from size to composition variation and screening of plasmonic coupling effects. PMID:25137554

  3. The IMPACT Common Module - A Low Cost, Reconfigurable Building Block for Next Generation Phased Arrays

    DTIC Science & Technology

    2016-03-31

    The SiGe receiver has two stages of programmable RF filtering and one stage of IF filtering. Each filter can be tuned in center frequency and...distribution unlimited. transmit, with an IF to RF upconversion chain that is split to programmable phase shifters and VGAs at each output port. Figure 2...These are optimized to run on medium grade Field Programmable Gate Arrays (FPGAs), such as the Altera Arria 10, and represent a few of the many

  4. Differential Resonant Ring YIG Tuned Oscillator

    NASA Technical Reports Server (NTRS)

    Parrott, Ronald A.

    2010-01-01

    A differential SiGe oscillator circuit uses a resonant ring-oscillator topology in order to electronically tune the oscillator over multi-octave bandwidths. The oscillator s tuning is extremely linear, because the oscillator s frequency depends on the magnetic tuning of a YIG sphere, whose resonant frequency is equal to a fundamental constant times the DC magnetic field. This extremely simple circuit topology uses two coupling loops connecting a differential pair of SiGe bipolar transistors into a feedback configuration using a YIG tuned filter creating a closed-loop ring oscillator. SiGe device technology is used for this oscillator in order to keep the transistor s 1/f noise to an absolute minimum in order to achieve minimum RF phase noise. The single-end resonant ring oscillator currently has an advantage in fewer parts, but when the oscillation frequency is greater than 16 GHz, the package s parasitic behavior couples energy to the sphere and causes holes and poor phase noise performance. This is because the coupling to the YIG is extremely low, so that the oscillator operates at near the unloaded Q. With the differential resonant ring oscillator, the oscillation currents are just in the YIG coupling mechanisms. The phase noise is even better, and the physical size can be reduced to permit monolithic microwave integrated circuit oscillators. This invention is a YIG tuned oscillator circuit making use of a differential topology to simultaneously achieve an extremely broadband electronic tuning range and ultra-low phase noise. As a natural result of its differential circuit topology, all reactive elements, such as tuning stubs, which limit tuning bandwidth by contributing excessive open loop phase shift, have been eliminated. The differential oscillator s open-loop phase shift is associated with completely non-dispersive circuit elements such as the physical angle of the coupling loops, a differential loop crossover, and the high-frequency phase shift of the n

  5. Tuning and History: A Personal Overview

    ERIC Educational Resources Information Center

    Isaacs, Ann Katherine

    2017-01-01

    The text places Tuning History in the context of the rapidly developing international collaboration among historians which began in Europe in 1989, with the ECTS Pilot project, and continued, from 2000 on, with the European History Networks (for research and for curriculum development) working in parallel and in collaboration with Tuning, in…

  6. 1THz synchronous tuning of two optical synthesizers

    NASA Astrophysics Data System (ADS)

    Neuhaus, Rudolf; Rohde, Felix; Benkler, Erik; Puppe, Thomas; Raab, Christoph; Unterreitmayer, Reinhard; Zach, Armin; Telle, Harald R.; Stuhler, Jürgen

    2016-04-01

    Single-frequency optical synthesizers (SFOS) provide an optical field with arbitrarily adjustable frequency and phase which is phase-coherently linked to a reference signal. Ideally, they combine the spectral resolution of narrow linewidth frequency stabilized lasers with the broad spectral coverage of frequency combs in a tunable fashion. In state-of-the-art SFOSs tuning across comb lines requires comb line order switching,1, 2 which imposes technical overhead with problems like forbidden frequency gaps or strong phase glitches. Conventional tunable lasers often tune over only tens of GHz before mode-hops occur. Here, we present a novel type of SFOSs, which relies on a serrodyne technique with conditional flyback,3 shifting the carrier frequency of the employed frequency comb without an intrusion into the comb generator. It utilizes a new continuously tunable diode laser that tunes mode-hop-free across the full gain spectrum of the integrated laser diode. We investigate the tuning behavior of two identical SFOSs that share a common reference, by comparing the phases of their output signals. Previously, we achieved phase-stable and cycle-slip free frequency tuning over 28.1 GHz with a maximum zero-to-peak phase deviation of 62 mrad4 when sharing a common comb generator. With the new continuously tunable lasers, the SFOSs tune synchronously across nearly 17800 comb lines (1 THz). The tuning range in this approach can be extended to the full bandwidth of the frequency comb and the 110 nm mode-hop-free tuning range of the diode laser.

  7. Generalization and fine mapping of European ancestry-based central adiposity variants in African ancestry populations

    PubMed Central

    Yoneyama, Sachiko; Yao, Jie; Guo, Xiuqing; Fernandez-Rhodes, Lindsay; Lim, Unhee; Boston, Jonathan; Buzková, Petra; Carlson, Christopher S.; Cheng, Iona; Cochran, Barbara; Cooper, Richard; Ehret, Georg; Fornage, Myriam; Gong, Jian; Gross, Myron; Gu, C. Charles; Haessler, Jeff; Haiman, Christopher A.; Henderson, Brian; Hindorff, Lucia A.; Houston, Denise; Irvin, Marguerite R.; Jackson, Rebecca; Kuller, Lew; Leppert, Mark; Lewis, Cora E.; Li, Rongling; Le Marchand, Loic; Matise, Tara C.; Nguyen, Khanh-Dung H.; Chakravarti, Aravinda; Pankow, James S.; Pankratz, Nathan; Pooler, Loreall; Ritchie, Marylyn D.; Bien, Stephanie A.; Wassel, Christina L.; Chen, Yii-Der I.; Taylor, Kent D.; Allison, Matthew; Rotter, Jerome I.; Schreiner, Pamela J.; Schumacher, Fredrick; Wilkens, Lynne; Boerwinkle, Eric; Kooperberg, Charles; Peters, Ulrike; Buyske, Steven; Graff, Mariaelisa; North, Kari E.

    2016-01-01

    Background/Objectives Central adiposity measures such as waist circumference (WC) and waist-to-hip ratio (WHR) are associated with cardiometabolic disorders independently of BMI and are gaining clinically utility. Several studies report genetic variants associated with central adiposity, but most utilize only European ancestry populations. Understanding whether the genetic associations discovered among mainly European descendants are shared with African ancestry populations will help elucidate the biological underpinnings of abdominal fat deposition. Subjects/Methods To identify the underlying functional genetic determinants of body fat distribution, we conducted an array-wide association meta-analysis among persons of African ancestry across seven studies/consortia participating in the Population Architecture using Genomics and Epidemiology (PAGE) consortium. We used the Metabochip array, designed for fine mapping cardiovascular associated loci, to explore novel array-wide associations with WC and WHR among 15 945 African descendants using all and sex-stratified groups. We further interrogated 17 known WHR regions for African ancestry-specific variants. Results Of the 17 WHR loci, eight SNPs located in four loci were replicated in the sex-combined or sex-stratified meta-analyses. Two of these eight independently associated with WHR after conditioning on the known variant in European descendants (rs12096179 in TBX15-WARS2 and rs2059092 in ADAMTS9). In the fine mapping assessment, the putative functional region was reduced across all four loci but to varying degrees (average 40% drop in number of putative SNPs and 20% drop in genomic region). Similar to previous studies, the significant SNPs in the female stratified analysis were stronger than the significant SNPs from the sex-combined analysis. No novel associations were detected in the array-wide analyses. Conclusions Of 17 previously identified loci, four loci replicated in the African ancestry populations of

  8. PLZT Electrooptic Ceramic Photonic Devices for Surface-Normal Operation in Trenches Cut Across Arrays of Optical Fiber

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Katsuhiko

    2005-03-01

    Simple Pb_1-x La_x(Zr_y Ti_z)_1-x/4 O3 (PLZT) electrooptic ceramic photonic device arrays for surface-normal operation have been developed for application to polarization-controller arrays and Fabry-Pérot tunable filter arrays. These arrays are inserted in trenches cut across fiber arrays. Each element of the arrayed structure corresponds to one optical beam and takes the form of a cell. Each sidewall of the cell (width: 50-80 μm) is coated to form an electrode. The arrays have 16 elements at a pitch of 250 μm. The phase modulator has about 1 dB of loss and a half-wavelength voltage of 120 V. A cascade of two PLZT phase modulators (thickness: 300 μm), with each attached to a polyimide lambda/2 plate (thickness:15 μm), is capable of converting an arbitrary polarization to the transverse-electric (TE) or transverse-magnetic (TM) polarization. The response time is 1 μs. The Fabry-Pérot tunable filters have a thickness of 50 μm . The front and back surfaces of each cell are coated by 99%-reflective mirror. The free spectral range (FSR) of the filters is about 10 nm, tunable range is about 10 nm, loss is 2.2 dB, and finesse is 150. The tuning speed of these devices is high, taking only 1 μs.

  9. BEAT: Bioinformatics Exon Array Tool to store, analyze and visualize Affymetrix GeneChip Human Exon Array data from disease experiments

    PubMed Central

    2012-01-01

    Background It is known from recent studies that more than 90% of human multi-exon genes are subject to Alternative Splicing (AS), a key molecular mechanism in which multiple transcripts may be generated from a single gene. It is widely recognized that a breakdown in AS mechanisms plays an important role in cellular differentiation and pathologies. Polymerase Chain Reactions, microarrays and sequencing technologies have been applied to the study of transcript diversity arising from alternative expression. Last generation Affymetrix GeneChip Human Exon 1.0 ST Arrays offer a more detailed view of the gene expression profile providing information on the AS patterns. The exon array technology, with more than five million data points, can detect approximately one million exons, and it allows performing analyses at both gene and exon level. In this paper we describe BEAT, an integrated user-friendly bioinformatics framework to store, analyze and visualize exon arrays datasets. It combines a data warehouse approach with some rigorous statistical methods for assessing the AS of genes involved in diseases. Meta statistics are proposed as a novel approach to explore the analysis results. BEAT is available at http://beat.ba.itb.cnr.it. Results BEAT is a web tool which allows uploading and analyzing exon array datasets using standard statistical methods and an easy-to-use graphical web front-end. BEAT has been tested on a dataset with 173 samples and tuned using new datasets of exon array experiments from 28 colorectal cancer and 26 renal cell cancer samples produced at the Medical Genetics Unit of IRCCS Casa Sollievo della Sofferenza. To highlight all possible AS events, alternative names, accession Ids, Gene Ontology terms and biochemical pathways annotations are integrated with exon and gene level expression plots. The user can customize the results choosing custom thresholds for the statistical parameters and exploiting the available clinical data of the samples for a

  10. The concept of mixed organic ligands in metal-organic frameworks: design, tuning and functions.

    PubMed

    Yin, Zheng; Zhou, Yan-Ling; Zeng, Ming-Hua; Kurmoo, Mohamedally

    2015-03-28

    The research on metal-organic frameworks (MOFs) has been developing at an extraordinary pace in its two decades of existence, as judged by the exponential growth of novel structures and the constant expansion of its applicability and research scope. A major part of the research and its success are due to the vital role of the concept of mixed organic ligands in the design, tuning and functions. This perspective, therefore, reviews the recent advances in MOFs based on this concept, which is generally based on employing a small polydentate ligand (here labelled as "nodal ligand") to form either clusters, rods or layers, which are then connected by a second ditopic linker ligand to form the framework. The structures of the materials can be grouped into the following three categories: layer-spacer (usually known as pillared-layer), rod-spacer, and cluster-spacer based MOFs. Depending on the size and geometry of the spacer ligands, interpenetrations of frameworks are occasionally found. These MOFs show a wide range of properties such as (a) crystal-to-crystal transformations upon solvent modifications, post-synthetic metal exchange or ligand reactions, (b) gas sorption, solvent selectivity and purification, (c) specific catalysis, (d) optical properties including colour change, luminescence, non-linear optic, (e) short- and long range magnetic ordering, metamagnetism and reversible ground-state modifications and (f) drug and iodine carriers with controlled release. In the following, we will highlight the importance of the above concept in the design, tuning, and functions of a selection of existing MOFs having mixed organic ligands and their associated structures and properties. The results obtained so far using this concept look very promising for fine-tuning the pore size and shape for selective adsorption and specificity in catalytic reactions, which appears to be one way to propel the advances in the application and commercialization of MOFs.

  11. RF tuning element

    NASA Technical Reports Server (NTRS)

    McGrath, William R. (Inventor); Lubecke, Victor M. (Inventor)

    1992-01-01

    A device for tuning a circuit includes a substrate, a transmission line on the substrate that includes first and second conductors coupled to a circuit to be tuned, and a movable short-circuit for varying the impedance the transmission line presents to the circuit to be tuned. The movable short-circuit includes a dielectric layer disposed atop the transmission line and a distributed shorting element in the form of a conductive member that is configured to be slid along at least a portion of the transmission line atop the dielectric layer. The conductive member is configured to span the first and second conductors of the transmission line and to define at least a first opening that spans the two conductors so that the conductive member includes first and second sections separated by the first opening. The first and second sections of the conductive member combine with the first and second conductors of the transmission line to form first and second low impedance sections of transmission line, and the opening combines with the first and second conductors of the transmission line and the dielectric layer to form a first high impedance section of transmission line intermediate the first and second low impedance sections. Each of the first low impedance section and the first high impedance section have a length along the transmission line of approximately one-quarter wavelength, thus providing a periodic variation of transmission line impedance. That enhances reflection of rf power.

  12. Exploiting Molecular Weight Distribution Shape to Tune Domain Spacing in Block Copolymer Thin Films.

    PubMed

    Gentekos, Dillon T; Jia, Junteng; Tirado, Erika S; Barteau, Katherine P; Smilgies, Detlef-M; DiStasio, Robert A; Fors, Brett P

    2018-04-04

    We report a method for tuning the domain spacing ( D sp ) of self-assembled block copolymer thin films of poly(styrene- block-methyl methacrylate) (PS- b-PMMA) over a large range of lamellar periods. By modifying the molecular weight distribution (MWD) shape (including both the breadth and skew) of the PS block via temporal control of polymer chain initiation in anionic polymerization, we observe increases of up to 41% in D sp for polymers with the same overall molecular weight ( M n ≈ 125 kg mol -1 ) without significantly changing the overall morphology or chemical composition of the final material. In conjunction with our experimental efforts, we have utilized concepts from population statistics and least-squares analysis to develop a model for predicting D sp based on the first three moments of the MWDs. This statistical model reproduces experimental D sp values with high fidelity (with mean absolute errors of 1.2 nm or 1.8%) and provides novel physical insight into the individual and collective roles played by the MWD moments in determining this property of interest. This work demonstrates that both MWD breadth and skew have a profound influence over D sp , thereby providing an experimental and conceptual platform for exploiting MWD shape as a simple and modular handle for fine-tuning D sp in block copolymer thin films.

  13. Fine motor control

    MedlinePlus

    ... figure out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To have fine motor control, children need: Awareness and planning Coordination ...

  14. Get out of Fines Free: Recruiting Student Usability Testers via Fine Waivers

    ERIC Educational Resources Information Center

    Hockenberry, Benjamin; Blackburn, Kourtney

    2016-01-01

    St. John Fisher College's Lavery Library's Access Services and Systems departments began a pilot project in which students with overdue fines tested usability of library Web sites in exchange for fine waivers. Circulation staff promoted the program and redeemed fine waiver vouchers at the Checkout Desk, while Systems staff administered testing and…

  15. Auto-tuning system for NMR probe with LabView

    NASA Astrophysics Data System (ADS)

    Quen, Carmen; Mateo, Olivia; Bernal, Oscar

    2013-03-01

    Typical manual NMR-tuning method is not suitable for broadband spectra spanning several megahertz linewidths. Among the main problems encountered during manual tuning are pulse-power reproducibility, baselines, and transmission line reflections, to name a few. We present a design of an auto-tuning system using graphic programming language, LabVIEW, to minimize these problems. The program is designed to analyze the detected power signal of an antenna near the NMR probe and use this analysis to automatically tune the sample coil to match the impedance of the spectrometer (50 Ω). The tuning capacitors of the probe are controlled by a stepper motor through a LabVIEW/computer interface. Our program calculates the area of the power signal as an indicator to control the motor so disconnecting the coil to tune it through a network analyzer is unnecessary. Work supported by NSF-DMR 1105380

  16. Experimental Evaluation of Tuned Chamber Core Panels for Payload Fairing Noise Control

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.; Herlan, Jonathan W.; Rosenthal, Bruce N.

    2015-01-01

    Analytical models have been developed to predict the sound absorption and sound transmission loss of tuned chamber core panels. The panels are constructed of two facesheets sandwiching a corrugated core. When ports are introduced through one facesheet, the long chambers within the core can be used as an array of low-frequency acoustic resonators. To evaluate the accuracy of the analytical models, absorption and sound transmission loss tests were performed on flat panels. Measurements show that the acoustic resonators embedded in the panels improve both the absorption and transmission loss of the sandwich structure at frequencies near the natural frequency of the resonators. Analytical predictions for absorption closely match measured data. However, transmission loss predictions miss important features observed in the measurements. This suggests that higher-fidelity analytical or numerical models will be needed to supplement transmission loss predictions in the future.

  17. Fabrication of highly ordered 2D metallic arrays with disc-in-hole binary nanostructures via a newly developed nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Guo, Wei; Wang, Xixi; Liao, Mingdun; Gao, Pingqi; Ye, Jichun

    2017-11-01

    2D metallic arrays with binary nanostructures derived from a nanosphere lithography (NSL) method have been rarely reported. Here, we demonstrate a novel NSL strategy to fabricate highly ordered 2D gold arrays with disc-in-hole binary (DIHB) nanostructures in large scale by employing a sacrificing layer combined with a three-step lift-off process. The structural parameters of the resultant DIHB arrays, such as periodicity, hole diameter, disc diameter and thicknesses can be facilely controlled by tuning the nanospheres size, etching condition, deposition angle and duration, respectively. Due to the intimate interactions between two subcomponents, the DIHB arrays exhibit both an extraordinary high surface-enhanced Raman scattering enhancement factor up to 5 × 108 and a low sheet resistance down to 1.7 Ω/sq. Moreover, the DIHB array can also be used as a metal catalyzed chemical etching catalytic pattern to create vertically-aligned Si nano-tube arrays for anti-reflectance application. This strategy provides a universal route for synthesizing other diverse binary nanostructures with controlled morphology, and thus expands the applications of the NSL to prepare ordered nanostructures with multi-function.

  18. Design of Far-Red Sensitizing Squaraine Dyes Aiming Towards the Fine Tuning of Dye Molecular Structure.

    PubMed

    Morimoto, Takuya; Fujikawa, Naotaka; Ogomi, Yuhei; Pandey, Shyam S; Ma, Tingli; Hayase, Shuzi

    2016-04-01

    Model squaraine dyes having sharp and narrow absorptions mainly in the far-red wavelength region has been logically designed, synthesized and used for their application as sensitizer in the dyesensitized solar cells (DSSC). In order to have fine control on energetics, dyes having same mother core and alkyl chain length varying only in molecular symmetry and position of substituent were designed. It has been found that even keeping all other structural factor constant, only positional variation of substituent leads to not only in the variation of energetics by 0.1 eV but affects the photovoltaic characteristics also. Optimum concentration of dye de-aggregating agent was found to be 100 times with respect to the sensitizing dye concentration. Amongst dyes utilized in this work best performance was obtained for unsymmetrical dye SQ-40 giving a photoconversion efficiency of 4.01% under simulated solar irradiation at global AM 1.5.

  19. Integrated unaligned resonant modulator tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zortman, William A.; Lentine, Anthony L.

    Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, frommore » the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.« less

  20. Electric-Field-Induced Energy Tuning of On-Demand Entangled-Photon Emission from Self-Assembled Quantum Dots.

    PubMed

    Zhang, Jiaxiang; Zallo, Eugenio; Höfer, Bianca; Chen, Yan; Keil, Robert; Zopf, Michael; Böttner, Stefan; Ding, Fei; Schmidt, Oliver G

    2017-01-11

    We explore a method to achieve electrical control over the energy of on-demand entangled-photon emission from self-assembled quantum dots (QDs). The device used in our work consists of an electrically tunable diode-like membrane integrated onto a piezoactuator, which is capable of exerting a uniaxial stress on QDs. We theoretically reveal that, through application of the quantum-confined Stark effect to QDs by a vertical electric field, the critical uniaxial stress used to eliminate the fine structure splitting of QDs can be linearly tuned. This feature allows experimental realization of a triggered source of energy-tunable entangled-photon emission. Our demonstration represents an important step toward realization of a solid-state quantum repeater using indistinguishable entangled photons in Bell state measurements.

  1. Preparing ZEUS-2 for Observing Run at the APEX Telescope

    NASA Astrophysics Data System (ADS)

    Dahlin, Patrick; Vishwas, Amit; Nikola, Thomas; Stacey, Gordon J.

    2017-01-01

    ZEUS-2 is a direct detection grating spectrometer that was designed to maximize sensitivity for the detection of the far-infrared fine-structure lines from distant star forming galaxies as they are redshifted into the short submillimeter windows. ZEUS-2 employs two NIST TES bolometer arrays as its detector: one tuned to 400 μm and the other that consists of two sub-arrays, one tuned to 215 μm and the other tuned to 645 μm. Therefore, by placing bandpass filters directly above the detector ZEUS-2 can address four telluric windows (200 μm, 350 μm, 450 μm, and 650 μm) simultaneously on extended objects, and two windows (200 and 650 μm, or 350 and 450 μm) simultaneously on point sources. ZEUS-2 has now been deployed four times on the APEX telescope in Chile and demonstrated background limited performance both at 350 and 450 μm. As part of my NSF REU experience at Cornell in the summer of 2016, I helped with testing of ZEUS-2 in the lab and improving components for its use on the telescope. This poster will cover the principles of the ZEUS-2 instrument and some of the recent scientific results.

  2. A Multi-Channel, Flex-Rigid ECoG Microelectrode Array for Visual Cortical Interfacing

    PubMed Central

    Tolstosheeva, Elena; Gordillo-González, Víctor; Biefeld, Volker; Kempen, Ludger; Mandon, Sunita; Kreiter, Andreas K.; Lang, Walter

    2015-01-01

    High-density electrocortical (ECoG) microelectrode arrays are promising signal-acquisition platforms for brain-computer interfaces envisioned, e.g., as high-performance communication solutions for paralyzed persons. We propose a multi-channel microelectrode array capable of recording ECoG field potentials with high spatial resolution. The proposed array is of a 150 mm2 total recording area; it has 124 circular electrodes (100, 300 and 500 μm in diameter) situated on the edges of concentric hexagons (min. 0.8 mm interdistance) and a skull-facing reference electrode (2.5 mm2 surface area). The array is processed as a free-standing device to enable monolithic integration of a rigid interposer, designed for soldering of fine-pitch SMD-connectors on a minimal assembly area. Electrochemical characterization revealed distinct impedance spectral bands for the 100, 300 and 500 μm-type electrodes, and for the array's own reference. Epidural recordings from the primary visual cortex (V1) of an awake Rhesus macaque showed natural electrophysiological signals and clear responses to standard visual stimulation. The ECoG electrodes of larger surface area recorded signals with greater spectral power in the gamma band, while the skull-facing reference electrode provided higher average gamma power spectral density (γPSD) than the common average referencing technique. PMID:25569757

  3. A Nested Phosphorus and Proton Coil Array for Brain Magnetic Resonance Imaging and Spectroscopy

    PubMed Central

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2015-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7 Tesla. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4 cm nominal isotropic resolution in 15 min (2.3 cm actual resolution), while additionally enabling 1 mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer’s and Parkinson’s diseases, as well as mental disorders such as schizophrenia. PMID:26375209

  4. A nested phosphorus and proton coil array for brain magnetic resonance imaging and spectroscopy.

    PubMed

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2016-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7T. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4cm nominal isotropic resolution in 15min (2.3cm actual resolution), while additionally enabling 1mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer's and Parkinson's diseases, as well as mental disorders such as schizophrenia. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Unsteady Aerodynamic Model Tuning for Precise Flutter Prediction

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2011-01-01

    A simple method for an unsteady aerodynamic model tuning is proposed in this study. This method is based on the direct modification of the aerodynamic influence coefficient matrices. The aerostructures test wing 2 flight-test data is used to demonstrate the proposed model tuning method. The flutter speed margin computed using only the test validated structural dynamic model can be improved using the additional unsteady aerodynamic model tuning, and then the flutter speed margin requirement of 15 % in military specifications can apply towards the test validated aeroelastic model. In this study, unsteady aerodynamic model tunings are performed at two time invariant flight conditions, at Mach numbers of 0.390 and 0.456. When the Mach number for the unsteady model tuning approaches to the measured fluttering Mach number, 0.502, at the flight altitude of 9,837 ft, the estimated flutter speed is approached to the measured flutter speed at this altitude. The minimum flutter speed difference between the estimated and measured flutter speed is -.14 %.

  6. Theoretical analysis of phase locking in an array of globally coupled lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vysotskii, D V; Elkin, N N; Napartovich, A P

    2013-09-30

    A model of an array of globally coupled fibre lasers, with the same fraction of the total output beam power injected into each laser, is considered. Phase self-locking of the laser array makes it possible to increase the brightness of the total output beam without any devices for controlling the phases of output beams, which significantly complicate the laser system. The spread of the laser optical lengths is several hundreds of wavelengths (or even more); within the theory of hollow cavities, this spread should lead to a fast decrease in the total power with an increase in the number ofmore » lasers. The presence of the active medium may reduce this drop to a great extent due to the self-tuning of the laser array radiation wavelength to a value providing a maximum gain for the array lasing mode. The optical length of each element is assumed to be random. The increase in the phase-locking efficiency due to the gain saturation is explained based on the probabilistic approach. An iterative procedure is developed to find the array output power in the presence of steady-state phase locking. Calculations for different values of small-signal gain and the output-power fraction spent on global coupling are performed. It is shown that, when this fraction amounts to ∼20 % – 30 %, phase locking of up to 20 fibre lasers can be implemented with an efficiency as high as 70 %. (control of laser radiation parameters)« less

  7. Ultra-fast dynamics in the nonlinear optical response of silver nanoprism ordered arrays.

    PubMed

    Sánchez-Esquivel, Héctor; Raygoza-Sanchez, Karen Y; Rangel-Rojo, Raúl; Kalinic, Boris; Michieli, Niccolò; Cesca, Tiziana; Mattei, Giovanni

    2018-03-15

    In this work we present the study of the ultra-fast dynamics of the nonlinear optical response of a honeycomb array of silver triangular nanoprisms, performed using a femtosecond pulsed laser tuned with the dipolar surface plasmon resonance of the nanoarray. Nonlinear absorption and refraction, and their time-dependence, were explored using the z-scan and time-resolved excite-probe techniques. Nonlinear absorption is shown to change sign with the input irradiance and the behavior was explained on the basis of a three-level model. The response time was determined to be in the picosecond regime. A technique based on a variable frequency chopper was also used in order to discriminate the thermal and electronic contributions to the nonlinearity, which were found to have opposite signs. All these findings propel the investigated nanoprism arrays as good candidates for applications in advanced ultra-fast nonlinear nanophotonic devices.

  8. Using stereotactic brain atlases for small rodents and nonhuman primates for optrode array customization

    NASA Astrophysics Data System (ADS)

    Boutte, Ronald W.; Merlin, Sam; Griffiths, Brandon; Parry, Trent; Blair, Steve

    2017-02-01

    As the optogenetic field expands its need to target with high specificity only grows more crucial. This work will show a method for customizing soda-lime glass optrode arrays so that fine structures within the brains of small rodents and nonhuman primates can be optically interrogated below the outer cortical layer. An 8 × 6 array is customized for optrode length (400 μm ), optrode width (75 μm ), optrode pitch (400 μm ), backplane thickness (500 μm ), and overall form factor (3.45 mm × 2.65 mm ). The 400 μm long optrode is capable of illuminating the cortical Layer IV of rhesus macaque ( Macaca Fascicularis ) and the motor cortex of small mice ( Mus Musculus ).

  9. A 32-Channel Combined RF and B0 Shim Array for 3T Brain Imaging

    PubMed Central

    Stockmann, Jason P.; Witzel, Thomas; Keil, Boris; Polimeni, Jonathan R.; Mareyam, Azma; LaPierre, Cristen; Setsompop, Kawin; Wald, Lawrence L.

    2016-01-01

    Purpose We add user-controllable direct currents (DC) to the individual elements of a 32-channel radio-frequency (RF) receive array to provide B0 shimming ability while preserving the array’s reception sensitivity and parallel imaging performance. Methods Shim performance using constrained DC current (±2.5A) is simulated for brain arrays ranging from 8 to 128 elements. A 32-channel 3-tesla brain array is realized using inductive chokes to bridge the tuning capacitors on each RF loop. The RF and B0 shimming performance is assessed in bench and imaging measurements. Results The addition of DC currents to the 32-channel RF array is achieved with minimal disruption of the RF performance and/or negative side effects such as conductor heating or mechanical torques. The shimming results agree well with simulations and show performance superior to third-order spherical harmonic (SH) shimming. Imaging tests show the ability to reduce the standard frontal lobe susceptibility-induced fields and improve echo planar imaging geometric distortion. The simulation of 64- and 128-channel brain arrays suggest that even further shimming improvement is possible (equivalent to up to 6th-order SH shim coils). Conclusion Including user-controlled shim currents on the loops of a conventional highly parallel brain array coil is feasible with modest current levels and produces improved B0 shimming performance over standard second-order SH shimming. PMID:25689977

  10. Crystal Orientation Controlled Photovoltaic Properties of Multilayer GaAs Nanowire Arrays.

    PubMed

    Han, Ning; Yang, Zai-Xing; Wang, Fengyun; Yip, SenPo; Li, Dapan; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2016-06-28

    In recent years, despite significant progress in the synthesis, characterization, and integration of various nanowire (NW) material systems, crystal orientation controlled NW growth as well as real-time assessment of their growth-structure-property relationships still presents one of the major challenges in deploying NWs for practical large-scale applications. In this study, we propose, design, and develop a multilayer NW printing scheme for the determination of crystal orientation controlled photovoltaic properties of parallel GaAs NW arrays. By tuning the catalyst thickness and nucleation and growth temperatures in the two-step chemical vapor deposition, crystalline GaAs NWs with uniform, pure ⟨110⟩ and ⟨111⟩ orientations and other mixture ratios can be successfully prepared. Employing lift-off resists, three-layer NW parallel arrays can be easily attained for X-ray diffraction in order to evaluate their growth orientation along with the fabrication of NW parallel array based Schottky photovoltaic devices for the subsequent performance assessment. Notably, the open-circuit voltage of purely ⟨111⟩-oriented NW arrayed cells is far higher than that of ⟨110⟩-oriented NW arrayed counterparts, which can be interpreted by the different surface Fermi level pinning that exists on various NW crystal surface planes due to the different As dangling bond densities. All this indicates the profound effect of NW crystal orientation on physical and chemical properties of GaAs NWs, suggesting the careful NW design considerations for achieving optimal photovoltaic performances. The approach presented here could also serve as a versatile and powerful platform for in situ characterization of other NW materials.

  11. Collective mechanical behavior of multilayer colloidal arrays of hollow nanoparticles.

    PubMed

    Yin, Jie; Retsch, Markus; Thomas, Edwin L; Boyce, Mary C

    2012-04-03

    The collective mechanical behavior of multilayer colloidal arrays of hollow silica nanoparticles (HSNP) is explored under spherical nanoindentation through a combination of experimental, numerical, and theoretical approaches. The effective indentation modulus E(ind) is found to decrease with an increasing number of layers in a nonlinear manner. The indentation force versus penetration depth behavior for multilayer hollow particle arrays is predicted by an approximate analytical model based on the spring stiffness of the individual particles and the multipoint, multiparticle interactions as well as force transmission between the layers. The model is in good agreement with experiments and with detailed finite element simulations. The ability to tune the effective indentation modulus, E(ind), of the multilayer arrays by manipulating particle geometry and layering is revealed through the model, where E(ind) = (0.725m(-3/2) + 0.275)E(mon) and E(mon) is the monolayer modulus and m is number of layers. E(ind) is seen to plateau with increasing m to E(ind_plateau) = 0.275E(mon) and E(mon) scales with (t/R)(2), t being the particle shell thickness and R being the particle radius. The scaling law governing the nonlinear decrease in indentation modulus with an increase in layer number (E(ind) scaling with m(-3/2)) is found to be similar to that governing the indentation modulus of thin solid films E(ind_solid) on a stiff substrate (where E(ind_solid) scales with h(-1.4) and also decreases until reaching a plateau value) which also decreases with an increase in film thickness h. However, the mechanisms underlying this trend for the colloidal array are clearly different, where discrete particle-to-particle interactions govern the colloidal array behavior in contrast to the substrate constraint on deformation, which governs the thickness dependence of the continuous thin film indentation modulus.

  12. Low frequency and broadband metamaterial absorber with cross arrays and a flaked iron powder magnetic composite

    NASA Astrophysics Data System (ADS)

    Li, Wangchang; Liu, Qing; Wang, Liwei; Zhou, Zuzhi; Zheng, Jingwu; Ying, Yao; Qiao, Liang; Yu, Jing; Qiao, Xiaojing; Che, Shenglei

    2018-01-01

    In this paper, we present a design, simulation and experimental measurement of a cross array metamaterial absorber (MMA) based on the flaked Carbonyl iron powder (CIP) filled rubber plate in the microwave regime. The metamaterial absorber is a layered structure consisting of multilayer periodic cross electric resonators, magnetic rubber plate and the ground metal plate. The MMA exhibits dual band absorbing property and the absorption can be tuned from 1˜8GHz in the same thickness depending on the dimension and position of the cross arrays. The obviously broadened absorbing band of the designed structure is a result of the synergistic effects of the electrical resonance of the cross arrays and intrinsic absorption of the magnetic layer. The polarization and oblique incident angle in TE and TM model are also investigated in detail to explore the absorbing mechanisms. The resonance current of the cross array can excite the enhanced local magnetic field and dielectric field which can promote the absorption. The measurement results are basically consistent with the simulations but the absorbing peaks move a little bit to higher frequency for the reason that the surface oxidation of the flaked CIP in the preparation process.

  13. Otoacoustic Estimates of Cochlear Tuning: Testing Predictions in Macaque

    NASA Astrophysics Data System (ADS)

    Shera, Christopher A.; Bergevin, Christopher; Kalluri, Radha; Mc Laughlin, Myles; Michelet, Pascal; van der Heijden, Marcel; Joris, Philip X.

    2011-11-01

    Otoacoustic estimates of cochlear frequency selectivity suggest substantially sharper tuning in humans. However, the logic and methodology underlying these estimates remain untested by direct measurements in primates. We report measurements of frequency tuning in macaque monkeys, Old-World primates phylogenetically closer to humans than the small laboratory animals often taken as models of human hearing (e.g., cats, guinea pigs, and chinchillas). We find that measurements of tuning obtained directly from individual nerve fibers and indirectly using otoacoustic emissions both indicate that peripheral frequency selectivity in macaques is significantly sharper than in small laboratory animals, matching that inferred for humans at high frequencies. Our results validate the use of otoacoustic emissions for noninvasive measurement of cochlear tuning and corroborate the finding of sharper tuning in humans.

  14. Implementation of a Digital Signal Processing Subsystem for a Long Wavelength Array Station

    NASA Technical Reports Server (NTRS)

    Soriano, Melissa; Navarro, Robert; D'Addario, Larry; Sigman, Elliott; Wang, Douglas

    2011-01-01

    This paper describes the implementation of a Digital Signal Processing (DP) subsystem for a single Long Wavelength Array (LWA) station.12 The LWA is a radio telescope that will consist of many phased array stations. Each LWA station consists of 256 pairs of dipole-like antennas operating over the 10-88 MHz frequency range. The Digital Signal Processing subsystem digitizes up to 260 dual-polarization signals at 196 MHz from the LWA Analog Receiver, adjusts the delay and amplitude of each signal, and forms four independent beams. Coarse delay is implemented using a first-in-first-out buffer and fine delay is implemented using a finite impulse response filter. Amplitude adjustment and polarization corrections are implemented using a 2x2 matrix multiplication

  15. Hemodynamic Forces Tune the Arrest, Adhesion, and Extravasation of Circulating Tumor Cells.

    PubMed

    Follain, Gautier; Osmani, Naël; Azevedo, Ana Sofia; Allio, Guillaume; Mercier, Luc; Karreman, Matthia A; Solecki, Gergely; Garcia Leòn, Marìa Jesùs; Lefebvre, Olivier; Fekonja, Nina; Hille, Claudia; Chabannes, Vincent; Dollé, Guillaume; Metivet, Thibaut; Hovsepian, François Der; Prudhomme, Christophe; Pichot, Angélique; Paul, Nicodème; Carapito, Raphaël; Bahram, Siamak; Ruthensteiner, Bernhard; Kemmling, André; Siemonsen, Susanne; Schneider, Tanja; Fiehler, Jens; Glatzel, Markus; Winkler, Frank; Schwab, Yannick; Pantel, Klaus; Harlepp, Sébastien; Goetz, Jacky G

    2018-04-09

    Metastatic seeding is driven by cell-intrinsic and environmental cues, yet the contribution of biomechanics is poorly known. We aim to elucidate the impact of blood flow on the arrest and the extravasation of circulating tumor cells (CTCs) in vivo. Using the zebrafish embryo, we show that arrest of CTCs occurs in vessels with favorable flow profiles where flow forces control the adhesion efficacy of CTCs to the endothelium. We biophysically identified the threshold values of flow and adhesion forces allowing successful arrest of CTCs. In addition, flow forces fine-tune tumor cell extravasation by impairing the remodeling properties of the endothelium. Importantly, we also observe endothelial remodeling at arrest sites of CTCs in mouse brain capillaries. Finally, we observed that human supratentorial brain metastases preferably develop in areas with low perfusion. These results demonstrate that hemodynamic profiles at metastatic sites regulate key steps of extravasation preceding metastatic outgrowth. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Aircraft interior noise reduction by alternate resonance tuning

    NASA Technical Reports Server (NTRS)

    Gottwald, James A.; Bliss, Donald B.

    1990-01-01

    The focus is on a noise control method which considers aircraft fuselages lined with panels alternately tuned to frequencies above and below the frequency that must be attenuated. An interior noise reduction called alternate resonance tuning (ART) is described both theoretically and experimentally. Problems dealing with tuning single paneled wall structures for optimum noise reduction using the ART methodology are presented, and three theoretical problems are analyzed. The first analysis is a three dimensional, full acoustic solution for tuning a panel wall composed of repeating sections with four different panel tunings within that section, where the panels are modeled as idealized spring-mass-damper systems. The second analysis is a two dimensional, full acoustic solution for a panel geometry influenced by the effect of a propagating external pressure field such as that which might be associated with propeller passage by a fuselage. To reduce the analysis complexity, idealized spring-mass-damper panels are again employed. The final theoretical analysis presents the general four panel problem with real panel sections, where the effect of higher structural modes is discussed. Results from an experimental program highlight real applications of the ART concept and show the effectiveness of the tuning on real structures.

  17. Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement

    NASA Astrophysics Data System (ADS)

    Cheng, Zi-Qiang; Nan, Fan; Yang, Da-Jie; Zhong, Yu-Ting; Ma, Liang; Hao, Zhong-Hua; Zhou, Li; Wang, Qu-Quan

    2015-01-01

    Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ~1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of the two segments, and the maximal enhancement appears at L1/L2 = 1. In that case, the two-photon luminescence (TPL) of dimer nanorod arrays and the Raman intensity in the dimer junction is enhanced by 27 and 30 times, respectively, under resonant excitation. In the same way, the Raman intensity in the gap region is enhanced 16 times for the coaxial cable nanorod arrays. The plasmonic nanorod arrays synthesized by the facile method, having tunable plasmon properties and large field enhancement, indicate an attractive pathway to the photonic nanodevices.Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ~1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of

  18. High Thermoelectric Power Factor of a Diketopyrrolopyrrole-Based Low Bandgap Polymer via Finely Tuned Doping Engineering

    PubMed Central

    Jung, In Hwan; Hong, Cheon Taek; Lee, Un-Hak; Kang, Young Hun; Jang, Kwang-Suk; Cho, Song Yun

    2017-01-01

    We studied the thermoelectric properties of a diketopyrrolopyrrole-based semiconductor (PDPP3T) via a precisely tuned doping process using Iron (III) chloride. In particular, the doping states of PDPP3T film were linearly controlled depending on the dopant concentration. The outstanding Seebeck coefficient of PDPP3T assisted the excellent power factors (PFs) over 200 μW m−1K−2 at the broad range of doping concentration (3–8 mM) and the maximum PF reached up to 276 μW m−1K−2, which is much higher than that of poly(3-hexylthiophene), 56 μW m−1K−2. The high-mobility of PDPP3T was beneficial to enhance the electrical conductivity and the low level of total dopant volume was important to maintain high Seebeck coefficients. In addition, the low bandgap PDPP3T polymer effiectively shifted its absorption into near infra-red area and became more colorless after doping, which is great advantage to realize transparent electronic devices. Our results give importance guidance to develop thermoelectric semiconducting polymers and we suggest that the use of low bandgap and high-mobility polymers, and the accurate control of the doping levels are key factors for obtaining the high thermoelectric PF. PMID:28317929

  19. Modeling Fine Grinding

    NASA Astrophysics Data System (ADS)

    Frances, C.; Laguerie, C.; Dodds, J.; Guigon, P.; Thomas, A.

    The strategy of the current research programme on "Modeling Fine Grinding" which groups four French research teams is detailed. The experimental results on fine grinding of an alumina hydrate performed with different grinding machines are reported.

  20. Automated Sensor Tuning for Seismic Event Detection at a Carbon Capture, Utilization, and Storage Site, Farnsworth Unit, Ochiltree County, Texas

    NASA Astrophysics Data System (ADS)

    Ziegler, A.; Balch, R. S.; Knox, H. A.; Van Wijk, J. W.; Draelos, T.; Peterson, M. G.

    2016-12-01

    We present results (e.g. seismic detections and STA/LTA detection parameters) from a continuous downhole seismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project. Specifically, we evaluate data from a passive vertical monitoring array consisting of 16 levels of 3-component 15Hz geophones installed in the field and continuously recording since January 2014. This detection database is directly compared to ancillary data (i.e. wellbore pressure) to determine if there is any relationship between seismic observables and CO2 injection and pressure maintenance in the field. Of particular interest is detection of relatively low-amplitude signals constituting long-period long-duration (LPLD) events that may be associated with slow shear-slip analogous to low frequency tectonic tremor. While this category of seismic event provides great insight into dynamic behavior of the pressurized subsurface, it is inherently difficult to detect. To automatically detect seismic events using effective data processing parameters, an automated sensor tuning (AST) algorithm developed by Sandia National Laboratories is being utilized. AST exploits ideas from neuro-dynamic programming (reinforcement learning) to automatically self-tune and determine optimal detection parameter settings. AST adapts in near real-time to changing conditions and automatically self-tune a signal detector to identify (detect) only signals from events of interest, leading to a reduction in the number of missed legitimate event detections and the number of false event detections. Funding for this project is provided by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) through the Southwest Regional Partnership on Carbon Sequestration (SWP) under Award No. DE-FC26-05NT42591. Additional support has been provided by site operator Chaparral Energy, L.L.C. and Schlumberger Carbon Services. Sandia National